Control and optimization system
Xinsheng, Lou
2013-02-12
A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Optimization of seismic isolation systems via harmony search
NASA Astrophysics Data System (ADS)
Melih Nigdeli, Sinan; Bekdaş, Gebrail; Alhan, Cenk
2014-11-01
In this article, the optimization of isolation system parameters via the harmony search (HS) optimization method is proposed for seismically isolated buildings subjected to both near-fault and far-fault earthquakes. To obtain optimum values of isolation system parameters, an optimization program was developed in Matlab/Simulink employing the HS algorithm. The objective was to obtain a set of isolation system parameters within a defined range that minimizes the acceleration response of a seismically isolated structure subjected to various earthquakes without exceeding a peak isolation system displacement limit. Several cases were investigated for different isolation system damping ratios and peak displacement limitations of seismic isolation devices. Time history analyses were repeated for the neighbouring parameters of optimum values and the results proved that the parameters determined via HS were true optima. The performance of the optimum isolation system was tested under a second set of earthquakes that was different from the first set used in the optimization process. The proposed optimization approach is applicable to linear isolation systems. Isolation systems composed of isolation elements that are inherently nonlinear are the subject of a future study. Investigation of the optimum isolation system parameters has been considered in parametric studies. However, obtaining the best performance of a seismic isolation system requires a true optimization by taking the possibility of both near-fault and far-fault earthquakes into account. HS optimization is proposed here as a viable solution to this problem.
Numerical optimization methods for controlled systems with parameters
NASA Astrophysics Data System (ADS)
Tyatyushkin, A. I.
2017-10-01
First- and second-order numerical methods for optimizing controlled dynamical systems with parameters are discussed. In unconstrained-parameter problems, the control parameters are optimized by applying the conjugate gradient method. A more accurate numerical solution in these problems is produced by Newton's method based on a second-order functional increment formula. Next, a general optimal control problem with state constraints and parameters involved on the righthand sides of the controlled system and in the initial conditions is considered. This complicated problem is reduced to a mathematical programming one, followed by the search for optimal parameter values and control functions by applying a multimethod algorithm. The performance of the proposed technique is demonstrated by solving application problems.
Extreme Learning Machine and Particle Swarm Optimization in optimizing CNC turning operation
NASA Astrophysics Data System (ADS)
Janahiraman, Tiagrajah V.; Ahmad, Nooraziah; Hani Nordin, Farah
2018-04-01
The CNC machine is controlled by manipulating cutting parameters that could directly influence the process performance. Many optimization methods has been applied to obtain the optimal cutting parameters for the desired performance function. Nonetheless, the industry still uses the traditional technique to obtain those values. Lack of knowledge on optimization techniques is the main reason for this issue to be prolonged. Therefore, the simple yet easy to implement, Optimal Cutting Parameters Selection System is introduced to help the manufacturer to easily understand and determine the best optimal parameters for their turning operation. This new system consists of two stages which are modelling and optimization. In modelling of input-output and in-process parameters, the hybrid of Extreme Learning Machine and Particle Swarm Optimization is applied. This modelling technique tend to converge faster than other artificial intelligent technique and give accurate result. For the optimization stage, again the Particle Swarm Optimization is used to get the optimal cutting parameters based on the performance function preferred by the manufacturer. Overall, the system can reduce the gap between academic world and the industry by introducing a simple yet easy to implement optimization technique. This novel optimization technique can give accurate result besides being the fastest technique.
NASA Astrophysics Data System (ADS)
Monica, Z.; Sękala, A.; Gwiazda, A.; Banaś, W.
2016-08-01
Nowadays a key issue is to reduce the energy consumption of road vehicles. In particular solution one could find different strategies of energy optimization. The most popular but not sophisticated is so called eco-driving. In this strategy emphasized is particular behavior of drivers. In more sophisticated solution behavior of drivers is supported by control system measuring driving parameters and suggesting proper operation of the driver. The other strategy is concerned with application of different engineering solutions that aid optimization the process of energy consumption. Such systems take into consideration different parameters measured in real time and next take proper action according to procedures loaded to the control computer of a vehicle. The third strategy bases on optimization of the designed vehicle taking into account especially main sub-systems of a technical mean. In this approach the optimal level of energy consumption by a vehicle is obtained by synergetic results of individual optimization of particular constructional sub-systems of a vehicle. It is possible to distinguish three main sub-systems: the structural one the drive one and the control one. In the case of the structural sub-system optimization of the energy consumption level is related with the optimization or the weight parameter and optimization the aerodynamic parameter. The result is optimized body of a vehicle. Regarding the drive sub-system the optimization of the energy consumption level is related with the fuel or power consumption using the previously elaborated physical models. Finally the optimization of the control sub-system consists in determining optimal control parameters.
Hybrid computer optimization of systems with random parameters
NASA Technical Reports Server (NTRS)
White, R. C., Jr.
1972-01-01
A hybrid computer Monte Carlo technique for the simulation and optimization of systems with random parameters is presented. The method is applied to the simultaneous optimization of the means and variances of two parameters in the radar-homing missile problem treated by McGhee and Levine.
Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao
2015-08-14
This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS(®); then, to analyze the system's kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB(®) SIMULINK(®) controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance.
Zhou, Xiangyang; Zhao, Beilei; Gong, Guohao
2015-01-01
This paper presents a method based on co-simulation of a mechatronic system to optimize the control parameters of a two-axis inertially stabilized platform system (ISP) applied in an unmanned airship (UA), by which high control performance and reliability of the ISP system are achieved. First, a three-dimensional structural model of the ISP is built by using the three-dimensional parametric CAD software SOLIDWORKS®; then, to analyze the system’s kinematic and dynamic characteristics under operating conditions, dynamics modeling is conducted by using the multi-body dynamics software ADAMS™, thus the main dynamic parameters such as displacement, velocity, acceleration and reaction curve are obtained, respectively, through simulation analysis. Then, those dynamic parameters were input into the established MATLAB® SIMULINK® controller to simulate and test the performance of the control system. By these means, the ISP control parameters are optimized. To verify the methods, experiments were carried out by applying the optimized parameters to the control system of a two-axis ISP. The results show that the co-simulation by using virtual prototyping (VP) is effective to obtain optimized ISP control parameters, eventually leading to high ISP control performance. PMID:26287210
NASA Astrophysics Data System (ADS)
Tsutsui, Shigeyosi
This paper proposes an aggregation pheromone system (APS) for solving real-parameter optimization problems using the collective behavior of individuals which communicate using aggregation pheromones. APS was tested on several test functions used in evolutionary computation. The results showed APS could solve real-parameter optimization problems fairly well. The sensitivity analysis of control parameters of APS is also studied.
Simultaneous Intrinsic and Extrinsic Parameter Identification of a Hand-Mounted Laser-Vision Sensor
Lee, Jong Kwang; Kim, Kiho; Lee, Yongseok; Jeong, Taikyeong
2011-01-01
In this paper, we propose a simultaneous intrinsic and extrinsic parameter identification of a hand-mounted laser-vision sensor (HMLVS). A laser-vision sensor (LVS), consisting of a camera and a laser stripe projector, is used as a sensor component of the robotic measurement system, and it measures the range data with respect to the robot base frame using the robot forward kinematics and the optical triangulation principle. For the optimal estimation of the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. Best-fit parameters, including both the intrinsic and extrinsic parameters of the HMLVS, are simultaneously obtained based on the least-squares criterion. From the simulation and experimental results, it is shown that the parameter identification problem considered was characterized by a highly multimodal landscape; thus, the global optimization technique such as a particle swarm optimization can be a promising tool to identify the model parameters for a HMLVS, while the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum. The proposed optimization method does not require good initial guesses of the system parameters to converge at a very stable solution and it could be applied to a kinematically dissimilar robot system without loss of generality. PMID:22164104
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang
This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.« less
Optimal robust control strategy of a solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Wu, Xiaojuan; Gao, Danhui
2018-01-01
Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.
Use of multilevel modeling for determining optimal parameters of heat supply systems
NASA Astrophysics Data System (ADS)
Stennikov, V. A.; Barakhtenko, E. A.; Sokolov, D. V.
2017-07-01
The problem of finding optimal parameters of a heat-supply system (HSS) is in ensuring the required throughput capacity of a heat network by determining pipeline diameters and characteristics and location of pumping stations. Effective methods for solving this problem, i.e., the method of stepwise optimization based on the concept of dynamic programming and the method of multicircuit optimization, were proposed in the context of the hydraulic circuit theory developed at Melentiev Energy Systems Institute (Siberian Branch, Russian Academy of Sciences). These methods enable us to determine optimal parameters of various types of piping systems due to flexible adaptability of the calculation procedure to intricate nonlinear mathematical models describing features of used equipment items and methods of their construction and operation. The new and most significant results achieved in developing methodological support and software for finding optimal parameters of complex heat supply systems are presented: a new procedure for solving the problem based on multilevel decomposition of a heat network model that makes it possible to proceed from the initial problem to a set of interrelated, less cumbersome subproblems with reduced dimensionality; a new algorithm implementing the method of multicircuit optimization and focused on the calculation of a hierarchical model of a heat supply system; the SOSNA software system for determining optimum parameters of intricate heat-supply systems and implementing the developed methodological foundation. The proposed procedure and algorithm enable us to solve engineering problems of finding the optimal parameters of multicircuit heat supply systems having large (real) dimensionality, and are applied in solving urgent problems related to the optimal development and reconstruction of these systems. The developed methodological foundation and software can be used for designing heat supply systems in the Central and the Admiralty regions in St. Petersburg, the city of Bratsk, and the Magistral'nyi settlement.
NASA Astrophysics Data System (ADS)
Zhmud, V. A.; Reva, I. L.; Dimitrov, L. V.
2017-01-01
The design of robust feedback systems by means of the numerical optimization method is mostly accomplished with modeling of the several systems simultaneously. In each such system, regulators are similar. But the object models are different. It includes all edge values from the possible variants of the object model parameters. With all this, not all possible sets of model parameters are taken into account. Hence, the regulator can be not robust, i. e. it can not provide system stability in some cases, which were not tested during the optimization procedure. The paper proposes an alternative method. It consists in sequent changing of all parameters according to harmonic low. The frequencies of changing of each parameter are aliquant. It provides full covering of the parameters space.
Byron, Kelly; Bluvshtein, Vlad; Lucke, Lori
2013-01-01
Transcutaneous energy transmission systems (TETS) wirelessly transmit power through the skin. TETS is particularly desirable for ventricular assist devices (VAD), which currently require cables through the skin to power the implanted pump. Optimizing the inductive link of the TET system is a multi-parameter problem. Most current techniques to optimize the design simplify the problem by combining parameters leading to sub-optimal solutions. In this paper we present an optimization method using a genetic algorithm to handle a larger set of parameters, which leads to a more optimal design. Using this approach, we were able to increase efficiency while also reducing power variability in a prototype, compared to a traditional manual design method.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
Parameter estimation using meta-heuristics in systems biology: a comprehensive review.
Sun, Jianyong; Garibaldi, Jonathan M; Hodgman, Charlie
2012-01-01
This paper gives a comprehensive review of the application of meta-heuristics to optimization problems in systems biology, mainly focussing on the parameter estimation problem (also called the inverse problem or model calibration). It is intended for either the system biologist who wishes to learn more about the various optimization techniques available and/or the meta-heuristic optimizer who is interested in applying such techniques to problems in systems biology. First, the parameter estimation problems emerging from different areas of systems biology are described from the point of view of machine learning. Brief descriptions of various meta-heuristics developed for these problems follow, along with outlines of their advantages and disadvantages. Several important issues in applying meta-heuristics to the systems biology modelling problem are addressed, including the reliability and identifiability of model parameters, optimal design of experiments, and so on. Finally, we highlight some possible future research directions in this field.
Method for Household Refrigerators Efficiency Increasing
NASA Astrophysics Data System (ADS)
Lebedev, V. V.; Sumzina, L. V.; Maksimov, A. V.
2017-11-01
The relevance of working processes parameters optimization in air conditioning systems is proved in the work. The research is performed with the use of the simulation modeling method. The parameters optimization criteria are considered, the analysis of target functions is given while the key factors of technical and economic optimization are considered in the article. The search for the optimal solution at multi-purpose optimization of the system is made by finding out the minimum of the dual-target vector created by the Pareto method of linear and weight compromises from target functions of the total capital costs and total operating costs. The tasks are solved in the MathCAD environment. The research results show that the values of technical and economic parameters of air conditioning systems in the areas relating to the optimum solutions’ areas manifest considerable deviations from the minimum values. At the same time, the tendencies for significant growth in deviations take place at removal of technical parameters from the optimal values of both the capital investments and operating costs. The production and operation of conditioners with the parameters which are considerably deviating from the optimal values will lead to the increase of material and power costs. The research allows one to establish the borders of the area of the optimal values for technical and economic parameters at air conditioning systems’ design.
NASA Astrophysics Data System (ADS)
Gao, Chuan; Zhang, Rong-Hua; Wu, Xinrong; Sun, Jichang
2018-04-01
Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Var) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer ( T e), which is empirically and explicitly related to sea level (SL) variation. The strength of the thermocline effect on SST (referred to simply as "the thermocline effect") is represented by an introduced parameter, α Te. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only, and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Var data assimilation system implemented in the ICM are also discussed.
Using a 4D-Variational Method to Optimize Model Parameters in an Intermediate Coupled Model of ENSO
NASA Astrophysics Data System (ADS)
Gao, C.; Zhang, R. H.
2017-12-01
Large biases exist in real-time ENSO prediction, which is attributed to uncertainties in initial conditions and model parameters. Previously, a four dimentional variational (4D-Var) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer (Te), which is empirically and explicitly related to sea level (SL) variation, written as Te=αTe×FTe (SL). The introduced parameter, αTe, represents the strength of the thermocline effect on sea surface temperature (SST; referred as the thermocline effect). A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having initial condition optimized only and having initial condition plus this additional model parameter optimized both are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameter and initial condition together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Var data assimilation system implemented in the ICM are also discussed.
NASA Astrophysics Data System (ADS)
Kurosu, Keita; Takashina, Masaaki; Koizumi, Masahiko; Das, Indra J.; Moskvin, Vadim P.
2014-10-01
Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation.
Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng
2015-01-01
Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158
SPECT System Optimization Against A Discrete Parameter Space
Meng, L. J.; Li, N.
2013-01-01
In this paper, we present an analytical approach for optimizing the design of a static SPECT system or optimizing the sampling strategy with a variable/adaptive SPECT imaging hardware against an arbitrarily given set of system parameters. This approach has three key aspects. First, it is designed to operate over a discretized system parameter space. Second, we have introduced an artificial concept of virtual detector as the basic building block of an imaging system. With a SPECT system described as a collection of the virtual detectors, one can convert the task of system optimization into a process of finding the optimum imaging time distribution (ITD) across all virtual detectors. Thirdly, the optimization problem (finding the optimum ITD) could be solved with a block-iterative approach or other non-linear optimization algorithms. In essence, the resultant optimum ITD could provide a quantitative measure of the relative importance (or effectiveness) of the virtual detectors and help to identify the system configuration or sampling strategy that leads to an optimum imaging performance. Although we are using SPECT imaging as a platform to demonstrate the system optimization strategy, this development also provides a useful framework for system optimization problems in other modalities, such as positron emission tomography (PET) and X-ray computed tomography (CT) [1, 2]. PMID:23587609
Thermofluid Analysis of Magnetocaloric Refrigeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar; Gluesenkamp, Kyle R; Vineyard, Edward Allan
While there have been extensive studies on thermofluid characteristics of different magnetocaloric refrigeration systems, a conclusive optimization study using non-dimensional parameters which can be applied to a generic system has not been reported yet. In this study, a numerical model has been developed for optimization of active magnetic refrigerator (AMR). This model is computationally efficient and robust, making it appropriate for running the thousands of simulations required for parametric study and optimization. The governing equations have been non-dimensionalized and numerically solved using finite difference method. A parametric study on a wide range of non-dimensional numbers has been performed. While themore » goal of AMR systems is to improve the performance of competitive parameters including COP, cooling capacity and temperature span, new parameters called AMR performance index-1 have been introduced in order to perform multi objective optimization and simultaneously exploit all these parameters. The multi-objective optimization is carried out for a wide range of the non-dimensional parameters. The results of this study will provide general guidelines for designing high performance AMR systems.« less
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard; ...
2016-01-01
This paper proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system. The performance of the proposed approach is compared to some classic methods in later sections of the paper.« less
Design of multi-energy Helds coupling testing system of vertical axis wind power system
NASA Astrophysics Data System (ADS)
Chen, Q.; Yang, Z. X.; Li, G. S.; Song, L.; Ma, C.
2016-08-01
The conversion efficiency of wind energy is the focus of researches and concerns as one of the renewable energy. The present methods of enhancing the conversion efficiency are mostly improving the wind rotor structure, optimizing the generator parameters and energy storage controller and so on. Because the conversion process involves in energy conversion of multi-energy fields such as wind energy, mechanical energy and electrical energy, the coupling effect between them will influence the overall conversion efficiency. In this paper, using system integration analysis technology, a testing system based on multi-energy field coupling (MEFC) of vertical axis wind power system is proposed. When the maximum efficiency of wind rotor is satisfied, it can match to the generator function parameters according to the output performance of wind rotor. The voltage controller can transform the unstable electric power to the battery on the basis of optimizing the parameters such as charging times, charging voltage. Through the communication connection and regulation of the upper computer system (UCS), it can make the coupling parameters configure to an optimal state, and it improves the overall conversion efficiency. This method can test the whole wind turbine (WT) performance systematically and evaluate the design parameters effectively. It not only provides a testing method for system structure design and parameter optimization of wind rotor, generator and voltage controller, but also provides a new testing method for the whole performance optimization of vertical axis wind energy conversion system (WECS).
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
Ocampo, Cesar
2004-05-01
The modeling, design, and optimization of finite burn maneuvers for a generalized trajectory design and optimization system is presented. A generalized trajectory design and optimization system is a system that uses a single unified framework that facilitates the modeling and optimization of complex spacecraft trajectories that may operate in complex gravitational force fields, use multiple propulsion systems, and involve multiple spacecraft. The modeling and optimization issues associated with the use of controlled engine burn maneuvers of finite thrust magnitude and duration are presented in the context of designing and optimizing a wide class of finite thrust trajectories. Optimal control theory is used examine the optimization of these maneuvers in arbitrary force fields that are generally position, velocity, mass, and are time dependent. The associated numerical methods used to obtain these solutions involve either, the solution to a system of nonlinear equations, an explicit parameter optimization method, or a hybrid parameter optimization that combines certain aspects of both. The theoretical and numerical methods presented here have been implemented in copernicus, a prototype trajectory design and optimization system under development at the University of Texas at Austin.
Development of a parameter optimization technique for the design of automatic control systems
NASA Technical Reports Server (NTRS)
Whitaker, P. H.
1977-01-01
Parameter optimization techniques for the design of linear automatic control systems that are applicable to both continuous and digital systems are described. The model performance index is used as the optimization criterion because of the physical insight that can be attached to it. The design emphasis is to start with the simplest system configuration that experience indicates would be practical. Design parameters are specified, and a digital computer program is used to select that set of parameter values which minimizes the performance index. The resulting design is examined, and complexity, through the use of more complex information processing or more feedback paths, is added only if performance fails to meet operational specifications. System performance specifications are assumed to be such that the desired step function time response of the system can be inferred.
Wang, Monan; Zhang, Kai; Yang, Ning
2018-04-09
To help doctors decide their treatment from the aspect of mechanical analysis, the work built a computer assisted optimal system for treatment of femoral neck fracture oriented to clinical application. The whole system encompassed the following three parts: Preprocessing module, finite element mechanical analysis module, post processing module. Preprocessing module included parametric modeling of bone, parametric modeling of fracture face, parametric modeling of fixed screw and fixed position and input and transmission of model parameters. Finite element mechanical analysis module included grid division, element type setting, material property setting, contact setting, constraint and load setting, analysis method setting and batch processing operation. Post processing module included extraction and display of batch processing operation results, image generation of batch processing operation, optimal program operation and optimal result display. The system implemented the whole operations from input of fracture parameters to output of the optimal fixed plan according to specific patient real fracture parameter and optimal rules, which demonstrated the effectiveness of the system. Meanwhile, the system had a friendly interface, simple operation and could improve the system function quickly through modifying single module.
Situational reaction and planning
NASA Technical Reports Server (NTRS)
Yen, John; Pfluger, Nathan
1994-01-01
One problem faced in designing an autonomous mobile robot system is that there are many parameters of the system to define and optimize. While these parameters can be obtained for any given situation determining what the parameters should be in all situations is difficult. The usual solution is to give the system general parameters that work in all situations, but this does not help the robot to perform its best in a dynamic environment. Our approach is to develop a higher level situation analysis module that adjusts the parameters by analyzing the goals and history of sensor readings. By allowing the robot to change the system parameters based on its judgement of the situation, the robot will be able to better adapt to a wider set of possible situations. We use fuzzy logic in our implementation to reduce the number of basic situations the controller has to recognize. For example, a situation may be 60 percent open and 40 percent corridor, causing the optimal parameters to be somewhere between the optimal settings for the two extreme situations.
Optimal critic learning for robot control in time-varying environments.
Wang, Chen; Li, Yanan; Ge, Shuzhi Sam; Lee, Tong Heng
2015-10-01
In this paper, optimal critic learning is developed for robot control in a time-varying environment. The unknown environment is described as a linear system with time-varying parameters, and impedance control is employed for the interaction control. Desired impedance parameters are obtained in the sense of an optimal realization of the composite of trajectory tracking and force regulation. Q -function-based critic learning is developed to determine the optimal impedance parameters without the knowledge of the system dynamics. The simulation results are presented and compared with existing methods, and the efficacy of the proposed method is verified.
GA-optimization for rapid prototype system demonstration
NASA Technical Reports Server (NTRS)
Kim, Jinwoo; Zeigler, Bernard P.
1994-01-01
An application of the Genetic Algorithm (GA) is discussed. A novel scheme of Hierarchical GA was developed to solve complicated engineering problems which require optimization of a large number of parameters with high precision. High level GAs search for few parameters which are much more sensitive to the system performance. Low level GAs search in more detail and employ a greater number of parameters for further optimization. Therefore, the complexity of the search is decreased and the computing resources are used more efficiently.
Launch Vehicle Propulsion Design with Multiple Selection Criteria
NASA Technical Reports Server (NTRS)
Shelton, Joey D.; Frederick, Robert A.; Wilhite, Alan W.
2005-01-01
The approach and techniques described herein define an optimization and evaluation approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system. The method uses Monte Carlo simulations, genetic algorithm solvers, a propulsion thermo-chemical code, power series regression curves for historical data, and statistical models in order to optimize a vehicle system. The system, including parameters for engine chamber pressure, area ratio, and oxidizer/fuel ratio, was modeled and optimized to determine the best design for seven separate design weight and cost cases by varying design and technology parameters. Significant model results show that a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Other key findings show the sensitivity of propulsion parameters, technology factors, and cost factors and how these parameters differ when cost and weight are optimized separately. Each of the three key propulsion parameters; chamber pressure, area ratio, and oxidizer/fuel ratio, are optimized in the seven design cases and results are plotted to show impacts to engine mass and overall vehicle mass.
Parameter meta-optimization of metaheuristics of solving specific NP-hard facility location problem
NASA Astrophysics Data System (ADS)
Skakov, E. S.; Malysh, V. N.
2018-03-01
The aim of the work is to create an evolutionary method for optimizing the values of the control parameters of metaheuristics of solving the NP-hard facility location problem. A system analysis of the tuning process of optimization algorithms parameters is carried out. The problem of finding the parameters of a metaheuristic algorithm is formulated as a meta-optimization problem. Evolutionary metaheuristic has been chosen to perform the task of meta-optimization. Thus, the approach proposed in this work can be called “meta-metaheuristic”. Computational experiment proving the effectiveness of the procedure of tuning the control parameters of metaheuristics has been performed.
Identification of vehicle suspension parameters by design optimization
NASA Astrophysics Data System (ADS)
Tey, J. Y.; Ramli, R.; Kheng, C. W.; Chong, S. Y.; Abidin, M. A. Z.
2014-05-01
The design of a vehicle suspension system through simulation requires accurate representation of the design parameters. These parameters are usually difficult to measure or sometimes unavailable. This article proposes an efficient approach to identify the unknown parameters through optimization based on experimental results, where the covariance matrix adaptation-evolutionary strategy (CMA-es) is utilized to improve the simulation and experimental results against the kinematic and compliance tests. This speeds up the design and development cycle by recovering all the unknown data with respect to a set of kinematic measurements through a single optimization process. A case study employing a McPherson strut suspension system is modelled in a multi-body dynamic system. Three kinematic and compliance tests are examined, namely, vertical parallel wheel travel, opposite wheel travel and single wheel travel. The problem is formulated as a multi-objective optimization problem with 40 objectives and 49 design parameters. A hierarchical clustering method based on global sensitivity analysis is used to reduce the number of objectives to 30 by grouping correlated objectives together. Then, a dynamic summation of rank value is used as pseudo-objective functions to reformulate the multi-objective optimization to a single-objective optimization problem. The optimized results show a significant improvement in the correlation between the simulated model and the experimental model. Once accurate representation of the vehicle suspension model is achieved, further analysis, such as ride and handling performances, can be implemented for further optimization.
NASA Astrophysics Data System (ADS)
Potters, M. G.; Bombois, X.; Mansoori, M.; Hof, Paul M. J. Van den
2016-08-01
Estimation of physical parameters in dynamical systems driven by linear partial differential equations is an important problem. In this paper, we introduce the least costly experiment design framework for these systems. It enables parameter estimation with an accuracy that is specified by the experimenter prior to the identification experiment, while at the same time minimising the cost of the experiment. We show how to adapt the classical framework for these systems and take into account scaling and stability issues. We also introduce a progressive subdivision algorithm that further generalises the experiment design framework in the sense that it returns the lowest cost by finding the optimal input signal, and optimal sensor and actuator locations. Our methodology is then applied to a relevant problem in heat transfer studies: estimation of conductivity and diffusivity parameters in front-face experiments. We find good correspondence between numerical and theoretical results.
NASA Astrophysics Data System (ADS)
Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng
2018-05-01
Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.
Optimal design and control of an electromechanical transfemoral prosthesis with energy regeneration.
Rohani, Farbod; Richter, Hanz; van den Bogert, Antonie J
2017-01-01
In this paper, we present the design of an electromechanical above-knee active prosthesis with energy storage and regeneration. The system consists of geared knee and ankle motors, parallel springs for each motor, an ultracapacitor, and controllable four-quadrant power converters. The goal is to maximize the performance of the system by finding optimal controls and design parameters. A model of the system dynamics was developed, and used to solve a combined trajectory and design optimization problem. The objectives of the optimization were to minimize tracking error relative to human joint motions, as well as energy use. The optimization problem was solved by the method of direct collocation, based on joint torque and joint angle data from ten subjects walking at three speeds. After optimization of controls and design parameters, the simulated system could operate at zero energy cost while still closely emulating able-bodied gait. This was achieved by controlled energy transfer between knee and ankle, and by controlled storage and release of energy throughout the gait cycle. Optimal gear ratios and spring parameters were similar across subjects and walking speeds.
Multi-objective optimization in quantum parameter estimation
NASA Astrophysics Data System (ADS)
Gong, BeiLi; Cui, Wei
2018-04-01
We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.
Optimization of wastewater treatment plant operation for greenhouse gas mitigation.
Kim, Dongwook; Bowen, James D; Ozelkan, Ertunga C
2015-11-01
This study deals with the determination of optimal operation of a wastewater treatment system for minimizing greenhouse gas emissions, operating costs, and pollution loads in the effluent. To do this, an integrated performance index that includes three objectives was established to assess system performance. The ASMN_G model was used to perform system optimization aimed at determining a set of operational parameters that can satisfy three different objectives. The complex nonlinear optimization problem was simulated using the Nelder-Mead Simplex optimization algorithm. A sensitivity analysis was performed to identify influential operational parameters on system performance. The results obtained from the optimization simulations for six scenarios demonstrated that there are apparent trade-offs among the three conflicting objectives. The best optimized system simultaneously reduced greenhouse gas emissions by 31%, reduced operating cost by 11%, and improved effluent quality by 2% compared to the base case operation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adaptive control of stochastic linear systems with unknown parameters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Ku, R. T.
1972-01-01
The problem of optimal control of linear discrete-time stochastic dynamical system with unknown and, possibly, stochastically varying parameters is considered on the basis of noisy measurements. It is desired to minimize the expected value of a quadratic cost functional. Since the simultaneous estimation of the state and plant parameters is a nonlinear filtering problem, the extended Kalman filter algorithm is used. Several qualitative and asymptotic properties of the open loop feedback optimal control and the enforced separation scheme are discussed. Simulation results via Monte Carlo method show that, in terms of the performance measure, for stable systems the open loop feedback optimal control system is slightly better than the enforced separation scheme, while for unstable systems the latter scheme is far better.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Vickie E.; Borreguero, Jose M.; Bhowmik, Debsindhu
Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parametersmore » which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.« less
Optimal estimation of parameters and states in stochastic time-varying systems with time delay
NASA Astrophysics Data System (ADS)
Torkamani, Shahab; Butcher, Eric A.
2013-08-01
In this study estimation of parameters and states in stochastic linear and nonlinear delay differential systems with time-varying coefficients and constant delay is explored. The approach consists of first employing a continuous time approximation to approximate the stochastic delay differential equation with a set of stochastic ordinary differential equations. Then the problem of parameter estimation in the resulting stochastic differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the resulting system, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states.
Parameter learning for performance adaptation
NASA Technical Reports Server (NTRS)
Peek, Mark D.; Antsaklis, Panos J.
1990-01-01
A parameter learning method is introduced and used to broaden the region of operability of the adaptive control system of a flexible space antenna. The learning system guides the selection of control parameters in a process leading to optimal system performance. A grid search procedure is used to estimate an initial set of parameter values. The optimization search procedure uses a variation of the Hooke and Jeeves multidimensional search algorithm. The method is applicable to any system where performance depends on a number of adjustable parameters. A mathematical model is not necessary, as the learning system can be used whenever the performance can be measured via simulation or experiment. The results of two experiments, the transient regulation and the command following experiment, are presented.
An optimal system design process for a Mars roving vehicle
NASA Technical Reports Server (NTRS)
Pavarini, C.; Baker, J.; Goldberg, A.
1971-01-01
The problem of determining the optimal design for a Mars roving vehicle is considered. A system model is generated by consideration of the physical constraints on the design parameters and the requirement that the system be deliverable to the Mars surface. An expression which evaluates system performance relative to mission goals as a function of the design parameters only is developed. The use of nonlinear programming techniques to optimize the design is proposed and an example considering only two of the vehicle subsystems is formulated and solved.
Optimal line drop compensation parameters under multi-operating conditions
NASA Astrophysics Data System (ADS)
Wan, Yuan; Li, Hang; Wang, Kai; He, Zhe
2017-01-01
Line Drop Compensation (LDC) is a main function of Reactive Current Compensation (RCC) which is developed to improve voltage stability. While LDC has benefit to voltage, it may deteriorate the small-disturbance rotor angle stability of power system. In present paper, an intelligent algorithm which is combined by Genetic Algorithm (GA) and Backpropagation Neural Network (BPNN) is proposed to optimize parameters of LDC. The objective function proposed in present paper takes consideration of voltage deviation and power system oscillation minimal damping ratio under multi-operating conditions. A simulation based on middle area of Jiangxi province power system is used to demonstrate the intelligent algorithm. The optimization result shows that coordinate optimized parameters can meet the multioperating conditions requirement and improve voltage stability as much as possible while guaranteeing enough damping ratio.
NASA Astrophysics Data System (ADS)
Prathabrao, M.; Nawawi, Azli; Sidek, Noor Azizah
2017-04-01
Radio Frequency Identification (RFID) system has multiple benefits which can improve the operational efficiency of the organization. The advantages are the ability to record data systematically and quickly, reducing human errors and system errors, update the database automatically and efficiently. It is often more readers (reader) is needed for the installation purposes in RFID system. Thus, it makes the system more complex. As a result, RFID network planning process is needed to ensure the RFID system works perfectly. The planning process is also considered as an optimization process and power adjustment because the coordinates of each RFID reader to be determined. Therefore, algorithms inspired by the environment (Algorithm Inspired by Nature) is often used. In the study, PSO algorithm is used because it has few number of parameters, the simulation time is fast, easy to use and also very practical. However, PSO parameters must be adjusted correctly, for robust and efficient usage of PSO. Failure to do so may result in disruption of performance and results of PSO optimization of the system will be less good. To ensure the efficiency of PSO, this study will examine the effects of two parameters on the performance of PSO Algorithm in RFID tag coverage optimization. The parameters to be studied are the swarm size and iteration number. In addition to that, the study will also recommend the most optimal adjustment for both parameters that is, 200 for the no. iterations and 800 for the no. of swarms. Finally, the results of this study will enable PSO to operate more efficiently in order to optimize RFID network planning system.
40 CFR 141.87 - Monitoring requirements for water quality parameters.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...
40 CFR 141.87 - Monitoring requirements for water quality parameters.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...
40 CFR 141.87 - Monitoring requirements for water quality parameters.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...
40 CFR 141.87 - Monitoring requirements for water quality parameters.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...
40 CFR 141.87 - Monitoring requirements for water quality parameters.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...
Operations research investigations of satellite power stations
NASA Technical Reports Server (NTRS)
Cole, J. W.; Ballard, J. L.
1976-01-01
A systems model reflecting the design concepts of Satellite Power Stations (SPS) was developed. The model is of sufficient scope to include the interrelationships of the following major design parameters: the transportation to and between orbits; assembly of the SPS; and maintenance of the SPS. The systems model is composed of a set of equations that are nonlinear with respect to the system parameters and decision variables. The model determines a figure of merit from which alternative concepts concerning transportation, assembly, and maintenance of satellite power stations are studied. A hybrid optimization model was developed to optimize the system's decision variables. The optimization model consists of a random search procedure and the optimal-steepest descent method. A FORTRAN computer program was developed to enable the user to optimize nonlinear functions using the model. Specifically, the computer program was used to optimize Satellite Power Station system components.
CLFs-based optimization control for a class of constrained visual servoing systems.
Song, Xiulan; Miaomiao, Fu
2017-03-01
In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Tcherniavski, Iouri; Kahrizi, Mojtaba
2008-11-20
Using a gradient optimization method with objective functions formulated in terms of a signal-to-noise ratio (SNR) calculated at given values of the prescribed spatial ground resolution, optimization problems of geometrical parameters of a distributed optical system and a charge-coupled device of a space-based optical-electronic system are solved for samples of the optical systems consisting of two and three annular subapertures. The modulation transfer function (MTF) of the distributed aperture is expressed in terms of an average MTF taking residual image alignment (IA) and optical path difference (OPD) errors into account. The results show optimal solutions of the optimization problems depending on diverse variable parameters. The information on the magnitudes of the SNR can be used to determine the number of the subapertures and their sizes, while the information on the SNR decrease depending on the IA and OPD errors can be useful in design of a beam combination control system to produce the necessary requirements to its accuracy on the basis of the permissible deterioration in the image quality.
Optimization of 15 parameters influencing the long-term survival of bacteria in aquatic systems
NASA Technical Reports Server (NTRS)
Obenhuber, D. C.
1993-01-01
NASA is presently engaged in the design and development of a water reclamation system for the future space station. A major concern in processing water is the control of microbial contamination. As a means of developing an optimal microbial control strategy, studies were undertaken to determine the type and amount of contamination which could be expected in these systems under a variety of changing environmental conditions. A laboratory-based Taguchi optimization experiment was conducted to determine the ideal settings for 15 parameters which influence the survival of six bacterial species in aquatic systems. The experiment demonstrated that the bacterial survival period could be decreased significantly by optimizing environmental conditions.
Continuous Firefly Algorithm for Optimal Tuning of Pid Controller in Avr System
NASA Astrophysics Data System (ADS)
Bendjeghaba, Omar
2014-01-01
This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.
Xue, Dingyü; Li, Tingxue
2017-04-27
The parameter optimization method for multivariable systems is extended to the controller design problems for multiple input multiple output (MIMO) square fractional-order plants. The algorithm can be applied to search for the optimal parameters of integer-order controllers for fractional-order plants with or without time delays. Two examples are given to present the controller design procedures for MIMO fractional-order systems. Simulation studies show that the integer-order controllers designed are robust to plant gain variations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal strategy analysis based on robust predictive control for inventory system with random demand
NASA Astrophysics Data System (ADS)
Saputra, Aditya; Widowati, Sutrisno
2017-12-01
In this paper, the optimal strategy for a single product single supplier inventory system with random demand is analyzed by using robust predictive control with additive random parameter. We formulate the dynamical system of this system as a linear state space with additive random parameter. To determine and analyze the optimal strategy for the given inventory system, we use robust predictive control approach which gives the optimal strategy i.e. the optimal product volume that should be purchased from the supplier for each time period so that the expected cost is minimal. A numerical simulation is performed with some generated random inventory data. We simulate in MATLAB software where the inventory level must be controlled as close as possible to a set point decided by us. From the results, robust predictive control model provides the optimal strategy i.e. the optimal product volume that should be purchased and the inventory level was followed the given set point.
NASA Technical Reports Server (NTRS)
Diner, Daniel B. (Inventor)
1994-01-01
Real-time video presentations are provided in the field of operator-supervised automation and teleoperation, particularly in control stations having movable cameras for optimal viewing of a region of interest in robotics and teleoperations for performing different types of tasks. Movable monitors to match the corresponding camera orientations (pan, tilt, and roll) are provided in order to match the coordinate systems of all the monitors to the operator internal coordinate system. Automated control of the arrangement of cameras and monitors, and of the configuration of system parameters, is provided for optimal viewing and performance of each type of task for each operator since operators have different individual characteristics. The optimal viewing arrangement and system parameter configuration is determined and stored for each operator in performing each of many types of tasks in order to aid the automation of setting up optimal arrangements and configurations for successive tasks in real time. Factors in determining what is optimal include the operator's ability to use hand-controllers for each type of task. Robot joint locations, forces and torques are used, as well as the operator's identity, to identify the current type of task being performed in order to call up a stored optimal viewing arrangement and system parameter configuration.
[Optimization of end-tool parameters based on robot hand-eye calibration].
Zhang, Lilong; Cao, Tong; Liu, Da
2017-04-01
A new one-time registration method was developed in this research for hand-eye calibration of a surgical robot to simplify the operation process and reduce the preparation time. And a new and practical method is introduced in this research to optimize the end-tool parameters of the surgical robot based on analysis of the error sources in this registration method. In the process with one-time registration method, firstly a marker on the end-tool of the robot was recognized by a fixed binocular camera, and then the orientation and position of the marker were calculated based on the joint parameters of the robot. Secondly the relationship between the camera coordinate system and the robot base coordinate system could be established to complete the hand-eye calibration. Because of manufacturing and assembly errors of robot end-tool, an error equation was established with the transformation matrix between the robot end coordinate system and the robot end-tool coordinate system as the variable. Numerical optimization was employed to optimize end-tool parameters of the robot. The experimental results showed that the one-time registration method could significantly improve the efficiency of the robot hand-eye calibration compared with the existing methods. The parameter optimization method could significantly improve the absolute positioning accuracy of the one-time registration method. The absolute positioning accuracy of the one-time registration method can meet the requirements of the clinical surgery.
NASA Astrophysics Data System (ADS)
Sanaye, Sepehr; Katebi, Arash
2014-02-01
Energy, exergy, economic and environmental (4E) analysis and optimization of a hybrid solid oxide fuel cell and micro gas turbine (SOFC-MGT) system for use as combined generation of heat and power (CHP) is investigated in this paper. The hybrid system is modeled and performance related results are validated using available data in literature. Then a multi-objective optimization approach based on genetic algorithm is incorporated. Eight system design parameters are selected for the optimization procedure. System exergy efficiency and total cost rate (including capital or investment cost, operational cost and penalty cost of environmental emissions) are the two objectives. The effects of fuel unit cost, capital investment and system power output on optimum design parameters are also investigated. It is observed that the most sensitive and important design parameter in the hybrid system is fuel cell current density which has a significant effect on the balance between system cost and efficiency. The selected design point from the Pareto distribution of optimization results indicates a total system exergy efficiency of 60.7%, with estimated electrical energy cost 0.057 kW-1 h-1, and payback period of about 6.3 years for the investment.
NASA Astrophysics Data System (ADS)
Kano, Masayuki; Miyazaki, Shin'ichi; Ishikawa, Yoichi; Hiyoshi, Yoshihisa; Ito, Kosuke; Hirahara, Kazuro
2015-10-01
Data assimilation is a technique that optimizes the parameters used in a numerical model with a constraint of model dynamics achieving the better fit to observations. Optimized parameters can be utilized for the subsequent prediction with a numerical model and predicted physical variables are presumably closer to observations that will be available in the future, at least, comparing to those obtained without the optimization through data assimilation. In this work, an adjoint data assimilation system is developed for optimizing a relatively large number of spatially inhomogeneous frictional parameters during the afterslip period in which the physical constraints are a quasi-dynamic equation of motion and a laboratory derived rate and state dependent friction law that describe the temporal evolution of slip velocity at subduction zones. The observed variable is estimated slip velocity on the plate interface. Before applying this method to the real data assimilation for the afterslip of the 2003 Tokachi-oki earthquake, a synthetic data assimilation experiment is conducted to examine the feasibility of optimizing the frictional parameters in the afterslip area. It is confirmed that the current system is capable of optimizing the frictional parameters A-B, A and L by adopting the physical constraint based on a numerical model if observations capture the acceleration and decaying phases of slip on the plate interface. On the other hand, it is unlikely to constrain the frictional parameters in the region where the amplitude of afterslip is less than 1.0 cm d-1. Next, real data assimilation for the 2003 Tokachi-oki earthquake is conducted to incorporate slip velocity data inferred from time dependent inversion of Global Navigation Satellite System time-series. The optimized values of A-B, A and L are O(10 kPa), O(102 kPa) and O(10 mm), respectively. The optimized frictional parameters yield the better fit to the observations and the better prediction skill of slip velocity afterwards. Also, further experiment shows the importance of employing a fine-mesh model. It will contribute to the further understanding of the frictional properties on plate interfaces and lead to the forecasting system that provides useful information on the possibility of consequent earthquakes.
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2015-01-01
This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.
Flexible operation strategy for environment control system in abnormal supply power condition
NASA Astrophysics Data System (ADS)
Liping, Pang; Guoxiang, Li; Hongquan, Qu; Yufeng, Fang
2017-04-01
This paper establishes an optimization method that can be applied to the flexible operation of the environment control system in an abnormal supply power condition. A proposed conception of lifespan is used to evaluate the depletion time of the non-regenerative substance. The optimization objective function is to maximize the lifespans. The optimization variables are the allocated powers of subsystems. The improved Non-dominated Sorting Genetic Algorithm is adopted to obtain the pareto optimization frontier with the constraints of the cabin environmental parameters and the adjustable operating parameters of the subsystems. Based on the same importance of objective functions, the preferred power allocation of subsystems can be optimized. Then the corresponding running parameters of subsystems can be determined to ensure the maximum lifespans. A long-duration space station with three astronauts is used to show the implementation of the proposed optimization method. Three different CO2 partial pressure levels are taken into consideration in this study. The optimization results show that the proposed optimization method can obtain the preferred power allocation for the subsystems when the supply power is at a less-than-nominal value. The method can be applied to the autonomous control for the emergency response of the environment control system.
Biological optimization systems for enhancing photosynthetic efficiency and methods of use
Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim
2012-11-06
Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.
Program document for Energy Systems Optimization Program 2 (ESOP2). Volume 1: Engineering manual
NASA Technical Reports Server (NTRS)
Hamil, R. G.; Ferden, S. L.
1977-01-01
The Energy Systems Optimization Program, which is used to provide analyses of Modular Integrated Utility Systems (MIUS), is discussed. Modifications to the input format to allow modular inputs in specified blocks of data are described. An optimization feature which enables the program to search automatically for the minimum value of one parameter while varying the value of other parameters is reported. New program option flags for prime mover analyses and solar energy for space heating and domestic hot water are also covered.
Distributed weighted least-squares estimation with fast convergence for large-scale systems.
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods.
NASA Technical Reports Server (NTRS)
Tumer, Irem; Mehr, Ali Farhang
2005-01-01
In this paper, a two-level multidisciplinary design approach is described to optimize the effectiveness of ISHM s. At the top level, the overall safety of the mission consists of system-level variables, parameters, objectives, and constraints that are shared throughout the system and by all subsystems. Each subsystem level will then comprise of these shared values in addition to subsystem-specific variables, parameters, objectives and constraints. A hierarchical structure will be established to pass up or down shared values between the two levels with system-level and subsystem-level optimization routines.
Parameters optimization for magnetic resonance coupling wireless power transmission.
Li, Changsheng; Zhang, He; Jiang, Xiaohua
2014-01-01
Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.
NASA Astrophysics Data System (ADS)
Xu, Wenfu; Hu, Zhonghua; Zhang, Yu; Liang, Bin
2017-03-01
After being launched into space to perform some tasks, the inertia parameters of a space robotic system may change due to fuel consumption, hardware reconfiguration, target capturing, and so on. For precision control and simulation, it is required to identify these parameters on orbit. This paper proposes an effective method for identifying the complete inertia parameters (including the mass, inertia tensor and center of mass position) of a space robotic system. The key to the method is to identify two types of simple dynamics systems: equivalent single-body and two-body systems. For the former, all of the joints are locked into a designed configuration and the thrusters are used for orbital maneuvering. The object function for optimization is defined in terms of acceleration and velocity of the equivalent single body. For the latter, only one joint is unlocked and driven to move along a planned (exiting) trajectory in free-floating mode. The object function is defined based on the linear and angular momentum equations. Then, the parameter identification problems are transformed into non-linear optimization problems. The Particle Swarm Optimization (PSO) algorithm is applied to determine the optimal parameters, i.e. the complete dynamic parameters of the two equivalent systems. By sequentially unlocking the 1st to nth joints (or unlocking the nth to 1st joints), the mass properties of body 0 to n (or n to 0) are completely identified. For the proposed method, only simple dynamics equations are needed for identification. The excitation motion (orbit maneuvering and joint motion) is also easily realized. Moreover, the method does not require prior knowledge of the mass properties of any body. It is general and practical for identifying a space robotic system on-orbit.
NASA Astrophysics Data System (ADS)
Shah, Rahul H.
Production costs account for the largest share of the overall cost of manufacturing facilities. With the U.S. industrial sector becoming more and more competitive, manufacturers are looking for more cost and resource efficient working practices. Operations management and production planning have shown their capability to dramatically reduce manufacturing costs and increase system robustness. When implementing operations related decision making and planning, two fields that have shown to be most effective are maintenance and energy. Unfortunately, the current research that integrates both is limited. Additionally, these studies fail to consider parameter domains and optimization on joint energy and maintenance driven production planning. Accordingly, production planning methodology that considers maintenance and energy is investigated. Two models are presented to achieve well-rounded operating strategy. The first is a joint energy and maintenance production scheduling model. The second is a cost per part model considering maintenance, energy, and production. The proposed methodology will involve a Time-of-Use electricity demand response program, buffer and holding capacity, station reliability, production rate, station rated power, and more. In practice, the scheduling problem can be used to determine a joint energy, maintenance, and production schedule. Meanwhile, the cost per part model can be used to: (1) test the sensitivity of the obtained optimal production schedule and its corresponding savings by varying key production system parameters; and (2) to determine optimal system parameter combinations when using the joint energy, maintenance, and production planning model. Additionally, a factor analysis on the system parameters is conducted and the corresponding performance of the production schedule under variable parameter conditions, is evaluated. Also, parameter optimization guidelines that incorporate maintenance and energy parameter decision making in the production planning framework are discussed. A modified Particle Swarm Optimization solution technique is adopted to solve the proposed scheduling problem. The algorithm is described in detail and compared to Genetic Algorithm. Case studies are presented to illustrate the benefits of using the proposed model and the effectiveness of the Particle Swarm Optimization approach. Numerical Experiments are implemented and analyzed to test the effectiveness of the proposed model. The proposed scheduling strategy can achieve savings of around 19 to 27 % in cost per part when compared to the baseline scheduling scenarios. By optimizing key production system parameters from the cost per part model, the baseline scenarios can obtain around 20 to 35 % in savings for the cost per part. These savings further increase by 42 to 55 % when system parameter optimization is integrated with the proposed scheduling problem. Using this method, the most influential parameters on the cost per part are the rated power from production, the production rate, and the initial machine reliabilities. The modified Particle Swarm Optimization algorithm adopted allows greater diversity and exploration compared to Genetic Algorithm for the proposed joint model which results in it being more computationally efficient in determining the optimal scheduling. While Genetic Algorithm could achieve a solution quality of 2,279.63 at an expense of 2,300 seconds in computational effort. In comparison, the proposed Particle Swarm Optimization algorithm achieved a solution quality of 2,167.26 in less than half the computation effort which is required by Genetic Algorithm.
Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1997-01-01
A technique for designing optimal inputs for aerodynamic parameter estimation was flight tested on the F-18 High Angle of Attack Research Vehicle (HARV). Model parameter accuracies calculated from flight test data were compared on an equal basis for optimal input designs and conventional inputs at the same flight condition. In spite of errors in the a priori input design models and distortions of the input form by the feedback control system, the optimal inputs increased estimated parameter accuracies compared to conventional 3-2-1-1 and doublet inputs. In addition, the tests using optimal input designs demonstrated enhanced design flexibility, allowing the optimal input design technique to use a larger input amplitude to achieve further increases in estimated parameter accuracy without departing from the desired flight test condition. This work validated the analysis used to develop the optimal input designs, and demonstrated the feasibility and practical utility of the optimal input design technique.
Integrated controls design optimization
Lou, Xinsheng; Neuschaefer, Carl H.
2015-09-01
A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.
Tashkova, Katerina; Korošec, Peter; Silc, Jurij; Todorovski, Ljupčo; Džeroski, Sašo
2011-10-11
We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These results hold for both real and artificial data, for all observability scenarios considered, and for all amounts of noise added to the artificial data. In sum, the meta-heuristic methods considered are suitable for estimating the parameters in the ODE model of the dynamics of endocytosis under a range of conditions: With the model and conditions being representative of parameter estimation tasks in ODE models of biochemical systems, our results clearly highlight the promise of bio-inspired meta-heuristic methods for parameter estimation in dynamic system models within system biology.
2011-01-01
Background We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. Results We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Conclusions Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These results hold for both real and artificial data, for all observability scenarios considered, and for all amounts of noise added to the artificial data. In sum, the meta-heuristic methods considered are suitable for estimating the parameters in the ODE model of the dynamics of endocytosis under a range of conditions: With the model and conditions being representative of parameter estimation tasks in ODE models of biochemical systems, our results clearly highlight the promise of bio-inspired meta-heuristic methods for parameter estimation in dynamic system models within system biology. PMID:21989196
Robust Control of Uncertain Systems via Dissipative LQG-Type Controllers
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.
2000-01-01
Optimal controller design is addressed for a class of linear, time-invariant systems which are dissipative with respect to a quadratic power function. The system matrices are assumed to be affine functions of uncertain parameters confined to a convex polytopic region in the parameter space. For such systems, a method is developed for designing a controller which is dissipative with respect to a given power function, and is simultaneously optimal in the linear-quadratic-Gaussian (LQG) sense. The resulting controller provides robust stability as well as optimal performance. Three important special cases, namely, passive, norm-bounded, and sector-bounded controllers, which are also LQG-optimal, are presented. The results give new methods for robust controller design in the presence of parametric uncertainties.
Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy
Rosewater, David; Ferreira, Summer; Schoenwald, David; ...
2018-01-25
Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less
Liu, Hao; Shao, Qi; Fang, Xuelin
2017-02-01
For the class-E amplifier in a wireless power transfer (WPT) system, the design parameters are always determined by the nominal model. However, this model neglects the conduction loss and voltage stress of MOSFET and cannot guarantee the highest efficiency in the WPT system for biomedical implants. To solve this problem, this paper proposes a novel circuit model of the subnominal class-E amplifier. On a WPT platform for capsule endoscope, the proposed model was validated to be effective and the relationship between the amplifier's design parameters and its characteristics was analyzed. At a given duty ratio, the design parameters with the highest efficiency and safe voltage stress are derived and the condition is called 'optimal subnominal condition.' The amplifier's efficiency can reach the highest of 99.3% at the 0.097 duty ratio. Furthermore, at the 0.5 duty ratio, the measured efficiency of the optimal subnominal condition can reach 90.8%, which is 15.2% higher than that of the nominal condition. Then, a WPT experiment with a receiving unit was carried out to validate the feasibility of the optimized amplifier. In general, the design parameters of class-E amplifier in a WPT system for biomedical implants can be determined with the proposed optimization method in this paper.
Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosewater, David; Ferreira, Summer; Schoenwald, David
Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less
Designing Industrial Networks Using Ecological Food Web Metrics.
Layton, Astrid; Bras, Bert; Weissburg, Marc
2016-10-18
Biologically Inspired Design (biomimicry) and Industrial Ecology both look to natural systems to enhance the sustainability and performance of engineered products, systems and industries. Bioinspired design (BID) traditionally has focused on a unit operation and single product level. In contrast, this paper describes how principles of network organization derived from analysis of ecosystem properties can be applied to industrial system networks. Specifically, this paper examines the applicability of particular food web matrix properties as design rules for economically and biologically sustainable industrial networks, using an optimization model developed for a carpet recycling network. Carpet recycling network designs based on traditional cost and emissions based optimization are compared to designs obtained using optimizations based solely on ecological food web metrics. The analysis suggests that networks optimized using food web metrics also were superior from a traditional cost and emissions perspective; correlations between optimization using ecological metrics and traditional optimization ranged generally from 0.70 to 0.96, with flow-based metrics being superior to structural parameters. Four structural food parameters provided correlations nearly the same as that obtained using all structural parameters, but individual structural parameters provided much less satisfactory correlations. The analysis indicates that bioinspired design principles from ecosystems can lead to both environmentally and economically sustainable industrial resource networks, and represent guidelines for designing sustainable industry networks.
Ismail, Ahmad Muhaimin; Mohamad, Mohd Saberi; Abdul Majid, Hairudin; Abas, Khairul Hamimah; Deris, Safaai; Zaki, Nazar; Mohd Hashim, Siti Zaiton; Ibrahim, Zuwairie; Remli, Muhammad Akmal
2017-12-01
Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in small scale systems. In addition, the results of this study can be used to estimate kinetic parameter values in the stage of model selection for different experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Apparatus and Methods for Manipulation and Optimization of Biological Systems
NASA Technical Reports Server (NTRS)
Sun, Ren (Inventor); Ho, Chih-Ming (Inventor); Wong, Pak Kin (Inventor); Yu, Fuqu (Inventor)
2014-01-01
The invention provides systems and methods for manipulating biological systems, for example to elicit a more desired biological response from a biological sample, such as a tissue, organ, and/or a cell. In one aspect, the invention operates by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The invention can be used, e.g., to optimize any biological system, e.g., bioreactors for proteins, and the like, small molecules, polysaccharides, lipids, and the like. Another use of the apparatus and methods includes is for the discovery of key parameters in complex biological systems.
Evolutionary Tradeoffs between Economy and Effectiveness in Biological Homeostasis Systems
Szekely, Pablo; Sheftel, Hila; Mayo, Avi; Alon, Uri
2013-01-01
Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach from economics and engineering called Pareto optimality. This approach allows calculating the best-compromise systems that optimally combine the two tasks. We used a simple and general model for regulation, known as integral feedback, and showed that best-compromise systems have particular combinations of biochemical parameters that control the response rate and basal level. We find that the optimal systems fall on a curve in parameter space. Due to this feature, even if one is able to measure only a small fraction of the system's parameters, one can infer the rest. We applied this approach to estimate parameters in three biological systems: response to heat shock and response to DNA damage in bacteria, and calcium homeostasis in mammals. PMID:23950698
Evolutionary tradeoffs between economy and effectiveness in biological homeostasis systems.
Szekely, Pablo; Sheftel, Hila; Mayo, Avi; Alon, Uri
2013-01-01
Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach from economics and engineering called Pareto optimality. This approach allows calculating the best-compromise systems that optimally combine the two tasks. We used a simple and general model for regulation, known as integral feedback, and showed that best-compromise systems have particular combinations of biochemical parameters that control the response rate and basal level. We find that the optimal systems fall on a curve in parameter space. Due to this feature, even if one is able to measure only a small fraction of the system's parameters, one can infer the rest. We applied this approach to estimate parameters in three biological systems: response to heat shock and response to DNA damage in bacteria, and calcium homeostasis in mammals.
Distributed weighted least-squares estimation with fast convergence for large-scale systems☆
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods. PMID:25641976
Multi-objective optimization of GENIE Earth system models.
Price, Andrew R; Myerscough, Richard J; Voutchkov, Ivan I; Marsh, Robert; Cox, Simon J
2009-07-13
The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of multiple Earth system simulations. These computations require an infrastructure that provides high-performance computing for building and searching the RSMs and high-throughput computing for the concurrent evaluation of a large number of models. Grid computing technology is therefore essential to make this algorithm practical for members of the GENIE project.
TH-E-BRF-06: Kinetic Modeling of Tumor Response to Fractionated Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, H; Gordon, J; Chetty, I
2014-06-15
Purpose: Accurate calibration of radiobiological parameters is crucial to predicting radiation treatment response. Modeling differences may have a significant impact on calibrated parameters. In this study, we have integrated two existing models with kinetic differential equations to formulate a new tumor regression model for calibrating radiobiological parameters for individual patients. Methods: A system of differential equations that characterizes the birth-and-death process of tumor cells in radiation treatment was analytically solved. The solution of this system was used to construct an iterative model (Z-model). The model consists of three parameters: tumor doubling time Td, half-life of dying cells Tr and cellmore » survival fraction SFD under dose D. The Jacobian determinant of this model was proposed as a constraint to optimize the three parameters for six head and neck cancer patients. The derived parameters were compared with those generated from the two existing models, Chvetsov model (C-model) and Lim model (L-model). The C-model and L-model were optimized with the parameter Td fixed. Results: With the Jacobian-constrained Z-model, the mean of the optimized cell survival fractions is 0.43±0.08, and the half-life of dying cells averaged over the six patients is 17.5±3.2 days. The parameters Tr and SFD optimized with the Z-model differ by 1.2% and 20.3% from those optimized with the Td-fixed C-model, and by 32.1% and 112.3% from those optimized with the Td-fixed L-model, respectively. Conclusion: The Z-model was analytically constructed from the cellpopulation differential equations to describe changes in the number of different tumor cells during the course of fractionated radiation treatment. The Jacobian constraints were proposed to optimize the three radiobiological parameters. The developed modeling and optimization methods may help develop high-quality treatment regimens for individual patients.« less
Optimizing spectral CT parameters for material classification tasks
NASA Astrophysics Data System (ADS)
Rigie, D. S.; La Rivière, P. J.
2016-06-01
In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies.
Optimizing Spectral CT Parameters for Material Classification Tasks
Rigie, D. S.; La Rivière, P. J.
2017-01-01
In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies. PMID:27227430
High-precision method of binocular camera calibration with a distortion model.
Li, Weimin; Shan, Siyu; Liu, Hui
2017-03-10
A high-precision camera calibration method for binocular stereo vision system based on a multi-view template and alternative bundle adjustment is presented in this paper. The proposed method could be achieved by taking several photos on a specially designed calibration template that has diverse encoded points in different orientations. In this paper, the method utilized the existing algorithm used for monocular camera calibration to obtain the initialization, which involves a camera model, including radial lens distortion and tangential distortion. We created a reference coordinate system based on the left camera coordinate to optimize the intrinsic parameters of left camera through alternative bundle adjustment to obtain optimal values. Then, optimal intrinsic parameters of the right camera can be obtained through alternative bundle adjustment when we create a reference coordinate system based on the right camera coordinate. We also used all intrinsic parameters that were acquired to optimize extrinsic parameters. Thus, the optimal lens distortion parameters and intrinsic and extrinsic parameters were obtained. Synthetic and real data were used to test the method. The simulation results demonstrate that the maximum mean absolute relative calibration errors are about 3.5e-6 and 1.2e-6 for the focal length and the principal point, respectively, under zero-mean Gaussian noise with 0.05 pixels standard deviation. The real result shows that the reprojection error of our model is about 0.045 pixels with the relative standard deviation of 1.0e-6 over the intrinsic parameters. The proposed method is convenient, cost-efficient, highly precise, and simple to carry out.
Real-time parameter optimization based on neural network for smart injection molding
NASA Astrophysics Data System (ADS)
Lee, H.; Liau, Y.; Ryu, K.
2018-03-01
The manufacturing industry has been facing several challenges, including sustainability, performance and quality of production. Manufacturers attempt to enhance the competitiveness of companies by implementing CPS (Cyber-Physical Systems) through the convergence of IoT(Internet of Things) and ICT(Information & Communication Technology) in the manufacturing process level. Injection molding process has a short cycle time and high productivity. This features have been making it suitable for mass production. In addition, this process is used to produce precise parts in various industry fields such as automobiles, optics and medical devices. Injection molding process has a mixture of discrete and continuous variables. In order to optimized the quality, variables that is generated in the injection molding process must be considered. Furthermore, Optimal parameter setting is time-consuming work to predict the optimum quality of the product. Since the process parameter cannot be easily corrected during the process execution. In this research, we propose a neural network based real-time process parameter optimization methodology that sets optimal process parameters by using mold data, molding machine data, and response data. This paper is expected to have academic contribution as a novel study of parameter optimization during production compare with pre - production parameter optimization in typical studies.
Optimal Sensor Allocation for Fault Detection and Isolation
NASA Technical Reports Server (NTRS)
Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann
2004-01-01
Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.
Optimization of a pressure control valve for high power automatic transmission considering stability
NASA Astrophysics Data System (ADS)
Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong
2018-02-01
The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.
Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.
Energy optimization for upstream data transfer in 802.15.4 beacon-enabled star formulation
NASA Astrophysics Data System (ADS)
Liu, Hua; Krishnamachari, Bhaskar
2008-08-01
Energy saving is one of the major concerns for low rate personal area networks. This paper models energy consumption for beacon-enabled time-slotted media accessing control cooperated with sleeping scheduling in a star network formulation for IEEE 802.15.4 standard. We investigate two different upstream (data transfer from devices to a network coordinator) strategies: a) tracking strategy: the devices wake up and check status (track the beacon) in each time slot; b) non-tracking strategy: nodes only wake-up upon data arriving and stay awake till data transmitted to the coordinator. We consider the tradeoff between energy cost and average data transmission delay for both strategies. Both scenarios are formulated as optimization problems and the optimal solutions are discussed. Our results show that different data arrival rate and system parameters (such as contention access period interval, upstream speed etc.) result in different strategies in terms of energy optimization with maximum delay constraints. Hence, according to different applications and system settings, different strategies might be chosen by each node to achieve energy optimization for both self-interested view and system view. We give the relation among the tunable parameters by formulas and plots to illustrate which strategy is better under corresponding parameters. There are two main points emphasized in our results with delay constraints: on one hand, when the system setting is fixed by coordinator, nodes in the network can intelligently change their strategies according to corresponding application data arrival rate; on the other hand, when the nodes' applications are known by the coordinator, the coordinator can tune the system parameters to achieve optimal system energy consumption.
NASA Astrophysics Data System (ADS)
Göll, S.; Samsun, R. C.; Peters, R.
Fuel-cell-based auxiliary power units can help to reduce fuel consumption and emissions in transportation. For this application, the combination of solid oxide fuel cells (SOFCs) with upstream fuel processing by autothermal reforming (ATR) is seen as a highly favorable configuration. Notwithstanding the necessity to improve each single component, an optimized architecture of the fuel cell system as a whole must be achieved. To enable model-based analyses, a system-level approach is proposed in which the fuel cell system is modeled as a multi-stage thermo-chemical process using the "flowsheeting" environment PRO/II™. Therein, the SOFC stack and the ATR are characterized entirely by corresponding thermodynamic processes together with global performance parameters. The developed model is then used to achieve an optimal system layout by comparing different system architectures. A system with anode and cathode off-gas recycling was identified to have the highest electric system efficiency. Taking this system as a basis, the potential for further performance enhancement was evaluated by varying four parameters characterizing different system components. Using methods from the design and analysis of experiments, the effects of these parameters and of their interactions were quantified, leading to an overall optimized system with encouraging performance data.
Cheng, Xianfu; Lin, Yuqun
2014-01-01
The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.
Optimization of hydraulic turbine governor parameters based on WPA
NASA Astrophysics Data System (ADS)
Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao
2018-01-01
The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.
Van Derlinden, E; Bernaerts, K; Van Impe, J F
2010-05-21
Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor. Comparable estimates are obtained, but global OED/PE estimates are, in general, more accurate and reliable. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.
2014-12-01
In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.
He, L; Huang, G H; Lu, H W
2010-04-15
Solving groundwater remediation optimization problems based on proxy simulators can usually yield optimal solutions differing from the "true" ones of the problem. This study presents a new stochastic optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated solution method for simultaneously addressing modeling uncertainty associated with simulator residuals and optimizing groundwater remediation processes. This is a new attempt different from the previous modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered), the model has the advantages of providing mean-variance analysis for contaminant concentrations, mitigating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level of optimal remediation strategies to system designers, and reducing computational cost in optimization processes. 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Weiqi; Huang, Peng; Peng, Jinye; Fan, Jianping; Zeng, Guihua
2018-02-01
For supporting practical quantum key distribution (QKD), it is critical to stabilize the physical parameters of signals, e.g., the intensity, phase, and polarization of the laser signals, so that such QKD systems can achieve better performance and practical security. In this paper, an approach is developed by integrating a support vector regression (SVR) model to optimize the performance and practical security of the QKD system. First, a SVR model is learned to precisely predict the time-along evolutions of the physical parameters of signals. Second, such predicted time-along evolutions are employed as feedback to control the QKD system for achieving the optimal performance and practical security. Finally, our proposed approach is exemplified by using the intensity evolution of laser light and a local oscillator pulse in the Gaussian modulated coherent state QKD system. Our experimental results have demonstrated three significant benefits of our SVR-based approach: (1) it can allow the QKD system to achieve optimal performance and practical security, (2) it does not require any additional resources and any real-time monitoring module to support automatic prediction of the time-along evolutions of the physical parameters of signals, and (3) it is applicable to any measurable physical parameter of signals in the practical QKD system.
Panorama parking assistant system with improved particle swarm optimization method
NASA Astrophysics Data System (ADS)
Cheng, Ruzhong; Zhao, Yong; Li, Zhichao; Jiang, Weigang; Wang, Xin'an; Xu, Yong
2013-10-01
A panorama parking assistant system (PPAS) for the automotive aftermarket together with a practical improved particle swarm optimization method (IPSO) are proposed in this paper. In the PPAS system, four fisheye cameras are installed in the vehicle with different views, and four channels of video frames captured by the cameras are processed as a 360-deg top-view image around the vehicle. Besides the embedded design of PPAS, the key problem for image distortion correction and mosaicking is the efficiency of parameter optimization in the process of camera calibration. In order to address this problem, an IPSO method is proposed. Compared with other parameter optimization methods, the proposed method allows a certain range of dynamic change for the intrinsic and extrinsic parameters, and can exploit only one reference image to complete all of the optimization; therefore, the efficiency of the whole camera calibration is increased. The PPAS is commercially available, and the IPSO method is a highly practical way to increase the efficiency of the installation and the calibration of PPAS in automobile 4S shops.
An algorithm for control system design via parameter optimization. M.S. Thesis
NASA Technical Reports Server (NTRS)
Sinha, P. K.
1972-01-01
An algorithm for design via parameter optimization has been developed for linear-time-invariant control systems based on the model reference adaptive control concept. A cost functional is defined to evaluate the system response relative to nominal, which involves in general the error between the system and nominal response, its derivatives and the control signals. A program for the practical implementation of this algorithm has been developed, with the computational scheme for the evaluation of the performance index based on Lyapunov's theorem for stability of linear invariant systems.
An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.
Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V
2013-01-01
The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.
An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters
Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N. V.
2013-01-01
The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test. PMID:23469172
Research on intrusion detection based on Kohonen network and support vector machine
NASA Astrophysics Data System (ADS)
Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi
2018-05-01
In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.
NASA Astrophysics Data System (ADS)
Idris, N. H.; Salim, N. A.; Othman, M. M.; Yasin, Z. M.
2018-03-01
This paper presents the Evolutionary Programming (EP) which proposed to optimize the training parameters for Artificial Neural Network (ANN) in predicting cascading collapse occurrence due to the effect of protection system hidden failure. The data has been collected from the probability of hidden failure model simulation from the historical data. The training parameters of multilayer-feedforward with backpropagation has been optimized with objective function to minimize the Mean Square Error (MSE). The optimal training parameters consists of the momentum rate, learning rate and number of neurons in first hidden layer and second hidden layer is selected in EP-ANN. The IEEE 14 bus system has been tested as a case study to validate the propose technique. The results show the reliable prediction of performance validated through MSE and Correlation Coefficient (R).
Wang, Xinghu; Hong, Yiguang; Yi, Peng; Ji, Haibo; Kang, Yu
2017-05-24
In this paper, a distributed optimization problem is studied for continuous-time multiagent systems with unknown-frequency disturbances. A distributed gradient-based control is proposed for the agents to achieve the optimal consensus with estimating unknown frequencies and rejecting the bounded disturbance in the semi-global sense. Based on convex optimization analysis and adaptive internal model approach, the exact optimization solution can be obtained for the multiagent system disturbed by exogenous disturbances with uncertain parameters.
Hybrid Disease Diagnosis Using Multiobjective Optimization with Evolutionary Parameter Optimization
Nalluri, MadhuSudana Rao; K., Kannan; M., Manisha
2017-01-01
With the widespread adoption of e-Healthcare and telemedicine applications, accurate, intelligent disease diagnosis systems have been profoundly coveted. In recent years, numerous individual machine learning-based classifiers have been proposed and tested, and the fact that a single classifier cannot effectively classify and diagnose all diseases has been almost accorded with. This has seen a number of recent research attempts to arrive at a consensus using ensemble classification techniques. In this paper, a hybrid system is proposed to diagnose ailments using optimizing individual classifier parameters for two classifier techniques, namely, support vector machine (SVM) and multilayer perceptron (MLP) technique. We employ three recent evolutionary algorithms to optimize the parameters of the classifiers above, leading to six alternative hybrid disease diagnosis systems, also referred to as hybrid intelligent systems (HISs). Multiple objectives, namely, prediction accuracy, sensitivity, and specificity, have been considered to assess the efficacy of the proposed hybrid systems with existing ones. The proposed model is evaluated on 11 benchmark datasets, and the obtained results demonstrate that our proposed hybrid diagnosis systems perform better in terms of disease prediction accuracy, sensitivity, and specificity. Pertinent statistical tests were carried out to substantiate the efficacy of the obtained results. PMID:29065626
Design of Experiments for the Thermal Characterization of Metallic Foam
NASA Technical Reports Server (NTRS)
Crittenden, Paul E.; Cole, Kevin D.
2003-01-01
Metallic foams are being investigated for possible use in the thermal protection systems of reusable launch vehicles. As a result, the performance of these materials needs to be characterized over a wide range of temperatures and pressures. In this paper a radiation/conduction model is presented for heat transfer in metallic foams. Candidates for the optimal transient experiment to determine the intrinsic properties of the model are found by two methods. First, an optimality criterion is used to find an experiment to find all of the parameters using one heating event. Second, a pair of heating events is used to determine the parameters in which one heating event is optimal for finding the parameters related to conduction, while the other heating event is optimal for finding the parameters associated with radiation. Simulated data containing random noise was analyzed to determine the parameters using both methods. In all cases the parameter estimates could be improved by analyzing a larger data record than suggested by the optimality criterion.
Error analysis and system optimization of non-null aspheric testing system
NASA Astrophysics Data System (ADS)
Luo, Yongjie; Yang, Yongying; Liu, Dong; Tian, Chao; Zhuo, Yongmo
2010-10-01
A non-null aspheric testing system, which employs partial null lens (PNL for short) and reverse iterative optimization reconstruction (ROR for short) technique, is proposed in this paper. Based on system modeling in ray tracing software, the parameter of each optical element is optimized and this makes system modeling more precise. Systematic error of non-null aspheric testing system is analyzed and can be categorized into two types, the error due to surface parameters of PNL in the system modeling and the rest from non-null interferometer by the approach of error storage subtraction. Experimental results show that, after systematic error is removed from testing result of non-null aspheric testing system, the aspheric surface is precisely reconstructed by ROR technique and the consideration of systematic error greatly increase the test accuracy of non-null aspheric testing system.
Optimization of light quality from color mixing light-emitting diode systems for general lighting
NASA Astrophysics Data System (ADS)
Thorseth, Anders
2012-03-01
Given the problem of metamerisms inherent in color mixing in light-emitting diode (LED) systems with more than three distinct colors, a method for optimizing the spectral output of multicolor LED system with regards to standardized light quality parameters has been developed. The composite spectral power distribution from the LEDs are simulated using spectral radiometric measurements of single commercially available LEDs for varying input power, to account for the efficiency droop and other non-linear effects in electrical power vs. light output. The method uses electrical input powers as input parameters in a randomized steepest decent optimization. The resulting spectral power distributions are evaluated with regard to the light quality using the standard characteristics: CIE color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal boundaries for each system, mapping the capabilities of the simulated lighting systems with regard to the light quality characteristics.
LEDs on the threshold for use in projection systems: challenges, limitations and applications
NASA Astrophysics Data System (ADS)
Moffat, Bryce Anton
2006-02-01
The use of coloured LEDs as light sources in digital projectors depends on an optimal combination of optical, electrical and thermal parameters to meet the performance and cost targets needed to enable these products to compete in the marketplace. This paper describes the system design methodology for a digital micromirror display (DMD) based optical engine using LEDs as the light source, starting at the basic physical and geometrical parameters of the DMD and other optical elements through characterization of the LEDs to optimizing the system performance by determining optimal driving conditions. The main challenge in using LEDs is the luminous flux density, which is just at the threshold of acceptance in projection systems and thus only a fully optimized optical system with a uniformly bright set of LEDs can be used. As a result of this work we have developed two applications: a compact pocket projector and a rear projection television.
Fault Detection of Bearing Systems through EEMD and Optimization Algorithm
Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan
2017-01-01
This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772
NASA Astrophysics Data System (ADS)
Khavekar, Rajendra; Vasudevan, Hari, Dr.; Modi, Bhavik
2017-08-01
Two well-known Design of Experiments (DoE) methodologies, such as Taguchi Methods (TM) and Shainin Systems (SS) are compared and analyzed in this study through their implementation in a plastic injection molding unit. Experiments were performed at a perfume bottle cap manufacturing company (made by acrylic material) using TM and SS to find out the root cause of defects and to optimize the process parameters for minimum rejection. Experiments obtained the rejection rate to be 8.57% from 40% (appx.) during trial runs, which is quiet low, representing successful implementation of these DoE methods. The comparison showed that both methodologies gave same set of variables as critical for defect reduction, but with change in their significance order. Also, Taguchi methods require more number of experiments and consume more time compared to the Shainin System. Shainin system is less complicated and is easy to implement, whereas Taguchi methods is statistically more reliable for optimization of process parameters. Finally, experimentations implied that DoE methods are strong and reliable in implementation, as organizations attempt to improve the quality through optimization.
Adaptive synchronized switch damping on an inductor: a self-tuning switching law
NASA Astrophysics Data System (ADS)
Kelley, Christopher R.; Kauffman, Jeffrey L.
2017-03-01
Synchronized switch damping (SSD) techniques exploit low-power switching between passive circuits connected to piezoelectric material to reduce structural vibration. In the classical implementation of SSD, the piezoelectric material remains in an open circuit for the majority of the vibration cycle and switches briefly to a shunt circuit at every displacement extremum. Recent research indicates that this switch timing is only optimal for excitation exactly at resonance and points to more general optimal switch criteria based on the phase of the displacement and the system parameters. This work proposes a self-tuning approach that implements the more general optimal switch timing for synchronized switch damping on an inductor (SSDI) without needing any knowledge of the system parameters. The law involves a gradient-based search optimization that is robust to noise and uncertainties in the system. Testing of a physical implementation confirms this law successfully adapts to the frequency and parameters of the system. Overall, the adaptive SSDI controller provides better off-resonance steady-state vibration reduction than classical SSDI while matching performance at resonance.
Image quality, threshold contrast and mean glandular dose in CR mammography
NASA Astrophysics Data System (ADS)
Jakubiak, R. R.; Gamba, H. R.; Neves, E. B.; Peixoto, J. E.
2013-09-01
In many countries, computed radiography (CR) systems represent the majority of equipment used in digital mammography. This study presents a method for optimizing image quality and dose in CR mammography of patients with breast thicknesses between 45 and 75 mm. Initially, clinical images of 67 patients (group 1) were analyzed by three experienced radiologists, reporting about anatomical structures, noise and contrast in low and high pixel value areas, and image sharpness and contrast. Exposure parameters (kV, mAs and target/filter combination) used in the examinations of these patients were reproduced to determine the contrast-to-noise ratio (CNR) and mean glandular dose (MGD). The parameters were also used to radiograph a CDMAM (version 3.4) phantom (Artinis Medical Systems, The Netherlands) for image threshold contrast evaluation. After that, different breast thicknesses were simulated with polymethylmethacrylate layers and various sets of exposure parameters were used in order to determine optimal radiographic parameters. For each simulated breast thickness, optimal beam quality was defined as giving a target CNR to reach the threshold contrast of CDMAM images for acceptable MGD. These results were used for adjustments in the automatic exposure control (AEC) by the maintenance team. Using optimized exposure parameters, clinical images of 63 patients (group 2) were evaluated as described above. Threshold contrast, CNR and MGD for such exposure parameters were also determined. Results showed that the proposed optimization method was effective for all breast thicknesses studied in phantoms. The best result was found for breasts of 75 mm. While in group 1 there was no detection of the 0.1 mm critical diameter detail with threshold contrast below 23%, after the optimization, detection occurred in 47.6% of the images. There was also an average MGD reduction of 7.5%. The clinical image quality criteria were attended in 91.7% for all breast thicknesses evaluated in both patient groups. Finally, this study also concluded that the use of the AEC of the x-ray unit based on the constant dose to the detector may bring some difficulties to CR systems to operate under optimal conditions. More studies must be performed, so that the compatibility between systems and optimization methodologies can be evaluated, as well as this optimization method. Most methods are developed for phantoms, so comparative studies including clinical images must be developed.
Factorization and reduction methods for optimal control of distributed parameter systems
NASA Technical Reports Server (NTRS)
Burns, J. A.; Powers, R. K.
1985-01-01
A Chandrasekhar-type factorization method is applied to the linear-quadratic optimal control problem for distributed parameter systems. An aeroelastic control problem is used as a model example to demonstrate that if computationally efficient algorithms, such as those of Chandrasekhar-type, are combined with the special structure often available to a particular problem, then an abstract approximation theory developed for distributed parameter control theory becomes a viable method of solution. A numerical scheme based on averaging approximations is applied to hereditary control problems. Numerical examples are given.
Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.
Nishio, Mizuho; Nishizawa, Mitsuo; Sugiyama, Osamu; Kojima, Ryosuke; Yakami, Masahiro; Kuroda, Tomohiro; Togashi, Kaori
2018-01-01
We aimed to evaluate a computer-aided diagnosis (CADx) system for lung nodule classification focussing on (i) usefulness of the conventional CADx system (hand-crafted imaging feature + machine learning algorithm), (ii) comparison between support vector machine (SVM) and gradient tree boosting (XGBoost) as machine learning algorithms, and (iii) effectiveness of parameter optimization using Bayesian optimization and random search. Data on 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of the local binary pattern was used for calculating a feature vector. SVM or XGBoost was trained using the feature vector and its corresponding label. Tree Parzen Estimator (TPE) was used as Bayesian optimization for parameters of SVM and XGBoost. Random search was done for comparison with TPE. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost was 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. Bayesian optimization of SVM and XGBoost parameters was more efficient than random search. Based on observer study, AUC values of two board-certified radiologists were 0.898 and 0.822. The results show that diagnostic accuracy of our CADx system was comparable to that of radiologists with respect to classifying lung nodules.
The effect of inflation rate on the cost of medical waste management system
NASA Astrophysics Data System (ADS)
Jolanta Walery, Maria
2017-11-01
This paper describes the optimization study aimed to analyse the impact of the parameter describing the inflation rate on the cost of the system and its structure. The study was conducted on the example of the analysis of medical waste management system in north-eastern Poland, in the Podlaskie Province. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. the inflation rate on the economic efficiency index (E) and the spatial structure of the system was determined. With the assumed inflation rate in the range of 1.00 to 1.12, the highest cost of the system was achieved at the level of PLN 2022.20/t (increase of economic efficiency index E by ca. 27% in comparison with run 1, with inflation rate = 1.12).
Mwanga, Gasper G; Haario, Heikki; Capasso, Vicenzo
2015-03-01
The main scope of this paper is to study the optimal control practices of malaria, by discussing the implementation of a catalog of optimal control strategies in presence of parameter uncertainties, which is typical of infectious diseases data. In this study we focus on a deterministic mathematical model for the transmission of malaria, including in particular asymptomatic carriers and two age classes in the human population. A partial qualitative analysis of the relevant ODE system has been carried out, leading to a realistic threshold parameter. For the deterministic model under consideration, four possible control strategies have been analyzed: the use of Long-lasting treated mosquito nets, indoor residual spraying, screening and treatment of symptomatic and asymptomatic individuals. The numerical results show that using optimal control the disease can be brought to a stable disease free equilibrium when all four controls are used. The Incremental Cost-Effectiveness Ratio (ICER) for all possible combinations of the disease-control measures is determined. The numerical simulations of the optimal control in the presence of parameter uncertainty demonstrate the robustness of the optimal control: the main conclusions of the optimal control remain unchanged, even if inevitable variability remains in the control profiles. The results provide a promising framework for the designing of cost-effective strategies for disease controls with multiple interventions, even under considerable uncertainty of model parameters. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Xiaobao; Li, Huacong; Jia, Qiusheng
2017-12-01
For dynamic decoupling of polynomial linear parameter varying(PLPV) system, a robust dominance pre-compensator design method is given. The parameterized precompensator design problem is converted into an optimal problem constrained with parameterized linear matrix inequalities(PLMI) by using the conception of parameterized Lyapunov function(PLF). To solve the PLMI constrained optimal problem, the precompensator design problem is reduced into a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a new constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator is achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation on a turbofan engine PLPV model.
Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System
NASA Astrophysics Data System (ADS)
Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang
2018-07-01
In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 {μ Φ }_0/Hz^{1/2}.
Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System
NASA Astrophysics Data System (ADS)
Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang
2018-03-01
In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.
Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm
NASA Astrophysics Data System (ADS)
Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang
2017-09-01
Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.
Constraining neutron guide optimizations with phase-space considerations
NASA Astrophysics Data System (ADS)
Bertelsen, Mads; Lefmann, Kim
2016-09-01
We introduce a method named the Minimalist Principle that serves to reduce the parameter space for neutron guide optimization when the required beam divergence is limited. The reduced parameter space will restrict the optimization to guides with a minimal neutron intake that are still theoretically able to deliver the maximal possible performance. The geometrical constraints are derived using phase-space propagation from moderator to guide and from guide to sample, while assuming that the optimized guides will achieve perfect transport of the limited neutron intake. Guide systems optimized using these constraints are shown to provide performance close to guides optimized without any constraints, however the divergence received at the sample is limited to the desired interval, even when the neutron transport is not limited by the supermirrors used in the guide. As the constraints strongly limit the parameter space for the optimizer, two control parameters are introduced that can be used to adjust the selected subspace, effectively balancing between maximizing neutron transport and avoiding background from unnecessary neutrons. One parameter is needed to describe the expected focusing abilities of the guide to be optimized, going from perfectly focusing to no correlation between position and velocity. The second parameter controls neutron intake into the guide, so that one can select exactly how aggressively the background should be limited. We show examples of guides optimized using these constraints which demonstrates the higher signal to noise than conventional optimizations. Furthermore the parameter controlling neutron intake is explored which shows that the simulated optimal neutron intake is close to the analytically predicted, when assuming that the guide is dominated by multiple scattering events.
Spectral gap optimization of order parameters for sampling complex molecular systems
Tiwary, Pratyush; Berne, B. J.
2016-01-01
In modern-day simulations of many-body systems, much of the computational complexity is shifted to the identification of slowly changing molecular order parameters called collective variables (CVs) or reaction coordinates. A vast array of enhanced-sampling methods are based on the identification and biasing of these low-dimensional order parameters, whose fluctuations are important in driving rare events of interest. Here, we describe a new algorithm for finding optimal low-dimensional CVs for use in enhanced-sampling biasing methods like umbrella sampling, metadynamics, and related methods, when limited prior static and dynamic information is known about the system, and a much larger set of candidate CVs is specified. The algorithm involves estimating the best combination of these candidate CVs, as quantified by a maximum path entropy estimate of the spectral gap for dynamics viewed as a function of that CV. The algorithm is called spectral gap optimization of order parameters (SGOOP). Through multiple practical examples, we show how this postprocessing procedure can lead to optimization of CV and several orders of magnitude improvement in the convergence of the free energy calculated through metadynamics, essentially giving the ability to extract useful information even from unsuccessful metadynamics runs. PMID:26929365
Genetic Algorithm Optimizes Q-LAW Control Parameters
NASA Technical Reports Server (NTRS)
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
NASA Astrophysics Data System (ADS)
Xu, Quan-Li; Cao, Yu-Wei; Yang, Kun
2018-03-01
Ant Colony Optimization (ACO) is the most widely used artificial intelligence algorithm at present. This study introduced the principle and mathematical model of ACO algorithm in solving Vehicle Routing Problem (VRP), and designed a vehicle routing optimization model based on ACO, then the vehicle routing optimization simulation system was developed by using c ++ programming language, and the sensitivity analyses, estimations and improvements of the three key parameters of ACO were carried out. The results indicated that the ACO algorithm designed in this paper can efficiently solve rational planning and optimization of VRP, and the different values of the key parameters have significant influence on the performance and optimization effects of the algorithm, and the improved algorithm is not easy to locally converge prematurely and has good robustness.
Kumar, Manjeet; Rawat, Tarun Kumar; Aggarwal, Apoorva
2017-03-01
In this paper, a new meta-heuristic optimization technique, called interior search algorithm (ISA) with Lèvy flight is proposed and applied to determine the optimal parameters of an unknown infinite impulse response (IIR) system for the system identification problem. ISA is based on aesthetics, which is commonly used in interior design and decoration processes. In ISA, composition phase and mirror phase are applied for addressing the nonlinear and multimodal system identification problems. System identification using modified-ISA (M-ISA) based method involves faster convergence, single parameter tuning and does not require derivative information because it uses a stochastic random search using the concepts of Lèvy flight. A proper tuning of control parameter has been performed in order to achieve a balance between intensification and diversification phases. In order to evaluate the performance of the proposed method, mean square error (MSE), computation time and percentage improvement are considered as the performance measure. To validate the performance of M-ISA based method, simulations has been carried out for three benchmarked IIR systems using same order and reduced order system. Genetic algorithm (GA), particle swarm optimization (PSO), cat swarm optimization (CSO), cuckoo search algorithm (CSA), differential evolution using wavelet mutation (DEWM), firefly algorithm (FFA), craziness based particle swarm optimization (CRPSO), harmony search (HS) algorithm, opposition based harmony search (OHS) algorithm, hybrid particle swarm optimization-gravitational search algorithm (HPSO-GSA) and ISA are also used to model the same examples and simulation results are compared. Obtained results confirm the efficiency of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Research on Optimization of GLCM Parameter in Cell Classification
NASA Astrophysics Data System (ADS)
Zhang, Xi-Kun; Hou, Jie; Hu, Xin-Hua
2016-05-01
Real-time classification of biological cells according to their 3D morphology is highly desired in a flow cytometer setting. Gray level co-occurrence matrix (GLCM) algorithm has been developed to extract feature parameters from measured diffraction images ,which are too complicated to coordinate with the real-time system for a large amount of calculation. An optimization of GLCM algorithm is provided based on correlation analysis of GLCM parameters. The results of GLCM analysis and subsequent classification demonstrate optimized method can lower the time complexity significantly without loss of classification accuracy.
Co-Optimization of Blunt Body Shapes for Moving Vehicles
NASA Technical Reports Server (NTRS)
Kinney, David J. (Inventor); Mansour, Nagi N (Inventor); Brown, James L. (Inventor); Garcia, Joseph A (Inventor); Bowles, Jeffrey V (Inventor)
2014-01-01
A method and associated system for multi-disciplinary optimization of various parameters associated with a space vehicle that experiences aerocapture and atmospheric entry in a specified atmosphere. In one embodiment, simultaneous maximization of a ratio of landed payload to vehicle atmospheric entry mass, maximization of fluid flow distance before flow separation from vehicle, and minimization of heat transfer to the vehicle are performed with respect to vehicle surface geometric parameters, and aerostructure and aerothermal vehicle response for the vehicle moving along a specified trajectory. A Pareto Optimal set of superior performance parameters is identified.
NASA Astrophysics Data System (ADS)
Wang, Xu; Bi, Fengrong; Du, Haiping
2018-05-01
This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.
Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades
NASA Astrophysics Data System (ADS)
Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang
2017-12-01
This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.
ConvAn: a convergence analyzing tool for optimization of biochemical networks.
Kostromins, Andrejs; Mozga, Ivars; Stalidzans, Egils
2012-01-01
Dynamic models of biochemical networks usually are described as a system of nonlinear differential equations. In case of optimization of models for purpose of parameter estimation or design of new properties mainly numerical methods are used. That causes problems of optimization predictability as most of numerical optimization methods have stochastic properties and the convergence of the objective function to the global optimum is hardly predictable. Determination of suitable optimization method and necessary duration of optimization becomes critical in case of evaluation of high number of combinations of adjustable parameters or in case of large dynamic models. This task is complex due to variety of optimization methods, software tools and nonlinearity features of models in different parameter spaces. A software tool ConvAn is developed to analyze statistical properties of convergence dynamics for optimization runs with particular optimization method, model, software tool, set of optimization method parameters and number of adjustable parameters of the model. The convergence curves can be normalized automatically to enable comparison of different methods and models in the same scale. By the help of the biochemistry adapted graphical user interface of ConvAn it is possible to compare different optimization methods in terms of ability to find the global optima or values close to that as well as the necessary computational time to reach them. It is possible to estimate the optimization performance for different number of adjustable parameters. The functionality of ConvAn enables statistical assessment of necessary optimization time depending on the necessary optimization accuracy. Optimization methods, which are not suitable for a particular optimization task, can be rejected if they have poor repeatability or convergence properties. The software ConvAn is freely available on www.biosystems.lv/convan. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Optimization of electro-optical parameters of LCD for advertising systems
NASA Astrophysics Data System (ADS)
Olifierczuk, Marek; Zielinski, Jerzy; Klosowicz, Stanislaw J.
1998-02-01
The analysis of the optimization of negative image twisted nematic LCD is presented. Theoretical considerations are confirmed by experimental results. The effect of material parameters and technology on the contrast ratio and display dynamics is given. The effect in TN display with black dye is presented.
Automated Design of Complex Dynamic Systems
Hermans, Michiel; Schrauwen, Benjamin; Bienstman, Peter; Dambre, Joni
2014-01-01
Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems. PMID:24497969
Concentration solar power optimization system and method of using the same
Andraka, Charles E
2014-03-18
A system and method for optimizing at least one mirror of at least one CSP system is provided. The system has a screen for displaying light patterns for reflection by the mirror, a camera for receiving a reflection of the light patterns from the mirror, and a solar characterization tool. The solar characterization tool has a characterizing unit for determining at least one mirror parameter of the mirror based on an initial position of the camera and the screen, and a refinement unit for refining the determined parameter(s) based on an adjusted position of the camera and screen whereby the mirror is characterized. The system may also be provided with a solar alignment tool for comparing at least one mirror parameter of the mirror to a design geometry whereby an alignment error is defined, and at least one alignment unit for adjusting the mirror to reduce the alignment error.
A reliable algorithm for optimal control synthesis
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1992-01-01
In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.
NASA Technical Reports Server (NTRS)
Hyland, D. C.; Bernstein, D. S.
1987-01-01
The underlying philosophy and motivation of the optimal projection/maximum entropy (OP/ME) stochastic modeling and reduced control design methodology for high order systems with parameter uncertainties are discussed. The OP/ME design equations for reduced-order dynamic compensation including the effect of parameter uncertainties are reviewed. The application of the methodology to several Large Space Structures (LSS) problems of representative complexity is illustrated.
NASA Astrophysics Data System (ADS)
Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta
2016-06-01
With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.
NASA Astrophysics Data System (ADS)
Yuan, Yongliang; Song, Xueguan; Sun, Wei; Wang, Xiaobang
2018-05-01
The dynamic performance of a belt drive system is composed of many factors, such as the efficiency, the vibration, and the optimal parameters. The conventional design only considers the basic performance of the belt drive system, while ignoring its overall performance. To address all these challenges, the study on vibration characteristics and optimization strategies could be a feasible way. This paper proposes a new optimization strategy and takes a belt drive design optimization as a case study based on the multidisciplinary design optimization (MDO). The MDO of the belt drive system is established and the corresponding sub-systems are analyzed. The multidisciplinary optimization is performed by using an improved genetic algorithm. Based on the optimal results obtained from the MDO, the three-dimension (3D) model of the belt drive system is established for dynamics simulation by virtual prototyping. From the comparison of the results with respect to different velocities and loads, the MDO method can effectively reduce the transverse vibration amplitude. The law of the vibration displacement, the vibration frequency, and the influence of velocities on the transverse vibrations has been obtained. Results show that the MDO method is of great help to obtain the optimal structural parameters. Furthermore, the kinematics principle of the belt drive has been obtained. The belt drive design case indicates that the proposed method in this paper can also be used to solve other engineering optimization problems efficiently.
Systematic Propulsion Optimization Tools (SPOT)
NASA Technical Reports Server (NTRS)
Bower, Mark; Celestian, John
1992-01-01
This paper describes a computer program written by senior-level Mechanical Engineering students at the University of Alabama in Huntsville which is capable of optimizing user-defined delivery systems for carrying payloads into orbit. The custom propulsion system is designed by the user through the input of configuration, payload, and orbital parameters. The primary advantages of the software, called Systematic Propulsion Optimization Tools (SPOT), are a user-friendly interface and a modular FORTRAN 77 code designed for ease of modification. The optimization of variables in an orbital delivery system is of critical concern in the propulsion environment. The mass of the overall system must be minimized within the maximum stress, force, and pressure constraints. SPOT utilizes the Design Optimization Tools (DOT) program for the optimization techniques. The SPOT program is divided into a main program and five modules: aerodynamic losses, orbital parameters, liquid engines, solid engines, and nozzles. The program is designed to be upgraded easily and expanded to meet specific user needs. A user's manual and a programmer's manual are currently being developed to facilitate implementation and modification.
Evaluation of a new parallel numerical parameter optimization algorithm for a dynamical system
NASA Astrophysics Data System (ADS)
Duran, Ahmet; Tuncel, Mehmet
2016-10-01
It is important to have a scalable parallel numerical parameter optimization algorithm for a dynamical system used in financial applications where time limitation is crucial. We use Message Passing Interface parallel programming and present such a new parallel algorithm for parameter estimation. For example, we apply the algorithm to the asset flow differential equations that have been developed and analyzed since 1989 (see [3-6] and references contained therein). We achieved speed-up for some time series to run up to 512 cores (see [10]). Unlike [10], we consider more extensive financial market situations, for example, in presence of low volatility, high volatility and stock market price at a discount/premium to its net asset value with varying magnitude, in this work. Moreover, we evaluated the convergence of the model parameter vector, the nonlinear least squares error and maximum improvement factor to quantify the success of the optimization process depending on the number of initial parameter vectors.
Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.
2015-01-01
The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam; Noraziah, A
2017-01-01
In this paper, an attempt is made to apply the African Buffalo Optimization (ABO) to tune the parameters of a PID controller for an effective Automatic Voltage Regulator (AVR). Existing metaheuristic tuning methods have been proven to be quite successful but there were observable areas that need improvements especially in terms of the system's gain overshoot and steady steady state errors. Using the ABO algorithm where each buffalo location in the herd is a candidate solution to the Proportional-Integral-Derivative parameters was very helpful in addressing these two areas of concern. The encouraging results obtained from the simulation of the PID Controller parameters-tuning using the ABO when compared with the performance of Genetic Algorithm PID (GA-PID), Particle-Swarm Optimization PID (PSO-PID), Ant Colony Optimization PID (ACO-PID), PID, Bacteria-Foraging Optimization PID (BFO-PID) etc makes ABO-PID a good addition to solving PID Controller tuning problems using metaheuristics.
Metabolic regulation and maximal reaction optimization in the central metabolism of a yeast cell
NASA Astrophysics Data System (ADS)
Kasbawati, Gunawan, A. Y.; Hertadi, R.; Sidarto, K. A.
2015-03-01
Regulation of fluxes in a metabolic system aims to enhance the production rates of biotechnologically important compounds. Regulation is held via modification the cellular activities of a metabolic system. In this study, we present a metabolic analysis of ethanol fermentation process of a yeast cell in terms of continuous culture scheme. The metabolic regulation is based on the kinetic formulation in combination with metabolic control analysis to indicate the key enzymes which can be modified to enhance ethanol production. The model is used to calculate the intracellular fluxes in the central metabolism of the yeast cell. Optimal control is then applied to the kinetic model to find the optimal regulation for the fermentation system. The sensitivity results show that there are external and internal control parameters which are adjusted in enhancing ethanol production. As an external control parameter, glucose supply should be chosen in appropriate way such that the optimal ethanol production can be achieved. For the internal control parameter, we find three enzymes as regulation targets namely acetaldehyde dehydrogenase, pyruvate decarboxylase, and alcohol dehydrogenase which reside in the acetaldehyde branch. Among the three enzymes, however, only acetaldehyde dehydrogenase has a significant effect to obtain optimal ethanol production efficiently.
NASA Technical Reports Server (NTRS)
Orme, John S.; Gilyard, Glenn B.
1992-01-01
Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.
NASA Astrophysics Data System (ADS)
Bukhari, Hassan J.
2017-12-01
In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.
A self-organizing neural network for job scheduling in distributed systems
NASA Astrophysics Data System (ADS)
Newman, Harvey B.; Legrand, Iosif C.
2001-08-01
The aim of this work is to describe a possible approach for the optimization of the job scheduling in large distributed systems, based on a self-organizing Neural Network. This dynamic scheduling system should be seen as adaptive middle layer software, aware of current available resources and making the scheduling decisions using the "past experience." It aims to optimize job specific parameters as well as the resource utilization. The scheduling system is able to dynamically learn and cluster information in a large dimensional parameter space and at the same time to explore new regions in the parameters space. This self-organizing scheduling system may offer a possible solution to provide an effective use of resources for the off-line data processing jobs for future HEP experiments.
The application of artificial intelligence in the optimal design of mechanical systems
NASA Astrophysics Data System (ADS)
Poteralski, A.; Szczepanik, M.
2016-11-01
The paper is devoted to new computational techniques in mechanical optimization where one tries to study, model, analyze and optimize very complex phenomena, for which more precise scientific tools of the past were incapable of giving low cost and complete solution. Soft computing methods differ from conventional (hard) computing in that, unlike hard computing, they are tolerant of imprecision, uncertainty, partial truth and approximation. The paper deals with an application of the bio-inspired methods, like the evolutionary algorithms (EA), the artificial immune systems (AIS) and the particle swarm optimizers (PSO) to optimization problems. Structures considered in this work are analyzed by the finite element method (FEM), the boundary element method (BEM) and by the method of fundamental solutions (MFS). The bio-inspired methods are applied to optimize shape, topology and material properties of 2D, 3D and coupled 2D/3D structures, to optimize the termomechanical structures, to optimize parameters of composites structures modeled by the FEM, to optimize the elastic vibrating systems to identify the material constants for piezoelectric materials modeled by the BEM and to identify parameters in acoustics problem modeled by the MFS.
Analysis on design and optimization of dispersion-managed communication systems
NASA Astrophysics Data System (ADS)
El-Aasser, Mostafa A.; Dua, Puneit; Dutta, Niloy K.
2002-07-01
The variational method is a useful tool that can be used for design and optimization of dispersion-managed communication systems. Using this powerful tool, we evaluate the characteristics of a carrier signal for certain system parameters and describe several features of a dispersion-managed soliton.
Probability distribution functions for unit hydrographs with optimization using genetic algorithm
NASA Astrophysics Data System (ADS)
Ghorbani, Mohammad Ali; Singh, Vijay P.; Sivakumar, Bellie; H. Kashani, Mahsa; Atre, Atul Arvind; Asadi, Hakimeh
2017-05-01
A unit hydrograph (UH) of a watershed may be viewed as the unit pulse response function of a linear system. In recent years, the use of probability distribution functions (pdfs) for determining a UH has received much attention. In this study, a nonlinear optimization model is developed to transmute a UH into a pdf. The potential of six popular pdfs, namely two-parameter gamma, two-parameter Gumbel, two-parameter log-normal, two-parameter normal, three-parameter Pearson distribution, and two-parameter Weibull is tested on data from the Lighvan catchment in Iran. The probability distribution parameters are determined using the nonlinear least squares optimization method in two ways: (1) optimization by programming in Mathematica; and (2) optimization by applying genetic algorithm. The results are compared with those obtained by the traditional linear least squares method. The results show comparable capability and performance of two nonlinear methods. The gamma and Pearson distributions are the most successful models in preserving the rising and recession limbs of the unit hydographs. The log-normal distribution has a high ability in predicting both the peak flow and time to peak of the unit hydrograph. The nonlinear optimization method does not outperform the linear least squares method in determining the UH (especially for excess rainfall of one pulse), but is comparable.
NASA Technical Reports Server (NTRS)
1975-01-01
The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.
Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System.
Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei
2015-06-25
Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm.
Shimansky, Y P
2011-05-01
It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.
Optimal protocols for slowly driven quantum systems.
Zulkowski, Patrick R; DeWeese, Michael R
2015-09-01
The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing.
Utility of coupling nonlinear optimization methods with numerical modeling software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, M.J.
1996-08-05
Results of using GLO (Global Local Optimizer), a general purpose nonlinear optimization software package for investigating multi-parameter problems in science and engineering is discussed. The package consists of the modular optimization control system (GLO), a graphical user interface (GLO-GUI), a pre-processor (GLO-PUT), a post-processor (GLO-GET), and nonlinear optimization software modules, GLOBAL & LOCAL. GLO is designed for controlling and easy coupling to any scientific software application. GLO runs the optimization module and scientific software application in an iterative loop. At each iteration, the optimization module defines new values for the set of parameters being optimized. GLO-PUT inserts the new parametermore » values into the input file of the scientific application. GLO runs the application with the new parameter values. GLO-GET determines the value of the objective function by extracting the results of the analysis and comparing to the desired result. GLO continues to run the scientific application over and over until it finds the ``best`` set of parameters by minimizing (or maximizing) the objective function. An example problem showing the optimization of material model is presented (Taylor cylinder impact test).« less
Definitive screening design enables optimization of LC-ESI-MS/MS parameters in proteomics.
Aburaya, Shunsuke; Aoki, Wataru; Minakuchi, Hiroyoshi; Ueda, Mitsuyoshi
2017-12-01
In proteomics, more than 100,000 peptides are generated from the digestion of human cell lysates. Proteome samples have a broad dynamic range in protein abundance; therefore, it is critical to optimize various parameters of LC-ESI-MS/MS to comprehensively identify these peptides. However, there are many parameters for LC-ESI-MS/MS analysis. In this study, we applied definitive screening design to simultaneously optimize 14 parameters in the operation of monolithic capillary LC-ESI-MS/MS to increase the number of identified proteins and/or the average peak area of MS1. The simultaneous optimization enabled the determination of two-factor interactions between LC and MS. Finally, we found two parameter sets of monolithic capillary LC-ESI-MS/MS that increased the number of identified proteins by 8.1% or the average peak area of MS1 by 67%. The definitive screening design would be highly useful for high-throughput analysis of the best parameter set in LC-ESI-MS/MS systems.
Skin-electrode circuit model for use in optimizing energy transfer in volume conduction systems.
Hackworth, Steven A; Sun, Mingui; Sclabassi, Robert J
2009-01-01
The X-Delta model for through-skin volume conduction systems is introduced and analyzed. This new model has advantages over our previous X model in that it explicitly represents current pathways in the skin. A vector network analyzer is used to take measurements on pig skin to obtain data for use in finding the model's impedance parameters. An optimization method for obtaining this more complex model's parameters is described. Results show the model to accurately represent the impedance behavior of the skin system with error of generally less than one percent. Uses for the model include optimizing energy transfer across the skin in a volume conduction system with appropriate current exposure constraints, and exploring non-linear behavior of the electrode-skin system at moderate voltages (below ten) and frequencies (kilohertz to megahertz).
A knowledge-based approach to improving optimization techniques in system planning
NASA Technical Reports Server (NTRS)
Momoh, J. A.; Zhang, Z. Z.
1990-01-01
A knowledge-based (KB) approach to improve mathematical programming techniques used in the system planning environment is presented. The KB system assists in selecting appropriate optimization algorithms, objective functions, constraints and parameters. The scheme is implemented by integrating symbolic computation of rules derived from operator and planner's experience and is used for generalized optimization packages. The KB optimization software package is capable of improving the overall planning process which includes correction of given violations. The method was demonstrated on a large scale power system discussed in the paper.
Processor design optimization methodology for synthetic vision systems
NASA Astrophysics Data System (ADS)
Wren, Bill; Tarleton, Norman G.; Symosek, Peter F.
1997-06-01
Architecture optimization requires numerous inputs from hardware to software specifications. The task of varying these input parameters to obtain an optimal system architecture with regard to cost, specified performance and method of upgrade considerably increases the development cost due to the infinitude of events, most of which cannot even be defined by any simple enumeration or set of inequalities. We shall address the use of a PC-based tool using genetic algorithms to optimize the architecture for an avionics synthetic vision system, specifically passive millimeter wave system implementation.
Synthesis of multi-loop automatic control systems by the nonlinear programming method
NASA Astrophysics Data System (ADS)
Voronin, A. V.; Emelyanova, T. A.
2017-01-01
The article deals with the problem of calculation of the multi-loop control systems optimal tuning parameters by numerical methods and nonlinear programming methods. For this purpose, in the paper the Optimization Toolbox of Matlab is used.
NASA Astrophysics Data System (ADS)
Golinko, I. M.; Kovrigo, Yu. M.; Kubrak, A. I.
2014-03-01
An express method for optimally tuning analog PI and PID controllers is considered. An integral quality criterion with minimizing the control output is proposed for optimizing control systems. The suggested criterion differs from existing ones in that the control output applied to the technological process is taken into account in a correct manner, due to which it becomes possible to maximally reduce the expenditure of material and/or energy resources in performing control of industrial equipment sets. With control organized in such manner, smaller wear and longer service life of control devices are achieved. A unimodal nature of the proposed criterion for optimally tuning a controller is numerically demonstrated using the methods of optimization theory. A functional interrelation between the optimal controller parameters and dynamic properties of a controlled plant is numerically determined for a single-loop control system. The results obtained from simulation of transients in a control system carried out using the proposed and existing functional dependences are compared with each other. The proposed calculation formulas differ from the existing ones by a simple structure and highly accurate search for the optimal controller tuning parameters. The obtained calculation formulas are recommended for being used by specialists in automation for design and optimization of control systems.
Generally astigmatic Gaussian beam representation and optimization using skew rays
NASA Astrophysics Data System (ADS)
Colbourne, Paul D.
2014-12-01
Methods are presented of using skew rays to optimize a generally astigmatic optical system to obtain the desired Gaussian beam focus and minimize aberrations, and to calculate the propagating generally astigmatic Gaussian beam parameters at any point. The optimization method requires very little computation beyond that of a conventional ray optimization, and requires no explicit calculation of the properties of the propagating Gaussian beam. Unlike previous methods, the calculation of beam parameters does not require matrix calculations or the introduction of non-physical concepts such as imaginary rays.
Optimal design of compact spur gear reductions
NASA Technical Reports Server (NTRS)
Savage, M.; Lattime, S. B.; Kimmel, J. A.; Coe, H. H.
1992-01-01
The optimal design of compact spur gear reductions includes the selection of bearing and shaft proportions in addition to gear mesh parameters. Designs for single mesh spur gear reductions are based on optimization of system life, system volume, and system weight including gears, support shafts, and the four bearings. The overall optimization allows component properties to interact, yielding the best composite design. A modified feasible directions search algorithm directs the optimization through a continuous design space. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for optimization. After finding the continuous optimum, the designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearings on the optimal configurations.
Quantum Parameter Estimation: From Experimental Design to Constructive Algorithm
NASA Astrophysics Data System (ADS)
Yang, Le; Chen, Xi; Zhang, Ming; Dai, Hong-Yi
2017-11-01
In this paper we design the following two-step scheme to estimate the model parameter ω 0 of the quantum system: first we utilize the Fisher information with respect to an intermediate variable v=\\cos ({ω }0t) to determine an optimal initial state and to seek optimal parameters of the POVM measurement operators; second we explore how to estimate ω 0 from v by choosing t when a priori information knowledge of ω 0 is available. Our optimal initial state can achieve the maximum quantum Fisher information. The formulation of the optimal time t is obtained and the complete algorithm for parameter estimation is presented. We further explore how the lower bound of the estimation deviation depends on the a priori information of the model. Supported by the National Natural Science Foundation of China under Grant Nos. 61273202, 61673389, and 61134008
PID controller tuning using metaheuristic optimization algorithms for benchmark problems
NASA Astrophysics Data System (ADS)
Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.
2017-11-01
This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.
Optimal estimation and scheduling in aquifer management using the rapid feedback control method
NASA Astrophysics Data System (ADS)
Ghorbanidehno, Hojat; Kokkinaki, Amalia; Kitanidis, Peter K.; Darve, Eric
2017-12-01
Management of water resources systems often involves a large number of parameters, as in the case of large, spatially heterogeneous aquifers, and a large number of "noisy" observations, as in the case of pressure observation in wells. Optimizing the operation of such systems requires both searching among many possible solutions and utilizing new information as it becomes available. However, the computational cost of this task increases rapidly with the size of the problem to the extent that textbook optimization methods are practically impossible to apply. In this paper, we present a new computationally efficient technique as a practical alternative for optimally operating large-scale dynamical systems. The proposed method, which we term Rapid Feedback Controller (RFC), provides a practical approach for combined monitoring, parameter estimation, uncertainty quantification, and optimal control for linear and nonlinear systems with a quadratic cost function. For illustration, we consider the case of a weakly nonlinear uncertain dynamical system with a quadratic objective function, specifically a two-dimensional heterogeneous aquifer management problem. To validate our method, we compare our results with the linear quadratic Gaussian (LQG) method, which is the basic approach for feedback control. We show that the computational cost of the RFC scales only linearly with the number of unknowns, a great improvement compared to the basic LQG control with a computational cost that scales quadratically. We demonstrate that the RFC method can obtain the optimal control values at a greatly reduced computational cost compared to the conventional LQG algorithm with small and controllable losses in the accuracy of the state and parameter estimation.
Optimization and Simulation of Plastic Injection Process using Genetic Algorithm and Moldflow
NASA Astrophysics Data System (ADS)
Martowibowo, Sigit Yoewono; Kaswadi, Agung
2017-03-01
The use of plastic-based products is continuously increasing. The increasing demands for thinner products, lower production costs, yet higher product quality has triggered an increase in the number of research projects on plastic molding processes. An important branch of such research is focused on mold cooling system. Conventional cooling systems are most widely used because they are easy to make by using conventional machining processes. However, the non-uniform cooling processes are considered as one of their weaknesses. Apart from the conventional systems, there are also conformal cooling systems that are designed for faster and more uniform plastic mold cooling. In this study, the conformal cooling system is applied for the production of bowl-shaped product made of PP AZ564. Optimization is conducted to initiate machine setup parameters, namely, the melting temperature, injection pressure, holding pressure and holding time. The genetic algorithm method and Moldflow were used to optimize the injection process parameters at a minimum cycle time. It is found that, an optimum injection molding processes could be obtained by setting the parameters to the following values: T M = 180 °C; P inj = 20 MPa; P hold = 16 MPa and t hold = 8 s, with a cycle time of 14.11 s. Experiments using the conformal cooling system yielded an average cycle time of 14.19 s. The studied conformal cooling system yielded a volumetric shrinkage of 5.61% and the wall shear stress was found at 0.17 MPa. The difference between the cycle time obtained through simulations and experiments using the conformal cooling system was insignificant (below 1%). Thus, combining process parameters optimization and simulations by using genetic algorithm method with Moldflow can be considered as valid.
NASA Astrophysics Data System (ADS)
Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad
2017-11-01
Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.
Performance optimization of the Varian aS500 EPID system.
Berger, Lucie; François, Pascal; Gaboriaud, Geneviève; Rosenwald, Jean-Claude
2006-01-01
Today, electronic portal imaging devices (EPIDs) are widely used as a replacement to portal films for patient position verification, but the image quality is not always optimal. The general aim of this study was to optimize the acquisition parameters of an amorphous silicon EPID commercially available for clinical use in radiation therapy with the view to avoid saturation of the system. Special attention was paid to selection of the parameter corresponding to the number of rows acquired between accelerator pulses (NRP) for various beam energies and dose rates. The image acquisition system (IAS2) has been studied, and portal image acquisition was found to be strongly dependent on the accelerator pulse frequency. This frequency is set for each "energy - dose rate" combination of the linear accelerator. For all combinations, the image acquisition parameters were systematically changed to determine their influence on the performances of the Varian aS500 EPID system. New parameters such as the maximum number of rows (MNR) and the number of pulses per frame (NPF) were introduced to explain portal image acquisition theory. Theoretical and experimental values of MNR and NPF were compared, and they were in good agreement. Other results showed that NRP had a major influence on detector saturation and dose per image. A rule of thumb was established to determine the optimum NRP value to be used. This practical application was illustrated by a clinical example in which the saturation of the aSi EPID was avoided by NRP optimization. Moreover, an additional study showed that image quality was relatively insensitive to this parameter.
Optimization of life support systems and their systems reliability
NASA Technical Reports Server (NTRS)
Fan, L. T.; Hwang, C. L.; Erickson, L. E.
1971-01-01
The identification, analysis, and optimization of life support systems and subsystems have been investigated. For each system or subsystem that has been considered, the procedure involves the establishment of a set of system equations (or mathematical model) based on theory and experimental evidences; the analysis and simulation of the model; the optimization of the operation, control, and reliability; analysis of sensitivity of the system based on the model; and, if possible, experimental verification of the theoretical and computational results. Research activities include: (1) modeling of air flow in a confined space; (2) review of several different gas-liquid contactors utilizing centrifugal force: (3) review of carbon dioxide reduction contactors in space vehicles and other enclosed structures: (4) application of modern optimal control theory to environmental control of confined spaces; (5) optimal control of class of nonlinear diffusional distributed parameter systems: (6) optimization of system reliability of life support systems and sub-systems: (7) modeling, simulation and optimal control of the human thermal system: and (8) analysis and optimization of the water-vapor eletrolysis cell.
Trajectory Optimization for Missions to Small Bodies with a Focus on Scientific Merit.
Englander, Jacob A; Vavrina, Matthew A; Lim, Lucy F; McFadden, Lucy A; Rhoden, Alyssa R; Noll, Keith S
2017-01-01
Trajectory design for missions to small bodies is tightly coupled both with the selection of targets for a mission and with the choice of spacecraft power, propulsion, and other hardware. Traditional methods of trajectory optimization have focused on finding the optimal trajectory for an a priori selection of destinations and spacecraft parameters. Recent research has expanded the field of trajectory optimization to multidisciplinary systems optimization that includes spacecraft parameters. The logical next step is to extend the optimization process to include target selection based not only on engineering figures of merit but also scientific value. This paper presents a new technique to solve the multidisciplinary mission optimization problem for small-bodies missions, including classical trajectory design, the choice of spacecraft power and propulsion systems, and also the scientific value of the targets. This technique, when combined with modern parallel computers, enables a holistic view of the small body mission design process that previously required iteration among several different design processes.
A Systematic Approach to Sensor Selection for Aircraft Engine Health Estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Garg, Sanjay
2009-01-01
A systematic approach for selecting an optimal suite of sensors for on-board aircraft gas turbine engine health estimation is presented. The methodology optimally chooses the engine sensor suite and the model tuning parameter vector to minimize the Kalman filter mean squared estimation error in the engine s health parameters or other unmeasured engine outputs. This technique specifically addresses the underdetermined estimation problem where there are more unknown system health parameters representing degradation than available sensor measurements. This paper presents the theoretical estimation error equations, and describes the optimization approach that is applied to select the sensors and model tuning parameters to minimize these errors. Two different model tuning parameter vector selection approaches are evaluated: the conventional approach of selecting a subset of health parameters to serve as the tuning parameters, and an alternative approach that selects tuning parameters as a linear combination of all health parameters. Results from the application of the technique to an aircraft engine simulation are presented, and compared to those from an alternative sensor selection strategy.
Review: Optimization methods for groundwater modeling and management
NASA Astrophysics Data System (ADS)
Yeh, William W.-G.
2015-09-01
Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.
Optimal Trajectories Generation in Robotic Fiber Placement Systems
NASA Astrophysics Data System (ADS)
Gao, Jiuchun; Pashkevich, Anatol; Caro, Stéphane
2017-06-01
The paper proposes a methodology for optimal trajectories generation in robotic fiber placement systems. A strategy to tune the parameters of the optimization algorithm at hand is also introduced. The presented technique transforms the original continuous problem into a discrete one where the time-optimal motions are generated by using dynamic programming. The developed strategy for the optimization algorithm tuning allows essentially reducing the computing time and obtaining trajectories satisfying industrial constraints. Feasibilities and advantages of the proposed methodology are confirmed by an application example.
Discrete-time Markovian-jump linear quadratic optimal control
NASA Technical Reports Server (NTRS)
Chizeck, H. J.; Willsky, A. S.; Castanon, D.
1986-01-01
This paper is concerned with the optimal control of discrete-time linear systems that possess randomly jumping parameters described by finite-state Markov processes. For problems having quadratic costs and perfect observations, the optimal control laws and expected costs-to-go can be precomputed from a set of coupled Riccati-like matrix difference equations. Necessary and sufficient conditions are derived for the existence of optimal constant control laws which stabilize the controlled system as the time horizon becomes infinite, with finite optimal expected cost.
Kar, T K; Ghosh, Bapan
2012-08-01
In the present paper, we develop a simple two species prey-predator model in which the predator is partially coupled with alternative prey. The aim is to study the consequences of providing additional food to the predator as well as the effects of harvesting efforts applied to both the species. It is observed that the provision of alternative food to predator is not always beneficial to the system. A complete picture of the long run dynamics of the system is discussed based on the effort pair as control parameters. Optimal augmentations of prey and predator biomass at final time have been investigated by optimal control theory. Also the short and large time effects of the application of optimal control have been discussed. Finally, some numerical illustrations are given to verify our analytical results with the help of different sets of parameters. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Cho, Ming-Yuan; Hoang, Thi Thom
2017-01-01
Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.
Inverse problems in the design, modeling and testing of engineering systems
NASA Technical Reports Server (NTRS)
Alifanov, Oleg M.
1991-01-01
Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.
Apparatus and methods for manipulation and optimization of biological systems
NASA Technical Reports Server (NTRS)
Sun, Ren (Inventor); Ho, Chih-Ming (Inventor); Wong, Pak Kin (Inventor); Yu, Fuqu (Inventor)
2012-01-01
The invention provides systems and methods for manipulating, e.g., optimizing and controlling, biological systems, e.g., for eliciting a more desired biological response of biological sample, such as a tissue, organ, and/or a cell. In one aspect, systems and methods of the invention operate by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system, e.g., a bioreactor. In alternative aspects, systems include a device for sustaining cells or tissue samples, one or more actuators for stimulating the samples via biochemical, electromagnetic, thermal, mechanical, and/or optical stimulation, one or more sensors for measuring a biological response signal of the samples resulting from the stimulation of the sample. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The compositions and methods of the invention can be used, e.g., to for systems optimization of any biological manufacturing or experimental system, e.g., bioreactors for proteins, e.g., therapeutic proteins, polypeptides or peptides for vaccines, and the like, small molecules (e.g., antibiotics), polysaccharides, lipids, and the like. Another use of the apparatus and methods includes combination drug therapy, e.g. optimal drug cocktail, directed cell proliferations and differentiations, e.g. in tissue engineering, e.g. neural progenitor cells differentiation, and discovery of key parameters in complex biological systems.
NASA Astrophysics Data System (ADS)
Sudhakar, N.; Rajasekar, N.; Akhil, Saya; Jyotheeswara Reddy, K.
2017-11-01
The boost converter is the most desirable DC-DC power converter for renewable energy applications for its favorable continuous input current characteristics. In other hand, these DC-DC converters known as practical nonlinear systems are prone to several types of nonlinear phenomena including bifurcation, quasiperiodicity, intermittency and chaos. These undesirable effects has to be controlled for maintaining normal periodic operation of the converter and to ensure the stability. This paper presents an effective solution to control the chaos in solar fed DC-DC boost converter since the converter experiences wide range of input power variation which leads to chaotic phenomena. Controlling of chaos is significantly achieved using optimal circuit parameters obtained through Nelder-Mead Enhanced Bacterial Foraging Optimization Algorithm. The optimization renders the suitable parameters in minimum computational time. The results are compared with the traditional methods. The obtained results of the proposed system ensures the operation of the converter within the controllable region.
Research Based on AMESim of Electro-hydraulic Servo Loading System
NASA Astrophysics Data System (ADS)
Li, Jinlong; Hu, Zhiyong
2017-09-01
Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.
Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M. A.
2014-01-01
This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods. PMID:24883374
Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A
2014-01-01
This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.
Systematic parameter inference in stochastic mesoscopic modeling
NASA Astrophysics Data System (ADS)
Lei, Huan; Yang, Xiu; Li, Zhen; Karniadakis, George Em
2017-02-01
We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are "sparse". The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.
Vaisali, C; Belur, Prasanna D; Regupathi, Iyyaswami
2017-10-01
Lipophilization of antioxidants is recognized as an effective strategy to enhance solubility and thus effectiveness in lipid based food. In this study, an effort was made to optimize rutin fatty ester synthesis in two different solvent systems to understand the influence of reaction system hydrophobicity on the optimum conditions using immobilised Candida antartica lipase. Under unoptimized conditions, 52.14% and 13.02% conversion was achieved in acetone and tert-butanol solvent systems, respectively. Among all the process parameters, water activity of the system was found to show highest influence on the conversion in each reaction system. In the presence of molecular sieves, the ester production increased to 62.9% in tert-butanol system, unlike acetone system. Under optimal conditions, conversion increased to 60.74% and 65.73% in acetone and tert-butanol system, respectively. This study shows, maintaining optimal water activity is crucial in reaction systems having polar solvents compared to more non-polar solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tajima, Toshiki
2006-04-18
A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.
Selection of optimal multispectral imaging system parameters for small joint arthritis detection
NASA Astrophysics Data System (ADS)
Dolenec, Rok; Laistler, Elmar; Stergar, Jost; Milanic, Matija
2018-02-01
Early detection and treatment of arthritis is essential for a successful outcome of the treatment, but it has proven to be very challenging with existing diagnostic methods. Novel methods based on the optical imaging of the affected joints are becoming an attractive alternative. A non-contact multispectral imaging (MSI) system for imaging of small joints of human hands and feet is being developed. In this work, a numerical simulation of the MSI system is presented. The purpose of the simulation is to determine the optimal design parameters. Inflamed and unaffected human joint models were constructed with a realistic geometry and tissue distributions, based on a MRI scan of a human finger with a spatial resolution of 0.2 mm. The light transport simulation is based on a weighted-photon 3D Monte Carlo method utilizing CUDA GPU acceleration. An uniform illumination of the finger within the 400-1100 nm spectral range was simulated and the photons exiting the joint were recorded using different acceptance angles. From the obtained reflectance and transmittance images the spectral and spatial features most indicative of inflammation were identified. Optimal acceptance angle and spectral bands were determined. This study demonstrates that proper selection of MSI system parameters critically affects ability of a MSI system to discriminate the unaffected and inflamed joints. The presented system design optimization approach could be applied to other pathologies.
NASA Astrophysics Data System (ADS)
Sue-Ann, Goh; Ponnambalam, S. G.
This paper focuses on the operational issues of a Two-echelon Single-Vendor-Multiple-Buyers Supply chain (TSVMBSC) under vendor managed inventory (VMI) mode of operation. To determine the optimal sales quantity for each buyer in TSVMBC, a mathematical model is formulated. Based on the optimal sales quantity can be obtained and the optimal sales price that will determine the optimal channel profit and contract price between the vendor and buyer. All this parameters depends upon the understanding of the revenue sharing between the vendor and buyers. A Particle Swarm Optimization (PSO) is proposed for this problem. Solutions obtained from PSO is compared with the best known results reported in literature.
Multi-Criteria Optimization of Regulation in Metabolic Networks
Higuera, Clara; Villaverde, Alejandro F.; Banga, Julio R.; Ross, John; Morán, Federico
2012-01-01
Determining the regulation of metabolic networks at genome scale is a hard task. It has been hypothesized that biochemical pathways and metabolic networks might have undergone an evolutionary process of optimization with respect to several criteria over time. In this contribution, a multi-criteria approach has been used to optimize parameters for the allosteric regulation of enzymes in a model of a metabolic substrate-cycle. This has been carried out by calculating the Pareto set of optimal solutions according to two objectives: the proper direction of flux in a metabolic cycle and the energetic cost of applying the set of parameters. Different Pareto fronts have been calculated for eight different “environments” (specific time courses of end product concentrations). For each resulting front the so-called knee point is identified, which can be considered a preferred trade-off solution. Interestingly, the optimal control parameters corresponding to each of these points also lead to optimal behaviour in all the other environments. By calculating the average of the different parameter sets for the knee solutions more frequently found, a final and optimal consensus set of parameters can be obtained, which is an indication on the existence of a universal regulation mechanism for this system.The implications from such a universal regulatory switch are discussed in the framework of large metabolic networks. PMID:22848435
Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...
With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th
NASA Technical Reports Server (NTRS)
Jacob, H. G.
1972-01-01
An optimization method has been developed that computes the optimal open loop inputs for a dynamical system by observing only its output. The method reduces to static optimization by expressing the inputs as series of functions with parameters to be optimized. Since the method is not concerned with the details of the dynamical system to be optimized, it works for both linear and nonlinear systems. The method and the application to optimizing longitudinal landing paths for a STOL aircraft with an augmented wing are discussed. Noise, fuel, time, and path deviation minimizations are considered with and without angle of attack, acceleration excursion, flight path, endpoint, and other constraints.
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Rosen, I. G.
1988-01-01
In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional controllers in order to minimize real-time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal projection theory. This approach yields fixed-finite-order controllers which are optimal with respect to high-order, approximating, finite-dimensional plant models. The technique is illustrated by computing a sequence of first-order controllers for one-dimensional, single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, Ritz-Galerkin, finite element approximation. Numerical studies indicate convergence of the feedback gains with less than 2 percent performance degradation over full-order LQG controllers for the parabolic system and 10 percent degradation for the hereditary system.
Meeting the challenges of developing LED-based projection displays
NASA Astrophysics Data System (ADS)
Geißler, Enrico
2006-04-01
The main challenge in developing a LED-based projection system is to meet the brightness requirements of the market. Therefore a balanced combination of optical, electrical and thermal parameters must be reached to achieve these performance and cost targets. This paper describes the system design methodology for a digital micromirror display (DMD) based optical engine using LEDs as the light source, starting at the basic physical and geometrical parameters of the DMD and other optical elements through characterization of the LEDs to optimizing the system performance by determining optimal driving conditions. LEDs have a luminous flux density which is just at the threshold of acceptance in projection systems and thus only a fully optimized optical system with a matched set of LEDs can be used. This work resulted in two projection engines, one for a compact pocket projector and the other for a rear projection television, both of which are currently in commercialization.
NASA Astrophysics Data System (ADS)
Azmi, Nur Iffah Mohamed; Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Romlay, Fadhlur Rahman Mohd
2018-03-01
Controller that uses PID parameters requires a good tuning method in order to improve the control system performance. Tuning PID control method is divided into two namely the classical methods and the methods of artificial intelligence. Particle swarm optimization algorithm (PSO) is one of the artificial intelligence methods. Previously, researchers had integrated PSO algorithms in the PID parameter tuning process. This research aims to improve the PSO-PID tuning algorithms by integrating the tuning process with the Variable Weight Grey- Taguchi Design of Experiment (DOE) method. This is done by conducting the DOE on the two PSO optimizing parameters: the particle velocity limit and the weight distribution factor. Computer simulations and physical experiments were conducted by using the proposed PSO- PID with the Variable Weight Grey-Taguchi DOE and the classical Ziegler-Nichols methods. They are implemented on the hydraulic positioning system. Simulation results show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE has reduced the rise time by 48.13% and settling time by 48.57% compared to the Ziegler-Nichols method. Furthermore, the physical experiment results also show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE tuning method responds better than Ziegler-Nichols tuning. In conclusion, this research has improved the PSO-PID parameter by applying the PSO-PID algorithm together with the Variable Weight Grey-Taguchi DOE method as a tuning method in the hydraulic positioning system.
NASA Astrophysics Data System (ADS)
Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.
2016-05-01
One of the major challenges in civil, mechanical, and aerospace engineering is to develop vibration suppression systems with high efficiency and low cost. Recent studies have shown that high damping performance at broadband frequencies can be achieved by incorporating periodic inserts with tunable dynamic properties as internal resonators in structural systems. Structures featuring these kinds of inserts are referred to as metamaterials inspired structures or metastructures. Chiral lattice inserts exhibit unique characteristics such as frequency bandgaps which can be tuned by varying the parameters that define the lattice topology. Recent analytical and experimental investigations have shown that broadband vibration attenuation can be achieved by including chiral lattices as internal resonators in beam-like structures. However, these studies have suggested that the performance of chiral lattice inserts can be maximized by utilizing an efficient optimization technique to obtain the optimal topology of the inserted lattice. In this study, an automated optimization procedure based on a genetic algorithm is applied to obtain the optimal set of parameters that will result in chiral lattice inserts tuned properly to reduce the global vibration levels of a finite-sized beam. Genetic algorithms are considered in this study due to their capability of dealing with complex and insufficiently understood optimization problems. In the optimization process, the basic parameters that govern the geometry of periodic chiral lattices including the number of circular nodes, the thickness of the ligaments, and the characteristic angle are considered. Additionally, a new set of parameters is introduced to enable the optimization process to explore non-periodic chiral designs. Numerical simulations are carried out to demonstrate the efficiency of the optimization process.
The System of Simulation and Multi-objective Optimization for the Roller Kiln
NASA Astrophysics Data System (ADS)
Huang, He; Chen, Xishen; Li, Wugang; Li, Zhuoqiu
It is somewhat a difficult researching problem, to get the building parameters of the ceramic roller kiln simulation model. A system integrated of evolutionary algorithms (PSO, DE and DEPSO) and computational fluid dynamics (CFD), is proposed to solve the problem. And the temperature field uniformity and the environment disruption are studied in this paper. With the help of the efficient parallel calculation, the ceramic roller kiln temperature field uniformity and the NOx emissions field have been researched in the system at the same time. A multi-objective optimization example of the industrial roller kiln proves that the system is of excellent parameter exploration capability.
Multirate sampled-data yaw-damper and modal suppression system design
NASA Technical Reports Server (NTRS)
Berg, Martin C.; Mason, Gregory S.
1990-01-01
A multirate control law synthesized algorithm based on an infinite-time quadratic cost function, was developed along with a method for analyzing the robustness of multirate systems. A generalized multirate sampled-data control law structure (GMCLS) was introduced. A new infinite-time-based parameter optimization multirate sampled-data control law synthesis method and solution algorithm were developed. A singular-value-based method for determining gain and phase margins for multirate systems was also developed. The finite-time-based parameter optimization multirate sampled-data control law synthesis algorithm originally intended to be applied to the aircraft problem was instead demonstrated by application to a simpler problem involving the control of the tip position of a two-link robot arm. The GMCLS, the infinite-time-based parameter optimization multirate control law synthesis method and solution algorithm, and the singular-value based method for determining gain and phase margins were all demonstrated by application to the aircraft control problem originally proposed for this project.
Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models
NASA Astrophysics Data System (ADS)
Rothenberger, Michael J.
This dissertation examines the fundamental challenge of optimally shaping input trajectories to maximize parameter identifiability of control-oriented lithium-ion battery models. Identifiability is a property from information theory that determines the solvability of parameter estimation for mathematical models using input-output measurements. This dissertation creates a framework that exploits the Fisher information metric to quantify the level of battery parameter identifiability, optimizes this metric through input shaping, and facilitates faster and more accurate estimation. The popularity of lithium-ion batteries is growing significantly in the energy storage domain, especially for stationary and transportation applications. While these cells have excellent power and energy densities, they are plagued with safety and lifespan concerns. These concerns are often resolved in the industry through conservative current and voltage operating limits, which reduce the overall performance and still lack robustness in detecting catastrophic failure modes. New advances in automotive battery management systems mitigate these challenges through the incorporation of model-based control to increase performance, safety, and lifespan. To achieve these goals, model-based control requires accurate parameterization of the battery model. While many groups in the literature study a variety of methods to perform battery parameter estimation, a fundamental issue of poor parameter identifiability remains apparent for lithium-ion battery models. This fundamental challenge of battery identifiability is studied extensively in the literature, and some groups are even approaching the problem of improving the ability to estimate the model parameters. The first approach is to add additional sensors to the battery to gain more information that is used for estimation. The other main approach is to shape the input trajectories to increase the amount of information that can be gained from input-output measurements, and is the approach used in this dissertation. Research in the literature studies optimal current input shaping for high-order electrochemical battery models and focuses on offline laboratory cycling. While this body of research highlights improvements in identifiability through optimal input shaping, each optimal input is a function of nominal parameters, which creates a tautology. The parameter values must be known a priori to determine the optimal input for maximizing estimation speed and accuracy. The system identification literature presents multiple studies containing methods that avoid the challenges of this tautology, but these methods are absent from the battery parameter estimation domain. The gaps in the above literature are addressed in this dissertation through the following five novel and unique contributions. First, this dissertation optimizes the parameter identifiability of a thermal battery model, which Sergio Mendoza experimentally validates through a close collaboration with this dissertation's author. Second, this dissertation extends input-shaping optimization to a linear and nonlinear equivalent-circuit battery model and illustrates the substantial improvements in Fisher identifiability for a periodic optimal signal when compared against automotive benchmark cycles. Third, this dissertation presents an experimental validation study of the simulation work in the previous contribution. The estimation study shows that the automotive benchmark cycles either converge slower than the optimized cycle, or not at all for certain parameters. Fourth, this dissertation examines how automotive battery packs with additional power electronic components that dynamically route current to individual cells/modules can be used for parameter identifiability optimization. While the user and vehicle supervisory controller dictate the current demand for these packs, the optimized internal allocation of current still improves identifiability. Finally, this dissertation presents a robust Bayesian sequential input shaping optimization study to maximize the conditional Fisher information of the battery model parameters without prior knowledge of the nominal parameter set. This iterative algorithm only requires knowledge of the prior parameter distributions to converge to the optimal input trajectory.
An improved swarm optimization for parameter estimation and biological model selection.
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
Moore, C S; Liney, G P; Beavis, A W; Saunderson, J R
2007-09-01
A test methodology using an anthropomorphic-equivalent chest phantom is described for the optimization of the Agfa computed radiography "MUSICA" processing algorithm for chest radiography. The contrast-to-noise ratio (CNR) in the lung, heart and diaphragm regions of the phantom, and the "system modulation transfer function" (sMTF) in the lung region, were measured using test tools embedded in the phantom. Using these parameters the MUSICA processing algorithm was optimized with respect to low-contrast detectability and spatial resolution. Two optimum "MUSICA parameter sets" were derived respectively for maximizing the CNR and sMTF in each region of the phantom. Further work is required to find the relative importance of low-contrast detectability and spatial resolution in chest images, from which the definitive optimum MUSICA parameter set can then be derived. Prior to this further work, a compromised optimum MUSICA parameter set was applied to a range of clinical images. A group of experienced image evaluators scored these images alongside images produced from the same radiographs using the MUSICA parameter set in clinical use at the time. The compromised optimum MUSICA parameter set was shown to produce measurably better images.
Shaw, Calvin B; Prakash, Jaya; Pramanik, Manojit; Yalavarthy, Phaneendra K
2013-08-01
A computationally efficient approach that computes the optimal regularization parameter for the Tikhonov-minimization scheme is developed for photoacoustic imaging. This approach is based on the least squares-QR decomposition which is a well-known dimensionality reduction technique for a large system of equations. It is shown that the proposed framework is effective in terms of quantitative and qualitative reconstructions of initial pressure distribution enabled via finding an optimal regularization parameter. The computational efficiency and performance of the proposed method are shown using a test case of numerical blood vessel phantom, where the initial pressure is exactly known for quantitative comparison.
NASA Astrophysics Data System (ADS)
Volk, J. M.; Turner, M. A.; Huntington, J. L.; Gardner, M.; Tyler, S.; Sheneman, L.
2016-12-01
Many distributed models that simulate watershed hydrologic processes require a collection of multi-dimensional parameters as input, some of which need to be calibrated before the model can be applied. The Precipitation Runoff Modeling System (PRMS) is a physically-based and spatially distributed hydrologic model that contains a considerable number of parameters that often need to be calibrated. Modelers can also benefit from uncertainty analysis of these parameters. To meet these needs, we developed a modular framework in Python to conduct PRMS parameter optimization, uncertainty analysis, interactive visual inspection of parameters and outputs, and other common modeling tasks. Here we present results for multi-step calibration of sensitive parameters controlling solar radiation, potential evapo-transpiration, and streamflow in a PRMS model that we applied to the snow-dominated Dry Creek watershed in Idaho. We also demonstrate how our modular approach enables the user to use a variety of parameter optimization and uncertainty methods or easily define their own, such as Monte Carlo random sampling, uniform sampling, or even optimization methods such as the downhill simplex method or its commonly used, more robust counterpart, shuffled complex evolution.
NASA Astrophysics Data System (ADS)
Zhiying, Chen; Ping, Zhou
2017-11-01
Considering the robust optimization computational precision and efficiency for complex mechanical assembly relationship like turbine blade-tip radial running clearance, a hierarchically response surface robust optimization algorithm is proposed. The distribute collaborative response surface method is used to generate assembly system level approximation model of overall parameters and blade-tip clearance, and then a set samples of design parameters and objective response mean and/or standard deviation is generated by using system approximation model and design of experiment method. Finally, a new response surface approximation model is constructed by using those samples, and this approximation model is used for robust optimization process. The analyses results demonstrate the proposed method can dramatic reduce the computational cost and ensure the computational precision. The presented research offers an effective way for the robust optimization design of turbine blade-tip radial running clearance.
NASA Astrophysics Data System (ADS)
AsséMat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank
In part I, we presented the theoretic foundations of the GOAT algorithm for the optimal control of quantum systems. Here in part II, we focus on several applications of GOAT to superconducting qubits architecture. First, we consider a control-Z gate on Xmons qubits with an Erf parametrization of the optimal pulse. We show that a fast and accurate gate can be obtained with only 16 parameters, as compared to hundreds of parameters required in other algorithms. We present numerical evidences that such parametrization should allow an efficient in-situ calibration of the pulse. Next, we consider the flux-tunable coupler by IBM. We show optimization can be carried out in a more realistic model of the system than was employed in the original study, which is expected to further simplify the calibration process. Moreover, GOAT reduced the complexity of the optimal pulse to only 6 Fourier components, composed with analytic wrappers.
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.
2010-01-01
We present a progress report on the various endeavors we are undertaking at MSFC in support of the Wide Field X-Ray Telescope development. In particular we discuss assembly and alignment techniques, in-situ polishing corrections, and the results of our efforts to optimize mirror prescriptions including polynomial coefficients, relative shell displacements, detector placements and tilts. This optimization does not require a blind search through the multi-dimensional parameter space. Under the assumption that the parameters are small enough so that second order expansions are valid, we show that the performance at the detector can be expressed as a quadratic function with numerical coefficients derived from a ray trace through the underlying Wolter I optic. The optimal values for the parameters are found by solving the linear system of equations creating by setting derivatives of this function with respect to each parameter to zero.
Shen, L; Levine, S H; Catchen, G L
1987-07-01
This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration.
Hu, Rui; Liu, Shutian; Li, Quhao
2017-05-20
For the development of a large-aperture space telescope, one of the key techniques is the method for designing the flexures for mounting the primary mirror, as the flexures are the key components. In this paper, a topology-optimization-based method for designing flexures is presented. The structural performances of the mirror system under multiple load conditions, including static gravity and thermal loads, as well as the dynamic vibration, are considered. The mirror surface shape error caused by gravity and the thermal effect is treated as the objective function, and the first-order natural frequency of the mirror structural system is taken as the constraint. The pattern repetition constraint is added, which can ensure symmetrical material distribution. The topology optimization model for flexure design is established. The substructuring method is also used to condense the degrees of freedom (DOF) of all the nodes of the mirror system, except for the nodes that are linked to the mounting flexures, to reduce the computation effort during the optimization iteration process. A potential optimized configuration is achieved by solving the optimization model and post-processing. A detailed shape optimization is subsequently conducted to optimize its dimension parameters. Our optimization method deduces new mounting structures that significantly enhance the optical performance of the mirror system compared to the traditional methods, which only focus on the parameters of existing structures. Design results demonstrate the effectiveness of the proposed optimization method.
Constrained optimization of image restoration filters
NASA Technical Reports Server (NTRS)
Riemer, T. E.; Mcgillem, C. D.
1973-01-01
A linear shift-invariant preprocessing technique is described which requires no specific knowledge of the image parameters and which is sufficiently general to allow the effective radius of the composite imaging system to be minimized while constraining other system parameters to remain within specified limits.
Serial robot for the trajectory optimization and error compensation of TMT mask exchange system
NASA Astrophysics Data System (ADS)
Wang, Jianping; Zhang, Feifan; Zhou, Zengxiang; Zhai, Chao
2015-10-01
Mask exchange system is the main part of Multi-Object Broadband Imaging Echellette (MOBIE) on the Thirty Meter Telescope (TMT). According to the conception of the TMT mask exchange system, the pre-design was introduced in the paper which was based on IRB 140 robot. The stiffness model of IRB 140 in SolidWorks was analyzed under different gravity vectors for further error compensation. In order to find the right location and path planning, the robot and the mask cassette model was imported into MOBIE model to perform different schemes simulation. And obtained the initial installation position and routing. Based on these initial parameters, IRB 140 robot was operated to simulate the path and estimate the mask exchange time. Meanwhile, MATLAB and ADAMS software were used to perform simulation analysis and optimize the route to acquire the kinematics parameters and compare with the experiment results. After simulation and experimental research mentioned in the paper, the theoretical reference was acquired which could high efficient improve the structure of the mask exchange system parameters optimization of the path and precision of the robot position.
20 Meter Solar Sail Analysis and Correlation
NASA Technical Reports Server (NTRS)
Taleghani, B.; Lively, P.; Banik, J.; Murphy, D.; Trautt, T.
2005-01-01
This presentation discusses studies conducted to determine the element type and size that best represents a 20-meter solar sail under ground-test load conditions, the performance of test/Analysis correlation by using Static Shape Optimization Method for Q4 sail, and system dynamic. TRIA3 elements better represent wrinkle patterns than do QUAD3 elements Baseline, ten-inch elements are small enough to accurately represent sail shape, and baseline TRIA3 mesh requires a reasonable computation time of 8 min. 21 sec. In the test/analysis correlation by using Static shape optimization method for Q4 sail, ten parameters were chosen and varied during optimization. 300 sail models were created with random parameters. A response surfaces for each targets which were created based on the varied parameters. Parameters were optimized based on response surface. Deflection shape comparison for 0 and 22.5 degrees yielded a 4.3% and 2.1% error respectively. For the system dynamic study testing was done on the booms without the sails attached. The nominal boom properties produced a good correlation to test data the frequencies were within 10%. Boom dominated analysis frequencies and modes compared well with the test results.
Bassen, David M; Vilkhovoy, Michael; Minot, Mason; Butcher, Jonathan T; Varner, Jeffrey D
2017-01-25
Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters. In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions. JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open source, available under an MIT license, and can be installed using the Julia package manager from the JuPOETs GitHub repository.
Verifiable Adaptive Control with Analytical Stability Margins by Optimal Control Modification
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.
2010-01-01
This paper presents a verifiable model-reference adaptive control method based on an optimal control formulation for linear uncertain systems. A predictor model is formulated to enable a parameter estimation of the system parametric uncertainty. The adaptation is based on both the tracking error and predictor error. Using a singular perturbation argument, it can be shown that the closed-loop system tends to a linear time invariant model asymptotically under an assumption of fast adaptation. A stability margin analysis is given to estimate a lower bound of the time delay margin using a matrix measure method. Using this analytical method, the free design parameter n of the optimal control modification adaptive law can be determined to meet a specification of stability margin for verification purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Zheng, E-mail: 19994035@sina.com; Wang, Jun; Zhou, Bihua
2014-03-15
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented tomore » tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.« less
Model-Based Thermal System Design Optimization for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe; Niedner, Malcolm B.; Fixsen, Dale J.; Moseley, Samuel H.
2017-01-01
Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.
Robust active noise control in the loadmaster area of a military transport aircraft.
Kochan, Kay; Sachau, Delf; Breitbach, Harald
2011-05-01
The active noise control (ANC) method is based on the superposition of a disturbance noise field with a second anti-noise field using loudspeakers and error microphones. This method can be used to reduce the noise level inside the cabin of a propeller aircraft. However, during the design process of the ANC system, extensive measurements of transfer functions are necessary to optimize the loudspeaker and microphone positions. Sometimes, the transducer positions have to be tailored according to the optimization results to achieve a sufficient noise reduction. The purpose of this paper is to introduce a controller design method for such narrow band ANC systems. The method can be seen as an extension of common transducer placement optimization procedures. In the presented method, individual weighting parameters for the loudspeakers and microphones are used. With this procedure, the tailoring of the transducer positions is replaced by adjustment of controller parameters. Moreover, the ANC system will be robust because of the fact that the uncertainties are considered during the optimization of the controller parameters. The paper describes the necessary theoretic background for the method and demonstrates the efficiency in an acoustical mock-up of a military transport aircraft.
Model-based thermal system design optimization for the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Cataldo, Giuseppe; Niedner, Malcolm B.; Fixsen, Dale J.; Moseley, Samuel H.
2017-10-01
Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.
Optimal Wonderful Life Utility Functions in Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)
2000-01-01
The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.
NASA Astrophysics Data System (ADS)
Nejlaoui, Mohamed; Houidi, Ajmi; Affi, Zouhaier; Romdhane, Lotfi
2017-10-01
This paper deals with the robust safety design optimization of a rail vehicle system moving in short radius curved tracks. A combined multi-objective imperialist competitive algorithm and Monte Carlo method is developed and used for the robust multi-objective optimization of the rail vehicle system. This robust optimization of rail vehicle safety considers simultaneously the derailment angle and its standard deviation where the design parameters uncertainties are considered. The obtained results showed that the robust design reduces significantly the sensitivity of the rail vehicle safety to the design parameters uncertainties compared to the determinist one and to the literature results.
Integrated Controls-Structures Design Methodology for Flexible Spacecraft
NASA Technical Reports Server (NTRS)
Maghami, P. G.; Joshi, S. M.; Price, D. B.
1995-01-01
This paper proposes an approach for the design of flexible spacecraft, wherein the structural design and the control system design are performed simultaneously. The integrated design problem is posed as an optimization problem in which both the structural parameters and the control system parameters constitute the design variables, which are used to optimize a common objective function, thereby resulting in an optimal overall design. The approach is demonstrated by application to the integrated design of a geostationary platform, and to a ground-based flexible structure experiment. The numerical results obtained indicate that the integrated design approach generally yields spacecraft designs that are substantially superior to the conventional approach, wherein the structural design and control design are performed sequentially.
Mdluli, Thembi; Buzzard, Gregery T; Rundell, Ann E
2015-09-01
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm's scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements.
Mdluli, Thembi; Buzzard, Gregery T.; Rundell, Ann E.
2015-01-01
This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm’s scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements. PMID:26379275
Optimization of the water chemistry of the primary coolant at nuclear power plants with VVER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmin, L. F.; Kruglova, T. K.; Sinitsyn, V. P.
2005-01-15
Results of the use of automatic hydrogen-content meter for controlling the parameter of 'hydrogen' in the primary coolant circuit of the Kola nuclear power plant are presented. It is shown that the correlation between the 'hydrogen' parameter in the coolant and the 'hydrazine' parameter in the makeup water can be used for controlling the water chemistry of the primary coolant system, which should make it possible to optimize the water chemistry at different power levels.
Ecological optimality in water-limited natural soil-vegetation systems. II - Tests and applications
NASA Technical Reports Server (NTRS)
Eagleson, P. S.; Tellers, T. E.
1982-01-01
The long-term optimal climatic climax soil-vegetation system is defined for several climates according to previous hypotheses in terms of two free parameters, effective porosity and plant water use coefficient. The free parameters are chosen by matching the predicted and observed average annual water yield. The resulting climax soil and vegetation properties are tested by comparison with independent observations of canopy density and average annual surface runoff. The climax properties are shown also to satisfy a previous hypothesis for short-term optimization of canopy density and water use coefficient. Using these hypotheses, a relationship between average evapotranspiration and optimum vegetation canopy density is derived and is compared with additional field observations. An algorithm is suggested by which the climax soil and vegetation properties can be calculated given only the climate parameters and the soil effective porosity. Sensitivity of the climax properties to the effective porosity is explored.
NASA Astrophysics Data System (ADS)
Feng, Jianjun; Li, Chengzhe; Wu, Zhi
2017-08-01
As an important part of the valve opening and closing controller in engine, camshaft has high machining accuracy requirement in designing. Taking the high-speed camshaft grinder spindle system as the research object and the spindle system performance as the optimizing target, this paper firstly uses Solidworks to establish the three-dimensional finite element model (FEM) of spindle system, then conducts static analysis and the modal analysis by applying the established FEM in ANSYS Workbench, and finally uses the design optimization function of the ANSYS Workbench to optimize the structure parameter in the spindle system. The study results prove that the design of the spindle system fully meets the production requirements, and the performance of the optimized spindle system is promoted. Besides, this paper provides an analysis and optimization method for other grinder spindle systems.
An efficient hybrid approach for multiobjective optimization of water distribution systems
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.
2014-05-01
An efficient hybrid approach for the design of water distribution systems (WDSs) with multiple objectives is described in this paper. The objectives are the minimization of the network cost and maximization of the network resilience. A self-adaptive multiobjective differential evolution (SAMODE) algorithm has been developed, in which control parameters are automatically adapted by means of evolution instead of the presetting of fine-tuned parameter values. In the proposed method, a graph algorithm is first used to decompose a looped WDS into a shortest-distance tree (T) or forest, and chords (Ω). The original two-objective optimization problem is then approximated by a series of single-objective optimization problems of the T to be solved by nonlinear programming (NLP), thereby providing an approximate Pareto optimal front for the original whole network. Finally, the solutions at the approximate front are used to seed the SAMODE algorithm to find an improved front for the original entire network. The proposed approach is compared with two other conventional full-search optimization methods (the SAMODE algorithm and the NSGA-II) that seed the initial population with purely random solutions based on three case studies: a benchmark network and two real-world networks with multiple demand loading cases. Results show that (i) the proposed NLP-SAMODE method consistently generates better-quality Pareto fronts than the full-search methods with significantly improved efficiency; and (ii) the proposed SAMODE algorithm (no parameter tuning) exhibits better performance than the NSGA-II with calibrated parameter values in efficiently offering optimal fronts.
Amador-Angulo, Leticia; Mendoza, Olivia; Castro, Juan R.; Rodríguez-Díaz, Antonio; Melin, Patricia; Castillo, Oscar
2016-01-01
A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm. PMID:27618062
Estimation and detection information trade-off for x-ray system optimization
NASA Astrophysics Data System (ADS)
Cushing, Johnathan B.; Clarkson, Eric W.; Mandava, Sagar; Bilgin, Ali
2016-05-01
X-ray Computed Tomography (CT) systems perform complex imaging tasks to detect and estimate system parameters, such as a baggage imaging system performing threat detection and generating reconstructions. This leads to a desire to optimize both the detection and estimation performance of a system, but most metrics only focus on one of these aspects. When making design choices there is a need for a concise metric which considers both detection and estimation information parameters, and then provides the user with the collection of possible optimal outcomes. In this paper a graphical analysis of Estimation and Detection Information Trade-off (EDIT) will be explored. EDIT produces curves which allow for a decision to be made for system optimization based on design constraints and costs associated with estimation and detection. EDIT analyzes the system in the estimation information and detection information space where the user is free to pick their own method of calculating these measures. The user of EDIT can choose any desired figure of merit for detection information and estimation information then the EDIT curves will provide the collection of optimal outcomes. The paper will first look at two methods of creating EDIT curves. These curves can be calculated using a wide variety of systems and finding the optimal system by maximizing a figure of merit. EDIT could also be found as an upper bound of the information from a collection of system. These two methods allow for the user to choose a method of calculation which best fits the constraints of their actual system.
Gomaa Haroun, A H; Li, Yin-Ya
2017-11-01
In the fast developing world nowadays, load frequency control (LFC) is considered to be a most significant role for providing the power supply with good quality in the power system. To deliver a reliable power, LFC system requires highly competent and intelligent control technique. Hence, in this article, a novel hybrid fuzzy logic intelligent proportional-integral-derivative (FLiPID) controller has been proposed for LFC of interconnected multi-area power systems. A four-area interconnected thermal power system incorporated with physical constraints and boiler dynamics is considered and the adjustable parameters of the FLiPID controller are optimized using particle swarm optimization (PSO) scheme employing an integral square error (ISE) criterion. The proposed method has been established to enhance the power system performances as well as to reduce the oscillations of uncertainties due to variations in the system parameters and load perturbations. The supremacy of the suggested method is demonstrated by comparing the simulation results with some recently reported heuristic methods such as fuzzy logic proportional-integral (FLPI) and intelligent proportional-integral-derivative (PID) controllers for the same electrical power system. the investigations showed that the FLiPID controller provides a better dynamic performance and outperform compared to the other approaches in terms of the settling time, and minimum undershoots of the frequency as well as tie-line power flow deviations following a perturbation, in addition to perform appropriate settlement of integral absolute error (IAE). Finally, the sensitivity analysis of the plant is inspected by varying the system parameters and operating load conditions from their nominal values. It is observed that the suggested controller based optimization algorithm is robust and perform satisfactorily with the variations in operating load condition, system parameters and load pattern. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Transoptr — A second order beam transport design code with optimization and constraints
NASA Astrophysics Data System (ADS)
Heighway, E. A.; Hutcheon, R. M.
1981-08-01
This code was written initially to design an achromatic and isochronous reflecting magnet and has been extended to compete in capability (for constrained problems) with TRANSPORT. Its advantage is its flexibility in that the user writes a routine to describe his transport system. The routine allows the definition of general variables from which the system parameters can be derived. Further, the user can write any constraints he requires as algebraic equations relating the parameters. All variables may be used in either a first or second order optimization.
Methodology of Numerical Optimization for Orbital Parameters of Binary Systems
NASA Astrophysics Data System (ADS)
Araya, I.; Curé, M.
2010-02-01
The use of a numerical method of maximization (or minimization) in optimization processes allows us to obtain a great amount of solutions. Therefore, we can find a global maximum or minimum of the problem, but this is only possible if we used a suitable methodology. To obtain the global optimum values, we use the genetic algorithm called PIKAIA (P. Charbonneau) and other four algorithms implemented in Mathematica. We demonstrate that derived orbital parameters of binary systems published in some papers, based on radial velocity measurements, are local minimum instead of global ones.
Evolution of Query Optimization Methods
NASA Astrophysics Data System (ADS)
Hameurlain, Abdelkader; Morvan, Franck
Query optimization is the most critical phase in query processing. In this paper, we try to describe synthetically the evolution of query optimization methods from uniprocessor relational database systems to data Grid systems through parallel, distributed and data integration systems. We point out a set of parameters to characterize and compare query optimization methods, mainly: (i) size of the search space, (ii) type of method (static or dynamic), (iii) modification types of execution plans (re-optimization or re-scheduling), (iv) level of modification (intra-operator and/or inter-operator), (v) type of event (estimation errors, delay, user preferences), and (vi) nature of decision-making (centralized or decentralized control).
Global Parameter Optimization of CLM4.5 Using Sparse-Grid Based Surrogates
NASA Astrophysics Data System (ADS)
Lu, D.; Ricciuto, D. M.; Gu, L.
2016-12-01
Calibration of the Community Land Model (CLM) is challenging because of its model complexity, large parameter sets, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time. The goal of this study is to calibrate some of the CLM parameters in order to improve model projection of carbon fluxes. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first use advanced sparse grid (SG) interpolation to construct a surrogate system of the actual CLM model, and then we calibrate the surrogate model in the optimization process. As the surrogate model is a polynomial whose evaluation is fast, it can be efficiently evaluated with sufficiently large number of times in the optimization, which facilitates the global search. We calibrate five parameters against 12 months of GPP, NEP, and TLAI data from the U.S. Missouri Ozark (US-MOz) tower. The results indicate that an accurate surrogate model can be created for the CLM4.5 with a relatively small number of SG points (i.e., CLM4.5 simulations), and the application of the optimized parameters leads to a higher predictive capacity than the default parameter values in the CLM4.5 for the US-MOz site.
Yang, Jian; Liu, Chuangui; Wang, Boqian; Ding, Xianting
2017-10-13
Superhydrophobic surface, as a promising micro/nano material, has tremendous applications in biological and artificial investigations. The electrohydrodynamics (EHD) technique is a versatile and effective method for fabricating micro- to nanoscale fibers and particles from a variety of materials. A combination of critical parameters, such as mass fraction, ratio of N, N-Dimethylformamide (DMF) to Tetrahydrofuran (THF), inner diameter of needle, feed rate, receiving distance, applied voltage as well as temperature, during electrospinning process, to determine the morphology of the electrospun membranes, which in turn determines the superhydrophobic property of the membrane. In this study, we applied a recently developed feedback system control (FSC) scheme for rapid identification of the optimal combination of these controllable parameters to fabricate superhydrophobic surface by one-step electrospinning method without any further modification. Within five rounds of experiments by testing totally forty-six data points, FSC scheme successfully identified an optimal parameter combination that generated electrospun membranes with a static water contact angle of 160 degrees or larger. Scanning electron microscope (SEM) imaging indicates that the FSC optimized surface attains unique morphology. The optimized setup introduced here therefore serves as a one-step, straightforward, and economic approach to fabricate superhydrophobic surface with electrospinning approach.
Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.
Modares, Hamidreza; Ranatunga, Isura; Lewis, Frank L; Popa, Dan O
2016-03-01
An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.
Systematic parameter inference in stochastic mesoscopic modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Huan; Yang, Xiu; Li, Zhen
2017-02-01
We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the priormore » knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.« less
NASA Astrophysics Data System (ADS)
Shukla, Adarsh
In a thermodynamic system which contains several elements, the phase relationships among the components are usually very complex. Especially, systems containing oxides are generally very difficult to investigate owing to the very high experimental temperatures and corrosive action of slags. Due to such difficulties, large inconsistencies are often observed among the available experimental data. In order to investigate and understand the complex phase relationships effectively, it is very useful to develop thermodynamic databases containing optimized model parameters giving the thermodynamic properties of all phases as functions of temperature and composition. In a thermodynamic optimization, adjustable model parameters are calculated using, simultaneously, all available thermodynamic and phase-equilibrium data in order to obtain one set of model equations as functions of temperature and composition. Thermodynamic data, such as activities, can aid in the evaluation of the phase diagrams, and information on phase equilibria can be used to deduce thermodynamic properties. Thus, it is frequently possible to resolve discrepancies in the available data. From the model equations, all the thermodynamic properties and phase diagrams can be back-calculated, and interpolations and extrapolations can be made in a thermodynamically correct manner. The data are thereby rendered self-consistent and consistent with thermodynamic principles, and the available data are distilled into a small set of model parameters, ideal for computer storage. As part of a broader research project at the Centre de Recherche en Calcul Thermochimique (CRCT), Ecole Polytechnique to develop a thermodynamic database for multicomponent oxide systems, this thesis deals with the addition of components SrO and BaO to the existing multicomponent database of the SiO2-B2O3-Al2O 3-CaO-MgO system. Over the years, in collaboration with many industrial companies, a thermodynamic database for the SiO2-B2O 3-Al2O3-CaO-MgO system has been built quite satisfactorily. The aim of the present work was to improve the applicability of this five component database by adding SrO and BaO to it. The databases prepared in this work will be of special importance to the glass and steel industries. In the SiO2-B2O3-Al2O 3-CaO-MgO-BaO-SrO system there are 11 binary systems and 25 ternary systems which contain either BaO or SrO or both. For most of these binary systems, and for none of these ternary systems, is there a previous thermodynamic optimization available in the literature. In this thesis, thermodynamic evaluation and optimization for the 11 binary, 17 ternary and 5 quaternary BaO- and SrO- containing systems in the SiO2-B2O3-Al 2O3-CaO-MgO-BaO-SrO system is presented. All these thermodynamic optimizations were performed based on the experimental data available in the literature, except for the SrO-B2O3-SiO2 system. This latter system was optimized on the basis of a few experimental data points generated in the present work together with the data from the literature. In the present work, all the calculations were performed using the FactSage™ thermochemical software. The Modified Quasichemical Model (MQM), which is capable of taking short-range ordering into account, was used for the liquid phase. All the binary systems were critically evaluated and optimized using available phase equilibrium and thermodynamic data. The model parameters obtained as a result of this simultaneous optimization were used to represent the Gibbs energies of all phases as functions of temperature and composition. Optimized binary model parameters were used to estimate the thermodynamic properties of phases in the ternary systems. Proper “geometric” models were used for these estimations. Ternary phase diagram were calculated and compared with available experimental data. Wherever required, ternary interaction parameters were also added. The first part of this thesis comprises a general literature review on the subject of thermodynamic modeling and experimental techniques for phase diagram determination. The next chapters include the literature review and the thermodynamic optimizations of the various systems. The last part of the thesis is the presentation of experiments performed in the present work, by quenching and EPMA, in the SrO-B2O3-SiO2 system. The experiments were designed to generate the maximum amount of information with the minimum number of experiments using the thermodynamic optimization, based only on the data available in the literature, as a guide. These newly-obtained data improved the (preceding) thermodynamic optimization, based on the experimental data in the literature, of this ternary system.
iTOUGH2: A multiphysics simulation-optimization framework for analyzing subsurface systems
NASA Astrophysics Data System (ADS)
Finsterle, S.; Commer, M.; Edmiston, J. K.; Jung, Y.; Kowalsky, M. B.; Pau, G. S. H.; Wainwright, H. M.; Zhang, Y.
2017-11-01
iTOUGH2 is a simulation-optimization framework for the TOUGH suite of nonisothermal multiphase flow models and related simulators of geophysical, geochemical, and geomechanical processes. After appropriate parameterization of subsurface structures and their properties, iTOUGH2 runs simulations for multiple parameter sets and analyzes the resulting output for parameter estimation through automatic model calibration, local and global sensitivity analyses, data-worth analyses, and uncertainty propagation analyses. Development of iTOUGH2 is driven by scientific challenges and user needs, with new capabilities continually added to both the forward simulator and the optimization framework. This review article provides a summary description of methods and features implemented in iTOUGH2, and discusses the usefulness and limitations of an integrated simulation-optimization workflow in support of the characterization and analysis of complex multiphysics subsurface systems.
Using constraints and their value for optimization of large ODE systems
Domijan, Mirela; Rand, David A.
2015-01-01
We provide analytical tools to facilitate a rigorous assessment of the quality and value of the fit of a complex model to data. We use this to provide approaches to model fitting, parameter estimation, the design of optimization functions and experimental optimization. This is in the context where multiple constraints are used to select or optimize a large model defined by differential equations. We illustrate the approach using models of circadian clocks and the NF-κB signalling system. PMID:25673300
Research on crude oil storage and transportation based on optimization algorithm
NASA Astrophysics Data System (ADS)
Yuan, Xuhua
2018-04-01
At present, the optimization theory and method have been widely used in the optimization scheduling and optimal operation scheme of complex production systems. Based on C++Builder 6 program development platform, the theoretical research results are implemented by computer. The simulation and intelligent decision system of crude oil storage and transportation inventory scheduling are designed. The system includes modules of project management, data management, graphics processing, simulation of oil depot operation scheme. It can realize the optimization of the scheduling scheme of crude oil storage and transportation system. A multi-point temperature measuring system for monitoring the temperature field of floating roof oil storage tank is developed. The results show that by optimizing operating parameters such as tank operating mode and temperature, the total transportation scheduling costs of the storage and transportation system can be reduced by 9.1%. Therefore, this method can realize safe and stable operation of crude oil storage and transportation system.
User's manual for the BNW-I optimization code for dry-cooled power plants. [AMCIRC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, D.J.; Daniel, D.J.; De Mier, W.V.
1977-01-01
This appendix provides a listing, called Program AMCIRC, of the BNW-1 optimization code for determining, for a particular size power plant, the optimum dry cooling tower design using ammonia flow in the heat exchanger tubes. The optimum design is determined by repeating the design of the cooling system over a range of design conditions in order to find the cooling system with the smallest incremental cost. This is accomplished by varying five parameters of the plant and cooling system over ranges of values. These parameters are varied systematically according to techniques that perform pattern and gradient searches. The dry coolingmore » system optimized by program AMCIRC is composed of a condenser/reboiler (condensation of steam and boiling of ammonia), piping system (transports ammonia vapor out and ammonia liquid from the dry cooling towers), and circular tower system (vertical one-pass heat exchangers situated in circular configurations with cocurrent ammonia flow in the tubes of the heat exchanger). (LCL)« less
NASA Astrophysics Data System (ADS)
Zeng, Rongping; Badano, Aldo; Myers, Kyle J.
2017-04-01
We showed in our earlier work that the choice of reconstruction methods does not affect the optimization of DBT acquisition parameters (angular span and number of views) using simulated breast phantom images in detecting lesions with a channelized Hotelling observer (CHO). In this work we investigate whether the model-observer based conclusion is valid when using humans to interpret images. We used previously generated DBT breast phantom images and recruited human readers to find the optimal geometry settings associated with two reconstruction algorithms, filtered back projection (FBP) and simultaneous algebraic reconstruction technique (SART). The human reader results show that image quality trends as a function of the acquisition parameters are consistent between FBP and SART reconstructions. The consistent trends confirm that the optimization of DBT system geometry is insensitive to the choice of reconstruction algorithm. The results also show that humans perform better in SART reconstructed images than in FBP reconstructed images. In addition, we applied CHOs with three commonly used channel models, Laguerre-Gauss (LG) channels, square (SQR) channels and sparse difference-of-Gaussian (sDOG) channels. We found that LG channels predict human performance trends better than SQR and sDOG channel models for the task of detecting lesions in tomosynthesis backgrounds. Overall, this work confirms that the choice of reconstruction algorithm is not critical for optimizing DBT system acquisition parameters.
NASA Astrophysics Data System (ADS)
Ojeda, David; Le Rolle, Virginie; Tse Ve Koon, Kevin; Thebault, Christophe; Donal, Erwan; Hernández, Alfredo I.
2013-11-01
In this paper, lumped-parameter models of the cardiovascular system, the cardiac electrical conduction system and a pacemaker are coupled to generate mitral ow pro les for di erent atrio-ventricular delay (AVD) con gurations, in the context of cardiac resynchronization therapy (CRT). First, we perform a local sensitivity analysis of left ventricular and left atrial parameters on mitral ow characteristics, namely E and A wave amplitude, mitral ow duration, and mitral ow time integral. Additionally, a global sensitivity analysis over all model parameters is presented to screen for the most relevant parameters that a ect the same mitral ow characteristics. Results provide insight on the in uence of left ventricle and atrium in uence on mitral ow pro les. This information will be useful for future parameter estimation of the model that could reproduce the mitral ow pro les and cardiovascular hemodynamics of patients undergoing AVD optimization during CRT.
Optimal feedback control infinite dimensional parabolic evolution systems: Approximation techniques
NASA Technical Reports Server (NTRS)
Banks, H. T.; Wang, C.
1989-01-01
A general approximation framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under approximation of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated.
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-02-25
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-01-01
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems. PMID:25723145
NASA Astrophysics Data System (ADS)
Al-Asadi, H. A.
2013-02-01
We present a theoretical analysis of an additional nonlinear phase shift of backward Stokes wave based on stimulated Brillouin scattering in the system with a bi-directional pumping scheme. We optimize three parameters of the system: the numerical aperture, the optical loss and the pumping wavelength to minimize an additional nonlinear phase shift of backward Stokes waves due to stimulated Brillouin scattering. The optimization is performed with various Brillouin pump powers and the optical reflectivity values are based on the modern, global evolutionary computation algorithm, particle swarm optimization. It is shown that the additional nonlinear phase shift of backward Stokes wave varies with different optical fiber lengths, and can be minimized to less than 0.07 rad according to the particle swarm optimization algorithm for 5 km. The bi-directional pumping configuration system is shown to be efficient when it is possible to transmit the power output to advanced when frequency detuning is negative and delayed when it is positive, with the optimum values of the three parameters to achieve the reduction of an additional nonlinear phase shift.
NASA Astrophysics Data System (ADS)
Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.
2016-01-01
Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm3, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique. We therefore conclude that customization parameters must be set with reference to the optimized parameters of the corresponding irradiation technique in order to render them useful for achieving artifact-free MC simulation for use in computational experiments and clinical treatments.
Xiang, Suyun; Wang, Wei; Xia, Jia; Xiang, Bingren; Ouyang, Pingkai
2009-09-01
The stochastic resonance algorithm is applied to the trace analysis of alkyl halides and alkyl benzenes in water samples. Compared to encountering a single signal when applying the algorithm, the optimization of system parameters for a multicomponent is more complex. In this article, the resolution of adjacent chromatographic peaks is first involved in the optimization of parameters. With the optimized parameters, the algorithm gave an ideal output with good resolution as well as enhanced signal-to-noise ratio. Applying the enhanced signals, the method extended the limit of detection and exhibited good linearity, which ensures accurate determination of the multicomponent.
NASA Astrophysics Data System (ADS)
Siami, A.; Karimi, H. R.; Cigada, A.; Zappa, E.; Sabbioni, E.
2018-01-01
Preserving cultural heritage against earthquake and ambient vibrations can be an attractive topic in the field of vibration control. This paper proposes a passive vibration isolator methodology based on inerters for improving the performance of the isolation system of the famous statue of Michelangelo Buonarroti Pietà Rondanini. More specifically, a five-degree-of-freedom (5DOF) model of the statue and the anti-seismic and anti-vibration base is presented and experimentally validated. The parameters of this model are tuned according to the experimental tests performed on the assembly of the isolator and the structure. Then, the developed model is used to investigate the impact of actuation devices such as tuned mass-damper (TMD) and tuned mass-damper-inerter (TMDI) in vibration reduction of the structure. The effect of implementation of TMDI on the 5DOF model is shown based on physical limitations of the system parameters. Simulation results are provided to illustrate effectiveness of the passive element of TMDI in reduction of the vibration transmitted to the statue in vertical direction. Moreover, the optimal design parameters of the passive system such as frequency and damping coefficient will be calculated using two different performance indexes. The obtained optimal parameters have been evaluated by using two different optimization algorithms: the sequential quadratic programming method and the Firefly algorithm. The results prove significant reduction in the transmitted vibration to the structure in the presence of the proposed tuned TMDI, without imposing a large amount of mass or modification to the structure of the isolator.
Fuzzy controller training using particle swarm optimization for nonlinear system control.
Karakuzu, Cihan
2008-04-01
This paper proposes and describes an effective utilization of particle swarm optimization (PSO) to train a Takagi-Sugeno (TS)-type fuzzy controller. Performance evaluation of the proposed fuzzy training method using the obtained simulation results is provided with two samples of highly nonlinear systems: a continuous stirred tank reactor (CSTR) and a Van der Pol (VDP) oscillator. The superiority of the proposed learning technique is that there is no need for a partial derivative with respect to the parameter for learning. This fuzzy learning technique is suitable for real-time implementation, especially if the system model is unknown and a supervised training cannot be run. In this study, all parameters of the controller are optimized with PSO in order to prove that a fuzzy controller trained by PSO exhibits a good control performance.
Electric Propulsion System Selection Process for Interplanetary Missions
NASA Technical Reports Server (NTRS)
Landau, Damon; Chase, James; Kowalkowski, Theresa; Oh, David; Randolph, Thomas; Sims, Jon; Timmerman, Paul
2008-01-01
The disparate design problems of selecting an electric propulsion system, launch vehicle, and flight time all have a significant impact on the cost and robustness of a mission. The effects of these system choices combine into a single optimization of the total mission cost, where the design constraint is a required spacecraft neutral (non-electric propulsion) mass. Cost-optimal systems are designed for a range of mass margins to examine how the optimal design varies with mass growth. The resulting cost-optimal designs are compared with results generated via mass optimization methods. Additional optimizations with continuous system parameters address the impact on mission cost due to discrete sets of launch vehicle, power, and specific impulse. The examined mission set comprises a near-Earth asteroid sample return, multiple main belt asteroid rendezvous, comet rendezvous, comet sample return, and a mission to Saturn.
Post-Optimality Analysis In Aerospace Vehicle Design
NASA Technical Reports Server (NTRS)
Braun, Robert D.; Kroo, Ilan M.; Gage, Peter J.
1993-01-01
This analysis pertains to the applicability of optimal sensitivity information to aerospace vehicle design. An optimal sensitivity (or post-optimality) analysis refers to computations performed once the initial optimization problem is solved. These computations may be used to characterize the design space about the present solution and infer changes in this solution as a result of constraint or parameter variations, without reoptimizing the entire system. The present analysis demonstrates that post-optimality information generated through first-order computations can be used to accurately predict the effect of constraint and parameter perturbations on the optimal solution. This assessment is based on the solution of an aircraft design problem in which the post-optimality estimates are shown to be within a few percent of the true solution over the practical range of constraint and parameter variations. Through solution of a reusable, single-stage-to-orbit, launch vehicle design problem, this optimal sensitivity information is also shown to improve the efficiency of the design process, For a hierarchically decomposed problem, this computational efficiency is realized by estimating the main-problem objective gradient through optimal sep&ivity calculations, By reducing the need for finite differentiation of a re-optimized subproblem, a significant decrease in the number of objective function evaluations required to reach the optimal solution is obtained.
Air data system optimization using a genetic algorithm
NASA Technical Reports Server (NTRS)
Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III
1992-01-01
An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.
Parameter estimation for chaotic systems using improved bird swarm algorithm
NASA Astrophysics Data System (ADS)
Xu, Chuangbiao; Yang, Renhuan
2017-12-01
Parameter estimation of chaotic systems is an important problem in nonlinear science and has aroused increasing interest of many research fields, which can be basically reduced to a multidimensional optimization problem. In this paper, an improved boundary bird swarm algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the good global convergence and robustness of the bird swarm algorithm and the exploitation capability of improved boundary learning strategy. Experiments are conducted on the Lorenz system and the coupling motor system. Numerical simulation results reveal the effectiveness and with desirable performance of IBBSA for parameter estimation of chaotic systems.
Xu, Ke; Butlin, Mark; Avolio, Alberto P
2012-01-01
Timing of biventricular pacing devices employed in cardiac resynchronization therapy (CRT) is a critical determinant of efficacy of the procedure. Optimization is done by maximizing function in terms of arterial pressure (BP) or cardiac output (CO). However, BP and CO are also determined by the hemodynamic load of the pulmonary and systemic vasculature. This study aims to use a lumped parameter circulatory model to assess the influence of the arterial load on the atrio-ventricular (AV) and inter-ventricular (VV) delay for optimal CRT performance.
Parameters optimization for the energy management system of hybrid electric vehicle
NASA Astrophysics Data System (ADS)
Tseng, Chyuan-Yow; Hung, Yi-Hsuan; Tsai, Chien-Hsiung; Huang, Yu-Jen
2007-12-01
Hybrid electric vehicle (HEV) has been widely studied recently due to its high potential in reduction of fuel consumption, exhaust emission, and lower noise. Because of comprised of two power sources, the HEV requires an energy management system (EMS) to distribute optimally the power sources for various driving conditions. The ITRI in Taiwan has developed a HEV consisted of a 2.2L internal combustion engine (ICE), a 18KW motor/generator (M/G), a 288V battery pack, and a continuous variable transmission (CVT). The task of the present study is to design an energy management strategy of the EMS for the HEV. Due to the nonlinear nature and the fact of unknown system model of the system, a kind of simplex method based energy management strategy is proposed for the HEV system. The simplex method is a kind of optimization strategy which is generally used to find out the optimal parameters for un-modeled systems. The way to apply the simplex method for the design of the EMS is presented. The feasibility of the proposed method was verified by perform numerical simulation on the FTP75 drive cycles.
Autopilot for frequency-modulation atomic force microscopy.
Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri
2015-10-01
One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.
Autopilot for frequency-modulation atomic force microscopy
NASA Astrophysics Data System (ADS)
Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri
2015-10-01
One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.
NASA Astrophysics Data System (ADS)
Zhang, Kun; Ma, Jinzhu; Zhu, Gaofeng; Ma, Ting; Han, Tuo; Feng, Li Li
2017-01-01
Global and regional estimates of daily evapotranspiration are essential to our understanding of the hydrologic cycle and climate change. In this study, we selected the radiation-based Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) model and assessed it at a daily time scale by using 44 flux towers. These towers distributed in a wide range of ecological systems: croplands, deciduous broadleaf forest, evergreen broadleaf forest, evergreen needleleaf forest, grasslands, mixed forests, savannas, and shrublands. A regional land surface evapotranspiration model with a relatively simple structure, the PT-JPL model largely uses ecophysiologically-based formulation and parameters to relate potential evapotranspiration to actual evapotranspiration. The results using the original model indicate that the model always overestimates evapotranspiration in arid regions. This likely results from the misrepresentation of water limitation and energy partition in the model. By analyzing physiological processes and determining the sensitive parameters, we identified a series of parameter sets that can increase model performance. The model with optimized parameters showed better performance (R2 = 0.2-0.87; Nash-Sutcliffe efficiency (NSE) = 0.1-0.87) at each site than the original model (R2 = 0.19-0.87; NSE = -12.14-0.85). The results of the optimization indicated that the parameter β (water control of soil evaporation) was much lower in arid regions than in relatively humid regions. Furthermore, the optimized value of parameter m1 (plant control of canopy transpiration) was mostly between 1 to 1.3, slightly lower than the original value. Also, the optimized parameter Topt correlated well to the actual environmental temperature at each site. We suggest that using optimized parameters with the PT-JPL model could provide an efficient way to improve the model performance.
Autopilot for frequency-modulation atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri, E-mail: phsivan@tx.technion.ac.il
2015-10-15
One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loopsmore » require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.« less
NASA Technical Reports Server (NTRS)
Nobbs, Steven G.
1995-01-01
An overview of the performance seeking control (PSC) algorithm and details of the important components of the algorithm are given. The onboard propulsion system models, the linear programming optimization, and engine control interface are described. The PSC algorithm receives input from various computers on the aircraft including the digital flight computer, digital engine control, and electronic inlet control. The PSC algorithm contains compact models of the propulsion system including the inlet, engine, and nozzle. The models compute propulsion system parameters, such as inlet drag and fan stall margin, which are not directly measurable in flight. The compact models also compute sensitivities of the propulsion system parameters to change in control variables. The engine model consists of a linear steady state variable model (SSVM) and a nonlinear model. The SSVM is updated with efficiency factors calculated in the engine model update logic, or Kalman filter. The efficiency factors are used to adjust the SSVM to match the actual engine. The propulsion system models are mathematically integrated to form an overall propulsion system model. The propulsion system model is then optimized using a linear programming optimization scheme. The goal of the optimization is determined from the selected PSC mode of operation. The resulting trims are used to compute a new operating point about which the optimization process is repeated. This process is continued until an overall (global) optimum is reached before applying the trims to the controllers.
Yudin, V I; Taichenachev, A V; Basalaev, M Yu; Kovalenko, D V
2017-02-06
We theoretically investigate the dynamic regime of coherent population trapping (CPT) in the presence of frequency modulation (FM). We have formulated the criteria for quasi-stationary (adiabatic) and dynamic (non-adiabatic) responses of atomic system driven by this FM. Using the density matrix formalism for Λ system, the error signal is exactly calculated and optimized. It is shown that the optimal FM parameters correspond to the dynamic regime of atomic-field interaction, which significantly differs from conventional description of CPT resonances in the frame of quasi-stationary approach (under small modulation frequency). Obtained theoretical results are in good qualitative agreement with different experiments. Also we have found CPT-analogue of Pound-Driver-Hall regime of frequency stabilization.
NASA Technical Reports Server (NTRS)
Schmidt, Phillip; Garg, Sanjay; Holowecky, Brian
1992-01-01
A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.
NASA Technical Reports Server (NTRS)
Schmidt, Phillip H.; Garg, Sanjay; Holowecky, Brian R.
1993-01-01
A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.
Tuning the heat transfer medium and operating conditions in magnetic refrigeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghahremani, Mohammadreza, E-mail: mghahrem@shepherd.edu; Dept. of Electrical and Computer Engineering, The George Washington University, Washington DC 20052; Aslani, Amir
A new experimental test bed has been designed, built, and tested to evaluate the effect of the system’s parameters on a reciprocating Active Magnetic Regenerator (AMR) near room temperature. Bulk gadolinium was used as the refrigerant, silicon oil as the heat transfer medium, and a magnetic field of 1.3 T was cycled. This study focuses on the methodology of single stage AMR operation conditions to get a high temperature span near room temperature. Herein, the main objective is not to report the absolute maximum attainable temperature span seen in an AMR system, but rather to find the system’s optimal operatingmore » conditions to reach that maximum span. The results of this research show that there is a optimal operating frequency, heat transfer fluid flow rate, flow duration, and displaced volume ratio in any AMR system. By optimizing these parameters in our AMR apparatus the temperature span between the hot and cold ends increased by 24%. The optimized values are system dependent and need to be determined and measured for any AMR system by following the procedures that are introduced in this research. It is expected that such optimization will permit the design of a more efficient magnetic refrigeration system.« less
Transient analysis of an adaptive system for optimization of design parameters
NASA Technical Reports Server (NTRS)
Bayard, D. S.
1992-01-01
Averaging methods are applied to analyzing and optimizing the transient response associated with the direct adaptive control of an oscillatory second-order minimum-phase system. The analytical design methods developed for a second-order plant can be applied with some approximation to a MIMO flexible structure having a single dominant mode.
NASA Astrophysics Data System (ADS)
Harkouss, F.; Biwole, P. H.; Fardoun, F.
2018-05-01
Buildings’ optimization is a smart method to inspect the available design choices starting from passive strategies, to energy efficient systems and finally towards the adequate renewable energy system to be implemented. This paper outlines the methodology and the cost-effectiveness potential for optimizing the design of net-zero energy building in a French city; Embrun. The non-dominated sorting genetic algorithm is chosen in order to minimize thermal, electrical demands and life cycle cost while reaching the net zero energy balance; and thus getting the Pareto-front. Elimination and Choice Expressing the Reality decision making method is applied to the Pareto-front so as to obtain one optimal solution. A wide range of energy efficiency measures are investigated, besides solar energy systems are employed to produce required electricity and hot water for domestic purposes. The results indicate that the appropriate selection of the passive parameters is very important and critical in reducing the building energy consumption. The optimum design parameters yield to a decrease of building’s thermal loads and life cycle cost by 32.96% and 14.47% respectively.
NASA Technical Reports Server (NTRS)
Patten, W. N.; Robertshaw, H. H.; Pierpont, D.; Wynn, R. H.
1989-01-01
A new, near-optimal feedback control technique is introduced that is shown to provide excellent vibration attenuation for those distributed parameter systems that are often encountered in the areas of aeroservoelasticity and large space systems. The technique relies on a novel solution methodology for the classical optimal control problem. Specifically, the quadratic regulator control problem for a flexible vibrating structure is first cast in a weak functional form that admits an approximate solution. The necessary conditions (first-order) are then solved via a time finite-element method. The procedure produces a low dimensional, algebraic parameterization of the optimal control problem that provides a rigorous basis for a discrete controller with a first-order like hold output. Simulation has shown that the algorithm can successfully control a wide variety of plant forms including multi-input/multi-output systems and systems exhibiting significant nonlinearities. In order to firmly establish the efficacy of the algorithm, a laboratory control experiment was implemented to provide planar (bending) vibration attenuation of a highly flexible beam (with a first clamped-free mode of approximately 0.5 Hz).
Reliability of system for precise cold forging
NASA Astrophysics Data System (ADS)
Krušič, Vid; Rodič, Tomaž
2017-07-01
The influence of scatter of principal input parameters of the forging system on the dimensional accuracy of product and on the tool life for closed-die forging process is presented in this paper. Scatter of the essential input parameters for the closed-die upsetting process was adjusted to the maximal values that enabled the reliable production of a dimensionally accurate product at optimal tool life. An operating window was created in which exists the maximal scatter of principal input parameters for the closed-die upsetting process that still ensures the desired dimensional accuracy of the product and the optimal tool life. Application of the adjustment of the process input parameters is shown on the example of making an inner race of homokinetic joint from mass production. High productivity in manufacture of elements by cold massive extrusion is often achieved by multiple forming operations that are performed simultaneously on the same press. By redesigning the time sequences of forming operations at multistage forming process of starter barrel during the working stroke the course of the resultant force is optimized.
Launch Vehicle Propulsion Parameter Design Multiple Selection Criteria
NASA Technical Reports Server (NTRS)
Shelton, Joey Dewayne
2004-01-01
The optimization tool described herein addresses and emphasizes the use of computer tools to model a system and focuses on a concept development approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system, but more particularly the development of the optimized system using new techniques. This methodology uses new and innovative tools to run Monte Carlo simulations, genetic algorithm solvers, and statistical models in order to optimize a design concept. The concept launch vehicle and propulsion system were modeled and optimized to determine the best design for weight and cost by varying design and technology parameters. Uncertainty levels were applied using Monte Carlo Simulations and the model output was compared to the National Aeronautics and Space Administration Space Shuttle Main Engine. Several key conclusions are summarized here for the model results. First, the Gross Liftoff Weight and Dry Weight were 67% higher for the design case for minimization of Design, Development, Test and Evaluation cost when compared to the weights determined by the minimization of Gross Liftoff Weight case. In turn, the Design, Development, Test and Evaluation cost was 53% higher for optimized Gross Liftoff Weight case when compared to the cost determined by case for minimization of Design, Development, Test and Evaluation cost. Therefore, a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Secondly, the tool outputs define the sensitivity of propulsion parameters, technology and cost factors and how these parameters differ when cost and weight are optimized separately. A key finding was that for a Space Shuttle Main Engine thrust level the oxidizer/fuel ratio of 6.6 resulted in the lowest Gross Liftoff Weight rather than at 5.2 for the maximum specific impulse, demonstrating the relationships between specific impulse, engine weight, tank volume and tank weight. Lastly, the optimum chamber pressure for Gross Liftoff Weight minimization was 2713 pounds per square inch as compared to 3162 for the Design, Development, Test and Evaluation cost optimization case. This chamber pressure range is close to 3000 pounds per square inch for the Space Shuttle Main Engine.
Optimization of single photon detection model based on GM-APD
NASA Astrophysics Data System (ADS)
Chen, Yu; Yang, Yi; Hao, Peiyu
2017-11-01
One hundred kilometers high precision laser ranging hopes the detector has very strong detection ability for very weak light. At present, Geiger-Mode of Avalanche Photodiode has more use. It has high sensitivity and high photoelectric conversion efficiency. Selecting and designing the detector parameters according to the system index is of great importance to the improvement of photon detection efficiency. Design optimization requires a good model. In this paper, we research the existing Poisson distribution model, and consider the important detector parameters of dark count rate, dead time, quantum efficiency and so on. We improve the optimization of detection model, select the appropriate parameters to achieve optimal photon detection efficiency. The simulation is carried out by using Matlab and compared with the actual test results. The rationality of the model is verified. It has certain reference value in engineering applications.
Optimal control of first order distributed systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Johnson, T. L.
1972-01-01
The problem of characterizing optimal controls for a class of distributed-parameter systems is considered. The system dynamics are characterized mathematically by a finite number of coupled partial differential equations involving first-order time and space derivatives of the state variables, which are constrained at the boundary by a finite number of algebraic relations. Multiple control inputs, extending over the entire spatial region occupied by the system ("distributed controls') are to be designed so that the response of the system is optimal. A major example involving boundary control of an unstable low-density plasma is developed from physical laws.
NASA Astrophysics Data System (ADS)
Shamarokov, A. S.; Zorin, V. M.; Dai, Fam Kuang
2016-03-01
At the current stage of development of nuclear power engineering, high demands on nuclear power plants (NPP), including on their economy, are made. In these conditions, improving the quality of NPP means, in particular, the need to reasonably choose the values of numerous managed parameters of technological (heat) scheme. Furthermore, the chosen values should correspond to the economic conditions of NPP operation, which are postponed usually a considerable time interval from the point of time of parameters' choice. The article presents the technique of optimization of controlled parameters of the heat circuit of a steam turbine plant for the future. Its particularity is to obtain the results depending on a complex parameter combining the external economic and operating parameters that are relatively stable under the changing economic environment. The article presents the results of optimization according to this technique of the minimum temperature driving forces in the surface heaters of the heat regeneration system of the steam turbine plant of a K-1200-6.8/50 type. For optimization, the collector-screen heaters of high and low pressure developed at the OAO All-Russia Research and Design Institute of Nuclear Power Machine Building, which, in the authors' opinion, have the certain advantages over other types of heaters, were chosen. The optimality criterion in the task was the change in annual reduced costs for NPP compared to the version accepted as the baseline one. The influence on the decision of the task of independent variables that are not included in the complex parameter was analyzed. An optimization task was decided using the alternating-variable descent method. The obtained values of minimum temperature driving forces can guide the design of new nuclear plants with a heat circuit, similar to that accepted in the considered task.
Evaluating performances of simplified physically based landslide susceptibility models.
NASA Astrophysics Data System (ADS)
Capparelli, Giovanna; Formetta, Giuseppe; Versace, Pasquale
2015-04-01
Rainfall induced shallow landslides cause significant damages involving loss of life and properties. Prediction of shallow landslides susceptible locations is a complex task that involves many disciplines: hydrology, geotechnical science, geomorphology, and statistics. Usually to accomplish this task two main approaches are used: statistical or physically based model. This paper presents a package of GIS based models for landslide susceptibility analysis. It was integrated in the NewAge-JGrass hydrological model using the Object Modeling System (OMS) modeling framework. The package includes three simplified physically based models for landslides susceptibility analysis (M1, M2, and M3) and a component for models verifications. It computes eight goodness of fit indices (GOF) by comparing pixel-by-pixel model results and measurements data. Moreover, the package integration in NewAge-JGrass allows the use of other components such as geographic information system tools to manage inputs-output processes, and automatic calibration algorithms to estimate model parameters. The system offers the possibility to investigate and fairly compare the quality and the robustness of models and models parameters, according a procedure that includes: i) model parameters estimation by optimizing each of the GOF index separately, ii) models evaluation in the ROC plane by using each of the optimal parameter set, and iii) GOF robustness evaluation by assessing their sensitivity to the input parameter variation. This procedure was repeated for all three models. The system was applied for a case study in Calabria (Italy) along the Salerno-Reggio Calabria highway, between Cosenza and Altilia municipality. The analysis provided that among all the optimized indices and all the three models, Average Index (AI) optimization coupled with model M3 is the best modeling solution for our test case. This research was funded by PON Project No. 01_01503 "Integrated Systems for Hydrogeological Risk Monitoring, Early Warning and Mitigation Along the Main Lifelines", CUP B31H11000370005, in the framework of the National Operational Program for "Research and Competitiveness" 2007-2013.
Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan
2016-08-22
Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the analysis of the dataset for Raf/MEK/ERK signaling provides novel biological insights regarding the existence of feedback regulation. Many optimization problems considered in systems and computational biology are subject to steady-state constraints. While most optimization methods have convergence problems if these steady-state constraints are highly nonlinear, the methods presented recover the convergence properties of optimizers which can exploit an analytical expression for the parameter-dependent steady state. This renders them an excellent alternative to methods which are currently employed in systems and computational biology.
Design and Optimization of AlN based RF MEMS Switches
NASA Astrophysics Data System (ADS)
Hasan Ziko, Mehadi; Koel, Ants
2018-05-01
Radio frequency microelectromechanical system (RF MEMS) switch technology might have potential to replace the semiconductor technology in future communication systems as well as communication satellites, wireless and mobile phones. This study is to explore the possibilities of RF MEMS switch design and optimization with aluminium nitride (AlN) thin film as the piezoelectric actuation material. Achieving low actuation voltage and high contact force with optimal geometry using the principle of piezoelectric effect is the main motivation for this research. Analytical and numerical modelling of single beam type RF MEMS switch used to analyse the design parameters and optimize them for the minimum actuation voltage and high contact force. An analytical model using isotropic AlN material properties used to obtain the optimal parameters. The optimized geometry of the device length, width and thickness are 2000 µm, 500 µm and 0.6 µm respectively obtained for the single beam RF MEMS switch. Low actuation voltage and high contact force with optimal geometry are less than 2 Vand 100 µN obtained by analytical analysis. Additionally, the single beam RF MEMS switch are optimized and validated by comparing the analytical and finite element modelling (FEM) analysis.
Automatic design optimization tool for passive structural control systems
NASA Astrophysics Data System (ADS)
Mojolic, Cristian; Hulea, Radu; Parv, Bianca Roxana
2017-07-01
The present paper proposes an automatic dynamic process in order to find the parameters of the seismic isolation systems applied to large span structures. Three seismic isolation solutions are proposed for the model of the new Slatina Sport Hall. The first case uses friction pendulum system (FP), the second one uses High Damping Rubber Bearing (HDRB) and Lead Rubber Bearings, while (LRB) are used for the last case of isolation. The placement of the isolation level is at the top end of the roof supporting columns. The aim is to calculate the parameters of each isolation system so that the whole's structure first vibration periods is the one desired by the user. The model is computed with the use of SAP2000 software. In order to find the best solution for the optimization problem, an optimization process based on Genetic Algorithms (GA) has been developed in Matlab. With the use of the API (Application Programming Interface) libraries a two way link is created between the two programs in order to exchange results and link parameters. The main goal is to find the best seismic isolation method for each desired modal period so that the bending moment on the supporting columns should be minimum.
Yobbi, D.K.
2000-01-01
A nonlinear least-squares regression technique for estimation of ground-water flow model parameters was applied to an existing model of the regional aquifer system underlying west-central Florida. The regression technique minimizes the differences between measured and simulated water levels. Regression statistics, including parameter sensitivities and correlations, were calculated for reported parameter values in the existing model. Optimal parameter values for selected hydrologic variables of interest are estimated by nonlinear regression. Optimal estimates of parameter values are about 140 times greater than and about 0.01 times less than reported values. Independently estimating all parameters by nonlinear regression was impossible, given the existing zonation structure and number of observations, because of parameter insensitivity and correlation. Although the model yields parameter values similar to those estimated by other methods and reproduces the measured water levels reasonably accurately, a simpler parameter structure should be considered. Some possible ways of improving model calibration are to: (1) modify the defined parameter-zonation structure by omitting and/or combining parameters to be estimated; (2) carefully eliminate observation data based on evidence that they are likely to be biased; (3) collect additional water-level data; (4) assign values to insensitive parameters, and (5) estimate the most sensitive parameters first, then, using the optimized values for these parameters, estimate the entire data set.
NASA Astrophysics Data System (ADS)
Alzraiee, Ayman H.; Bau, Domenico A.; Garcia, Luis A.
2013-06-01
Effective sampling of hydrogeological systems is essential in guiding groundwater management practices. Optimal sampling of groundwater systems has previously been formulated based on the assumption that heterogeneous subsurface properties can be modeled using a geostatistical approach. Therefore, the monitoring schemes have been developed to concurrently minimize the uncertainty in the spatial distribution of systems' states and parameters, such as the hydraulic conductivity K and the hydraulic head H, and the uncertainty in the geostatistical model of system parameters using a single objective function that aggregates all objectives. However, it has been shown that the aggregation of possibly conflicting objective functions is sensitive to the adopted aggregation scheme and may lead to distorted results. In addition, the uncertainties in geostatistical parameters affect the uncertainty in the spatial prediction of K and H according to a complex nonlinear relationship, which has often been ineffectively evaluated using a first-order approximation. In this study, we propose a multiobjective optimization framework to assist the design of monitoring networks of K and H with the goal of optimizing their spatial predictions and estimating the geostatistical parameters of the K field. The framework stems from the combination of a data assimilation (DA) algorithm and a multiobjective evolutionary algorithm (MOEA). The DA algorithm is based on the ensemble Kalman filter, a Monte-Carlo-based Bayesian update scheme for nonlinear systems, which is employed to approximate the posterior uncertainty in K, H, and the geostatistical parameters of K obtained by collecting new measurements. Multiple MOEA experiments are used to investigate the trade-off among design objectives and identify the corresponding monitoring schemes. The methodology is applied to design a sampling network for a shallow unconfined groundwater system located in Rocky Ford, Colorado. Results indicate that the effect of uncertainties associated with the geostatistical parameters on the spatial prediction might be significantly alleviated (by up to 80% of the prior uncertainty in K and by 90% of the prior uncertainty in H) by sampling evenly distributed measurements with a spatial measurement density of more than 1 observation per 60 m × 60 m grid block. In addition, exploration of the interaction of objective functions indicates that the ability of head measurements to reduce the uncertainty associated with the correlation scale is comparable to the effect of hydraulic conductivity measurements.
The Design of Large Geothermally Powered Air-Conditioning Systems Using an Optimal Control Approach
NASA Astrophysics Data System (ADS)
Horowitz, F. G.; O'Bryan, L.
2010-12-01
The direct use of geothermal energy from Hot Sedimentary Aquifer (HSA) systems for large scale air-conditioning projects involves many tradeoffs. Aspects contributing towards making design decisions for such systems include: the inadequately known permeability and thermal distributions underground; the combinatorial complexity of selecting pumping and chiller systems to match the underground conditions to the air-conditioning requirements; the future price variations of the electricity market; any uncertainties in future Carbon pricing; and the applicable discount rate for evaluating the financial worth of the project. Expanding upon the previous work of Horowitz and Hornby (2007), we take an optimal control approach to the design of such systems. By building a model of the HSA system, the drilling process, the pumping process, and the chilling operations, along with a specified objective function, we can write a Hamiltonian for the system. Using the standard techniques of optimal control, we use gradients of the Hamiltonian to find the optimal design for any given set of permeabilities, thermal distributions, and the other engineering and financial parameters. By using this approach, optimal system designs could potentially evolve in response to the actual conditions encountered during drilling. Because the granularity of some current models is so coarse, we will be able to compare our optimal control approach to an exhaustive search of parameter space. We will present examples from the conditions appropriate for the Perth Basin of Western Australia, where the WA Geothermal Centre of Excellence is involved with two large air-conditioning projects using geothermal water from deep aquifers at 75 to 95 degrees C.
Optimization of A(2)O BNR processes using ASM and EAWAG Bio-P models: model performance.
El Shorbagy, Walid E; Radif, Nawras N; Droste, Ronald L
2013-12-01
This paper presents the performance of an optimization model for a biological nutrient removal (BNR) system using the anaerobic-anoxic-oxic (A(2)O) process. The formulated model simulates removal of organics, nitrogen, and phosphorus using a reduced International Water Association (IWA) Activated Sludge Model #3 (ASM3) model and a Swiss Federal Institute for Environmental Science and Technology (EAWAG) Bio-P module. Optimal sizing is attained considering capital and operational costs. Process performance is evaluated against the effect of influent conditions, effluent limits, and selected parameters of various optimal solutions with the following results: an increase of influent temperature from 10 degrees C to 25 degrees C decreases the annual cost by about 8.5%, an increase of influent flow from 500 to 2500 m(3)/h triples the annual cost, the A(2)O BNR system is more sensitive to variations in influent ammonia than phosphorus concentration and the maximum growth rate of autotrophic biomass was the most sensitive kinetic parameter in the optimization model.
Lasnon, Charline; Dugue, Audrey Emmanuelle; Briand, Mélanie; Blanc-Fournier, Cécile; Dutoit, Soizic; Louis, Marie-Hélène; Aide, Nicolas
2015-06-01
We compared conventional filtered back-projection (FBP), two-dimensional-ordered subsets expectation maximization (OSEM) and maximum a posteriori (MAP) NEMA NU 4-optimized reconstructions for therapy assessment. Varying reconstruction settings were used to determine the parameters for optimal image quality with two NEMA NU 4 phantom acquisitions. Subsequently, data from two experiments in which nude rats bearing subcutaneous tumors had received a dual PI3K/mTOR inhibitor were reconstructed with the NEMA NU 4-optimized parameters. Mann-Whitney tests were used to compare mean standardized uptake value (SUV(mean)) variations among groups. All NEMA NU 4-optimized reconstructions showed the same 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) kinetic patterns and detected a significant difference in SUV(mean) relative to day 0 between controls and treated groups for all time points with comparable p values. In the framework of therapy assessment in rats bearing subcutaneous tumors, all algorithms available on the Inveon system performed equally.
Chen, Zhihuan; Yuan, Yanbin; Yuan, Xiaohui; Huang, Yuehua; Li, Xianshan; Li, Wenwu
2015-05-01
A hydraulic turbine regulating system (HTRS) is one of the most important components of hydropower plant, which plays a key role in maintaining safety, stability and economical operation of hydro-electrical installations. At present, the conventional PID controller is widely applied in the HTRS system for its practicability and robustness, and the primary problem with respect to this control law is how to optimally tune the parameters, i.e. the determination of PID controller gains for satisfactory performance. In this paper, a kind of multi-objective evolutionary algorithms, named adaptive grid particle swarm optimization (AGPSO) is applied to solve the PID gains tuning problem of the HTRS system. This newly AGPSO optimized method, which differs from a traditional one-single objective optimization method, is designed to take care of settling time and overshoot level simultaneously, in which a set of non-inferior alternatives solutions (i.e. Pareto solution) is generated. Furthermore, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto set. An illustrative example associated with the best compromise solution for parameter tuning of the nonlinear HTRS system is introduced to verify the feasibility and the effectiveness of the proposed AGPSO-based optimization approach, as compared with two another prominent multi-objective algorithms, i.e. Non-dominated Sorting Genetic Algorithm II (NSGAII) and Strength Pareto Evolutionary Algorithm II (SPEAII), for the quality and diversity of obtained Pareto solutions set. Consequently, simulation results show that this AGPSO optimized approach outperforms than compared methods with higher efficiency and better quality no matter whether the HTRS system works under unload or load conditions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Robust Neighboring Optimal Guidance for the Advanced Launch System
NASA Technical Reports Server (NTRS)
Hull, David G.
1993-01-01
In recent years, optimization has become an engineering tool through the availability of numerous successful nonlinear programming codes. Optimal control problems are converted into parameter optimization (nonlinear programming) problems by assuming the control to be piecewise linear, making the unknowns the nodes or junction points of the linear control segments. Once the optimal piecewise linear control (suboptimal) control is known, a guidance law for operating near the suboptimal path is the neighboring optimal piecewise linear control (neighboring suboptimal control). Research conducted under this grant has been directed toward the investigation of neighboring suboptimal control as a guidance scheme for an advanced launch system.
Advanced Interactive Display Formats for Terminal Area Traffic Control
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Shaviv, G. E.
1999-01-01
This research project deals with an on-line dynamic method for automated viewing parameter management in perspective displays. Perspective images are optimized such that a human observer will perceive relevant spatial geometrical features with minimal errors. In order to compute the errors at which observers reconstruct spatial features from perspective images, a visual spatial-perception model was formulated. The model was employed as the basis of an optimization scheme aimed at seeking the optimal projection parameter setting. These ideas are implemented in the context of an air traffic control (ATC) application. A concept, referred to as an active display system, was developed. This system uses heuristic rules to identify relevant geometrical features of the three-dimensional air traffic situation. Agile, on-line optimization was achieved by a specially developed and custom-tailored genetic algorithm (GA), which was to deal with the multi-modal characteristics of the objective function and exploit its time-evolving nature.
Dynamic optimization and adaptive controller design
NASA Astrophysics Data System (ADS)
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
NASA Technical Reports Server (NTRS)
Stanley, Douglas O.; Unal, Resit; Joyner, C. R.
1992-01-01
The application of advanced technologies to future launch vehicle designs would allow the introduction of a rocket-powered, single-stage-to-orbit (SSTO) launch system early in the next century. For a selected SSTO concept, a dual mixture ratio, staged combustion cycle engine that employs a number of innovative technologies was selected as the baseline propulsion system. A series of parametric trade studies are presented to optimize both a dual mixture ratio engine and a single mixture ratio engine of similar design and technology level. The effect of varying lift-off thrust-to-weight ratio, engine mode transition Mach number, mixture ratios, area ratios, and chamber pressure values on overall vehicle weight is examined. The sensitivity of the advanced SSTO vehicle to variations in each of these parameters is presented, taking into account the interaction of each of the parameters with each other. This parametric optimization and sensitivity study employs a Taguchi design method. The Taguchi method is an efficient approach for determining near-optimum design parameters using orthogonal matrices from design of experiments (DOE) theory. Using orthogonal matrices significantly reduces the number of experimental configurations to be studied. The effectiveness and limitations of the Taguchi method for propulsion/vehicle optimization studies as compared to traditional single-variable parametric trade studies is also discussed.
Wang, Zimeng; Meenach, Samantha A
2017-12-01
Nanocomposite microparticle (nCmP) systems exhibit promising potential in the application of therapeutics for pulmonary drug delivery. This work aimed at identifying the optimal spray-drying condition(s) to prepare nCmP with specific drug delivery properties including small aerodynamic diameter, effective nanoparticle (NP) redispersion upon nCmP exposure to an aqueous solution, high drug loading, and low water content. Acetalated dextran (Ac-Dex) was used to form NPs, curcumin was used as a model drug, and mannitol was the excipient in the nCmP formulation. Box-Behnken design was applied using Design-Expert software for nCmP parameter optimization. NP ratio (NP%) and feed concentration (Fc) are significant parameters that affect the aerodynamic diameters of nCmP systems. NP% is also a significant parameter that affects the drug loading. Fc is the only parameter that influenced the water content of the particles significantly. All nCmP systems could be completely redispersed into the parent NPs, indicating that none of the factors have an influence on this property within the design range. The optimal spray-drying condition to prepare nCmP with a small aerodynamic diameter, redispersion of the NPs, low water content, and high drug loading is 80% NP%, 0.5% Fc, and an inlet temperature lower than 130°C. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Analysis and selection of optimal function implementations in massively parallel computer
Archer, Charles Jens [Rochester, MN; Peters, Amanda [Rochester, MN; Ratterman, Joseph D [Rochester, MN
2011-05-31
An apparatus, program product and method optimize the operation of a parallel computer system by, in part, collecting performance data for a set of implementations of a function capable of being executed on the parallel computer system based upon the execution of the set of implementations under varying input parameters in a plurality of input dimensions. The collected performance data may be used to generate selection program code that is configured to call selected implementations of the function in response to a call to the function under varying input parameters. The collected performance data may be used to perform more detailed analysis to ascertain the comparative performance of the set of implementations of the function under the varying input parameters.
NASA Astrophysics Data System (ADS)
Zheng, Ling; Duan, Xuwei; Deng, Zhaoxue; Li, Yinong
2014-03-01
A novel flow-mode magneto-rheological (MR) engine mount integrated a diaphragm de-coupler and the spoiler plate is designed and developed to isolate engine and the transmission from the chassis in a wide frequency range and overcome the stiffness in high frequency. A lumped parameter model of the MR engine mount in single degree of freedom system is further developed based on bond graph method to predict the performance of the MR engine mount accurately. The optimization mathematical model is established to minimize the total of force transmissibility over several frequency ranges addressed. In this mathematical model, the lumped parameters are considered as design variables. The maximum of force transmissibility and the corresponding frequency in low frequency range as well as individual lumped parameter are limited as constraints. The multiple interval sensitivity analysis method is developed to select the optimized variables and improve the efficiency of optimization process. An improved non-dominated sorting genetic algorithm (NSGA-II) is used to solve the multi-objective optimization problem. The synthesized distance between the individual in Pareto set and the individual in possible set in engineering is defined and calculated. A set of real design parameters is thus obtained by the internal relationship between the optimal lumped parameters and practical design parameters for the MR engine mount. The program flowchart for the improved non-dominated sorting genetic algorithm (NSGA-II) is given. The obtained results demonstrate the effectiveness of the proposed optimization approach in minimizing the total of force transmissibility over several frequency ranges addressed.
NWP model forecast skill optimization via closure parameter variations
NASA Astrophysics Data System (ADS)
Järvinen, H.; Ollinaho, P.; Laine, M.; Solonen, A.; Haario, H.
2012-04-01
We present results of a novel approach to tune predictive skill of numerical weather prediction (NWP) models. These models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. The current practice is to specify manually the numerical parameter values, based on expert knowledge. We developed recently a concept and method (QJRMS 2011) for on-line estimation of the NWP model parameters via closure parameter variations. The method called EPPES ("Ensemble prediction and parameter estimation system") utilizes ensemble prediction infra-structure for parameter estimation in a very cost-effective way: practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating an ensemble of predictions so that each member uses different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In this presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an ensemble prediction system emulator, based on the ECHAM5 atmospheric GCM show that the model tuning capability of EPPES scales up to realistic models and ensemble prediction systems. Finally, preliminary results of EPPES in the context of ECMWF forecasting system are presented.
The Quantum Approximation Optimization Algorithm for MaxCut: A Fermionic View
NASA Technical Reports Server (NTRS)
Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G.
2017-01-01
Farhi et al. recently proposed a class of quantum algorithms, the Quantum Approximate Optimization Algorithm (QAOA), for approximately solving combinatorial optimization problems. A level-p QAOA circuit consists of steps in which a classical Hamiltonian, derived from the cost function, is applied followed by a mixing Hamiltonian. The 2p times for which these two Hamiltonians are applied are the parameters of the algorithm. As p increases, however, the parameter search space grows quickly. The success of the QAOA approach will depend, in part, on finding effective parameter-setting strategies. Here, we analytically and numerically study parameter setting for QAOA applied to MAXCUT. For level-1 QAOA, we derive an analytical expression for a general graph. In principle, expressions for higher p could be derived, but the number of terms quickly becomes prohibitive. For a special case of MAXCUT, the Ring of Disagrees, or the 1D antiferromagnetic ring, we provide an analysis for arbitrarily high level. Using a Fermionic representation, the evolution of the system under QAOA translates into quantum optimal control of an ensemble of independent spins. This treatment enables us to obtain analytical expressions for the performance of QAOA for any p. It also greatly simplifies numerical search for the optimal values of the parameters. By exploring symmetries, we identify a lower-dimensional sub-manifold of interest; the search effort can be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter values. Further, we numerically investigate the parameter landscape and show that it is a simple one in the sense of having no local optima.
Sensitivity of Space Station alpha joint robust controller to structural modal parameter variations
NASA Technical Reports Server (NTRS)
Kumar, Renjith R.; Cooper, Paul A.; Lim, Tae W.
1991-01-01
The photovoltaic array sun tracking control system of Space Station Freedom is described. A synthesis procedure for determining optimized values of the design variables of the control system is developed using a constrained optimization technique. The synthesis is performed to provide a given level of stability margin, to achieve the most responsive tracking performance, and to meet other design requirements. Performance of the baseline design, which is synthesized using predicted structural characteristics, is discussed and the sensitivity of the stability margin is examined for variations of the frequencies, mode shapes and damping ratios of dominant structural modes. The design provides enough robustness to tolerate a sizeable error in the predicted modal parameters. A study was made of the sensitivity of performance indicators as the modal parameters of the dominant modes vary. The design variables are resynthesized for varying modal parameters in order to achieve the most responsive tracking performance while satisfying the design requirements. This procedure of reoptimization design parameters would be useful in improving the control system performance if accurate model data are provided.
Optimizing structure of complex technical system by heterogeneous vector criterion in interval form
NASA Astrophysics Data System (ADS)
Lysenko, A. V.; Kochegarov, I. I.; Yurkov, N. K.; Grishko, A. K.
2018-05-01
The article examines the methods of development and multi-criteria choice of the preferred structural variant of the complex technical system at the early stages of its life cycle in the absence of sufficient knowledge of parameters and variables for optimizing this structure. The suggested methods takes into consideration the various fuzzy input data connected with the heterogeneous quality criteria of the designed system and the parameters set by their variation range. The suggested approach is based on the complex use of methods of interval analysis, fuzzy sets theory, and the decision-making theory. As a result, the method for normalizing heterogeneous quality criteria has been developed on the basis of establishing preference relations in the interval form. The method of building preferential relations in the interval form on the basis of the vector of heterogeneous quality criteria suggest the use of membership functions instead of the coefficients considering the criteria value. The former show the degree of proximity of the realization of the designed system to the efficient or Pareto optimal variants. The study analyzes the example of choosing the optimal variant for the complex system using heterogeneous quality criteria.
Quantifying ligand effects in high-oxidation-state metal catalysis
NASA Astrophysics Data System (ADS)
Billow, Brennan S.; McDaniel, Tanner J.; Odom, Aaron L.
2017-09-01
Catalysis by high-valent metals such as titanium(IV) impacts our lives daily through reactions like olefin polymerization. In any catalysis, optimization involves a careful choice of not just the metal but also the ancillary ligands. Because these choices dramatically impact the electronic structure of the system and, in turn, catalyst performance, new tools for catalyst development are needed. Understanding ancillary ligand effects is arguably one of the most critical aspects of catalyst optimization and, while parameters for phosphines have been used for decades with low-valent systems, a comparable system does not exist for high-valent metals. A new electronic parameter for ligand donation, derived from experiments on a high-valent chromium species, is now available. Here, we show that the new parameters enable quantitative determination of ancillary ligand effects on catalysis rate and, in some cases, even provide mechanistic information. Analysing reactions in this way can be used to design better catalyst architectures and paves the way for the use of such parameters in a host of high-valent processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murav’ev, V. P., E-mail: murval@mail.ru; Kochetkov, A. V.; Glazova, E. G.
An algorithm and software for calculating the optimal operating regimes of the process water supply system at the Kalininskaya NPP are described. The parameters of the optimal regimes are determined for time varying meteorological conditions and condensation loads of the NPP. The optimal flow of the cooling water in the turbines is determined computationally; a regime map with the data on the optimal water consumption distribution between the coolers and displaying the regimes with an admissible heat load on the natural cooling lakes is composed. Optimizing the cooling system for a 4000-MW NPP will make it possible to conserve atmore » least 155,000 MW · h of electricity per year. The procedure developed can be used to optimize the process water supply systems of nuclear and thermal power plants.« less
Multifacet structure of observed reconstructed integral images.
Martínez-Corral, Manuel; Javidi, Bahram; Martínez-Cuenca, Raúl; Saavedra, Genaro
2005-04-01
Three-dimensional images generated by an integral imaging system suffer from degradations in the form of grid of multiple facets. This multifacet structure breaks the continuity of the observed image and therefore reduces its visual quality. We perform an analysis of this effect and present the guidelines in the design of lenslet imaging parameters for optimization of viewing conditions with respect to the multifacet degradation. We consider the optimization of the system in terms of field of view, observer position and pupil function, lenslet parameters, and type of reconstruction. Numerical tests are presented to verify the theoretical analysis.
NASA Astrophysics Data System (ADS)
Ameli, Kazem; Alfi, Alireza; Aghaebrahimi, Mohammadreza
2016-09-01
Similarly to other optimization algorithms, harmony search (HS) is quite sensitive to the tuning parameters. Several variants of the HS algorithm have been developed to decrease the parameter-dependency character of HS. This article proposes a novel version of the discrete harmony search (DHS) algorithm, namely fuzzy discrete harmony search (FDHS), for optimizing capacitor placement in distribution systems. In the FDHS, a fuzzy system is employed to dynamically adjust two parameter values, i.e. harmony memory considering rate and pitch adjusting rate, with respect to normalized mean fitness of the harmony memory. The key aspect of FDHS is that it needs substantially fewer iterations to reach convergence in comparison with classical discrete harmony search (CDHS). To the authors' knowledge, this is the first application of DHS to specify appropriate capacitor locations and their best amounts in the distribution systems. Simulations are provided for 10-, 34-, 85- and 141-bus distribution systems using CDHS and FDHS. The results show the effectiveness of FDHS over previous related studies.
Optimization of an auto-thermal ammonia synthesis reactor using cyclic coordinate method
NASA Astrophysics Data System (ADS)
A-N Nguyen, T.; Nguyen, T.-A.; Vu, T.-D.; Nguyen, K.-T.; K-T Dao, T.; P-H Huynh, K.
2017-06-01
The ammonia synthesis system is an important chemical process used in the manufacture of fertilizers, chemicals, explosives, fibers, plastics, refrigeration. In the literature, many works approaching the modeling, simulation and optimization of an auto-thermal ammonia synthesis reactor can be found. However, they just focus on the optimization of the reactor length while keeping the others parameters constant. In this study, the other parameters are also considered in the optimization problem such as the temperature of feed gas enters the catalyst zone, the initial nitrogen proportion. The optimal problem requires the maximization of an objective function which is multivariable function and subject to a number of equality constraints involving the solution of coupled differential equations and also inequality constraint. The cyclic coordinate search was applied to solve the multivariable-optimization problem. In each coordinate, the golden section method was applied to find the maximum value. The inequality constraints were treated using penalty method. The coupled differential equations system was solved using Runge-Kutta 4th order method. The results obtained from this study are also compared to the results from the literature.
DAKOTA Design Analysis Kit for Optimization and Terascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Dalbey, Keith R.; Eldred, Michael S.
2010-02-24
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file and launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-basedmore » methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less
NASA Astrophysics Data System (ADS)
Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang
2017-12-01
The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.
Dura-Bernal, S.; Neymotin, S. A.; Kerr, C. C.; Sivagnanam, S.; Majumdar, A.; Francis, J. T.; Lytton, W. W.
2017-01-01
Biomimetic simulation permits neuroscientists to better understand the complex neuronal dynamics of the brain. Embedding a biomimetic simulation in a closed-loop neuroprosthesis, which can read and write signals from the brain, will permit applications for amelioration of motor, psychiatric, and memory-related brain disorders. Biomimetic neuroprostheses require real-time adaptation to changes in the external environment, thus constituting an example of a dynamic data-driven application system. As model fidelity increases, so does the number of parameters and the complexity of finding appropriate parameter configurations. Instead of adapting synaptic weights via machine learning, we employed major biological learning methods: spike-timing dependent plasticity and reinforcement learning. We optimized the learning metaparameters using evolutionary algorithms, which were implemented in parallel and which used an island model approach to obtain sufficient speed. We employed these methods to train a cortical spiking model to utilize macaque brain activity, indicating a selected target, to drive a virtual musculoskeletal arm with realistic anatomical and biomechanical properties to reach to that target. The optimized system was able to reproduce macaque data from a comparable experimental motor task. These techniques can be used to efficiently tune the parameters of multiscale systems, linking realistic neuronal dynamics to behavior, and thus providing a useful tool for neuroscience and neuroprosthetics. PMID:29200477
Optimization of the Number and Location of Tsunami Stations in a Tsunami Warning System
NASA Astrophysics Data System (ADS)
An, C.; Liu, P. L. F.; Pritchard, M. E.
2014-12-01
Optimizing the number and location of tsunami stations in designing a tsunami warning system is an important and practical problem. It is always desirable to maximize the capability of the data obtained from the stations for constraining the earthquake source parameters, and to minimize the number of stations at the same time. During the 2011 Tohoku tsunami event, 28 coastal gauges and DART buoys in the near-field recorded tsunami waves, providing an opportunity for assessing the effectiveness of those stations in identifying the earthquake source parameters. Assuming a single-plane fault geometry, inversions of tsunami data from combinations of various number (1~28) of stations and locations are conducted and evaluated their effectiveness according to the residues of the inverse method. Results show that the optimized locations of stations depend on the number of stations used. If the stations are optimally located, 2~4 stations are sufficient to constrain the source parameters. Regarding the optimized location, stations must be uniformly spread in all directions, which is not surprising. It is also found that stations within the source region generally give worse constraint of earthquake source than stations farther from source, which is due to the exaggeration of model error in matching large amplitude waves at near-source stations. Quantitative discussions on these findings will be given in the presentation. Applying similar analysis to the Manila Trench based on artificial scenarios of earthquakes and tsunamis, the optimal location of tsunami stations are obtained, which provides guidance of deploying a tsunami warning system in this region.
Optimal control of multiphoton ionization dynamics of small alkali aggregates
NASA Astrophysics Data System (ADS)
Lindinger, A.; Bartelt, A.; Lupulescu, C.; Vajda, S.; Woste, Ludger
2003-11-01
We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters like wavelength range or its phase and amplitude; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photo-chemical process. First, we present the vibrational dynamics of bound electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced ioniziation experiments were carried out. The controllability of 3-photon ionization pathways is investigated on the model-like systems NaK and K2. A closed learning loop for adaptive feedback control is used to find the optimal fs pulse shape. Sinusoidal parameterizations of the spectral phase modulation are investigated in regard to the obtained optimal field. By reducing the number of parameters and thereby the complexity of the phase moduation, optimal pulse shapes can be generated that carry fingerprints of the molecule's dynamical properties. This enables to find "understandable" optimal pulse forms and offers the possiblity to gain insight into the photo-induced control process. Characteristic motions of the involved wave packets are proposed to explain the optimized dynamic dissociation pathways.
Need for Cost Optimization of Space Life Support Systems
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Anderson, Grant
2017-01-01
As the nation plans manned missions that go far beyond Earth orbit to Mars, there is an urgent need for a robust, disciplined systems engineering methodology that can identify an optimized Environmental Control and Life Support (ECLSS) architecture for long duration deep space missions. But unlike the previously used Equivalent System Mass (ESM), the method must be inclusive of all driving parameters and emphasize the economic analysis of life support system design. The key parameter for this analysis is Life Cycle Cost (LCC). LCC takes into account the cost for development and qualification of the system, launch costs, operational costs, maintenance costs and all other relevant and associated costs. Additionally, an effective methodology must consider system technical performance, safety, reliability, maintainability, crew time, and other factors that could affect the overall merit of the life support system.
Design optimization of a prescribed vibration system using conjoint value analysis
NASA Astrophysics Data System (ADS)
Malinga, Bongani; Buckner, Gregory D.
2016-12-01
This article details a novel design optimization strategy for a prescribed vibration system (PVS) used to mechanically filter solids from fluids in oil and gas drilling operations. A dynamic model of the PVS is developed, and the effects of disturbance torques are detailed. This model is used to predict the effects of design parameters on system performance and efficiency, as quantified by system attributes. Conjoint value analysis, a statistical technique commonly used in marketing science, is utilized to incorporate designer preferences. This approach effectively quantifies and optimizes preference-based trade-offs in the design process. The effects of designer preferences on system performance and efficiency are simulated. This novel optimization strategy yields improvements in all system attributes across all simulated vibration profiles, and is applicable to other industrial electromechanical systems.
Ihme, Matthias; Marsden, Alison L; Pitsch, Heinz
2008-02-01
A pattern search optimization method is applied to the generation of optimal artificial neural networks (ANNs). Optimization is performed using a mixed variable extension to the generalized pattern search method. This method offers the advantage that categorical variables, such as neural transfer functions and nodal connectivities, can be used as parameters in optimization. When used together with a surrogate, the resulting algorithm is highly efficient for expensive objective functions. Results demonstrate the effectiveness of this method in optimizing an ANN for the number of neurons, the type of transfer function, and the connectivity among neurons. The optimization method is applied to a chemistry approximation of practical relevance. In this application, temperature and a chemical source term are approximated as functions of two independent parameters using optimal ANNs. Comparison of the performance of optimal ANNs with conventional tabulation methods demonstrates equivalent accuracy by considerable savings in memory storage. The architecture of the optimal ANN for the approximation of the chemical source term consists of a fully connected feedforward network having four nonlinear hidden layers and 117 synaptic weights. An equivalent representation of the chemical source term using tabulation techniques would require a 500 x 500 grid point discretization of the parameter space.
Advanced rotorcraft control using parameter optimization
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.
An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data. PMID:23593445
Automated Calibration For Numerical Models Of Riverflow
NASA Astrophysics Data System (ADS)
Fernandez, Betsaida; Kopmann, Rebekka; Oladyshkin, Sergey
2017-04-01
Calibration of numerical models is fundamental since the beginning of all types of hydro system modeling, to approximate the parameters that can mimic the overall system behavior. Thus, an assessment of different deterministic and stochastic optimization methods is undertaken to compare their robustness, computational feasibility, and global search capacity. Also, the uncertainty of the most suitable methods is analyzed. These optimization methods minimize the objective function that comprises synthetic measurements and simulated data. Synthetic measurement data replace the observed data set to guarantee an existing parameter solution. The input data for the objective function derivate from a hydro-morphological dynamics numerical model which represents an 180-degree bend channel. The hydro- morphological numerical model shows a high level of ill-posedness in the mathematical problem. The minimization of the objective function by different candidate methods for optimization indicates a failure in some of the gradient-based methods as Newton Conjugated and BFGS. Others reveal partial convergence, such as Nelder-Mead, Polak und Ribieri, L-BFGS-B, Truncated Newton Conjugated, and Trust-Region Newton Conjugated Gradient. Further ones indicate parameter solutions that range outside the physical limits, such as Levenberg-Marquardt and LeastSquareRoot. Moreover, there is a significant computational demand for genetic optimization methods, such as Differential Evolution and Basin-Hopping, as well as for Brute Force methods. The Deterministic Sequential Least Square Programming and the scholastic Bayes Inference theory methods present the optimal optimization results. keywords: Automated calibration of hydro-morphological dynamic numerical model, Bayesian inference theory, deterministic optimization methods.
An optimized ensemble local mean decomposition method for fault detection of mechanical components
NASA Astrophysics Data System (ADS)
Zhang, Chao; Li, Zhixiong; Hu, Chao; Chen, Shuai; Wang, Jianguo; Zhang, Xiaogang
2017-03-01
Mechanical transmission systems have been widely adopted in most of industrial applications, and issues related to the maintenance of these systems have attracted considerable attention in the past few decades. The recently developed ensemble local mean decomposition (ELMD) method shows satisfactory performance in fault detection of mechanical components for preventing catastrophic failures and reducing maintenance costs. However, the performance of ELMD often heavily depends on proper selection of its model parameters. To this end, this paper proposes an optimized ensemble local mean decomposition (OELMD) method to determinate an optimum set of ELMD parameters for vibration signal analysis. In OELMD, an error index termed the relative root-mean-square error (Relative RMSE) is used to evaluate the decomposition performance of ELMD with a certain amplitude of the added white noise. Once a maximum Relative RMSE, corresponding to an optimal noise amplitude, is determined, OELMD then identifies optimal noise bandwidth and ensemble number based on the Relative RMSE and signal-to-noise ratio (SNR), respectively. Thus, all three critical parameters of ELMD (i.e. noise amplitude and bandwidth, and ensemble number) are optimized by OELMD. The effectiveness of OELMD was evaluated using experimental vibration signals measured from three different mechanical components (i.e. the rolling bearing, gear and diesel engine) under faulty operation conditions.
NASA Astrophysics Data System (ADS)
Chen, Z.; Chen, J.; Zhang, S.; Zheng, X.; Shangguan, W.
2016-12-01
A global carbon assimilation system (GCAS) that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25° (Vmax25 ), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1°resolution for the period from 2002 to 2008. Optimized multi-year average Vmax25 values range from 49 to 51 μmol m-2 s-1 over most regions of world. Vegetation from tropical zones has relatively lower values than vegetation in temperate regions. Optimized multi-year average Q10 values varied from 1.95 to 2.05 over most regions of the world. Relatively high values of Q10 are derived over high/mid latitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at mid-high latitudes. The maximum in occurs during the growing season, while the minima appear during non-growing seasons. Q10 values decreases with increasing temperature. The seasonal variabilities of and Q10 are larger at higher latitudes with tropical or low latitude regions showing little seasonal variabilities.
Trajectory optimization for an asymmetric launch vehicle. M.S. Thesis - MIT
NASA Technical Reports Server (NTRS)
Sullivan, Jeanne Marie
1990-01-01
A numerical optimization technique is used to fully automate the trajectory design process for an symmetric configuration of the proposed Advanced Launch System (ALS). The objective of the ALS trajectory design process is the maximization of the vehicle mass when it reaches the desired orbit. The trajectories used were based on a simple shape that could be described by a small set of parameters. The use of a simple trajectory model can significantly reduce the computation time required for trajectory optimization. A predictive simulation was developed to determine the on-orbit mass given an initial vehicle state, wind information, and a set of trajectory parameters. This simulation utilizes an idealized control system to speed computation by increasing the integration time step. The conjugate gradient method is used for the numerical optimization of on-orbit mass. The method requires only the evaluation of the on-orbit mass function using the predictive simulation, and the gradient of the on-orbit mass function with respect to the trajectory parameters. The gradient is approximated with finite differencing. Prelaunch trajectory designs were carried out using the optimization procedure. The predictive simulation is used in flight to redesign the trajectory to account for trajectory deviations produced by off-nominal conditions, e.g., stronger than expected head winds.
NASA Astrophysics Data System (ADS)
Gao, Pu; Xiang, Changle; Liu, Hui; Zhou, Han
2018-07-01
Based on a multiple degrees of freedom dynamic model of a vehicle powertrain system, natural vibration analyses and sensitivity analyses of the eigenvalues are performed to determine the key inertia for each natural vibration of a powertrain system. Then, the results are used to optimize the installation position of each adaptive tuned vibration absorber. According to the relationship between the variable frequency torque excitation and the natural vibration of a powertrain system, the entire vibration frequency band is divided into segments, and the auxiliary vibration absorber and dominant vibration absorber are determined for each sensitive frequency band. The optimum parameters of the auxiliary vibration absorber are calculated based on the optimal frequency ratio and the optimal damping ratio of the passive vibration absorber. The instantaneous change state of the natural vibrations of a powertrain system with adaptive tuned vibration absorbers is studied, and the optimized start and stop tuning frequencies of the adaptive tuned vibration absorber are obtained. These frequencies can be translated into the optimum parameters of the dominant vibration absorber. Finally, the optimal tuning scheme for the adaptive tuned vibration absorber group, which can be used to reduce the variable frequency vibrations of a powertrain system, is proposed, and corresponding numerical simulations are performed. The simulation time history signals are transformed into three-dimensional information related to time, frequency and vibration energy via the Hilbert-Huang transform (HHT). A comprehensive time-frequency analysis is then conducted to verify that the optimal tuning scheme for the adaptive tuned vibration absorber group can significantly reduce the variable frequency vibrations of a powertrain system.
Statistical simplex approach to primary and secondary color correction in thick lens assemblies
NASA Astrophysics Data System (ADS)
Ament, Shelby D. V.; Pfisterer, Richard
2017-11-01
A glass selection optimization algorithm is developed for primary and secondary color correction in thick lens systems. The approach is based on the downhill simplex method, and requires manipulation of the surface color equations to obtain a single glass-dependent parameter for each lens element. Linear correlation is used to relate this parameter to all other glass-dependent variables. The algorithm provides a statistical distribution of Abbe numbers for each element in the system. Examples of several lenses, from 2-element to 6-element systems, are performed to verify this approach. The optimization algorithm proposed is capable of finding glass solutions with high color correction without requiring an exhaustive search of the glass catalog.
NASA Astrophysics Data System (ADS)
Creixell-Mediante, Ester; Jensen, Jakob S.; Naets, Frank; Brunskog, Jonas; Larsen, Martin
2018-06-01
Finite Element (FE) models of complex structural-acoustic coupled systems can require a large number of degrees of freedom in order to capture their physical behaviour. This is the case in the hearing aid field, where acoustic-mechanical feedback paths are a key factor in the overall system performance and modelling them accurately requires a precise description of the strong interaction between the light-weight parts and the internal and surrounding air over a wide frequency range. Parametric optimization of the FE model can be used to reduce the vibroacoustic feedback in a device during the design phase; however, it requires solving the model iteratively for multiple frequencies at different parameter values, which becomes highly time consuming when the system is large. Parametric Model Order Reduction (pMOR) techniques aim at reducing the computational cost associated with each analysis by projecting the full system into a reduced space. A drawback of most of the existing techniques is that the vector basis of the reduced space is built at an offline phase where the full system must be solved for a large sample of parameter values, which can also become highly time consuming. In this work, we present an adaptive pMOR technique where the construction of the projection basis is embedded in the optimization process and requires fewer full system analyses, while the accuracy of the reduced system is monitored by a cheap error indicator. The performance of the proposed method is evaluated for a 4-parameter optimization of a frequency response for a hearing aid model, evaluated at 300 frequencies, where the objective function evaluations become more than one order of magnitude faster than for the full system.
Bifurcation analysis of eight coupled degenerate optical parametric oscillators
NASA Astrophysics Data System (ADS)
Ito, Daisuke; Ueta, Tetsushi; Aihara, Kazuyuki
2018-06-01
A degenerate optical parametric oscillator (DOPO) network realized as a coherent Ising machine can be used to solve combinatorial optimization problems. Both theoretical and experimental investigations into the performance of DOPO networks have been presented previously. However a problem remains, namely that the dynamics of the DOPO network itself can lower the search success rates of globally optimal solutions for Ising problems. This paper shows that the problem is caused by pitchfork bifurcations due to the symmetry structure of coupled DOPOs. Some two-parameter bifurcation diagrams of equilibrium points express the performance deterioration. It is shown that the emergence of non-ground states regarding local minima hampers the system from reaching the ground states corresponding to the global minimum. We then describe a parametric strategy for leading a system to the ground state by actively utilizing the bifurcation phenomena. By adjusting the parameters to break particular symmetry, we find appropriate parameter sets that allow the coherent Ising machine to obtain the globally optimal solution alone.
a Gsa-Svm Hybrid System for Classification of Binary Problems
NASA Astrophysics Data System (ADS)
Sarafrazi, Soroor; Nezamabadi-pour, Hossein; Barahman, Mojgan
2011-06-01
This paperhybridizesgravitational search algorithm (GSA) with support vector machine (SVM) and made a novel GSA-SVM hybrid system to improve the classification accuracy in binary problems. GSA is an optimization heuristic toolused to optimize the value of SVM kernel parameter (in this paper, radial basis function (RBF) is chosen as the kernel function). The experimental results show that this newapproach can achieve high classification accuracy and is comparable to or better than the particle swarm optimization (PSO)-SVM and genetic algorithm (GA)-SVM, which are two hybrid systems for classification.
General Methodology for Designing Spacecraft Trajectories
NASA Technical Reports Server (NTRS)
Condon, Gerald; Ocampo, Cesar; Mathur, Ravishankar; Morcos, Fady; Senent, Juan; Williams, Jacob; Davis, Elizabeth C.
2012-01-01
A methodology for designing spacecraft trajectories in any gravitational environment within the solar system has been developed. The methodology facilitates modeling and optimization for problems ranging from that of a single spacecraft orbiting a single celestial body to that of a mission involving multiple spacecraft and multiple propulsion systems operating in gravitational fields of multiple celestial bodies. The methodology consolidates almost all spacecraft trajectory design and optimization problems into a single conceptual framework requiring solution of either a system of nonlinear equations or a parameter-optimization problem with equality and/or inequality constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.
The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less
Thermodynamic Analysis and Optimization of a High Temperature Triple Absorption Heat Transformer
Khamooshi, Mehrdad; Yari, Mortaza; Egelioglu, Fuat; Salati, Hana
2014-01-01
First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair. A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters. The assumed parameters are the temperature of the main components, weak and strong solutions, economizers' efficiencies, and bypass ratios. The whole cycle is optimized by EES software from the viewpoint of maximizing the COP via applying the direct search method. The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle. PMID:25136702
Study of optimal laser parameters for cutting QFN packages by Taguchi's matrix method
NASA Astrophysics Data System (ADS)
Li, Chen-Hao; Tsai, Ming-Jong; Yang, Ciann-Dong
2007-06-01
This paper reports the study of optimal laser parameters for cutting QFN (Quad Flat No-lead) packages by using a diode pumped solid-state laser system (DPSSL). The QFN cutting path includes two different materials, which are the encapsulated epoxy and a copper lead frame substrate. The Taguchi's experimental method with orthogonal array of L 9(3 4) is employed to obtain optimal combinatorial parameters. A quantified mechanism was proposed for examining the laser cutting quality of a QFN package. The influences of the various factors such as laser current, laser frequency, and cutting speed on the laser cutting quality is also examined. From the experimental results, the factors on the cutting quality in the order of decreasing significance are found to be (a) laser frequency, (b) cutting speed, and (c) laser driving current. The optimal parameters were obtained at the laser frequency of 2 kHz, the cutting speed of 2 mm/s, and the driving current of 29 A. Besides identifying this sequence of dominance, matrix experiment also determines the best level for each control factor. The verification experiment confirms that the application of laser cutting technology to QFN is very successfully by using the optimal laser parameters predicted from matrix experiments.
Optimal Regulation of Structural Systems with Uncertain Parameters.
1981-02-02
been addressed, in part, by Statistical Energy Analysis . Moti- vated by a concern with high frequency vibration and acoustical- structural...Parameter Systems," AFOSR-TR-79-0753 (May, 1979). 25. R. H. Lyon, Statistical Energy Analysis of Dynamical Systems: Theory and Applications, (M.I.T...Press, Cambridge, Mass., 1975). 26. E. E. Ungar, " Statistical Energy Analysis of Vibrating Systems," Trans. ASME, J. Eng. Ind. 89, 626 (1967). 139 27
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.
1988-01-01
A generic procedure for the parameter optimization of a digital control law for a large-order flexible flight vehicle or large space structure modeled as a sampled data system is presented. A linear quadratic Guassian type cost function was minimized, while satisfying a set of constraints on the steady-state rms values of selected design responses, using a constrained optimization technique to meet multiple design requirements. Analytical expressions for the gradients of the cost function and the design constraints on mean square responses with respect to the control law design variables are presented.
Density-based penalty parameter optimization on C-SVM.
Liu, Yun; Lian, Jie; Bartolacci, Michael R; Zeng, Qing-An
2014-01-01
The support vector machine (SVM) is one of the most widely used approaches for data classification and regression. SVM achieves the largest distance between the positive and negative support vectors, which neglects the remote instances away from the SVM interface. In order to avoid a position change of the SVM interface as the result of an error system outlier, C-SVM was implemented to decrease the influences of the system's outliers. Traditional C-SVM holds a uniform parameter C for both positive and negative instances; however, according to the different number proportions and the data distribution, positive and negative instances should be set with different weights for the penalty parameter of the error terms. Therefore, in this paper, we propose density-based penalty parameter optimization of C-SVM. The experiential results indicated that our proposed algorithm has outstanding performance with respect to both precision and recall.
Calibrating a Soil-Vegetation-Atmosphere system with a genetical algorithm
NASA Astrophysics Data System (ADS)
Schneider, S.; Jacques, D.; Mallants, D.
2009-04-01
Accuracy of model prediction is well known for being very sensitive to the quality of the calibration of the model. It is also known that quantifying soil hydraulic parameters in a Soil-Vegetation-Atmosphere (SVA) system is a highly non-linear parameter estimation problem, and that robust methods are needed to avoid the optimization process to lead to non-optimal parameters. Evolutionary algorithms and specifically genetic algorithms (GAs) are very well suited for those complex parameter optimization problems. The SVA system in this study concerns a pine stand on a heterogeneous sandy soil (podzol) in the north of Belgium (Campine region). Throughfall and other meteorological data and water contents at different soil depths have been recorded during one year at a daily time step. The water table level, which is varying between 95 and 170 cm, has been recorded with a frequency of 0.5 hours. Based on the profile description, four soil layers have been distinguished in the podzol and used for the numerical simulation with the hydrus1D model (Simunek and al., 2005). For the inversion procedure the MYGA program (Yedder, 2002), which is an elitism GA, was used. Optimization was based on the water content measurements realized at the depths of 10, 20, 40, 50, 60, 70, 90, 110, and 120 cm to estimate parameters describing the unsaturated hydraulic soil properties of the different soil layers. Comparison between the modeled and measured water contents shows a good similarity during the simulated year. Impacts of short and intensive events (rainfall) on the water content of the soil are also well reproduced. Errors on predictions are on average equal to 5%, which is considered as a good result. A. Ben Haj Yedder. Numerical optimization and optimal control : (molecular chemistry applications). PhD thesis, Ecole Nationale des Ponts et Chaussées, 2002. Šimůnek, J., M. Th. van Genuchten, and M. Šejna, The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 3.0, HYDRUS Software Series 1, Department of Environmental Sciences, University of California Riverside, Riverside, CA, 270 pp., 2005.
Optimization of Wireless Power Transfer Systems Enhanced by Passive Elements and Metasurfaces
NASA Astrophysics Data System (ADS)
Lang, Hans-Dieter; Sarris, Costas D.
2017-10-01
This paper presents a rigorous optimization technique for wireless power transfer (WPT) systems enhanced by passive elements, ranging from simple reflectors and intermedi- ate relays all the way to general electromagnetic guiding and focusing structures, such as metasurfaces and metamaterials. At its core is a convex semidefinite relaxation formulation of the otherwise nonconvex optimization problem, of which tightness and optimality can be confirmed by a simple test of its solutions. The resulting method is rigorous, versatile, and general -- it does not rely on any assumptions. As shown in various examples, it is able to efficiently and reliably optimize such WPT systems in order to find their physical limitations on performance, optimal operating parameters and inspect their working principles, even for a large number of active transmitters and passive elements.
Parameter Optimization for Turbulent Reacting Flows Using Adjoints
NASA Astrophysics Data System (ADS)
Lapointe, Caelan; Hamlington, Peter E.
2017-11-01
The formulation of a new adjoint solver for topology optimization of turbulent reacting flows is presented. This solver provides novel configurations (e.g., geometries and operating conditions) based on desired system outcomes (i.e., objective functions) for complex reacting flow problems of practical interest. For many such problems, it would be desirable to know optimal values of design parameters (e.g., physical dimensions, fuel-oxidizer ratios, and inflow-outflow conditions) prior to real-world manufacture and testing, which can be expensive, time-consuming, and dangerous. However, computational optimization of these problems is made difficult by the complexity of most reacting flows, necessitating the use of gradient-based optimization techniques in order to explore a wide design space at manageable computational cost. The adjoint method is an attractive way to obtain the required gradients, because the cost of the method is determined by the dimension of the objective function rather than the size of the design space. Here, the formulation of a novel solver is outlined that enables gradient-based parameter optimization of turbulent reacting flows using the discrete adjoint method. Initial results and an outlook for future research directions are provided.
The solution of private problems for optimization heat exchangers parameters
NASA Astrophysics Data System (ADS)
Melekhin, A.
2017-11-01
The relevance of the topic due to the decision of problems of the economy of resources in heating systems of buildings. To solve this problem we have developed an integrated method of research which allows solving tasks on optimization of parameters of heat exchangers. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The author have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.
Zhang, Ridong; Tao, Jili; Lu, Renquan; Jin, Qibing
2018-02-01
Modeling of distributed parameter systems is difficult because of their nonlinearity and infinite-dimensional characteristics. Based on principal component analysis (PCA), a hybrid modeling strategy that consists of a decoupled linear autoregressive exogenous (ARX) model and a nonlinear radial basis function (RBF) neural network model are proposed. The spatial-temporal output is first divided into a few dominant spatial basis functions and finite-dimensional temporal series by PCA. Then, a decoupled ARX model is designed to model the linear dynamics of the dominant modes of the time series. The nonlinear residual part is subsequently parameterized by RBFs, where genetic algorithm is utilized to optimize their hidden layer structure and the parameters. Finally, the nonlinear spatial-temporal dynamic system is obtained after the time/space reconstruction. Simulation results of a catalytic rod and a heat conduction equation demonstrate the effectiveness of the proposed strategy compared to several other methods.
Eslick, John C.; Ng, Brenda; Gao, Qianwen; ...
2014-12-31
Under the auspices of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification throughmore » PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. Thus, this computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.« less
Sidler, Dominik; Cristòfol-Clough, Michael; Riniker, Sereina
2017-06-13
Replica-exchange enveloping distribution sampling (RE-EDS) allows the efficient estimation of free-energy differences between multiple end-states from a single molecular dynamics (MD) simulation. In EDS, a reference state is sampled, which can be tuned by two types of parameters, i.e., smoothness parameters(s) and energy offsets, such that all end-states are sufficiently sampled. However, the choice of these parameters is not trivial. Replica exchange (RE) or parallel tempering is a widely applied technique to enhance sampling. By combining EDS with the RE technique, the parameter choice problem could be simplified and the challenge shifted toward an optimal distribution of the replicas in the smoothness-parameter space. The choice of a certain replica distribution can alter the sampling efficiency significantly. In this work, global round-trip time optimization (GRTO) algorithms are tested for the use in RE-EDS simulations. In addition, a local round-trip time optimization (LRTO) algorithm is proposed for systems with slowly adapting environments, where a reliable estimate for the round-trip time is challenging to obtain. The optimization algorithms were applied to RE-EDS simulations of a system of nine small-molecule inhibitors of phenylethanolamine N-methyltransferase (PNMT). The energy offsets were determined using our recently proposed parallel energy-offset (PEOE) estimation scheme. While the multistate GRTO algorithm yielded the best replica distribution for the ligands in water, the multistate LRTO algorithm was found to be the method of choice for the ligands in complex with PNMT. With this, the 36 alchemical free-energy differences between the nine ligands were calculated successfully from a single RE-EDS simulation 10 ns in length. Thus, RE-EDS presents an efficient method for the estimation of relative binding free energies.
Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles.
Abid, Haider J; Chen, Jie; Nassar, Ameen A
2015-01-01
This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system.
Maity, Arnab; Hocht, Leonhard; Heise, Christian; Holzapfel, Florian
2018-01-01
A new efficient adaptive optimal control approach is presented in this paper based on the indirect model reference adaptive control (MRAC) architecture for improvement of adaptation and tracking performance of the uncertain system. The system accounts here for both matched and unmatched unknown uncertainties that can act as plant as well as input effectiveness failures or damages. For adaptation of the unknown parameters of these uncertainties, the frequency selective learning approach is used. Its idea is to compute a filtered expression of the system uncertainty using multiple filters based on online instantaneous information, which is used for augmentation of the update law. It is capable of adjusting a sudden change in system dynamics without depending on high adaptation gains and can satisfy exponential parameter error convergence under certain conditions in the presence of structured matched and unmatched uncertainties as well. Additionally, the controller of the MRAC system is designed using a new optimal control method. This method is a new linear quadratic regulator-based optimal control formulation for both output regulation and command tracking problems. It provides a closed-form control solution. The proposed overall approach is applied in a control of lateral dynamics of an unmanned aircraft problem to show its effectiveness.
Optimum Parameters of a Tuned Liquid Column Damper in a Wind Turbine Subject to Stochastic Load
NASA Astrophysics Data System (ADS)
Alkmim, M. H.; de Morais, M. V. G.; Fabro, A. T.
2017-12-01
Parameter optimization for tuned liquid column dampers (TLCD), a class of passive structural control, have been previously proposed in the literature for reducing vibration in wind turbines, and several other applications. However, most of the available work consider the wind excitation as either a deterministic harmonic load or random load with white noise spectra. In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of undamped primary system under white noise excitation by comparing with result from the literature. Finally, it is shown that different wind profiles can significantly affect the optimum TLCD parameters.
Theoretic aspects of the identification of the parameters in the optimal control model
NASA Technical Reports Server (NTRS)
Vanwijk, R. A.; Kok, J. J.
1977-01-01
The identification of the parameters of the optimal control model from input-output data of the human operator is considered. Accepting the basic structure of the model as a cascade of a full-order observer and a feedback law, and suppressing the inherent optimality of the human controller, the parameters to be identified are the feedback matrix, the observer gain matrix, and the intensity matrices of the observation noise and the motor noise. The identification of the parameters is a statistical problem, because the system and output are corrupted by noise, and therefore the solution must be based on the statistics (probability density function) of the input and output data of the human operator. However, based on the statistics of the input-output data of the human operator, no distinction can be made between the observation and the motor noise, which shows that the model suffers from overparameterization.
Flat-plate photovoltaic array design optimization
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1980-01-01
An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.
Optimal time points sampling in pathway modelling.
Hu, Shiyan
2004-01-01
Modelling cellular dynamics based on experimental data is at the heart of system biology. Considerable progress has been made to dynamic pathway modelling as well as the related parameter estimation. However, few of them gives consideration for the issue of optimal sampling time selection for parameter estimation. Time course experiments in molecular biology rarely produce large and accurate data sets and the experiments involved are usually time consuming and expensive. Therefore, to approximate parameters for models with only few available sampling data is of significant practical value. For signal transduction, the sampling intervals are usually not evenly distributed and are based on heuristics. In the paper, we investigate an approach to guide the process of selecting time points in an optimal way to minimize the variance of parameter estimates. In the method, we first formulate the problem to a nonlinear constrained optimization problem by maximum likelihood estimation. We then modify and apply a quantum-inspired evolutionary algorithm, which combines the advantages of both quantum computing and evolutionary computing, to solve the optimization problem. The new algorithm does not suffer from the morass of selecting good initial values and being stuck into local optimum as usually accompanied with the conventional numerical optimization techniques. The simulation results indicate the soundness of the new method.
NASA Technical Reports Server (NTRS)
Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.
2015-01-01
Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.
Interdependence of spin structure, anion height and electronic structure of BaFe{sub 2}As{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Smritijit, E-mail: smritijit.sen@gmail.com; Ghosh, Haranath, E-mail: hng@rrcat.gov.in; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094
2016-05-06
Superconducting as well as other electronic properties of Fe-based superconductors are quite sensitive to the structural parameters specially, on anion height which is intimately related to z{sub As}, the fractional z co-ordinate of As atom. Due to presence of strong magnetic fluctuation in these Fe-based superconductors, optimized structural parameters (lattice parameters a, b, c) including z{sub As} using density functional theory (DFT) under generalized gradient approximation (GGA) does not match experimental values accurately. In this work, we show that the optimized value of z{sub As} is strongly influenced by the spin structures in the orthorhombic phase of BaFe{sub 2}As{sub 2}more » system. We take all possible spin structures for the orthorhombic BaFe{sub 2}As{sub 2} system and then optimize z{sub As}. Using these optimized structures we calculate electronic structures like density of states, band structures etc., for each spin configurations. From these studies we show that the electronic structure, orbital order which is responsible for structural as well as related to nematic transition, are significantly influenced by the spin structures.« less
NASA Astrophysics Data System (ADS)
Abdeh-Kolahchi, A.; Satish, M.; Datta, B.
2004-05-01
A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.
Gas flow parameters in laser cutting of wood- nozzle design
Kali Mukherjee; Tom Grendzwell; Parwaiz A.A. Khan; Charles McMillin
1990-01-01
The Automated Lumber Processing System (ALPS) is an ongoing team research effort to optimize the yield of parts in a furniture rough mill. The process is designed to couple aspects of computer vision, computer optimization of yield, and laser cutting. This research is focused on optimizing laser wood cutting. Laser machining of lumber has the advantage over...
Evaluation of laser cutting process with auxiliary gas pressure by soft computing approach
NASA Astrophysics Data System (ADS)
Lazov, Lyubomir; Nikolić, Vlastimir; Jovic, Srdjan; Milovančević, Miloš; Deneva, Heristina; Teirumenieka, Erika; Arsic, Nebojsa
2018-06-01
Evaluation of the optimal laser cutting parameters is very important for the high cut quality. This is highly nonlinear process with different parameters which is the main challenge in the optimization process. Data mining methodology is one of most versatile method which can be used laser cutting process optimization. Support vector regression (SVR) procedure is implemented since it is a versatile and robust technique for very nonlinear data regression. The goal in this study was to determine the optimal laser cutting parameters to ensure robust condition for minimization of average surface roughness. Three cutting parameters, the cutting speed, the laser power, and the assist gas pressure, were used in the investigation. As a laser type TruLaser 1030 technological system was used. Nitrogen as an assisted gas was used in the laser cutting process. As the data mining method, support vector regression procedure was used. Data mining prediction accuracy was very high according the coefficient (R2) of determination and root mean square error (RMSE): R2 = 0.9975 and RMSE = 0.0337. Therefore the data mining approach could be used effectively for determination of the optimal conditions of the laser cutting process.
A new real-time guidance strategy for aerodynamic ascent flight
NASA Astrophysics Data System (ADS)
Yamamoto, Takayuki; Kawaguchi, Jun'ichiro
2007-12-01
Reusable launch vehicles are conceived to constitute the future space transportation system. If these vehicles use air-breathing propulsion and lift taking-off horizontally, the optimal steering for these vehicles exhibits completely different behavior from that in conventional rockets flight. In this paper, the new guidance strategy is proposed. This method derives from the optimality condition as for steering and an analysis concludes that the steering function takes the form comprised of Linear and Logarithmic terms, which include only four parameters. The parameter optimization of this method shows the acquired terminal horizontal velocity is almost same with that obtained by the direct numerical optimization. This supports the parameterized Liner Logarithmic steering law. And here is shown that there exists a simple linear relation between the terminal states and the parameters to be corrected. The relation easily makes the parameters determined to satisfy the terminal boundary conditions in real-time. The paper presents the guidance results for the practical application cases. The results show the guidance is well performed and satisfies the terminal boundary conditions specified. The strategy built and presented here does guarantee the robust solution in real-time excluding any optimization process, and it is found quite practical.
Deng, Zhimin; Tian, Tianhai
2014-07-29
The advances of systems biology have raised a large number of sophisticated mathematical models for describing the dynamic property of complex biological systems. One of the major steps in developing mathematical models is to estimate unknown parameters of the model based on experimentally measured quantities. However, experimental conditions limit the amount of data that is available for mathematical modelling. The number of unknown parameters in mathematical models may be larger than the number of observation data. The imbalance between the number of experimental data and number of unknown parameters makes reverse-engineering problems particularly challenging. To address the issue of inadequate experimental data, we propose a continuous optimization approach for making reliable inference of model parameters. This approach first uses a spline interpolation to generate continuous functions of system dynamics as well as the first and second order derivatives of continuous functions. The expanded dataset is the basis to infer unknown model parameters using various continuous optimization criteria, including the error of simulation only, error of both simulation and the first derivative, or error of simulation as well as the first and second derivatives. We use three case studies to demonstrate the accuracy and reliability of the proposed new approach. Compared with the corresponding discrete criteria using experimental data at the measurement time points only, numerical results of the ERK kinase activation module show that the continuous absolute-error criteria using both function and high order derivatives generate estimates with better accuracy. This result is also supported by the second and third case studies for the G1/S transition network and the MAP kinase pathway, respectively. This suggests that the continuous absolute-error criteria lead to more accurate estimates than the corresponding discrete criteria. We also study the robustness property of these three models to examine the reliability of estimates. Simulation results show that the models with estimated parameters using continuous fitness functions have better robustness properties than those using the corresponding discrete fitness functions. The inference studies and robustness analysis suggest that the proposed continuous optimization criteria are effective and robust for estimating unknown parameters in mathematical models.
The Inverse Optimal Control Problem for a Three-Loop Missile Autopilot
NASA Astrophysics Data System (ADS)
Hwang, Donghyeok; Tahk, Min-Jea
2018-04-01
The performance characteristics of the autopilot must have a fast response to intercept a maneuvering target and reasonable robustness for system stability under the effect of un-modeled dynamics and noise. By the conventional approach, the three-loop autopilot design is handled by time constant, damping factor and open-loop crossover frequency to achieve the desired performance requirements. Note that the general optimal theory can be also used to obtain the same gain as obtained from the conventional approach. The key idea of using optimal control technique for feedback gain design revolves around appropriate selection and interpretation of the performance index for which the control is optimal. This paper derives an explicit expression, which relates the weight parameters appearing in the quadratic performance index to the design parameters such as open-loop crossover frequency, phase margin, damping factor, or time constant, etc. Since all set of selection of design parameters do not guarantee existence of optimal control law, explicit inequalities, which are named the optimality criteria for the three-loop autopilot (OC3L), are derived to find out all set of design parameters for which the control law is optimal. Finally, based on OC3L, an efficient gain selection procedure is developed, where time constant is set to design objective and open-loop crossover frequency and phase margin as design constraints. The effectiveness of the proposed technique is illustrated through numerical simulations.
Helicopter TEM parameters analysis and system optimization based on time constant
NASA Astrophysics Data System (ADS)
Xiao, Pan; Wu, Xin; Shi, Zongyang; Li, Jutao; Liu, Lihua; Fang, Guangyou
2018-03-01
Helicopter transient electromagnetic (TEM) method is a kind of common geophysical prospecting method, widely used in mineral detection, underground water exploration and environment investigation. In order to develop an efficient helicopter TEM system, it is necessary to analyze and optimize the system parameters. In this paper, a simple and quantitative method is proposed to analyze the system parameters, such as waveform, power, base frequency, measured field and sampling time. A wire loop model is used to define a comprehensive 'time constant domain' that shows a range of time constant, analogous to a range of conductance, after which the characteristics of the system parameters in this domain is obtained. It is found that the distortion caused by the transmitting base frequency is less than 5% when the ratio of the transmitting period to the target time constant is greater than 6. When the sampling time window is less than the target time constant, the distortion caused by the sampling time window is less than 5%. According to this method, a helicopter TEM system, called CASHTEM, is designed, and flight test has been carried out in the known mining area. The test results show that the system has good detection performance, verifying the effectiveness of the method.
Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization
Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali
2014-01-01
Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584
Power oscillation suppression by robust SMES in power system with large wind power penetration
NASA Astrophysics Data System (ADS)
Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori
2009-01-01
The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.
Debbarma, Sanjoy; Saikia, Lalit Chandra; Sinha, Nidul
2014-03-01
Present work focused on automatic generation control (AGC) of a three unequal area thermal systems considering reheat turbines and appropriate generation rate constraints (GRC). A fractional order (FO) controller named as I(λ)D(µ) controller based on crone approximation is proposed for the first time as an appropriate technique to solve the multi-area AGC problem in power systems. A recently developed metaheuristic algorithm known as firefly algorithm (FA) is used for the simultaneous optimization of the gains and other parameters such as order of integrator (λ) and differentiator (μ) of I(λ)D(µ) controller and governor speed regulation parameters (R). The dynamic responses corresponding to optimized I(λ)D(µ) controller gains, λ, μ, and R are compared with that of classical integer order (IO) controllers such as I, PI and PID controllers. Simulation results show that the proposed I(λ)D(µ) controller provides more improved dynamic responses and outperforms the IO based classical controllers. Further, sensitivity analysis confirms the robustness of the so optimized I(λ)D(µ) controller to wide changes in system loading conditions and size and position of SLP. Proposed controller is also found to have performed well as compared to IO based controllers when SLP takes place simultaneously in any two areas or all the areas. Robustness of the proposed I(λ)D(µ) controller is also tested against system parameter variations. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jolanta Walery, Maria
2017-12-01
The article describes optimization studies aimed at analysing the impact of capital and current costs changes of medical waste incineration on the cost of the system management and its structure. The study was conducted on the example of an analysis of the system of medical waste management in the Podlaskie Province, in north-eastern Poland. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. capital and current costs of medical waste incineration on economic efficiency index (E) and the spatial structure of the system was determined. Optimization studies were conducted for the following cases: with a 25% increase in capital and current costs of incineration process, followed by 50%, 75% and 100% increase. As a result of the calculations, the highest cost of system operation was achieved at the level of 3143.70 PLN/t with the assumption of 100% increase in capital and current costs of incineration process. There was an increase in the economic efficiency index (E) by about 97% in relation to run 1.
NASA Astrophysics Data System (ADS)
Nik Raikhan, N. H.
2018-05-01
Geranyl butyrate has been synthesized successfully using our locally isolated lipase Geobacillus thermodenitrificans nr68 (LGT) as the fragrance ester with aim to be used in a nanotechnology fragrance application. We have used and modified few parameters from the previous research and then, continued with optimization of the synthesis by looking into degree of esterification and water content in the system. Butyric acid (C4), stearic acid (C18: 0), caprylic acid (C8), linolenic acid (C18: 3), myristic acid (C14), linoleic acid (C18: 2) and oleic acid (C18: 1) were used in the substrate selection. The yield of geranyl butyrate before the optimization was 31.68±0.01%. The optimum parameters for the synthesis of geranyl butyrate were recorded as temperature of 65°C, shaking rate at 200 rpm, 5.0 ml of geraniol and 0.40 ml of butyric acid and 4.0 ml of n-butanol and 0.40 ml of oleic acid. After the optimization, geranyl butyrate synthesis was increased by 297% as to compare with the value before the parameters were optimized. We also have significantly reduced water content as a byproduct of the esterification and managed to run the system a success. The ability thermotolerant lipase from Geobacillus thermodenitrificans (LGT) in this synthesis is novel to Malaysian fragrance industry.
Cope, Davis; Blakeslee, Barbara; McCourt, Mark E
2013-05-01
The difference-of-Gaussians (DOG) filter is a widely used model for the receptive field of neurons in the retina and lateral geniculate nucleus (LGN) and is a potential model in general for responses modulated by an excitatory center with an inhibitory surrounding region. A DOG filter is defined by three standard parameters: the center and surround sigmas (which define the variance of the radially symmetric Gaussians) and the balance (which defines the linear combination of the two Gaussians). These parameters are not directly observable and are typically determined by nonlinear parameter estimation methods applied to the frequency response function. DOG filters show both low-pass (optimal response at zero frequency) and bandpass (optimal response at a nonzero frequency) behavior. This paper reformulates the DOG filter in terms of a directly observable parameter, the zero-crossing radius, and two new (but not directly observable) parameters. In the two-dimensional parameter space, the exact region corresponding to bandpass behavior is determined. A detailed description of the frequency response characteristics of the DOG filter is obtained. It is also found that the directly observable optimal frequency and optimal gain (the ratio of the response at optimal frequency to the response at zero frequency) provide an alternate coordinate system for the bandpass region. Altogether, the DOG filter and its three standard implicit parameters can be determined by three directly observable values. The two-dimensional bandpass region is a potential tool for the analysis of populations of DOG filters (for example, populations of neurons in the retina or LGN), because the clustering of points in this parameter space may indicate an underlying organizational principle. This paper concentrates on circular Gaussians, but the results generalize to multidimensional radially symmetric Gaussians and are given as an appendix.
Parametric investigations of plasma characteristics in a remote inductively coupled plasma system
NASA Astrophysics Data System (ADS)
Shukla, Prasoon; Roy, Abhra; Jain, Kunal; Bhoj, Ananth
2016-09-01
Designing a remote plasma system involves source chamber sizing, selection of coils and/or electrodes to power the plasma, designing the downstream tubes, selection of materials used in the source and downstream regions, locations of inlets and outlets and finally optimizing the process parameter space of pressure, gas flow rates and power delivery. Simulations can aid in spatial and temporal plasma characterization in what are often inaccessible locations for experimental probes in the source chamber. In this paper, we report on simulations of a remote inductively coupled Argon plasma system using the modeling platform CFD-ACE +. The coupled multiphysics model description successfully address flow, chemistry, electromagnetics, heat transfer and plasma transport in the remote plasma system. The SimManager tool enables easy setup of parametric simulations to investigate the effect of varying the pressure, power, frequency, flow rates and downstream tube lengths. It can also enable the automatic solution of the varied parameters to optimize a user-defined objective function, which may be the integral ion and radical fluxes at the wafer. The fast run time coupled with the parametric and optimization capabilities can add significant insight and value in design and optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Wesley; Sattarivand, Mike
Objective: To optimize dual-energy parameters of ExacTrac stereoscopic x-ray imaging system for lung SBRT patients Methods: Simulated spectra and a lung phantom were used to optimize filter material, thickness, kVps, and weighting factors to obtain bone subtracted dual-energy images. Spektr simulations were used to identify material in the atomic number (Z) range [3–83] based on a metric defined to separate spectrums of high and low energies. Both energies used the same filter due to time constraints of image acquisition in lung SBRT imaging. A lung phantom containing bone, soft tissue, and a tumor mimicking material was imaged with filter thicknessesmore » range [0–1] mm and kVp range [60–140]. A cost function based on contrast-to-noise-ratio of bone, soft tissue, and tumor, as well as image noise content, was defined to optimize filter thickness and kVp. Using the optimized parameters, dual-energy images of anthropomorphic Rando phantom were acquired and evaluated for bone subtraction. Imaging dose was measured with dual-energy technique using tin filtering. Results: Tin was the material of choice providing the best energy separation, non-toxicity, and non-reactiveness. The best soft-tissue-only image in the lung phantom was obtained using 0.3 mm tin and [140, 80] kVp pair. Dual-energy images of the Rando phantom had noticeable bone elimination when compared to no filtration. Dose was lower with tin filtering compared to no filtration. Conclusions: Dual-energy soft-tissue imaging is feasible using ExacTrac stereoscopic imaging system utilizing a single tin filter for both high and low energies and optimized acquisition parameters.« less
Yang, Anxiong; Stingl, Michael; Berry, David A.; Lohscheller, Jörg; Voigt, Daniel; Eysholdt, Ulrich; Döllinger, Michael
2011-01-01
With the use of an endoscopic, high-speed camera, vocal fold dynamics may be observed clinically during phonation. However, observation and subjective judgment alone may be insufficient for clinical diagnosis and documentation of improved vocal function, especially when the laryngeal disease lacks any clear morphological presentation. In this study, biomechanical parameters of the vocal folds are computed by adjusting the corresponding parameters of a three-dimensional model until the dynamics of both systems are similar. First, a mathematical optimization method is presented. Next, model parameters (such as pressure, tension and masses) are adjusted to reproduce vocal fold dynamics, and the deduced parameters are physiologically interpreted. Various combinations of global and local optimization techniques are attempted. Evaluation of the optimization procedure is performed using 50 synthetically generated data sets. The results show sufficient reliability, including 0.07 normalized error, 96% correlation, and 91% accuracy. The technique is also demonstrated on data from human hemilarynx experiments, in which a low normalized error (0.16) and high correlation (84%) values were achieved. In the future, this technique may be applied to clinical high-speed images, yielding objective measures with which to document improved vocal function of patients with voice disorders. PMID:21877808
NASA Technical Reports Server (NTRS)
Stepner, D. E.; Mehra, R. K.
1973-01-01
A new method of extracting aircraft stability and control derivatives from flight test data is developed based on the maximum likelihood cirterion. It is shown that this new method is capable of processing data from both linear and nonlinear models, both with and without process noise and includes output error and equation error methods as special cases. The first application of this method to flight test data is reported for lateral maneuvers of the HL-10 and M2/F3 lifting bodies, including the extraction of stability and control derivatives in the presence of wind gusts. All the problems encountered in this identification study are discussed. Several different methods (including a priori weighting, parameter fixing and constrained parameter values) for dealing with identifiability and uniqueness problems are introduced and the results given. The method for the design of optimal inputs for identifying the parameters of linear dynamic systems is also given. The criterion used for the optimization is the sensitivity of the system output to the unknown parameters. Several simple examples are first given and then the results of an extensive stability and control dervative identification simulation for a C-8 aircraft are detailed.
Liu, Jianguo; Yang, Bo; Chen, Changzhen
2013-02-01
The optimization of operating parameters for the isolation of peroxidase from horseradish (Armoracia rusticana) roots with ultrafiltration (UF) technology was systemically studied. The effects of UF operating conditions on the transmission of proteins were quantified using the parameter scanning UF. These conditions included solution pH, ionic strength, stirring speed and permeate flux. Under optimized conditions, the purity of horseradish peroxidase (HRP) obtained was greater than 84 % after a two-stage UF process and the recovery of HRP from the feedstock was close to 90 %. The resulting peroxidase product was then analysed by isoelectric focusing, SDS-PAGE and circular dichroism, to confirm its isoelectric point, molecular weight and molecular secondary structure. The effects of calcium ion on HRP specific activities were also experimentally determined.
NASA Astrophysics Data System (ADS)
Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin
2017-10-01
The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.
Optimization of the Design of Pre-Signal System Using Improved Cellular Automaton
Li, Yan; Li, Ke; Tao, Siran; Chen, Kuanmin
2014-01-01
The pre-signal system can improve the efficiency of intersection approach under rational design. One of the main obstacles in optimizing the design of pre-signal system is that driving behaviors in the sorting area cannot be well evaluated. The NaSch model was modified by considering slow probability, turning-deceleration rules, and lane changing rules. It was calibrated with field observed data to explore the interactions among design parameters. The simulation results of the proposed model indicate that the length of sorting area, traffic demand, signal timing, and lane allocation are the most important influence factors. The recommendations of these design parameters are demonstrated. The findings of this paper can be foundations for the design of pre-signal system and show promising improvement in traffic mobility. PMID:25435871
Periodic orbits of hybrid systems and parameter estimation via AD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guckenheimer, John.; Phipps, Eric Todd; Casey, Richard
Rhythmic, periodic processes are ubiquitous in biological systems; for example, the heart beat, walking, circadian rhythms and the menstrual cycle. Modeling these processes with high fidelity as periodic orbits of dynamical systems is challenging because: (1) (most) nonlinear differential equations can only be solved numerically; (2) accurate computation requires solving boundary value problems; (3) many problems and solutions are only piecewise smooth; (4) many problems require solving differential-algebraic equations; (5) sensitivity information for parameter dependence of solutions requires solving variational equations; and (6) truncation errors in numerical integration degrade performance of optimization methods for parameter estimation. In addition, mathematical modelsmore » of biological processes frequently contain many poorly-known parameters, and the problems associated with this impedes the construction of detailed, high-fidelity models. Modelers are often faced with the difficult problem of using simulations of a nonlinear model, with complex dynamics and many parameters, to match experimental data. Improved computational tools for exploring parameter space and fitting models to data are clearly needed. This paper describes techniques for computing periodic orbits in systems of hybrid differential-algebraic equations and parameter estimation methods for fitting these orbits to data. These techniques make extensive use of automatic differentiation to accurately and efficiently evaluate derivatives for time integration, parameter sensitivities, root finding and optimization. The boundary value problem representing a periodic orbit in a hybrid system of differential algebraic equations is discretized via multiple-shooting using a high-degree Taylor series integration method [GM00, Phi03]. Numerical solutions to the shooting equations are then estimated by a Newton process yielding an approximate periodic orbit. A metric is defined for computing the distance between two given periodic orbits which is then minimized using a trust-region minimization algorithm [DS83] to find optimal fits of the model to a reference orbit [Cas04]. There are two different yet related goals that motivate the algorithmic choices listed above. The first is to provide a simple yet powerful framework for studying periodic motions in mechanical systems. Formulating mechanically correct equations of motion for systems of interconnected rigid bodies, while straightforward, is a time-consuming error prone process. Much of this difficulty stems from computing the acceleration of each rigid body in an inertial reference frame. The acceleration is computed most easily in a redundant set of coordinates giving the spatial positions of each body: since the acceleration is just the second derivative of these positions. Rather than providing explicit formulas for these derivatives, automatic differentiation can be employed to compute these quantities efficiently during the course of a simulation. The feasibility of these ideas was investigated by applying these techniques to the problem of locating stable walking motions for a disc-foot passive walking machine [CGMR01, Gar99, McG91]. The second goal for this work was to investigate the application of smooth optimization methods to periodic orbit parameter estimation problems in neural oscillations. Others [BB93, FUS93, VB99] have favored non-continuous optimization methods such as genetic algorithms, stochastic search methods, simulated annealing and brute-force random searches because of their perceived suitability to the landscape of typical objective functions in parameter space, particularly for multi-compartmental neural models. Here we argue that a carefully formulated optimization problem is amenable to Newton-like methods and has a sufficiently smooth landscape in parameter space that these methods can be an efficient and effective alternative. The plan of this paper is as follows. In Section 1 we provide a definition of hybrid systems that is the basis for modeling systems with discontinuities or discrete transitions. Sections 2, 3, and 4 briefly describe the Taylor series integration, periodic orbit tracking, and parameter estimation algorithms. For full treatments of these algorithms, we refer the reader to [Phi03, Cas04, CPG04]. The software implementation of these algorithms is briefly described in Section 5 with particular emphasis on the automatic differentiation software ADMC++. Finally, these algorithms are applied to the bipedal walking and Hodgkin-Huxley based neural oscillation problems discussed above in Section 6.« less
Existence of Optimal Controls for Compressible Viscous Flow
NASA Astrophysics Data System (ADS)
Doboszczak, Stefan; Mohan, Manil T.; Sritharan, Sivaguru S.
2018-03-01
We formulate a control problem for a distributed parameter system where the state is governed by the compressible Navier-Stokes equations. Introducing a suitable cost functional, the existence of an optimal control is established within the framework of strong solutions in three dimensions.
Application of grey system theory on the influencing parameters of aerobic granulation in SBR.
Bindhu, B K; Madhu, G
2017-09-01
Aerobic granulation is a promising technology for wastewater treatment. Four operational parameters were selected as influencing factors for this study. Aerobic granulation was experimented with three different values of organic loading rate (3, 6 and 9 kg COD m -3 d -1 ), superficial upflow air velocity (SUAV) (2, 3 and 4 cm s -1 ), settling time (3, 5 and 10 min) and volume exchange ratio (25%, 50% and 75%) in sequencing batch reactor in nine trials for the optimal performance of aerobic granulation. The influence of compared parameters on five reference parameters (sludge volume index (SVI), time taken for the appearance of granules, size and specific gravity of granules and chemical oxygen demand (COD) removal) was analyzed using grey system theory. The grey relational coefficients and grey entropy relational grade of each parameter were calculated. Hydrodynamic shear force in terms of SUAV was found to have the greatest influence on granule appearance, specific gravity of granules and COD removal efficiency. SVI is greatly affected by settling time. The optimal scopes of all the compared parameters were found.
Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan
2015-01-01
Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.
Optimized production planning model for a multi-plant cultivation system under uncertainty
NASA Astrophysics Data System (ADS)
Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng
2015-02-01
An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.
Consideration of computer limitations in implementing on-line controls. M.S. Thesis
NASA Technical Reports Server (NTRS)
Roberts, G. K.
1976-01-01
A formal statement of the optimal control problem which includes the interval of dicretization as an optimization parameter, and extend this to include selection of a control algorithm as part of the optimization procedure, is formulated. The performance of the scalar linear system depends on the discretization interval. Discrete-time versions of the output feedback regulator and an optimal compensator, and the use of these results in presenting an example of a system for which fast partial-state-feedback control better minimizes a quadratic cost than either a full-state feedback control or a compensator, are developed.
NASA Astrophysics Data System (ADS)
Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei
2018-03-01
Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.
Optimization of the Switch Mechanism in a Circuit Breaker Using MBD Based Simulation
Jang, Jin-Seok; Yoon, Chang-Gyu; Ryu, Chi-Young; Kim, Hyun-Woo; Bae, Byung-Tae; Yoo, Wan-Suk
2015-01-01
A circuit breaker is widely used to protect electric power system from fault currents or system errors; in particular, the opening mechanism in a circuit breaker is important to protect current overflow in the electric system. In this paper, multibody dynamic model of a circuit breaker including switch mechanism was developed including the electromagnetic actuator system. Since the opening mechanism operates sequentially, optimization of the switch mechanism was carried out to improve the current breaking time. In the optimization process, design parameters were selected from length and shape of each latch, which changes pivot points of bearings to shorten the breaking time. To validate optimization results, computational results were compared to physical tests with a high speed camera. Opening time of the optimized mechanism was decreased by 2.3 ms, which was proved by experiments. Switch mechanism design process can be improved including contact-latch system by using this process. PMID:25918740
Cahyadi, Christine; Heng, Paul Wan Sia; Chan, Lai Wah
2011-03-01
The aim of this study was to identify and optimize the critical process parameters of the newly developed Supercell quasi-continuous coater for optimal tablet coat quality. Design of experiments, aided by multivariate analysis techniques, was used to quantify the effects of various coating process conditions and their interactions on the quality of film-coated tablets. The process parameters varied included batch size, inlet temperature, atomizing pressure, plenum pressure, spray rate and coating level. An initial screening stage was carried out using a 2(6-1(IV)) fractional factorial design. Following these preliminary experiments, optimization study was carried out using the Box-Behnken design. Main response variables measured included drug-loading efficiency, coat thickness variation, and the extent of tablet damage. Apparent optimum conditions were determined by using response surface plots. The process parameters exerted various effects on the different response variables. Hence, trade-offs between individual optima were necessary to obtain the best compromised set of conditions. The adequacy of the optimized process conditions in meeting the combined goals for all responses was indicated by the composite desirability value. By using response surface methodology and optimization, coating conditions which produced coated tablets of high drug-loading efficiency, low incidences of tablet damage and low coat thickness variation were defined. Optimal conditions were found to vary over a large spectrum when different responses were considered. Changes in processing parameters across the design space did not result in drastic changes to coat quality, thereby demonstrating robustness in the Supercell coating process. © 2010 American Association of Pharmaceutical Scientists
RTDS implementation of an improved sliding mode based inverter controller for PV system.
Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M
2016-05-01
This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Rui-Zhuo; Xiao, Wen-Dong; Wei, Qing-Lai
2014-05-01
We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the performance index function reach an optimum. The expression of the performance index function for the chaotic system is first presented. The online ADP algorithm is presented to achieve optimal control. In the ADP structure, neural networks are used to construct a critic network and an action network, which can obtain an approximate performance index function and the control input, respectively. It is proven that the critic parameter error dynamics and the closed-loop chaotic systems are uniformly ultimately bounded exponentially. Our simulation results illustrate the performance of the established optimal control method.
Nalichowski, Adrian; Burmeister, Jay
2013-07-01
To compare optimization characteristics, plan quality, and treatment delivery efficiency between total marrow irradiation (TMI) plans using the new TomoTherapy graphic processing unit (GPU) based dose engine and CPU/cluster based dose engine. Five TMI plans created on an anthropomorphic phantom were optimized and calculated with both dose engines. The planning treatment volume (PTV) included all the bones from head to mid femur except for upper extremities. Evaluated organs at risk (OAR) consisted of lung, liver, heart, kidneys, and brain. The following treatment parameters were used to generate the TMI plans: field widths of 2.5 and 5 cm, modulation factors of 2 and 2.5, and pitch of either 0.287 or 0.43. The optimization parameters were chosen based on the PTV and OAR priorities and the plans were optimized with a fixed number of iterations. The PTV constraint was selected to ensure that at least 95% of the PTV received the prescription dose. The plans were evaluated based on D80 and D50 (dose to 80% and 50% of the OAR volume, respectively) and hotspot volumes within the PTVs. Gamma indices (Γ) were also used to compare planar dose distributions between the two modalities. The optimization and dose calculation times were compared between the two systems. The treatment delivery times were also evaluated. The results showed very good dosimetric agreement between the GPU and CPU calculated plans for any of the evaluated planning parameters indicating that both systems converge on nearly identical plans. All D80 and D50 parameters varied by less than 3% of the prescription dose with an average difference of 0.8%. A gamma analysis Γ(3%, 3 mm) < 1 of the GPU plan resulted in over 90% of calculated voxels satisfying Γ < 1 criterion as compared to baseline CPU plan. The average number of voxels meeting the Γ < 1 criterion for all the plans was 97%. In terms of dose optimization/calculation efficiency, there was a 20-fold reduction in planning time with the new GPU system. The average optimization/dose calculation time utilizing the traditional CPU/cluster based system was 579 vs 26.8 min for the GPU based system. There was no difference in the calculated treatment delivery time per fraction. Beam-on time varied based on field width and pitch and ranged between 15 and 28 min. The TomoTherapy GPU based dose engine is capable of calculating TMI treatment plans with plan quality nearly identical to plans calculated using the traditional CPU/cluster based system, while significantly reducing the time required for optimization and dose calculation.
Hyde, Damon; Schulz, Ralf; Brooks, Dana; Miller, Eric; Ntziachristos, Vasilis
2009-04-01
Hybrid imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can improve fluorescence imaging performance by incorporating anatomical x-ray CT information into the optical inversion problem. While the use of image priors has been investigated in the past, little is known about the optimal use of forward photon propagation models in hybrid optical systems. In this paper, we explore the impact on reconstruction accuracy of the use of propagation models of varying complexity, specifically in the context of these hybrid imaging systems where significant structural information is known a priori. Our results demonstrate that the use of generically known parameters provides near optimal performance, even when parameter mismatch remains.
Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms
NASA Astrophysics Data System (ADS)
Negro Maggio, Valentina; Iocchi, Luca
2015-02-01
Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.
NASA Astrophysics Data System (ADS)
Yang, Peng; Peng, Yongfei; Ye, Bin; Miao, Lixin
2017-09-01
This article explores the integrated optimization problem of location assignment and sequencing in multi-shuttle automated storage/retrieval systems under the modified 2n-command cycle pattern. The decision of storage and retrieval (S/R) location assignment and S/R request sequencing are jointly considered. An integer quadratic programming model is formulated to describe this integrated optimization problem. The optimal travel cycles for multi-shuttle S/R machines can be obtained to process S/R requests in the storage and retrieval request order lists by solving the model. The small-sized instances are optimally solved using CPLEX. For large-sized problems, two tabu search algorithms are proposed, in which the first come, first served and nearest neighbour are used to generate initial solutions. Various numerical experiments are conducted to examine the heuristics' performance and the sensitivity of algorithm parameters. Furthermore, the experimental results are analysed from the viewpoint of practical application, and a parameter list for applying the proposed heuristics is recommended under different real-life scenarios.
Optimization of pencil beam f-theta lens for high-accuracy metrology
NASA Astrophysics Data System (ADS)
Peng, Chuanqian; He, Yumei; Wang, Jie
2018-01-01
Pencil beam deflectometric profilers are common instruments for high-accuracy surface slope metrology of x-ray mirrors in synchrotron facilities. An f-theta optical system is a key optical component of the deflectometric profilers and is used to perform the linear angle-to-position conversion. Traditional optimization procedures of the f-theta systems are not directly related to the angle-to-position conversion relation and are performed with stops of large size and a fixed working distance, which means they may not be suitable for the design of f-theta systems working with a small-sized pencil beam within a working distance range for ultra-high-accuracy metrology. If an f-theta system is not well-designed, aberrations of the f-theta system will introduce many systematic errors into the measurement. A least-squares' fitting procedure was used to optimize the configuration parameters of an f-theta system. Simulations using ZEMAX software showed that the optimized f-theta system significantly suppressed the angle-to-position conversion errors caused by aberrations. Any pencil-beam f-theta optical system can be optimized with the help of this optimization method.
Bignardi, Chiara; Cavazza, Antonella; Laganà, Carmen; Salvadeo, Paola; Corradini, Claudio
2018-01-01
The interest towards "substances of emerging concerns" referred to objects intended to come into contact with food is recently growing. Such substances can be found in traces in simulants and in food products put in contact with plastic materials. In this context, it is important to set up analytical systems characterized by high sensitivity and to improve detection parameters to enhance signals. This work was aimed at optimizing a method based on UHPLC coupled to high resolution mass spectrometry to quantify the most common plastic additives, and able to detect the presence of polymers degradation products and coloring agents migrating from plastic re-usable containers. The optimization of mass spectrometric parameter settings for quantitative analysis of additives has been achieved by a chemometric approach, using a full factorial and d-optimal experimental designs, allowing to evaluate possible interactions between the investigated parameters. Results showed that the optimized method was characterized by improved features in terms of sensitivity respect to existing methods and was successfully applied to the analysis of a complex model food system such as chocolate put in contact with 14 polycarbonate tableware samples. A new procedure for sample pre-treatment was carried out and validated, showing high reliability. Results reported, for the first time, the presence of several molecules migrating to chocolate, in particular belonging to plastic additives, such Cyasorb UV5411, Tinuvin 234, Uvitex OB, and oligomers, whose amount was found to be correlated to age and degree of damage of the containers. Copyright © 2017 John Wiley & Sons, Ltd.
Concurrently adjusting interrelated control parameters to achieve optimal engine performance
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-12-01
Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.
NASA Astrophysics Data System (ADS)
De Santis, Alberto; Dellepiane, Umberto; Lucidi, Stefano
2012-11-01
In this paper we investigate the estimation problem for a model of the commodity prices. This model is a stochastic state space dynamical model and the problem unknowns are the state variables and the system parameters. Data are represented by the commodity spot prices, very seldom time series of Futures contracts are available for free. Both the system joint likelihood function (state variables and parameters) and the system marginal likelihood (the state variables are eliminated) function are addressed.
Braking System Integration in Dual Mode Systems
DOT National Transportation Integrated Search
1974-05-01
An optimal braking system for Dual Mode is a complex product of vast number of multivariate, interdependent parameters that encompass on-guideway and off-guideway operation as well as normal and emergency braking. : Details of, and interralations amo...
Ting, T O; Man, Ka Lok; Lim, Eng Gee; Leach, Mark
2014-01-01
In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area.
Ting, T. O.; Lim, Eng Gee
2014-01-01
In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area. PMID:25162041
Gomez-Cardona, Daniel; Hayes, John W; Zhang, Ran; Li, Ke; Cruz-Bastida, Juan Pablo; Chen, Guang-Hong
2018-05-01
Different low-signal correction (LSC) methods have been shown to efficiently reduce noise streaks and noise level in CT to provide acceptable images at low-radiation dose levels. These methods usually result in CT images with highly shift-variant and anisotropic spatial resolution and noise, which makes the parameter optimization process highly nontrivial. The purpose of this work was to develop a local task-based parameter optimization framework for LSC methods. Two well-known LSC methods, the adaptive trimmed mean (ATM) filter and the anisotropic diffusion (AD) filter, were used as examples to demonstrate how to use the task-based framework to optimize filter parameter selection. Two parameters, denoted by the set P, for each LSC method were included in the optimization problem. For the ATM filter, these parameters are the low- and high-signal threshold levels p l and p h ; for the AD filter, the parameters are the exponents δ and γ in the brightness gradient function. The detectability index d' under the non-prewhitening (NPW) mathematical observer model was selected as the metric for parameter optimization. The optimization problem was formulated as an unconstrained optimization problem that consisted of maximizing an objective function d'(P), where i and j correspond to the i-th imaging task and j-th spatial location, respectively. Since there is no explicit mathematical function to describe the dependence of d' on the set of parameters P for each LSC method, the optimization problem was solved via an experimentally measured d' map over a densely sampled parameter space. In this work, three high-contrast-high-frequency discrimination imaging tasks were defined to explore the parameter space of each of the LSC methods: a vertical bar pattern (task I), a horizontal bar pattern (task II), and a multidirectional feature (task III). Two spatial locations were considered for the analysis, a posterior region-of-interest (ROI) located within the noise streaks region and an anterior ROI, located further from the noise streaks region. Optimal results derived from the task-based detectability index metric were compared to other operating points in the parameter space with different noise and spatial resolution trade-offs. The optimal operating points determined through the d' metric depended on the interplay between the major spatial frequency components of each imaging task and the highly shift-variant and anisotropic noise and spatial resolution properties associated with each operating point in the LSC parameter space. This interplay influenced imaging performance the most when the major spatial frequency component of a given imaging task coincided with the direction of spatial resolution loss or with the dominant noise spatial frequency component; this was the case of imaging task II. The performance of imaging tasks I and III was influenced by this interplay in a smaller scale than imaging task II, since the major frequency component of task I was perpendicular to imaging task II, and because imaging task III did not have strong directional dependence. For both LSC methods, there was a strong dependence of the overall d' magnitude and shape of the contours on the spatial location within the phantom, particularly for imaging tasks II and III. The d' value obtained at the optimal operating point for each spatial location and imaging task was similar when comparing the LSC methods studied in this work. A local task-based detectability framework to optimize the selection of parameters for LSC methods was developed. The framework takes into account the potential shift-variant and anisotropic spatial resolution and noise properties to maximize the imaging performance of the CT system. Optimal parameters for a given LSC method depend strongly on the spatial location within the image object. © 2018 American Association of Physicists in Medicine.
The impact of the condenser on cytogenetic image quality in digital microscope system.
Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong
2013-01-01
Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%-70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang Baolong; Department of Mathematics and Physics, Hefei University, Hefei 230022; Yang Zhen
We propose a scheme for implementing a partial general quantum cloning machine with superconducting quantum-interference devices coupled to a nonresonant cavity. By regulating the time parameters, our system can perform optimal symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, and optimal symmetric economical phase-covariant cloning. In the scheme the cavity is only virtually excited, thus, the cavity decay is suppressed during the cloning operations.
With the development of Connected Vehicle Technology that facilitates wireless communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at...
NASA Technical Reports Server (NTRS)
Becus, G. A.; Lui, C. Y.; Venkayya, V. B.; Tischler, V. A.
1987-01-01
A method for simultaneous structural and control design of large flexible space structures (LFSS) to reduce vibration generated by disturbances is presented. Desired natural frequencies and damping ratios for the closed loop system are achieved by using a combination of linear quadratic regulator (LQR) synthesis and numerical optimization techniques. The state and control weighing matrices (Q and R) are expressed in terms of structural parameters such as mass and stiffness. The design parameters are selected by numerical optimization so as to minimize the weight of the structure and to achieve the desired closed-loop eigenvalues. An illustrative example of the design of a two bar truss is presented.
Parameter-induced stochastic resonance with a periodic signal
NASA Astrophysics Data System (ADS)
Li, Jian-Long; Xu, Bo-Hou
2006-12-01
In this paper conventional stochastic resonance (CSR) is realized by adding the noise intensity. This demonstrates that tuning the system parameters with fixed noise can make the noise play a constructive role and realize parameter-induced stochastic resonance (PSR). PSR can be interpreted as changing the intrinsic characteristic of the dynamical system to yield the cooperative effect between the stochastic-subjected nonlinear system and the external periodic force. This can be realized at any noise intensity, which greatly differs from CSR that is realized under the condition of the initial noise intensity not greater than the resonance level. Moreover, it is proved that PSR is different from the optimization of system parameters.
Quantum approximate optimization algorithm for MaxCut: A fermionic view
NASA Astrophysics Data System (ADS)
Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G.
2018-02-01
Farhi et al. recently proposed a class of quantum algorithms, the quantum approximate optimization algorithm (QAOA), for approximately solving combinatorial optimization problems (E. Farhi et al., arXiv:1411.4028;
Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles
Abid, Haider J.; Chen, Jie; Nassar, Ameen A.
2015-01-01
This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system. PMID:27351020
Experimental Design for Parameter Estimation of Gene Regulatory Networks
Timmer, Jens
2012-01-01
Systems biology aims for building quantitative models to address unresolved issues in molecular biology. In order to describe the behavior of biological cells adequately, gene regulatory networks (GRNs) are intensively investigated. As the validity of models built for GRNs depends crucially on the kinetic rates, various methods have been developed to estimate these parameters from experimental data. For this purpose, it is favorable to choose the experimental conditions yielding maximal information. However, existing experimental design principles often rely on unfulfilled mathematical assumptions or become computationally demanding with growing model complexity. To solve this problem, we combined advanced methods for parameter and uncertainty estimation with experimental design considerations. As a showcase, we optimized three simulated GRNs in one of the challenges from the Dialogue for Reverse Engineering Assessment and Methods (DREAM). This article presents our approach, which was awarded the best performing procedure at the DREAM6 Estimation of Model Parameters challenge. For fast and reliable parameter estimation, local deterministic optimization of the likelihood was applied. We analyzed identifiability and precision of the estimates by calculating the profile likelihood. Furthermore, the profiles provided a way to uncover a selection of most informative experiments, from which the optimal one was chosen using additional criteria at every step of the design process. In conclusion, we provide a strategy for optimal experimental design and show its successful application on three highly nonlinear dynamic models. Although presented in the context of the GRNs to be inferred for the DREAM6 challenge, the approach is generic and applicable to most types of quantitative models in systems biology and other disciplines. PMID:22815723
Adelmann, S; Baldhoff, T; Koepcke, B; Schembecker, G
2013-01-25
The selection of solvent systems in centrifugal partition chromatography (CPC) is the most critical point in setting up a separation. Therefore, lots of research was done on the topic in the last decades. But the selection of suitable operating parameters (mobile phase flow rate, rotational speed and mode of operation) with respect to hydrodynamics and pressure drop limit in CPC is still mainly driven by experience of the chromatographer. In this work we used hydrodynamic analysis for the prediction of most suitable operating parameters. After selection of different solvent systems with respect to partition coefficients for the target compound the hydrodynamics were visualized. Based on flow pattern and retention the operating parameters were selected for the purification runs of nybomycin derivatives that were carried out with a 200 ml FCPC(®) rotor. The results have proven that the selection of optimized operating parameters by analysis of hydrodynamics only is possible. As the hydrodynamics are predictable by the physical properties of the solvent system the optimized operating parameters can be estimated, too. Additionally, we found that dispersion and especially retention are improved if the less viscous phase is mobile. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Parameter Sweep and Optimization of Loosely Coupled Simulations Using the DAKOTA Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elwasif, Wael R; Bernholdt, David E; Pannala, Sreekanth
2012-01-01
The increasing availability of large scale computing capabilities has accelerated the development of high-fidelity coupled simulations. Such simulations typically involve the integration of models that implement various aspects of the complex phenomena under investigation. Coupled simulations are playing an integral role in fields such as climate modeling, earth systems modeling, rocket simulations, computational chemistry, fusion research, and many other computational fields. Model coupling provides scientists with systematic ways to virtually explore the physical, mathematical, and computational aspects of the problem. Such exploration is rarely done using a single execution of a simulation, but rather by aggregating the results from manymore » simulation runs that, together, serve to bring to light novel knowledge about the system under investigation. Furthermore, it is often the case (particularly in engineering disciplines) that the study of the underlying system takes the form of an optimization regime, where the control parameter space is explored to optimize an objective functions that captures system realizability, cost, performance, or a combination thereof. Novel and flexible frameworks that facilitate the integration of the disparate models into a holistic simulation are used to perform this research, while making efficient use of the available computational resources. In this paper, we describe the integration of the DAKOTA optimization and parameter sweep toolkit with the Integrated Plasma Simulator (IPS), a component-based framework for loosely coupled simulations. The integration allows DAKOTA to exploit the internal task and resource management of the IPS to dynamically instantiate simulation instances within a single IPS instance, allowing for greater control over the trade-off between efficiency of resource utilization and time to completion. We present a case study showing the use of the combined DAKOTA-IPS system to aid in the design of a lithium ion battery (LIB) cell, by studying a coupled system involving the electrochemistry and ion transport at the lower length scales and thermal energy transport at the device scales. The DAKOTA-IPS system provides a flexible tool for use in optimization and parameter sweep studies involving loosely coupled simulations that is suitable for use in situations where changes to the constituent components in the coupled simulation are impractical due to intellectual property or code heritage issues.« less
SU-E-I-43: Pediatric CT Dose and Image Quality Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, G; Singh, R
2014-06-01
Purpose: To design an approach to optimize radiation dose and image quality for pediatric CT imaging, and to evaluate expected performance. Methods: A methodology was designed to quantify relative image quality as a function of CT image acquisition parameters. Image contrast and image noise were used to indicate expected conspicuity of objects, and a wide-cone system was used to minimize scan time for motion avoidance. A decision framework was designed to select acquisition parameters as a weighted combination of image quality and dose. Phantom tests were used to acquire images at multiple techniques to demonstrate expected contrast, noise and dose.more » Anthropomorphic phantoms with contrast inserts were imaged on a 160mm CT system with tube voltage capabilities as low as 70kVp. Previously acquired clinical images were used in conjunction with simulation tools to emulate images at different tube voltages and currents to assess human observer preferences. Results: Examination of image contrast, noise, dose and tube/generator capabilities indicates a clinical task and object-size dependent optimization. Phantom experiments confirm that system modeling can be used to achieve the desired image quality and noise performance. Observer studies indicate that clinical utilization of this optimization requires a modified approach to achieve the desired performance. Conclusion: This work indicates the potential to optimize radiation dose and image quality for pediatric CT imaging. In addition, the methodology can be used in an automated parameter selection feature that can suggest techniques given a limited number of user inputs. G Stevens and R Singh are employees of GE Healthcare.« less
Qazi, Abroon Jamal; de Silva, Clarence W.
2014-01-01
This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control. PMID:24574868
Trade Services System Adaptation for Sustainable Development
NASA Astrophysics Data System (ADS)
Khrichenkov, A.; Shaufler, V.; Bannikova, L.
2017-11-01
Under market conditions, the trade services system in post-Soviet Russia, being one of the most important city infrastructures, loses its systematic and hierarchic consistency hence provoking the degradation of communicating transport systems and urban planning framework. This article describes the results of the research carried out to identify objects and object parameters that influence functioning of a locally significant trade services system. Based on the revealed consumer behaviour patterns, we propose methods to determine the optimal parameters of objects inside a locally significant trade services system.
A distributed system for fast alignment of next-generation sequencing data.
Srimani, Jaydeep K; Wu, Po-Yen; Phan, John H; Wang, May D
2010-12-01
We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.
Benchmarking image fusion system design parameters
NASA Astrophysics Data System (ADS)
Howell, Christopher L.
2013-06-01
A clear and absolute method for discriminating between image fusion algorithm performances is presented. This method can effectively be used to assist in the design and modeling of image fusion systems. Specifically, it is postulated that quantifying human task performance using image fusion should be benchmarked to whether the fusion algorithm, at a minimum, retained the performance benefit achievable by each independent spectral band being fused. The established benchmark would then clearly represent the threshold that a fusion system should surpass to be considered beneficial to a particular task. A genetic algorithm is employed to characterize the fused system parameters using a Matlab® implementation of NVThermIP as the objective function. By setting the problem up as a mixed-integer constraint optimization problem, one can effectively look backwards through the image acquisition process: optimizing fused system parameters by minimizing the difference between modeled task difficulty measure and the benchmark task difficulty measure. The results of an identification perception experiment are presented, where human observers were asked to identify a standard set of military targets, and used to demonstrate the effectiveness of the benchmarking process.
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Naghipour Ghezeljeh, Paria; Bednarcyk, Brett A.
2018-01-01
This document describes a recently developed analysis tool that enhances the resident capabilities of the Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) and its application. MAC/GMC is a composite material and laminate analysis software package developed at NASA Glenn Research Center. The primary focus of the current effort is to provide a graphical user interface (GUI) capability that helps users optimize highly nonlinear viscoplastic constitutive law parameters by fitting experimentally observed/measured stress-strain responses under various thermo-mechanical conditions for braided composites. The tool has been developed utilizing the MATrix LABoratory (MATLAB) (The Mathworks, Inc., Natick, MA) programming language. Illustrative examples shown are for a specific braided composite system wherein the matrix viscoplastic behavior is represented by a constitutive law described by seven parameters. The tool is general enough to fit any number of experimentally observed stress-strain responses of the material. The number of parameters to be optimized, as well as the importance given to each stress-strain response, are user choice. Three different optimization algorithms are included: (1) Optimization based on gradient method, (2) Genetic algorithm (GA) based optimization and (3) Particle Swarm Optimization (PSO). The user can mix and match the three algorithms. For example, one can start optimization with either 2 or 3 and then use the optimized solution to further fine tune with approach 1. The secondary focus of this paper is to demonstrate the application of this tool to optimize/calibrate parameters for a nonlinear viscoplastic matrix to predict stress-strain curves (for constituent and composite levels) at different rates, temperatures and/or loading conditions utilizing the Generalized Method of Cells. After preliminary validation of the tool through comparison with experimental results, a detailed virtual parametric study is presented wherein the combined effects of temperature and loading rate on the predicted response of a braided composite is investigated.
Chandrasekhar equations and computational algorithms for distributed parameter systems
NASA Technical Reports Server (NTRS)
Burns, J. A.; Ito, K.; Powers, R. K.
1984-01-01
The Chandrasekhar equations arising in optimal control problems for linear distributed parameter systems are considered. The equations are derived via approximation theory. This approach is used to obtain existence, uniqueness, and strong differentiability of the solutions and provides the basis for a convergent computation scheme for approximating feedback gain operators. A numerical example is presented to illustrate these ideas.
Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems
Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R
2006-01-01
Background We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. Results We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Conclusion Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems. PMID:17081289
Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems.
Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R
2006-11-02
We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems.
Parameter estimation of qubit states with unknown phase parameter
NASA Astrophysics Data System (ADS)
Suzuki, Jun
2015-02-01
We discuss a problem of parameter estimation for quantum two-level system, qubit system, in presence of unknown phase parameter. We analyze trade-off relations for mean square errors (MSEs) when estimating relevant parameters with separable measurements based on known precision bounds; the symmetric logarithmic derivative (SLD) Cramér-Rao (CR) bound and Hayashi-Gill-Massar (HGM) bound. We investigate the optimal measurement which attains the HGM bound and discuss its properties. We show that the HGM bound for relevant parameters can be attained asymptotically by using some fraction of given n quantum states to estimate the phase parameter. We also discuss the Holevo bound which can be attained asymptotically by a collective measurement.
NASA Astrophysics Data System (ADS)
Zuhdi, Shaifudin; Saputro, Dewi Retno Sari
2017-03-01
GWOLR model used for represent relationship between dependent variable has categories and scale of category is ordinal with independent variable influenced the geographical location of the observation site. Parameters estimation of GWOLR model use maximum likelihood provide system of nonlinear equations and hard to be found the result in analytic resolution. By finishing it, it means determine the maximum completion, this thing associated with optimizing problem. The completion nonlinear system of equations optimize use numerical approximation, which one is Newton Raphson method. The purpose of this research is to make iteration algorithm Newton Raphson and program using R software to estimate GWOLR model. Based on the research obtained that program in R can be used to estimate the parameters of GWOLR model by forming a syntax program with command "while".
Kumar Sahu, Rabindra; Panda, Sidhartha; Biswal, Ashutosh; Chandra Sekhar, G T
2016-03-01
In this paper, a novel Tilt Integral Derivative controller with Filter (TIDF) is proposed for Load Frequency Control (LFC) of multi-area power systems. Initially, a two-area power system is considered and the parameters of the TIDF controller are optimized using Differential Evolution (DE) algorithm employing an Integral of Time multiplied Absolute Error (ITAE) criterion. The superiority of the proposed approach is demonstrated by comparing the results with some recently published heuristic approaches such as Firefly Algorithm (FA), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) optimized PID controllers for the same interconnected power system. Investigations reveal that proposed TIDF controllers provide better dynamic response compared to PID controller in terms of minimum undershoots and settling times of frequency as well as tie-line power deviations following a disturbance. The proposed approach is also extended to two widely used three area test systems considering nonlinearities such as Generation Rate Constraint (GRC) and Governor Dead Band (GDB). To improve the performance of the system, a Thyristor Controlled Series Compensator (TCSC) is also considered and the performance of TIDF controller in presence of TCSC is investigated. It is observed that system performance improves with the inclusion of TCSC. Finally, sensitivity analysis is carried out to test the robustness of the proposed controller by varying the system parameters, operating condition and load pattern. It is observed that the proposed controllers are robust and perform satisfactorily with variations in operating condition, system parameters and load pattern. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Yung-Chang; Lee, Cheng-Kang
2017-10-01
This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.
NASA Technical Reports Server (NTRS)
Macready, William; Wolpert, David
2005-01-01
We demonstrate a new framework for analyzing and controlling distributed systems, by solving constrained optimization problems with an algorithm based on that framework. The framework is ar. information-theoretic extension of conventional full-rationality game theory to allow bounded rational agents. The associated optimization algorithm is a game in which agents control the variables of the optimization problem. They do this by jointly minimizing a Lagrangian of (the probability distribution of) their joint state. The updating of the Lagrange parameters in that Lagrangian is a form of automated annealing, one that focuses the multi-agent system on the optimal pure strategy. We present computer experiments for the k-sat constraint satisfaction problem and for unconstrained minimization of NK functions.
Stochastic optimization of GeantV code by use of genetic algorithms
Amadio, G.; Apostolakis, J.; Bandieramonte, M.; ...
2017-10-01
GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) andmore » handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. Here, the goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.« less
Stochastic optimization of GeantV code by use of genetic algorithms
NASA Astrophysics Data System (ADS)
Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Behera, S. P.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Hariri, F.; Jun, S. Y.; Konstantinov, D.; Kumawat, H.; Ivantchenko, V.; Lima, G.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.
2017-10-01
GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) and handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. The goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.
Stochastic optimization of GeantV code by use of genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amadio, G.; Apostolakis, J.; Bandieramonte, M.
GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) andmore » handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. Here, the goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.« less
Cankorur-Cetinkaya, Ayca; Dias, Joao M L; Kludas, Jana; Slater, Nigel K H; Rousu, Juho; Oliver, Stephen G; Dikicioglu, Duygu
2017-06-01
Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple-to-use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257).
A Novel Protocol for Model Calibration in Biological Wastewater Treatment
Zhu, Ao; Guo, Jianhua; Ni, Bing-Jie; Wang, Shuying; Yang, Qing; Peng, Yongzhen
2015-01-01
Activated sludge models (ASMs) have been widely used for process design, operation and optimization in wastewater treatment plants. However, it is still a challenge to achieve an efficient calibration for reliable application by using the conventional approaches. Hereby, we propose a novel calibration protocol, i.e. Numerical Optimal Approaching Procedure (NOAP), for the systematic calibration of ASMs. The NOAP consists of three key steps in an iterative scheme flow: i) global factors sensitivity analysis for factors fixing; ii) pseudo-global parameter correlation analysis for non-identifiable factors detection; and iii) formation of a parameter subset through an estimation by using genetic algorithm. The validity and applicability are confirmed using experimental data obtained from two independent wastewater treatment systems, including a sequencing batch reactor and a continuous stirred-tank reactor. The results indicate that the NOAP can effectively determine the optimal parameter subset and successfully perform model calibration and validation for these two different systems. The proposed NOAP is expected to use for automatic calibration of ASMs and be applied potentially to other ordinary differential equations models. PMID:25682959
Maximum life spiral bevel reduction design
NASA Technical Reports Server (NTRS)
Savage, M.; Prasanna, M. G.; Coe, H. H.
1992-01-01
Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque, and power. Significant parameters in the design are: the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear, and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.
NASA Astrophysics Data System (ADS)
Zhang, Chenglong; Guo, Ping
2017-10-01
The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.
Fast machine-learning online optimization of ultra-cold-atom experiments.
Wigley, P B; Everitt, P J; van den Hengel, A; Bastian, J W; Sooriyabandara, M A; McDonald, G D; Hardman, K S; Quinlivan, C D; Manju, P; Kuhn, C C N; Petersen, I R; Luiten, A N; Hope, J J; Robins, N P; Hush, M R
2016-05-16
We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our 'learner' discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system.
Fast machine-learning online optimization of ultra-cold-atom experiments
Wigley, P. B.; Everitt, P. J.; van den Hengel, A.; Bastian, J. W.; Sooriyabandara, M. A.; McDonald, G. D.; Hardman, K. S.; Quinlivan, C. D.; Manju, P.; Kuhn, C. C. N.; Petersen, I. R.; Luiten, A. N.; Hope, J. J.; Robins, N. P.; Hush, M. R.
2016-01-01
We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system. PMID:27180805
Di Molfetta, A; Santini, L; Forleo, G B; Minni, V; Mafhouz, K; Della Rocca, D G; Fresiello, L; Romeo, F; Ferrari, G
2012-01-01
In spite of cardiac resynchronization therapy (CRT) benefits, 25-30% of patients are still non responders. One of the possible reasons could be the non optimal atrioventricular (AV) and interventricular (VV) intervals settings. Our aim was to exploit a numerical model of cardiovascular system for AV and VV intervals optimization in CRT. A numerical model of the cardiovascular system CRT-dedicated was previously developed. Echocardiographic parameters, Systemic aortic pressure and ECG were collected in 20 consecutive patients before and after CRT. Patient data were simulated by the model that was used to optimize and set into the device the intervals at the baseline and at the follow up. The optimal AV and VV intervals were chosen to optimize the simulated selected variable/s on the base of both echocardiographic and electrocardiographic parameters. Intervals were different for each patient and in most cases, they changed at follow up. The model can well reproduce clinical data as verified with Bland Altman analysis and T-test (p > 0.05). Left ventricular remodeling was 38.7% and left ventricular ejection fraction increasing was 11% against the 15% and 6% reported in literature, respectively. The developed numerical model could reproduce patients conditions at the baseline and at the follow up including the CRT effects. The model could be used to optimize AV and VV intervals at the baseline and at the follow up realizing a personalized and dynamic CRT. A patient tailored CRT could improve patients outcome in comparison to literature data.
Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi
2014-03-04
Two mathematical models were developed for studying the effect of main fermentation temperature ( T MF ), immobilized cell mass ( M IC ) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model.
Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi
2014-01-01
Two mathematical models were developed for studying the effect of main fermentation temperature (T MF), immobilized cell mass (M IC) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model. PMID:26019512
Multidimensional Optimization of Signal Space Distance Parameters in WLAN Positioning
Brković, Milenko; Simić, Mirjana
2014-01-01
Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware. PMID:24757443
Modeling and optimization of a concentrated solar supercritical CO2 power plant
NASA Astrophysics Data System (ADS)
Osorio, Julian D.
Renewable energy sources are fundamental alternatives to supply the rising energy demand in the world and to reduce or replace fossil fuel technologies. In order to make renewable-based technologies suitable for commercial and industrial applications, two main challenges need to be solved: the design and manufacture of highly efficient devices and reliable systems to operate under intermittent energy supply conditions. In particular, power generation technologies based on solar energy are one of the most promising alternatives to supply the world energy demand and reduce the dependence on fossil fuel technologies. In this dissertation, the dynamic behavior of a Concentrated Solar Power (CSP) supercritical CO2 cycle is studied under different seasonal conditions. The system analyzed is composed of a central receiver, hot and cold thermal energy storage units, a heat exchanger, a recuperator, and multi-stage compression-expansion subsystems with intercoolers and reheaters between compressors and turbines respectively. The effects of operating and design parameters on the system performance are analyzed. Some of these parameters are the mass flow rate, intermediate pressures, number of compression-expansion stages, heat exchangers' effectiveness, multi-tank thermal energy storage, overall heat transfer coefficient between the solar receiver and the environment and the effective area of the recuperator. Energy and exergy models for each component of the system are developed to optimize operating parameters in order to lead to maximum efficiency. From the exergy analysis, the components with high contribution to exergy destruction were identified. These components, which represent an important potential of improvement, are the recuperator, the hot thermal energy storage tank and the solar receiver. Two complementary alternatives to improve the efficiency of concentrated solar thermal systems are proposed in this dissertation: the optimization of the system's operating parameters and optimization of less efficient components. The parametric optimization is developed for a 1MW reference CSP system with CO2 as the working fluid. The component optimization, focused on the less efficient components, comprises some design modifications to the traditional component configuration for the recuperator, the hot thermal energy storage tank and the solar receiver. The proposed optimization alternatives include the heat exchanger's effectiveness enhancement by optimizing fins shapes, multi-tank thermal energy storage configurations for the hot thermal energy storage tank and the incorporation of a transparent insulation material into the solar receiver. Some of the optimizations are conducted in a generalized way, using dimensionless models to be applicable no only to the CSP but also to other thermal systems. This project is therefore an effort to improve the efficiency of power generation systems based on solar energy in order to make them competitive with conventional fossil fuel power generation devices. The results show that the parametric optimization leads the system to an efficiency of about 21% and a maximum power output close to 1.5 MW. The process efficiencies obtained in this work, of more than 21%, are relatively good for a solar-thermal conversion system and are also comparable with efficiencies of conversion of high performance PV panels. The thermal energy storage allows the system to operate for several hours after sunset. This operating time is approximately increased from 220 to 480 minutes after optimization. The hot and cold thermal energy storage also lessens the temperature fluctuations by providing smooth changes of temperatures at the turbines' and compressors' inlets. Additional improvements in the overall system efficiency are possible by optimizing the less efficient components. In particular, the fin's effectiveness can be improved in more than 5% after its shape is optimized, increments in the efficiency of the thermal energy storage of about 5.7% are possible when the mass is divided into four tanks, and solar receiver efficiencies up to 70% can be maintained for high operating temperatures (~ 1200°C) when a transparent insulation material is incorporated to the receiver. The results obtained in this dissertation indicate that concentrated solar systems using supercritical CO2 could be a viable alternative to satisfying energy needs in desert areas with scarce water and fossil fuel resources.
NASA Astrophysics Data System (ADS)
Chao, Zhiqiang; Mao, Feiyue; Liu, Xiangbo; Li, Huaying; Han, Shousong
2017-01-01
In view of the large power of armored vehicle cooling system, the demand for high fan speed control and energy saving, this paper expounds the basic composition and principle of hydraulic-driven fan system and establishes the mathematical model of the system. Through the simulation analysis of different parameters, such as displacement of motor and working volume of fan system, the influences of performance parameters on the dynamic characteristic of hydraulic-driven fan system are obtained, which can provide theoretical guidance for system optimization design.
Sizing a rainwater harvesting cistern by minimizing costs
NASA Astrophysics Data System (ADS)
Pelak, Norman; Porporato, Amilcare
2016-10-01
Rainwater harvesting (RWH) has the potential to reduce water-related costs by providing an alternate source of water, in addition to relieving pressure on public water sources and reducing stormwater runoff. Existing methods for determining the optimal size of the cistern component of a RWH system have various drawbacks, such as specificity to a particular region, dependence on numerical optimization, and/or failure to consider the costs of the system. In this paper a formulation is developed for the optimal cistern volume which incorporates the fixed and distributed costs of a RWH system while also taking into account the random nature of the depth and timing of rainfall, with a focus on RWH to supply domestic, nonpotable uses. With rainfall inputs modeled as a marked Poisson process, and by comparing the costs associated with building a cistern with the costs of externally supplied water, an expression for the optimal cistern volume is found which minimizes the water-related costs. The volume is a function of the roof area, water use rate, climate parameters, and costs of the cistern and of the external water source. This analytically tractable expression makes clear the dependence of the optimal volume on the input parameters. An analysis of the rainfall partitioning also characterizes the efficiency of a particular RWH system configuration and its potential for runoff reduction. The results are compared to the RWH system at the Duke Smart Home in Durham, NC, USA to show how the method could be used in practice.
Learning the manifold of quality ultrasound acquisition.
El-Zehiry, Noha; Yan, Michelle; Good, Sara; Fang, Tong; Zhou, S Kevin; Grady, Leo
2013-01-01
Ultrasound acquisition is a challenging task that requires simultaneous adjustment of several acquisition parameters (the depth, the focus, the frequency and its operation mode). If the acquisition parameters are not properly chosen, the resulting image will have a poor quality and will degrade the patient diagnosis and treatment workflow. Several hardware-based systems for autotuning the acquisition parameters have been previously proposed, but these solutions were largely abandoned because they failed to properly account for tissue inhomogeneity and other patient-specific characteristics. Consequently, in routine practice the clinician either uses population-based parameter presets or manually adjusts the acquisition parameters for each patient during the scan. In this paper, we revisit the problem of autotuning the acquisition parameters by taking a completely novel approach and producing a solution based on image analytics. Our solution is inspired by the autofocus capability of conventional digital cameras, but is significantly more challenging because the number of acquisition parameters is large and the determination of "good quality" images is more difficult to assess. Surprisingly, we show that the set of acquisition parameters which produce images that are favored by clinicians comprise a 1D manifold, allowing for a real-time optimization to maximize image quality. We demonstrate our method for acquisition parameter autotuning on several live patients, showing that our system can start with a poor initial set of parameters and automatically optimize the parameters to produce high quality images.
Garg, Harish
2013-03-01
The main objective of the present paper is to propose a methodology for analyzing the behavior of the complex repairable industrial systems. In real-life situations, it is difficult to find the most optimal design policies for MTBF (mean time between failures), MTTR (mean time to repair) and related costs by utilizing available resources and uncertain data. For this, the availability-cost optimization model has been constructed for determining the optimal design parameters for improving the system design efficiency. The uncertainties in the data related to each component of the system are estimated with the help of fuzzy and statistical methodology in the form of the triangular fuzzy numbers. Using these data, the various reliability parameters, which affects the system performance, are obtained in the form of the fuzzy membership function by the proposed confidence interval based fuzzy Lambda-Tau (CIBFLT) methodology. The computed results by CIBFLT are compared with the existing fuzzy Lambda-Tau methodology. Sensitivity analysis on the system MTBF has also been addressed. The methodology has been illustrated through a case study of washing unit, the main part of the paper industry. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal Design of Calibration Signals in Space-Borne Gravitational Wave Detectors
NASA Technical Reports Server (NTRS)
Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran; Armano, Michele; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Dolesi, Rita; Ferraioli, Luigi; Ferroni, Valerio;
2016-01-01
Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterisation of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.
Optimal Design of Calibration Signals in Space Borne Gravitational Wave Detectors
NASA Technical Reports Server (NTRS)
Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran; Armano, Michele; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Dolesi, Rita; Ferraioli, Luigi; Thorpe, James I.
2014-01-01
Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterization of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.
Holistic Context-Sensitivity for Run-Time Optimization of Flexible Manufacturing Systems.
Scholze, Sebastian; Barata, Jose; Stokic, Dragan
2017-02-24
Highly flexible manufacturing systems require continuous run-time (self-) optimization of processes with respect to diverse parameters, e.g., efficiency, availability, energy consumption etc. A promising approach for achieving (self-) optimization in manufacturing systems is the usage of the context sensitivity approach based on data streaming from high amount of sensors and other data sources. Cyber-physical systems play an important role as sources of information to achieve context sensitivity. Cyber-physical systems can be seen as complex intelligent sensors providing data needed to identify the current context under which the manufacturing system is operating. In this paper, it is demonstrated how context sensitivity can be used to realize a holistic solution for (self-) optimization of discrete flexible manufacturing systems, by making use of cyber-physical systems integrated in manufacturing systems/processes. A generic approach for context sensitivity, based on self-learning algorithms, is proposed aiming at a various manufacturing systems. The new solution encompasses run-time context extractor and optimizer. Based on the self-learning module both context extraction and optimizer are continuously learning and improving their performance. The solution is following Service Oriented Architecture principles. The generic solution is developed and then applied to two very different manufacturing processes.
Holistic Context-Sensitivity for Run-Time Optimization of Flexible Manufacturing Systems
Scholze, Sebastian; Barata, Jose; Stokic, Dragan
2017-01-01
Highly flexible manufacturing systems require continuous run-time (self-) optimization of processes with respect to diverse parameters, e.g., efficiency, availability, energy consumption etc. A promising approach for achieving (self-) optimization in manufacturing systems is the usage of the context sensitivity approach based on data streaming from high amount of sensors and other data sources. Cyber-physical systems play an important role as sources of information to achieve context sensitivity. Cyber-physical systems can be seen as complex intelligent sensors providing data needed to identify the current context under which the manufacturing system is operating. In this paper, it is demonstrated how context sensitivity can be used to realize a holistic solution for (self-) optimization of discrete flexible manufacturing systems, by making use of cyber-physical systems integrated in manufacturing systems/processes. A generic approach for context sensitivity, based on self-learning algorithms, is proposed aiming at a various manufacturing systems. The new solution encompasses run-time context extractor and optimizer. Based on the self-learning module both context extraction and optimizer are continuously learning and improving their performance. The solution is following Service Oriented Architecture principles. The generic solution is developed and then applied to two very different manufacturing processes. PMID:28245564
Krill herd and piecewise-linear initialization algorithms for designing Takagi-Sugeno systems
NASA Astrophysics Data System (ADS)
Hodashinsky, I. A.; Filimonenko, I. V.; Sarin, K. S.
2017-07-01
A method for designing Takagi-Sugeno fuzzy systems is proposed which uses a piecewiselinear initialization algorithm for structure generation and a metaheuristic krill herd algorithm for parameter optimization. The obtained systems are tested against real data sets. The influence of some parameters of this algorithm on the approximation accuracy is analyzed. Estimates of the approximation accuracy and the number of fuzzy rules are compared with four known methods of design.
NASA Astrophysics Data System (ADS)
Zakynthinaki, M. S.; Stirling, J. R.
2007-01-01
Stochastic optimization is applied to the problem of optimizing the fit of a model to the time series of raw physiological (heart rate) data. The physiological response to exercise has been recently modeled as a dynamical system. Fitting the model to a set of raw physiological time series data is, however, not a trivial task. For this reason and in order to calculate the optimal values of the parameters of the model, the present study implements the powerful stochastic optimization method ALOPEX IV, an algorithm that has been proven to be fast, effective and easy to implement. The optimal parameters of the model, calculated by the optimization method for the particular athlete, are very important as they characterize the athlete's current condition. The present study applies the ALOPEX IV stochastic optimization to the modeling of a set of heart rate time series data corresponding to different exercises of constant intensity. An analysis of the optimization algorithm, together with an analytic proof of its convergence (in the absence of noise), is also presented.
Utilization-Based Modeling and Optimization for Cognitive Radio Networks
NASA Astrophysics Data System (ADS)
Liu, Yanbing; Huang, Jun; Liu, Zhangxiong
The cognitive radio technique promises to manage and allocate the scarce radio spectrum in the highly varying and disparate modern environments. This paper considers a cognitive radio scenario composed of two queues for the primary (licensed) users and cognitive (unlicensed) users. According to the Markov process, the system state equations are derived and an optimization model for the system is proposed. Next, the system performance is evaluated by calculations which show the rationality of our system model. Furthermore, discussions among different parameters for the system are presented based on the experimental results.
A minimum cost tolerance allocation method for rocket engines and robust rocket engine design
NASA Technical Reports Server (NTRS)
Gerth, Richard J.
1993-01-01
Rocket engine design follows three phases: systems design, parameter design, and tolerance design. Systems design and parameter design are most effectively conducted in a concurrent engineering (CE) environment that utilize methods such as Quality Function Deployment and Taguchi methods. However, tolerance allocation remains an art driven by experience, handbooks, and rules of thumb. It was desirable to develop and optimization approach to tolerancing. The case study engine was the STME gas generator cycle. The design of the major components had been completed and the functional relationship between the component tolerances and system performance had been computed using the Generic Power Balance model. The system performance nominals (thrust, MR, and Isp) and tolerances were already specified, as were an initial set of component tolerances. However, the question was whether there existed an optimal combination of tolerances that would result in the minimum cost without any degradation in system performance.
Stochastic seismic response of building with super-elastic damper
NASA Astrophysics Data System (ADS)
Gur, Sourav; Mishra, Sudib Kumar; Roy, Koushik
2016-05-01
Hysteretic yield dampers are widely employed for seismic vibration control of buildings. An improved version of such damper has been proposed recently by exploiting the superelastic force-deformation characteristics of the Shape-Memory-Alloy (SMA). Although a number of studies have illustrated the performance of such damper, precise estimate of the optimal parameters and performances, along with the comparison with the conventional yield damper is lacking. Presently, the optimal parameters for the superelastic damper are proposed by conducting systematic design optimization, in which, the stochastic response serves as the objective function, evaluated through nonlinear random vibration analysis. These optimal parameters can be employed to establish an initial design for the SMA-damper. Further, a comparison among the optimal responses is also presented in order to assess the improvement that can be achieved by the superelastic damper over the yield damper. The consistency of the improvements is also checked by considering the anticipated variation in the system parameters as well as seismic loading condition. In spite of the improved performance of super-elastic damper, the available variant of SMA(s) is quite expensive to limit their applicability. However, recently developed ferrous SMA are expected to offer even superior performance along with improved cost effectiveness, that can be studied through a life cycle cost analysis in future work.
Linearization methods for optimizing the low thrust spacecraft trajectory: Theoretical aspects
NASA Astrophysics Data System (ADS)
Kazmerchuk, P. V.
2016-12-01
The theoretical aspects of the modified linearization method, which makes it possible to solve a wide class of nonlinear problems on optimizing low-thrust spacecraft trajectories (V. V. Efanov et al., 2009; V. V. Khartov et al., 2010) are examined. The main modifications of the linearization method are connected with its refinement for optimizing the main dynamic systems and design parameters of the spacecraft.
Preparation and Analysis of Platinum Thin Films for High Temperature Sensor Applications
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Laster, Kimala L. H.
2005-01-01
A study has been made of platinum thin films for application as high temperature resistive sensors. To support NASA Glenn Research Center s high temperature thin film sensor effort, a magnetron sputtering system was installed recently in the GRC Microsystems Fabrication Clean Room Facility. Several samples of platinum films were prepared using various system parameters to establish run conditions. These films were characterized with the intended application of being used as resistive sensing elements, either for temperature or strain measurement. The resistances of several patterned sensors were monitored to document the effect of changes in parameters of deposition and annealing. The parameters were optimized for uniformity and intrinsic strain. The evaporation of platinum via oxidation during annealing over 900 C was documented, and a model for the process developed. The film adhesion was explored on films annealed to 1000 C with various bondcoats on fused quartz and alumina. From this compiled data, a list of optimal parameters and characteristics determined for patterned platinum thin films is given.
NASA Astrophysics Data System (ADS)
Iqbal, Z.; Mehmood, Zaffar; Ahmad, Bilal
2018-05-01
This paper concerns an application to optimal energy by incorporating thermal equilibrium on MHD-generalised non-Newtonian fluid model with melting heat effect. Highly nonlinear system of partial differential equations is simplified to a nonlinear system using boundary layer approach and similarity transformations. Numerical solutions of velocity and temperature profile are obtained by using shooting method. The contribution of entropy generation is appraised on thermal and fluid velocities. Physical features of relevant parameters have been discussed by plotting graphs and tables. Some noteworthy findings are: Prandtl number, power law index and Weissenberg number contribute in lowering mass boundary layer thickness and entropy effect and enlarging thermal boundary layer thickness. However, an increasing mass boundary layer effect is only due to melting heat parameter. Moreover, thermal boundary layers have same trend for all parameters, i.e., temperature enhances with increase in values of significant parameters. Similarly, Hartman and Weissenberg numbers enhance Bejan number.
NASA Astrophysics Data System (ADS)
Gupta, M.; Bolten, J. D.; Lakshmi, V.
2015-12-01
The Mekong River is the longest river in Southeast Asia and the world's eighth largest in discharge with draining an area of 795,000 km² from the eastern watershed of the Tibetan Plateau to the Mekong Delta including three provinces of China, Myanmar, Lao PDR, Thailand, Cambodia and Viet Nam. This makes the life of people highly vulnerable to availability of the water resources as soil moisture is one of the major fundamental variables in global hydrological cycles. The day-to-day variability in soil moisture on field to global scales is an important quantity for early warning systems for events like flooding and drought. In addition to the extreme situations the accurate soil moisture retrieval are important for agricultural irrigation scheduling and water resource management. The present study proposes a method to determine the effective soil hydraulic parameters directly from information available for the soil moisture state from the recently launched SMAP (L-band) microwave remote sensing observations. Since the optimized parameters are based on the near surface soil moisture information, further constraints are applied during the numerical simulation through the assimilation of GRACE Total Water Storage (TWS) within the physically based land surface model. This work addresses the improvement of available water capacity as the soil hydraulic parameters are optimized through the utilization of satellite-retrieved near surface soil moisture. The initial ranges of soil hydraulic parameters are taken in correspondence with the values available from the literature based on FAO. The optimization process is divided into two steps: the state variable are optimized and the optimal parameter values are then transferred for retrieving soil moisture and streamflow. A homogeneous soil system is considered as the soil moisture from sensors such as AMSR-E/SMAP can only be retrieved for the top few centimeters of soil. To evaluate the performance of the system in helping improve simulation accuracy and whether they can be used to obtain soil moisture profiles at poorly gauged catchments the root mean square error (RMSE) and Mean Bias error (MBE) are used to measure the performance of the simulations.
NASA Astrophysics Data System (ADS)
Abu, M. Y.; Norizan, N. S.; Rahman, M. S. Abd
2018-04-01
Remanufacturing is a sustainability strategic planning which transforming the end of life product to as new performance with their warranty is same or better than the original product. In order to quantify the advantages of this strategy, all the processes must implement the optimization to reach the ultimate goal and reduce the waste generated. The aim of this work is to evaluate the criticality of parameters on the end of life crankshaft based on Taguchi’s orthogonal array. Then, estimate the cost using traditional cost accounting by considering the critical parameters. By implementing the optimization, the remanufacturer obviously produced lower cost and waste during production with higher potential to gain the profit. Mahalanobis-Taguchi System was proven as a powerful method of optimization that revealed the criticality of parameters. When subjected the method to the MAN engine model, there was 5 out of 6 crankpins were critical which need for grinding process while no changes happened to the Caterpillar engine model. Meanwhile, the cost per unit for MAN engine model was changed from MYR1401.29 to RM1251.29 while for Caterpillar engine model have no changes due to the no changes on criticality of parameters consideration. Therefore, by integrating the optimization and costing through remanufacturing process, a better decision can be achieved after observing the potential profit will be gained. The significant of output demonstrated through promoting sustainability by reducing re-melting process of damaged parts to ensure consistent benefit of return cores.
Load Balancing in Multi Cloud Computing Environment with Genetic Algorithm
NASA Astrophysics Data System (ADS)
Vhansure, Fularani; Deshmukh, Apurva; Sumathy, S.
2017-11-01
Cloud is a pool of resources that is available on pay per use model. It provides services to the user which is increasing rapidly. Load balancing is an issue because it cannot handle so many requests at a time. It is also known as NP complete problem. In traditional system the functions consist of various parameter values to maximise it in order to achieve best optimal individualsolutions. Challenge is when there are many parameters of solutionsin the system space. Another challenge is to optimize the function which is much more complex. In this paper, various techniques to handle load balancing virtually (VM) as well as physically (nodes) using genetic algorithm is discussed.
Blakes, Jonathan; Twycross, Jamie; Romero-Campero, Francisco Jose; Krasnogor, Natalio
2011-12-01
The Infobiotics Workbench is an integrated software suite incorporating model specification, simulation, parameter optimization and model checking for Systems and Synthetic Biology. A modular model specification allows for straightforward creation of large-scale models containing many compartments and reactions. Models are simulated either using stochastic simulation or numerical integration, and visualized in time and space. Model parameters and structure can be optimized with evolutionary algorithms, and model properties calculated using probabilistic model checking. Source code and binaries for Linux, Mac and Windows are available at http://www.infobiotics.org/infobiotics-workbench/; released under the GNU General Public License (GPL) version 3. Natalio.Krasnogor@nottingham.ac.uk.
Techniques for designing rotorcraft control systems
NASA Technical Reports Server (NTRS)
Yudilevitch, Gil; Levine, William S.
1994-01-01
Over the last two and a half years we have been demonstrating a new methodology for the design of rotorcraft flight control systems (FCS) to meet handling qualities requirements. This method is based on multicriterion optimization as implemented in the optimization package CONSOL-OPTCAD (C-O). This package has been developed at the Institute for Systems Research (ISR) at the University of Maryland at College Park. This design methodology has been applied to the design of a FCS for the UH-60A helicopter in hover having the ADOCS control structure. The controller parameters have been optimized to meet the ADS-33C specifications. Furthermore, using this approach, an optimal (minimum control energy) controller has been obtained and trade-off studies have been performed.
NASA Astrophysics Data System (ADS)
Dmitriev, Mikhail G.; Makarov, Dmitry A.
2016-08-01
We carried out analysis of near optimality of one computationally effective nonlinear stabilizing control built for weakly nonlinear systems with coefficients depending on the state and the formal small parameter. First investigation of that problem was made in [M. G. Dmitriev, and D. A. Makarov, "The suboptimality of stabilizing regulator in a quasi-linear system with state-depended coefficients," in 2016 International Siberian Conference on Control and Communications (SIBCON) Proceedings, National Research University, Moscow, 2016]. In this paper, another optimal control and gain matrix representations were used and theoretical results analogous to cited work above were obtained. Also as in the cited work above the form of quality criterion on which this close-loop control is optimal was constructed.
Capturing planar shapes by approximating their outlines
NASA Astrophysics Data System (ADS)
Sarfraz, M.; Riyazuddin, M.; Baig, M. H.
2006-05-01
A non-deterministic evolutionary approach for approximating the outlines of planar shapes has been developed. Non-uniform Rational B-splines (NURBS) have been utilized as an underlying approximation curve scheme. Simulated Annealing heuristic is used as an evolutionary methodology. In addition to independent studies of the optimization of weight and knot parameters of the NURBS, a separate scheme has also been developed for the optimization of weights and knots simultaneously. The optimized NURBS models have been fitted over the contour data of the planar shapes for the ultimate and automatic output. The output results are visually pleasing with respect to the threshold provided by the user. A web-based system has also been developed for the effective and worldwide utilization. The objective of this system is to provide the facility to visualize the output to the whole world through internet by providing the freedom to the user for various desired input parameters setting in the algorithm designed.
Quadruped Robot Locomotion using a Global Optimization Stochastic Algorithm
NASA Astrophysics Data System (ADS)
Oliveira, Miguel; Santos, Cristina; Costa, Lino; Ferreira, Manuel
2011-09-01
The problem of tuning nonlinear dynamical systems parameters, such that the attained results are considered good ones, is a relevant one. This article describes the development of a gait optimization system that allows a fast but stable robot quadruped crawl gait. We combine bio-inspired Central Patterns Generators (CPGs) and Genetic Algorithms (GA). CPGs are modelled as autonomous differential equations, that generate the necessar y limb movement to perform the required walking gait. The GA finds parameterizations of the CPGs parameters which attain good gaits in terms of speed, vibration and stability. Moreover, two constraint handling techniques based on tournament selection and repairing mechanism are embedded in the GA to solve the proposed constrained optimization problem and make the search more efficient. The experimental results, performed on a simulated Aibo robot, demonstrate that our approach allows low vibration with a high velocity and wide stability margin for a quadruped slow crawl gait.
Design of a nonlinear torsional vibration absorber
NASA Astrophysics Data System (ADS)
Tahir, Ammaar Bin
Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is larger than that in the latter. A nonlinear absorber design has been proposed comprising of thin beams as elastic elements. The geometric configuration of the proposed design has been shown to provide cubic stiffness nonlinearity in torsion. The values of design variables, namely the strength of nonlinearity alpha and torsional stiffness kalpha, were obtained by optimizing dimensions and material properties of the beams for a maximum vibration energy dissipation in the nonlinear absorber. A parametric study has also been conducted to analyze the effect of the magnitude of excitation provided to the system on the performance of a nonlinear absorber. It has been shown that the nonlinear absorber turns out to be more effective in terms of energy dissipation as compared to a linear absorber with an increase in the excitation level applied to the system.
Min-Chi Hsiao; Pen-Ning Yu; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W
2014-01-01
New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.
NASA Astrophysics Data System (ADS)
Wang, Z.
2015-12-01
For decades, distributed and lumped hydrological models have furthered our understanding of hydrological system. The development of hydrological simulation in large scale and high precision elaborated the spatial descriptions and hydrological behaviors. Meanwhile, the new trend is also followed by the increment of model complexity and number of parameters, which brings new challenges of uncertainty quantification. Generalized Likelihood Uncertainty Estimation (GLUE) has been widely used in uncertainty analysis for hydrological models referring to Monte Carlo method coupled with Bayesian estimation. However, the stochastic sampling method of prior parameters adopted by GLUE appears inefficient, especially in high dimensional parameter space. The heuristic optimization algorithms utilizing iterative evolution show better convergence speed and optimality-searching performance. In light of the features of heuristic optimization algorithms, this study adopted genetic algorithm, differential evolution, shuffled complex evolving algorithm to search the parameter space and obtain the parameter sets of large likelihoods. Based on the multi-algorithm sampling, hydrological model uncertainty analysis is conducted by the typical GLUE framework. To demonstrate the superiority of the new method, two hydrological models of different complexity are examined. The results shows the adaptive method tends to be efficient in sampling and effective in uncertainty analysis, providing an alternative path for uncertainty quantilization.
Determination of the optimal mesh parameters for Iguassu centrifuge flow and separation calculations
NASA Astrophysics Data System (ADS)
Romanihin, S. M.; Tronin, I. V.
2016-09-01
We present the method and the results of the determination for optimal computational mesh parameters for axisymmetric modeling of flow and separation in the Iguasu gas centrifuge. The aim of this work was to determine the mesh parameters which provide relatively low computational cost whithout loss of accuracy. We use direct search optimization algorithm to calculate optimal mesh parameters. Obtained parameters were tested by the calculation of the optimal working regime of the Iguasu GC. Separative power calculated using the optimal mesh parameters differs less than 0.5% from the result obtained on the detailed mesh. Presented method can be used to determine optimal mesh parameters of the Iguasu GC with different rotor speeds.
A Framework for Multifaceted Evaluation of Student Models
ERIC Educational Resources Information Center
Huang, Yun; González-Brenes, José P.; Kumar, Rohit; Brusilovsky, Peter
2015-01-01
Latent variable models, such as the popular Knowledge Tracing method, are often used to enable adaptive tutoring systems to personalize education. However, finding optimal model parameters is usually a difficult non-convex optimization problem when considering latent variable models. Prior work has reported that latent variable models obtained…
Nonlinear optimal control for the synchronization of chaotic and hyperchaotic finance systems
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Loia, V.; Ademi, S.; Ghosh, T.
2017-11-01
It is possible to make specific finance systems get synchronized to other finance systems exhibiting chaotic and hyperchaotic dynamics, by applying nonlinear optimal (H-infinity) control. This signifies that chaotic behavior can be generated in finance systems by exerting a suitable control input. Actually, a lead financial system is considered which exhibits inherently chaotic dynamics. Moreover, a follower finance system is introduced having parameters in its model that inherently prohibit the appearance of chaotic dynamics. Through the application of a suitable nonlinear optimal (H-infinity) control input it is proven that the follower finance system can replicate the chaotic dynamics of the lead finance system. By applying Lyapunov analysis it is proven that asymptotically the follower finance system gets synchronized with the lead system and that the tracking error between the state variables of the two systems vanishes.
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Bhat, R. B.
1979-01-01
A finite element program is linked with a general purpose optimization program in a 'programing system' which includes user supplied codes that contain problem dependent formulations of the design variables, objective function and constraints. The result is a system adaptable to a wide spectrum of structural optimization problems. In a sample of numerical examples, the design variables are the cross-sectional dimensions and the parameters of overall shape geometry, constraints are applied to stresses, displacements, buckling and vibration characteristics, and structural mass is the objective function. Thin-walled, built-up structures and frameworks are included in the sample. Details of the system organization and characteristics of the component programs are given.
Optimal control of Formula One car energy recovery systems
NASA Astrophysics Data System (ADS)
Limebeer, D. J. N.; Perantoni, G.; Rao, A. V.
2014-10-01
The utility of orthogonal collocation methods in the solution of optimal control problems relating to Formula One racing is demonstrated. These methods can be used to optimise driver controls such as the steering, braking and throttle usage, and to optimise vehicle parameters such as the aerodynamic down force and mass distributions. Of particular interest is the optimal usage of energy recovery systems (ERSs). Contemporary kinetic energy recovery systems are studied and compared with future hybrid kinetic and thermal/heat ERSs known as ERS-K and ERS-H, respectively. It is demonstrated that these systems, when properly controlled, can produce contemporary lap time using approximately two-thirds of the fuel required by earlier generation (2013 and prior) vehicles.
Multiobjective constraints for climate model parameter choices: Pragmatic Pareto fronts in CESM1
NASA Astrophysics Data System (ADS)
Langenbrunner, B.; Neelin, J. D.
2017-09-01
Global climate models (GCMs) are examples of high-dimensional input-output systems, where model output is a function of many variables, and an update in model physics commonly improves performance in one objective function (i.e., measure of model performance) at the expense of degrading another. Here concepts from multiobjective optimization in the engineering literature are used to investigate parameter sensitivity and optimization in the face of such trade-offs. A metamodeling technique called cut high-dimensional model representation (cut-HDMR) is leveraged in the context of multiobjective optimization to improve GCM simulation of the tropical Pacific climate, focusing on seasonal precipitation, column water vapor, and skin temperature. An evolutionary algorithm is used to solve for Pareto fronts, which are surfaces in objective function space along which trade-offs in GCM performance occur. This approach allows the modeler to visualize trade-offs quickly and identify the physics at play. In some cases, Pareto fronts are small, implying that trade-offs are minimal, optimal parameter value choices are more straightforward, and the GCM is well-functioning. In all cases considered here, the control run was found not to be Pareto-optimal (i.e., not on the front), highlighting an opportunity for model improvement through objectively informed parameter selection. Taylor diagrams illustrate that these improvements occur primarily in field magnitude, not spatial correlation, and they show that specific parameter updates can improve fields fundamental to tropical moist processes—namely precipitation and skin temperature—without significantly impacting others. These results provide an example of how basic elements of multiobjective optimization can facilitate pragmatic GCM tuning processes.
Gao, Xiang-Ming; Yang, Shi-Feng; Pan, San-Bo
2017-01-01
Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.
2017-01-01
Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization. PMID:28912803
Optimization of porous microchannel heat exchanger
NASA Astrophysics Data System (ADS)
Kozhukhov, N. N.; Konovalov, D. A.
2017-11-01
The technical progress in information and communication sphere leads to a sharp increase in the use of radio electronic devices. Functioning of radio electronics is accompanied by release of thermal energy, which must be diverted from the heat-stressed element. Moreover, using of electronics at negative temperatures, on the contrary, requires supply of a certain amount of heat to start the system. There arises the task of creating a system that allows both to supply and to divert the necessary amount of thermal energy. The development of complex thermostabilization systems for radio electronic equipment is due to increasing the efficiency of each of its elements separately. For more efficient operation of a heat exchanger, which directly affects the temperature of the heat-stressed element, it is necessary to calculate the mode characteristics and to take into account the effect of its design parameters. The results of optimizing the microchannel heat exchanger are presented in the article. The target optimization functions are the mass, pressure drop and temperature. The parameters of optimization are the layout of porous fins, their geometric dimensions and coolant flow. For the given conditions, the optimum variant of porous microchannel heat exchanger is selected.
An optimal beam alignment method for large-scale distributed space surveillance radar system
NASA Astrophysics Data System (ADS)
Huang, Jian; Wang, Dongya; Xia, Shuangzhi
2018-06-01
Large-scale distributed space surveillance radar is a very important ground-based equipment to maintain a complete catalogue for Low Earth Orbit (LEO) space debris. However, due to the thousands of kilometers distance between each sites of the distributed radar system, how to optimally implement the Transmitting/Receiving (T/R) beams alignment in a great space using the narrow beam, which proposed a special and considerable technical challenge in the space surveillance area. According to the common coordinate transformation model and the radar beam space model, we presented a two dimensional projection algorithm for T/R beam using the direction angles, which could visually describe and assess the beam alignment performance. Subsequently, the optimal mathematical models for the orientation angle of the antenna array, the site location and the T/R beam coverage are constructed, and also the beam alignment parameters are precisely solved. At last, we conducted the optimal beam alignment experiments base on the site parameters of Air Force Space Surveillance System (AFSSS). The simulation results demonstrate the correctness and effectiveness of our novel method, which can significantly stimulate the construction for the LEO space debris surveillance equipment.
Methods of Optimizing X-Ray Optical Prescriptions for Wide-Field Applications
NASA Technical Reports Server (NTRS)
Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.
2010-01-01
We are working on the development of a method for optimizing wide-field x-ray telescope mirror prescriptions, including polynomial coefficients, mirror shell relative displacements, and (assuming 4 focal plane detectors) detector placement and tilt that does not require a search through the multi-dimensional parameter space. Under the assumption that the parameters are small enough that second order expansions are valid, we show that the performance at the detector surface can be expressed as a quadratic function of the parameters with numerical coefficients derived from a ray trace through the underlying Wolter I optic. The best values for the parameters are found by solving the linear system of equations creating by setting derivatives of this function with respect to each parameter to zero. We describe the present status of this development effort.
Analysis and optimization of machining parameters of laser cutting for polypropylene composite
NASA Astrophysics Data System (ADS)
Deepa, A.; Padmanabhan, K.; Kuppan, P.
2017-11-01
Present works explains about machining of self-reinforced Polypropylene composite fabricated using hot compaction method. The objective of the experiment is to find optimum machining parameters for Polypropylene (PP). Laser power and Machining speed were the parameters considered in response to tensile test and Flexure test. Taguchi method is used for experimentation. Grey Relational Analysis (GRA) is used for multiple process parameter optimization. ANOVA (Analysis of Variance) is used to find impact for process parameter. Polypropylene has got the great application in various fields like, it is used in the form of foam in model aircraft and other radio-controlled vehicles, thin sheets (∼2-20μm) used as a dielectric, PP is also used in piping system, it is also been used in hernia and pelvic organ repair or protect new herrnis in the same location.
Optimal placement of FACTS devices using optimization techniques: A review
NASA Astrophysics Data System (ADS)
Gaur, Dipesh; Mathew, Lini
2018-03-01
Modern power system is dealt with overloading problem especially transmission network which works on their maximum limit. Today’s power system network tends to become unstable and prone to collapse due to disturbances. Flexible AC Transmission system (FACTS) provides solution to problems like line overloading, voltage stability, losses, power flow etc. FACTS can play important role in improving static and dynamic performance of power system. FACTS devices need high initial investment. Therefore, FACTS location, type and their rating are vital and should be optimized to place in the network for maximum benefit. In this paper, different optimization methods like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) etc. are discussed and compared for optimal location, type and rating of devices. FACTS devices such as Thyristor Controlled Series Compensator (TCSC), Static Var Compensator (SVC) and Static Synchronous Compensator (STATCOM) are considered here. Mentioned FACTS controllers effects on different IEEE bus network parameters like generation cost, active power loss, voltage stability etc. have been analyzed and compared among the devices.
A hybrid Jaya algorithm for reliability-redundancy allocation problems
NASA Astrophysics Data System (ADS)
Ghavidel, Sahand; Azizivahed, Ali; Li, Li
2018-04-01
This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.
Brown, Guy C
2010-10-01
Control analysis can be used to try to understand why (quantitatively) systems are the way that they are, from rate constants within proteins to the relative amount of different tissues in organisms. Many biological parameters appear to be optimized to maximize rates under the constraint of minimizing space utilization. For any biological process with multiple steps that compete for control in series, evolution by natural selection will tend to even out the control exerted by each step. This is for two reasons: (i) shared control maximizes the flux for minimum protein concentration, and (ii) the selection pressure on any step is proportional to its control, and selection will, by increasing the rate of a step (relative to other steps), decrease its control over a pathway. The control coefficient of a parameter P over fitness can be defined as (∂N/N)/(∂P/P), where N is the number of individuals in the population, and ∂N is the change in that number as a result of the change in P. This control coefficient is equal to the selection pressure on P. I argue that biological systems optimized by natural selection will conform to a principle of sufficiency, such that the control coefficient of all parameters over fitness is 0. Thus in an optimized system small changes in parameters will have a negligible effect on fitness. This principle naturally leads to (and is supported by) the dominance of wild-type alleles over null mutants.
On the estimation algorithm used in adaptive performance optimization of turbofan engines
NASA Technical Reports Server (NTRS)
Espana, Martin D.; Gilyard, Glenn B.
1993-01-01
The performance seeking control algorithm is designed to continuously optimize the performance of propulsion systems. The performance seeking control algorithm uses a nominal model of the propulsion system and estimates, in flight, the engine deviation parameters characterizing the engine deviations with respect to nominal conditions. In practice, because of measurement biases and/or model uncertainties, the estimated engine deviation parameters may not reflect the engine's actual off-nominal condition. This factor has a necessary impact on the overall performance seeking control scheme exacerbated by the open-loop character of the algorithm. The effects produced by unknown measurement biases over the estimation algorithm are evaluated. This evaluation allows for identification of the most critical measurements for application of the performance seeking control algorithm to an F100 engine. An equivalence relation between the biases and engine deviation parameters stems from an observability study; therefore, it is undecided whether the estimated engine deviation parameters represent the actual engine deviation or whether they simply reflect the measurement biases. A new algorithm, based on the engine's (steady-state) optimization model, is proposed and tested with flight data. When compared with previous Kalman filter schemes, based on local engine dynamic models, the new algorithm is easier to design and tune and it reduces the computational burden of the onboard computer.
Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong
2017-01-01
Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro–meso–scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy–enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy–enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates. PMID:28869520
Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong
2017-09-03
Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro-meso-scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy-enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy-enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates.
Chowdhury, Shubhajit Roy; Chakrabarti, Dipankar; Hiranmay, Saha
2009-12-01
The paper proposes to develop a field programmable gate array (FPGA) based low cost, low power and high speed novel diagnostic system that can detect in absence of the physician the approaching critical condition of a patient at an early stage and is thus suitable for diagnosis of patients in the rural areas of developing countries where availability of physicians and availability of power is really scarce. The diagnostic system could be installed in health care centres of rural areas where patients can register themselves for periodic diagnoses and thereby detect potential health hazards at an early stage. Multiple pathophysiological parameters with different weights are involved in diagnosing a particular disease. A novel variation of particle swarm optimization called as adaptive perceptive particle swarm optimization has been proposed to determine the optimal weights of these pathophysiological parameters for a more accurate diagnosis. The FPGA based smart system has been applied for early detection of renal criticality of patients. For renal diagnosis, body mass index, glucose, urea, creatinine, systolic and diastolic blood pressures have been considered as pathophysiological parameters. The detection of approaching critical condition of a patient by the instrument has also been validated with the standard Cockford Gault Equation to verify whether the patient is really approaching a critical condition or not. Using Bayesian analysis on the population of 80 patients under study an accuracy of up to 97.5% in renal diagnosis has been obtained.
OPTIMIZING THROUGH CO-EVOLUTIONARY AVALANCHES
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. BOETTCHER; A. PERCUS
2000-08-01
We explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problems. The method, called extremal optimization, is inspired by ''self-organized critically,'' a concept introduced to describe emergent complexity in many physical systems. In contrast to Genetic Algorithms which operate on an entire ''gene-pool'' of possible solutions, extremal optimization successively replaces extremely undesirable elements of a sub-optimal solution with new, random ones. Large fluctuations, called ''avalanches,'' ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements approximation methods inspired by equilibrium statistical physics, such as simulated annealing. With only onemore » adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Those phase transitions are found in the parameter space of most optimization problems, and have recently been conjectured to be the origin of some of the hardest instances in computational complexity. We will demonstrate how extremal optimization can be implemented for a variety of combinatorial optimization problems. We believe that extremal optimization will be a useful tool in the investigation of phase transitions in combinatorial optimization problems, hence valuable in elucidating the origin of computational complexity.« less
Optimal Decision Making in a Class of Uncertain Systems Based on Uncertain Variables
NASA Astrophysics Data System (ADS)
Bubnicki, Z.
2006-06-01
The paper is concerned with a class of uncertain systems described by relational knowledge representations with unknown parameters which are assumed to be values of uncertain variables characterized by a user in the form of certainty distributions. The first part presents the basic optimization problem consisting in finding the decision maximizing the certainty index that the requirement given by a user is satisfied. The main part is devoted to the description of the optimization problem with the given certainty threshold. It is shown how the approach presented in the paper may be applied to some problems for anticipatory systems.
NASA Technical Reports Server (NTRS)
Thareja, R.; Haftka, R. T.
1986-01-01
There has been recent interest in multidisciplinary multilevel optimization applied to large engineering systems. The usual approach is to divide the system into a hierarchy of subsystems with ever increasing detail in the analysis focus. Equality constraints are usually placed on various design quantities at every successive level to ensure consistency between levels. In many previous applications these equality constraints were eliminated by reducing the number of design variables. In complex systems this may not be possible and these equality constraints may have to be retained in the optimization process. In this paper the impact of such a retention is examined for a simple portal frame problem. It is shown that the equality constraints introduce numerical difficulties, and that the numerical solution becomes very sensitive to optimization parameters for a wide range of optimization algorithms.
NASA Astrophysics Data System (ADS)
An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen
2018-05-01
In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.
Stability of cosmetic emulsion containing different amount of hemp oil.
Kowalska, M; Ziomek, M; Żbikowska, A
2015-08-01
The aim of the study was to determine the optimal conditions, that is the content of hemp oil and time of homogenization to obtain stable dispersion systems. For this purpose, six emulsions were prepared, their stability was examined empirically and the most correctly formulated emulsion composition was determined using a computer simulation. Variable parameters (oil content and homogenization time) were indicated by the optimization software based on Kleeman's method. Physical properties of the synthesized emulsions were studied by numerous techniques involving particle size analysis, optical microscopy, Turbiscan test and viscosity of emulsions. The emulsion containing 50 g of oil and being homogenized for 6 min had the highest stability. Empirically determined parameters proved to be consistent with the results obtained using the computer software. The computer simulation showed that the most stable emulsion should contain from 30 to 50 g of oil and should be homogenized for 2.5-6 min. The computer software based on Kleeman's method proved to be useful for quick optimization of the composition and production parameters of stable emulsion systems. Moreover, obtaining an emulsion system with proper stability justifies further research extended with sensory analysis, which will allow the application of such systems (containing hemp oil, beneficial for skin) in the cosmetic industry. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Optimization of the microcable and detector parameters towards low noise in the STS readout system
NASA Astrophysics Data System (ADS)
Kasinski, Krzysztof; Kleczek, Rafal; Schmidt, Christian J.
2015-09-01
Successful operation of the Silicon Tracking System requires charge measurement of each hit with equivalent noise charge lower than 1000 e- rms. Detector channels will not be identical, they will be constructed accordingly to the estimated occupancy, therefore for the readout electronics, detector system will exhibit various parameters. This paper presents the simulation-based study on the required microcable (trace width, dielectric material), detector (aluminum strip resistance) and external passives' (decoupling capacitors) parameters in the Silicon Tracking System. Studies will be performed using a front-end electronics (charge sensitive amplifier with shaper) designed for the power budget of 10 mA/channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S
The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurosu, K; Department of Medical Physics ' Engineering, Osaka University Graduate School of Medicine, Osaka; Takashina, M
Purpose: Monte Carlo codes are becoming important tools for proton beam dosimetry. However, the relationships between the customizing parameters and percentage depth dose (PDD) of GATE and PHITS codes have not been reported which are studied for PDD and proton range compared to the FLUKA code and the experimental data. Methods: The beam delivery system of the Indiana University Health Proton Therapy Center was modeled for the uniform scanning beam in FLUKA and transferred identically into GATE and PHITS. This computational model was built from the blue print and validated with the commissioning data. Three parameters evaluated are the maximummore » step size, cut off energy and physical and transport model. The dependence of the PDDs on the customizing parameters was compared with the published results of previous studies. Results: The optimal parameters for the simulation of the whole beam delivery system were defined by referring to the calculation results obtained with each parameter. Although the PDDs from FLUKA and the experimental data show a good agreement, those of GATE and PHITS obtained with our optimal parameters show a minor discrepancy. The measured proton range R90 was 269.37 mm, compared to the calculated range of 269.63 mm, 268.96 mm, and 270.85 mm with FLUKA, GATE and PHITS, respectively. Conclusion: We evaluated the dependence of the results for PDDs obtained with GATE and PHITS Monte Carlo generalpurpose codes on the customizing parameters by using the whole computational model of the treatment nozzle. The optimal parameters for the simulation were then defined by referring to the calculation results. The physical model, particle transport mechanics and the different geometrybased descriptions need accurate customization in three simulation codes to agree with experimental data for artifact-free Monte Carlo simulation. This study was supported by Grants-in Aid for Cancer Research (H22-3rd Term Cancer Control-General-043) from the Ministry of Health, Labor and Welfare of Japan, Grants-in-Aid for Scientific Research (No. 23791419), and JSPS Core-to-Core program (No. 23003). The authors have no conflict of interest.« less
Qiao, Wei; Venayagamoorthy, Ganesh K; Harley, Ronald G
2008-01-01
Wide-area coordinating control is becoming an important issue and a challenging problem in the power industry. This paper proposes a novel optimal wide-area coordinating neurocontrol (WACNC), based on wide-area measurements, for a power system with power system stabilizers, a large wind farm and multiple flexible ac transmission system (FACTS) devices. An optimal wide-area monitor (OWAM), which is a radial basis function neural network (RBFNN), is designed to identify the input-output dynamics of the nonlinear power system. Its parameters are optimized through particle swarm optimization (PSO). Based on the OWAM, the WACNC is then designed by using the dual heuristic programming (DHP) method and RBFNNs, while considering the effect of signal transmission delays. The WACNC operates at a global level to coordinate the actions of local power system controllers. Each local controller communicates with the WACNC, receives remote control signals from the WACNC to enhance its dynamic performance and therefore helps improve system-wide dynamic and transient performance. The proposed control is verified by simulation studies on a multimachine power system.
NASA Astrophysics Data System (ADS)
Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.
2018-01-01
Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection
NASA Astrophysics Data System (ADS)
Wang, Bei; Sugi, Takenao; Wang, Xingyu; Nakamura, Masatoshi
Data for human sleep study may be affected by internal and external influences. The recorded sleep data contains complex and stochastic factors, which increase the difficulties for the computerized sleep stage determination techniques to be applied for clinical practice. The aim of this study is to develop an automatic sleep stage determination system which is optimized for variable sleep data. The main methodology includes two modules: expert knowledge database construction and automatic sleep stage determination. Visual inspection by a qualified clinician is utilized to obtain the probability density function of parameters during the learning process of expert knowledge database construction. Parameter selection is introduced in order to make the algorithm flexible. Automatic sleep stage determination is manipulated based on conditional probability. The result showed close agreement comparing with the visual inspection by clinician. The developed system can meet the customized requirements in hospitals and institutions.
NASA Astrophysics Data System (ADS)
Yang, G.; Stark, B. H.; Burrow, S. G.; Hollis, S. J.
2014-11-01
This paper demonstrates the use of passive voltage multipliers for rapid start-up of sub-milliwatt electromagnetic energy harvesting systems. The work describes circuit optimization to make as short as possible the transition from completely depleted energy storage to the first powering-up of an actively controlled switched-mode converter. The dependency of the start-up time on component parameters and topologies is derived by simulation and experimentation. The resulting optimized multiplier design reduces the start-up time from several minutes to 1 second. An additional improvement uses the inherent cascade structure of the voltage multiplier to power sub-systems at different voltages. This multi-rail start-up is shown to reduce the circuit losses of the active converter by 72% with respect to the optimized single-rail system. The experimental results provide insight into the multiplier's transient behaviour, including circuit interactions, in a complete harvesting system, and offer important information to optimize voltage multipliers for rapid start-up.
Automatic design of optical systems by digital computer
NASA Technical Reports Server (NTRS)
Casad, T. A.; Schmidt, L. F.
1967-01-01
Computer program uses geometrical optical techniques and a least squares optimization method employing computing equipment for the automatic design of optical systems. It evaluates changes in various optical parameters, provides comprehensive ray-tracing, and generally determines the acceptability of the optical system characteristics.
Establishment and validation for the theoretical model of the vehicle airbag
NASA Astrophysics Data System (ADS)
Zhang, Junyuan; Jin, Yang; Xie, Lizhe; Chen, Chao
2015-05-01
The current design and optimization of the occupant restraint system (ORS) are based on numerous actual tests and mathematic simulations. These two methods are overly time-consuming and complex for the concept design phase of the ORS, though they're quite effective and accurate. Therefore, a fast and directive method of the design and optimization is needed in the concept design phase of the ORS. Since the airbag system is a crucial part of the ORS, in this paper, a theoretical model for the vehicle airbag is established in order to clarify the interaction between occupants and airbags, and further a fast design and optimization method of airbags in the concept design phase is made based on the proposed theoretical model. First, the theoretical expression of the simplified mechanical relationship between the airbag's design parameters and the occupant response is developed based on classical mechanics, then the momentum theorem and the ideal gas state equation are adopted to illustrate the relationship between airbag's design parameters and occupant response. By using MATLAB software, the iterative algorithm method and discrete variables are applied to the solution of the proposed theoretical model with a random input in a certain scope. And validations by MADYMO software prove the validity and accuracy of this theoretical model in two principal design parameters, the inflated gas mass and vent diameter, within a regular range. This research contributes to a deeper comprehension of the relation between occupants and airbags, further a fast design and optimization method for airbags' principal parameters in the concept design phase, and provides the range of the airbag's initial design parameters for the subsequent CAE simulations and actual tests.
Ecological and economical efficiency of monitoring systems for oil and gas production on the shelf
NASA Astrophysics Data System (ADS)
Kurakin, A. L.; Lobkovsky, L. I.
2014-02-01
Requirements for signals' reliability of monitoring systems (with respect to the errors of the 1st and 2nd kinds, i.e., false alarms and skipping of danger) are deduced from the ratio of expenditures of different kinds (of exploitation expenses and losses due to accidents). The expressions obtained in the research may be used for economic foundations (and optimization) of specifications for monitoring systems. In cases when optimal parameters are not available, the sufficient condition of monitoring systems economical efficiency is presented.
Design and construction of miniature artificial ecosystem based on dynamic response optimization
NASA Astrophysics Data System (ADS)
Hu, Dawei; Liu, Hong; Tong, Ling; Li, Ming; Hu, Enzhu
The miniature artificial ecosystem (MAES) is a combination of man, silkworm, salad and mi-croalgae to partially regenerate O2 , sanitary water and food, simultaneously dispose CO2 and wastes, therefore it have a fundamental life support function. In order to enhance the safety and reliability of MAES and eliminate the influences of internal variations and external dis-turbances, it was necessary to configure MAES as a closed-loop control system, and it could be considered as a prototype for future bioregenerative life support system. However, MAES is a complex system possessing large numbers of parameters, intricate nonlinearities, time-varying factors as well as uncertainties, hence it is difficult to perfectly design and construct a prototype through merely conducting experiments by trial and error method. Our research presented an effective way to resolve preceding problem by use of dynamic response optimiza-tion. Firstly the mathematical model of MAES with first-order nonlinear ordinary differential equations including parameters was developed based on relevant mechanisms and experimental data, secondly simulation model of MAES was derived on the platform of MatLab/Simulink to perform model validation and further digital simulations, thirdly reference trajectories of de-sired dynamic response of system outputs were specified according to prescribed requirements, and finally optimization for initial values, tuned parameter and independent parameters was carried out using the genetic algorithm, the advanced direct search method along with parallel computing methods through computer simulations. The result showed that all parameters and configurations of MAES were determined after a series of computer experiments, and its tran-sient response performances and steady characteristics closely matched the reference curves. Since the prototype is a physical system that represents the mathematical model with reason-able accuracy, so the process of designing and constructing a prototype of MAES is the reverse of mathematical modeling, and must have prerequisite assists from these results of computer simulation.
Optimizing RF gun cavity geometry within an automated injector design system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alicia Hofler ,Pavel Evtushenko
2011-03-28
RF guns play an integral role in the success of several light sources around the world, and properly designed and optimized cw superconducting RF (SRF) guns can provide a path to higher average brightness. As the need for these guns grows, it is important to have automated optimization software tools that vary the geometry of the gun cavity as part of the injector design process. This will allow designers to improve existing designs for present installations, extend the utility of these guns to other applications, and develop new designs. An evolutionary algorithm (EA) based system can provide this capability becausemore » EAs can search in parallel a large parameter space (often non-linear) and in a relatively short time identify promising regions of the space for more careful consideration. The injector designer can then evaluate more cavity design parameters during the injector optimization process against the beam performance requirements of the injector. This paper will describe an extension to the APISA software that allows the cavity geometry to be modified as part of the injector optimization and provide examples of its application to existing RF and SRF gun designs.« less
Optimization technique of wavefront coding system based on ZEMAX externally compiled programs
NASA Astrophysics Data System (ADS)
Han, Libo; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua
2016-10-01
Wavefront coding technique as a means of athermalization applied to infrared imaging system, the design of phase plate is the key to system performance. This paper apply the externally compiled programs of ZEMAX to the optimization of phase mask in the normal optical design process, namely defining the evaluation function of wavefront coding system based on the consistency of modulation transfer function (MTF) and improving the speed of optimization by means of the introduction of the mathematical software. User write an external program which computes the evaluation function on account of the powerful computing feature of the mathematical software in order to find the optimal parameters of phase mask, and accelerate convergence through generic algorithm (GA), then use dynamic data exchange (DDE) interface between ZEMAX and mathematical software to realize high-speed data exchanging. The optimization of the rotational symmetric phase mask and the cubic phase mask have been completed by this method, the depth of focus increases nearly 3 times by inserting the rotational symmetric phase mask, while the other system with cubic phase mask can be increased to 10 times, the consistency of MTF decrease obviously, the maximum operating temperature of optimized system range between -40°-60°. Results show that this optimization method can be more convenient to define some unconventional optimization goals and fleetly to optimize optical system with special properties due to its externally compiled function and DDE, there will be greater significance for the optimization of unconventional optical system.
NASA Astrophysics Data System (ADS)
Postnov, Sergey
2017-11-01
Two kinds of optimal control problem are investigated for linear time-invariant fractional-order systems with lumped parameters which dynamics described by equations with Hadamard-type derivative: the problem of control with minimal norm and the problem of control with minimal time at given restriction on control norm. The problem setting with nonlocal initial conditions studied. Admissible controls allowed to be the p-integrable functions (p > 1) at half-interval. The optimal control problem studied by moment method. The correctness and solvability conditions for the corresponding moment problem are derived. For several special cases the optimal control problems stated are solved analytically. Some analogies pointed for results obtained with the results which are known for integer-order systems and fractional-order systems describing by equations with Caputo- and Riemann-Liouville-type derivatives.
Chen, Wentao; Zhang, Weidong
2009-10-01
In an optical disk drive servo system, to attenuate the external periodic disturbances induced by inevitable disk eccentricity, repetitive control has been used successfully. The performance of a repetitive controller greatly depends on the bandwidth of the low-pass filter included in the repetitive controller. However, owing to the plant uncertainty and system stability, it is difficult to maximize the bandwidth of the low-pass filter. In this paper, we propose an optimality based repetitive controller design method for the track-following servo system with norm-bounded uncertainties. By embedding a lead compensator in the repetitive controller, both the system gain at periodic signal's harmonics and the bandwidth of the low-pass filter are greatly increased. The optimal values of the repetitive controller's parameters are obtained by solving two optimization problems. Simulation and experimental results are provided to illustrate the effectiveness of the proposed method.
Predictive optimized adaptive PSS in a single machine infinite bus.
Milla, Freddy; Duarte-Mermoud, Manuel A
2016-07-01
Power System Stabilizer (PSS) devices are responsible for providing a damping torque component to generators for reducing fluctuations in the system caused by small perturbations. A Predictive Optimized Adaptive PSS (POA-PSS) to improve the oscillations in a Single Machine Infinite Bus (SMIB) power system is discussed in this paper. POA-PSS provides the optimal design parameters for the classic PSS using an optimization predictive algorithm, which adapts to changes in the inputs of the system. This approach is part of small signal stability analysis, which uses equations in an incremental form around an operating point. Simulation studies on the SMIB power system illustrate that the proposed POA-PSS approach has better performance than the classical PSS. In addition, the effort in the control action of the POA-PSS is much less than that of other approaches considered for comparison. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal nonlinear information processing capacity in delay-based reservoir computers
NASA Astrophysics Data System (ADS)
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2015-09-01
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.
Optimal nonlinear information processing capacity in delay-based reservoir computers.
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2015-09-11
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.
Optimal nonlinear information processing capacity in delay-based reservoir computers
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2015-01-01
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature. PMID:26358528