NASA Astrophysics Data System (ADS)
Latief, Y.; Berawi, M. A.; Koesalamwardi, A. B.; Supriadi, L. S. R.
2018-03-01
Near Zero Energy House (NZEH) is a housing building that provides energy efficiency by using renewable energy technologies and passive house design. Currently, the costs for NZEH are quite expensive due to the high costs of the equipment and materials for solar panel, insulation, fenestration and other renewable energy technology. Therefore, a study to obtain the optimum design of a NZEH is necessary. The aim of the optimum design is achieving an economical life cycle cost performance of the NZEH. One of the optimization methods that could be utilized is Genetic Algorithm. It provides the method to obtain the optimum design based on the combinations of NZEH variable designs. This paper discusses the study to identify the optimum design of a NZEH that provides an optimum life cycle cost performance using Genetic Algorithm. In this study, an experiment through extensive design simulations of a one-level house model was conducted. As a result, the study provide the optimum design from combinations of NZEH variable designs, which are building orientation, window to wall ratio, and glazing types that would maximize the energy generated by photovoltaic panel. Hence, the design would support an optimum life cycle cost performance of the house.
Optimum structural design with plate bending elements - A survey
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Prasad, B.
1981-01-01
A survey is presented of recently published papers in the field of optimum structural design of plates, largely with respect to the minimum-weight design of plates subject to such constraints as fundamental frequency maximization. It is shown that, due to the availability of powerful computers, the trend in optimum plate design is away from methods tailored to specific geometry and loads and toward methods that can be easily programmed for any kind of plate, such as finite element methods. A corresponding shift is seen in optimization from variational techniques to numerical optimization algorithms. Among the topics covered are fully stressed design and optimality criteria, mathematical programming, smooth and ribbed designs, design against plastic collapse, buckling constraints, and vibration constraints.
Application of Theodorsen's Theory to Propeller Design
NASA Technical Reports Server (NTRS)
Crigler, John L
1948-01-01
A theoretical analysis is presented for obtaining by use of Theodorsen's propeller theory the load distribution along a propeller radius to give the optimum propeller efficiency for any design condition.The efficiencies realized by designing for the optimum load distribution are given in graphs, and the optimum efficiency for any design condition may be read directly from the graph without any laborious calculations. Examples are included to illustrate the method of obtaining the optimum load distributions for both single-rotating and dual-rotating propellers.
Application of Theodorsen's theory to propeller design
NASA Technical Reports Server (NTRS)
Crigler, John L
1949-01-01
A theoretical analysis is presented for obtaining, by use of Theodorsen's propeller theory, the load distribution along a propeller radius to give the optimum propeller efficiency for any design condition. The efficiencies realized by designing for the optimum load distribution are given in graphs, and the optimum efficiency for any design condition may be read directly from the graph without any laborious calculations. Examples are included to illustrate the method of obtaining the optimum load distributions for both single-rotating and dual-rotating propellers.
A firefly algorithm for optimum design of new-generation beams
NASA Astrophysics Data System (ADS)
Erdal, F.
2017-06-01
This research addresses the minimum weight design of new-generation steel beams with sinusoidal openings using a metaheuristic search technique, namely the firefly method. The proposed algorithm is also used to compare the optimum design results of sinusoidal web-expanded beams with steel castellated and cellular beams. Optimum design problems of all beams are formulated according to the design limitations stipulated by the Steel Construction Institute. The design methods adopted in these publications are consistent with BS 5950 specifications. The formulation of the design problem considering the above-mentioned limitations turns out to be a discrete programming problem. The design algorithms based on the technique select the optimum universal beam sections, dimensional properties of sinusoidal, hexagonal and circular holes, and the total number of openings along the beam as design variables. Furthermore, this selection is also carried out such that the behavioural limitations are satisfied. Numerical examples are presented, where the suggested algorithm is implemented to achieve the minimum weight design of these beams subjected to loading combinations.
NASA Astrophysics Data System (ADS)
Guenanou, A.; Houmat, A.
2018-05-01
The optimum stacking sequence design for the maximum fundamental frequency of symmetrically laminated composite circular plates with curvilinear fibres is investigated for the first time using a layer-wise optimization method. The design variables are two fibre orientation angles per layer. The fibre paths are constructed using the method of shifted paths. The first-order shear deformation plate theory and a curved square p-element are used to calculate the objective function. The blending function method is used to model accurately the geometry of the circular plate. The equations of motion are derived using Lagrange's method. The numerical results are validated by means of a convergence test and comparison with published values for symmetrically laminated composite circular plates with rectilinear fibres. The material parameters, boundary conditions, number of layers and thickness are shown to influence the optimum solutions to different extents. The results should serve as a benchmark for optimum stacking sequences of symmetrically laminated composite circular plates with curvilinear fibres.
An efficient and practical approach to obtain a better optimum solution for structural optimization
NASA Astrophysics Data System (ADS)
Chen, Ting-Yu; Huang, Jyun-Hao
2013-08-01
For many structural optimization problems, it is hard or even impossible to find the global optimum solution owing to unaffordable computational cost. An alternative and practical way of thinking is thus proposed in this research to obtain an optimum design which may not be global but is better than most local optimum solutions that can be found by gradient-based search methods. The way to reach this goal is to find a smaller search space for gradient-based search methods. It is found in this research that data mining can accomplish this goal easily. The activities of classification, association and clustering in data mining are employed to reduce the original design space. For unconstrained optimization problems, the data mining activities are used to find a smaller search region which contains the global or better local solutions. For constrained optimization problems, it is used to find the feasible region or the feasible region with better objective values. Numerical examples show that the optimum solutions found in the reduced design space by sequential quadratic programming (SQP) are indeed much better than those found by SQP in the original design space. The optimum solutions found in a reduced space by SQP sometimes are even better than the solution found using a hybrid global search method with approximate structural analyses.
[Optimum design of imaging spectrometer based on toroidal uniform-line-spaced (TULS) spectrometer].
Xue, Qing-Sheng; Wang, Shu-Rong
2013-05-01
Based on the geometrical aberration theory, a optimum-design method for designing an imaging spectrometer based on toroidal uniform grating spectrometer is proposed. To obtain the best optical parameters, twice optimization is carried out using genetic algorithm(GA) and optical design software ZEMAX A far-ultraviolet(FUV) imaging spectrometer is designed using this method. The working waveband is 110-180 nm, the slit size is 50 microm x 5 mm, and the numerical aperture is 0.1. Using ZEMAX software, the design result is analyzed and evaluated. The results indicate that the MTF for different wavelengths is higher than 0.7 at Nyquist frequency 10 lp x mm(-1), and the RMS spot radius is less than 14 microm. The good imaging quality is achieved over the whole working waveband, the design requirements of spatial resolution 0.5 mrad and spectral resolution 0.6 nm are satisfied. It is certificated that the optimum-design method proposed in this paper is feasible. This method can be applied in other waveband, and is an instruction method for designing grating-dispersion imaging spectrometers.
Optimum insulation thickness in wood-framed homes.
A.E. Oviatt
1975-01-01
New design methods must be developed to reduce energy waste in buildings. This study examines an economic approach to the design of thermal insulation in the home and demonstrates graphically that an optimum point of insulation thickness occurs where total costs of insulation and energy over the useful life of a building are a minimum. The optimum thickness thus...
Thermal optimum design for tracking primary mirror of Space Telescope
NASA Astrophysics Data System (ADS)
Pan, Hai-jun; Ruan, Ping; Li, Fu; Wang, Hong-Wei
2011-08-01
In the conventional method, the structural parameters of primary mirror are usually optimized just by the requirement of mechanical performance. Because the influences of structural parameters on thermal stability are not taken fully into account in this simple method, the lightweight optimum design of primary mirror usually brings the bad thermal stability, especially in the complex environment. In order to obtain better thermal stability, a new method about structure-thermal optimum design of tracking primary mirror is discussed. During the optimum process, both the lightweight ratio and thermal stability will be taken into account. The structure-thermal optimum is introduced into the analysis process and commenced after lightweight design as the secondary optimum. Using the engineering analysis of software ANSYS, a parameter finite element analysis (FEA) model of mirror is built. On the premise of appropriate lightweight ratio, the RMS of structure-thermal deformation of mirror surface and lightweight ratio are assigned to be state variables, and the maximal RMS of temperature gradient load to be object variable. The results show that certain structural parameters of tracking primary mirror have different influences on mechanical performance and thermal stability, even they are opposite. By structure-thermal optimizing, the optimized mirror model discussed in this paper has better thermal stability than the old one under the same thermal loads, which can drastically reduce difficulty in thermal control.
NASA Astrophysics Data System (ADS)
Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung
2018-02-01
The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.
NASA Technical Reports Server (NTRS)
Rice, E. J.
1976-01-01
A liner design for noise suppressors with outer wall treatment such as in an engine inlet is presented which potentially circumvents the problems of resolution in modal measurement. The method is based on the fact that the modal optimum impedance and the maximum possible sound power attenuation at this optimum can be expressed as functions of cutoff ratio alone. Modes with similar cutoff ratios propagate similarly in the duct and in addition propagate similarly to the far field. Thus there is no need to determine the acoustic power carried by these modes individually, and they can be grouped together as one entity. With the optimum impedance and maximum attenuation specified as functions of cutoff ratio, the off-optimum liner performance can be estimated using an approximate attenuation equation.
Analytical Solution for Optimum Design of Furrow Irrigation Systems
NASA Astrophysics Data System (ADS)
Kiwan, M. E.
1996-05-01
An analytical solution for the optimum design of furrow irrigation systems is derived. The non-linear calculus optimization method is used to formulate a general form for designing the optimum system elements under circumstances of maximizing the water application efficiency of the system during irrigation. Different system bases and constraints are considered in the solution. A full irrigation water depth is considered to be achieved at the tail of the furrow line. The solution is based on neglecting the recession and depletion times after off-irrigation. This assumption is valid in the case of open-end (free gradient) furrow systems rather than closed-end (closed dike) systems. Illustrative examples for different systems are presented and the results are compared with the output obtained using an iterative numerical solution method. The final derived solution is expressed as a function of the furrow length ratio (the furrow length to the water travelling distance). The function of water travelling developed by Reddy et al. is considered for reaching the optimum solution. As practical results from the study, the optimum furrow elements for free gradient systems can be estimated to achieve the maximum application efficiency, i.e. furrow length, water inflow rate and cutoff irrigation time.
Structural optimization: Status and promise
NASA Astrophysics Data System (ADS)
Kamat, Manohar P.
Chapters contained in this book include fundamental concepts of optimum design, mathematical programming methods for constrained optimization, function approximations, approximate reanalysis methods, dual mathematical programming methods for constrained optimization, a generalized optimality criteria method, and a tutorial and survey of multicriteria optimization in engineering. Also included are chapters on the compromise decision support problem and the adaptive linear programming algorithm, sensitivity analyses of discrete and distributed systems, the design sensitivity analysis of nonlinear structures, optimization by decomposition, mixed elements in shape sensitivity analysis of structures based on local criteria, and optimization of stiffened cylindrical shells subjected to destabilizing loads. Other chapters are on applications to fixed-wing aircraft and spacecraft, integrated optimum structural and control design, modeling concurrency in the design of composite structures, and tools for structural optimization. (No individual items are abstracted in this volume)
Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettehadtavakkol, Amin, E-mail: amin.ettehadtavakkol@ttu.edu; Jablonowski, Christopher; Lake, Larry
Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum designmore » concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.« less
Chihara, Takanori; Seo, Akihiko
2014-03-01
Proposed here is an evaluation of multiple muscle loads and a procedure for determining optimum solutions to ergonomic design problems. The simultaneous muscle load evaluation is formulated as a multi-objective optimization problem, and optimum solutions are obtained for each participant. In addition, one optimum solution for all participants, which is defined as the compromise solution, is also obtained. Moreover, the proposed method provides both objective and subjective information to support the decision making of designers. The proposed method was applied to the problem of designing the handrail position for the sit-to-stand movement. The height and distance of the handrails were the design variables, and surface electromyograms of four muscles were measured. The optimization results suggest that the proposed evaluation represents the impressions of participants more completely than an independent use of muscle loads. In addition, the compromise solution is determined, and the benefits of the proposed method are examined. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Comparison of several asphalt design methods.
DOT National Transportation Integrated Search
1998-01-01
This laboratory study compared several methods of selecting the optimum asphalt content of surface mixes. Six surface mixes were tested using the 50-blow Marshall design, the 75-blow Marshall design, two brands of SHRP gyratory compactors, and the U....
Optimum design point for a closed-cycle OTEC system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikegami, Yasuyuki; Uehara, Haruo
1994-12-31
Performance analysis is performed for optimum design point of a closed-cycle Ocean Thermal Energy Conversion (OTEC) system. Calculations are made for an OTEC model plant with a gross power of 100 MW, which was designed by the optimization method proposed by Uehara and Ikegami for the design conditions of 21 C--29 C warm sea water temperature and 4 C cold sea water temperature. Ammonia is used as working fluid. Plate type evaporator and condenser are used as heat exchangers. The length of the cold sea water pipe is 1,000 m. This model plant is a floating-type OTEC plant. The objectivemore » function of optimum design point is defined as the total heat transfer area of heat exchangers per the annual net power.« less
Optimum tuned mass damper design using harmony search with comparison of classical methods
NASA Astrophysics Data System (ADS)
Nigdeli, Sinan Melih; Bekdaş, Gebrail; Sayin, Baris
2017-07-01
As known, tuned mass dampers (TMDs) are added to mechanical systems in order to obtain a good vibration damping. The main aim is to reduce the maximum amplitude at the resonance state. In this study, a metaheuristic algorithm called harmony search employed for the optimum design of TMDs. As the optimization objective, the transfer function of the acceleration of the system with respect to ground acceleration was minimized. The numerical trails were conducted for 4 single degree of freedom systems and the results were compared with classical methods. As a conclusion, the proposed method is feasible and more effective than the other documented methods.
Longitudinal control of aircraft dynamics based on optimization of PID parameters
NASA Astrophysics Data System (ADS)
Deepa, S. N.; Sudha, G.
2016-03-01
Recent years many flight control systems and industries are employing PID controllers to improve the dynamic behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is important in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different tuning methods namely Zeigler-Nichols method (ZN), Modified Zeigler-Nichols method, Tyreus-Luyben tuning, Astrom-Hagglund tuning methods are employed. The time domain specifications of different tuning methods are compared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler-Nichols for aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtaining optimum PID controller parameters using artificial intelligence techniques should be carried out.
Yang, Yan-Pu; Chen, Deng-Kai; Gu, Rong; Gu, Yu-Feng; Yu, Sui-Huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.
Chen, Deng-kai; Gu, Rong; Gu, Yu-feng; Yu, Sui-huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design. PMID:27630709
Reliability, Risk and Cost Trade-Offs for Composite Designs
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Singhal, Surendra N.; Chamis, Christos C.
1996-01-01
Risk and cost trade-offs have been simulated using a probabilistic method. The probabilistic method accounts for all naturally-occurring uncertainties including those in constituent material properties, fabrication variables, structure geometry and loading conditions. The probability density function of first buckling load for a set of uncertain variables is computed. The probabilistic sensitivity factors of uncertain variables to the first buckling load is calculated. The reliability-based cost for a composite fuselage panel is defined and minimized with respect to requisite design parameters. The optimization is achieved by solving a system of nonlinear algebraic equations whose coefficients are functions of probabilistic sensitivity factors. With optimum design parameters such as the mean and coefficient of variation (representing range of scatter) of uncertain variables, the most efficient and economical manufacturing procedure can be selected. In this paper, optimum values of the requisite design parameters for a predetermined cost due to failure occurrence are computationally determined. The results for the fuselage panel analysis show that the higher the cost due to failure occurrence, the smaller the optimum coefficient of variation of fiber modulus (design parameter) in longitudinal direction.
DOT National Transportation Integrated Search
2015-11-01
Most departments of transportation, including Indiana, currently use the Superpave mixture design method to design asphalt mixtures. : This method specifies that the optimum asphalt content for a given gradation be selected at 4 percent air voids. Du...
A New Multiconstraint Method for Determining the Optimal Cable Stresses in Cable-Stayed Bridges
Asgari, B.; Osman, S. A.; Adnan, A.
2014-01-01
Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method. PMID:25050400
A new multiconstraint method for determining the optimal cable stresses in cable-stayed bridges.
Asgari, B; Osman, S A; Adnan, A
2014-01-01
Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.
A first course in optimum design of yacht sails
NASA Astrophysics Data System (ADS)
Sugimoto, Takeshi
1993-03-01
The optimum sail geometry is analytically obtained for the case of maximizing the thrust under equality and inequality constraints on the lift and the heeling moment. A single mainsail is assumed to be set close-hauled in uniform wind and upright on the flat sea surface. The governing parameters are the mast height and the gap between the sail foot and the sea surface. The lifting line theory is applied to analyze the aerodynamic forces acting on a sail. The design method consists of the variational principle and a feasibility study. Almost triangular sails are found to be optimum. Their advantages are discussed.
Xiong, Chengjie; van Belle, Gerald; Miller, J Philip; Morris, John C
2011-02-01
Therapeutic trials of disease-modifying agents on Alzheimer's disease (AD) require novel designs and analyses involving switch of treatments for at least a portion of subjects enrolled. Randomized start and randomized withdrawal designs are two examples of such designs. Crucial design parameters such as sample size and the time of treatment switch are important to understand in designing such clinical trials. The purpose of this article is to provide methods to determine sample sizes and time of treatment switch as well as optimum statistical tests of treatment efficacy for clinical trials of disease-modifying agents on AD. A general linear mixed effects model is proposed to test the disease-modifying efficacy of novel therapeutic agents on AD. This model links the longitudinal growth from both the placebo arm and the treatment arm at the time of treatment switch for these in the delayed treatment arm or early withdrawal arm and incorporates the potential correlation on the rate of cognitive change before and after the treatment switch. Sample sizes and the optimum time for treatment switch of such trials as well as optimum test statistic for the treatment efficacy are determined according to the model. Assuming an evenly spaced longitudinal design over a fixed duration, the optimum treatment switching time in a randomized start or a randomized withdrawal trial is half way through the trial. With the optimum test statistic for the treatment efficacy and over a wide spectrum of model parameters, the optimum sample size allocations are fairly close to the simplest design with a sample size ratio of 1:1:1 among the treatment arm, the delayed treatment or early withdrawal arm, and the placebo arm. The application of the proposed methodology to AD provides evidence that much larger sample sizes are required to adequately power disease-modifying trials when compared with those for symptomatic agents, even when the treatment switch time and efficacy test are optimally chosen. The proposed method assumes that the only and immediate effect of treatment switch is on the rate of cognitive change. Crucial design parameters for the clinical trials of disease-modifying agents on AD can be optimally chosen. Government and industry officials as well as academia researchers should consider the optimum use of the clinical trials design for disease-modifying agents on AD in their effort to search for the treatments with the potential to modify the underlying pathophysiology of AD.
Optimum systems design with random input and output applied to solar water heating
NASA Astrophysics Data System (ADS)
Abdel-Malek, L. L.
1980-03-01
Solar water heating systems are evaluated. Models were developed to estimate the percentage of energy supplied from the Sun to a household. Since solar water heating systems have random input and output queueing theory, birth and death processes were the major tools in developing the models of evaluation. Microeconomics methods help in determining the optimum size of the solar water heating system design parameters, i.e., the water tank volume and the collector area.
Duffull, Stephen B; Graham, Gordon; Mengersen, Kerrie; Eccleston, John
2012-01-01
Information theoretic methods are often used to design studies that aim to learn about pharmacokinetic and linked pharmacokinetic-pharmacodynamic systems. These design techniques, such as D-optimality, provide the optimum experimental conditions. The performance of the optimum design will depend on the ability of the investigator to comply with the proposed study conditions. However, in clinical settings it is not possible to comply exactly with the optimum design and hence some degree of unplanned suboptimality occurs due to error in the execution of the study. In addition, due to the nonlinear relationship of the parameters of these models to the data, the designs are also locally dependent on an arbitrary choice of a nominal set of parameter values. A design that is robust to both study conditions and uncertainty in the nominal set of parameter values is likely to be of use clinically. We propose an adaptive design strategy to account for both execution error and uncertainty in the parameter values. In this study we investigate designs for a one-compartment first-order pharmacokinetic model. We do this in a Bayesian framework using Markov-chain Monte Carlo (MCMC) methods. We consider log-normal prior distributions on the parameters and investigate several prior distributions on the sampling times. An adaptive design was used to find the sampling window for the current sampling time conditional on the actual times of all previous samples.
NASA Technical Reports Server (NTRS)
1972-01-01
The effort to analyze and test the Teledyne/Adcom model G-146 demultiplexer to determine the feasibility and optimum method(s) for modifying the unit for broadband operation is described. The desired bandwidths under consideration included 2, 4, and 8 kHz for double sideband and quadrature double sideband, and 4, 8, and 16 kHz for single sideband.
Optimum allocation for a dual-frame telephone survey.
Wolter, Kirk M; Tao, Xian; Montgomery, Robert; Smith, Philip J
2015-12-01
Careful design of a dual-frame random digit dial (RDD) telephone survey requires selecting from among many options that have varying impacts on cost, precision, and coverage in order to obtain the best possible implementation of the study goals. One such consideration is whether to screen cell-phone households in order to interview cell-phone only (CPO) households and exclude dual-user household, or to take all interviews obtained via the cell-phone sample. We present a framework in which to consider the tradeoffs between these two options and a method to select the optimal design. We derive and discuss the optimum allocation of sample size between the two sampling frames and explore the choice of optimum p , the mixing parameter for the dual-user domain. We illustrate our methods using the National Immunization Survey , sponsored by the Centers for Disease Control and Prevention.
NASA Astrophysics Data System (ADS)
Shang, Xiaolan; Qiao, Jie; Liu, Yujie
2017-12-01
This study looked to determine what the optimum cooking loss for minced beef was when three different non-phosphate water retention additives (L-Arginine, sodium carbonate, and sodium citrate) were combined; the optimum value was determined using a Box-Behnken response surface design method. The optimum value was found to be 8.26%, and it was obtained when 0.29% L-Arginine, 0.45% sodium carbonate, and 0.24% sodium citrate were added to the beef.
Designing water supplies: Optimizing drinking water composition for maximum economic benefit.
Rygaard, M; Arvin, E; Bath, A; Binning, P J
2011-06-01
It is possible to optimize drinking water composition based on a valuation of the impacts of changed water quality. This paper introduces a method for assessing the potential for designing an optimum drinking water composition by the use of membrane desalination and remineralization. The method includes modeling of possible water quality blends and an evaluation of corrosion indices. Based on concentration-response relationships a range of impacts on public health, material lifetimes and consumption of soap have been valued for Perth, Western Australia and Copenhagen, Denmark. In addition to water quality aspects, costs of water production, fresh water abstraction and CO(2)-emissions are integrated into a holistic economic assessment of the optimum share of desalinated water in water supplies. Results show that carefully designed desalination post-treatment can have net benefits up to €0.3 ± 0.2 per delivered m(3) for Perth and €0.4(±0.2) for Copenhagen. Costs of remineralization and green house gas emission mitigation are minor when compared to the potential benefits of an optimum water composition. Finally, a set of optimum water quality criteria is proposed for the guidance of water supply planning and management. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optimum Suction Distribution for Transition Control
NASA Technical Reports Server (NTRS)
Balakumar, P.; Hall, P.
1996-01-01
The optimum suction distribution which gives the longest laminar region for a given total suction is computed. The goal here is to provide the designer with a method to find the best suction distribution subject to some overall constraint applied to the suction. We formulate the problem using the Lagrangian multiplier method with constraints. The resulting non-linear system of equations is solved using the Newton-Raphson technique. The computations are performed for a Blasius boundary layer on a flat-plate and crossflow cases. For the Blasius boundary layer, the optimum suction distribution peaks upstream of the maximum growth rate region and remains flat in the middle before it decreases to zero at the end of the transition point. For the stationary and travelling crossflow instability, the optimum suction peaks upstream of the maximum growth rate region and decreases gradually to zero.
Optimization for minimum sensitivity to uncertain parameters
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw
1994-01-01
A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.
Design synthesis and optimization of joined-wing transports
NASA Technical Reports Server (NTRS)
Gallman, John W.; Smith, Stephen C.; Kroo, Ilan M.
1990-01-01
A computer program for aircraft synthesis using a numerical optimizer was developed to study the application of the joined-wing configuration to transport aircraft. The structural design algorithm included the effects of secondary bending moments to investigate the possibility of tail buckling and to design joined wings resistant to buckling. The structural weight computed using this method was combined with a statistically-based method to obtain realistic estimates of total lifting surface weight and aircraft empty weight. A variety of 'optimum' joined-wing and conventional aircraft designs were compared on the basis of direct operating cost, gross weight, and cruise drag. The most promising joined-wing designs were found to have a joint location at about 70 percent of the wing semispan. The optimum joined-wing transport is shown to save 1.7 percent in direct operating cost and 11 percent in drag for a 2000 nautical mile transport mission.
Advanced composite elevator for Boeing 727 aircraft, volume 2
NASA Technical Reports Server (NTRS)
Chovil, D. V.; Grant, W. D.; Jamison, E. S.; Syder, H.; Desper, O. E.; Harvey, S. T.; Mccarty, J. E.
1980-01-01
Preliminary design activity consisted of developing and analyzing alternate design concepts and selecting the optimum elevator configuration. This included trade studies in which durability, inspectability, producibility, repairability, and customer acceptance were evaluated. Preliminary development efforts consisted of evaluating and selecting material, identifying ancillary structural development test requirements, and defining full scale ground and flight test requirements necessary to obtain Federal Aviation Administration (FAA) certification. After selection of the optimum elevator configuration, detail design was begun and included basic configuration design improvements resulting from manufacturing verification hardware, the ancillary test program, weight analysis, and structural analysis. Detail and assembly tools were designed and fabricated to support a full-scope production program, rather than a limited run. The producibility development programs were used to verify tooling approaches, fabrication processes, and inspection methods for the production mode. Quality parts were readily fabricated and assembled with a minimum rejection rate, using prior inspection methods.
New directions for Artificial Intelligence (AI) methods in optimum design
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1989-01-01
Developments and applications of artificial intelligence (AI) methods in the design of structural systems is reviewed. Principal shortcomings in the current approach are emphasized, and the need for some degree of formalism in the development environment for such design tools is underscored. Emphasis is placed on efforts to integrate algorithmic computations in expert systems.
Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Eleshaky, Mohamed E.
1991-01-01
A new and efficient method is presented for aerodynamic design optimization, which is based on a computational fluid dynamics (CFD)-sensitivity analysis algorithm. The method is applied to design a scramjet-afterbody configuration for an optimized axial thrust. The Euler equations are solved for the inviscid analysis of the flow, which in turn provides the objective function and the constraints. The CFD analysis is then coupled with the optimization procedure that uses a constrained minimization method. The sensitivity coefficients, i.e. gradients of the objective function and the constraints, needed for the optimization are obtained using a quasi-analytical method rather than the traditional brute force method of finite difference approximations. During the one-dimensional search of the optimization procedure, an approximate flow analysis (predicted flow) based on a first-order Taylor series expansion is used to reduce the computational cost. Finally, the sensitivity of the optimum objective function to various design parameters, which are kept constant during the optimization, is computed to predict new optimum solutions. The flow analysis of the demonstrative example are compared with the experimental data. It is shown that the method is more efficient than the traditional methods.
Performance-Based Seismic Design of Steel Frames Utilizing Colliding Bodies Algorithm
Veladi, H.
2014-01-01
A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm. PMID:25202717
Performance-based seismic design of steel frames utilizing colliding bodies algorithm.
Veladi, H
2014-01-01
A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm.
NASA Technical Reports Server (NTRS)
Wissinger, A.; Scott, R. M.; Peters, W.; Augustyn, W., Jr.; Arnold, R.; Offner, A.; Damast, M.; Boyce, B.; Kinnaird, R.; Mangus, J. D.
1971-01-01
A means is presented whereby the effect of various changes in the most important parameters of a three meter aperature space astronomy telescope can be evaluated to determine design trends and to optimize the optical design configuration. Methods are defined for evaluating the theoretical optical performance of axisymmetric, centrally obscured telescopes based upon the intended astronomy research usage. A series of design parameter variations is presented to determine the optimum telescope configuration. The design optimum requires very fast primary mirrors, so the study also examines the current state of the art in fabricating large, fast primary mirrors. The conclusion is that a 3-meter primary mirror having a focal ratio as low as f/2 is feasible using currently established techniques.
Production and optimization of biodiesel using mixed immobilized biocatalysts in packed bed reactor.
Bakkiyaraj, S; Syed, Mahin Basha; Devanesan, M G; Thangavelu, Viruthagiri
2016-05-01
Vegetable oils are used as raw materials for biodiesel production using transesterification reaction. Several methods for the production of biodiesel were developed using chemical (alkali and acidic compounds) and biological catalysts (lipases). Biodiesel production catalyzed by lipases is energy and cost-saving processes and is carried out at normal temperature and pressure. The need for an efficient method for screening larger number of variables has led to the adoption of statistical experimental design. In the present study, packed bed reactor was designed to study with mixed immobilized biocatalysts to have higher productivity under optimum conditions. Contrary to the single-step acyl migration mechanism, a two-step stepwise reaction mechanism involving immobilized Candida rugosa lipase and immobilized Rhizopus oryzae cells was employed for the present work. This method was chosen because enzymatic hydrolysis followed by esterification can tolerate high free fatty acid containing oils. The effects of flow rate and bed height on biodiesel yield were studied using two factors five-level central composite design (CCD) and response surface methodology (RSM). Maximum biodiesel yield of 85 and 81 % was obtained for jatropha oil and karanja oil with the optimum bed height and optimum flow rate of 32.6 cm and 1.35 L/h, and 32.6 cm and 1.36 L/h, respectively.
Molecular Dynamics Approach in Designing Thermostable Aspergillus niger Xylanase
NASA Astrophysics Data System (ADS)
Malau, N. D.; Sianturi, M.
2017-03-01
Molecular dynamics methods we have applied as a tool in designing thermostable Aspergillus niger Xylanase, by examining Root Mean Square Deviation (RMSD) and The Stability of the Secondary Structure of enzymes structure at its optimum temperature and compare with its high temperature behavior. As RMSD represents structural fluctuation at a particular temperature, a better understanding of this factor will suggest approaches to bioengineer these enzymes to enhance their thermostability. In this work molecular dynamic simulations of Aspergillus niger xylanase (ANX) have been carried at 400K (optimum catalytic temperature) for 2.5 ns and 500K (ANX reported inactive temperature) for 2.5 ns. Analysis have shown that the Root Mean Square Deviation (RMSD) significant increase at higher temperatures compared at optimum temperature and some of the secondary structures of ANX that have been damaged at high temperature. Structural analysis revealed that the fluctuations of the α-helix and β-sheet regions are larger at higher temperatures compared to the fluctuations at optimum temperature.
NASA Technical Reports Server (NTRS)
Mack, Robert J.
1988-01-01
A wind-tunnel study was conducted to determine the capability of a method combining linear theory and shock-expansion theory to design optimum camber surfaces for wings that will fly at high-supersonic/low-hypersonic speeds. Three force models (a flat-plate reference wing and two cambered and twisted wings) were used to obtain aerodynamic lift, drag, and pitching-moment data. A fourth pressure-orifice model was used to obtain surface-pressure data. All four wing models had the same planform, airfoil section, and centerbody area distribution. The design Mach number was 4.5, but data were also obtained at Mach numbers of 3.5 and 4.0. Results of these tests indicated that the use of airfoil thickness as a theoretical optimum, camber-surface design constraint did not improve the aerodynamic efficiency or performance of a wing as compared with a wing that was designed with a zero-thickness airfoil (linear-theory) constraint.
Method for reducing nitrogen oxides in combustion effluents
Zauderer, Bert
2000-01-01
Method for reducing nitrogen oxides (NO.sub.x) in the gas stream from the combustion of fossil fuels is disclosed. In a narrow gas temperature zone, NO.sub.x is converted to nitrogen by reaction with urea or ammonia with negligible remaining ammonia and other reaction pollutants. Specially designed injectors are used to introduce air atomized water droplets containing dissolved urea or ammonia into the gaseous combustion products in a manner that widely disperses the droplets exclusively in the optimum reaction temperature zone. The injector operates in a manner that forms droplet of a size that results in their vaporization exclusively in this optimum NO.sub.x -urea/ammonia reaction temperature zone. Also disclosed is a design of a system to effectively accomplish this injection.
Study of Fuze Structure and Reliability Design Based on the Direct Search Method
NASA Astrophysics Data System (ADS)
Lin, Zhang; Ning, Wang
2017-03-01
Redundant design is one of the important methods to improve the reliability of the system, but mutual coupling of multiple factors is often involved in the design. In my study, Direct Search Method is introduced into the optimum redundancy configuration for design optimization, in which, the reliability, cost, structural weight and other factors can be taken into account simultaneously, and the redundant allocation and reliability design of aircraft critical system are computed. The results show that this method is convenient and workable, and applicable to the redundancy configurations and optimization of various designs upon appropriate modifications. And this method has a good practical value.
A 2385 MHz, 2-stage low noise amplifier design
NASA Technical Reports Server (NTRS)
Sifri, Jack D.
1986-01-01
This article shows the design aspects of a 2.385 GHz low noise preamplifier with a .7 dB noise figure and 16.5 dB gain using the NE 67383 FET. The design uses a unique method in matching the input which achieves optimum noise figure and unconditional stability.
Guaranteed Discrete Energy Optimization on Large Protein Design Problems.
Simoncini, David; Allouche, David; de Givry, Simon; Delmas, Céline; Barbe, Sophie; Schiex, Thomas
2015-12-08
In Computational Protein Design (CPD), assuming a rigid backbone and amino-acid rotamer library, the problem of finding a sequence with an optimal conformation is NP-hard. In this paper, using Dunbrack's rotamer library and Talaris2014 decomposable energy function, we use an exact deterministic method combining branch and bound, arc consistency, and tree-decomposition to provenly identify the global minimum energy sequence-conformation on full-redesign problems, defining search spaces of size up to 10(234). This is achieved on a single core of a standard computing server, requiring a maximum of 66GB RAM. A variant of the algorithm is able to exhaustively enumerate all sequence-conformations within an energy threshold of the optimum. These proven optimal solutions are then used to evaluate the frequencies and amplitudes, in energy and sequence, at which an existing CPD-dedicated simulated annealing implementation may miss the optimum on these full redesign problems. The probability of finding an optimum drops close to 0 very quickly. In the worst case, despite 1,000 repeats, the annealing algorithm remained more than 1 Rosetta unit away from the optimum, leading to design sequences that could differ from the optimal sequence by more than 30% of their amino acids.
Matching technique yields optimum LNA performance. [Low Noise Amplifiers
NASA Technical Reports Server (NTRS)
Sifri, J. D.
1986-01-01
The present article is concerned with a case in which an optimum noise figure and unconditional stability have been designed into a 2.385-GHz low-noise preamplifier via an unusual method for matching the input with a suspended line. The results obtained with several conventional line-matching techniques were not satisfactory. Attention is given to the minimization of thermal noise, the design procedure, requirements for a high-impedance line, a sampling of four matching networks, the noise figure of the single-line matching network as a function of frequency, and the approaches used to achieve unconditional stability.
Combined linear theory/impact theory method for analysis and design of high speed configurations
NASA Technical Reports Server (NTRS)
Brooke, D.; Vondrasek, D. V.
1980-01-01
Pressure distributions on a wing body at Mach 4.63 are calculated. The combined theory is shown to give improved predictions over either linear theory or impact theory alone. The combined theory is also applied in the inverse design mode to calculate optimum camber slopes at Mach 4.63. Comparisons with optimum camber slopes obtained from unmodified linear theory show large differences. Analysis of the results indicate that the combined theory correctly predicts the effect of thickness on the loading distributions at high Mach numbers, and that finite thickness wings optimized at high Mach numbers using unmodified linear theory will not achieve the minimum drag characteristics for which they are designed.
Airfoil Design and Optimization by the One-Shot Method
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Taasan, Shlomo; Salas, M. D.
1995-01-01
An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Lagrange multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.
Genetic algorithm in the structural design of Cooke triplet lenses
NASA Astrophysics Data System (ADS)
Hazra, Lakshminarayan; Banerjee, Saswatee
1999-08-01
This paper is in tune with our efforts to develop a systematic method for multicomponent lens design. Our aim is to find a suitable starting point in the final configuration space, so that popular local search methods like damped least squares (DLS) may directly lead to a useful solution. For 'ab initio' design problems, a thin lens layout specifying the powers of the individual components and the intercomponent separations are worked out analytically. Requirements of central aberration targets for the individual components in order to satisfy the prespecified primary aberration targets for the overall system are then determined by nonlinear optimization. The next step involves structural design of the individual components by optimization techniques. This general method may be adapted for the design of triplets and their derivatives. However, for the thin lens design of a Cooke triplet composed of three airspaced singlets, the two steps of optimization mentioned above may be combined into a single optimization procedure. The optimum configuration for each of the single set, catering to the required Gaussian specification and primary aberration targets for the Cooke triplet, are determined by an application of genetic algorithm (GA). Our implementation of this algorithm is based on simulations of some complex tools of natural evolution, like selection, crossover and mutation. Our version of GA may or may not converge to a unique optimum, depending on some of the algorithm specific parameter values. With our algorithm, practically useful solutions are always available, although convergence to a global optimum can not be guaranteed. This is perfectly in keeping with our need to allow 'floating' of aberration targets in the subproblem level. Some numerical results dealing with our preliminary investigations on this problem are presented.
Analysis of the Optimum Receiver Design Problem Using Interactive Computer Graphics.
1981-12-01
7 _AD A115 498A l AR FORCE INST OF TECH WR16HT-PATTERSON AF8 OH SCHOO--ETC F/6 9/2 ANALYSIS OF THE OPTIMUM RECEIVER DESIGN PROBLEM USING INTERACTI...ANALYSIS OF THE OPTIMUM RECEIVER DESIGN PROBLEM USING INTERACTIVE COMPUTER GRAPHICS THESIS AFIT/GE/EE/81D-39 Michael R. Mazzuechi Cpt USA Approved for...public release; distribution unlimited AFIT/GE/EE/SlD-39 ANALYSIS OF THE OPTIMUM RECEIVER DESIGN PROBLEM USING INTERACTIVE COMPUTER GRAPHICS THESIS
Optimal block cosine transform image coding for noisy channels
NASA Technical Reports Server (NTRS)
Vaishampayan, V.; Farvardin, N.
1986-01-01
The two dimensional block transform coding scheme based on the discrete cosine transform was studied extensively for image coding applications. While this scheme has proven to be efficient in the absence of channel errors, its performance degrades rapidly over noisy channels. A method is presented for the joint source channel coding optimization of a scheme based on the 2-D block cosine transform when the output of the encoder is to be transmitted via a memoryless design of the quantizers used for encoding the transform coefficients. This algorithm produces a set of locally optimum quantizers and the corresponding binary code assignment for the assumed transform coefficient statistics. To determine the optimum bit assignment among the transform coefficients, an algorithm was used based on the steepest descent method, which under certain convexity conditions on the performance of the channel optimized quantizers, yields the optimal bit allocation. Comprehensive simulation results for the performance of this locally optimum system over noisy channels were obtained and appropriate comparisons against a reference system designed for no channel error were rendered.
Qin, Zong; Ji, Chuangang; Wang, Kai; Liu, Sheng
2012-10-08
In this paper, condition for uniform lighting generated by light emitting diode (LED) array was systematically studied. To take human vision effect into consideration, contrast sensitivity function (CSF) was novelly adopted as critical criterion for uniform lighting instead of conventionally used Sparrow's Criterion (SC). Through CSF method, design parameters including system thickness, LED pitch, LED's spatial radiation distribution and viewing condition can be analytically combined. In a specific LED array lighting system (LALS) with foursquare LED arrangement, different types of LEDs (Lambertian and Batwing type) and given viewing condition, optimum system thicknesses and LED pitches were calculated and compared with those got through SC method. Results show that CSF method can achieve more appropriate optimum parameters than SC method. Additionally, an abnormal phenomenon that uniformity varies with structural parameters non-monotonically in LALS with non-Lambertian LEDs was found and analyzed. Based on the analysis, a design method of LALS that can bring about better practicability, lower cost and more attractive appearance was summarized.
Usha, Rajamanickam; Mala, Krishnaswami Kanjana; Venil, Chidambaram Kulandaisamy; Palaniswamy, Muthusamy
2011-01-01
Marine actinomycetes were isolated from sediment samples collected from Pitchavaram mangrove ecosystem situated along the southeast coast of India. Maximum actinomycete population was noted in rhizosphere region. About 38% of the isolates produced L-asparaginase. One potential strain KUA106 produced higher level of enzyme using tryptone glucose yeast extract medium. Based on the studied phenotypic characteristics, strain KUA106 was identified as Streptomyces parvulus KUA106. The optimization method that combines the Plackett-Burman design, a factorial design and the response surface method, which were used to optimize the medium for the production of L-asparaginase by Streptomycetes parvulus. Four medium factors were screened from eleven medium factors by Plackett-Burman design experiments and subsequent optimization process to find out the optimum values of the selected parameters using central composite design was performed. Asparagine, tryptone, d) extrose and NaCl components were found to be the best medium for the L-asparaginase production. The combined optimization method described here is the effective method for screening medium factors as well as determining their optimum level for the production of L-asparaginase by Streptomycetes parvulus KUAP106.
Sensitivity method for integrated structure/active control law design
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
1987-01-01
The development is described of an integrated structure/active control law design methodology for aeroelastic aircraft applications. A short motivating introduction to aeroservoelasticity is given along with the need for integrated structures/controls design algorithms. Three alternative approaches to development of an integrated design method are briefly discussed with regards to complexity, coordination and tradeoff strategies, and the nature of the resulting solutions. This leads to the formulation of the proposed approach which is based on the concepts of sensitivity of optimum solutions and multi-level decompositions. The concept of sensitivity of optimum is explained in more detail and compared with traditional sensitivity concepts of classical control theory. The analytical sensitivity expressions for the solution of the linear, quadratic cost, Gaussian (LQG) control problem are summarized in terms of the linear regulator solution and the Kalman Filter solution. Numerical results for a state space aeroelastic model of the DAST ARW-II vehicle are given, showing the changes in aircraft responses to variations of a structural parameter, in this case first wing bending natural frequency.
Design of recursive digital filters having specified phase and magnitude characteristics
NASA Technical Reports Server (NTRS)
King, R. E.; Condon, G. W.
1972-01-01
A method for a computer-aided design of a class of optimum filters, having specifications in the frequency domain of both magnitude and phase, is described. The method, an extension to the work of Steiglitz, uses the Fletcher-Powell algorithm to minimize a weighted squared magnitude and phase criterion. Results using the algorithm for the design of filters having specified phase as well as specified magnitude and phase compromise are presented.
Optimal Design of a Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)
NASA Astrophysics Data System (ADS)
Elarusi, Abdulmunaem; Attar, Alaa; Lee, Hosung
2017-04-01
In the present work, the optimum design of thermoelectric car seat climate control (CSCC) is studied analytically in an attempt to achieve high system efficiency. Optimal design of a thermoelectric device (element length, cross-section area and number of thermocouples) is carried out using our newly developed optimization method based on the ideal thermoelectric equations and dimensional analysis to improve the performance of the thermoelectric device in terms of the heating/cooling power and the coefficient of performance (COP). Then, a new innovative system design is introduced which also includes the optimum input current for the initial (transient) startup warming and cooling before the car heating ventilation and air conditioner (HVAC) is active in the cabin. The air-to-air heat exchanger's configuration was taken into account to investigate the optimal design of the CSCC.
NASA Astrophysics Data System (ADS)
Sunarmani; Setyadjit; Ermi, S.
2018-05-01
Ongol-ongol is for food diversification by mixing composite flour of taro, banana and mung bean, then was steamed by hot air. The purpose of this study was to find out the optimum way to produce ‘ongol-ongol’ from composite flour and to know the storage life by prediction method. The research consisted of two stages, namely the determination of the optimum formula of ‘ongol-ongol’ with Design Expert DX 8.1.6 software and the estimation of product shelf life of the optimum formula by ASLT (Accelerated Shelf Life Test) method. The optimum formula of the steamed meal was produced from composite flour and arenga flour with ratio of 50: 50 and flour to water ratio of 1: 1. The proximate content of steamed meal of optimum formula is 36.53% moisture content, ash content of 1,36%, fat content of 14.48%, protein level of 28.5%, and carbohydrate of 44.77% (w/w). Energy Value obtained from 100 g of ‘ongol-ongol’ was 320.8 Kcal. Recommended for steamed meal storage life is 12.54 days at ambient temperature.
Design of Aspirated Compressor Blades Using Three-dimensional Inverse Method
NASA Technical Reports Server (NTRS)
Dang, T. Q.; Rooij, M. Van; Larosiliere, L. M.
2003-01-01
A three-dimensional viscous inverse method is extended to allow blading design with full interaction between the prescribed pressure-loading distribution and a specified transpiration scheme. Transpiration on blade surfaces and endwalls is implemented as inflow/outflow boundary conditions, and the basic modifications to the method are outlined. This paper focuses on a discussion concerning an application of the method to the design and analysis of a supersonic rotor with aspiration. Results show that an optimum combination of pressure-loading tailoring with surface aspiration can lead to a minimization of the amount of sucked flow required for a net performance improvement at design and off-design operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan
In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84%more » in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.« less
Performance optimization of an MHD generator with physical constraints
NASA Technical Reports Server (NTRS)
Pian, C. C. P.; Seikel, G. R.; Smith, J. M.
1979-01-01
A technique has been described which optimizes the power out of a Faraday MHD generator operating under a prescribed set of electrical and magnetic constraints. The method does not rely on complicated numerical optimization techniques. Instead the magnetic field and the electrical loading are adjusted at each streamwise location such that the resultant generator design operates at the most limiting of the cited stress levels. The simplicity of the procedure makes it ideal for optimizing generator designs for system analysis studies of power plants. The resultant locally optimum channel designs are, however, not necessarily the global optimum designs. The results of generator performance calculations are presented for an approximately 2000 MWe size plant. The difference between the maximum power generator design and the optimal design which maximizes net MHD power are described. The sensitivity of the generator performance to the various operational parameters are also presented.
Optimization control of LNG regasification plant using Model Predictive Control
NASA Astrophysics Data System (ADS)
Wahid, A.; Adicandra, F. F.
2018-03-01
Optimization of liquified natural gas (LNG) regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to choose optimum LNG regasification plant design and maintaining the optimum operating conditions through the implementation of model predictive control (MPC). Optimal tuning parameter for MPC such as P (prediction horizon), M (control of the horizon) and T (sampling time) are achieved by using fine-tuning method. The optimal criterion for design is the minimum amount of energy used and for control is integral of square error (ISE). As a result, the optimum design is scheme 2 which is developed by Devold with an energy savings of 40%. To maintain the optimum conditions, required MPC with P, M and T as follows: tank storage pressure: 90, 2, 1; product pressure: 95, 2, 1; temperature vaporizer: 65, 2, 2; and temperature heater: 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6%, 63.5%, 3.1% and 58.2% compared to PI controller performance. The energy savings that MPC controllers can make when there is a disturbance in temperature rise 1°C of sea water is 0.02 MW.
Performance characteristics of aerodynamically optimum turbines for wind energy generators
NASA Technical Reports Server (NTRS)
Rohrbach, C.; Worobel, R.
1975-01-01
This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.
Algorithms for optimization of branching gravity-driven water networks
NASA Astrophysics Data System (ADS)
Dardani, Ian; Jones, Gerard F.
2018-05-01
The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs), this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011) to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel roughness values.
Ethics Training of Law Enforcement Officers: The Optimum Means of Conveyance
ERIC Educational Resources Information Center
Redden, Donald L.
2010-01-01
The current research was designed to furnish an unpretentious but rigorous examination of the subject of ethics education, seeking the most commanding and useful method to deliver the curriculum. A review of the literature revealed several methods currently used to teach ethics. The respondents examined the various methods, noted the positive and…
Optimum Design of Aerospace Structural Components Using Neural Networks
NASA Technical Reports Server (NTRS)
Berke, L.; Patnaik, S. N.; Murthy, P. L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
Gholami, Somayeh; Nedaie, Hassan Ali; Longo, Francesco; Ay, Mohammad Reza; Dini, Sharifeh A.; Meigooni, Ali S.
2017-01-01
Purpose: The clinical efficacy of Grid therapy has been examined by several investigators. In this project, the hole diameter and hole spacing in Grid blocks were examined to determine the optimum parameters that give a therapeutic advantage. Methods: The evaluations were performed using Monte Carlo (MC) simulation and commonly used radiobiological models. The Geant4 MC code was used to simulate the dose distributions for 25 different Grid blocks with different hole diameters and center-to-center spacing. The therapeutic parameters of these blocks, namely, the therapeutic ratio (TR) and geometrical sparing factor (GSF) were calculated using two different radiobiological models, including the linear quadratic and Hug–Kellerer models. In addition, the ratio of the open to blocked area (ROTBA) is also used as a geometrical parameter for each block design. Comparisons of the TR, GSF, and ROTBA for all of the blocks were used to derive the parameters for an optimum Grid block with the maximum TR, minimum GSF, and optimal ROTBA. A sample of the optimum Grid block was fabricated at our institution. Dosimetric characteristics of this Grid block were measured using an ionization chamber in water phantom, Gafchromic film, and thermoluminescent dosimeters in Solid Water™ phantom materials. Results: The results of these investigations indicated that Grid blocks with hole diameters between 1.00 and 1.25 cm and spacing of 1.7 or 1.8 cm have optimal therapeutic parameters (TR > 1.3 and GSF~0.90). The measured dosimetric characteristics of the optimum Grid blocks including dose profiles, percentage depth dose, dose output factor (cGy/MU), and valley-to-peak ratio were in good agreement (±5%) with the simulated data. Conclusion: In summary, using MC-based dosimetry, two radiobiological models, and previously published clinical data, we have introduced a method to design a Grid block with optimum therapeutic response. The simulated data were reproduced by experimental data. PMID:29296035
Orbital transfer vehicle engine technology: Baffled injector design, fabrication, and verification
NASA Technical Reports Server (NTRS)
Schneider, J. A.
1991-01-01
New technologies for space-based, reusable, throttleable, cryogenic orbit transfer propulsion are being evaluated. Supporting tasks for the design of a dual expander cycle engine thrust chamber design are documented. The purpose of the studies was to research the materials used in the thrust chamber design, the supporting fabrication methods necessary to complete the design, and the modification of the injector element for optimum injector/chamber compatibility.
Design and construction of pulsed neutron diagnostic system for plasma focus device (SBUPF1).
Moghadam, Sahar Rajabi; Davani, Fereydoon Abbasi
2010-07-01
In this paper, two designs of pulsed neutron counter structure are introduced. To increase the activation counter efficiency, BC-400 plastic scintillator plates along with silver foils are utilized. Rectangular cubic and cylindrical geometries for activation counter cell are modeled using MCNP4C code. Eventually, an optimum length of 14 cm is calculated for the detector cell and optimum numbers of 20 silver foils for rectangular cubic geometry and ten foils for cylindrical geometry have been acquired. Due to the high cost of cutting, polishing of plastics, and etc., the rectangular cubic design is found to be more economical than the other design. In order to examine the functionality and ensure the detector output and corresponding designing, neutron yield of a 2.48 kJ plasma focus device (SBUPF1) in 8 mbar pressure with removal source method for calibration was measured (3.71+/-0.32)x10(7) neutrons per shot.
NASA Astrophysics Data System (ADS)
Shojaeefard, Mohammad Hassan; Khalkhali, Abolfazl; Faghihian, Hamed; Dahmardeh, Masoud
2018-03-01
Unlike conventional approaches where optimization is performed on a unique component of a specific product, optimum design of a set of components for employing in a product family can cause significant reduction in costs. Increasing commonality and performance of the product platform simultaneously is a multi-objective optimization problem (MOP). Several optimization methods are reported to solve these MOPs. However, what is less discussed is how to find the trade-off points among the obtained non-dominated optimum points. This article investigates the optimal design of a product family using non-dominated sorting genetic algorithm II (NSGA-II) and proposes the employment of technique for order of preference by similarity to ideal solution (TOPSIS) method to find the trade-off points among the obtained non-dominated results while compromising all objective functions together. A case study for a family of suspension systems is presented, considering performance and commonality. The results indicate the effectiveness of the proposed method to obtain the trade-off points with the best possible performance while maximizing the common parts.
Experimental investigation of optimum beam size for FSO uplink
NASA Astrophysics Data System (ADS)
Kaushal, Hemani; Kaddoum, Georges; Jain, Virander Kumar; Kar, Subrat
2017-10-01
In this paper, the effect of transmitter beam size on the performance of free space optical (FSO) communication has been determined experimentally. Irradiance profile for varying turbulence strength is obtained using optical turbulence generating (OTG) chamber inside laboratory environment. Based on the results, an optimum beam size is investigated using the semi-analytical method. Moreover, the combined effects of atmospheric scintillation and beam wander induced pointing errors are considered in order to determine the optimum beam size that minimizes the bit error rate (BER) of the system for a fixed transmitter power and link length. The results show that the optimum beam size for FSO uplink depends upon Fried parameter and outer scale of the turbulence. Further, it is observed that the optimum beam size increases with the increase in zenith angle but has negligible effect with the increase in fade threshold level at low turbulence levels and has a marginal effect at high turbulence levels. Finally, the obtained outcome is useful for FSO system design and BER performance analysis.
Stochastic search in structural optimization - Genetic algorithms and simulated annealing
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1993-01-01
An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.
Okut, Dilara; Devseren, Esra; Koç, Mehmet; Ocak, Özgül Özdestan; Karataş, Haluk; Kaymak-Ertekin, Figen
2018-01-01
Purpose of this study was to develop prototype cooking equipment that can work at reduced pressure and to evaluate its performance for production of strawberry jam. The effect of vacuum cooking conditions on color soluble solid content, reducing sugars total sugars HMF and sensory properties were investigated. Also, the optimum vacuum cooking conditions for strawberry jam were optimized for Composite Rotatable Design. The optimum cooking temperature and time were determined targeting maximum soluble solid content and sensory attributes (consistency) and minimum Hue value and HMF content. The optimum vacuum cooking conditions determined were 74.4 °C temperature and 19.8 time. The soluble solid content strawberry jam made by vacuum process were similar to those prepared by traditional method. HMF contents of jams produced with vacuum cooking method were well within limit of standards.
In Silico Syndrome Prediction for Coronary Artery Disease in Traditional Chinese Medicine
Lu, Peng; Chen, Jianxin; Zhao, Huihui; Gao, Yibo; Luo, Liangtao; Zuo, Xiaohan; Shi, Qi; Yang, Yiping; Yi, Jianqiang; Wang, Wei
2012-01-01
Coronary artery disease (CAD) is the leading causes of deaths in the world. The differentiation of syndrome (ZHENG) is the criterion of diagnosis and therapeutic in TCM. Therefore, syndrome prediction in silico can be improving the performance of treatment. In this paper, we present a Bayesian network framework to construct a high-confidence syndrome predictor based on the optimum subset, that is, collected by Support Vector Machine (SVM) feature selection. Syndrome of CAD can be divided into asthenia and sthenia syndromes. According to the hierarchical characteristics of syndrome, we firstly label every case three types of syndrome (asthenia, sthenia, or both) to solve several syndromes with some patients. On basis of the three syndromes' classes, we design SVM feature selection to achieve the optimum symptom subset and compare this subset with Markov blanket feature select using ROC. Using this subset, the six predictors of CAD's syndrome are constructed by the Bayesian network technique. We also design Naïve Bayes, C4.5 Logistic, Radial basis function (RBF) network compared with Bayesian network. In a conclusion, the Bayesian network method based on the optimum symptoms shows a practical method to predict six syndromes of CAD in TCM. PMID:22567030
Slot Optimization Design of Induction Motor for Electric Vehicle
NASA Astrophysics Data System (ADS)
Shen, Yiming; Zhu, Changqing; Wang, Xiuhe
2018-01-01
Slot design of induction motor has a great influence on its performance. The RMxprt module based on magnetic circuit method can be used to analyze the influence of rotor slot type on motor characteristics and optimize slot parameters. In this paper, the authors take an induction motor of electric vehicle for a typical example. The first step of the design is to optimize the rotor slot by RMxprt, and then compare the main performance of the motor before and after the optimization through Ansoft Maxwell 2D. After that, the combination of optimum slot type and the optimum parameters are obtained. The results show that the power factor and the starting torque of the optimized motor have been improved significantly. Furthermore, the electric vehicle works at a better running status after the optimization.
Optimal design method to minimize users' thinking mapping load in human-machine interactions.
Huang, Yanqun; Li, Xu; Zhang, Jie
2015-01-01
The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.
MASTOS: Mammography Simulation Tool for design Optimization Studies.
Spyrou, G; Panayiotakis, G; Tzanakos, G
2000-01-01
Mammography is a high quality imaging technique for the detection of breast lesions, which requires dedicated equipment and optimum operation. The design parameters of a mammography unit have to be decided and evaluated before the construction of such a high cost of apparatus. The optimum operational parameters also must be defined well before the real breast examination. MASTOS is a software package, based on Monte Carlo methods, that is designed to be used as a simulation tool in mammography. The input consists of the parameters that have to be specified when using a mammography unit, and also the parameters specifying the shape and composition of the breast phantom. In addition, the input may specify parameters needed in the design of a new mammographic apparatus. The main output of the simulation is a mammographic image and calculations of various factors that describe the image quality. The Monte Carlo simulation code is PC-based and is driven by an outer shell of a graphical user interface. The entire software package is a simulation tool for mammography and can be applied in basic research and/or in training in the fields of medical physics and biomedical engineering as well as in the performance evaluation of new designs of mammography units and in the determination of optimum standards for the operational parameters of a mammography unit.
NASA Astrophysics Data System (ADS)
Rong, J. H.; Yi, J. H.
2010-10-01
In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multi- displacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.
Optimization of rotor shaft shrink fit method for motor using "Robust design"
NASA Astrophysics Data System (ADS)
Toma, Eiji
2018-01-01
This research is collaborative investigation with the general-purpose motor manufacturer. To review construction method in production process, we applied the parameter design method of quality engineering and tried to approach the optimization of construction method. Conventionally, press-fitting method has been adopted in process of fitting rotor core and shaft which is main component of motor, but quality defects such as core shaft deflection occurred at the time of press fitting. In this research, as a result of optimization design of "shrink fitting method by high-frequency induction heating" devised as a new construction method, its construction method was feasible, and it was possible to extract the optimum processing condition.
Predicting optimum crop designs using crop models and seasonal climate forecasts.
Rodriguez, D; de Voil, P; Hudson, D; Brown, J N; Hayman, P; Marrou, H; Meinke, H
2018-02-02
Expected increases in food demand and the need to limit the incorporation of new lands into agriculture to curtail emissions, highlight the urgency to bridge productivity gaps, increase farmers profits and manage risks in dryland cropping. A way to bridge those gaps is to identify optimum combination of genetics (G), and agronomic managements (M) i.e. crop designs (GxM), for the prevailing and expected growing environment (E). Our understanding of crop stress physiology indicates that in hindsight, those optimum crop designs should be known, while the main problem is to predict relevant attributes of the E, at the time of sowing, so that optimum GxM combinations could be informed. Here we test our capacity to inform that "hindsight", by linking a tested crop model (APSIM) with a skillful seasonal climate forecasting system, to answer "What is the value of the skill in seasonal climate forecasting, to inform crop designs?" Results showed that the GCM POAMA-2 was reliable and skillful, and that when linked with APSIM, optimum crop designs could be informed. We conclude that reliable and skillful GCMs that are easily interfaced with crop simulation models, can be used to inform optimum crop designs, increase farmers profits and reduce risks.
NASA Astrophysics Data System (ADS)
Kochedykov, S. S.; Noev, A. N.; Dushkin, A. V.; Gubin, I. A.
2018-05-01
On the basis of the mathematical graph theory, the method of optimum switching of infocommunication networks in the conditions of cyber attacks is developed. The idea of representation of a set of possible ways on the graph in the form of the multilevel tree ordered by rules of algebra of a logic theory is the cornerstone of a method. As a criterion of optimization, the maximum of network transmission capacity to which assessment Ford- Falkerson's theorem is applied is used. The method is realized in the form of a numerical algorithm, which can be used not only for design, but also for operational management of infocommunication networks in conditions of violation of the functioning of their switching centers.
Optimization of lightweight structure and supporting bipod flexure for a space mirror.
Chen, Yi-Cheng; Huang, Bo-Kai; You, Zhen-Ting; Chan, Chia-Yen; Huang, Ting-Ming
2016-12-20
This article presents an optimization process for integrated optomechanical design. The proposed optimization process for integrated optomechanical design comprises computer-aided drafting, finite element analysis (FEA), optomechanical transfer codes, and an optimization solver. The FEA was conducted to determine mirror surface deformation; then, deformed surface nodal data were transferred into Zernike polynomials through MATLAB optomechanical transfer codes to calculate the resulting optical path difference (OPD) and optical aberrations. To achieve an optimum design, the optimization iterations of the FEA, optomechanical transfer codes, and optimization solver were automatically connected through a self-developed Tcl script. Two examples of optimization design were illustrated in this research, namely, an optimum lightweight design of a Zerodur primary mirror with an outer diameter of 566 mm that is used in a spaceborne telescope and an optimum bipod flexure design that supports the optimum lightweight primary mirror. Finally, optimum designs were successfully accomplished in both examples, achieving a minimum peak-to-valley (PV) value for the OPD of the deformed optical surface. The simulated optimization results showed that (1) the lightweight ratio of the primary mirror increased from 56% to 66%; and (2) the PV value of the mirror supported by optimum bipod flexures in the horizontal position effectively decreased from 228 to 61 nm.
Experimental optimum design and luminescence properties of NaY(Gd)(MoO4)2:Er3+ phosphors
NASA Astrophysics Data System (ADS)
Jia-Shi, Sun; Sai, Xu; Shu-Wei, Li; Lin-Lin, Shi; Zi-Hui, Zhai; Bao-Jiu, Chen
2016-06-01
Three-factor orthogonal design (OD) of Er3+/Gd3+/T (calcination temperature) is used to optimize the luminescent intensity of NaY(Gd)(MoO4)2:Er3+ phosphor. Firstly, the uniform design (UD) is introduced to explore the doping concentration range of Er3+/Gd3+. Then OD and range analysis are performed based on the results of UD to obtain the primary and secondary sequence and the best combination of Er3+, Gd3+, and T within the experimental range. The optimum sample is prepared by the high temperature solid state method. Photoluminescence excitation and emission spectra of the optimum sample are detected. The intense green emissions (530 nm and 550 nm) are observed which originate from Er3+ 2H11/2→ 4I15/2 and 4S3/2→4I15/2, respectively. Thermal effect is investigated in the optimum NaY(Gd3+)(MoO4)2:Er3+ phosphors, and the green emission intensity decreases as temperature increases. Project supported by Education Reform Fund of Dalian Maritime University, China (Grant No. 2015Y37), the Natural Science Foundation of Liaoning Province, China (Grant Nos. 2015020190 and 2014025010), the Open Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2015KF27), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3132016121).
Airfoil optimization by the one-shot method
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Taasan, Shlomo; Salas, M. D.
1994-01-01
An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (Governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Language multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.
Optimization of multi-element airfoils for maximum lift
NASA Technical Reports Server (NTRS)
Olsen, L. E.
1979-01-01
Two theoretical methods are presented for optimizing multi-element airfoils to obtain maximum lift. The analyses assume that the shapes of the various high lift elements are fixed. The objective of the design procedures is then to determine the optimum location and/or deflection of the leading and trailing edge devices. The first analysis determines the optimum horizontal and vertical location and the deflection of a leading edge slat. The structure of the flow field is calculated by iteratively coupling potential flow and boundary layer analysis. This design procedure does not require that flow separation effects be modeled. The second analysis determines the slat and flap deflection required to maximize the lift of a three element airfoil. This approach requires that the effects of flow separation from one or more of the airfoil elements be taken into account. The theoretical results are in good agreement with results of a wind tunnel test used to corroborate the predicted optimum slat and flap positions.
Ara, Katayoun Mahdavi; Raofie, Farhad
2016-07-01
Essential oils and volatile components of pomegranate ( Punica granatum L.) peel of the Malas variety from Meybod, Iran, were extracted using supercritical fluid extraction (SFE) and hydro-distillation methods. The experimental parameters of SFE that is pressure, temperature, extraction time, and modifier (methanol) volume were optimized using a central composite design after a (2 4-1 ) fractional factorial design. Detailed chemical composition of the essential oils and volatile components obtained by hydro-distillation and optimum condition of the supercritical CO 2 extraction were analyzed by GC-MS, and seventy-three and forty-six compounds were identified according to their retention indices and mass spectra, respectively. The optimum SFE conditions were 350 atm pressure, 55 °C temperature, 30 min extraction time, and 150 µL methanol. Results showed that oleic acid, palmitic acid and (-)-Borneol were major compounds in both extracts. The optimum extraction yield was 1.18 % (w/w) for SFE and 0.21 % (v/w) for hydro-distillation.
Optimum wall impedance for spinning modes: A correlation with mode cut-off ratio
NASA Technical Reports Server (NTRS)
Rice, E. J.
1978-01-01
A correlating equation relating the optimum acoustic impedance for the wall lining of a circular duct to the acoustic mode cut-off ratio, is presented. The optimum impedance was correlated with cut-off ratio because the cut-off ratio appears to be the fundamental parameter governing the propagation of sound in the duct. Modes with similar cut-off ratios respond in a similar way to the acoustic liner. The correlation is a semi-empirical expression developed from an empirical modification of an equation originally derived from sound propagation theory in a thin boundary layer. This correlating equation represents a part of a simplified liner design method, based upon modal cut-off ratio, for multimodal noise propagation.
A method to design blended rolled edges for compact range reflectors
NASA Technical Reports Server (NTRS)
Gupta, Inder J.; Burnside, Walter D.
1989-01-01
A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameter is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.
A method to design blended rolled edges for compact range reflectors
NASA Technical Reports Server (NTRS)
Gupta, Inder J.; Ericksen, Kurt P.; Burnside, Walter D.
1990-01-01
A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameters is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.
First-order design of geodetic networks using the simulated annealing method
NASA Astrophysics Data System (ADS)
Berné, J. L.; Baselga, S.
2004-09-01
The general problem of the optimal design for a geodetic network subject to any extrinsic factors, namely the first-order design problem, can be dealt with as a numeric optimization problem. The classic theory of this problem and the optimization methods are revised. Then the innovative use of the simulated annealing method, which has been successfully applied in other fields, is presented for this classical geodetic problem. This method, belonging to iterative heuristic techniques in operational research, uses a thermodynamical analogy to crystalline networks to offer a solution that converges probabilistically to the global optimum. Basic formulation and some examples are studied.
Optimum process design of packed bed type thermal storage systems and other applications
Bindra, Hitesh; Bueno, Pablo
2016-10-25
Methods and systems for optimizing the process of heat and/or mass transfer operations in packed beds and embodiments of applications of the methods are disclosed herein below. In one instance, the method results in the profile of the quantity representative of the heat and/or mass transfer operation having a propagating substantially sharp front.
Hemmat, Abbas; Kafashan, Jalal; Huang, Hongying
2017-01-01
To study the optimum process conditions for pretreatments and anaerobic codigestion of oil refinery wastewater (ORWW) with chicken manure, L9 (34) Taguchi's orthogonal array was applied. The biogas production (BGP), biomethane content (BMP), and chemical oxygen demand solubilization (CODS) in stabilization rate were evaluated as the process outputs. The optimum conditions were obtained by using Design Expert software (Version 7.0.0). The results indicated that the optimum conditions could be achieved with 44% ORWW, 36°C temperature, 30 min sonication, and 6% TS in the digester. The optimum BGP, BMP, and CODS removal rates by using the optimum conditions were 294.76 mL/gVS, 151.95 mL/gVS, and 70.22%, respectively, as concluded by the experimental results. In addition, the artificial neural network (ANN) technique was implemented to develop an ANN model for predicting BGP yield and BMP content. The Levenberg-Marquardt algorithm was utilized to train ANN, and the architecture of 9-19-2 for the ANN model was obtained. PMID:29441352
NASA Astrophysics Data System (ADS)
Chrismianto, Deddy; Zakki, Ahmad Fauzan; Arswendo, Berlian; Kim, Dong Joon
2015-12-01
Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create a parametric model for a complex shape with irregular curves, such as a submarine hull form. In this study, the cubic Bezier curve and curve-plane intersection method are used to generate a solid model of a parametric submarine hull form taking three input parameters into account: nose radius, tail radius, and length-height hull ratio ( L/ H). Application program interface (API) scripting is also used to write code in the ANSYS design modeler. The results show that the submarine shape can be generated with some variation of the input parameters. An example is given that shows how the proposed method can be applied successfully to a hull resistance optimization case. The parametric design of the middle submarine type was chosen to be modified. First, the original submarine model was analyzed, in advance, using CFD. Then, using the response surface graph, some candidate optimal designs with a minimum hull resistance coefficient were obtained. Further, the optimization method in goal-driven optimization (GDO) was implemented to find the submarine hull form with the minimum hull resistance coefficient ( C t ). The minimum C t was obtained. The calculated difference in C t values between the initial submarine and the optimum submarine is around 0.26%, with the C t of the initial submarine and the optimum submarine being 0.001 508 26 and 0.001 504 29, respectively. The results show that the optimum submarine hull form shows a higher nose radius ( r n ) and higher L/ H than those of the initial submarine shape, while the radius of the tail ( r t ) is smaller than that of the initial shape.
Design of experiments for zeroth and first-order reaction rates.
Amo-Salas, Mariano; Martín-Martín, Raúl; Rodríguez-Aragón, Licesio J
2014-09-01
This work presents optimum designs for reaction rates experiments. In these experiments, time at which observations are to be made and temperatures at which reactions are to be run need to be designed. Observations are performed along time under isothermal conditions. Each experiment needs a fixed temperature and so the reaction can be measured at the designed times. For these observations under isothermal conditions over the same reaction a correlation structure has been considered. D-optimum designs are the aim of our work for zeroth and first-order reaction rates. Temperatures for the isothermal experiments and observation times, to obtain the most accurate estimates of the unknown parameters, are provided in these designs. D-optimum designs for a single observation in each isothermal experiment or for several correlated observations have been obtained. Robustness of the optimum designs for ranges of the correlation parameter and comparisons of the information gathered by different designs are also shown. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aerodynamic Design of a Propeller for High-Altitude Balloon Trajectory Control
NASA Technical Reports Server (NTRS)
Eppler, Richard; Somers, Dan M.
2012-01-01
The aerodynamic design of a propeller for the trajectory control of a high-altitude, scientific balloon has been performed using theoretical methods developed especially for such applications. The methods are described. Optimum, nonlinear chord and twist distributions have been developed in conjunction with the design of a family of airfoils, the SE403, SE404, and SE405, for the propeller. The very low Reynolds numbers along the propeller blade fall in a range that has yet to be rigorously investigated, either experimentally or theoretically.
NASA Technical Reports Server (NTRS)
Yao, Tse-Min; Choi, Kyung K.
1987-01-01
An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.
Keresztes, Janos C; John Koshel, R; D'huys, Karlien; De Ketelaere, Bart; Audenaert, Jan; Goos, Peter; Saeys, Wouter
2016-12-26
A novel meta-heuristic approach for minimizing nonlinear constrained problems is proposed, which offers tolerance information during the search for the global optimum. The method is based on the concept of design and analysis of computer experiments combined with a novel two phase design augmentation (DACEDA), which models the entire merit space using a Gaussian process, with iteratively increased resolution around the optimum. The algorithm is introduced through a series of cases studies with increasing complexity for optimizing uniformity of a short-wave infrared (SWIR) hyperspectral imaging (HSI) illumination system (IS). The method is first demonstrated for a two-dimensional problem consisting of the positioning of analytical isotropic point sources. The method is further applied to two-dimensional (2D) and five-dimensional (5D) SWIR HSI IS versions using close- and far-field measured source models applied within the non-sequential ray-tracing software FRED, including inherent stochastic noise. The proposed method is compared to other heuristic approaches such as simplex and simulated annealing (SA). It is shown that DACEDA converges towards a minimum with 1 % improvement compared to simplex and SA, and more importantly requiring only half the number of simulations. Finally, a concurrent tolerance analysis is done within DACEDA for to the five-dimensional case such that further simulations are not required.
A gradient system solution to Potts mean field equations and its electronic implementation.
Urahama, K; Ueno, S
1993-03-01
A gradient system solution method is presented for solving Potts mean field equations for combinatorial optimization problems subject to winner-take-all constraints. In the proposed solution method the optimum solution is searched by using gradient descent differential equations whose trajectory is confined within the feasible solution space of optimization problems. This gradient system is proven theoretically to always produce a legal local optimum solution of combinatorial optimization problems. An elementary analog electronic circuit implementing the presented method is designed on the basis of current-mode subthreshold MOS technologies. The core constituent of the circuit is the winner-take-all circuit developed by Lazzaro et al. Correct functioning of the presented circuit is exemplified with simulations of the circuits implementing the scheme for solving the shortest path problems.
Hardware-Based Non-Optimum Factors for Launch Vehicle Structural Design
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Cerro, Jeffrey A.
2010-01-01
During aerospace vehicle conceptual and preliminary design, empirical non-optimum factors are typically applied to predicted structural component weights to account for undefined manufacturing and design details. Non-optimum factors are developed here for 32 aluminum-lithium 2195 orthogrid panels comprising the liquid hydrogen tank barrel of the Space Shuttle External Tank using measured panel weights and manufacturing drawings. Minimum values for skin thickness, axial and circumferential blade stiffener thickness and spacing, and overall panel thickness are used to estimate individual panel weights. Panel non-optimum factors computed using a coarse weights model range from 1.21 to 1.77, and a refined weights model (including weld lands and skin and stiffener transition details) yields non-optimum factors of between 1.02 and 1.54. Acreage panels have an average 1.24 non-optimum factor using the coarse model, and 1.03 with the refined version. The observed consistency of these acreage non-optimum factors suggests that relatively simple models can be used to accurately predict large structural component weights for future launch vehicles.
Simultaneous Aerodynamic and Structural Design Optimization (SASDO) for a 3-D Wing
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Hou, Gene J.-W.; Newman, Perry A.
2001-01-01
The formulation and implementation of an optimization method called Simultaneous Aerodynamic and Structural Design Optimization (SASDO) is shown as an extension of the Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) method. It is extended by the inclusion of structure element sizing parameters as design variables and Finite Element Method (FEM) analysis responses as constraints. The method aims to reduce the computational expense. incurred in performing shape and sizing optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, FEM structural analysis and sensitivity analysis tools. SASDO is applied to a simple. isolated, 3-D wing in inviscid flow. Results show that the method finds the saine local optimum as a conventional optimization method with some reduction in the computational cost and without significant modifications; to the analysis tools.
Optimum design of bolted composite lap joints under mechanical and thermal loading
NASA Astrophysics Data System (ADS)
Kradinov, Vladimir Yurievich
A new approach is developed for the analysis and design of mechanically fastened composite lap joints under mechanical and thermal loading. Based on the combined complex potential and variational formulation, the solution method satisfies the equilibrium equations exactly while the boundary conditions are satisfied by minimizing the total potential. This approach is capable of modeling finite laminate planform dimensions, uniform and variable laminate thickness, laminate lay-up, interaction among bolts, bolt torque, bolt flexibility, bolt size, bolt-hole clearance and interference, insert dimensions and insert material properties. Comparing to the finite element analysis, the robustness of the method does not decrease when modeling the interaction of many bolts; also, the method is more suitable for parametric study and design optimization. The Genetic Algorithm (GA), a powerful optimization technique for multiple extrema functions in multiple dimensions search spaces, is applied in conjunction with the complex potential and variational formulation to achieve optimum designs of bolted composite lap joints. The objective of the optimization is to acquire such a design that ensures the highest strength of the joint. The fitness function for the GA optimization is based on the average stress failure criterion predicting net-section, shear-out, and bearing failure modes in bolted lap joints. The criterion accounts for the stress distribution in the thickness direction at the bolt location by applying an approach utilizing a beam on an elastic foundation formulation.
NASA Technical Reports Server (NTRS)
Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)
2014-01-01
A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.
Concepts for the development of light-weight composite structures for rotor burst containment
NASA Technical Reports Server (NTRS)
Holms, A. G.
1977-01-01
Based on published results on rotor burst containment with single materials, and on body armor using composite materials, a set of hypotheses is established as to what variables might control the design of a weight-efficient protective device. Based on modern concepts for the design and analysis of small optimum seeking experiments, a particular experiment for evaluating the hypotheses and materials was designed. The design and methods for the analysis of results are described.
Theory-driven design of hole-conducting transparent oxides
NASA Astrophysics Data System (ADS)
Trimarchi, G.; Peng, H.; Im, J.; Freeman, A. J.; Cloet, V.; Raw, A.; Poeppelmeier, K. R.; Biswas, K.; Lany, S.; Zunger, A.
2012-02-01
The design of p-type transparent conducting oxides (TCOs) aims at simultaneously achieving transparency and high hole concentration and hole conductivity in one compound. Such design principles (DPs) define a multi-objective optimization problem that is to be solved by searching a large set of compounds for optimum ones. Here, we screen a large set of ternary compounds, including Ag and Cu oxides and chalcogenides, by calculating via first-principles methods the design properties of each compound, in order to search for optimum p-type TCOs. We first select Ag3VO4 as a case study of the application of ab-initio methods to assess a compound as a candidate p-type TCO. We predict Ag3VO4 (i) to have a hole concentration of 10^14 cm-3 at room temperature, (ii) to be at the verge of transparency, and (iii) to have lower hole effective mass than the prototype p-type TCO CuAlO2. We then map the hole effective mass vs. the band gap in the selected compounds and determine those that best meet the DPs by having simultaneously minimum effective mass and a band gap large enough for transparency.
NASA Technical Reports Server (NTRS)
Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
Han, Fang; Wang, Zhijie; Fan, Hong
2017-01-01
This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy consumption is composed of two parts: neuronal basic energy consumption and neuronal spike emission energy consumption. A parameter to model the relative importance of energy consumption is introduced in the definition of the information efficiency. Then, we designed a combination of exponential functions to describe the optimum firing rate distribution based on the analysis of the dependency of the mutual information and the energy consumption on the shape of the functions of the firing rate distributions. Furthermore, we developed a rapid algorithm to search the parameter values of the optimum firing rate distribution function. Finally, we found with the rapid algorithm that a combination of two different exponential functions with two free parameters can describe the optimum firing rate distribution accurately. We also found that if the energy consumption is relatively unimportant (important) compared to the mutual information or the neuronal basic energy consumption is relatively large (small), the curve of the optimum firing rate distribution will be relatively flat (steep), and the corresponding optimum tuning curve exhibits a form of sigmoid if the stimuli distribution is normal. PMID:28270760
CHOOSING THE OPTIMUM FINANCIAL STRATEGY FOR POLLUTION CONTROL INVESTMENTS
This publication was designed to alert industry to qualifications for and availability of financial assistance from federal, state and local governments, and will illustrate that it is well worth the time to analyze the special methods of financing pollution control expenditures ...
Assessing green waste route by using Network Analysis
NASA Astrophysics Data System (ADS)
Hasmantika, I. H.; Maryono, M.
2018-02-01
Green waste, such as waste from park need treat proper. One of the main problems of green waste management is how to design optimum collection. This research aims to determine the optimum green waste collection by determining optimum route among park. The route optimum was assessed by using network analysis method. And the region five of Semarang city’s park within 20 parks in chose as case study. To enhancing recycle of green waste, three scenarios of treatment are proposed. Scenario 1 used one integrated treatment facility as terminal for enhancing recycle of green waste, Scenario 2 used two sites and scenario 3 used three sites. According to the assessment, the length of route of scenario 1 is 36.126 km and the time for collection estimated is 46 minutes. In scenario 2, the length of route is 36.471 km with a travel time is 47 minutes. The length of scenario three is 46.934 km and the time of collection is 60 minutes.
Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL
2009-11-17
A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.
NASA Astrophysics Data System (ADS)
Luthfi, A.; Subhan, K. A.; Eko H, B.; Sanggar, D. R.; Pramadihanto, D.
2018-04-01
Lightweight construction and energy efficiency play an important role in humanoid robot development. The application of computer-aided engineering (CAE) in the development process is one of the possibilities to achieve the appropriate reduction of the weight. This paper describes a method to generate an optimum lightweight legs structure design based on critical posture during walking locomotion in A-FLoW Humanoid robot.The criticalposture can be obtained from the highest forces and moments in each joint of the robot body during walking locomotion. From the finite element analysis (FEA) result can be realized leg structure design of A-FLoW humanoid robot with a maximum displacement value of 0.05 mmand weight reduction about 0.598 Kg from the thigh structure and a maximum displacement value of 0,13 mmand weight reduction about 0.57 kg from the shin structure.
Design of mechanisms to lock/latch systems under rotational or translational motion
NASA Technical Reports Server (NTRS)
Billimoria, R. P.
1976-01-01
Bodies/systems need to be stopped and locked/latched at the end of their path. Some examples of these systems in the aerospace industry (including launch vehicle, spacecraft, and the ground support equipment) are the command module access arm, service arms, docking module of the ASTP and the orbiter access arm for the space shuttle. Two major aspects are covered: (1) various methods of latching and (2) selection of the optimum method for latching, depending on the application and the design requirement criteria.
Schormans, Matthew; Valente, Virgilio; Demosthenous, Andreas
2016-08-04
Inductive powering for implanted medical devices, such as implantable biosensors, is a safe and effective technique that allows power to be delivered to implants wirelessly, avoiding the use of transcutaneous wires or implanted batteries. Wireless powering is very sensitive to a number of link parameters, including coil distance, alignment, shape, and load conditions. The optimum drive frequency of an inductive link varies depending on the coil spacing and load. This paper presents an optimum frequency tracking (OFT) method, in which an inductive power link is driven at a frequency that is maintained at an optimum value to ensure that the link is working at resonance, and the output voltage is maximised. The method is shown to provide significant improvements in maintained secondary voltage and system efficiency for a range of loads when the link is overcoupled. The OFT method does not require the use of variable capacitors or inductors. When tested at frequencies around a nominal frequency of 5 MHz, the OFT method provides up to a twofold efficiency improvement compared to a fixed frequency drive. The system can be readily interfaced with passive implants or implantable biosensors, and lends itself to interfacing with designs such as distributed implanted sensor networks, where each implant is operating at a different frequency.
An outer approximation method for the road network design problem
2018-01-01
Best investment in the road infrastructure or the network design is perceived as a fundamental and benchmark problem in transportation. Given a set of candidate road projects with associated costs, finding the best subset with respect to a limited budget is known as a bilevel Discrete Network Design Problem (DNDP) of NP-hard computationally complexity. We engage with the complexity with a hybrid exact-heuristic methodology based on a two-stage relaxation as follows: (i) the bilevel feature is relaxed to a single-level problem by taking the network performance function of the upper level into the user equilibrium traffic assignment problem (UE-TAP) in the lower level as a constraint. It results in a mixed-integer nonlinear programming (MINLP) problem which is then solved using the Outer Approximation (OA) algorithm (ii) we further relax the multi-commodity UE-TAP to a single-commodity MILP problem, that is, the multiple OD pairs are aggregated to a single OD pair. This methodology has two main advantages: (i) the method is proven to be highly efficient to solve the DNDP for a large-sized network of Winnipeg, Canada. The results suggest that within a limited number of iterations (as termination criterion), global optimum solutions are quickly reached in most of the cases; otherwise, good solutions (close to global optimum solutions) are found in early iterations. Comparative analysis of the networks of Gao and Sioux-Falls shows that for such a non-exact method the global optimum solutions are found in fewer iterations than those found in some analytically exact algorithms in the literature. (ii) Integration of the objective function among the constraints provides a commensurate capability to tackle the multi-objective (or multi-criteria) DNDP as well. PMID:29590111
An outer approximation method for the road network design problem.
Asadi Bagloee, Saeed; Sarvi, Majid
2018-01-01
Best investment in the road infrastructure or the network design is perceived as a fundamental and benchmark problem in transportation. Given a set of candidate road projects with associated costs, finding the best subset with respect to a limited budget is known as a bilevel Discrete Network Design Problem (DNDP) of NP-hard computationally complexity. We engage with the complexity with a hybrid exact-heuristic methodology based on a two-stage relaxation as follows: (i) the bilevel feature is relaxed to a single-level problem by taking the network performance function of the upper level into the user equilibrium traffic assignment problem (UE-TAP) in the lower level as a constraint. It results in a mixed-integer nonlinear programming (MINLP) problem which is then solved using the Outer Approximation (OA) algorithm (ii) we further relax the multi-commodity UE-TAP to a single-commodity MILP problem, that is, the multiple OD pairs are aggregated to a single OD pair. This methodology has two main advantages: (i) the method is proven to be highly efficient to solve the DNDP for a large-sized network of Winnipeg, Canada. The results suggest that within a limited number of iterations (as termination criterion), global optimum solutions are quickly reached in most of the cases; otherwise, good solutions (close to global optimum solutions) are found in early iterations. Comparative analysis of the networks of Gao and Sioux-Falls shows that for such a non-exact method the global optimum solutions are found in fewer iterations than those found in some analytically exact algorithms in the literature. (ii) Integration of the objective function among the constraints provides a commensurate capability to tackle the multi-objective (or multi-criteria) DNDP as well.
Optimum design of space storable gas/liquid coaxial injectors.
NASA Technical Reports Server (NTRS)
Burick, R. J.
1972-01-01
Review of the results of a program of single-element, cold-flow/hot-fire experiments performed for the purpose of establishing design criteria for a high-performance gas/liquid (FLOX/CH4) coaxial injector. The approach and the techniques employed resulted in the direct design of an injector that met or exceeded the performance and chamber compatibility goals of the program without any need for the traditional 'cut-and-try' development methods.
Optimum design calculations for detectors based on ZnSe(Те,О) scintillators
NASA Astrophysics Data System (ADS)
Katrunov, K.; Ryzhikov, V.; Gavrilyuk, V.; Naydenov, S.; Lysetska, O.; Litichevskyi, V.
2013-06-01
Light collection in scintillators ZnSe(X), where X is an isovalent dopant, was studied using Monte Carlo calculations. Optimum design was determined for detectors of "scintillator—Si-photodiode" type, which can involve either one scintillation element or scintillation layers of large area made of small-crystalline grains. The calculations were carried out both for determination of the optimum scintillator shape and for design optimization of light guides, on the surface of which the layer of small-crystalline grains is formed.
2012-01-01
The optimization processes of photo degradation are complicated and expensive when it is performed with traditional methods such as one variable at a time. In this research, the condition of ortho-cresol (o-cresol) photo degradation was optimized by using a semi empirical method. First of all, the experiments were designed with four effective factors including irradiation time, pH, photo catalyst’s amount, o-cresol concentration and photo degradation % as response by response surface methodology (RSM). The RSM used central composite design (CCD) method consists of 30 runs to obtain the actual responses. The actual responses were fitted with the second order algebraic polynomial equation to select a model (suggested model). The suggested model was validated by a few numbers of excellent statistical evidences in analysis of variance (ANOVA). The used evidences include high F-value (143.12), very low P-value (<0.0001), non-significant lack of fit, the determination coefficient (R2 = 0.99) and the adequate precision (47.067). To visualize the optimum, the validated model simulated the condition of variables and response (photo degradation %) be using a few number of three dimensional plots (3D). To confirm the model, the optimums were performed in laboratory. The results of performed experiments were quite close to the predicted values. In conclusion, the study indicated that the model is successful to simulate the optimum condition of o-cresol photo degradation under visible-light irradiation by manganese doped ZnO nanoparticles. PMID:22909072
Reliability approach to rotating-component design. [fatigue life and stress concentration
NASA Technical Reports Server (NTRS)
Kececioglu, D. B.; Lalli, V. R.
1975-01-01
A probabilistic methodology for designing rotating mechanical components using reliability to relate stress to strength is explained. The experimental test machines and data obtained for steel to verify this methodology are described. A sample mechanical rotating component design problem is solved by comparing a deterministic design method with the new design-by reliability approach. The new method shows that a smaller size and weight can be obtained for specified rotating shaft life and reliability, and uses the statistical distortion-energy theory with statistical fatigue diagrams for optimum shaft design. Statistical methods are presented for (1) determining strength distributions for steel experimentally, (2) determining a failure theory for stress variations in a rotating shaft subjected to reversed bending and steady torque, and (3) relating strength to stress by reliability.
NASA Astrophysics Data System (ADS)
Ilham, Muhammad; Su'ud, Zaki
2017-01-01
Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.
Cryogenic Vacuum Insulation for Vessels and Piping
NASA Technical Reports Server (NTRS)
Kogan, A.; Fesmire, J.; Johnson, W.; Minnick, J.
2010-01-01
Cryogenic vacuum insulation systems, with proper materials selection and execution, can offer the highest levels of thermal performance. Three areas of consideration are vital to achieve the optimum result: materials, representative test conditions, and engineering approach for the particular application. Deficiency in one of these three areas can prevent optimum performance and lead to severe inefficiency. Materials of interest include micro-fiberglass, multilayer insulation, and composite arrangements. Cylindrical liquid nitrogen boil-off calorimetry methods were used. The need for standard thermal conductivity data is addressed through baseline testing. Engineering analysis and design factors such as layer thickness, density, and practicality are also considered.
An efficient multilevel optimization method for engineering design
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.; Yang, Y. J.; Kim, D. S.
1988-01-01
An efficient multilevel deisgn optimization technique is presented. The proposed method is based on the concept of providing linearized information between the system level and subsystem level optimization tasks. The advantages of the method are that it does not require optimum sensitivities, nonlinear equality constraints are not needed, and the method is relatively easy to use. The disadvantage is that the coupling between subsystems is not dealt with in a precise mathematical manner.
Development of Non-Optimum Factors for Launch Vehicle Propellant Tank Bulkhead Weight Estimation
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Wallace, Matthew L.; Cerro, Jeffrey A.
2012-01-01
Non-optimum factors are used during aerospace conceptual and preliminary design to account for the increased weights of as-built structures due to future manufacturing and design details. Use of higher-fidelity non-optimum factors in these early stages of vehicle design can result in more accurate predictions of a concept s actual weights and performance. To help achieve this objective, non-optimum factors are calculated for the aluminum-alloy gores that compose the ogive and ellipsoidal bulkheads of the Space Shuttle Super-Lightweight Tank propellant tanks. Minimum values for actual gore skin thicknesses and weld land dimensions are extracted from selected production drawings, and are used to predict reference gore weights. These actual skin thicknesses are also compared to skin thicknesses predicted using classical structural mechanics and tank proof-test pressures. Both coarse and refined weights models are developed for the gores. The coarse model is based on the proof pressure-sized skin thicknesses, and the refined model uses the actual gore skin thicknesses and design detail dimensions. To determine the gore non-optimum factors, these reference weights are then compared to flight hardware weights reported in a mass properties database. When manufacturing tolerance weight estimates are taken into account, the gore non-optimum factors computed using the coarse weights model range from 1.28 to 2.76, with an average non-optimum factor of 1.90. Application of the refined weights model yields non-optimum factors between 1.00 and 1.50, with an average non-optimum factor of 1.14. To demonstrate their use, these calculated non-optimum factors are used to predict heavier, more realistic gore weights for a proposed heavy-lift launch vehicle s propellant tank bulkheads. These results indicate that relatively simple models can be developed to better estimate the actual weights of large structures for future launch vehicles.
On implementation of the extended interior penalty function. [optimum structural design
NASA Technical Reports Server (NTRS)
Cassis, J. H.; Schmit, L. A., Jr.
1976-01-01
The extended interior penalty function formulation is implemented. A rational method for determining the transition between the interior and extended parts is set forth. The formulation includes a straightforward method for avoiding design points with some negative components, which are physically meaningless in structural analysis. The technique, when extended to problems involving parametric constraints, can facilitate closed form integration of the penalty terms over the most important parts of the parameter interval. The method lends itself well to the use of approximation concepts, such as design variable linking, constraint deletion and Taylor series expansions of response quantities in terms of design variables. Examples demonstrating the algorithm, in the context of planar orthogonal frames subjected to ground motion, are included.
Multidisciplinary optimization for engineering systems - Achievements and potential
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
The currently common sequential design process for engineering systems is likely to lead to suboptimal designs. Recently developed decomposition methods offer an alternative for coming closer to optimum by breaking the large task of system optimization into smaller, concurrently executed and, yet, coupled tasks, identified with engineering disciplines or subsystems. The hierarchic and non-hierarchic decompositions are discussed and illustrated by examples. An organization of a design process centered on the non-hierarchic decomposition is proposed.
Design Sensitivity Method for Sampling-Based RBDO with Fixed COV
2015-04-29
contours of the input model at initial design d0 and RBDO optimum design dopt are shown. As the limit state functions are not linear and some input...Glasser, M. L., Moore, R. A., and Scott, T. C., 1990, "Evaluation of Classes of Definite Integrals Involving Elementary Functions via...Differentiation of Special Functions," Applicable Algebra in Engineering, Communication and Computing, 1(2), pp. 149-165. [25] Cho, H., Bae, S., Choi, K. K
Multidisciplinary optimization for engineering systems: Achievements and potential
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
The currently common sequential design process for engineering systems is likely to lead to suboptimal designs. Recently developed decomposition methods offer an alternative for coming closer to optimum by breaking the large task of system optimization into smaller, concurrently executed and, yet, coupled tasks, identified with engineering disciplines or subsystems. The hierarchic and non-hierarchic decompositions are discussed and illustrated by examples. An organization of a design process centered on the non-hierarchic decomposition is proposed.
Pulse cleaning flow models and numerical computation of candle ceramic filters.
Tian, Gui-shan; Ma, Zhen-ji; Zhang, Xin-yi; Xu, Ting-xiang
2002-04-01
Analytical and numerical computed models are developed for reverse pulse cleaning system of candle ceramic filters. A standard turbulent model is demonstrated suitably to the designing computation of reverse pulse cleaning system from the experimental and one-dimensional computational result. The computed results can be used to guide the designing of reverse pulse cleaning system, which is optimum Venturi geometry. From the computed results, the general conclusions and the designing methods are obtained.
2003-03-01
27 2.8.5 Marginal Analysis Method...Figure 11 Improved Configuration of Figure 10; Increases Basic System Reliability..... 26 Figure 12 Example of marginal analysis ...View of Main Book of Software ............................................................... 51 Figure 20 The View of Data Worksheet
Multi-objective Optimization of Departure Procedures at Gimpo International Airport
NASA Astrophysics Data System (ADS)
Kim, Junghyun; Lim, Dongwook; Monteiro, Dylan Jonathan; Kirby, Michelle; Mavris, Dimitri
2018-04-01
Most aviation communities have increasing concerns about the environmental impacts, which are directly linked to health issues for local residents near the airport. In this study, the environmental impact of different departure procedures using the Aviation Environmental Design Tool (AEDT) was analyzed. First, actual operational data were compiled at Gimpo International Airport (March 20, 2017) from an open source. Two modifications were made in the AEDT to model the operational circumstances better and the preliminary AEDT simulations were performed according to the acquired operational procedures. Simulated noise results showed good agreements with noise measurement data at specific locations. Second, a multi-objective optimization of departure procedures was performed for the Boeing 737-800. Four design variables were selected and AEDT was linked to a variety of advanced design methods. The results showed that takeoff thrust had the greatest influence and it was found that fuel burn and noise had an inverse relationship. Two points representing each fuel burn and noise optimum on the Pareto front were parsed and run in AEDT to compare with the baseline. The results showed that the noise optimum case reduced Sound Exposure Level 80-dB noise exposure area by approximately 5% while the fuel burn optimum case reduced total fuel burn by 1% relative to the baseline for aircraft-level analysis.
Lemonakis, Nikolaos; Skaltsounis, Alexios-Leandros; Tsarbopoulos, Anthony; Gikas, Evagelos
2016-01-15
A multistage optimization of all the parameters affecting detection/response in an LTQ-orbitrap analyzer was performed, using a design of experiments methodology. The signal intensity, a critical issue for mass analysis, was investigated and the optimization process was completed in three successive steps, taking into account the three main regions of an orbitrap, the ion generation, the ion transmission and the ion detection regions. Oleuropein and hydroxytyrosol were selected as the model compounds. Overall, applying this methodology the sensitivity was increased more than 24%, the resolution more than 6.5%, whereas the elapsed scan time was reduced nearly to its half. A high-resolution LTQ Orbitrap Discovery mass spectrometer was used for the determination of the analytes of interest. Thus, oleuropein and hydroxytyrosol were infused via the instruments syringe pump and they were analyzed employing electrospray ionization (ESI) in the negative high-resolution full-scan ion mode. The parameters of the three main regions of the LTQ-orbitrap were independently optimized in terms of maximum sensitivity. In this context, factorial design, response surface model and Plackett-Burman experiments were performed and analysis of variance was carried out to evaluate the validity of the statistical model and to determine the most significant parameters for signal intensity. The optimum MS conditions for each analyte were summarized and the method optimum condition was achieved by maximizing the desirability function. Our observation showed good agreement between the predicted optimum response and the responses collected at the predicted optimum conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Statistically Based Approach to Broadband Liner Design and Assessment
NASA Technical Reports Server (NTRS)
Jones, Michael G. (Inventor); Nark, Douglas M. (Inventor)
2016-01-01
A broadband liner design optimization includes utilizing in-duct attenuation predictions with a statistical fan source model to obtain optimum impedance spectra over a number of flow conditions for one or more liner locations in a bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners having impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increasing weighting to specific frequencies and/or operating conditions. One or more broadband design approaches are utilized to produce a broadband liner that targets a full range of frequencies and operating conditions.
Duarte, Belmiro P.M.; Wong, Weng Kee; Atkinson, Anthony C.
2016-01-01
T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization. PMID:27330230
Duarte, Belmiro P M; Wong, Weng Kee; Atkinson, Anthony C
2015-03-01
T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization.
EXPERIMENTAL DESIGN STRATEGY FOR THE WEIBULL DOSE RESPONSE MODEL (JOURNAL VERSION)
The objective of the research was to determine optimum design point allocation for estimation of relative yield losses from ozone pollution when the true and fitted yield-ozone dose response relationship follows the Weibull. The optimum design is dependent on the values of the We...
Bavarsad, Neda; Akhgari, Abbas; Seifmanesh, Somayeh; Salimi, Anayatollah; Rezaie, Annahita
2016-02-29
The aim of this study was to develop and optimize deformable liposome for topical delivery of tretinoin. Liposomal formulations were designed based on the full factorial design and prepared by fusion method. The influence of different ratio of soy phosphatidylcholine and transcutol (independent variables) on incorporation efficiency and drug release in 15 min and 24 h (responses) from liposomal formulations was evaluated. Liposomes were characterized for their vesicle size and Differential Scanning Calorimetry (DSC) was used to investigate changes in their thermal behavior. The penetration and retention of drug was determined using mouse skin. Also skin histology study was performed. Particle size of all formulations was smaller than 20 nm. Incorporation efficiency of liposomes was 79-93 %. Formulation F7 (25:5) showed maximum drug release. Optimum formulations were selected based on the contour plots resulted by statistical equations of drug release in 15 min and 24 h. Solubility properties of transcutol led to higher skin penetration for optimum formulations compared to tretinoin cream. There was no significant difference between the amount of drug retained in the skin by applying optimum formulations and cream. Histopatological investigation suggested optimum formulations could decrease the adverse effect of tretinoin in liposome compared to conventional cream. According to the results of the study, it is concluded that deformable liposome containing transcutol may be successfully used for dermal delivery of tretinoin.
NASA Technical Reports Server (NTRS)
Butler, R.; Williams, F. W.
1992-01-01
A computer program for obtaining the optimum (least mass) dimensions of the kind of prismatic assemblies of laminated, composite plates which occur in advanced aerospace construction is described. Rigorous buckling analysis (derived from exact member theory) and a tailored design procedure are used to produce designs which satisfy buckling and material strength constraints and configurational requirements. Analysis is two to three orders of magnitude quicker than FEM, keeps track of all the governing modes of failure and is efficiently adapted to give sensitivities and to maintain feasibility. Tailoring encourages convergence in fewer sizing cycles than competing programs and permits start designs which are a long way from feasible and/or optimum. Comparisons with its predecessor, PASCO, show that the program is more likely to produce an optimum, will do so more quickly in some cases, and remains accurate for a wider range of problems.
Reduced complexity structural modeling for automated airframe synthesis
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1987-01-01
A procedure is developed for the optimum sizing of wing structures based on representing the built-up finite element assembly of the structure by equivalent beam models. The reduced-order beam models are computationally less demanding in an optimum design environment which dictates repetitive analysis of several trial designs. The design procedure is implemented in a computer program requiring geometry and loading information to create the wing finite element model and its equivalent beam model, and providing a rapid estimate of the optimum weight obtained from a fully stressed design approach applied to the beam. The synthesis procedure is demonstrated for representative conventional-cantilever and joined wing configurations.
Geometrical shape design of nanophotonic surfaces for thin film solar cells.
Nam, W I; Yoo, Y J; Song, Y M
2016-07-11
We present the effect of geometrical parameters, particularly shape, on optical absorption enhancement for thin film solar cells based on crystalline silicon (c-Si) and gallium arsenide (GaAs) using a rigorous coupled wave analysis (RCWA) method. It is discovered that the "sweet spot" that maximizes efficiency of solar cells exists for the design of nanophotonic surfaces. For the case of ultrathin, rod array is practical due to the effective optical resonances resulted from the optimum geometry whereas parabola array is viable for relatively thicker cells owing to the effective graded index profile. A specific value of thickness, which is the median value of other two devices tailored by rod and paraboloid, is optimized by truncated shape structure. It is therefore worth scanning the optimum shape of nanostructures in a given thickness in order to achieve high performance.
A comparison of methods for DPLL loop filter design
NASA Technical Reports Server (NTRS)
Aguirre, S.; Hurd, W. J.; Kumar, R.; Statman, J.
1986-01-01
Four design methodologies for loop filters for a class of digital phase-locked loops (DPLLs) are presented. The first design maps an optimum analog filter into the digital domain; the second approach designs a filter that minimizes in discrete time weighted combination of the variance of the phase error due to noise and the sum square of the deterministic phase error component; the third method uses Kalman filter estimation theory to design a filter composed of a least squares fading memory estimator and a predictor. The last design relies on classical theory, including rules for the design of compensators. Linear analysis is used throughout the article to compare different designs, and includes stability, steady state performance and transient behavior of the loops. Design methodology is not critical when the loop update rate can be made high relative to loop bandwidth, as the performance approaches that of continuous time. For low update rates, however, the miminization method is significantly superior to the other methods.
Overview of SDCM - The Spacecraft Design and Cost Model
NASA Technical Reports Server (NTRS)
Ferebee, Melvin J.; Farmer, Jeffery T.; Andersen, Gregory C.; Flamm, Jeffery D.; Badi, Deborah M.
1988-01-01
The Spacecraft Design and Cost Model (SDCM) is a computer-aided design and analysis tool for synthesizing spacecraft configurations, integrating their subsystems, and generating information concerning on-orbit servicing and costs. SDCM uses a bottom-up method in which the cost and performance parameters for subsystem components are first calculated; the model then sums the contributions from individual components in order to obtain an estimate of sizes and costs for each candidate configuration within a selected spacecraft system. An optimum spacraft configuration can then be selected.
Optimum design of structures subject to general periodic loads
NASA Technical Reports Server (NTRS)
Reiss, Robert; Qian, B.
1989-01-01
A simplified version of Icerman's problem regarding the design of structures subject to a single harmonic load is discussed. The nature of the restrictive conditions that must be placed on the design space in order to ensure an analytic optimum are discussed in detail. Icerman's problem is then extended to include multiple forcing functions with different driving frequencies. And the conditions that now must be placed upon the design space to ensure an analytic optimum are again discussed. An important finding is that all solutions to the optimality condition (analytic stationary design) are local optima, but the global optimum may well be non-analytic. The more general problem of distributing the fixed mass of a linear elastic structure subject to general periodic loads in order to minimize some measure of the steady state deflection is also considered. This response is explicitly expressed in terms of Green's functional and the abstract operators defining the structure. The optimality criterion is derived by differentiating the response with respect to the design parameters. The theory is applicable to finite element as well as distributed parameter models.
Aerodynamic Shape Optimization Using Hybridized Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2003-01-01
An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.
Buckling and weight optimization for non-coupled antisymmetric laminates
NASA Astrophysics Data System (ADS)
Bhatnagar, Aditi
This research work describes the application of genetic algorithms to weight minimization and buckling load maximization of the non-coupled antisymmetric composite laminated plates. Previous studies of composite tailoring were limited to symmetric and balanced laminates. With the availability of many methodologies for composite tailoring, genetic algorithm is preferably used because of its ability to handle discrete design variable and attain multiple near optimum design solutions. A comparative study is made between optimum symmetric-balanced laminate designs and optimum non-coupled antisymmetric laminate designs, both of which are subjected to biaxial in-plane compressive loads. With the implementation of various genetic algorithm operators such as selection, crossover and mutation, critical buckling load factors are obtained for the optimum stacking sequence for both types of laminates. The mechanical properties for non-coupled antisymmetric laminates is independent of all types of coupling effects such as bending-twisting coupling, bending-extension coupling, and shear-extension coupling, thus giving the laminate a non-coupling behavior. This is in contrast to that of symmetric-balanced laminates where finite bending-twisting coupling terms are present. Optimized laminate layups satisfying the constraints of balance, buckling and adjoining were obtained for two types of graphite epoxy rectangular composite laminated plates. The current research augments the laminate thickness minimization designs with both odd and even number of layers, and the optimum buckling load maximization designs by the introduction of non-coupled antisymmetric laminates.
Iterative optimization method for design of quantitative magnetization transfer imaging experiments.
Levesque, Ives R; Sled, John G; Pike, G Bruce
2011-09-01
Quantitative magnetization transfer imaging (QMTI) using spoiled gradient echo sequences with pulsed off-resonance saturation can be a time-consuming technique. A method is presented for selection of an optimum experimental design for quantitative magnetization transfer imaging based on the iterative reduction of a discrete sampling of the Z-spectrum. The applicability of the technique is demonstrated for human brain white matter imaging at 1.5 T and 3 T, and optimal designs are produced to target specific model parameters. The optimal number of measurements and the signal-to-noise ratio required for stable parameter estimation are also investigated. In vivo imaging results demonstrate that this optimal design approach substantially improves parameter map quality. The iterative method presented here provides an advantage over free form optimal design methods, in that pragmatic design constraints are readily incorporated. In particular, the presented method avoids clustering and repeated measures in the final experimental design, an attractive feature for the purpose of magnetization transfer model validation. The iterative optimal design technique is general and can be applied to any method of quantitative magnetization transfer imaging. Copyright © 2011 Wiley-Liss, Inc.
Enayatifard, Reza; Mahjoob, Aiding; Ebrahimi, Pouneh; Ebrahimnejad, Pedram
2015-01-01
Objective(s): A Box-Behnken design was used for evaluation of Eudragit coated diclofenac pellets. The purpose of this work was to optimize diclofenac pellets to improve the physicochemical properties using experimental design. Materials and Methods: Diclofenac was loaded onto the non-pareil beads using conventional coating pan. Film coating of pellets was done at the same pan. The effect of plasticizer level, curing temperature and curing time was determined on the release of diclofenac from pellets coated with polymethacrylates. Results: Increasing the plasticizer in the coating formula led to decrease in drug release and increasing the curing temperature and time resulted in higher drug release. The optimization process generated an optimum of 35% drug release at 3 hr. The level of plasticizer concentration, curing temperature and time were 20% w/w, 55 °C and 24 hr, respectively. Conclusion: This study showed that by controllinig the physical variables optimum drug release were obtained. PMID:26351563
High Speed Civil Transport Design Using Collaborative Optimization and Approximate Models
NASA Technical Reports Server (NTRS)
Manning, Valerie Michelle
1999-01-01
The design of supersonic aircraft requires complex analysis in multiple disciplines, posing, a challenge for optimization methods. In this thesis, collaborative optimization, a design architecture developed to solve large-scale multidisciplinary design problems, is applied to the design of supersonic transport concepts. Collaborative optimization takes advantage of natural disciplinary segmentation to facilitate parallel execution of design tasks. Discipline-specific design optimization proceeds while a coordinating mechanism ensures progress toward an optimum and compatibility between disciplinary designs. Two concepts for supersonic aircraft are investigated: a conventional delta-wing design and a natural laminar flow concept that achieves improved performance by exploiting properties of supersonic flow to delay boundary layer transition. The work involves the development of aerodynamics and structural analyses, and integration within a collaborative optimization framework. It represents the most extensive application of the method to date.
NASA Technical Reports Server (NTRS)
Goodrich, Kenneth H.; Sliwa, Steven M.; Lallman, Frederick J.
1989-01-01
Airplane designs are currently being proposed with a multitude of lifting and control devices. Because of the redundancy in ways to generate moments and forces, there are a variety of strategies for trimming each airplane. A linear optimum trim solution (LOTS) is derived using a Lagrange formulation. LOTS enables the rapid calculation of the longitudinal load distribution resulting in the minimum trim drag in level, steady-state flight for airplanes with a mixture of three or more aerodynamic surfaces and propulsive control effectors. Comparisons of the trim drags obtained using LOTS, a direct constrained optimization method, and several ad hoc methods are presented for vortex-lattice representations of a three-surface airplane and two-surface airplane with thrust vectoring. These comparisons show that LOTS accurately predicts the results obtained from the nonlinear optimization and that the optimum methods result in trim drag reductions of up to 80 percent compared to the ad hoc methods.
[Effects of penetration enhancers on curcumin transdermal drug delivery].
Gao, Zhen-Shen; Wang, Lan; Zhang, Mei
2012-01-01
To study the effects of penetration enhancers and their combinations on the curcumine transdermal drug delivery (CUR-TDDS). The penetration rate of curcumin through rat skin in vitro was measured using Valia-Chien diffusion cells, and orthogonal design method was set up for experimental design. The optimum penetration enhancers were: 3% hydroxypropyl beta cyclodextrins (HP-beta-CD), 9% borneol and 3% peppermint oil. The HP-beta-CD has the most potent enhancing effect.
Ground-based deep-space LADAR for satellite detection: A parametric study
NASA Astrophysics Data System (ADS)
Davey, Kevin F.
1989-12-01
The minimum performance requirements are determined of a ground based infrared LADAR designed to detect deep space satellites, and a candidate sensor design is presented based on current technology. The research examines LADAR techniques and detection methods to determine the optimum LADAR configuration, and then assesses the effects of atmospheric transmission, background radiance, and turbulence across the infrared region to find the optimum laser wavelengths. Diffraction theory is then used in a parametric analysis of the transmitted laser beam and received signal, using a Cassegrainian telescope design and heterodyne detection. The effects of beam truncation and obscuration, heterodyne misalignment, off-boresight detection, and image-pixel geometry are also included in the analysis. The derived equations are then used to assess the feasibility of several candidate designs under a wide range of detection conditions including daylight operation through cirrus. The results show that successful detection is theoretically possible under most conditions by transmitting a high power frequency modulated pulse train from an isotopic 13CO2 laser radiating at 11.17 micrometers, and utilizing post-detection integration and pulse compression techniques.
NASA Technical Reports Server (NTRS)
Dodson, D. W.; Shields, N. L., Jr.
1979-01-01
Individual Spacelab experiments are responsible for developing their CRT display formats and interactive command scenarios for payload crew monitoring and control of experiment operations via the Spacelab Data Display System (DDS). In order to enhance crew training and flight operations, it was important to establish some standardization of the crew/experiment interface among different experiments by providing standard methods and techniques for data presentation and experiment commanding via the DDS. In order to establish optimum usage guidelines for the Spacelab DDS, the capabilities and limitations of the hardware and Experiment Computer Operating System design had to be considered. Since the operating system software and hardware design had already been established, the Display and Command Usage Guidelines were constrained to the capabilities of the existing system design. Empirical evaluations were conducted on a DDS simulator to determine optimum operator/system interface utilization of the system capabilities. Display parameters such as information location, display density, data organization, status presentation and dynamic update effects were evaluated in terms of response times and error rates.
Cascade Optimization Strategy for Aircraft and Air-Breathing Propulsion System Concepts
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.; Coroneos, Rula M.
1996-01-01
Design optimization for subsonic and supersonic aircraft and for air-breathing propulsion engine concepts has been accomplished by soft-coupling the Flight Optimization System (FLOPS) and the NASA Engine Performance Program analyzer (NEPP), to the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Aircraft and engine design problems, with their associated constraints and design variables, were cast as nonlinear optimization problems with aircraft weight and engine thrust as the respective merit functions. Because of the diversity of constraint types and the overall distortion of the design space, the most reliable single optimization algorithm available in COMETBOARDS could not produce a satisfactory feasible optimum solution. Some of COMETBOARDS' unique features, which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications, successfully optimized the performance of both aircraft and engines. The cascade method has two principal steps: In the first, the solution initiates from a user-specified design and optimizer, in the second, the optimum design obtained in the first step with some random perturbation is used to begin the next specified optimizer. The second step is repeated for a specified sequence of optimizers or until a successful solution of the problem is achieved. A successful solution should satisfy the specified convergence criteria and have several active constraints but no violated constraints. The cascade strategy available in the combined COMETBOARDS, FLOPS, and NEPP design tool converges to the same global optimum solution even when it starts from different design points. This reliable and robust design tool eliminates manual intervention in the design of aircraft and of air-breathing propulsion engines where it eases the cycle analysis procedures. The combined code is also much easier to use, which is an added benefit. This paper describes COMETBOARDS and its cascade strategy and illustrates the capability of the combined design tool through the optimization of a subsonic aircraft and a high-bypass-turbofan wave-rotor-topped engine.
Novel parameter-based flexure bearing design method
NASA Astrophysics Data System (ADS)
Amoedo, Simon; Thebaud, Edouard; Gschwendtner, Michael; White, David
2016-06-01
A parameter study was carried out on the design variables of a flexure bearing to be used in a Stirling engine with a fixed axial displacement and a fixed outer diameter. A design method was developed in order to assist identification of the optimum bearing configuration. This was achieved through a parameter study of the bearing carried out with ANSYS®. The parameters varied were the number and the width of the arms, the thickness of the bearing, the eccentricity, the size of the starting and ending holes, and the turn angle of the spiral. Comparison was made between the different designs in terms of axial and radial stiffness, the natural frequency, and the maximum induced stresses. Moreover, the Finite Element Analysis (FEA) was compared to theoretical results for a given design. The results led to a graphical design method which assists the selection of flexure bearing geometrical parameters based on pre-determined geometric and material constraints.
Optimum Repair Level Analysis (ORLA) for the Space Transportation System (STS)
NASA Technical Reports Server (NTRS)
Henry, W. R.
1979-01-01
A repair level analysis method applied to a space shuttle scenario is presented. A determination of the most cost effective level of repair for reparable hardware, the location for the repair, and a system which will accrue minimum total support costs within operational and technical constraints over the system design are defined. The method includes cost equations for comparison of selected costs to completion for assumed repair alternates.
Orthogonal test design for optimization of synthesis of MTX/LDHs hybrids by ion-exchange method
NASA Astrophysics Data System (ADS)
Liu, Su-Qing; Dai, Chao-Fan; Wang, Lin; Li, Shu-Ping; Li, Xiao-Dong
2015-04-01
Based on orthogonal test design, the factors influencing the synthesis of methotrexate intercalated magnesium-aluminum layered double hydroxides (MTX/LDHs for short) by ion-exchange method, such as weight ratio of pristine LDHs to MTX (R for short), exchange temperature, time and pH value were investigated. Of the four controllable independent variables, R had the strongest effect on the crystallinity and the drug-loading capacity and the optimum synthesis conditions considered from the crystallinity and the drug-loading capacity both pointed to the same values, i.e., R=2:1, pH=9.5, temperature of 80 °C and exchange time of 3 day. The XRD diffractions indicated that high MTX content was in favor of the formation of intercalated hybrids, while low content lead to the failure of it. TEM photos indicated that the intercalated hybrids all exhibited aggregated hexagonal plates. In order to improve the morphology, two different states of pristine LDHs, i.e., powder and colloid, were chosen to prepare MTX/LDHs hybrids and the results indicated that colloid state of pristine was advantageous to obtain regular particles. The study also revealed that the properties of hybrids obtained at optimum conditions by ion-exchange were superior to that obtained from standard methods, such as co-precipitation method.
NASA Astrophysics Data System (ADS)
Zhang, Xuanni; Zhang, Chunmin
2013-01-01
A polarization interference imaging spectrometer based on Savart polariscope was presented. Its optical throughput was analyzed by Jones calculus. The throughput expression was given, and clearly showed that the optical throughput mainly depended on the intensity of incident light, transmissivity, refractive index and the layout of optical system. The simulation and analysis gave the optimum layout in view of both optical throughput and interference fringe visibility, and verified that the layout of our former design was optimum. The simulation showed that a small deviation from the optimum layout influenced interference fringe visibility little for the optimum one, but influenced severely for others, so a small deviation is admissible in the optimum, and this can mitigate the manufacture difficulty. These results pave the way for further research and engineering design.
NASA Astrophysics Data System (ADS)
Lu, Lin; Chang, Yunlong; Li, Yingmin; Lu, Ming
2013-05-01
An orthogonal experiment was conducted by the means of multivariate nonlinear regression equation to adjust the influence of external transverse magnetic field and Ar flow rate on welding quality in the process of welding condenser pipe by high-speed argon tungsten-arc welding (TIG for short). The magnetic induction and flow rate of Ar gas were used as optimum variables, and tensile strength of weld was set to objective function on the base of genetic algorithm theory, and then an optimal design was conducted. According to the request of physical production, the optimum variables were restrained. The genetic algorithm in the MATLAB was used for computing. A comparison between optimum results and experiment parameters was made. The results showed that the optimum technologic parameters could be chosen by the means of genetic algorithm with the conditions of excessive optimum variables in the process of high-speed welding. And optimum technologic parameters of welding coincided with experiment results.
MDO can help resolve the designer's dilemma. [multidisciplinary design optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Tulinius, Jan R.
1991-01-01
Multidisciplinary design optimization (MDO) is presented as a rapidly growing body of methods, algorithms, and techniques that will provide a quantum jump in the effectiveness and efficiency of the quantitative side of design, and will turn that side into an environment in which the qualitative side can thrive. MDO borrows from CAD/CAM for graphic visualization of geometrical and numerical data, data base technology, and in computer software and hardware. Expected benefits from this methodology are a rational, mathematically consistent approach to hypersonic aircraft designs, designs pushed closer to the optimum, and a design process either shortened or leaving time available for different concepts to be explored.
NASA Technical Reports Server (NTRS)
Ioup, George E.; Ioup, Juliette W.
1991-01-01
The final report for work on the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution is presented. Papers and theses prepared during the research report period are included. Among all the research results reported, note should be made of the specific investigation of the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution. A methodology was developed to determine design and operation parameters for error minimization when deconvolution is included in data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all parameters of interest. Instrumental characteristics will determine a curve in this space. The SNR and parameter values which give the projection from the curve to the surface, corresponding to the smallest value for the error, are the optimum values. These values are constrained by the curve and so will not necessarily correspond to an absolute minimum in the error surface.
Material property for designing, analyzing, and fabricating space structures
NASA Technical Reports Server (NTRS)
Kolkailah, Faysal A.
1991-01-01
An analytical study was made of plasma assisted bullet projectile. The finite element analysis and the micro-macromechanic analysis was applied to an optimum design technique for the multilayered graphite-epoxy composite projectile that will achieve hypervelocity of 6 to 10 Km/s. The feasibility was determined of dialectics to monitor cure of graphite-epoxies. Several panels were fabricated, cured, and tested with encouraging results of monitoring the cure of graphite-epoxies. The optimum cure process for large structures was determined. Different orientation were used and three different curing cycles were employed. A uniaxial tensile test was performed on all specimens. The optimum orientation with the optimum cure cycle were concluded.
NASA Astrophysics Data System (ADS)
Cimafranca, L.; Dizon, E.
2018-01-01
Seriales (Flacourtia jangomas) is an underutilized fruit in the Philippines. The processing of the fruit into a RTD beverage was standardized by statistical methods. Plackett-Burman Design (PB) was used to determine the most significant factors that affect the sensory characteristics of the product. Response surface methodology (RSM) was applied based on the factorial Central Composite Design (CCD) to determine the optimum conditions for the maximum sensory acceptability of the seriales RTD beverage. Results of the PB revealed that the most significant factors were blanching time, level of seriales and TSS level. With different levels of blanching time (0.5, 1.0, and 1.5 min.), seriales level (10, 20, 30 %) and TSS value (12, 15, 18ºBrix), the optimum region for sensory acceptability was perceived at 0.7 to 1.4 minutes blanching time, seriales level of not beyond 27 %, and TSS at any level.
NASA Astrophysics Data System (ADS)
Kehoe, S.; Stokes, J.
2011-03-01
Physicochemical properties of hydroxyapatite (HAp) synthesized by the chemical precipitation method are heavily dependent on the chosen process parameters. A Box-Behnken three-level experimental design was therefore, chosen to determine the optimum set of process parameters and their effect on various HAp characteristics. These effects were quantified using design of experiments (DoE) to develop mathematical models using the Box-Behnken design, in terms of the chemical precipitation process parameters. Findings from this research show that the HAp possessing optimum powder characteristics for orthopedic application via a thermal spray technique can therefore be prepared using the following chemical precipitation process parameters: reaction temperature 60 °C, ripening time 48 h, and stirring speed 1500 rpm using high reagent concentrations. Ripening time and stirring speed significantly affected the final phase purity for the experimental conditions of the Box-Behnken design. An increase in both the ripening time (36-48 h) and stirring speed (1200-1500 rpm) was found to result in an increase of phase purity from 47(±2)% to 85(±2)%. Crystallinity, crystallite size, lattice parameters, and mean particle size were also optimized within the research to find desired settings to achieve results suitable for FDA regulations.
The Design of Feedback Control Systems Containing a Saturation Type Nonlinearity
NASA Technical Reports Server (NTRS)
Schmidt, Stanley F.; Harper, Eleanor V.
1960-01-01
A derivation of the optimum response for a step input for plant transfer functions which have an unstable pole and further data on plants with a single zero in the left half of the s plane. The calculated data are presented tabulated in normalized form. Optimum control systems are considered. The optimum system is defined as one which keeps the error as small as possible regardless of the input, under the constraint that the input to the plant (or controlled system) is limited. Intuitive arguments show that in the case where only the error can be sensed directly, the optimum system is obtained from the optimum relay or on-off solution. References to known solutions are presented. For the case when the system is of the sampled-data type, arguments are presented which indicate the optimum sampled-data system may be extremely difficult if not impossible to realize practically except for very simple plant transfer functions. Two examples of aircraft attitude autopilots are presented, one for a statically stable and the other for a statically unstable airframe. The rate of change of elevator motion is assumed limited for these examples. It is shown that by use of nonlinear design techniques described in NASA TN D-20 one can obtain near optimum response for step inputs and reason- able response to sine wave inputs for either case. Also, the nonlinear design prevents inputs from driving the system unstable for either case.
A Taguchi study of the aeroelastic tailoring design process
NASA Technical Reports Server (NTRS)
Bohlmann, Jonathan D.; Scott, Robert C.
1991-01-01
A Taguchi study was performed to determine the important players in the aeroelastic tailoring design process and to find the best composition of the optimization's objective function. The Wing Aeroelastic Synthesis Procedure (TSO) was used to ascertain the effects that factors such as composite laminate constraints, roll effectiveness constraints, and built-in wing twist and camber have on the optimum, aeroelastically tailored wing skin design. The results show the Taguchi method to be a viable engineering tool for computational inquiries, and provide some valuable lessons about the practice of aeroelastic tailoring.
A linearized theory method of constrained optimization for supersonic cruise wing design
NASA Technical Reports Server (NTRS)
Miller, D. S.; Carlson, H. W.; Middleton, W. D.
1976-01-01
A linearized theory wing design and optimization procedure which allows physical realism and practical considerations to be imposed as constraints on the optimum (least drag due to lift) solution is discussed and examples of application are presented. In addition to the usual constraints on lift and pitching moment, constraints are imposed on wing surface ordinates and wing upper surface pressure levels and gradients. The design procedure also provides the capability of including directly in the optimization process the effects of other aircraft components such as a fuselage, canards, and nacelles.
An improved computational approach for multilevel optimum design
NASA Technical Reports Server (NTRS)
Haftka, R. T.
1984-01-01
A penalty-function algorithm employing Newton's method with approximate second derivatives (Haftka and Starnes, 1980) is developed for two-level hierarchical design optimization problems. The difficulties posed by discontinuous behavior in typical multilevel problems are explained and illustrated for the case of a three-bar truss; the algorithm is formulated; and its advantages are demonstrated in the problem of a portal framework having three beams (described by six cross-section parameters), subjected to two loading conditions, and to be constructed in six different materials for comparison. The final design parameters are listed in a table.
NASA Astrophysics Data System (ADS)
Yousefieh, M.; Shamanian, M.; Saatchi, A.
2012-09-01
Taguchi design method with L9 orthogonal array was implemented to optimize the pulsed current gas tungsten arc welding parameters for the hardness and the toughness of super duplex stainless steel (SDSS, UNS S32760) welds. In this regard, the hardness and the toughness were considered as performance characteristics. Pulse current, background current, % on time, and pulse frequency were chosen as main parameters. Each parameter was varied at three different levels. As a result of pooled analysis of variance, the pulse current is found to be the most significant factor for both the hardness and the toughness of SDSS welds by percentage contribution of 71.81 for hardness and 78.18 for toughness. The % on time (21.99%) and the background current (17.81%) had also the next most significant effect on the hardness and the toughness, respectively. The optimum conditions within the selected parameter values for hardness were found as the first level of pulse current (100 A), third level of background current (70 A), first level of % on time (40%), and first level of pulse frequency (1 Hz), while they were found as the second level of pulse current (120 A), second level of background current (60 A), second level of % on time (60%), and third level of pulse frequency (5 Hz) for toughness. The Taguchi method was found to be a promising tool to obtain the optimum conditions for such studies. Finally, in order to verify experimental results, confirmation tests were carried out at optimum working conditions. Under these conditions, there were good agreements between the predicted and the experimental results for the both hardness and toughness.
NASA Technical Reports Server (NTRS)
Motiwalla, S. K.
1973-01-01
Using the first and the second derivative of flutter velocity with respect to the parameters, the velocity hypersurface is made quadratic. This greatly simplifies the numerical procedure developed for determining the values of the design parameters such that a specified flutter velocity constraint is satisfied and the total structural mass is near a relative minimum. A search procedure is presented utilizing two gradient search methods and a gradient projection method. The procedure is applied to the design of a box beam, using finite-element representation. The results indicate that the procedure developed yields substantial design improvement satisfying the specified constraint and does converge to near a local optimum.
Performance analysis and optimization of power plants with gas turbines
NASA Astrophysics Data System (ADS)
Besharati-Givi, Maryam
The gas turbine is one of the most important applications for power generation. The purpose of this research is performance analysis and optimization of power plants by using different design systems at different operation conditions. In this research, accurate efficiency calculation and finding optimum values of efficiency for design of chiller inlet cooling and blade cooled gas turbine are investigated. This research shows how it is possible to find the optimum design for different operation conditions, like ambient temperature, relative humidity, turbine inlet temperature, and compressor pressure ratio. The simulated designs include the chiller, with varied COP and fogging cooling for a compressor. In addition, the overall thermal efficiency is improved by adding some design systems like reheat and regenerative heating. The other goal of this research focuses on the blade-cooled gas turbine for higher turbine inlet temperature, and consequently, higher efficiency. New film cooling equations, along with changing film cooling effectiveness for optimum cooling air requirement at the first-stage blades, and an internal and trailing edge cooling for the second stage, are innovated for optimal efficiency calculation. This research sets the groundwork for using the optimum value of efficiency calculation, while using inlet cooling and blade cooling designs. In the final step, the designed systems in the gas cycles are combined with a steam cycle for performance improvement.
Optimal Design of Sheet Pile Wall Embedded in Clay
NASA Astrophysics Data System (ADS)
Das, Manas Ranjan; Das, Sarat Kumar
2015-09-01
Sheet pile wall is a type of flexible earth retaining structure used in waterfront offshore structures, river protection work and temporary supports in foundations and excavations. Economy is an essential part of a good engineering design and needs to be considered explicitly in obtaining an optimum section. By considering appropriate embedment depth and sheet pile section it may be possible to achieve better economy. This paper describes optimum design of both cantilever and anchored sheet pile wall penetrating clay using a simple optimization tool Microsoft Excel ® Solver. The detail methodology and its application with examples are presented for cantilever and anchored sheet piles. The effects of soil properties, depth of penetration and variation of ground water table on the optimum design are also discussed. Such a study will help professional while designing the sheet pile wall penetrating clay.
Modified Fully Utilized Design (MFUD) Method for Stress and Displacement Constraints
NASA Technical Reports Server (NTRS)
Patnaik, Surya; Gendy, Atef; Berke, Laszlo; Hopkins, Dale
1997-01-01
The traditional fully stressed method performs satisfactorily for stress-limited structural design. When this method is extended to include displacement limitations in addition to stress constraints, it is known as the fully utilized design (FUD). Typically, the FUD produces an overdesign, which is the primary limitation of this otherwise elegant method. We have modified FUD in an attempt to alleviate the limitation. This new method, called the modified fully utilized design (MFUD) method, has been tested successfully on a number of designs that were subjected to multiple loads and had both stress and displacement constraints. The solutions obtained with MFUD compare favorably with the optimum results that can be generated by using nonlinear mathematical programming techniques. The MFUD method appears to have alleviated the overdesign condition and offers the simplicity of a direct, fully stressed type of design method that is distinctly different from optimization and optimality criteria formulations. The MFUD method is being developed for practicing engineers who favor traditional design methods rather than methods based on advanced calculus and nonlinear mathematical programming techniques. The Integrated Force Method (IFM) was found to be the appropriate analysis tool in the development of the MFUD method. In this paper, the MFUD method and its optimality are presented along with a number of illustrative examples.
Tailored composite wings with elastically produced chordwise camber
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.; Chang, Stephen; Zischka, Peter J.; Pickings, Richard D.; Holl, Michael W.
1991-01-01
Four structural concepts were created which produce chordwise camber deformation that results in enhanced lift. A wing box can be tailored to utilize each of these with composites. In attempting to optimize the aerodynamic benefits, researchers found that there are two optimum designs that are of interest. There is a weight optimum which corresponds to the maximum lift per unit structural weight. There is also a lift optimum that corresponds to maximum absolute lift. Experience indicates that a large weight penalty accompanies the transition from weight to lift optimum designs. New structural models, the basic deformation mechanisms that are utilized, and typical analytical results are presented. It appears that lift enhancements of sufficient magnitude can be produced to render this type of wing tailoring of practical interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method.more » A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.« less
NASA Astrophysics Data System (ADS)
Mori, Kentaro; Kaneko, Kenji; Hashizume, Yutaka
2017-06-01
The short fiber mixing method is well known as one of the method to improve the strength of gran- ular soils in geotechnical engineering. Mechanical properties of the short fiber mixing granular materials are influenced by many factors, such as the mixture ratio of the short fiber, the material of short fiber, the length, and the orientation. In particular, the mixture ratio of the short fibers is very important in mixture design. In the past study, we understood that the strength is reduced by too much short fiber mixing by a series of tri-axial compression experiments. Namely, there is "optimum mixture ratio" in the short fiber mixing granular soils. In this study, to consider the mechanism of occurrence of the optimum mixture ratio, we carried out the numerical experiments by granular element method. As the results, we can understand that the strength decrease when too much grain-fiber contact points exist, because a friction coefficient is smaller than the grain-grain contact points.
Huang, Yuh-Tyng; Tsai, Tong-Rong; Cheng, Chun-Jen; Cham, Thau-Ming; Lai, Tsun-Fwu; Chuo, Wen-Ho
2007-04-01
Pyridostigmine bromide (PB) sustained-release (SR) pellets were developed by extrusion-spheronization and fluid-bed methods using Taguchi experimental and 2(3) full factorial design. In vitro studies, the 2(3) full factorial design was utilized to search for the optimal SR pellets with specific release rate at different time intervals (release percent of 2, 6, 12, and 24 hr were 6.24, 33.48, 75.18, and 95.26%, respectively) which followed a zero-order mechanism (n=0.93). The results of moisture absorption by Karl Fischer has shown the optimum SR pellets at 25 degrees C/60% RH, 30 degrees C/65% RH, and 40 degrees C/75% RH chambers from 1 hr-4 weeks, attributing that the moisture absorption was not significantly increased. In the in vivo study, the results of the bioavailability data showed the Tmax (from 0.65+/-0.082 hr-4.82+/-2.12 hr) and AUC0-30 hr (from 734.88+/-230.68 ng/mL.hr-1454.86+/-319.28 ng/mL.hr) were prolonged and increased, as well as Cmax (from 251.87+/-27.51 ng/mL-115.08+/-14.87 ng/mL) was decreased for optimum SR-PB pellets when compared with commercial immediate-release (IR) tablets. Furthermore, a good linear regression relationship (r=0.9943) was observed between the fraction dissolution and fraction absorption for the optimum SR pellets. In this study, the formulation design not only improved the hygroscopic character of PB but also achieved the SR effect.
Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) for a 3-D Flexible Wing
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Hou, Gene J.-W.
2001-01-01
The formulation and implementation of an optimization method called Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) are extended from single discipline analysis (aerodynamics only) to multidisciplinary analysis - in this case, static aero-structural analysis - and applied to a simple 3-D wing problem. The method aims to reduce the computational expense incurred in performing shape optimization using state-of-the-art Computational Fluid Dynamics (CFD) flow analysis, Finite Element Method (FEM) structural analysis and sensitivity analysis tools. Results for this small problem show that the method reaches the same local optimum as conventional optimization. However, unlike its application to the win,, (single discipline analysis), the method. as I implemented here, may not show significant reduction in the computational cost. Similar reductions were seen in the two-design-variable (DV) problem results but not in the 8-DV results given here.
Lavado Contador, J F; Maneta, M; Schnabel, S
2006-10-01
The capability of Artificial Neural Network models to forecast near-surface soil moisture at fine spatial scale resolution has been tested for a 99.5 ha watershed located in SW Spain using several easy to achieve digital models of topographic and land cover variables as inputs and a series of soil moisture measurements as training data set. The study methods were designed in order to determining the potentials of the neural network model as a tool to gain insight into soil moisture distribution factors and also in order to optimize the data sampling scheme finding the optimum size of the training data set. Results suggest the efficiency of the methods in forecasting soil moisture, as a tool to assess the optimum number of field samples, and the importance of the variables selected in explaining the final map obtained.
On the optimum signal constellation design for high-speed optical transport networks.
Liu, Tao; Djordjevic, Ivan B
2012-08-27
In this paper, we first describe an optimum signal constellation design algorithm, which is optimum in MMSE-sense, called MMSE-OSCD, for channel capacity achieving source distribution. Secondly, we introduce a feedback channel capacity inspired optimum signal constellation design (FCC-OSCD) to further improve the performance of MMSE-OSCD, inspired by the fact that feedback channel capacity is higher than that of systems without feedback. The constellations obtained by FCC-OSCD are, however, OSNR dependent. The optimization is jointly performed together with regular quasi-cyclic low-density parity-check (LDPC) code design. Such obtained coded-modulation scheme, in combination with polarization-multiplexing, is suitable as both 400 Gb/s and multi-Tb/s optical transport enabling technology. Using large girth LDPC code, we demonstrate by Monte Carlo simulations that a 32-ary signal constellation, obtained by FCC-OSCD, outperforms previously proposed optimized 32-ary CIPQ signal constellation by 0.8 dB at BER of 10(-7). On the other hand, the LDPC-coded 16-ary FCC-OSCD outperforms 16-QAM by 1.15 dB at the same BER.
Selecting algorithms, sensors, and linear bases for optimum spectral recovery of skylight.
López-Alvarez, Miguel A; Hernández-Andrés, Javier; Valero, Eva M; Romero, Javier
2007-04-01
In a previous work [Appl. Opt.44, 5688 (2005)] we found the optimum sensors for a planned multispectral system for measuring skylight in the presence of noise by adapting a linear spectral recovery algorithm proposed by Maloney and Wandell [J. Opt. Soc. Am. A3, 29 (1986)]. Here we continue along these lines by simulating the responses of three to five Gaussian sensors and recovering spectral information from noise-affected sensor data by trying out four different estimation algorithms, three different sizes for the training set of spectra, and various linear bases. We attempt to find the optimum combination of sensors, recovery method, linear basis, and matrix size to recover the best skylight spectral power distributions from colorimetric and spectral (in the visible range) points of view. We show how all these parameters play an important role in the practical design of a real multispectral system and how to obtain several relevant conclusions from simulating the behavior of sensors in the presence of noise.
Optimum Design of LLC Resonant Converter using Inductance Ratio (Lm/Lr)
NASA Astrophysics Data System (ADS)
Palle, Kowstubha; Krishnaveni, K.; Ramesh Reddy, Kolli
2017-06-01
The main benefits of LLC resonant dc/dc converter over conventional series and parallel resonant converters are its light load regulation, less circulating currents, larger bandwidth for zero voltage switching, and less tuning of switching frequency for controlled output. An unique analytical tool, called fundamental harmonic approximation with peak gain adjustment is used for designing the converter. In this paper, an optimum design of the converter is proposed by considering three different design criterions with different values of inductance ratio (Lm/Lr) to achieve good efficiency at high input voltage. The optimum design includes the analysis in operating range, switching frequency range, primary side losses of a switch and stability. The analysis is carried out with simulation using the software tools like MATLAB and PSIM. The performance of the optimized design is demonstrated for a design specification of 12 V, 5 A output operating with an input voltage range of 300-400 V using FSFR 2100 IC of Texas instruments.
NASA Technical Reports Server (NTRS)
Greene, B. E.; Northrup, R. F.
1975-01-01
The efficiency was investigated of curved elements in the design of lightweight structural panels under combined loads of axial compression, inplane shear, and bending. The application is described of technology generated in the initial aluminum program to the design and fabrication of Rene 41 panels for subsequent performance tests at elevated temperature. Optimum designs for two panel configurations are presented. The designs are applicable to hypersonic airplane wing structure, and are designed specifically for testing at elevated temperature in the hypersonic wing test structure located at the NASA Flight Research Center. Fabrication methods developed to produce the Rene panels are described, and test results of smaller structural element specimens are presented to verify the design and fabrication methods used. Predicted strengths of the panels under several proposed elevated temperature test load conditions are presented.
Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems
NASA Astrophysics Data System (ADS)
Zhou, Wei
Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The optimal sizing method was developed to find the system optimum configuration and settings that can achieve the custom-required Renewable Energy Fraction (fRE) of the system with minimum Annualized Cost of System (ACS). Du to the need for optimum design of the hybrid systems, an analysis of local weather conditions (solar radiation and wind speed) was carried out for the potential installation site, and mathematical simulation of the hybrid systems' components was also carried out including PV array, wind turbine and battery bank. By statistically analyzing the long-term hourly solar and wind speed data, Hong Kong area is found to have favorite solar and wind power resources compared with other areas, which validates the practical applications in Hong Kong and Guangdong area. Simulation of PV array performance includes three main parts: modeling of the maximum power output of the PV array, calculation of the total solar radiation on any tilted surface with any orientations, and PV module temperature predictions. Five parameters are introduced to account for the complex dependence of PV array performance upon solar radiation intensities and PV module temperatures. The developed simulation model was validated by using the field-measured data from one existing building-integrated photovoltaic system (BIPV) in Hong Kong, and good simulation performance of the model was achieved. Lead-acid batteries used in hybrid systems operate under very specific conditions, which often cause difficulties to predict when energy will be extracted from or supplied to the battery. In this thesis, the lead-acid battery performance is simulated by three different characteristics: battery state of charge (SOC), battery floating charge voltage and the expected battery lifetime. Good agreements were found between the predicted values and the field-measured data of a hybrid solar-wind project. At last, one 19.8kW hybrid solar-wind power generation project, designed by the optimal sizing method and set up to supply power for a telecommunication relay station on a remote island of Guangdong province, was studied. Simulation and experimental results about the operating performances and characteristics of the hybrid solar-wind project have demonstrated the feasibility and accuracy of the recommended optimal sizing method developed in this thesis.
Grant, Yitzchak; Matejtschuk, Paul; Bird, Christopher; Wadhwa, Meenu; Dalby, Paul A
2012-04-01
The lyophilization of proteins in microplates, to assess and optimise formulations rapidly, has been applied for the first time to a therapeutic protein and, in particular, one that requires a cell-based biological assay, in order to demonstrate the broader usefulness of the approach. Factorial design of experiment methods were combined with lyophilization in microplates to identify optimum formulations that stabilised granulocyte colony-stimulating factor during freeze drying. An initial screen rapidly identified key excipients and potential interactions, which was then followed by a central composite face designed optimisation experiment. Human serum albumin and Tween 20 had significant effects on maintaining protein stability. As previously, the optimum formulation was then freeze-dried in stoppered vials to verify that the microscale data is relevant to pilot scales. However, to validate the approach further, the selected formulation was also assessed for solid-state shelf-life through the use of accelerated stability studies. This approach allows for a high-throughput assessment of excipient options early on in product development, while also reducing costs in terms of time and quantity of materials required.
Layout optimization using the homogenization method
NASA Technical Reports Server (NTRS)
Suzuki, Katsuyuki; Kikuchi, Noboru
1993-01-01
A generalized layout problem involving sizing, shape, and topology optimization is solved by using the homogenization method for three-dimensional linearly elastic shell structures in order to seek a possibility of establishment of an integrated design system of automotive car bodies, as an extension of the previous work by Bendsoe and Kikuchi. A formulation of a three-dimensional homogenized shell, a solution algorithm, and several examples of computing the optimum layout are presented in this first part of the two articles.
CFD Analysis and Design Optimization Using Parallel Computers
NASA Technical Reports Server (NTRS)
Martinelli, Luigi; Alonso, Juan Jose; Jameson, Antony; Reuther, James
1997-01-01
A versatile and efficient multi-block method is presented for the simulation of both steady and unsteady flow, as well as aerodynamic design optimization of complete aircraft configurations. The compressible Euler and Reynolds Averaged Navier-Stokes (RANS) equations are discretized using a high resolution scheme on body-fitted structured meshes. An efficient multigrid implicit scheme is implemented for time-accurate flow calculations. Optimum aerodynamic shape design is achieved at very low cost using an adjoint formulation. The method is implemented on parallel computing systems using the MPI message passing interface standard to ensure portability. The results demonstrate that, by combining highly efficient algorithms with parallel computing, it is possible to perform detailed steady and unsteady analysis as well as automatic design for complex configurations using the present generation of parallel computers.
An efficient dynamic load balancing algorithm
NASA Astrophysics Data System (ADS)
Lagaros, Nikos D.
2014-01-01
In engineering problems, randomness and uncertainties are inherent. Robust design procedures, formulated in the framework of multi-objective optimization, have been proposed in order to take into account sources of randomness and uncertainty. These design procedures require orders of magnitude more computational effort than conventional analysis or optimum design processes since a very large number of finite element analyses is required to be dealt. It is therefore an imperative need to exploit the capabilities of computing resources in order to deal with this kind of problems. In particular, parallel computing can be implemented at the level of metaheuristic optimization, by exploiting the physical parallelization feature of the nondominated sorting evolution strategies method, as well as at the level of repeated structural analyses required for assessing the behavioural constraints and for calculating the objective functions. In this study an efficient dynamic load balancing algorithm for optimum exploitation of available computing resources is proposed and, without loss of generality, is applied for computing the desired Pareto front. In such problems the computation of the complete Pareto front with feasible designs only, constitutes a very challenging task. The proposed algorithm achieves linear speedup factors and almost 100% speedup factor values with reference to the sequential procedure.
Helicopter vibration suppression using simple pendulum absorbers on the rotor blade
NASA Technical Reports Server (NTRS)
Pierce, G. A.; Hanouva, M. N. H.
1982-01-01
A comprehensive anaytical design procedure for the installation of simple pendulums on the blades of a helicopter rotor to suppress the root reactions is presented. A frequency response anaysis is conducted of typical rotor blades excited by a harmonic variation of spanwise airload distributions as well as a concentrated load at the tip. The results presented included the effect of pendulum tuning on the minimization of the hub reactions. It is found that a properly designed flapping pendulum attenuates the root out-of-plane force and moment whereas the optimum designed lead-lag pendulum attenuates the root in-plane reactions. For optimum pendulum tuning the parameters to be determined are the pendulum uncoupled natural frequency, the pendulum spanwise location and its mass. It is found that the optimum pendulum frequency is in the vicinity of the excitation frequency. For the optimum pendulum a parametric study is conducted. The parameters varied include prepitch, pretwist, precone and pendulum hinge offset.
Turbomachinery Airfoil Design Optimization Using Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
An aerodynamic design optimization procedure that is based on a evolutionary algorithm known at Differential Evolution is described. Differential Evolution is a simple, fast, and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems, including highly nonlinear systems with discontinuities and multiple local optima. The method is combined with a Navier-Stokes solver that evaluates the various intermediate designs and provides inputs to the optimization procedure. An efficient constraint handling mechanism is also incorporated. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated. Substantial reductions in the overall computing time requirements are achieved by using the algorithm in conjunction with neural networks.
Design of compact long-period gratings imprinted in optimized photonic crystal fibers
NASA Astrophysics Data System (ADS)
Seraji, F. E.; Chehreghani Anzabi, L.; Farsinezhad, S.
2009-10-01
To imprint a long-period grating (LPG) in a photonic crystal fiber (PCF) with an optimum response, first the parameters of the PCF should be optimized. In this paper, by using a semi-analytical enhanced improved vectorial effective index method, the optimized PCF parameters are determined by dividing the single-mode operation of the PCF into two regions in terms of air-hole spacing Λ ( Λ>3 μm and Λ≤3 μm). For each region appropriate expressions are suggested to evaluate the PCF parameters. By calculating the effective refractive index difference between the optimized core and cladding of the PCF under a phase-matching condition, the optimum grating period in terms of the PCF parameters is obtained.
NASA Astrophysics Data System (ADS)
Pourbaghi-Masouleh, M.; Asgharzadeh, H.
2013-08-01
In this study, the Taguchi method of design of experiment (DOE) was used to optimize the hydroxyapatite (HA) coatings on various metallic substrates deposited by sol-gel dip-coating technique. The experimental design consisted of five factors including substrate material (A), surface preparation of substrate (B), dipping/withdrawal speed (C), number of layers (D), and calcination temperature (E) with three levels of each factor. An orthogonal array of L18 type with mixed levels of the control factors was utilized. The image processing of the micrographs of the coatings was conducted to determine the percentage of coated area ( PCA). Chemical and phase composition of HA coatings were studied by XRD, FT-IR, SEM, and EDS techniques. The analysis of variance (ANOVA) indicated that the PCA of HA coatings was significantly affected by the calcination temperature. The optimum conditions from signal-to-noise ( S/N) ratio analysis were A: pure Ti, B: polishing and etching for 24 h, C: 50 cm min-1, D: 1, and E: 300 °C. In the confirmation experiment using the optimum conditions, the HA coating with high PCA of 98.5 % was obtained.
PSO Based PI Controller Design for a Solar Charger System
Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng
2013-01-01
Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs). PMID:23766713
PSO based PI controller design for a solar charger system.
Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng
2013-01-01
Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).
Optimum Design of Hypersonic Airbreathing Propulsion
NASA Astrophysics Data System (ADS)
Kobayashi, Hiroaki; Sato, Tetsuya; Tanatsugu, Nobuhiro
The flight of Spaceplane is always under accelarating in the assent way and always under decelarating in the desent way and yet cruising in the return way. Besides, its flight envelope is considerably wider than that of airplane. Thus the integrated design method is required to build the best transportation system optimized taking into account the propulsion system and the airframe under the entire flight conditions. In this paper it is shown an optimization method on TSTO spaceplane system. Genetic algorithm (GA) was applied to optimize design parameters of engine, airframe, and trajectory simultaneously. Several types of engine were quantitatively compared using payload ratio as an evaluating function. It was concluded that precooled turbojets is the most promising engine for TSTO among Turbine Based Combined Cycle (TBCC) engines.
Multicriteria analysis of product operational effectiveness at design stages
NASA Astrophysics Data System (ADS)
Irzaev, G. Kh
2018-03-01
The multicriteria rapid assessment method of techno-economic parameters of new products is developed. It avoids expensive engineering changes during the operational stages through the analysis of external and internal factors at an early stage in the design that affect the maintainability and manufacturability of the product. The expert selection of the initial multitude of indicators from the five enlarged criteria groups and their subsequent pairwise comparison allow one to distinguish the complex compliance criteria of product design with the average and optimum values of the operational effectiveness. The values comparison provides an opportunity to decide on the continuation of the process for designing and preparation of the product manufacture.
Space biology initiative program definition review. Trade study 4: Design modularity and commonality
NASA Technical Reports Server (NTRS)
Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Herbert, Frank J.; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry
1989-01-01
The relative cost impacts (up or down) of developing Space Biology hardware using design modularity and commonality is studied. Recommendations for how the hardware development should be accomplished to meet optimum design modularity requirements for Life Science investigation hardware will be provided. In addition, the relative cost impacts of implementing commonality of hardware for all Space Biology hardware are defined. Cost analysis and supporting recommendations for levels of modularity and commonality are presented. A mathematical or statistical cost analysis method with the capability to support development of production design modularity and commonality impacts to parametric cost analysis is provided.
Concepts for the development of light-weight composite structures for rotor burst containment
NASA Technical Reports Server (NTRS)
Holms, A. G.
1977-01-01
Published results on rotor burst containment with single materials, and on body armor using composite materials were used to establish a set of hypotheses about what variables might control the design of a weight-efficient protective device. Based on modern concepts for the design and analysis of small optimum seeking experiments, a particular experiment for evaluating the hypotheses and materials was designed. The design and methods for the analysis of results are described. The consequence of such hypotheses is that the device should consist of as many as four concentric rings, each to consist of a material uniquely chosen for its position in the penetration sequence.
NASA Astrophysics Data System (ADS)
Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid
2015-02-01
In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.
Broadband Liner Optimization for the Source Diagnostic Test Fan
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Jones, Michael G.
2012-01-01
The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more appealing. This paper describes a broadband acoustic liner optimization study for the scale model Source Diagnostic Test fan. Specifically, in-duct attenuation predictions with a statistical fan source model are used to obtain optimum impedance spectra over a number of flow conditions for three liner locations in the bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Typical tonal liner designs targeting single frequencies at one operating condition are first produced to provide baseline performance information. These are followed by multiple broadband design approaches culminating in a broadband liner targeting the full range of frequencies and operating conditions. The broadband liner is found to satisfy the optimum impedance objectives much better than the tonal liner designs. In addition, the broadband liner is found to provide better attenuation than the tonal designs over the full range of frequencies and operating conditions considered. Thus, the current study successfully establishes a process for the initial design and evaluation of novel broadband liner concepts for complex engine configurations.
Reliability based fatigue design and maintenance procedures
NASA Technical Reports Server (NTRS)
Hanagud, S.
1977-01-01
A stochastic model has been developed to describe a probability for fatigue process by assuming a varying hazard rate. This stochastic model can be used to obtain the desired probability of a crack of certain length at a given location after a certain number of cycles or time. Quantitative estimation of the developed model was also discussed. Application of the model to develop a procedure for reliability-based cost-effective fail-safe structural design is presented. This design procedure includes the reliability improvement due to inspection and repair. Methods of obtaining optimum inspection and maintenance schemes are treated.
Evaluation of Novel Liner Concepts for Fan and Airframe Noise Reduction
NASA Technical Reports Server (NTRS)
Jones, M. G.; Howerton, B. M.
2016-01-01
This paper presents a review of four novel liner concepts: soft vanes, over-the-rotor liners, external liners, and flap side-edge liners. A number of similarities in the design and evaluation of these concepts emerged during these investigations. Since these were the first attempts to study these particular liner concepts, there was limited information to guide the design process. In all cases, the target frequencies (or frequency range) were known, but the optimum acoustic impedance and optimum liner placement were typically not known. For these cases, the maximum available surface was used and a c-impedance was targeted based on the assumption the sound field impinges on the surface at normal incidence. This choice proved fruitful for every application. An impedance prediction model was used to design variable-depth liner configurations, and a graphical design code (ILIAD) was developed to aid in this process. The ability to build increasingly complex liner configurations via additive manufacturing was key, such that multiple designs could quickly be tested in a normal incidence impedance tube. The Two-Thickness Method was used to evaluate available bulk materials, such that bulk liners could also be considered for each application. These novel liner concepts provide sufficient noise reduction to warrant further investigations.
Experimental design data for the biosynthesis of citric acid using Central Composite Design method.
Kola, Anand Kishore; Mekala, Mallaiah; Goli, Venkat Reddy
2017-06-01
In the present investigation, we report that statistical design and optimization of significant variables for the microbial production of citric acid from sucrose in presence of filamentous fungi A. niger NCIM 705. Various combinations of experiments were designed with Central Composite Design (CCD) of Response Surface Methodology (RSM) for the production of citric acid as a function of six variables. The variables are; initial sucrose concentration, initial pH of medium, fermentation temperature, incubation time, stirrer rotational speed, and oxygen flow rate. From experimental data, a statistical model for this process has been developed. The optimum conditions reported in the present article are initial concentration of sucrose of 163.6 g/L, initial pH of medium 5.26, stirrer rotational speed of 247.78 rpm, incubation time of 8.18 days, fermentation temperature of 30.06 °C and flow rate of oxygen of 1.35 lpm. Under optimum conditions the predicted maximum citric acid is 86.42 g/L. The experimental validation carried out under the optimal values and reported citric acid to be 82.0 g/L. The model is able to represent the experimental data and the agreement between the model and experimental data is good.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.
A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.
Cogging Torque Minimization in Transverse Flux Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
2017-02-16
This paper presents the design considerations in cogging torque minimization in two types of transverse flux machines. The machines have a double stator-single rotor configuration with flux concentrating ferrite magnets. One of the machines has pole windings across each leg of an E-Core stator. Another machine has quasi-U-shaped stator cores and a ring winding. The flux in the stator back iron is transverse in both machines. Different methods of cogging torque minimization are investigated. Key methods of cogging torque minimization are identified and used as design variables for optimization using a design of experiments (DOE) based on the Taguchi method.more » A three-level DOE is performed to reach an optimum solution with minimum simulations. Finite element analysis is used to study the different effects. Two prototypes are being fabricated for experimental verification.« less
Experimental validation of structural optimization methods
NASA Technical Reports Server (NTRS)
Adelman, Howard M.
1992-01-01
The topic of validating structural optimization methods by use of experimental results is addressed. The need for validating the methods as a way of effecting a greater and an accelerated acceptance of formal optimization methods by practicing engineering designers is described. The range of validation strategies is defined which includes comparison of optimization results with more traditional design approaches, establishing the accuracy of analyses used, and finally experimental validation of the optimization results. Examples of the use of experimental results to validate optimization techniques are described. The examples include experimental validation of the following: optimum design of a trussed beam; combined control-structure design of a cable-supported beam simulating an actively controlled space structure; minimum weight design of a beam with frequency constraints; minimization of the vibration response of helicopter rotor blade; minimum weight design of a turbine blade disk; aeroelastic optimization of an aircraft vertical fin; airfoil shape optimization for drag minimization; optimization of the shape of a hole in a plate for stress minimization; optimization to minimize beam dynamic response; and structural optimization of a low vibration helicopter rotor.
Design, fabrication and acceptance testing of a zero gravity whole body shower, volume 1
NASA Technical Reports Server (NTRS)
1973-01-01
The effort to design whole body shower for the space station prototype is reported. Clothes and dish washer/dryer concepts were formulated with consideration given to integrating such a system with the overall shower design. Water recycling methods to effect vehicle weight savings were investigated and it was concluded that reusing wash and/or rinse water resulted in weight savings which were not sufficient to outweigh the added degree of hardware complexity. The formulation of preliminary and final designs for the shower are described. A detailed comparison of the air drag vs. vacuum pickup method was prepared that indicated the air drag concept results in more severe space station weight penalties; therefore, the preliminary system design was based on utilizing the vacuum pickup method. Tests were performed to determine the optimum methods of storing, heating and sterilizing the cleansing agent utilized in the shower; it was concluded that individual packages of pre-sterilized cleansing agent should be used. Integration features with the space station prototype system were defined and incorporated into the shower design as necessary.
Selecting a proper design period for heliostat field layout optimization using Campo code
NASA Astrophysics Data System (ADS)
Saghafifar, Mohammad; Gadalla, Mohamed
2016-09-01
In this paper, different approaches are considered to calculate the cosine factor which is utilized in Campo code to expand the heliostat field layout and maximize its annual thermal output. Furthermore, three heliostat fields containing different number of mirrors are taken into consideration. Cosine factor is determined by considering instantaneous and time-average approaches. For instantaneous method, different design days and design hours are selected. For the time average method, daily time average, monthly time average, seasonally time average, and yearly time averaged cosine factor determinations are considered. Results indicate that instantaneous methods are more appropriate for small scale heliostat field optimization. Consequently, it is proposed to consider the design period as the second design variable to ensure the best outcome. For medium and large scale heliostat fields, selecting an appropriate design period is more important. Therefore, it is more reliable to select one of the recommended time average methods to optimize the field layout. Optimum annual weighted efficiency for heliostat fields (small, medium, and large) containing 350, 1460, and 3450 mirrors are 66.14%, 60.87%, and 54.04%, respectively.
Zhao, Hui-ru; Ren, Zao; Liu, Chun-ye
2015-04-01
To compare the purification effect of saponins from Ziziphi Spinosae Semen with different types of macroporous adsorption resin, and to optimize its purification technology. The type of macroporous resins was optimized by static adsorption method. The optimum technological conditions of saponins from Ziziphi Spinosae Semen was screened by single factor test and Box-Behnken Design-Response Surface Methodology. AB-8 macroporous resin had better purification effect of total saponins than other resins, optimum technological parameters were as follows: column height-diameter ratio was 5: 1, the concentration of sample solution was 2. 52 mg/mL, resin adsorption quantity was 8. 915 mg/g, eluted by 3 BV water, flow rate of adsorption and elution was 2 BV/h, elution solvent was 75% ethanol, elution solvent volume was 5 BV. AB-8 macroporous resin has a good purification effect on jujuboside A. The optimized technology is stable and feasible.
The Effects of Micromixing Two Solutions of Two Concentrations in a Two Tier PDMS Micromixer
NASA Astrophysics Data System (ADS)
Sundra, Sargunan; Fhong Soon, Chin; Zainal, Nurfarina; Sek Tee, Kian; Ahmad, Nornabihah; Gan, Siew Hua
2017-08-01
Micromixing technology has drastically advanced in the past few decades. Micromixers are one of the elements in integrated microfluidic systems for chemical, analytical chemistry, pharmaceutical, and biological applications. In this study, two tier micromixer was used to mix and dilute two solutions of similar and different concentration in order to investigate performance of micromixer’s mixing. This paper presents the fabrication of a designed micromixer using polydimethylsiloxane (PDMS) and vinyl tape methods which reduce time, cost and complexity of prototyping. The serpentine structure of the microchannels was designed to enhance both mixing and dilution. Two types of food dyes and distilled water were used to investigate the mixing performance of the micromixer followed by spectrophotometry analysis. It is observed that the single dye solution and distilled water shows better mixing performance compared to the micromixing of two dye solutions which was supported by the diffusion theory. 2.00 ml/min was the optimum flow rate that allow optimum mixing and dilution between two different concentrated liquids.
Optimum design of a novel pounding tuned mass damper under harmonic excitation
NASA Astrophysics Data System (ADS)
Wang, Wenxi; Hua, Xugang; Wang, Xiuyong; Chen, Zhengqing; Song, Gangbing
2017-05-01
In this paper, a novel pounding tuned mass damper (PTMD) utilizing pounding damping is proposed to reduce structural vibration by increasing the damping ratio of a lightly damped structure. The pounding boundary covered by viscoelastic material is fixed right next to the tuned mass when the spring-mass system is in the equilibrium position. The dynamic properties of the proposed PTMD, including the natural frequency and the equivalent damping ratio, are derived theoretically. Moreover, the numerical simulation method by using an impact force model to study the PTMD is proposed and validated by pounding experiments. To minimize the maximum dynamic magnification factor under harmonic excitations, an optimum design of the PTMD is developed. Finally, the optimal PTMD is implemented to control a lightly damped frame structure. A comparison of experimental and simulated results reveals that the proposed impact force model can accurately model the pounding force. Furthermore, the proposed PTMD is effective to control the vibration in a wide frequency range, as demonstrated experimentally.
Study of optimum methods of optical communication
NASA Technical Reports Server (NTRS)
Harger, R. O.
1972-01-01
Optimum methods of optical communication accounting for the effects of the turbulent atmosphere and quantum mechanics, both by the semi-classical method and the full-fledged quantum theoretical model are described. A concerted effort to apply the techniques of communication theory to the novel problems of optical communication by a careful study of realistic models and their statistical descriptions, the finding of appropriate optimum structures and the calculation of their performance and, insofar as possible, comparing them to conventional and other suboptimal systems are discussed. In this unified way the bounds on performance and the structure of optimum communication systems for transmission of information, imaging, tracking, and estimation can be determined for optical channels.
ERIC Educational Resources Information Center
Liu, Xiaofeng
2003-01-01
This article considers optimal sample allocation between the treatment and control condition in multilevel designs when the costs per sampling unit vary due to treatment assignment. Optimal unequal allocation may reduce the cost from that of a balanced design without sacrificing any power. The optimum sample allocation ratio depends only on the…
NASA Astrophysics Data System (ADS)
Bapat, V. A.; Prabhu, P.
1980-11-01
The problem of designing an optimum Lanchester damper for a viscously damped single degree of freedom system subjected to inertial harmonic excitation is investigated. Two criteria are used for optimizing the performance of the damper: (i) minimum motion transmissibility; (ii) minimum force transmissibility. Explicit expressions are developed for determining the absorber parameters.
Mathematical theory of a relaxed design problem in structural optimization
NASA Technical Reports Server (NTRS)
Kikuchi, Noboru; Suzuki, Katsuyuki
1990-01-01
Various attempts have been made to construct a rigorous mathematical theory of optimization for size, shape, and topology (i.e. layout) of an elastic structure. If these are represented by a finite number of parametric functions, as Armand described, it is possible to construct an existence theory of the optimum design using compactness argument in a finite dimensional design space or a closed admissible set of a finite dimensional design space. However, if the admissible design set is a subset of non-reflexive Banach space such as L(sup infinity)(Omega), construction of the existence theory of the optimum design becomes suddenly difficult and requires to extend (i.e. generalize) the design problem to much more wider class of design that is compatible to mechanics of structures in the sense of variational principle. Starting from the study by Cheng and Olhoff, Lurie, Cherkaev, and Fedorov introduced a new concept of convergence of design variables in a generalized sense and construct the 'G-Closure' theory of an extended (relaxed) optimum design problem. A similar attempt, but independent in large extent, can also be found in Kohn and Strang in which the shape and topology optimization problem is relaxed to allow to use of perforated composites rather than restricting it to usual solid structures. An identical idea is also stated in Murat and Tartar using the notion of the homogenization theory. That is, introducing possibility of micro-scale perforation together with the theory of homogenization, the optimum design problem is relaxed to construct its mathematical theory. It is also noted that this type of relaxed design problem is perfectly matched to the variational principle in structural mechanics.
Maximum Constrained Directivity of Oversteered End-Fire Sensor Arrays
Trucco, Andrea; Traverso, Federico; Crocco, Marco
2015-01-01
For linear arrays with fixed steering and an inter-element spacing smaller than one half of the wavelength, end-fire steering of a data-independent beamformer offers better directivity than broadside steering. The introduction of a lower bound on the white noise gain ensures the necessary robustness against random array errors and sensor mismatches. However, the optimum broadside performance can be obtained using a simple processing architecture, whereas the optimum end-fire performance requires a more complicated system (because complex weight coefficients are needed). In this paper, we reconsider the oversteering technique as a possible way to simplify the processing architecture of equally spaced end-fire arrays. We propose a method for computing the amount of oversteering and the related real-valued weight vector that allows the constrained directivity to be maximized for a given inter-element spacing. Moreover, we verify that the maximized oversteering performance is very close to the optimum end-fire performance. We conclude that optimized oversteering is a viable method for designing end-fire arrays that have better constrained directivity than broadside arrays but with a similar implementation complexity. A numerical simulation is used to perform a statistical analysis, which confirms that the maximized oversteering performance is robust against sensor mismatches. PMID:26066987
NASA Astrophysics Data System (ADS)
Barthelat, Francois
2014-12-01
Nacre, bone and spider silk are staggered composites where inclusions of high aspect ratio reinforce a softer matrix. Such staggered composites have emerged through natural selection as the best configuration to produce stiffness, strength and toughness simultaneously. As a result, these remarkable materials are increasingly serving as model for synthetic composites with unusual and attractive performance. While several models have been developed to predict basic properties for biological and bio-inspired staggered composites, the designer is still left to struggle with finding optimum parameters. Unresolved issues include choosing optimum properties for inclusions and matrix, and resolving the contradictory effects of certain design variables. Here we overcome these difficulties with a multi-objective optimization for simultaneous high stiffness, strength and energy absorption in staggered composites. Our optimization scheme includes material properties for inclusions and matrix as design variables. This process reveals new guidelines, for example the staggered microstructure is only advantageous if the tablets are at least five times stronger than the interfaces, and only if high volume concentrations of tablets are used. We finally compile the results into a step-by-step optimization procedure which can be applied for the design of any type of high-performance staggered composite and at any length scale. The procedure produces optimum designs which are consistent with the materials and microstructure of natural nacre, confirming that this natural material is indeed optimized for mechanical performance.
NASA Technical Reports Server (NTRS)
1976-01-01
Additional design and analysis data are provided to supplement the results of the two parallel design study efforts. The key results of the three supplemental tasks investigated are: (1) The velocity duration profile has a significant effect in determining the optimum wind turbine design parameters and the energy generation cost. (2) Modest increases in capacity factor can be achieved with small increases in energy generation costs and capital costs. (3) Reinforced concrete towers that are esthetically attractive can be designed and built at a cost comparable to those for steel truss towers. The approach used, method of analysis, assumptions made, design requirements, and the results for each task are discussed in detail.
New technologies for advanced three-dimensional optimum shape design in aeronautics
NASA Astrophysics Data System (ADS)
Dervieux, Alain; Lanteri, Stéphane; Malé, Jean-Michel; Marco, Nathalie; Rostaing-Schmidt, Nicole; Stoufflet, Bruno
1999-05-01
The analysis of complex flows around realistic aircraft geometries is becoming more and more predictive. In order to obtain this result, the complexity of flow analysis codes has been constantly increasing, involving more refined fluid models and sophisticated numerical methods. These codes can only run on top computers, exhausting their memory and CPU capabilities. It is, therefore, difficult to introduce best analysis codes in a shape optimization loop: most previous works in the optimum shape design field used only simplified analysis codes. Moreover, as the most popular optimization methods are the gradient-based ones, the more complex the flow solver, the more difficult it is to compute the sensitivity code. However, emerging technologies are contributing to make such an ambitious project, of including a state-of-the-art flow analysis code into an optimisation loop, feasible. Among those technologies, there are three important issues that this paper wishes to address: shape parametrization, automated differentiation and parallel computing. Shape parametrization allows faster optimization by reducing the number of design variable; in this work, it relies on a hierarchical multilevel approach. The sensitivity code can be obtained using automated differentiation. The automated approach is based on software manipulation tools, which allow the differentiation to be quick and the resulting differentiated code to be rather fast and reliable. In addition, the parallel algorithms implemented in this work allow the resulting optimization software to run on increasingly larger geometries. Copyright
Sharma, Teenu; Khurana, Rajneet Kaur; Jain, Atul; Katare, O P; Singh, Bhupinder
2018-05-01
The current research work envisages an analytical quality by design-enabled development of a simple, rapid, sensitive, specific, robust and cost-effective stability-indicating reversed-phase high-performance liquid chromatographic method for determining stress-induced forced-degradation products of sorafenib tosylate (SFN). An Ishikawa fishbone diagram was constructed to embark upon analytical target profile and critical analytical attributes, i.e. peak area, theoretical plates, retention time and peak tailing. Factor screening using Taguchi orthogonal arrays and quality risk assessment studies carried out using failure mode effect analysis aided the selection of critical method parameters, i.e. mobile phase ratio and flow rate potentially affecting the chosen critical analytical attributes. Systematic optimization using response surface methodology of the chosen critical method parameters was carried out employing a two-factor-three-level-13-run, face-centered cubic design. A method operable design region was earmarked providing optimum method performance using numerical and graphical optimization. The optimum method employed a mobile phase composition consisting of acetonitrile and water (containing orthophosphoric acid, pH 4.1) at 65:35 v/v at a flow rate of 0.8 mL/min with UV detection at 265 nm using a C 18 column. Response surface methodology validation studies confirmed good efficiency and sensitivity of the developed method for analysis of SFN in mobile phase as well as in human plasma matrix. The forced degradation studies were conducted under different recommended stress conditions as per ICH Q1A (R2). Mass spectroscopy studies showed that SFN degrades in strongly acidic, alkaline and oxidative hydrolytic conditions at elevated temperature, while the drug was per se found to be photostable. Oxidative hydrolysis using 30% H 2 O 2 showed maximum degradation with products at retention times of 3.35, 3.65, 4.20 and 5.67 min. The absence of any significant change in the retention time of SFN and degradation products, formed under different stress conditions, ratified selectivity and specificity of the systematically developed method. Copyright © 2017 John Wiley & Sons, Ltd.
Shape Optimization of Supersonic Turbines Using Response Surface and Neural Network Methods
NASA Technical Reports Server (NTRS)
Papila, Nilay; Shyy, Wei; Griffin, Lisa W.; Dorney, Daniel J.
2001-01-01
Turbine performance directly affects engine specific impulse, thrust-to-weight ratio, and cost in a rocket propulsion system. A global optimization framework combining the radial basis neural network (RBNN) and the polynomial-based response surface method (RSM) is constructed for shape optimization of a supersonic turbine. Based on the optimized preliminary design, shape optimization is performed for the first vane and blade of a 2-stage supersonic turbine, involving O(10) design variables. The design of experiment approach is adopted to reduce the data size needed by the optimization task. It is demonstrated that a major merit of the global optimization approach is that it enables one to adaptively revise the design space to perform multiple optimization cycles. This benefit is realized when an optimal design approaches the boundary of a pre-defined design space. Furthermore, by inspecting the influence of each design variable, one can also gain insight into the existence of multiple design choices and select the optimum design based on other factors such as stress and materials considerations.
Optimal design of structures for earthquake loads by a hybrid RBF-BPSO method
NASA Astrophysics Data System (ADS)
Salajegheh, Eysa; Gholizadeh, Saeed; Khatibinia, Mohsen
2008-03-01
The optimal seismic design of structures requires that time history analyses (THA) be carried out repeatedly. This makes the optimal design process inefficient, in particular, if an evolutionary algorithm is used. To reduce the overall time required for structural optimization, two artificial intelligence strategies are employed. In the first strategy, radial basis function (RBF) neural networks are used to predict the time history responses of structures in the optimization flow. In the second strategy, a binary particle swarm optimization (BPSO) is used to find the optimum design. Combining the RBF and BPSO, a hybrid RBF-BPSO optimization method is proposed in this paper, which achieves fast optimization with high computational performance. Two examples are presented and compared to determine the optimal weight of structures under earthquake loadings using both exact and approximate analyses. The numerical results demonstrate the computational advantages and effectiveness of the proposed hybrid RBF-BPSO optimization method for the seismic design of structures.
Simulation of optimum parameters for GaN MSM UV photodetector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhelfi, Mohanad A., E-mail: mhad12344@gmail.com; Ahmed, Naser M., E-mail: nas-tiji@yahoo.com; Hashim, M. R., E-mail: roslan@usm.my
2016-07-06
In this study the optimum parameters of GaN M-S-M photodetector are discussed. The evaluation of the photodetector depends on many parameters, the most of the important parameters the quality of the GaN film and others depend on the geometry of the interdigited electrode. In this simulation work using MATLAB software with consideration of the reflection and absorption on the metal contacts, a detailed study involving various electrode spacings (S) and widths (W) reveals conclusive results in device design. The optimum interelectrode design for interdigitated MSM-PD has been specified and evaluated by effect on quantum efficiency and responsivity.
Evaluating the performance of microbial fuel cells powering electronic devices
NASA Astrophysics Data System (ADS)
Dewan, Alim; Donovan, Conrad; Heo, Deukhyoun; Beyenal, Haluk
A microbial fuel cell (MFC) is capable of powering an electronic device if we store the energy in an external storage device, such as a capacitor, and dispense that energy intermittently in bursts of high-power when needed. Therefore its performance needs to be evaluated using an energy-storing device such as a capacitor which can be charged and discharged rather than other evaluation techniques, such as continuous energy dissipation through a resistor. In this study, we develop a method of testing microbial fuel cell performance based on storing energy in a capacitor. When a capacitor is connected to a MFC it acts like a variable resistor and stores energy from the MFC at a variable rate. In practice the application of this method to testing microbial fuel cells is very challenging and time consuming; therefore we have custom-designed a microbial fuel cell tester (MFCT). The MFCT evaluates the performance of a MFC as a power source. It uses a capacitor as an energy storing device and waits until a desired amount of energy is stored then discharges the capacitor. The entire process is controlled using an analog-to-digital converter (ADC) board controlled by a custom-written computer program. The utility of our method and the MFCT is demonstrated using a laboratory microbial fuel cell (LMFC) and a sediment microbial fuel cell (SMFC). We determine (1) how frequently a MFC can charge a capacitor, (2) which electrode is current-limiting, (3) what capacitor value will allow the maximum harvested energy from a MFC, which is called the "optimum charging capacitor value," and (4) what capacitor charging potential will harvest the maximum energy from a MFC, which is called the "optimum charging potential." Using a LMFC we find that (1) the time needed to charge a 3-F capacitor from 0 to 500 mV is 108 min, (2) the optimum charging capacitor value is 3 F, and (3) the optimum charging potential is 300 mV. Using a SMFC we find that (1) the time needed to charge a 3-F capacitor from 0 to 500 mV is 5 min, (2) the optimum charging capacitor value is 3 F, and (3) the optimum charging potential is 500 mV. Our results demonstrate that the developed method and the MFCT can be used to evaluate and optimize energy harvesting when a MFC is used with a capacitor to power wireless sensors monitoring the environment.
Worst case estimation of homology design by convex analysis
NASA Technical Reports Server (NTRS)
Yoshikawa, N.; Elishakoff, Isaac; Nakagiri, S.
1998-01-01
The methodology of homology design is investigated for optimum design of advanced structures. for which the achievement of delicate tasks by the aid of active control system is demanded. The proposed formulation of homology design, based on the finite element sensitivity analysis, necessarily requires the specification of external loadings. The formulation to evaluate the worst case for homology design caused by uncertain fluctuation of loadings is presented by means of the convex model of uncertainty, in which uncertainty variables are assigned to discretized nodal forces and are confined within a conceivable convex hull given as a hyperellipse. The worst case of the distortion from objective homologous deformation is estimated by the Lagrange multiplier method searching the point to maximize the error index on the boundary of the convex hull. The validity of the proposed method is demonstrated in a numerical example using the eleven-bar truss structure.
Optical modeling of fiber organic photovoltaic structures using a transmission line method.
Moshonas, N; Stathopoulos, N A; O'Connor, B T; Bedeloglu, A Celik; Savaidis, S P; Vasiliadis, S
2017-12-01
An optical model has been developed and evaluated for the calculation of the external quantum efficiency of cylindrical fiber photovoltaic structures. The model is based on the transmission line theory and has been applied on single and bulk heterojunction fiber-photovoltaic cells. Using this model, optimum design characteristics have been proposed for both configurations, and comparison with experimental results has been assessed.
NASA Astrophysics Data System (ADS)
Semenov, A. B.; Gavrilenko, A. E.; Semenov, B. I.
2016-12-01
The up-to-date methods of powder metallurgy and casting technology are considered. They can be used to apply the design and technological solutions that are intended to form parts with the optimum space configuration, to deLcrease the number of assembly elements, and to decrease the number of mechanical and welded joints in units.
Ergonomic study and static analysis for new design of electric scooter
NASA Astrophysics Data System (ADS)
Fadzly, M. K.; Munirah, Anis; Shayfull, Z.; Saad, Mohd Sazli
2017-09-01
The purposes of this project are to design and diversify the function of a battery powered scooter frame which is more practical for the human factor in ergonomic and optimum design. The new design is based on ideas which are studied from existing scooter frame, United States Patent design and European States International Patent design. The final idea of concept design for scooter frame is based on concept chosen from the best characteristics and it is divided into three main difference ideas and the matrix evaluation method is applied. Analysis that applies to frame design, arm, rim and drive train component is based on Cosmos Express program. As a conclusion, the design that is produce are able to carry the maximum also has more practical features in ergonomic view.
Structural optimization via a design space hierarchy
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1976-01-01
Mathematical programming techniques provide a general approach to automated structural design. An iterative method is proposed in which design is treated as a hierarchy of subproblems, one being locally constrained and the other being locally unconstrained. It is assumed that the design space is locally convex in the case of good initial designs and that the objective and constraint functions are continuous, with continuous first derivatives. A general design algorithm is outlined for finding a move direction which will decrease the value of the objective function while maintaining a feasible design. The case of one-dimensional search in a two-variable design space is discussed. Possible applications are discussed. A major feature of the proposed algorithm is its application to problems which are inherently ill-conditioned, such as design of structures for optimum geometry.
Reliability Based Design for a Raked Wing Tip of an Airframe
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.
2011-01-01
A reliability-based optimization methodology has been developed to design the raked wing tip of the Boeing 767-400 extended range airliner made of composite and metallic materials. Design is formulated for an accepted level of risk or reliability. The design variables, weight and the constraints became functions of reliability. Uncertainties in the load, strength and the material properties, as well as the design variables, were modeled as random parameters with specified distributions, like normal, Weibull or Gumbel functions. The objective function and constraint, or a failure mode, became derived functions of the risk-level. Solution to the problem produced the optimum design with weight, variables and constraints as a function of the risk-level. Optimum weight versus reliability traced out an inverted-S shaped graph. The center of the graph corresponded to a 50 percent probability of success, or one failure in two samples. Under some assumptions, this design would be quite close to the deterministic optimum solution. The weight increased when reliability exceeded 50 percent, and decreased when the reliability was compromised. A design could be selected depending on the level of risk acceptable to a situation. The optimization process achieved up to a 20-percent reduction in weight over traditional design.
Sadeghi, Maryam; Faghihi, Reza; Sina, Sedigheh
2017-06-15
Thermoluminescence dosimetry (TLD) is a powerful technique with wide applications in personal, environmental and clinical dosimetry. The optimum annealing, storage and reading protocols are very effective in accuracy of TLD response. The purpose of this study is to obtain an optimum protocol for GR-200; LiF: Mg, Cu, P, by optimizing the effective parameters, to increase the reliability of the TLD response using Taguchi method. Taguchi method has been used in this study for optimization of annealing, storage and reading protocols of the TLDs. A number of 108 GR-200 chips were divided into 27 groups, each containing four chips. The TLDs were exposed to three different doses, and stored, annealed and read out by different procedures as suggested by Taguchi Method. By comparing the signal-to-noise ratios the optimum dosimetry procedure was obtained. According to the results, the optimum values for annealing temperature (°C), Annealing Time (s), Annealing to Exposure time (d), Exposure to Readout time (d), Pre-heat Temperature (°C), Pre-heat Time (s), Heating Rate (°C/s), Maximum Temperature of Readout (°C), readout time (s) and Storage Temperature (°C) are 240, 90, 1, 2, 50, 0, 15, 240, 13 and -20, respectively. Using the optimum protocol, an efficient glow curve with low residual signals can be achieved. Using optimum protocol obtained by Taguchi method, the dosimetry can be effectively performed with great accuracy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Aiding Design of Wave Energy Converters via Computational Simulations
NASA Astrophysics Data System (ADS)
Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak
2015-11-01
With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.
NASA Astrophysics Data System (ADS)
Rastkerdar, E.; Shamanian, M.; Saatchi, A.
2013-04-01
In this study, the Taguchi method was used as a design of experiment (DOE) technique to optimize the pulsed current gas tungsten arc welding (GTAW) parameters for improved pitting corrosion resistance of AA5083-H18 aluminum alloy welds. A L9 (34) orthogonal array of the Taguchi design was used, which involves nine experiments for four parameters: peak current ( P), base current ( B), percent pulse-on time ( T), and pulse frequency ( F) with three levels was used. Pitting corrosion resistance in 3.5 wt.% NaCl solution was evaluated by anodic polarization tests at room temperature and calculating the width of the passive region (∆ E pit). Analysis of variance (ANOVA) was performed on the measured data and S/ N (signal to noise) ratios. The "bigger is better" was selected as the quality characteristic (QC). The optimum conditions were found as 170 A, 85 A, 40%, and 6 Hz for P, B, T, and F factors, respectively. The study showed that the percent pulse-on time has the highest influence on the pitting corrosion resistance (50.48%) followed by pulse frequency (28.62%), peak current (11.05%) and base current (9.86%). The range of optimum ∆ E pit at optimum conditions with a confidence level of 90% was predicted to be between 174.81 and 177.74 mVSCE. Under optimum conditions, the confirmation test was carried out, and the experimental value of ∆ E pit of 176 mVSCE was in agreement with the predicted value from the Taguchi model. In this regard, the model can be effectively used to predict the ∆ E pit of pulsed current gas tungsten arc welded joints.
Parameter optimization and stretch enhancement of AISI 316 sheet using rapid prototyping technique
NASA Astrophysics Data System (ADS)
Moayedfar, M.; Rani, A. M.; Hanaei, H.; Ahmad, A.; Tale, A.
2017-10-01
Incremental sheet forming is a flexible manufacturing process which uses the indenter point-to-point force to shape the sheet metal workpiece into manufactured parts in batch production series. However, the problem sometimes arising from this process is the low plastic point in the stress-strain diagram of the material which leads the low stretching amount before ultra-tensile strain point. Hence, a set of experiments is designed to find the optimum forming parameters in this process for optimum sheet thickness distribution while both sides of the sheet are considered for the surface quality improvement. A five-axis high-speed CNC milling machine is employed to deliver the proper motion based on the programming system while the clamping system for holding the sheet metal was a blank mould. Finally, an electron microscope and roughness machine are utilized to evaluate the surface structure of final parts, illustrate any defect may cause during the forming process and examine the roughness of the final part surface accordingly. The best interaction between parameters is obtained with the optimum values which lead the maximum sheet thickness distribution of 4.211e-01 logarithmic elongation when the depth was 24mm with respect to the design. This study demonstrates that this rapid forming method offers an alternative solution for surface quality improvement of 65% avoiding the low probability of cracks and low probability of crystal structure changes.
Sensitivity analysis of discrete structural systems: A survey
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.
1984-01-01
Methods for calculating sensitivity derivatives for discrete structural systems are surveyed, primarily covering literature published during the past two decades. Methods are described for calculating derivatives of static displacements and stresses, eigenvalues and eigenvectors, transient structural response, and derivatives of optimum structural designs with respect to problem parameters. The survey is focused on publications addressed to structural analysis, but also includes a number of methods developed in nonstructural fields such as electronics, controls, and physical chemistry which are directly applicable to structural problems. Most notable among the nonstructural-based methods are the adjoint variable technique from control theory, and the Green's function and FAST methods from physical chemistry.
Sahib, Mouayad A.; Gambardella, Luca M.; Afzal, Wasif; Zamli, Kamal Z.
2016-01-01
Combinatorial test design is a plan of test that aims to reduce the amount of test cases systematically by choosing a subset of the test cases based on the combination of input variables. The subset covers all possible combinations of a given strength and hence tries to match the effectiveness of the exhaustive set. This mechanism of reduction has been used successfully in software testing research with t-way testing (where t indicates the interaction strength of combinations). Potentially, other systems may exhibit many similarities with this approach. Hence, it could form an emerging application in different areas of research due to its usefulness. To this end, more recently it has been applied in a few research areas successfully. In this paper, we explore the applicability of combinatorial test design technique for Fractional Order (FO), Proportional-Integral-Derivative (PID) parameter design controller, named as FOPID, for an automatic voltage regulator (AVR) system. Throughout the paper, we justify this new application theoretically and practically through simulations. In addition, we report on first experiments indicating its practical use in this field. We design different algorithms and adapted other strategies to cover all the combinations with an optimum and effective test set. Our findings indicate that combinatorial test design can find the combinations that lead to optimum design. Besides this, we also found that by increasing the strength of combination, we can approach to the optimum design in a way that with only 4-way combinatorial set, we can get the effectiveness of an exhaustive test set. This significantly reduced the number of tests needed and thus leads to an approach that optimizes design of parameters quickly. PMID:27829025
Method for Determining Optimum Injector Inlet Geometry
NASA Technical Reports Server (NTRS)
Myers, W. Neill (Inventor); Trinh, Huu P. (Inventor)
2015-01-01
A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.
Semidefinite Relaxation-Based Optimization of Multiple-Input Wireless Power Transfer Systems
NASA Astrophysics Data System (ADS)
Lang, Hans-Dieter; Sarris, Costas D.
2017-11-01
An optimization procedure for multi-transmitter (MISO) wireless power transfer (WPT) systems based on tight semidefinite relaxation (SDR) is presented. This method ensures physical realizability of MISO WPT systems designed via convex optimization -- a robust, semi-analytical and intuitive route to optimizing such systems. To that end, the nonconvex constraints requiring that power is fed into rather than drawn from the system via all transmitter ports are incorporated in a convex semidefinite relaxation, which is efficiently and reliably solvable by dedicated algorithms. A test of the solution then confirms that this modified problem is equivalent (tight relaxation) to the original (nonconvex) one and that the true global optimum has been found. This is a clear advantage over global optimization methods (e.g. genetic algorithms), where convergence to the true global optimum cannot be ensured or tested. Discussions of numerical results yielded by both the closed-form expressions and the refined technique illustrate the importance and practicability of the new method. It, is shown that this technique offers a rigorous optimization framework for a broad range of current and emerging WPT applications.
Gao, Yingbin; Kong, Xiangyu; Zhang, Huihui; Hou, Li'an
2017-05-01
Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling multilayer x-ray reflectivity using genetic algorithms
NASA Astrophysics Data System (ADS)
Sánchez del Río, M.; Pareschi, G.; Michetschläger, C.
2000-06-01
The x-ray reflectivity of a multilayer is a non-linear function of many parameters (materials, layer thickness, density, roughness). Non-linear fitting of experimental data with simulations requires the use of initial values sufficiently close to the optimum value. This is a difficult task when the topology of the space of the variables is highly structured. We apply global optimization methods to fit multilayer reflectivity. Genetic algorithms are stochastic methods based on the model of natural evolution: the improvement of a population along successive generations. A complete set of initial parameters constitutes an individual. The population is a collection of individuals. Each generation is built from the parent generation by applying some operators (selection, crossover, mutation, etc.) on the members of the parent generation. The pressure of selection drives the population to include "good" individuals. For large number of generations, the best individuals will approximate the optimum parameters. Some results on fitting experimental hard x-ray reflectivity data for Ni/C and W/Si multilayers using genetic algorithms are presented. This method can also be applied to design multilayers optimized for a target application.
Optimum aerodynamic design via boundary control
NASA Technical Reports Server (NTRS)
Jameson, Antony
1994-01-01
These lectures describe the implementation of optimization techniques based on control theory for airfoil and wing design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for two-dimensional profiles in which the shape is determined by a conformal transformation from a unit circle, and the control is the mapping function. Recently the method has been implemented in an alternative formulation which does not depend on conformal mapping, so that it can more easily be extended to treat general configurations. The method has also been extended to treat the Euler equations, and results are presented for both two and three dimensional cases, including the optimization of a swept wing.
NASA Technical Reports Server (NTRS)
Harris, Robert S., Jr.; Davidson, John R.
1962-01-01
General equations are developed for the design of efficient structures protected from thermal environments typical of those encountered in boost-glide or atmospheric-reentry conditions. The method is applied to insulated heat-sink stressed-skin structures and to internally cooled insulated structures. Plates loaded in compression are treated in detail. Under limited conditions of plate buckling, high loading, and short flight periods, and for aluminum structures only, the weights of both configurations are nearly equal. Load parameters are found and are similar to those derived in previous investigations for the restricted case of a constant equilibrium temperature at the outside surface of the insulation.
Vera-Candioti, Luciana; Teglia, Carla M; Cámara, María S
2016-10-01
A dispersive liquid-liquid microextraction procedure was developed to extract nine fluoroquinolones in porcine blood, six of which were quantified using a univariate calibration method. Extraction parameters including type and volume of extraction and dispersive solvent and pH, were optimized using a full factorial and a central composite designs. The optimum extraction parameters were a mixture of 250 μL dichloromethane (extract solvent) and 1250 μL ACN (dispersive solvent) in 500 μL of porcine blood reached to pH 6.80. After shaking and centrifugation, the upper phase was transferred in a glass tube and evaporated under N 2 steam. The residue was resuspended into 50 μL of water-ACN (70:30, v/v) and determined by CE method with DAD, under optimum separation conditions. Consequently, a tenfold enrichment factor can potentially be reached with the pretreatment, taking into account the relationship between initial sample volume and final extract volume. Optimum separation conditions were as follows: BGE solution containing equal amounts of sodium borate (Na 2 B 4 O 7 ) and di-sodium hydrogen phosphate (Na 2 HPO 4 ) with a final concentration of 23 mmol/L containing 0.2% of poly (diallyldimethylammonium chloride) and adjusted to pH 7.80. Separation was performed applying a negative potential of 25 kV, the cartridge was maintained at 25.0°C and the electropherograms were recorded at 275 nm during 4 min. The hydrodynamic injection was performed in the cathode by applying a pressure of 50 mbar for 10 s. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Further Development and Assessment of a Broadband Liner Optimization Process
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.
2016-01-01
The utilization of advanced fan designs (including higher bypass ratios) and shorter engine nacelles has highlighted a need for increased fan noise reduction over a broader frequency range. Thus, improved broadband liner designs must account for these constraints and, where applicable, take advantage of advanced manufacturing techniques that have opened new possibilities for novel configurations. This work focuses on the use of an established broadband acoustic liner optimization process to design a variable-depth, multi-degree of freedom liner for a high speed fan. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design a liner aimed at producing impedance spectra that most closely match the predicted optimum values. The multi-degree of freedom design is carried through design, fabrication, and testing. In-duct attenuation predictions compare well with measured data and the multi-degree of freedom liner is shown to outperform a more conventional liner over a range of flow conditions. These promising results provide further confidence in the design tool, as well as the enhancements made to the overall design process.
Asiabi, Mina; Mehdinia, Ali; Jabbari, Ali
2017-01-06
The nanofibers of biocompatible Chitosan/MIL-101 (Fe) composite were synthesized by a simple, cheap and accessible electrospining method and applied for mat-based extraction of trace amount of Δ9-tetrahydrocannabinol (THC) from human whole blood sample following its combination by high performance liquid chromatography-ultraviolet detection. The composite nanofibres were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and N 2 adsorption-desorption experiments. The volume of eluting solvent, sorbent amount, pH and% NaCl (w/v) influencing on the responses were investigated using factorial experimental design. The optimum point was achieved by analysis of the results according to design expert (DX) software. The volume of eluting solvent, sorbent amount and pH were significant variables, and 150μL, 7mg and 7.0 were respectively chosen for obtaining the best extraction response. Under the optimum conditions, the method was exhibited a linear range of 0.1-100μgL -1 (R 2 =0.9943) for THC with a detection limit of 0.04μgL -1 . Acceptable values for intra-day (3.2%) and inter-day (4.8%) relative standard deviations were obtained. The high preconcentration factor (970) and satisfactory recoveries (88.2%-92.4%) in whole blood samples were achieved which proved the capability of the method for trace determination of THC in the human whole blood samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Marshaline Seles, M.; Suryanarayanan, R.; Vivek, S. S.; Dhinakaran, G.
2017-07-01
The conventional concrete when used for structures having dense congested reinforcement, the problems such as external compaction and vibration needs special attention. In such case, the self compacting concrete (SCC) which has the properties like flow ability, passing and filling ability would be an obvious answer. All those SCC flow behavior was governed by EFNARC specifications. In present study, the combination type of SCC was prepared by replacing cement with silica fume (SF) and metakaolin (MK) along with optimum dosages of chemical admixtures. From the fresh property test, cube compressive strength and cylinder split tensile strength, optimum ternary mix was obtained. In order to study the flexural behavior, the optimum ternary mix was taken in which beam specimens of size 1200 mm x 100 mm x 200 mm was designed as singly reinforced section according to IS: 456-2000, Limit state method. Finally the comparative experimental analysis was made between conventional RCC and SCC beams of same grade in terms of flexural strength namely yield load & ultimate load, load- deflection curve, crack size and pattern respectively.
Jin, Lei; Zhang, Xiaojun; Sun, Xiumei; Shi, Hui; Li, Tiejun
2014-10-01
A strain, designated as FM-6, was isolated from fish. Based on the results of phenotypic, physiological characteristics, genotypic and phylogenetic analysis, strain FM-6 was finally identified as Paenibacillus sp. When albendazole was provided as the sole carbon source, strain FM-6 could grow and transform albendazole. About 82.7 % albendazole (50 mg/L) was transformed by strain FM-6 after 5 days incubation at 30 °C, 160 rpm. With HPLC-MS method, the transforming product of albendazole was researched. Based on the molecular weight and the retention time, product was identified as albendazole sulfoxide and the transforming pathway of albendazole by strain FM-6 was proposed finally. The optimum temperature and pH for the bacterium growth and albendazole transformation by strain FM-6 were both 30 °C and 7.0. Moreover, the optimum concentration of albendazole for the bacterium growth was 50 mg/L. Coupled with practical production, 50 mg/L was the optimum concentration of albendazole transformation for strain FM-6. This study highlights an important potential use of strain FM-6 for producing albendazole sulfoxide.
A meta-heuristic method for solving scheduling problem: crow search algorithm
NASA Astrophysics Data System (ADS)
Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi
2018-04-01
Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.
Taguchi optimization of bismuth-telluride based thermoelectric cooler
NASA Astrophysics Data System (ADS)
Anant Kishore, Ravi; Kumar, Prashant; Sanghadasa, Mohan; Priya, Shashank
2017-07-01
In the last few decades, considerable effort has been made to enhance the figure-of-merit (ZT) of thermoelectric (TE) materials. However, the performance of commercial TE devices still remains low due to the fact that the module figure-of-merit not only depends on the material ZT, but also on the operating conditions and configuration of TE modules. This study takes into account comprehensive set of parameters to conduct the numerical performance analysis of the thermoelectric cooler (TEC) using a Taguchi optimization method. The Taguchi method is a statistical tool that predicts the optimal performance with a far less number of experimental runs than the conventional experimental techniques. Taguchi results are also compared with the optimized parameters obtained by a full factorial optimization method, which reveals that the Taguchi method provides optimum or near-optimum TEC configuration using only 25 experiments against 3125 experiments needed by the conventional optimization method. This study also shows that the environmental factors such as ambient temperature and cooling coefficient do not significantly affect the optimum geometry and optimum operating temperature of TECs. The optimum TEC configuration for simultaneous optimization of cooling capacity and coefficient of performance is also provided.
Local phase method for designing and optimizing metasurface devices.
Hsu, Liyi; Dupré, Matthieu; Ndao, Abdoulaye; Yellowhair, Julius; Kanté, Boubacar
2017-10-16
Metasurfaces have attracted significant attention due to their novel designs for flat optics. However, the approach usually used to engineer metasurface devices assumes that neighboring elements are identical, by extracting the phase information from simulations with periodic boundaries, or that near-field coupling between particles is negligible, by extracting the phase from single particle simulations. This is not the case most of the time and the approach thus prevents the optimization of devices that operate away from their optimum. Here, we propose a versatile numerical method to obtain the phase of each element within the metasurface (meta-atoms) while accounting for near-field coupling. Quantifying the phase error of each element of the metasurfaces with the proposed local phase method paves the way to the design of highly efficient metasurface devices including, but not limited to, deflectors, high numerical aperture metasurface concentrators, lenses, cloaks, and modulators.
A comprehensive method for preliminary design optimization of axial gas turbine stages
NASA Technical Reports Server (NTRS)
Jenkins, R. M.
1982-01-01
A method is presented that performs a rapid, reasonably accurate preliminary pitchline optimization of axial gas turbine annular flowpath geometry, as well as an initial estimate of blade profile shapes, given only a minimum of thermodynamic cycle requirements. No geometric parameters need be specified. The following preliminary design data are determined: (1) the optimum flowpath geometry, within mechanical stress limits; (2) initial estimates of cascade blade shapes; (3) predictions of expected turbine performance. The method uses an inverse calculation technique whereby blade profiles are generated by designing channels to yield a specified velocity distribution on the two walls. Velocity distributions are then used to calculate the cascade loss parameters. Calculated blade shapes are used primarily to determine whether the assumed velocity loadings are physically realistic. Model verification is accomplished by comparison of predicted turbine geometry and performance with four existing single stage turbines.
Bi-Level Integrated System Synthesis (BLISS)
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Agte, Jeremy S.; Sandusky, Robert R., Jr.
1998-01-01
BLISS is a method for optimization of engineering systems by decomposition. It separates the system level optimization, having a relatively small number of design variables, from the potentially numerous subsystem optimizations that may each have a large number of local design variables. The subsystem optimizations are autonomous and may be conducted concurrently. Subsystem and system optimizations alternate, linked by sensitivity data, producing a design improvement in each iteration. Starting from a best guess initial design, the method improves that design in iterative cycles, each cycle comprised of two steps. In step one, the system level variables are frozen and the improvement is achieved by separate, concurrent, and autonomous optimizations in the local variable subdomains. In step two, further improvement is sought in the space of the system level variables. Optimum sensitivity data link the second step to the first. The method prototype was implemented using MATLAB and iSIGHT programming software and tested on a simplified, conceptual level supersonic business jet design, and a detailed design of an electronic device. Satisfactory convergence and favorable agreement with the benchmark results were observed. Modularity of the method is intended to fit the human organization and map well on the computing technology of concurrent processing.
NASA Technical Reports Server (NTRS)
Frenklach, Michael; Wang, Hai; Rabinowitz, Martin J.
1992-01-01
A method of systematic optimization, solution mapping, as applied to a large-scale dynamic model is presented. The basis of the technique is parameterization of model responses in terms of model parameters by simple algebraic expressions. These expressions are obtained by computer experiments arranged in a factorial design. The developed parameterized responses are then used in a joint multiparameter multidata-set optimization. A brief review of the mathematical background of the technique is given. The concept of active parameters is discussed. The technique is applied to determine an optimum set of parameters for a methane combustion mechanism. Five independent responses - comprising ignition delay times, pre-ignition methyl radical concentration profiles, and laminar premixed flame velocities - were optimized with respect to thirteen reaction rate parameters. The numerical predictions of the optimized model are compared to those computed with several recent literature mechanisms. The utility of the solution mapping technique in situations where the optimum is not unique is also demonstrated.
NASA Technical Reports Server (NTRS)
Thomas, J. M.; Hawk, J. D.
1975-01-01
A generalized concept for cost-effective structural design is introduced. It is assumed that decisions affecting the cost effectiveness of aerospace structures fall into three basic categories: design, verification, and operation. Within these basic categories, certain decisions concerning items such as design configuration, safety factors, testing methods, and operational constraints are to be made. All or some of the variables affecting these decisions may be treated probabilistically. Bayesian statistical decision theory is used as the tool for determining the cost optimum decisions. A special case of the general problem is derived herein, and some very useful parametric curves are developed and applied to several sample structures.
Synthetic aperture radar range - Azimuth ambiguity design and constraints
NASA Technical Reports Server (NTRS)
Mehlis, J. G.
1980-01-01
Problems concerning the design of a system for mapping a planetary surface with a synthetic aperture radar (SAR) are considered. Given an ambiguity level, resolution, and swath width, the problems are related to the determination of optimum antenna apertures and the most suitable pulse repetition frequency (PRF). From the set of normalized azimuth ambiguity ratio curves, the designer can arrive at the azimuth antenna length, and from the sets of normalized range ambiguity ratio curves, he can arrive at the range aperture length or pulse repetition frequency. A procedure based on this design method is shown in an example. The normalized curves provide results for a SAR using a uniformly or cosine weighted rectangular antenna aperture.
Turan, Nurdan Gamze; Ozgonenel, Okan
2013-01-01
An intensive study has been made of the removal efficiency of Cu(II) from industrial leachate by biosorption of montmorillonite. A 24 factorial design and cascade forward neural network (CFNN) were used to display the significant levels of the analyzed factors on the removal efficiency. The obtained model based on 24 factorial design was statistically tested using the well-known methods. The statistical analysis proves that the main effects of analyzed parameters were significant by an obtained linear model within a 95% confidence interval. The proposed CFNN model requires less experimental data and minimum calculations. Moreover, it is found to be cost-effective due to inherent advantages of its network structure. Optimization of the levels of the analyzed factors was achieved by minimizing adsorbent dosage and contact time, which were costly, and maximizing Cu(II) removal efficiency. The suggested optimum conditions are initial pH at 6, adsorbent dosage at 10 mg/L, and contact time at 10 min using raw montmorillonite with the Cu(II) removal of 80.7%. At the optimum values, removal efficiency was increased to 88.91% if the modified montmorillonite was used. PMID:24453833
NASA Technical Reports Server (NTRS)
Edwards, Lawrence G.
1994-01-01
Subcritical cryogens such as liquid hydrogen (LH2) and liquid oxygen (LO2) are required for space based transportation propellant, reactant, and life support systems. Future long-duration space missions will require on-orbit systems capable of long-term cryogen storage and efficient fluid transfer capabilities. COLD-SAT, which stands for cryogenic orbiting liquid depot-storage acquisition and transfer, is a free-flying liquid hydrogen management flight experiment. Experiments to determine optimum methods of fluid storage and transfer will be performed on the COLD-SAT mission. The success of the mission is directly related to the type and accuracy of measurements made. The instrumentation and measurement techniques used are therefore critical to the success of the mission. This paper presents the results of the COLD-SAT experiment subsystem instrumentation and wire harness design effort. Candidate transducers capable of fulfilling the COLD-SAT experiment measurement requirements are identified. Signal conditioning techniques, data acquisition requirements, and measurement uncertainty analysis are presented. Electrical harnessing materials and wiring techniques for the instrumentation designed to minimize heat conduction to the cryogenic tanks and provide optimum measurement accuracy are listed.
He, Zhi-feng; Zeng, Sa; Hou, Juan-juan; Liu, De-yu
2006-07-01
To optimize the preparation of ampelopsin from Ampelopsis Cantoniensis Planch. The extraction and purification process was studied by the uniform design with the extract of ampelopsin content and purity as markers. The facters which influence the extraction and the purification of ampelopsin content were studied by uniform design. The optimum extraction and purification process: the concentration for alcohol was 90%, and refluxing quartic, 1.5 h each time; extraction by petroleum ether quintic, the mount of active carbon was 1 g/100 g of the medicine material, and recrystaling thrice. This extraction process has higher yield of ampelopsin and is available for production.
Zeng, Guang-Ming; Zhang, Shuo-Fu; Qin, Xiao-Sheng; Huang, Guo-He; Li, Jian-Bing
2003-05-01
The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple optimum designing model of sedimentation tank. The feasibility and advantages of this model based on numerical calculation are verified through the application of practical case.
Optimum step design for centering of pistons moving in an incompressible fluid
NASA Technical Reports Server (NTRS)
Etsion, I.; Hamrock, B. J.
1976-01-01
Hydrodynamic effects are analyzed for a stepped piston moving within a tight clearance tube filled with an incompressible fluid. Hydrostatic effects are analyzed and a complete solution is obtained and an optimum step design for centering of the piston is suggested. The axial speed resulting from an axial driving force is calculated, and some experimental results for pistons falling in a water-filled tube are presented.
Torque Characteristics Analysis of Hybrid Stepping Motor Using 3-D Finite Element Method
NASA Astrophysics Data System (ADS)
Kawase, Yoshihiro; Yamaguchi, Tadashi; Masuda, Tatsuya; Domeki, Hideo; Kobori, Masaru
Hybrid stepping motors are widely used for various electric instruments because of high torque, high accuracy and small step angle. It is necessary for the optimum design of hybrid stepping motors to analyze torque characteristics accurately. In this paper, a hybrid stepping motor is analyzed using the 3-D finite element method taking into account the rotation of the armature. The effects of the interlaminar gap in the core on the torque characteristics are clarified using the gap elements. The validity of our method is clarified by comparison between the calculated results and measured ones.
Health care evaluation, utilitarianism and distortionary taxes.
Calcott, P
2000-09-01
Cost Utility Analysis (CUA) and Cost Benefit Analysis (CBA) are methods to evaluate allocations of health care resources. Problems are raised for both methods when income taxes do not meet the first best optimum. This paper explores the implications of three ways that taxes may fall short of this ideal. First, taxes may be distortionary. Second, they may be designed and administered without reference to information that is used by providers of health care. Finally, the share of tax revenue that is devoted to health care may be suboptimal. The two methods are amended to account for these factors.
Minimum trim drag design for interfering lifting surfaces using vortex-lattice methodology
NASA Technical Reports Server (NTRS)
Lamar, J. E.
1976-01-01
A new method has been developed by which the mean camber surface can be determined for trimmed noncoplanar planforms with minimum vortex drag under subsonic conditions. The method uses a vortex lattice and overcomes previous difficulties with chord loading specification; it uses a Trefftz plane analysis to determine the optimum span loading for minimum drag, then solves for the mean camber surface of the wing which will provide the required loading. Pitching-moment or root-bending-moment constraints can be employed as well at the design lift coefficient. Sensitivity studies of vortex-lattice arrangement have been made with this method and are presented. Comparisons with other theories show generally good agreement. The versatility of the method is demonstrated by applying it to (1) isolated wings, (2) wing-canard configurations, (3) a tandem wing, and (4) a wing-winglet configuration.
Novel wavelet threshold denoising method in axle press-fit zone ultrasonic detection
NASA Astrophysics Data System (ADS)
Peng, Chaoyong; Gao, Xiaorong; Peng, Jianping; Wang, Ai
2017-02-01
Axles are important part of railway locomotives and vehicles. Periodic ultrasonic inspection of axles can effectively detect and monitor axle fatigue cracks. However, in the axle press-fit zone, the complex interface contact condition reduces the signal-noise ratio (SNR). Therefore, the probability of false positives and false negatives increases. In this work, a novel wavelet threshold function is created to remove noise and suppress press-fit interface echoes in axle ultrasonic defect detection. The novel wavelet threshold function with two variables is designed to ensure the precision of optimum searching process. Based on the positive correlation between the correlation coefficient and SNR and with the experiment phenomenon that the defect and the press-fit interface echo have different axle-circumferential correlation characteristics, a discrete optimum searching process for two undetermined variables in novel wavelet threshold function is conducted. The performance of the proposed method is assessed by comparing it with traditional threshold methods using real data. The statistic results of the amplitude and the peak SNR of defect echoes show that the proposed wavelet threshold denoising method not only maintains the amplitude of defect echoes but also has a higher peak SNR.
Dai, Sheng-Yun; Xu, Bing; Shi, Xin-Yuan; Xu, Xiang; Sun, Ying-Qiang; Qiao, Yan-Jiang
2017-03-01
This study is aimed to propose a continual improvement strategy based on quality by design (QbD). An ultra high performance liquid chromatography (UPLC) method was developed to accomplish the method transformation from HPLC to UPLC of Panax notogineng saponins (PNS) and achieve the continual improvement of PNS based on QbD, for example. Plackett-Burman screening design and Box-Behnken optimization design were employed to further understand the relationship between the critical method parameters (CMPs) and critical method attributes (CMAs). And then the Bayesian design space was built. The separation degree of the critical peaks (ginsenoside Rg₁ and ginsenoside Re) was over 2.0 and the analysis time was less than 17 min by a method chosen from the design space with 20% of the initial concentration of the acetonitrile, 10 min of the isocratic time and 6%•min⁻¹ of the gradient slope. At last, the optimum method was validated by accuracy profile. Based on the same analytical target profile (ATP), the comparison of HPLC and UPLC including chromatograph method, CMA identification, CMP-CMA model and system suitability test (SST) indicated that the UPLC method could shorten the analysis time, improve the critical separation and satisfy the requirement of the SST. In all, HPLC method could be replaced by UPLC for the quantity analysis of PNS. Copyright© by the Chinese Pharmaceutical Association.
A computer program for the design of optimum catalytic monoliths for CO2 lasers
NASA Technical Reports Server (NTRS)
Guinn, K.; Goldblum, S.; Noskowski, E.; Herz, R.
1990-01-01
Pulsed CO2 lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers is hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalysts and design methods for implementation of catalysts inside lasers. The performance criteria and constraints involved in the design of catalyst configurations for use in a closed-cycle laser are discussed, and several design studies performed with a computerized design program that was written are presented. Trade-offs between catalyst activity and dimensions, flow channel dimensions, pressure drop, O2 conversion and other variables are discussed.
Optimum design of Geodesic dome’s jointing system
NASA Astrophysics Data System (ADS)
Tran, Huy. T.
2018-04-01
This study attempts to create a new design for joint connector of Geodesic dome. A new type of joint connector design is proposed for flexible rotating connection; comparing it to another, this design is cheaper and workable. After calculating the bearing capacity of the sample according to EC3 and Vietnam standard TCVN 5575-2012, FEM model of the design sample is carried out in many specific situation to consider the stress distribution, the deformation, the local destruction… in the connector. The analytical results and the FE data are consistent. The FE analysis also points out the behavior of some details that simple calculation cannot show. Hence, we can choose the optimum design of joint connector.
NASA Astrophysics Data System (ADS)
Ganguli, R.
2002-11-01
An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry.
Hu, Jie-Bi; Chen, Ting-Ru; Chen, Yu-Chie; Urban, Pawel L
2015-01-30
In order to ascertain optimum conditions for biocatalytic processes carried out in vitro, we have designed a bio-opto-electronic system which ensures real-time compensation for depletion of adenosine triphosphate (ATP) in reactions involving transfer of phosphate groups. The system covers ATP concentration range of 2-48 μM. The report demonstrates feasibility of the device operation using apyrase as the ATP-depleting enzyme.
NASA Technical Reports Server (NTRS)
Kincaid, D. R.; Young, D. M.
1984-01-01
Adapting and designing mathematical software to achieve optimum performance on the CYBER 205 is discussed. Comments and observations are made in light of recent work done on modifying the ITPACK software package and on writing new software for vector supercomputers. The goal was to develop very efficient vector algorithms and software for solving large sparse linear systems using iterative methods.
NASA Astrophysics Data System (ADS)
Santos Felix, Antonio C.; Novaes, Cleber G.; Pires Rocha, Maísla; Barreto, George E.; do Nascimento, Baraquizio B.; Giraldez Alvarez, Lisandro D.
2017-12-01
In this study, we have determined, using RSM (mixture design and Doehlert matrix), the optimum values of the independent variables to achieve the maximum response for the extraction of total phenolic compounds from Spondias mombin L bagasse agroindustrial residues, preserving its antioxidant activity. The assessment with reference to the extraction of phenolic compounds, as well as their capacity to scavenge ABTS and the antioxidant capacity, determined by the modified DPPH method were investigated based on distinct combinations of time, temperature, velocity of rotation and solvents concentration. It was investigated that the optimum condition for the highest antioxidant yield was obtained using water (60.84%), acetone (30.31%) and ethanol (8.85%) at 30 ºC during 20 min at 50 rpm. We have found that the maximum yield of total phenolics was 355.63 ± 9.77 (mg GAE/100 g), showing an EC50 of 3962.24 ± 41.20 (g fruit/g of DPPH) and 8.36 ± 0.30 (µM trolox/g fruit), which were measured using DPPH and ABTS assays. These results suggest that RSM was successfully applied for optimizing the extraction of phenolics compounds preserving its antioxidant activity. This method does not require expensive reagents or high quantities of organic solvents.
Design of two-dimensional zero reference codes with cross-entropy method.
Chen, Jung-Chieh; Wen, Chao-Kai
2010-06-20
We present a cross-entropy (CE)-based method for the design of optimum two-dimensional (2D) zero reference codes (ZRCs) in order to generate a zero reference signal for a grating measurement system and achieve absolute position, a coordinate origin, or a machine home position. In the absence of diffraction effects, the 2D ZRC design problem is known as the autocorrelation approximation. Based on the properties of the autocorrelation function, the design of the 2D ZRC is first formulated as a particular combination optimization problem. The CE method is then applied to search for an optimal 2D ZRC and thus obtain the desirable zero reference signal. Computer simulation results indicate that there are 15.38% and 14.29% reductions in the second maxima value for the 16x16 grating system with n(1)=64 and the 100x100 grating system with n(1)=300, respectively, where n(1) is the number of transparent pixels, compared with those of the conventional genetic algorithm.
Optimum Design of High-Speed Prop-Rotors
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; McCarthy, Thomas Robert
1993-01-01
An integrated multidisciplinary optimization procedure is developed for application to rotary wing aircraft design. The necessary disciplines such as dynamics, aerodynamics, aeroelasticity, and structures are coupled within a closed-loop optimization process. The procedure developed is applied to address two different problems. The first problem considers the optimization of a helicopter rotor blade and the second problem addresses the optimum design of a high-speed tilting proprotor. In the helicopter blade problem, the objective is to reduce the critical vibratory shear forces and moments at the blade root, without degrading rotor aerodynamic performance and aeroelastic stability. In the case of the high-speed proprotor, the goal is to maximize the propulsive efficiency in high-speed cruise without deteriorating the aeroelastic stability in cruise and the aerodynamic performance in hover. The problems studied involve multiple design objectives; therefore, the optimization problems are formulated using multiobjective design procedures. A comprehensive helicopter analysis code is used for the rotary wing aerodynamic, dynamic and aeroelastic stability analyses and an algorithm developed specifically for these purposes is used for the structural analysis. A nonlinear programming technique coupled with an approximate analysis procedure is used to perform the optimization. The optimum blade designs obtained in each case are compared to corresponding reference designs.
Influence of operating conditions on the optimum design of electric vehicle battery cooling plates
NASA Astrophysics Data System (ADS)
Jarrett, Anthony; Kim, Il Yong
2014-01-01
The efficiency of cooling plates for electric vehicle batteries can be improved by optimizing the geometry of internal fluid channels. In practical operation, a cooling plate is exposed to a range of operating conditions dictated by the battery, environment, and driving behaviour. To formulate an efficient cooling plate design process, the optimum design sensitivity with respect to each boundary condition is desired. This determines which operating conditions must be represented in the design process, and therefore the complexity of designing for multiple operating conditions. The objective of this study is to determine the influence of different operating conditions on the optimum cooling plate design. Three important performance measures were considered: temperature uniformity, mean temperature, and pressure drop. It was found that of these three, temperature uniformity was most sensitive to the operating conditions, especially with respect to the distribution of the input heat flux, and also to the coolant flow rate. An additional focus of the study was the distribution of heat generated by the battery cell: while it is easier to assume that heat is generated uniformly, by using an accurate distribution for design optimization, this study found that cooling plate performance could be significantly improved.
Zhao, Xi; Wu, Xiaoli; Zhou, Hui; Jiang, Tao; Chen, Chun; Liu, Mingshi; Jin, Yuanbao; Yang, Dongsheng
2014-11-01
To optimize the preparation factors for argan oil microcapsule using complex coacervation of chitosan cross-linked with gelatin based on hybrid-level orthogonal array design via SPSS modeling. Eight relatively significant factors were firstly investigated and selected as calculative factors for the orthogonal array design from the total of ten factors effecting the preparation of argan oil microcapsule by utilizing the single factor variable method. The modeling of hybrid-level orthogonal array design was built in these eight factors with the relevant levels (9, 9, 9, 9, 7, 6, 2 and 2 respectively). The preparation factors for argan oil microcapsule were investigated and optimized according to the results of hybrid-level orthogonal array design. The priorities order and relevant optimum levels of preparation factors standard to base on the percentage of microcapsule with the diameter of 30~40 μm via SPSS. Experimental data showed that the optimum factors were controlling the chitosan/gelatin ratio, the systemic concentration and the core/shell ratio at 1:2, 1.5% and 1:7 respectively, presetting complex coacervation pH at 6.4, setting cross-linking time and complex coacervation at 75 min and 30 min, using the glucose-delta lactone as the type of cross-linking agent, and selecting chitosan with the molecular weight of 2000~3000.
Yager’s ranking method for solving the trapezoidal fuzzy number linear programming
NASA Astrophysics Data System (ADS)
Karyati; Wutsqa, D. U.; Insani, N.
2018-03-01
In the previous research, the authors have studied the fuzzy simplex method for trapezoidal fuzzy number linear programming based on the Maleki’s ranking function. We have found some theories related to the term conditions for the optimum solution of fuzzy simplex method, the fuzzy Big-M method, the fuzzy two-phase method, and the sensitivity analysis. In this research, we study about the fuzzy simplex method based on the other ranking function. It is called Yager's ranking function. In this case, we investigate the optimum term conditions. Based on the result of research, it is found that Yager’s ranking function is not like Maleki’s ranking function. Using the Yager’s function, the simplex method cannot work as well as when using the Maleki’s function. By using the Yager’s function, the value of the subtraction of two equal fuzzy numbers is not equal to zero. This condition makes the optimum table of the fuzzy simplex table is undetected. As a result, the simplified fuzzy simplex table becomes stopped and does not reach the optimum solution.
Automated installation methods for photovoltaic arrays
NASA Astrophysics Data System (ADS)
Briggs, R.; Daniels, A.; Greenaway, R.; Oster, J., Jr.; Racki, D.; Stoeltzing, R.
1982-11-01
Since installation expenses constitute a substantial portion of the cost of a large photovoltaic power system, methods for reduction of these costs were investigated. The installation of the photovoltaic arrays includes all areas, starting with site preparation (i.e., trenching, wiring, drainage, foundation installation, lightning protection, grounding and installation of the panel) and concluding with the termination of the bus at the power conditioner building. To identify the optimum combination of standard installation procedures and automated/mechanized techniques, the installation process was investigated including the equipment and hardware available, the photovoltaic array structure systems and interfaces, and the array field and site characteristics. Preliminary designs of hardware for both the standard installation method, the automated/mechanized method, and a mix of standard installation procedures and mechanized procedures were identified to determine which process effectively reduced installation costs. In addition, costs associated with each type of installation method and with the design, development and fabrication of new installation hardware were generated.
CORSSTOL: Cylinder Optimization of Rings, Skin, and Stringers with Tolerance sensitivity
NASA Technical Reports Server (NTRS)
Finckenor, J.; Bevill, M.
1995-01-01
Cylinder Optimization of Rings, Skin, and Stringers with Tolerance (CORSSTOL) sensitivity is a design optimization program incorporating a method to examine the effects of user-provided manufacturing tolerances on weight and failure. CORSSTOL gives designers a tool to determine tolerances based on need. This is a decisive way to choose the best design among several manufacturing methods with differing capabilities and costs. CORSSTOL initially optimizes a stringer-stiffened cylinder for weight without tolerances. The skin and stringer geometry are varied, subject to stress and buckling constraints. Then the same analysis and optimization routines are used to minimize the maximum material condition weight subject to the least favorable combination of tolerances. The adjusted optimum dimensions are provided with the weight and constraint sensitivities of each design variable. The designer can immediately identify critical tolerances. The safety of parts made out of tolerance can also be determined. During design and development of weight-critical systems, design/analysis tools that provide product-oriented results are of vital significance. The development of this program and methodology provides designers with an effective cost- and weight-saving design tool. The tolerance sensitivity method can be applied to any system defined by a set of deterministic equations.
Recent Patents and Designs on Hip Replacement Prostheses
Derar, H; Shahinpoor, M
2015-01-01
Hip replacement surgery has gone through tremendous evolution since the first procedure in 1840. In the past five decades the advances that have been made in technology, advanced and smart materials innovations, surgical techniques, robotic surgery and methods of fixations and sterilization, facilitated hip implants that undergo multiple design revolutions seeking the least problematic implants and a longer survivorship. Hip surgery has become a solution for many in need of hip joint remedy and replacement across the globe. Nevertheless, there are still long-term problems that are essential to search and resolve to find the optimum implant. This paper reviews several recent patents on hip replacement surgery. The patents present various designs of prostheses, different materials as well as methods of fixation. Each of the patents presents a new design as a solution to different issues ranging from the longevity of the hip prostheses to discomfort and inconvenience experienced by patients in the long-term. PMID:25893020
NASA Technical Reports Server (NTRS)
Conlon, J. A.; Bowles, J. V.
1978-01-01
With an overall goal of defining the needs and requirements for short-haul transport aircraft research and development, the objective of this paper is to determine the performance and noise impact of short-haul transport aircraft designed with an advanced turboprop propulsion system. This propulsion system features high-speed propellers that have more blades and reduced diameters. Aircraft are designed for short and medium field lengths; mission block fuel and direct operating costs (DOC) are used as performance measures. The propeller diameter was optimized to minimize DOC. Two methods are employed to estimate the weight of the acoustic treatment needed to reduce interior noise to an acceptable level. Results show decreasing gross weight, block fuel, DOC, engine size, and optimum propfan diameter with increasing field length. The choice of acoustic treatment method has a significant effect on the aircraft design.
Omar, J; Boix, A; Kerckhove, G; von Holst, C
2016-12-01
Titanium dioxide (TiO 2 ) has various applications in consumer products and is also used as an additive in food and feeding stuffs. For the characterisation of this product, including the determination of nanoparticles, there is a strong need for the availability of corresponding methods of analysis. This paper presents an optimisation process for the characterisation of polydisperse-coated TiO 2 nanoparticles. As a first step, probe ultrasonication was optimised using a central composite design in which the amplitude and time were the selected variables to disperse, i.e., to break up agglomerates and/or aggregates of the material. The results showed that high amplitudes (60%) favoured a better dispersion and time was fixed in mid-values (5 min). In a next step, key factors of asymmetric flow field-flow fraction (AF4), namely cross-flow (CF), detector flow (DF), exponential decay of the cross-flow (CF exp ) and focus time (Ft), were studied through experimental design. Firstly, a full-factorial design was employed to establish the statistically significant factors (p < 0.05). Then, the information obtained from the full-factorial design was utilised by applying a central composite design to obtain the following optimum conditions of the system: CF, 1.6 ml min -1 ; DF, 0.4 ml min -1 ; Ft, 5 min; and CF exp , 0.6. Once the optimum conditions were obtained, the stability of the dispersed sample was measured for 24 h by analysing 10 replicates with AF4 in order to assess the performance of the optimised dispersion protocol. Finally, the recovery of the optimised method, particle shape and particle size distribution were estimated.
Omar, J.; Boix, A.; Kerckhove, G.; von Holst, C.
2016-01-01
ABSTRACT Titanium dioxide (TiO2) has various applications in consumer products and is also used as an additive in food and feeding stuffs. For the characterisation of this product, including the determination of nanoparticles, there is a strong need for the availability of corresponding methods of analysis. This paper presents an optimisation process for the characterisation of polydisperse-coated TiO2 nanoparticles. As a first step, probe ultrasonication was optimised using a central composite design in which the amplitude and time were the selected variables to disperse, i.e., to break up agglomerates and/or aggregates of the material. The results showed that high amplitudes (60%) favoured a better dispersion and time was fixed in mid-values (5 min). In a next step, key factors of asymmetric flow field-flow fraction (AF4), namely cross-flow (CF), detector flow (DF), exponential decay of the cross-flow (CFexp) and focus time (Ft), were studied through experimental design. Firstly, a full-factorial design was employed to establish the statistically significant factors (p < 0.05). Then, the information obtained from the full-factorial design was utilised by applying a central composite design to obtain the following optimum conditions of the system: CF, 1.6 ml min–1; DF, 0.4 ml min–1; Ft, 5 min; and CFexp, 0.6. Once the optimum conditions were obtained, the stability of the dispersed sample was measured for 24 h by analysing 10 replicates with AF4 in order to assess the performance of the optimised dispersion protocol. Finally, the recovery of the optimised method, particle shape and particle size distribution were estimated. PMID:27650879
Analytical study of electrical disconnect system for use on manned and unmanned missions
NASA Technical Reports Server (NTRS)
Rosener, A. A.; Lenda, J. A.; Trummer, R. O.; Jonkoniec, T. G.
1977-01-01
The program to survey existing electrical connector availability, and establish an optimum connector design for maintainable spacecraft substation interfaces is reported. Functional and operational requirements are given along with the results of the documentation survey, which disclosed that the MSFC series connectors have the preferred features of current connector technology. Optimum design concepts for EVA tasks, modules serviced by manipulators, and for manipulators independent of other servicing units are presented. It is concluded that separate connector designs are required for spacecraft replaceable modules, and for crewman EVA.
NASA Astrophysics Data System (ADS)
Zhang, Ziyang; Sun, Di; Han, Tongshuai; Guo, Chao; Liu, Jin
2016-10-01
In the non-invasive blood components measurement using near infrared spectroscopy, the useful signals caused by the concentration variation in the interested components, such as glucose, hemoglobin, albumin etc., are relative weak. Then the signals may be greatly disturbed by a lot of noises in various ways. We improved the signals by using the optimum path-length for the used wavelength to get a maximum variation of transmitted light intensity when the concentration of a component varies. And after the path-length optimization for every wavelength in 1000-2500 nm, we present the detection limits for the components, including glucose, hemoglobin and albumin, when measuring them in a tissue phantom. The evaluated detection limits could be the best reachable precision level since it assumed the measurement uses a high signal-to-noise ratio (SNR) signal and the optimum path-length. From the results, available wavelengths in 1000-2500 nm for the three component measurements can be screened by comparing their detection limit values with their measurement limit requirements. For other blood components measurement, the evaluation their detection limits could also be designed using the method proposed in this paper. Moreover, we use an equation to estimate the absorbance at the optimum path-length for every wavelength in 1000-2500 nm caused by the three components. It could be an easy way to realize the evaluation because adjusting the sample cell's size to the precise path-length value for every wavelength is not necessary. This equation could also be referred to other blood components measurement using the optimum path-length for every used wavelength.
OPDOT: A computer program for the optimum preliminary design of a transport airplane
NASA Technical Reports Server (NTRS)
Sliwa, S. M.; Arbuckle, P. D.
1980-01-01
A description of a computer program, OPDOT, for the optimal preliminary design of transport aircraft is given. OPDOT utilizes constrained parameter optimization to minimize a performance index (e.g., direct operating cost per block hour) while satisfying operating constraints. The approach in OPDOT uses geometric descriptors as independent design variables. The independent design variables are systematically iterated to find the optimum design. The technical development of the program is provided and a program listing with sample input and output are utilized to illustrate its use in preliminary design. It is not meant to be a user's guide, but rather a description of a useful design tool developed for studying the application of new technologies to transport airplanes.
Global thermal analysis of air-air cooled motor based on thermal network
NASA Astrophysics Data System (ADS)
Hu, Tian; Leng, Xue; Shen, Li; Liu, Haidong
2018-02-01
The air-air cooled motors with high efficiency, large starting torque, strong overload capacity, low noise, small vibration and other characteristics, are widely used in different department of national industry, but its cooling structure is complex, it requires the motor thermal management technology should be high. The thermal network method is a common method to calculate the temperature field of the motor, it has the advantages of small computation time and short time consuming, it can save a lot of time in the initial design phase of the motor. The domain analysis of air-air cooled motor and its cooler was based on thermal network method, the combined thermal network model was based, the main components of motor internal and external cooler temperature were calculated and analyzed, and the temperature rise test results were compared to verify the correctness of the combined thermal network model, the calculation method can satisfy the need of engineering design, and provide a reference for the initial and optimum design of the motor.
Khan, Mohammad Jakir Hossain; Hussain, Mohd Azlan; Mujtaba, Iqbal Mohammed
2014-01-01
Propylene is one type of plastic that is widely used in our everyday life. This study focuses on the identification and justification of the optimum process parameters for polypropylene production in a novel pilot plant based fluidized bed reactor. This first-of-its-kind statistical modeling with experimental validation for the process parameters of polypropylene production was conducted by applying ANNOVA (Analysis of variance) method to Response Surface Methodology (RSM). Three important process variables i.e., reaction temperature, system pressure and hydrogen percentage were considered as the important input factors for the polypropylene production in the analysis performed. In order to examine the effect of process parameters and their interactions, the ANOVA method was utilized among a range of other statistical diagnostic tools such as the correlation between actual and predicted values, the residuals and predicted response, outlier t plot, 3D response surface and contour analysis plots. The statistical analysis showed that the proposed quadratic model had a good fit with the experimental results. At optimum conditions with temperature of 75°C, system pressure of 25 bar and hydrogen percentage of 2%, the highest polypropylene production obtained is 5.82% per pass. Hence it is concluded that the developed experimental design and proposed model can be successfully employed with over a 95% confidence level for optimum polypropylene production in a fluidized bed catalytic reactor (FBCR). PMID:28788576
A method to optimize PEG-coating of red blood cells.
Hashemi-Najafabadi, Sameereh; Vasheghani-Farahani, Ebrahim; Shojaosadati, Seyed Abbas; Rasaee, Mohammad Javad; Armstrong, Jonathan K; Moin, Mostafa; Pourpak, Zahra
2006-01-01
Alloimmunization to donor blood group antigens remains a significant problem in transfusion medicine. A proposed method to overcome donor-recipient blood group incompatibility is to mask the blood group antigens by the covalent attachment of poly(ethylene glycol) (PEG) to the red blood cell (RBC) membrane. Despite much work in the development of PEG-coating of RBCs, there is a paucity of data on the optimization of the PEG-coating technique; it is the aim of this study to determine the optimum conditions for PEG coating using a cyanuric chloride reactive derivative of methoxy-PEG as a model polymer. Activated PEG of molecular mass 5 kDa was covalently attached to human RBCs under various reaction conditions. Inhibition of binding of a blood-type specific antiserum (anti-D) was employed to evaluate the effect of the PEG-coating, quantified by hemocytometry and flow-cytometry. RBC morphology was examined by light and scanning electron microscopy. Statistical analysis of experimental design together with microscopy results showed that the optimum PEGylation conditions are pH = 8.7, temperature = 14 degrees C, and reaction time = 30 min. An optimum concentration of reactive PEG could not be determined. At high polymer concentrations (>25 mg/mL) a predominance of type III echinocytes was observed, and as a result, a concentration of 15 mg/mL is the highest recommended concentration for a linear PEG of molecular mass 5 kDa.
Improved heliostat field design for solar tower plants
NASA Astrophysics Data System (ADS)
Collado, Francisco J.; Guallar, Jesús
2017-06-01
In solar power tower (SPT) systems, selecting the optimum location of thousands of heliostats and the most profitable tower height and receiver size remains a challenge. Campo code is prepared for the detailed design of such plants in particular, the optimum layout, provided that the plant size is known. Therefore, less exhaustive codes, as DELSOL3, are also needed to perform preliminary parametric analysis that narrows the most economic size of the plant.
NASA Technical Reports Server (NTRS)
Hajela, P.; Chen, J. L.
1986-01-01
The present paper describes an approach for the optimum sizing of single and joined wing structures that is based on representing the built-up finite element model of the structure by an equivalent beam model. The low order beam model is computationally more efficient in an environment that requires repetitive analysis of several trial designs. The design procedure is implemented in a computer program that requires geometry and loading data typically available from an aerodynamic synthesis program, to create the finite element model of the lifting surface and an equivalent beam model. A fully stressed design procedure is used to obtain rapid estimates of the optimum structural weight for the beam model for a given geometry, and a qualitative description of the material distribution over the wing structure. The synthesis procedure is demonstrated for representative single wing and joined wing structures.
Optimal Design of Functionally Graded Metallic Foam Insulations
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Sankar, Bhavani; Venkataraman, Satchi; Zhu, Huadong
2002-01-01
The focus of our work has been on developing an insight into the physics that govern the optimum design of thermal insulation for use in thermal protection systems of launch vehicle. Of particular interest was to obtain optimality criteria for designing foam insulations that have density (or porosity) distributions through the thickness for optimum thermal performance. We investigate the optimum design of functionally graded thermal insulation for steady state heat transfer through the foam. We showed that the heat transfer in the foam has competing modes, of radiation and conduction. The problem assumed a fixed inside temperature of 400 K and varied the aerodynamic surface heating on the outside surface from 0.2 to 1.0 MW/sq m. The thermal insulation develops a high temperature gradient through the thickness. Investigation of the model developed for heat conduction in foams showed that at high temperatures (as on outside wall) intracellular radiation dominates the heat transfer in the foam. Minimizing radiation requires reducing the pore size, which increases the density of the foam. At low temperatures (as on the inside wall), intracellular conduction (of the metal and air) dominates the heat transfer. Minimizing conduction requires increasing the pore size. This indicated that for every temperature there was an optimum value of density that minimized the heat transfer coefficient. Two optimization studies were performed. One was to minimize the heat transmitted though a fixed thickness insulation by varying density profiles. The second was to obtain the minimum mass insulation for specified thickness. Analytical optimality criteria were derived for the cases considered. The optimality condition for minimum heat transfer required that at each temperature we find the density that minimizes the heat transfer coefficient. Once a relationship between the optimum heat transfer coefficient and the temperature was found, the design problem reduced to the solution of a simple nonlinear differential equation. Preliminary results of this work were presented at the American Society of Composites meeting, and the final version was submitted for publication in the AIAA Journal. In addition to minimizing the transmitted heat, we investigated the optimum design for minimum weight given an acceptable level of heat transmission through the insulation. The optimality criterion developed was different from that obtained for minimizing beat transfer coefficient. For minimum mass design, we had to find for a given temperature the optimum density, which minimized the logarithmic derivative of the insulation thermal conductivity with respect to its density. The logarithmic derivative is defined as the ratio of relative change in the dependent response (thermal conductivity) to the relative change in the independent variable (density). The results have been documented as a conference paper that will be presented at the upcoming AIAA.
PLASMA-field barrier sentry (PFBS)
NASA Astrophysics Data System (ADS)
Gonzaga, Ernesto A.; Cossette, Harold James
2013-06-01
This paper describes the concept and method in designing and developing a unique security system apparatus that will counter unauthorized personnel: to deny access to or occupy an area or facility, to control or direct crowd or large groups, and to incapacitate individuals or small groups until they can be secured by military or law enforcement personnel. The system exploits Tesla coil technology. Application of basic engineering circuit analysis and principle is demonstrated. Transformation from classical spark gap method to modern solid state design was presented. The analysis shows how the optimum design can be implemented to maximize performance of the apparatus. Discussion of the hazardous effects of electrical elements to human physiological conditions was covered. This serves to define guidelines in implementing safety limits and precautions on the performance of the system. The project is strictly adhering towards non-lethal technologies and systems.
[The studies on the Ku Huang granula technology].
Qian, Kun; Kuang, Qi; Dong, Wei; Shen, Jun
2008-02-01
To determine the optimum technology of the Ku Huang granula. Making Emodin and Chrysophanol for index, using HPLC, extracturm softening point data and orthogonal design experiment to research the preparatory technology of the Ku Huang granula to screen the optimum technology. The Ku Huang granula was pelletized at 100% dextrin, 170 degrees C- 175 degrees C spray drying and at the conditions of 75% ethylalcohol, 85 degrees C, 4 Hz, 3 hours fluidizing pelletization. The optimum condition is reasonable.
Patil, Ajit A; Sachin, Bhusari S; Wakte, Pravin S; Shinde, Devanand B
2014-11-01
The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method.
Patil, Ajit A.; Sachin, Bhusari S.; Wakte, Pravin S.; Shinde, Devanand B.
2013-01-01
The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method. PMID:25687584
Roosta, Mostafa; Ghaedi, Mehrorang; Daneshfar, Ali; Sahraei, Reza
2015-01-15
In the present study, for the first time, a new extraction method based on "ultrasound assisted microextraction-nanomaterial solid phase dispersion (UAME-NMSPD)" was developed to preconcentrate the low quantity of thymol and carvacrol in pharmaceutical samples prior to their HPLC-UV separation/determination. The analytes were accumulated on nickel sulfide nanomaterial loaded on activated carbon (NiS-NP-AC) that with more detail identified by XRD, FESEM and UV-vis technique. Central composite design (CCD) combined with desirability function (DF) was used to search for optimum operational conditions. Working under optimum conditions specified as: 10 min ultrasonic time, pH 3, 0.011 g of adsorbent and 600 μL extraction solvent) permit achievement of high and reasonable linear range over 0.005-2.0 μg mL(-1) (r(2)>0.9993) with LOD of thymol and carvacrol as 0.23 and 0.21 μg L(-1), respectively. The relative standard deviations (RSDs) were less than 4.93% (n=3). Copyright © 2014 Elsevier B.V. All rights reserved.
Design of helicopter rotor blades for optimum dynamic characteristics
NASA Technical Reports Server (NTRS)
Peters, D. A.; Ko, T.; Korn, A. E.; Rossow, M. P.
1982-01-01
The possibilities and the limitations of tailoring blade mass and stiffness distributions to give an optimum blade design in terms of weight, inertia, and dynamic characteristics are investigated. Changes in mass or stiffness distribution used to place rotor frequencies at desired locations are determined. Theoretical limits to the amount of frequency shift are established. Realistic constraints on blade properties based on weight, mass moment of inertia size, strength, and stability are formulated. The extent hub loads can be minimized by proper choice of EL distribution is determined. Configurations that are simple enough to yield clear, fundamental insights into the structural mechanisms but which are sufficiently complex to result in a realistic result for an optimum rotor blade are emphasized.
Investigation of earthquake factor for optimum tuned mass dampers
NASA Astrophysics Data System (ADS)
Nigdeli, Sinan Melih; Bekdaş, Gebrail
2012-09-01
In this study the optimum parameters of tuned mass dampers (TMD) are investigated under earthquake excitations. An optimization strategy was carried out by using the Harmony Search (HS) algorithm. HS is a metaheuristic method which is inspired from the nature of musical performances. In addition to the HS algorithm, the results of the optimization objective are compared with the results of the other documented method and the corresponding results are eliminated. In that case, the best optimum results are obtained. During the optimization, the optimum TMD parameters were searched for single degree of freedom (SDOF) structure models with different periods. The optimization was done for different earthquakes separately and the results were compared.
NASA Astrophysics Data System (ADS)
Masoumi, Massoud; Raissi, Farshid; Ahmadian, Mahmoud; Keshavarzi, Parviz
2006-01-01
We are proposing that the recently proposed semiconductor-nanowire-molecular architecture (CMOL) is an optimum platform to realize encryption algorithms. The basic modules for the advanced encryption standard algorithm (Rijndael) have been designed using CMOL architecture. The performance of this design has been evaluated with respect to chip area and speed. It is observed that CMOL provides considerable improvement over implementation with regular CMOS architecture even with a 20% defect rate. Pseudo-optimum gate placement and routing are provided for Rijndael building blocks and the possibility of designing high speed, attack tolerant and long key encryptions are discussed.
Implementation of Quality by Design for Formulation of Rebamipide Gastro-retentive Tablet.
Ha, Jung-Myung; Seo, Jeong-Woong; Kim, Su-Hyeon; Kim, Ju-Young; Park, Chun-Woong; Rhee, Yun-Seok; Park, Eun-Seok
2017-11-01
The purpose of the present study was to develop a rebamipide (RBM) gastro-retentive (GR) tablet by implementing quality by design (QbD). RBM GR tablets were prepared using a sublimation method. Quality target product profile (QTPP) and critical quality attributes (CQAs) of the RBM GR tablets were defined according to the preliminary studies. Factors affecting the CQAs were prioritized using failure mode and effects analysis (FMEA). Design space and optimum formulation were established through a mixture design. The validity of the design space was confirmed using runs within the area. The QTPP of the RBM GR tablets was the orally administered GR tablet containing 300 mg of RBM taken once daily. Based on the QTPP, dissolution rate, tablet friability, and floating property were chosen as CQAs. According to the risk assessment, the amount of sustained-release agent, sublimating material, and diluent showed high-risk priority number (RPN) values above 40. Based on the RPN, these factors were further investigated using mixture design methodology. Design space of formulations was depicted as an overlaid contour plot and the optimum formulation to satisfy the desired responses was obtained by determining the expected value of each response. The similarity factor (f2) of the release profile between predicted response and experimental response was 89.463, suggesting that two release profiles are similar. The validity of the design space was also confirmed. Consequently, we were able to develop the RBM GR tablets by implementing the QbD concept. These results provide useful information for development of tablet formulations using the QbD.
Considerations of design for life support systems.
Ashida, Akira
2003-01-01
During the design phase for construction of artificial ecosystems, the following considerations are important. (1) Influences on living things in the ecosystem, such as lifestyles and physiological functions caused by stresses due to environmental changes. The long stay in the artificial ecosystem has a possibility to lead to evolutional change in the living things. (2) The system operation method in trouble, which relates to maintainability. (3) The system metamorphosis according to new technologies. (4) Route minimization of material flow that leads to an optimum system layout. c2003 Published by Elsevier Science Ltd on behalf of COSPAR.
Mustafa, Ahmad; Karmali, Amin; Abdelmoez, Wael
2016-01-01
The present work involves a sensitive high-throughput microtiter plate based colorimetric assay for estimating lipase activity using cupric acetate pyridine reagent (CAPR). In the first approach, three factors two levels factorial design methodology was used to evaluate the interactive effect of different parameters on the sensitivity of the assay method. The optimization study revealed that the optimum CAPR concentration was 7.5% w/v, the optimum solvent was heptane and the optimum CAPR pH was 6. In the second approach, the optimized colorimetric microplate assay was used to measure lipase activity based on enzymatic hydrolysis of olive oil emulsion substrate at 37°C and 150 rpm. The emulsion substrates were formulated by using olive oil, triton X-100 (10% v/v in pH 8) and sodium phosphate buffer of pH 8 in ratio of 1:1:1 in the case of Candida sp. lipase. While in the case of immobilized lipozyme RMIM, The emulsion substrates were formulated by using olive oil, triton X-100 (1% v/v in pH 8) and sodium phosphate buffer of pH 8 in ratio of 2:1:1. Absorbance was measured at 655 nm. The stability of this assay (in terms of colored heptane phase absorbance readings) retained more than 92.5% after 24 h at 4°C compared to the absorbance readings measured at zero time. In comparison with other lipase assay methods, beside the developed sensitivity, the reproducibility and the lower limit of detection (LOD) of the proposed method, it permits analyzing of 96 samples at one time in a 96-well microplate. Furthermore, it consumes small quantities of chemicals and unit operations.
NASA Astrophysics Data System (ADS)
Takemiya, Tetsushi
In modern aerospace engineering, the physics-based computational design method is becoming more important, as it is more efficient than experiments and because it is more suitable in designing new types of aircraft (e.g., unmanned aerial vehicles or supersonic business jets) than the conventional design method, which heavily relies on historical data. To enhance the reliability of the physics-based computational design method, researchers have made tremendous efforts to improve the fidelity of models. However, high-fidelity models require longer computational time, so the advantage of efficiency is partially lost. This problem has been overcome with the development of variable fidelity optimization (VFO). In VFO, different fidelity models are simultaneously employed in order to improve the speed and the accuracy of convergence in an optimization process. Among the various types of VFO methods, one of the most promising methods is the approximation management framework (AMF). In the AMF, objective and constraint functions of a low-fidelity model are scaled at a design point so that the scaled functions, which are referred to as "surrogate functions," match those of a high-fidelity model. Since scaling functions and the low-fidelity model constitutes surrogate functions, evaluating the surrogate functions is faster than evaluating the high-fidelity model. Therefore, in the optimization process, in which gradient-based optimization is implemented and thus many function calls are required, the surrogate functions are used instead of the high-fidelity model to obtain a new design point. The best feature of the AMF is that it may converge to a local optimum of the high-fidelity model in much less computational time than the high-fidelity model. However, through literature surveys and implementations of the AMF, the author xx found that (1) the AMF is very vulnerable when the computational analysis models have numerical noise, which is very common in high-fidelity models, and that (2) the AMF terminates optimization erroneously when the optimization problems have constraints. The first problem is due to inaccuracy in computing derivatives in the AMF, and the second problem is due to erroneous treatment of the trust region ratio, which sets the size of the domain for an optimization in the AMF. In order to solve the first problem of the AMF, automatic differentiation (AD) technique, which reads the codes of analysis models and automatically generates new derivative codes based on some mathematical rules, is applied. If derivatives are computed with the generated derivative code, they are analytical, and the required computational time is independent of the number of design variables, which is very advantageous for realistic aerospace engineering problems. However, if analysis models implement iterative computations such as computational fluid dynamics (CFD), which solves system partial differential equations iteratively, computing derivatives through the AD requires a massive memory size. The author solved this deficiency by modifying the AD approach and developing a more efficient implementation with CFD, and successfully applied the AD to general CFD software. In order to solve the second problem of the AMF, the governing equation of the trust region ratio, which is very strict against the violation of constraints, is modified so that it can accept the violation of constraints within some tolerance. By accepting violations of constraints during the optimization process, the AMF can continue optimization without terminating immaturely and eventually find the true optimum design point. With these modifications, the AMF is referred to as "Robust AMF," and it is applied to airfoil and wing aerodynamic design problems using Euler CFD software. The former problem has 21 design variables, and the latter 64. In both problems, derivatives computed with the proposed AD method are first compared with those computed with the finite differentiation (FD) method, and then, the Robust AMF is implemented along with the sequential quadratic programming (SQP) optimization method with only high-fidelity models. The proposed AD method computes derivatives more accurately and faster than the FD method, and the Robust AMF successfully optimizes shapes of the airfoil and the wing in a much shorter time than SQP with only high-fidelity models. These results clearly show the effectiveness of the Robust AMF. Finally, the feasibility of reducing computational time for calculating derivatives and the necessity of AMF with an optimum design point always in the feasible region are discussed as future work.
NASA Astrophysics Data System (ADS)
Ahmadi Pirshahid, Shewa; Arirob, Wallop; Punsuvon, Vittaya
2018-04-01
The use of hexane to extract vegetable oil from oilseeds or seed cake is of growing concern due to its environmental impact such as its smelling and toxicity. In our method, used Response Surface Methodology (RSM) was applied to study the optimum condition of decanter cake obtained from small crude palm oil with aqueous surfactant solution. For the first time, we provide an optimum condition of preliminary study with decanter cake extraction to obtain the maximum of oil yield. The result from preliminary was further used in RSM study by using Central Composite Design (CCD) that consisted of thirty experiments. The effect of four independent variables: the concentration of Sodium Dodecyl Sulfate (SDS) as surfactant, temperature, the ratio by weight to volume of cake to surfactant solution and the amount of sodium chloride (NaCl) on dependent variables are studied. Data were analyzed using Design-Expert 8 software. The results showed that the optimum condition of decanter cake extraction were 0.016M of SDS solution concentration, 73°C of extraction temperature, 1:10 (g:ml) of the ratio of decanter cake to SDS solution and 2% (w/w) of NaCl amount. This condition gave 77.05% (w/w) oil yield. The chemical properties of the extracted palm oil from this aqueous surfactant extraction are further investigated compared with the hexane extraction. The obtained result showed that all properties of both extractions were nearly the same.
NASA Astrophysics Data System (ADS)
Tavana, Jalal; Edrisi, Mohammad
2016-03-01
In this study, cobalt ferrite (CoFe2O4) nanoparticles were synthesized by two novel methods. The first method is based on the thermolysis of metal-NN complexes. In the second method, a template free sonochemical treatment of mixed cobalt and iron chelates of α-nitroso-β-naphthol (NN) was applied. Products prepared through method 1 were spherical, with high specific surface area (54.39 m2 g-1) and small average crystalline size of 13 nm. However, CoFe2O4 nanoparticles prepared by method 2 were in random shapes, a broad range of crystalline sizes and a low specific surface area of 25.46 m2 g-1 though highly pure. A Taguchi experimental design was implemented in method 1 to determine and obtain the optimum catalyst. The structural and morphological properties of products were investigated by x-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, Brunauer-Emmett-Teller and dynamic laser light scattering. The crystalline size calculations were performed using Williamson-Hall method on XRD spectrum. The photocatalytic activity of the optimum nanocrystalline cobalt ferrite was investigated for degradation of a representative pollutant, methylene blue (MB), and visible light as energy source. The results showed that some 92% degradation of MB could be achieved for 7 h of visible light irradiation.
Formation Design Strategy for SCOPE High-Elliptic Formation Flying Mission
NASA Technical Reports Server (NTRS)
Tsuda, Yuichi
2007-01-01
The new formation design strategy using simulated annealing (SA) optimization is presented. The SA algorithm is useful to survey a whole solution space of optimum formation, taking into account realistic constraints composed of continuous and discrete functions. It is revealed that this method is not only applicable for circular orbit, but also for high-elliptic orbit formation flying. The developed algorithm is first tested with a simple cart-wheel motion example, and then applied to the formation design for SCOPE. SCOPE is the next generation geomagnetotail observation mission planned in JAXA, utilizing a formation flying techonology in a high elliptic orbit. A distinctive and useful heuristics is found by investigating SA results, showing the effectiveness of the proposed design process.
Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Cole, Kevin D.
2003-01-01
The purpose of the project was to investigate methods to accurately verify that designed , materials meet thermal specifications. The project involved heat transfer calculations and optimization studies, and no laboratory experiments were performed. One part of the research involved study of materials in which conduction heat transfer predominates. Results include techniques to choose among several experimental designs, and protocols for determining the optimum experimental conditions for determination of thermal properties. Metal foam materials were also studied in which both conduction and radiation heat transfer are present. Results of this work include procedures to optimize the design of experiments to accurately measure both conductive and radiative thermal properties. Detailed results in the form of three journal papers have been appended to this report.
Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2
NASA Technical Reports Server (NTRS)
1988-01-01
The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.
Structural synthesis: Precursor and catalyst
NASA Technical Reports Server (NTRS)
Schmit, L. A.
1984-01-01
More than twenty five years have elapsed since it was recognized that a rather general class of structural design optimization tasks could be properly posed as an inequality constrained minimization problem. It is suggested that, independent of primary discipline area, it will be useful to think about: (1) posing design problems in terms of an objective function and inequality constraints; (2) generating design oriented approximate analysis methods (giving special attention to behavior sensitivity analysis); (3) distinguishing between decisions that lead to an analysis model and those that lead to a design model; (4) finding ways to generate a sequence of approximate design optimization problems that capture the essential characteristics of the primary problem, while still having an explicit algebraic form that is matched to one or more of the established optimization algorithms; (5) examining the potential of optimum design sensitivity analysis to facilitate quantitative trade-off studies as well as participation in multilevel design activities. It should be kept in mind that multilevel methods are inherently well suited to a parallel mode of operation in computer terms or to a division of labor between task groups in organizational terms. Based on structural experience with multilevel methods general guidelines are suggested.
Strategic Enrollment Management: A Primer for Campus Administrators.
ERIC Educational Resources Information Center
Dolence, Michael G.
This booklet provides an overview of key concepts of Strategic Enrollment Management (SEM), a comprehensive process designed to help institutions of higher education achieve and maintain the optimum student recruitment, retention, and graduation rates. "Optimum" here is defined within the academic context of the particular institution. Primary…
NASA Technical Reports Server (NTRS)
Prasthofer, W. P.
1974-01-01
The key to optimization of design where there are a large number of variables, all of which may not be known precisely, lies in the mathematical tool of dynamic programming developed by Bellman. This methodology can lead to optimized solutions to the design of critical systems in a minimum amount of time, even when there are a great number of acceptable configurations to be considered. To demonstrate the usefulness of dynamic programming, an analytical method is developed for evaluating the relationship among existing numerous connector designs to find the optimum configuration. The data utilized in the study were generated from 900 flanges designed for six subsystems of the S-1B stage of the Saturn 1B space carrier vehicle.
Discrete size optimization of steel trusses using a refined big bang-big crunch algorithm
NASA Astrophysics Data System (ADS)
Hasançebi, O.; Kazemzadeh Azad, S.
2014-01-01
This article presents a methodology that provides a method for design optimization of steel truss structures based on a refined big bang-big crunch (BB-BC) algorithm. It is shown that a standard formulation of the BB-BC algorithm occasionally falls short of producing acceptable solutions to problems from discrete size optimum design of steel trusses. A reformulation of the algorithm is proposed and implemented for design optimization of various discrete truss structures according to American Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications. Furthermore, the performance of the proposed BB-BC algorithm is compared to its standard version as well as other well-known metaheuristic techniques. The numerical results confirm the efficiency of the proposed algorithm in practical design optimization of truss structures.
[Study on extraction technology of soyasaponins from residual of bean ware].
Lu, Rumei; Zhang, Yizhen; Bi, Yi
2003-04-01
To find out the optimum extraction technology of soyasaponins from residual of bean ware. The optimum extraction conditions were investigated by the orthogonal design, and the content of soyasaponins was determined by UV-spectro-pho-tometry. The optimum extraction technology was A3B1C1, that is adding 7 times and 6 times amount of 70% alcohol and refluxing for two times and each time for 1.0 h. The selected technology showed higher yield of soyasaponins, good stability and high efficient.
Generation of optimum vertical profiles for an advanced flight management system
NASA Technical Reports Server (NTRS)
Sorensen, J. A.; Waters, M. H.
1981-01-01
Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined.
Design of vibration isolation systems using multiobjective optimization techniques
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The design of vibration isolation systems is considered using multicriteria optimization techniques. The integrated values of the square of the force transmitted to the main mass and the square of the relative displacement between the main mass and the base are taken as the performance indices. The design of a three degrees-of-freedom isolation system with an exponentially decaying type of base disturbance is considered for illustration. Numerical results are obtained using the global criterion, utility function, bounded objective, lexicographic, goal programming, goal attainment and game theory methods. It is found that the game theory approach is superior in finding a better optimum solution with proper balance of the various objective functions.
Optimization of rotor blades for combined structural, dynamic, and aerodynamic properties
NASA Technical Reports Server (NTRS)
He, Cheng-Jian; Peters, David A.
1990-01-01
Optimal helicopter blade design with computer-based mathematical programming has received more and more attention in recent years. Most of the research has focused on optimum dynamic characteristics of rotor blades to reduce vehicle vibration. There is also work on optimization of aerodynamic performance and on composite structural design. This research has greatly increased our understanding of helicopter optimum design in each of these aspects. Helicopter design is an inherently multidisciplinary process involving strong interactions among various disciplines which can appropriately include aerodynamics; dynamics, both flight dynamics and structural dynamics; aeroelasticity: vibrations and stability; and even acoustics. Therefore, the helicopter design process must satisfy manifold requirements related to the aforementioned diverse disciplines. In our present work, we attempt to combine several of these important effects in a unified manner. First, we design a blade with optimum aerodynamic performance by proper layout of blade planform and spanwise twist. Second, the blade is designed to have natural frequencies that are placed away from integer multiples of the rotor speed for a good dynamic characteristics. Third, the structure is made as light as possible with sufficient rotational inertia to allow for autorotational landing, with safe stress margins and flight fatigue life at each cross-section, and with aeroelastical stability and low vibrations. Finally, a unified optimization refines the solution.
Gómez-Carracedo, M P; Andrade, J M; Rutledge, D N; Faber, N M
2007-03-07
Selecting the correct dimensionality is critical for obtaining partial least squares (PLS) regression models with good predictive ability. Although calibration and validation sets are best established using experimental designs, industrial laboratories cannot afford such an approach. Typically, samples are collected in an (formally) undesigned way, spread over time and their measurements are included in routine measurement processes. This makes it hard to evaluate PLS model dimensionality. In this paper, classical criteria (leave-one-out cross-validation and adjusted Wold's criterion) are compared to recently proposed alternatives (smoothed PLS-PoLiSh and a randomization test) to seek out the optimum dimensionality of PLS models. Kerosene (jet fuel) samples were measured by attenuated total reflectance-mid-IR spectrometry and their spectra where used to predict eight important properties determined using reference methods that are time-consuming and prone to analytical errors. The alternative methods were shown to give reliable dimensionality predictions when compared to external validation. By contrast, the simpler methods seemed to be largely affected by the largest changes in the modeling capabilities of the first components.
Xue, Zhao-ming; Xie, An-jian; Huang, Fang-zhi; Ma, Wen
2002-08-01
The new ligand vanillin S-benzyldithocarbazte(HL) and its complex Co(II)-C16H16N2S2O2-DEA was synthesized and characterized by IR, UV-Vis. The optimum color conditions of the complex in 95% ethanol solution(including reaction temperature T, heating time t, and the concentrations of the three components) have been studied by quadratic regression orthogonal design method. According to the quadratic-regression equation, the maximum absorption intensity and optimum color conditions of the complex were calculated. The results were consistent with those gotten by experiment. The influences of common ions on the determination of cobalt and the methods to eliminate the influence are investigated. The maximum absorption peak of the complex is found at 404 nm and molar absorptivity is 5.29 x 10(4) L.mol-1.cm-1. Beer's law is obeyed in the range of 0-20 micrograms.(25 mL)-1 for Co(II). The composition of Co2+ to HL, and DEA in the complex is 1:2:1. The new method was successfully utilized to the determination of cobalt in VB12 and medicine.
Improved Broadband Liner Optimization Applied to the Advanced Noise Control Fan
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.; Ayle, Earl; Ichihashi, Fumitaka
2014-01-01
The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more desirable. This paper describes improvements to a previously established broadband acoustic liner optimization process using the Advanced Noise Control Fan rig as a demonstrator. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom designs are carried through design, fabrication, and testing to validate the efficacy of the design process. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of these liner designs. This study also provides an application for demonstrating the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.
Multi-fidelity and multi-disciplinary design optimization of supersonic business jets
NASA Astrophysics Data System (ADS)
Choi, Seongim
Supersonic jets have been drawing great attention after the end of service for the Concorde was announced on April of 2003. It is believed, however, that civilian supersonic aircraft may make a viable return in the business jet market. This thesis focuses on the design optimization of feasible supersonic business jet configurations. Preliminary design techniques for mitigation of ground sonic boom are investigated while ensuring that all relevant disciplinary constraints are satisfied (including aerodynamic performance, propulsion, stability & control and structures.) In order to achieve reasonable confidence in the resulting designs, high-fidelity simulations are required, making the entire design process both expensive and complex. In order to minimize the computational cost, surrogate/approximate models are constructed using a hierarchy of different fidelity analysis tools including PASS, A502/Panair and Euler/NS codes. Direct search methods such as Genetic Algorithms (GAs) and a nonlinear SIMPLEX are employed to designs in searches of large and noisy design spaces. A local gradient-based search method can be combined with these global search methods for small modifications of candidate optimum designs. The Mesh Adaptive Direct Search (MADS) method can also be used to explore the design space using a solution-adaptive grid refinement approach. These hybrid approaches, both in search methodology and surrogate model construction, are shown to result in designs with reductions in sonic boom and improved aerodynamic performance.
Mathematical modeling of hydromechanical extrusion
NASA Astrophysics Data System (ADS)
Agapitova, O. Yu.; Byvaltsev, S. V.; Zalazinsky, A. G.
2017-12-01
The mathematical modeling of the hydromechanical extrusion of metals through two sequentially installed cone dies is carried out. The optimum parameters of extrusion tools are determined to minimize the extrusion force. A software system has been developed to solve problems of plastic deformation of metals and to provide an optimum design of extrusion tools.
DOT National Transportation Integrated Search
1969-08-01
Describes an optimum bus system replacing existing Greyhound service and designed primarily for the purpose of meeting commuter travel demands in the San Francisco-Marin corridor as well as intra-county travel, and mid-day and weekend trips between M...
NASA Technical Reports Server (NTRS)
Nguyen, T. M.; Yeh, H.-G.
1993-01-01
The baseline design and implementation of the digital baseband architecture for advanced deep space transponders is investigated and identified. Trade studies on the selection of the number of bits for the analog-to-digital converter (ADC) and optimum sampling schemes are presented. In addition, the proposed optimum sampling scheme is analyzed in detail. Descriptions of possible implementations for the digital baseband (or digital front end) and digital phase-locked loop (DPLL) for carrier tracking are also described.
Optimum structural design with static aeroelastic constraints
NASA Technical Reports Server (NTRS)
Bowman, Keith B; Grandhi, Ramana V.; Eastep, F. E.
1989-01-01
The static aeroelastic performance characteristics, divergence velocity, control effectiveness and lift effectiveness are considered in obtaining an optimum weight structure. A typical swept wing structure is used with upper and lower skins, spar and rib thicknesses, and spar cap and vertical post cross-sectional areas as the design parameters. Incompressible aerodynamic strip theory is used to derive the constraint formulations, and aerodynamic load matrices. A Sequential Unconstrained Minimization Technique (SUMT) algorithm is used to optimize the wing structure to meet the desired performance constraints.
Development of Improved Design and 3D Printing Manufacture of Cross-Flow Fan Rotor
2016-06-01
the design study, each solver run was monitored. Plotting the value of the mass flows, as well as the torque on the rotor blades , allowed a simple...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) This study determined the optimum blade stagger angle for a cross-flow fan rotor and evaluated the...parametric study determined optimum blade stagger angle using thrust, power, and thrust-to-power ratio as desired output variables. A MarkForged Mark One 3D
2013-08-19
excellence in linear models , 2010. She successfully defended her dissertation, Linear System Design for Fusion and Compression, on Aug 13, 2013. Her work was...measurements into canonical coordinates, scaling, and rotation; there is a water-filling interpretation; (3) the optimum design of a linear secondary channel of...measurements to fuse with a primary linear channel of measurements maximizes a generalized Rayleigh quotient; (4) the asymptotically optimum
Numerical simulation of vehicle crashworthiness and occupant protection
NASA Astrophysics Data System (ADS)
Saha, Nripen K.
1993-08-01
Numerical simulation of vehicle crashworthiness and occupant protection are addressed. The vehicle crashworthiness design objectives are to design the vehicle structure for optimum impact energy absorption, and to design the restraint system (seatbelts, airbags, bolsters, etc.) for optimum occupant protection. The following approaches are taken; a major part of the impact energy is to be absorbed by the vehicle structure; the restraint components will provide protection against the remaining crash energy; certain vehicle components are designed to deform under specific types and speeds of impact in a desired mode for sound energy management; structural components such as front side rails, rear rails, door structure and pillars undergo large amounts of deformation; and with properly designed geometry and material these components assist in mitigating the effects of impact.
Numerical simulation of vehicle crashworthiness and occupant protection
NASA Technical Reports Server (NTRS)
Saha, Nripen K.
1993-01-01
Numerical simulation of vehicle crashworthiness and occupant protection are addressed. The vehicle crashworthiness design objectives are to design the vehicle structure for optimum impact energy absorption, and to design the restraint system (seatbelts, airbags, bolsters, etc.) for optimum occupant protection. The following approaches are taken; a major part of the impact energy is to be absorbed by the vehicle structure; the restraint components will provide protection against the remaining crash energy; certain vehicle components are designed to deform under specific types and speeds of impact in a desired mode for sound energy management; structural components such as front side rails, rear rails, door structure and pillars undergo large amounts of deformation; and with properly designed geometry and material these components assist in mitigating the effects of impact.
Vallejo, Luis A; Manzano, María T; Hidalgo, Antonio; Hernández, Alberto; Sabas, Juan; Lara, Hugo; Gil-Carcedo, Elisa; Herrero, David
One of the problems with total ossicular replacement prostheses is their stability. Prosthesis dislocations and extrusions are common in middle ear surgery. This is due to variations in endo-tympanic pressure as well as design defects. The design of this new prosthesis reduces this problem by being joined directly to the malleus handle. The aim of this study is to confirm adequate acoustic-mechanical behaviour in fresh cadaver middle ear of a new total ossicular replacement prosthesis, designed using the finite elements method. Using the doppler vibrometer laser, we analysed the acoustic-mechanical behaviour of a new total ossicular replacement prosthesis in the human middle ear using 10 temporal bones from fresh cadavers. The transfer function of the ears in which we implanted the new prosthesis was superimposed over the non-manipulated ear. This suggests optimum acoustic-mechanical behaviour. The titanium prosthesis analysed in this study demonstrated optimum acoustic-mechanical behaviour. Together with its ease of implantation and post-surgical stability, these factors make it a prosthesis to be kept in mind in ossicular reconstruction. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
Offspring Generation Method for interactive Genetic Algorithm considering Multimodal Preference
NASA Astrophysics Data System (ADS)
Ito, Fuyuko; Hiroyasu, Tomoyuki; Miki, Mitsunori; Yokouchi, Hisatake
In interactive genetic algorithms (iGAs), computer simulations prepare design candidates that are then evaluated by the user. Therefore, iGA can predict a user's preferences. Conventional iGA problems involve a search for a single optimum solution, and iGA were developed to find this single optimum. On the other hand, our target problems have several peaks in a function and there are small differences among these peaks. For such problems, it is better to show all the peaks to the user. Product recommendation in shopping sites on the web is one example of such problems. Several types of preference trend should be prepared for users in shopping sites. Exploitation and exploration are important mechanisms in GA search. To perform effective exploitation, the offspring generation method (crossover) is very important. Here, we introduced a new offspring generation method for iGA in multimodal problems. In the proposed method, individuals are clustered into subgroups and offspring are generated in each group. The proposed method was applied to an experimental iGA system to examine its effectiveness. In the experimental iGA system, users can decide on preferable t-shirts to buy. The results of the subjective experiment confirmed that the proposed method enables offspring generation with consideration of multimodal preferences, and the proposed mechanism was also shown not to adversely affect the performance of preference prediction.
NASA Astrophysics Data System (ADS)
Kamaruddin, Mohamad Anuar; Alrozi, Rasyidah; Aziz, Hamidi Abdul; Han, Tan Yong; Yusoff, Mohd Suffian
2017-09-01
This study investigates the treatability of composite adsorbent made from waste materials and minerals which is widely available in Malaysia. The composite adsorbent was prepared based on wet attrition method which focuses on the determination of optimum dosage of each of raw materials amount by conventional design of experiment work. Zeolite, activated carbon, rice husk and limestone were ground to obtained particle size of 150 µm. 45.94% zeolite, 15.31% limestone, 4.38% activated carbon, 4.38% rice husk carbon and 30% of ordinary Portland cement (OPC). The mixture was mixed together under pre-determined mixing time. About 60% (by weight) of water was added and the mixture paste was allowed to harden for 24 hours and then submersed in water for three days for curing. Batch experimental study was performed on synthetic dissolving a known amount of solid crystal phenol with distilled water into the volumetric flasks. From the batch experimental study, it was revealed that the optimum shaking speed for removal of phenol was 200 rpm. The removal efficiency was 65%. The optimum shaking time for removing phenol was 60 minutes; the percentage achieved was 55%. The removal efficiency increased with the increased of the amount of composite adsorbent. The removal efficiency for optimum adsorbent dosage achieved 86%. Furthermore, the influence of pH solution was studied. The optimum pH for removing phenol was pH 6, with the removal percentage of 95%. The results implies that carbon-mineral based composite adsorbent is promising replacement for commercial adsorbent that provides alternative source for industrial adsorption application in various types of effluent treatment system.
NASA Astrophysics Data System (ADS)
Biswas, G.; Kumari, M.; Adhikari, K.; Dutta, S.
2017-12-01
Fluoride pollution in groundwater is a major concern in rural areas. The flower petal of Shorea robusta, commonly known as sal tree, is used in the present study both in its native form and Ca-impregnated activated form to eradicate excess fluoride from simulated wastewater. Response surface methodology (RSM) was used for experimental designing and analyzing optimum condition for carbonization vis-à-vis calcium impregnation for preparation of adsorbent. During carbonization, temperature, time and weight ratio of calcium chloride to sal flower petal (SFP) have been considered as input factors and percentage removal of fluoride as response. Optimum condition for carbonization has been obtained as temperature, 500 °C; time, 1 h and weight ratio, 2.5 and the sample prepared has been termed as calcium-impregnated carbonized sal flower petal (CCSFP). Optimum condition as analyzed by one-factor-at-a-time (OFAT) method is initial fluoride concentration, 2.91 mg/L; pH 3 and adsorbent dose, 4 g/L. CCSFP shows maximum removal of 98.5% at this condition. RSM has also been used for finding out optimum condition for defluoridation considering initial concentration, pH and adsorbent dose as input parameters. The optimum condition as analyzed by RSM is: initial concentration, 5 mg/L; pH 3.5 and adsorbent dose, 2 g/L. Kinetic and equilibrium data follow Ho pseudo-second-order kinetic model and Freundlich isotherm model, respectively. Adsorption capacity of CCSFP has been found to be 5.465 mg/g. At optimized condition, CCSFP has been found to remove fluoride (80.4%) efficiently from groundwater collected from Bankura district in West Bengal, a fluoride-contaminated province in India.
Daneshvand, Behnaz; Ara, Katayoun Mahdavi; Raofie, Farhad
2012-08-24
Fatty acids of Cydonia oblonga Miller cultivated in Iran were obtained by supercritical (carbon dioxide) extraction and ultrasound-assisted extraction methods. The oils were analyzed by capillary gas chromatography using mass spectrometric detections. The compounds were identified according to their retention indices and mass spectra (EI, 70eV). The experimental parameters of SFE such as pressure, temperature, modifier volume, static and dynamic extraction time were optimized using a Central Composite Design (CCD) after a 2(5) factorial design. Pressure and dynamic extraction time had significant effect on the extraction yield, while the other factors (temperature, static extraction time and modifier volume) were not identified as significant factors under the selected conditions. The results of chemometrics analysis showed the highest yield for SFE (24.32%), which was obtained at a pressure of 353bar, temperature of 35°C, modifier (methanol) volume of 150μL, and static and dynamic extraction times of 10 and 60min, respectively. Ultrasound-assisted extraction (UAE) of Fatty acids from C. oblonga Miller was optimized, using a rotatable central composite design. The optimum conditions were as follows: solvent (n-hexane) volume, 22mL; extraction time, 30min; and extraction temperature, 55°C. This resulted in a maximum oil recovery of 19.5%. The extracts with higher yield from both methods were subjected to transesterification and GC-MS analysis. The results show that the oil obtained by SFE with the optimal operating conditions allowed a fatty acid composition similar to the oil obtained by UAE in optimum condition and no significant differences were found. The major components of oil extract were Linoleic, Palmitic, Oleic, Stearic and Eicosanoic acids. Copyright © 2012 Elsevier B.V. All rights reserved.
A class of optimum digital phase locked loops
NASA Technical Reports Server (NTRS)
Kumar, R.; Hurd, W. J.
1986-01-01
This paper presents a class of optimum digital filters for digital phase locked loops, for the important case in which the maximum update rate of the loop filter and numerically controlled oscillator (NCO) is limited. This case is typical when the loop filter is implemented in a microprocessor. In these situations, pure delay is encountered in the loop transfer function and thus the stability and gain margin of the loop are of crucial interest. The optimum filters designed for such situations are evaluated in terms of their gain margin for stability, dynamic error, and steady-state error performance. For situations involving considerably high phase dynamics an adaptive and programmable implementation is also proposed to obtain an overall optimum strategy.
A Real Options Approach to Quantity and Cost Optimization for Lifetime and Bridge Buys of Parts
2015-04-30
fixed EOS of 40 years and a fixed WACC of 3%, decreases to a minimum and then increases. The minimum of this curve gives the optimum buy size for...considered in both analyses. For a 3% WACC , as illustrated in Figure 9(a), the DES method gives an optimum buy size range of 2,923–3,191 with an average...Hence, both methods are consistent in determining the optimum lifetime/bridge buy size. To further verify this consistency, other WACC values
The potential application of the blackboard model of problem solving to multidisciplinary design
NASA Technical Reports Server (NTRS)
Rogers, James L.
1989-01-01
The potential application of the blackboard model of problem solving to multidisciplinary design is discussed. Multidisciplinary design problems are complex, poorly structured, and lack a predetermined decision path from the initial starting point to the final solution. The final solution is achieved using data from different engineering disciplines. Ideally, for the final solution to be the optimum solution, there must be a significant amount of communication among the different disciplines plus intradisciplinary and interdisciplinary optimization. In reality, this is not what happens in today's sequential approach to multidisciplinary design. Therefore it is highly unlikely that the final solution is the true optimum solution from an interdisciplinary optimization standpoint. A multilevel decomposition approach is suggested as a technique to overcome the problems associated with the sequential approach, but no tool currently exists with which to fully implement this technique. A system based on the blackboard model of problem solving appears to be an ideal tool for implementing this technique because it offers an incremental problem solving approach that requires no a priori determined reasoning path. Thus it has the potential of finding a more optimum solution for the multidisciplinary design problems found in today's aerospace industries.
Kim, Haseog; Park, Sangki; Kim, Hayong
2016-07-29
There has been increased deconstruction and demolition of reinforced concrete structures due to the aging of the structures and redevelopment of urban areas resulting in the generation of massive amounts of construction. The production volume of waste concrete is projected to increase rapidly over 100 million tons by 2020. However, due to the high cement paste content, recycled aggregates have low density and high absorption ratio. They are mostly used for land reclamation purposes with low added value instead of multiple approaches. This study was performed to determine an effective method to remove cement paste from recycled aggregates by using the abrasion and substituting the process water with acidic water. The aim of this study is to analyze the quality of the recycled fine aggregates produced by a complex method and investigate the optimum manufacturing conditions for recycled fine aggregates based on the design of experiment. The experimental parameters considered were water ratio, coarse aggregate ratio, and abrasion time and, as a result of the experiment, data concerning the properties of recycled sand were obtained. It was found that high-quality recycled fine aggregates can be obtained with 8.57 min of abrasion-crusher time and a recycled coarse aggregate ratio of over 1.5.
Design of a miniature implantable left ventricular assist device using CAD/CAM technology.
Okamoto, Eiji; Hashimoto, Takuya; Mitamura, Yoshinori
2003-01-01
In this study, we developed a new miniature motor-driven pulsatile left ventricular assist device (LVAD) for implantation into a Japanese patient of average build by means of computer-aided design and manufacturing (CAD/CAM) technology. A specially designed miniature ball-screw and a high-performance brushless DC motor were used in an artificial heart actuator to allow miniaturization. A blood pump chamber (stroke volume 55 ml) and an inflow and outflow port were designed by computational fluid dynamics (CFD) analysis. The geometry of the blood pump was evaluated using the value of index of pump geometry (IPG) = (Reynolds shear stress) x (occupied volume) as a quantitative index for optimization. The calculated value of IPG varied from 20.6 Nm to 49.1 Nm, depending on small variations in pump geometry. We determined the optimum pump geometry based on the results of quantitative evaluation using IPG and qualitative evaluation using the flow velocity distribution with blood flow tracking. The geometry of the blood pump that gave lower shear stress had more optimum spiral flow around the diaphragm-housing (D-H) junction. The volume and weight of the new LVAD, made of epoxy resin, is 309 ml and 378 g, but further miniaturization will be possible by improving the geometry of both the blood pump and the back casing. Our results show that our new design method for an implantable LVAD using CAD/CAM promises to improve blood compatibility with greater miniaturization.
Methodology for processing pressure traces used as inputs for combustion analyses in diesel engines
NASA Astrophysics Data System (ADS)
Rašić, Davor; Vihar, Rok; Žvar Baškovič, Urban; Katrašnik, Tomaž
2017-05-01
This study proposes a novel methodology for designing an optimum equiripple finite impulse response (FIR) filter for processing in-cylinder pressure traces of a diesel internal combustion engine, which serve as inputs for high-precision combustion analyses. The proposed automated workflow is based on an innovative approach of determining the transition band frequencies and optimum filter order. The methodology is based on discrete Fourier transform analysis, which is the first step to estimate the location of the pass-band and stop-band frequencies. The second step uses short-time Fourier transform analysis to refine the estimated aforementioned frequencies. These pass-band and stop-band frequencies are further used to determine the most appropriate FIR filter order. The most widely used existing methods for estimating the FIR filter order are not effective in suppressing the oscillations in the rate- of-heat-release (ROHR) trace, thus hindering the accuracy of combustion analyses. To address this problem, an innovative method for determining the order of an FIR filter is proposed in this study. This method is based on the minimization of the integral of normalized signal-to-noise differences between the stop-band frequency and the Nyquist frequency. Developed filters were validated using spectral analysis and calculation of the ROHR. The validation results showed that the filters designed using the proposed innovative method were superior compared with those using the existing methods for all analyzed cases. Highlights • Pressure traces of a diesel engine were processed by finite impulse response (FIR) filters with different orders • Transition band frequencies were determined with an innovative method based on discrete Fourier transform and short-time Fourier transform • Spectral analyses showed deficiencies of existing methods in determining the FIR filter order • A new method of determining the FIR filter order for processing pressure traces was proposed • The efficiency of the new method was demonstrated by spectral analyses and calculations of rate-of-heat-release traces
An iterative method for obtaining the optimum lightning location on a spherical surface
NASA Technical Reports Server (NTRS)
Chao, Gao; Qiming, MA
1991-01-01
A brief introduction to the basic principles of an eigen method used to obtain the optimum source location of lightning is presented. The location of the optimum source is obtained by using multiple direction finders (DF's) on a spherical surface. An improvement of this method, which takes the distance of source-DF's as a constant, is presented. It is pointed out that using a weight factor of signal strength is not the most ideal method because of the inexact inverse signal strength-distance relation and the inaccurate signal amplitude. An iterative calculation method is presented using the distance from the source to the DF as a weight factor. This improved method has higher accuracy and needs only a little more calculation time. Some computer simulations for a 4DF system are presented to show the improvement of location through use of the iterative method.
Constraint Optimization Problem For The Cutting Of A Cobalt Chrome Refractory Material
NASA Astrophysics Data System (ADS)
Lebaal, Nadhir; Schlegel, Daniel; Folea, Milena
2011-05-01
This paper shows a complete approach to solve a given problem, from the experimentation to the optimization of different cutting parameters. In response to an industrial problem of slotting FSX 414, a Cobalt-based refractory material, we have implemented a design of experiment to determine the most influent parameters on the tool life, the surface roughness and the cutting forces. After theses trials, an optimization approach has been implemented to find the lowest manufacturing cost while respecting the roughness constraints and cutting force limitation constraints. The optimization approach is based on the Response Surface Method (RSM) using the Sequential Quadratic programming algorithm (SQP) for a constrained problem. To avoid a local optimum and to obtain an accurate solution at low cost, an efficient strategy, which allows improving the RSM accuracy in the vicinity of the global optimum, is presented. With these models and these trials, we could apply and compare our optimization methods in order to get the lowest cost for the best quality, i.e. a satisfying surface roughness and limited cutting forces.
Jahantigh, Nabi; Keshavarz, Ali; Mirzaei, Masoud
2015-01-01
The aim of this study is to determine optimum hybrid heating systems parameters, such as temperature, surface area of a radiant heater and vent area to have thermal comfort conditions. DOE, Factorial design method is used to determine the optimum values for input parameters. A 3D model of a virtual standing thermal manikin with real dimensions is considered in this study. Continuity, momentum, energy, species equations for turbulent flow and physiological equation for thermal comfort are numerically solved to study heat, moisture and flow field. K - ɛRNG Model is used for turbulence modeling and DO method is used for radiation effects. Numerical results have a good agreement with the experimental data reported in the literature. The effect of various combinations of inlet parameters on thermal comfort is considered. According to Pareto graph, some of these combinations that have significant effect on the thermal comfort require no more energy can be used as useful tools. A better symmetrical velocity distribution around the manikin is also presented in the hybrid system.
Ma, Chun-hui; Yang, Lei; Zu, Yuan-gang; Liu, Ting-ting
2012-10-15
In this article, solvent-free microwave extraction (SFME) of essential oil from Schisandra chinensis (Turcz.) Baill was studied. A multivariate study based on central composite design (CCD) was used to evaluate the influence of three major variables affecting the performance of SFME. The optimum parameters were extraction time 30 min, irradiation power 385 W and moisture content of the fruits was 68%. The extraction yield of essential oil was 11 ml/kg under the optimum conditions. The antioxidant capacity of essential oils extracted by different methods were determined, and compared with traditional antioxidants. GC-MS showed the different composition of essential oil extracted by hydro-distillation (HD), steam-distillation (SD) and SFME. S. chinensis materials treated by different methods were observed by scanning electronic microscopy (SEM) and thermo-gravimetric analysis (TGA). Micrographs and thermo gravimetric loss provided more evidences to prove SFME of essential oil is more completed than HD and SD. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Optimization of an Offset Receiver Optics for Radio Telescopes
NASA Astrophysics Data System (ADS)
Yeap, Kim Ho; Tham, Choy Yoong
2018-01-01
The latest generation of Cassegrain radio astronomy antennas is designed for multiple frequency bands with receivers for individual bands offset from the antenna axis. The offset feed arrangement typically has two focusing elements in the form of ellipsoidal mirrors in the optical path between the feed horn and the antenna focus. This arrangement aligns the beam from the offset feed horn to illuminate the subreflector. The additional focusing elements increase the number of design variables, namely the distances between the horn aperture and the first mirror and that between the two mirrors, and their focal lengths. There are a huge number of possible combinations of these four variables in which the optics system can take on. The design aim is to seek the combination that will give the optimum antenna efficiency, not only at the centre frequency of the particular band but also across its bandwidth. To pick the optimum combination of the variables, it requires working through, by computational mean, a continuum range of variable values at different frequencies which will fit the optics system within the allocated physical space. Physical optics (PO) is a common technique used in optics design. However, due to the repeated iteration of the huge number of computation involved, the use of PO is not feasible. We present a procedure based on using multimode Gaussian optics to pick the optimum design and using PO for final verification of the system performance. The best antenna efficiency is achieved when the beam illuminating the subreflector is truncated with the optimum edge taper. The optimization procedure uses the beam's edge taper at the subreflector as the iteration target. The band 6 receiver optics design for the Atacama Large Millimetre Array (ALMA) antenna is used to illustrate the optimization procedure.
NASA Astrophysics Data System (ADS)
Mou, Jian; Hong, Guotong
2017-02-01
In this paper, the dimensionless power is used to optimize the free piston Stirling engines (FPSE). The dimensionless power is defined as a ratio of the heat power loss and the output work. The heat power losses include the losses of expansion space, heater, regenerator, cooler and the compression space and every kind of the heat loss calculated by empirical formula. The output work is calculated by the adiabatic model. The results show that 82.66% of the losses come from the expansion space and 54.59% heat losses of expansion space come from the shuttle loss. At different pressure the optimum bore-stroke ratio, heat source temperature, phase angle and the frequency have different values, the optimum phase angles increase with the increase of pressure, but optimum frequencies drop with the increase of pressure. However, no matter what the heat source temperature, initial pressure and frequency are, the optimum ratios of piston stroke and displacer stroke all about 0.8. The three-dimensional diagram is used to analyse Stirling engine. From the three-dimensional diagram the optimum phase angle, frequency and heat source temperature can be acquired at the same time. This study offers some guides for the design and optimization of FPSEs.
Optomechanical study and optimization of cantilever plate dynamics
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1995-06-01
Optimum dynamic characteristics of an aluminum cantilever plate containing holes of different sizes and located at arbitrary positions on the plate are studied computationally and experimentally. The objective function of this optimization is the minimization/maximization of the natural frequencies of the plate in terms of such design variable s as the sizes and locations of the holes. The optimization process is performed using the finite element method and mathematical programming techniques in order to obtain the natural frequencies and the optimum conditions of the plate, respectively. The modal behavior of the resultant optimal plate layout is studied experimentally through the use of holographic interferometry techniques. Comparisons of the computational and experimental results show that good agreement between theory and test is obtained. The comparisons also show that the combined, or hybrid use of experimental and computational techniques complement each other and prove to be a very efficient tool for performing optimization studies of mechanical components.
An optimization model for energy generation and distribution in a dynamic facility
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1981-01-01
An analytical model is described using linear programming for the optimum generation and distribution of energy demands among competing energy resources and different economic criteria. The model, which will be used as a general engineering tool in the analysis of the Deep Space Network ground facility, considers several essential decisions for better design and operation. The decisions sought for the particular energy application include: the optimum time to build an assembly of elements, inclusion of a storage medium of some type, and the size or capacity of the elements that will minimize the total life-cycle cost over a given number of years. The model, which is structured in multiple time divisions, employ the decomposition principle for large-size matrices, the branch-and-bound method in mixed-integer programming, and the revised simplex technique for efficient and economic computer use.
Photovoltaic design optimization for terrestrial applications
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1978-01-01
As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, a comprehensive program of module cost-optimization has been carried out. The objective of these studies has been to define means of reducing the cost and improving the utility and reliability of photovoltaic modules for the broad spectrum of terrestrial applications. This paper describes one of the methods being used for module optimization, including the derivation of specific equations which allow the optimization of various module design features. The method is based on minimizing the life-cycle cost of energy for the complete system. Comparison of the life-cycle energy cost with the marginal cost of energy each year allows the logical plant lifetime to be determined. The equations derived allow the explicit inclusion of design parameters such as tracking, site variability, and module degradation with time. An example problem involving the selection of an optimum module glass substrate is presented.
Efficient estimation of the maximum metabolic productivity of batch systems
St. John, Peter C.; Crowley, Michael F.; Bomble, Yannick J.
2017-01-31
Production of chemicals from engineered organisms in a batch culture involves an inherent trade-off between productivity, yield, and titer. Existing strategies for strain design typically focus on designing mutations that achieve the highest yield possible while maintaining growth viability. While these methods are computationally tractable, an optimum productivity could be achieved by a dynamic strategy in which the intracellular division of resources is permitted to change with time. New methods for the design and implementation of dynamic microbial processes, both computational and experimental, have therefore been explored to maximize productivity. However, solving for the optimal metabolic behavior under the assumptionmore » that all fluxes in the cell are free to vary is a challenging numerical task. Here, previous studies have therefore typically focused on simpler strategies that are more feasible to implement in practice, such as the time-dependent control of a single flux or control variable.« less
On Organizing Quick Change-Over Mass Production
NASA Astrophysics Data System (ADS)
Petrushin, S. I.; Gubaidulina, R. H.; Gruby, S. V.; Nosirsoda, Sh C.
2016-04-01
The terms "type of production" and "coefficient of assigning operations" are analyzed. A new method of calculating the optimum production plan based on profit projections is suggested. We recommend using the cycle time values as initial data for designing and developing technology. On the basis of existing techniques used to convert productions we suggest a new approach to production change-over with the service life of manufacturing facilities equal to the time to product’s obsolescence. The factors to maximize profits using this change-over method are indicated, with maximum profits being a condition for the organization of quick change-change mass production.
Underground pipeline laying using the pipe-in-pipe system
NASA Astrophysics Data System (ADS)
Antropova, N.; Krets, V.; Pavlov, M.
2016-09-01
The problems of resource saving and environmental safety during the installation and operation of the underwater crossings are always relevant. The paper describes the existing methods of trenchless pipeline technology, the structure of multi-channel pipelines, the types of supporting and guiding systems. The rational design is suggested for the pipe-in-pipe system. The finite element model is presented for the most dangerous sections of the inner pipes, the optimum distance is detected between the roller supports.
NASA Technical Reports Server (NTRS)
Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Herbert, Frank J.; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry
1989-01-01
The optimum hardware miniaturization level with the lowest cost impact for space biology hardware was determined. Space biology hardware and/or components/subassemblies/assemblies which are the most likely candidates for application of miniaturization are to be defined and relative cost impacts of such miniaturization are to be analyzed. A mathematical or statistical analysis method with the capability to support development of parametric cost analysis impacts for levels of production design miniaturization are provided.
Formulation, optimization, and evaluation of self-emulsifying drug delivery systems of nevirapine
Chintalapudi, Ramprasad; Murthy, T. E. G. K.; Lakshmi, K. Rajya; Manohar, G. Ganesh
2015-01-01
Background: The aim of the present study was to formulate and optimize the self-emulsifying drug delivery systems (SEDDS) of nevirapine (NVP) by use of 22 factorial designs to enhance the oral absorption of NVP by improving its solubility, dissolution rate, and diffusion profile. SEDDS are the isotropic mixtures of oil, surfactant, co-surfactant and drug that form oil in water microemulsion when introduced into the aqueous phase under gentle agitation. Materials and Methods: Solubility of NVP in different oils, surfactants, and co-surfactants was determined for the screening of excipients. Pseudo-ternary phase diagrams were constructed by the aqueous titration method, and formulations were developed based on the optimum excipient combinations with the help of data obtained through the maximum micro emulsion region containing combinations of oil, surfactant, and co-surfactant. The formulations of SEDDS were optimized by 22 factorial designs. Results: The optimum formulation of SEDDS contains 32.5% oleic acid, 44.16% tween 20, and 11.9% polyethylene glycol 600 as oil, surfactant, and co-surfactant respectively. The SEDDS was evaluated for the following drug content, self-emulsification time, rheological properties, zeta potential, in vitro diffusion studies, thermodynamic stability studies, and in vitro dissolution studies. An increase in dissolution was achieved by SEDDS compared to pure form of NVP. Conclusion: Overall, this study suggests that the dissolution and oral bioavailability of NVP could be improved by SEDDS technology. PMID:26682191
Dashamiri, Somayeh; Ghaedi, Mehrorang; Dashtian, Kheibar; Rahimi, Mahmood Reza; Goudarzi, Alireza; Jannesar, Ramin
2016-07-01
Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2 min), adsorbent mass (0.029 g), initial dyes concentration (4.5 mg L(-1)). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29 mg g(-1), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Design of coherent receiver optical front end for unamplified applications.
Zhang, Bo; Malouin, Christian; Schmidt, Theodore J
2012-01-30
Advanced modulation schemes together with coherent detection and digital signal processing has enabled the next generation high-bandwidth optical communication systems. One of the key advantages of coherent detection is its superior receiver sensitivity compared to direct detection receivers due to the gain provided by the local oscillator (LO). In unamplified applications, such as metro and edge networks, the ultimate receiver sensitivity is dictated by the amount of shot noise, thermal noise, and the residual beating of the local oscillator with relative intensity noise (LO-RIN). We show that the best sensitivity is achieved when the thermal noise is balanced with the residual LO-RIN beat noise, which results in an optimum LO power. The impact of thermal noise from the transimpedance amplifier (TIA), the RIN from the LO, and the common mode rejection ratio (CMRR) from a balanced photodiode are individually analyzed via analytical models and compared to numerical simulations. The analytical model results match well with those of the numerical simulations, providing a simplified method to quantify the impact of receiver design tradeoffs. For a practical 100 Gb/s integrated coherent receiver with 7% FEC overhead, we show that an optimum receiver sensitivity of -33 dBm can be achieved at GFEC cliff of 8.55E-5 if the LO power is optimized at 11 dBm. We also discuss a potential method to monitor the imperfections of a balanced and integrated coherent receiver.
A Study of Penalty Function Methods for Constraint Handling with Genetic Algorithm
NASA Technical Reports Server (NTRS)
Ortiz, Francisco
2004-01-01
COMETBOARDS (Comparative Evaluation Testbed of Optimization and Analysis Routines for Design of Structures) is a design optimization test bed that can evaluate the performance of several different optimization algorithms. A few of these optimization algorithms are the sequence of unconstrained minimization techniques (SUMT), sequential linear programming (SLP) and the sequential quadratic programming techniques (SQP). A genetic algorithm (GA) is a search technique that is based on the principles of natural selection or "survival of the fittest". Instead of using gradient information, the GA uses the objective function directly in the search. The GA searches the solution space by maintaining a population of potential solutions. Then, using evolving operations such as recombination, mutation and selection, the GA creates successive generations of solutions that will evolve and take on the positive characteristics of their parents and thus gradually approach optimal or near-optimal solutions. By using the objective function directly in the search, genetic algorithms can be effectively applied in non-convex, highly nonlinear, complex problems. The genetic algorithm is not guaranteed to find the global optimum, but it is less likely to get trapped at a local optimum than traditional gradient-based search methods when the objective function is not smooth and generally well behaved. The purpose of this research is to assist in the integration of genetic algorithm (GA) into COMETBOARDS. COMETBOARDS cast the design of structures as a constrained nonlinear optimization problem. One method used to solve constrained optimization problem with a GA to convert the constrained optimization problem into an unconstrained optimization problem by developing a penalty function that penalizes infeasible solutions. There have been several suggested penalty function in the literature each with there own strengths and weaknesses. A statistical analysis of some suggested penalty functions is performed in this study. Also, a response surface approach to robust design is used to develop a new penalty function approach. This new penalty function approach is then compared with the other existing penalty functions.
Precision of Sensitivity in the Design Optimization of Indeterminate Structures
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Pai, Shantaram S.; Hopkins, Dale A.
2006-01-01
Design sensitivity is central to most optimization methods. The analytical sensitivity expression for an indeterminate structural design optimization problem can be factored into a simple determinate term and a complicated indeterminate component. Sensitivity can be approximated by retaining only the determinate term and setting the indeterminate factor to zero. The optimum solution is reached with the approximate sensitivity. The central processing unit (CPU) time to solution is substantially reduced. The benefit that accrues from using the approximate sensitivity is quantified by solving a set of problems in a controlled environment. Each problem is solved twice: first using the closed-form sensitivity expression, then using the approximation. The problem solutions use the CometBoards testbed as the optimization tool with the integrated force method as the analyzer. The modification that may be required, to use the stiffener method as the analysis tool in optimization, is discussed. The design optimization problem of an indeterminate structure contains many dependent constraints because of the implicit relationship between stresses, as well as the relationship between the stresses and displacements. The design optimization process can become problematic because the implicit relationship reduces the rank of the sensitivity matrix. The proposed approximation restores the full rank and enhances the robustness of the design optimization method.
2012-01-01
Advanced oxidation processes like Fenton and photo-Fenton have been effectively applied to oxidize the persistent organic compounds in solid waste leachate and convert them to unharmful materials and products. However, there are limited data about application of Fenton-like process in leachate treatment. Therefore, this study was designed with the objective of treating municipal landfill leachate by Fenton, Fenton-like and photo–Fenton processes to determine the effect of different variables, by setting up a pilot system. The used leachate was collected from a municipal unsanitary landfill in Qaem-Shahr in the north of Iran. Fenton and Fenton-like processes were conducted by Jar-test method. Photo-Fenton process was performed in a glass photo-reactor. In all processes, H2O2 was used as the oxidant. FeSO4.7H2O and FeCl3.6H2O were used as reagents. All parameters were measured based on standard methods. The results showed that the optimum concentration of H2O2 was equal to 5 g/L for the Fenton-like process and 3 g/L for the Fenton and photo-Fenton processes. The optimum ratio of H2O2: Fe+2/Fe+3 were equal to 8:1 in all processes. At optimum conditions, the amount of COD removal was 69.6%, 65.9% and 83.2% in Fenton, Fenton-like and photo–Fenton processes, respectively. In addition, optimum pH were 3, 5 and 3 and the optimum contact time were 150, 90 and 120 minutes, for Fenton, Fenton-like and photo–Fenton processes, respectively. After all processes, the biodegradability (BOD5/COD ratio) of the treated leachate was increased compared to that of the raw leachate and the highest increase in BOD5/COD ratio was observed in the photo-Fenton process. The efficiency of the Fenton-like process was overally less than Fenton and photo-Fenton processes, meanwhile the Fenton-like process was at higher pH and did not show problems. PMID:23369204
NASA Astrophysics Data System (ADS)
Miza, A. T. N. A.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.
2017-09-01
In this study, Computer Aided Engineering was used for injection moulding simulation. The method of Design of experiment (DOE) was utilize according to the Latin Square orthogonal array. The relationship between the injection moulding parameters and warpage were identify based on the experimental data that used. Response Surface Methodology (RSM) was used as to validate the model accuracy. Then, the RSM and GA method were combine as to examine the optimum injection moulding process parameter. Therefore the optimisation of injection moulding is largely improve and the result shown an increasing accuracy and also reliability. The propose method by combining RSM and GA method also contribute in minimising the warpage from occur.
Optimum strata boundaries and sample sizes in health surveys using auxiliary variables
2018-01-01
Using convenient stratification criteria such as geographical regions or other natural conditions like age, gender, etc., is not beneficial in order to maximize the precision of the estimates of variables of interest. Thus, one has to look for an efficient stratification design to divide the whole population into homogeneous strata that achieves higher precision in the estimation. In this paper, a procedure for determining Optimum Stratum Boundaries (OSB) and Optimum Sample Sizes (OSS) for each stratum of a variable of interest in health surveys is developed. The determination of OSB and OSS based on the study variable is not feasible in practice since the study variable is not available prior to the survey. Since many variables in health surveys are generally skewed, the proposed technique considers the readily-available auxiliary variables to determine the OSB and OSS. This stratification problem is formulated into a Mathematical Programming Problem (MPP) that seeks minimization of the variance of the estimated population parameter under Neyman allocation. It is then solved for the OSB by using a dynamic programming (DP) technique. A numerical example with a real data set of a population, aiming to estimate the Haemoglobin content in women in a national Iron Deficiency Anaemia survey, is presented to illustrate the procedure developed in this paper. Upon comparisons with other methods available in literature, results reveal that the proposed approach yields a substantial gain in efficiency over the other methods. A simulation study also reveals similar results. PMID:29621265
Optimum strata boundaries and sample sizes in health surveys using auxiliary variables.
Reddy, Karuna Garan; Khan, Mohammad G M; Khan, Sabiha
2018-01-01
Using convenient stratification criteria such as geographical regions or other natural conditions like age, gender, etc., is not beneficial in order to maximize the precision of the estimates of variables of interest. Thus, one has to look for an efficient stratification design to divide the whole population into homogeneous strata that achieves higher precision in the estimation. In this paper, a procedure for determining Optimum Stratum Boundaries (OSB) and Optimum Sample Sizes (OSS) for each stratum of a variable of interest in health surveys is developed. The determination of OSB and OSS based on the study variable is not feasible in practice since the study variable is not available prior to the survey. Since many variables in health surveys are generally skewed, the proposed technique considers the readily-available auxiliary variables to determine the OSB and OSS. This stratification problem is formulated into a Mathematical Programming Problem (MPP) that seeks minimization of the variance of the estimated population parameter under Neyman allocation. It is then solved for the OSB by using a dynamic programming (DP) technique. A numerical example with a real data set of a population, aiming to estimate the Haemoglobin content in women in a national Iron Deficiency Anaemia survey, is presented to illustrate the procedure developed in this paper. Upon comparisons with other methods available in literature, results reveal that the proposed approach yields a substantial gain in efficiency over the other methods. A simulation study also reveals similar results.
NASA Technical Reports Server (NTRS)
Wolf, M.
1982-01-01
It was found that the Solarex metallization design and process selection should be modified to yield substantially higher output of the 10 cm x 10 cm cells, while the Westinghouse design is extremely close to the optimum. In addition, further attention to the Solarex pn junction and base high/low junction formation processes could be beneficial. For the future efficiency improvement, it was found that refinement of the various minority carrier lifetime measurement methods is needed, as well as considerably increased sophistication in the interpretation of the results of these methods. In addition, it was determined that further experimental investigation of the Auger lifetime is needed, to conclusively determine the Auger coefficients for the direct Auger recombination at high majority carrier concentrations.
Sellami, Mohamed; Kedachi, Samiha; Frikha, Fakher; Miled, Nabil; Ben Rebah, Faouzi
2013-01-01
Lipase production by Staphylococcus xylosus and Rhizopus oryzae was investigated using a culture medium based on a mixture of synthetic medium and supernatants generated from tuna by-products and Ulva rigida biomass. The proportion of the three medium components was optimized using the simplex-centroid mixture design method (SCMD). Results indicated that the experimental data were in good agreement with predicted values, indicating that SCMD was a reliable method for determining the optimum mixture proportion of the growth medium. Maximal lipase activities of 12.5 and 23.5 IU/mL were obtained with a 50:50 (v:v) mixture of synthetic medium and tuna by-product supernatant for Staphylococcus xylosus and Rhizopus oryzae, respectively. The predicted responses from these mixture proportions were also validated experimentally.
Optimum fiber distribution in singlewall corrugated fiberboard
Millard W. Johnson; Thomas J. Urbanik; William E. Denniston
1979-01-01
Determining optimum distribution of fiber through rational design of corrugated fiberboard could result in significant reductions in fiber required to meet end-use conditions, with subsequent reductions in price pressure and extension of the softwood timber supply. A theory of thin plates under large deformations is developed that is both kinematically and physically...
NASA Technical Reports Server (NTRS)
Stewart, Elwood C.
1961-01-01
The determination of optimum filtering characteristics for guidance system design is generally a tedious process which cannot usually be carried out in general terms. In this report a simple explicit solution is given which is applicable to many different types of problems. It is shown to be applicable to problems which involve optimization of constant-coefficient guidance systems and time-varying homing type systems for several stationary and nonstationary inputs. The solution is also applicable to off-design performance, that is, the evaluation of system performance for inputs for which the system was not specifically optimized. The solution is given in generalized form in terms of the minimum theoretical error, the optimum transfer functions, and the optimum transient response. The effects of input signal, contaminating noise, and limitations on the response are included. From the results given, it is possible in an interception problem, for example, to rapidly assess the effects on minimum theoretical error of such factors as target noise and missile acceleration. It is also possible to answer important questions regarding the effect of type of target maneuver on optimum performance.
Design optimum frac jobs using virtual intelligence techniques
NASA Astrophysics Data System (ADS)
Mohaghegh, Shahab; Popa, Andrei; Ameri, Sam
2000-10-01
Designing optimal frac jobs is a complex and time-consuming process. It usually involves the use of a two- or three-dimensional computer model. For the computer models to perform as intended, a wealth of input data is required. The input data includes wellbore configuration and reservoir characteristics such as porosity, permeability, stress and thickness profiles of the pay layers as well as the overburden layers. Among other essential information required for the design process is fracturing fluid type and volume, proppant type and volume, injection rate, proppant concentration and frac job schedule. Some of the parameters such as fluid and proppant types have discrete possible choices. Other parameters such as fluid and proppant volume, on the other hand, assume values from within a range of minimum and maximum values. A potential frac design for a particular pay zone is a combination of all of these parameters. Finding the optimum combination is not a trivial process. It usually requires an experienced engineer and a considerable amount of time to tune the parameters in order to achieve desirable outcome. This paper introduces a new methodology that integrates two virtual intelligence techniques, namely, artificial neural networks and genetic algorithms to automate and simplify the optimum frac job design process. This methodology requires little input from the engineer beyond the reservoir characterizations and wellbore configuration. The software tool that has been developed based on this methodology uses the reservoir characteristics and an optimization criteria indicated by the engineer, for example a certain propped frac length, and provides the detail of the optimum frac design that will result in the specified criteria. An ensemble of neural networks is trained to mimic the two- or three-dimensional frac simulator. Once successfully trained, these networks are capable of providing instantaneous results in response to any set of input parameters. These networks will be used as the fitness function for a genetic algorithm routine that will search for the best combination of the design parameters for the frac job. The genetic algorithm will search through the entire solution space and identify the optimal combination of parameters to be used in the design process. Considering the complexity of this task this methodology converges relatively fast, providing the engineer with several near-optimum scenarios for the frac job design. These scenarios, which can be achieved in just a minute or two, can be valuable initial points for the engineer to start his/her design job and save him/her hours of runs on the simulator.
Optical restoration of images blurred by atmospheric turbulence using optimum filter theory.
Horner, J L
1970-01-01
The results of optimum filtering from communications theory have been applied to an image restoration problem. Photographic film imagery, degraded by long-term artificial atmospheric turbulence, has been restored by spatial filters placed in the Fourier transform plane. The time-averaged point spread function was measured and used in designing the filters. Both the simple inverse filter and the optimum least-mean-square filters were used in the restoration experiments. The superiority of the latter is conclusively demonstrated. An optical analog processor was used for the restoration.
NASA Technical Reports Server (NTRS)
Williams, F. W.; Anderson, M. S.; Kennedy, D.; Butler, R.; Aston, G.
1990-01-01
A computer program which is designed for efficient, accurate buckling and vibration analysis and optimum design of composite panels is described. The capabilities of the program are given along with detailed user instructions. It is written in FORTRAN 77 and is operational on VAX, IBM, and CDC computers and should be readily adapted to others. Several illustrations of the various aspects of the input are given along the example problems illustrating the use and application of the program.
Design of efficient stiffened shells of revolution
NASA Technical Reports Server (NTRS)
Majumder, D. K.; Thornton, W. A.
1976-01-01
A method to produce efficient piecewise uniform stiffened shells of revolution is presented. The approach uses a first order differential equation formulation for the shell prebuckling and buckling analyses and the necessary conditions for an optimum design are derived by a variational approach. A variety of local yielding and buckling constraints and the general buckling constraint are included in the design process. The local constraints are treated by means of an interior penalty function and the general buckling load is treated by means of an exterior penalty function. This allows the general buckling constraint to be included in the design process only when it is violated. The self-adjoint nature of the prebuckling and buckling formulations is used to reduce the computational effort. Results for four conical shells and one spherical shell are given.
Li, Yan-Liang; Fang, Zhi-Xiang; You, Jing
2013-02-20
A validated method for analyzing Cry proteins is a premise to study the fate and ecological effects of contaminants associated with genetically engineered Bacillus thuringiensis crops. The current study has optimized the extraction method to analyze Cry1Ac protein in soil using a response surface methodology with a three-level-three-factor Box-Behnken experimental design (BBD). The optimum extraction conditions were at 21 °C and 630 rpm for 2 h. Regression analysis showed a good fit of the experimental data to the second-order polynomial model with a coefficient of determination of 0.96. The method was sensitive and precise with a method detection limit of 0.8 ng/g dry weight and relative standard deviations at 7.3%. Finally, the established method was applied for analyzing Cry1Ac protein residues in field-collected soil samples. Trace amounts of Cry1Ac protein were detected in the soils where transgenic crops have been planted for 8 and 12 years.
Optimization of an electromagnetic linear actuator using a network and a finite element model
NASA Astrophysics Data System (ADS)
Neubert, Holger; Kamusella, Alfred; Lienig, Jens
2011-03-01
Model based design optimization leads to robust solutions only if the statistical deviations of design, load and ambient parameters from nominal values are considered. We describe an optimization methodology that involves these deviations as stochastic variables for an exemplary electromagnetic actuator used to drive a Braille printer. A combined model simulates the dynamic behavior of the actuator and its non-linear load. It consists of a dynamic network model and a stationary magnetic finite element (FE) model. The network model utilizes lookup tables of the magnetic force and the flux linkage computed by the FE model. After a sensitivity analysis using design of experiment (DoE) methods and a nominal optimization based on gradient methods, a robust design optimization is performed. Selected design variables are involved in form of their density functions. In order to reduce the computational effort we use response surfaces instead of the combined system model obtained in all stochastic analysis steps. Thus, Monte-Carlo simulations can be applied. As a result we found an optimum system design meeting our requirements with regard to function and reliability.
Multiobjective optimization techniques for structural design
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The multiobjective programming techniques are important in the design of complex structural systems whose quality depends generally on a number of different and often conflicting objective functions which cannot be combined into a single design objective. The applicability of multiobjective optimization techniques is studied with reference to simple design problems. Specifically, the parameter optimization of a cantilever beam with a tip mass and a three-degree-of-freedom vabration isolation system and the trajectory optimization of a cantilever beam are considered. The solutions of these multicriteria design problems are attempted by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It has been observed that the game theory approach required the maximum computational effort, but it yielded better optimum solutions with proper balance of the various objective functions in all the cases.
Operational modes, health, and status monitoring
NASA Astrophysics Data System (ADS)
Taljaard, Corrie
2016-08-01
System Engineers must fully understand the system, its support system and operational environment to optimise the design. Operations and Support Managers must also identify the correct metrics to measure the performance and to manage the operations and support organisation. Reliability Engineering and Support Analysis provide methods to design a Support System and to optimise the Availability of a complex system. Availability modelling and Failure Analysis during the design is intended to influence the design and to develop an optimum maintenance plan for a system. The remote site locations of the SKA Telescopes place emphasis on availability, failure identification and fault isolation. This paper discusses the use of Failure Analysis and a Support Database to design a Support and Maintenance plan for the SKA Telescopes. It also describes the use of modelling to develop an availability dashboard and performance metrics.
CFD-Based Design Optimization Tool Developed for Subsonic Inlet
NASA Technical Reports Server (NTRS)
1995-01-01
The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the optimum design satisfied the upper limits at takeoff and rolling takeoff while retaining the desirable cruise performance. Further studies are being conducted to include static and cross-wind operating conditions in the design optimization procedure. This work was carried out in collaboration with Dr. E.S. Reddy of NYMA, Inc.
NASA Astrophysics Data System (ADS)
Huang, Chuan; Guo, Peng; Yang, Aiying; Qiao, Yaojun
2018-07-01
In single channel systems, the nonlinear phase noise only comes from the channel itself through self-phase modulation (SPM). In this paper, a fast-nonlinear effect estimation method is proposed based on fractional Fourier transformation (FrFT). The nonlinear phase noise caused by Self-phase modulation effect is accurately estimated for single model 10Gbaud OOK and RZ-QPSK signals with the fiber length range of 0-200 km and the launch power range of 1-10 mW. The pulse windowing is adopted to search the optimum fractional order for the OOK and RZ-QPSK signals. Since the nonlinear phase shift caused by the SPM effect is very small, the accurate optimum fractional order of the signal cannot be found based on the traditional method. In this paper, a new method magnifying the phase shift is proposed to get the accurate optimum order and thus the nonlinear phase shift is calculated. The simulation results agree with the theoretical analysis and the method is applicable to signals whose pulse type has the similar characteristics with Gaussian pulse.
High-performance radial AMTEC cell design for ultra-high-power solar AMTEC systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, T.J.; Huang, C.
1999-07-01
Alkali Metal Thermal to Electric Conversion (AMTEC) technology is rapidly maturing for potential application in ultra-high-power solar AMTEC systems required by potential future US Air Force (USAF) spacecraft missions in medium-earth and geosynchronous orbits (MEO and GEO). Solar thermal AMTEC power systems potentially have several important advantages over current solar photovoltaic power systems in ultra-high-power spacecraft applications for USAF MEO and GEO missions. This work presents key aspects of radial AMTEC cell design to achieve high cell performance in solar AMTEC systems delivering larger than 50 kW(e) to support high power USAF missions. These missions typically require AMTEC cell conversionmore » efficiency larger than 25%. A sophisticated design parameter methodology is described and demonstrated which establishes optimum design parameters in any radial cell design to satisfy high-power mission requirements. Specific relationships, which are distinct functions of cell temperatures and pressures, define critical dependencies between key cell design parameters, particularly the impact of parasitic thermal losses on Beta Alumina Solid Electrolyte (BASE) area requirements, voltage, number of BASE tubes, and system power production for both maximum power-per-BASE-area and optimum efficiency conditions. Finally, some high-level system tradeoffs are demonstrated using the design parameter methodology to establish high-power radial cell design requirements and philosophy. The discussion highlights how to incorporate this methodology with sophisticated SINDA/FLUINT AMTEC cell modeling capabilities to determine optimum radial AMTEC cell designs.« less
NASA Technical Reports Server (NTRS)
Olds, John Robert; Walberg, Gerald D.
1993-01-01
Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are determined for the vehicle. A summary and evaluation of the various parametric MDO methods employed in the research are included. Recommendations for additional research are provided.
GEOS-2 C-band radar system project. Spectral analysis as related to C-band radar data analysis
NASA Technical Reports Server (NTRS)
1972-01-01
Work performed on spectral analysis of data from the C-band radars tracking GEOS-2 and on the development of a data compaction method for the GEOS-2 C-band radar data is described. The purposes of the spectral analysis study were to determine the optimum data recording and sampling rates for C-band radar data and to determine the optimum method of filtering and smoothing the data. The optimum data recording and sampling rate is defined as the rate which includes an optimum compromise between serial correlation and the effects of frequency folding. The goal in development of a data compaction method was to reduce to a minimum the amount of data stored, while maintaining all of the statistical information content of the non-compacted data. A digital computer program for computing estimates of the power spectral density function of sampled data was used to perform the spectral analysis study.
NASA Astrophysics Data System (ADS)
Ataei, Milad; Robert, Christian; Boegli, Alexis; Farine, Pierre-André
2014-11-01
This paper describes a design procedure for an efficient body thermal energy harvesting integrated power converter. This procedure is based on loss examination for a selfpowered medical device. All optimum system parameters are calculated respecting the transducer constraints and the application form factor. It is found that it is possible to optimize converter's working frequency with proper design of its pulse generator circuit. At selected frequency, it has been demonstrated that wide area voltage doubler can be eliminated at the expense of wider switches. With this method, more than 60% efficiency is achieved in simulation for just 20mV transducer output voltage and 30% of entire chip area is saved.
Technology needs for high-speed rotorcraft, volume 1
NASA Technical Reports Server (NTRS)
Wilkerson, J. B.; Schneider, J. J.; Bartie, K. M.
1991-01-01
High-speed rotorcraft concepts and the technology needed to extend rotorcraft cruise speeds up to 450 knots (while retaining the helicopter attributes of low downwash velocities) were identified. Task I identified 20 concepts with high-speed potential. These concepts were qualitatively evaluated to determine the five most promising ones. These five concepts were designed with optimum wing loading and disk loading to a common NASA-defined military transport mission. The optimum designs were quantitatively compared against 11 key criteria and ranked accordingly. The two highest ranking concepts were selected for the further study.
NASA Technical Reports Server (NTRS)
Sullivan, T. J.; Parker, D. E.
1979-01-01
A design technology study was performed to identify a high speed, multistage, variable geometry fan configuration capable of achieving wide flow modulation with near optimum efficiency at the important operating condition. A parametric screening study of the front and rear block fans was conducted in which the influence of major fan design features on weight and efficiency was determined. Key design parameters were varied systematically to determine the fan configuration most suited for a double bypass, variable cycle engine. Two and three stage fans were considered for the front block. A single stage, core driven fan was studied for the rear block. Variable geometry concepts were evaluated to provide near optimum off design performance. A detailed aerodynamic design and a preliminary mechanical design were carried out for the selected fan configuration. Performance predictions were made for the front and rear block fans.
Exchange inlet optimization by genetic algorithm for improved RBCC performance
NASA Astrophysics Data System (ADS)
Chorkawy, G.; Etele, J.
2017-09-01
A genetic algorithm based on real parameter representation using a variable selection pressure and variable probability of mutation is used to optimize an annular air breathing rocket inlet called the Exchange Inlet. A rapid and accurate design method which provides estimates for air breathing, mixing, and isentropic flow performance is used as the engine of the optimization routine. Comparison to detailed numerical simulations show that the design method yields desired exit Mach numbers to within approximately 1% over 75% of the annular exit area and predicts entrained air massflows to between 1% and 9% of numerically simulated values depending on the flight condition. Optimum designs are shown to be obtained within approximately 8000 fitness function evaluations in a search space on the order of 106. The method is also shown to be able to identify beneficial values for particular alleles when they exist while showing the ability to handle cases where physical and aphysical designs co-exist at particular values of a subset of alleles within a gene. For an air breathing engine based on a hydrogen fuelled rocket an exchange inlet is designed which yields a predicted air entrainment ratio within 95% of the theoretical maximum.
New latent heat storage system with nanoparticles for thermal management of electric vehicles
NASA Astrophysics Data System (ADS)
Javani, N.; Dincer, I.; Naterer, G. F.
2014-12-01
In this paper, a new passive thermal management system for electric vehicles is developed. A latent heat thermal energy storage with nanoparticles is designed and optimized. A genetic algorithm method is employed to minimize the length of the heat exchanger tubes. The results show that even the optimum length of a shell and tube heat exchanger becomes too large to be employed in a vehicle. This is mainly due to the very low thermal conductivity of phase change material (PCM) which fills the shell side of the heat exchanger. A carbon nanotube (CNT) and PCM mixture is then studied where the probability of nanotubes in a series configuration is defined as a deterministic design parameter. Various heat transfer rates, ranging from 300 W to 600 W, are utilized to optimize battery cooling options in the heat exchanger. The optimization results show that smaller tube diameters minimize the heat exchanger length. Furthermore, finned tubes lead to a higher heat exchanger length due to more heat transfer resistance. By increasing the CNT concentration, the optimum length of the heat exchanger decreases and makes the improved thermal management system a more efficient and competitive with air and liquid thermal management systems.
Santos Felix, Antonio C; Novaes, Cleber G; Pires Rocha, Maísla; Barreto, George E; do Nascimento, Baraquizio B; Giraldez Alvarez, Lisandro D
2017-01-01
In this study, we have determined, using RSM (mixture design and Doehlert matrix), the optimum values of the independent variables to achieve the maximum response for the extraction of total phenolic compounds from Spondias mombin L bagasse agroindustrial residues in order to preserve their antioxidant activity. The extraction of phenolic compounds, as well as their antioxidant capacity and the capacity to scavenge ABTS, was determined by the modified DPPH method at different periods of time, temperature, velocity of rotation and solvents concentration. We observed that the optimum condition for the highest antioxidant yield was obtained using water (60.84%), acetone (30.31%), and ethanol (8.85%) at 30°C during 20 min at 50 rpm. We have also found that the maximum yield of total phenolics was 355.63 ± 9.77 (mg GAE/100 g), showing an EC 50 of 3,962.24 ± 41.20 (g fruit/g of DPPH) and 8.36 ± 0.30 (μM trolox/g fruit), which were measured using DPPH and ABTS assays. These results suggest that RSM was successfully applied for optimizing the extraction of phenolics compounds thus preserving their antioxidant activity.
Optimization of Premix Powders for Tableting Use.
Todo, Hiroaki; Sato, Kazuki; Takayama, Kozo; Sugibayashi, Kenji
2018-05-08
Direct compression is a popular choice as it provides the simplest way to prepare the tablet. It can be easily adopted when the active pharmaceutical ingredient (API) is unstable in water or to thermal drying. An optimal formulation of preliminary mixed powders (premix powders) is beneficial if prepared in advance for tableting use. The aim of this study was to find the optimal formulation of the premix powders composed of lactose (LAC), cornstarch (CS), and microcrystalline cellulose (MCC) by using statistical techniques. Based on the "Quality by Design" concept, a (3,3)-simplex lattice design consisting of three components, LAC, CS, and MCC was employed to prepare the model premix powders. Response surface method incorporating a thin-plate spline interpolation (RSM-S) was applied for estimation of the optimum premix powders for tableting use. The effect of tablet shape identified by the surface curvature on the optimization was investigated. The optimum premix powder was effective when the premix was applied to a small quantity of API, although the function of premix was limited in the case of the formulation of large amount of API. Statistical techniques are valuable to exploit new functions of well-known materials such as LAC, CS, and MCC.
NASA Technical Reports Server (NTRS)
Peterson, James P.; Bruce, Walter E., Jr.
1959-01-01
The results of bending tests on six multiweb beams of optimum weight-strength design are presented. The internal structure of the beams consisted of various combinations of two types of full-depth solid webs and a post-stringer web. The observed structural behavior, buckling load, and failing load of the beams are compared with results obtained by the use of existing methods of analysis and found to be quite predictable.
Shuttle Ku-band signal design study
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Braun, W. R.; Mckenzie, T. M.
1978-01-01
Carrier synchronization and data demodulation of Unbalanced Quadriphase Shift Keyed (UQPSK) Shuttle communications' signals by optimum and suboptimum methods are discussed. The problem of analyzing carrier reconstruction techniques for unbalanced QPSK signal formats is addressed. An evaluation of the demodulation approach of the Ku-Band Shuttle return link for UQPSK when the I-Q channel power ratio is large is carried out. The effects that Shuttle rocket motor plumes have on the RF communications are determined also. The effect of data asymmetry on bit error probability is discussed.
The design of optimum remote-sensing instruments
NASA Technical Reports Server (NTRS)
Peckham, G. E.; Flower, D. A.
1983-01-01
Remote-sensing instruments allow values for certain properties of a target to be retrieved from measurements of radiation emitted, reflected or transmitted by the target. The retrieval accuracy is affected by random variations in the many target properties which affect the measurements. A method is described, by which statistical properties of the target and theoretical models of its electromagnetic behavior can be used to choose values for the instrument parameters which maximize the retrieval accuracy. The technique is applicable to a wide range of remote-sensing instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrovskii, G.M.; Platonov, V.M.; Zhvanetskii, I.B.
The problem of designing optimum rectification separation systems (r.s.) in two-section columns with heat recovery is discussed. This is an important problem because the cost of the energy consumed can reached 70% of the total cost of the r.s. It is shown that the problem may be reduced to one of integral linear programming, for which well-developed methods of solution are available. It is assumed that: 1) the pressure is constant in all rectification columns, and 2) the streams may exchange heat only once.
System Synthesis in Preliminary Aircraft Design using Statistical Methods
NASA Technical Reports Server (NTRS)
DeLaurentis, Daniel; Mavris, Dimitri N.; Schrage, Daniel P.
1996-01-01
This paper documents an approach to conceptual and preliminary aircraft design in which system synthesis is achieved using statistical methods, specifically design of experiments (DOE) and response surface methodology (RSM). These methods are employed in order to more efficiently search the design space for optimum configurations. In particular, a methodology incorporating three uses of these techniques is presented. First, response surface equations are formed which represent aerodynamic analyses, in the form of regression polynomials, which are more sophisticated than generally available in early design stages. Next, a regression equation for an overall evaluation criterion is constructed for the purpose of constrained optimization at the system level. This optimization, though achieved in a innovative way, is still traditional in that it is a point design solution. The methodology put forward here remedies this by introducing uncertainty into the problem, resulting a solutions which are probabilistic in nature. DOE/RSM is used for the third time in this setting. The process is demonstrated through a detailed aero-propulsion optimization of a high speed civil transport. Fundamental goals of the methodology, then, are to introduce higher fidelity disciplinary analyses to the conceptual aircraft synthesis and provide a roadmap for transitioning from point solutions to probabalistic designs (and eventually robust ones).
ERIC Educational Resources Information Center
Ratcliff, Dale L.
Designed as a tool for vocational agriculture instructors to use in helping their students plan livestock enterprises that they will use as a part of their supervised occupational experience programs, this microcomputer program enables students to compare livestock enterprises for optimum combination of labor and capital resources to produce…
A technique for integrating engine cycle and aircraft configuration optimization
NASA Technical Reports Server (NTRS)
Geiselhart, Karl A.
1994-01-01
A method for conceptual aircraft design that incorporates the optimization of major engine design variables for a variety of cycle types was developed. The methodology should improve the lengthy screening process currently involved in selecting an appropriate engine cycle for a given application or mission. The new capability will allow environmental concerns such as airport noise and emissions to be addressed early in the design process. The ability to rapidly perform optimization and parametric variations using both engine cycle and aircraft design variables, and to see the impact on the aircraft, should provide insight and guidance for more detailed studies. A brief description of the aircraft performance and mission analysis program and the engine cycle analysis program that were used is given. A new method of predicting propulsion system weight and dimensions using thermodynamic cycle data, preliminary design, and semi-empirical techniques is introduced. Propulsion system performance and weights data generated by the program are compared with industry data and data generated using well established codes. The ability of the optimization techniques to locate an optimum is demonstrated and some of the problems that had to be solved to accomplish this are illustrated. Results from the application of the program to the analysis of three supersonic transport concepts installed with mixed flow turbofans are presented. The results from the application to a Mach 2.4, 5000 n.mi. transport indicate that the optimum bypass ratio is near 0.45 with less than 1 percent variation in minimum gross weight for bypass ratios ranging from 0.3 to 0.6. In the final application of the program, a low sonic boom fix a takeoff gross weight concept that would fly at Mach 2.0 overwater and at Mach 1.6 overland is compared with a baseline concept of the same takeoff gross weight that would fly Mach 2.4 overwater and subsonically overland. The results indicate that for the design mission, the low boom concept has a 5 percent total range penalty relative to the baseline. Additional cycles were optimized for various design overland distances and the effect of flying off-design overland distances is illustrated.
Hybrid Genetic Algorithm - Local Search Method for Ground-Water Management
NASA Astrophysics Data System (ADS)
Chiu, Y.; Nishikawa, T.; Martin, P.
2008-12-01
Ground-water management problems commonly are formulated as a mixed-integer, non-linear programming problem (MINLP). Relying only on conventional gradient-search methods to solve the management problem is computationally fast; however, the methods may become trapped in a local optimum. Global-optimization schemes can identify the global optimum, but the convergence is very slow when the optimal solution approaches the global optimum. In this study, we developed a hybrid optimization scheme, which includes a genetic algorithm and a gradient-search method, to solve the MINLP. The genetic algorithm identifies a near- optimal solution, and the gradient search uses the near optimum to identify the global optimum. Our methodology is applied to a conjunctive-use project in the Warren ground-water basin, California. Hi- Desert Water District (HDWD), the primary water-manager in the basin, plans to construct a wastewater treatment plant to reduce future septic-tank effluent from reaching the ground-water system. The treated wastewater instead will recharge the ground-water basin via percolation ponds as part of a larger conjunctive-use strategy, subject to State regulations (e.g. minimum distances and travel times). HDWD wishes to identify the least-cost conjunctive-use strategies that control ground-water levels, meet regulations, and identify new production-well locations. As formulated, the MINLP objective is to minimize water-delivery costs subject to constraints including pump capacities, available recharge water, water-supply demand, water-level constraints, and potential new-well locations. The methodology was demonstrated by an enumerative search of the entire feasible solution and comparing the optimum solution with results from the branch-and-bound algorithm. The results also indicate that the hybrid method identifies the global optimum within an affordable computation time. Sensitivity analyses, which include testing different recharge-rate scenarios, pond layouts, and water-supply constraints, indicate that the number of new wells is insensitive to water-supply constraints; however, pumping rates and patterns of the existing wells are sensitive. The locations of new wells are mildly sensitive to the pond layout.
NASA Technical Reports Server (NTRS)
Stanley, Douglas O.; Unal, Resit; Joyner, C. R.
1992-01-01
The application of advanced technologies to future launch vehicle designs would allow the introduction of a rocket-powered, single-stage-to-orbit (SSTO) launch system early in the next century. For a selected SSTO concept, a dual mixture ratio, staged combustion cycle engine that employs a number of innovative technologies was selected as the baseline propulsion system. A series of parametric trade studies are presented to optimize both a dual mixture ratio engine and a single mixture ratio engine of similar design and technology level. The effect of varying lift-off thrust-to-weight ratio, engine mode transition Mach number, mixture ratios, area ratios, and chamber pressure values on overall vehicle weight is examined. The sensitivity of the advanced SSTO vehicle to variations in each of these parameters is presented, taking into account the interaction of each of the parameters with each other. This parametric optimization and sensitivity study employs a Taguchi design method. The Taguchi method is an efficient approach for determining near-optimum design parameters using orthogonal matrices from design of experiments (DOE) theory. Using orthogonal matrices significantly reduces the number of experimental configurations to be studied. The effectiveness and limitations of the Taguchi method for propulsion/vehicle optimization studies as compared to traditional single-variable parametric trade studies is also discussed.
Design and Optimization Method of a Two-Disk Rotor System
NASA Astrophysics Data System (ADS)
Huang, Jingjing; Zheng, Longxi; Mei, Qing
2016-04-01
An integrated analytical method based on multidisciplinary optimization software Isight and general finite element software ANSYS was proposed in this paper. Firstly, a two-disk rotor system was established and the mode, humorous response and transient response at acceleration condition were analyzed with ANSYS. The dynamic characteristics of the two-disk rotor system were achieved. On this basis, the two-disk rotor model was integrated to the multidisciplinary design optimization software Isight. According to the design of experiment (DOE) and the dynamic characteristics, the optimization variables, optimization objectives and constraints were confirmed. After that, the multi-objective design optimization of the transient process was carried out with three different global optimization algorithms including Evolutionary Optimization Algorithm, Multi-Island Genetic Algorithm and Pointer Automatic Optimizer. The optimum position of the two-disk rotor system was obtained at the specified constraints. Meanwhile, the accuracy and calculation numbers of different optimization algorithms were compared. The optimization results indicated that the rotor vibration reached the minimum value and the design efficiency and quality were improved by the multidisciplinary design optimization in the case of meeting the design requirements, which provided the reference to improve the design efficiency and reliability of the aero-engine rotor.
Improving fault image by determination of optimum seismic survey parameters using ray-based modeling
NASA Astrophysics Data System (ADS)
Saffarzadeh, Sadegh; Javaherian, Abdolrahim; Hasani, Hossein; Talebi, Mohammad Ali
2018-06-01
In complex structures such as faults, salt domes and reefs, specifying the survey parameters is more challenging and critical owing to the complicated wave field behavior involved in such structures. In the petroleum industry, detecting faults has become crucial for reservoir potential where faults can act as traps for hydrocarbon. In this regard, seismic survey modeling is employed to construct a model close to the real structure, and obtain very realistic synthetic seismic data. Seismic modeling software, the velocity model and parameters pre-determined by conventional methods enable a seismic survey designer to run a shot-by-shot virtual survey operation. A reliable velocity model of structures can be constructed by integrating the 2D seismic data, geological reports and the well information. The effects of various survey designs can be investigated by the analysis of illumination maps and flower plots. Also, seismic processing of the synthetic data output can describe the target image using different survey parameters. Therefore, seismic modeling is one of the most economical ways to establish and test the optimum acquisition parameters to obtain the best image when dealing with complex geological structures. The primary objective of this study is to design a proper 3D seismic survey orientation to achieve fault zone structures through ray-tracing seismic modeling. The results prove that a seismic survey designer can enhance the image of fault planes in a seismic section by utilizing the proposed modeling and processing approach.
Design of A Cyclone Separator Using Approximation Method
NASA Astrophysics Data System (ADS)
Sin, Bong-Su; Choi, Ji-Won; Lee, Kwon-Hee
2017-12-01
A Separator is a device installed in industrial applications to separate mixed objects. The separator of interest in this research is a cyclone type, which is used to separate a steam-brine mixture in a geothermal plant. The most important performance of the cyclone separator is the collection efficiency. The collection efficiency in this study is predicted by performing the CFD (Computational Fluid Dynamics) analysis. This research defines six shape design variables to maximize the collection efficiency. Thus, the collection efficiency is set up as the objective function in optimization process. Since the CFD analysis requires a lot of calculation time, it is impossible to obtain the optimal solution by linking the gradient-based optimization algorithm. Thus, two approximation methods are introduced to obtain an optimum design. In this process, an L18 orthogonal array is adopted as a DOE method, and kriging interpolation method is adopted to generate the metamodel for the collection efficiency. Based on the 18 analysis results, the relative importance of each variable to the collection efficiency is obtained through the ANOVA (analysis of variance). The final design is suggested considering the results obtained from two optimization methods. The fluid flow analysis of the cyclone separator is conducted by using the commercial CFD software, ANSYS-CFX.
NASA Astrophysics Data System (ADS)
Parlak, Zekeriya
2018-05-01
Design concept of microchannel heat exchangers is going to plan with new flow microchannel configuration to reduce the pressure drop and improve heat transfer performance. The study aims to find optimum microchannel design providing the best performance of flow and heat transfer characterization in a heat sink. Therefore, three different types of microchannels in which water is used, straight, wavy and zigzag have been studied. The optimization operation has been performed to find optimum geometry with ANSYS's Response Surface Optimization Tool. Primarily, CFD analysis has been performed by parameterizing a wavy microchannel geometry. Optimum wavy microchannel design has been obtained by the response surface created for the range of velocity from 0.5 to 5, the range of amplitude from 0.06 to 0.3, the range of microchannel height from 0.1 to 0.2, the range of microchannel width from 0.1 to 0.2 and range of sinusoidal wave length from 0.25 to 2.0. All simulations have been performed in the laminar regime for Reynolds number ranging from 100 to 900. Results showed that the Reynolds number range corresponding to the industrial pressure drop limits is between 100 and 400. Nu values obtained in this range for optimum wavy geometry were found at a rate of 10% higher than those of the zigzag channel and 40% higher than those of the straight channels. In addition, when the pressure values of the straight channel did not exceed 10 kPa, the inlet pressure data calculated for zigzag and wavy channel data almost coincided with each other.
An experimental investigation of the flow physics of high-lift systems
NASA Technical Reports Server (NTRS)
Thomas, Flint O.; Nelson, R. C.
1995-01-01
This progress report, a series of viewgraphs, outlines experiments on the flow physics of confluent boundary layers for high lift systems. The design objective is to design high lift systems with improved C(sub Lmax) for landing approach and improved take-off L/D and simultaneously reduce acquisition and maintenance costs. In effect, achieve improved performance with simpler designs. The research objectives include: establish the role of confluent boundary layer flow physics in high-lift production; contrast confluent boundary layer structure for optimum and non-optimum C(sub L) cases; formation of a high quality, detailed archival data base for CFD/modeling; and examination of the role of relaminarization and streamline curvature.
Transformer miniaturization for transcutaneous current/voltage pulse applications.
Kolen, P T
1999-05-01
A general procedure for the design of a miniaturized step up transformer to be used in the context of surface electrode based current/voltage pulse generation is presented. It has been shown that the optimum secondary current pulse width is 4.5 tau, where tau is the time constant associated with the pulse forming network associated with the transformer/electrode interaction. This criteria has been shown to produce the highest peak to average current ratio for the secondary current pulse. The design procedure allows for the calculation of the optimum turns ratio, primary turns, and secondary turns for a given electrode load/tissue and magnetic core parameters. Two design examples for transformer optimization are presented.
Analytical Approach to the Fuel Optimal Impulsive Transfer Problem Using Primer Vector Method
NASA Astrophysics Data System (ADS)
Fitrianingsih, E.; Armellin, R.
2018-04-01
One of the objectives of mission design is selecting an optimum orbital transfer which often translated as a transfer which requires minimum propellant consumption. In order to assure the selected trajectory meets the requirement, the optimality of transfer should first be analyzed either by directly calculating the ΔV of the candidate trajectories and select the one that gives a minimum value or by evaluating the trajectory according to certain criteria of optimality. The second method is performed by analyzing the profile of the modulus of the thrust direction vector which is known as primer vector. Both methods come with their own advantages and disadvantages. However, it is possible to use the primer vector method to verify if the result from the direct method is truly optimal or if the ΔV can be reduced further by implementing correction maneuver to the reference trajectory. In addition to its capability to evaluate the transfer optimality without the need to calculate the transfer ΔV, primer vector also enables us to identify the time and position to apply correction maneuver in order to optimize a non-optimum transfer. This paper will present the analytical approach to the fuel optimal impulsive transfer using primer vector method. The validity of the method is confirmed by comparing the result to those from the numerical method. The investigation of the optimality of direct transfer is used to give an example of the application of the method. The case under study is the prograde elliptic transfers from Earth to Mars. The study enables us to identify the optimality of all the possible transfers.
Optimization of fermentation conditions for alcohol production.
Bowman, L; Geiger, E
1984-12-01
The quantitative effects of carbohydrate levels, degree of initial saccharification, glucoamylase dosage, temperature, and fermentation time were investigated using a Box-Wilson central composite design protocol. With Saccharomyces cerevisiae ATCC 4126, it was found that the use of a partially saccharified starch substrate markedly increased yields and attainable alcohol levels. Balancing the degree of initial saccharification with the level of glucoamylase used to complete hydrolysis was found necessary to obtain optimum yields. The temperature optimum was found to be 36 degrees C. The regression equations obtained were used to model the fermentation in order to determine optimum fermentation conditions.
Mohammadian, Narges; Ghoreishi, Seyyed M.; Hafeziyeh, Samira; Saeidi, Samrand; Dionysiou, Dionysios D.
2018-01-01
The growing use of carbon nanotubes (CNTs) in a plethora of applications has provided to us a motivation to investigate CNT synthesis by new methods. In this study, ultrasonic-assisted chemical vapor deposition (CVD) method was employed to synthesize CNTs. The difficulty of controlling the size of clusters and achieving uniform distribution—the major problem in previous methods—was solved by using ultrasonic bath and dissolving ferrocene in xylene outside the reactor. The operating conditions were optimized using a rotatable central composite design (CCD), which helped optimize the operating conditions of the method. Response surface methodology (RSM) was used to analyze these experiments. Using statistical software was very effective, considering that it decreased the number of experiments needed to achieve the optimum conditions. Synthesis of CNTs was studied as a function of three independent parameters viz. hydrogen flow rate (120–280 cm3/min), catalyst concentration (2–6 wt %), and synthesis temperature (800–1200 °C). Optimum conditions for the synthesis of CNTs were found to be 3.78 wt %, 184 cm3/min, and 976 °C for catalyst concentration, hydrogen flow rate, and synthesis temperature, respectively. Under these conditions, Raman spectrum indicates high values of (IG/ID), which means high-quality CNTs. PMID:29747451
NASA Astrophysics Data System (ADS)
Sanchez del Rio, Manuel; Pareschi, Giovanni
2001-01-01
The x-ray reflectivity of a multilayer is a non-linear function of many parameters (materials, layer thicknesses, densities, roughness). Non-linear fitting of experimental data with simulations requires to use initial values sufficiently close to the optimum value. This is a difficult task when the space topology of the variables is highly structured, as in our case. The application of global optimization methods to fit multilayer reflectivity data is presented. Genetic algorithms are stochastic methods based on the model of natural evolution: the improvement of a population along successive generations. A complete set of initial parameters constitutes an individual. The population is a collection of individuals. Each generation is built from the parent generation by applying some operators (e.g. selection, crossover, mutation) on the members of the parent generation. The pressure of selection drives the population to include 'good' individuals. For large number of generations, the best individuals will approximate the optimum parameters. Some results on fitting experimental hard x-ray reflectivity data for Ni/C multilayers recorded at the ESRF BM5 are presented. This method could be also applied to the help in the design of multilayers optimized for a target application, like for an astronomical grazing-incidence hard X-ray telescopes.
Dorival-García, N; Bones, J
2017-08-25
A method for the identification of leachables in chemically defined media for CHO cell culture using dispersive liquid-liquid microextraction (DLLME) and UHPLC-MS is described. A Box-Behnken design of experiments (DoE) approach was applied to obtain the optimum extraction conditions of the target analytes. Performance of DLLME as extraction technique was studied by comparison of two commercial chemically defined media for CHO cell culture. General extraction conditions for any group of leachables, regardless of their specific chemical functionalities can be applied and similar optimum conditions were obtained with the two media. Extraction efficiency and matrix effects were determined. The method was validated using matrix-matched standard calibration followed by recovery assays with spiked samples. Finally, cell culture media was incubated in 7 single use bioreactors (SUBs) from different vendors and analysed. TBPP was not detected in any of the samples, whereas DtBP and TBPP-ox were found in all samples, with bDtBPP detected in six SUBs. This method can be used for early identification of non-satisfactory SUB films for cultivation of CHO cell lines for biopharmaceutical production. Copyright © 2017 Elsevier B.V. All rights reserved.
Theory and applications for optimization of every part of a photovoltaic system
NASA Technical Reports Server (NTRS)
Redfield, D.
1978-01-01
A general method is presented for quantitatively optimizing the design of every part and fabrication step of an entire photovoltaic system, based on the criterion of minimum cost/Watt for the system output power. It is shown that no element or process step can be optimized properly by considering only its own cost and performance. Moreover, a fractional performance loss at any fabrication step within the cell or array produces the same fractional increase in the cost/Watt of the entire array, but not of the full system. One general equation is found to be capable of optimizing all parts of a system, although the cell and array steps are basically different from the power-handling elements. Applications of this analysis are given to show (1) when Si wafers should be cut to increase their packing fraction; and (2) what the optimum dimensions for solar cell metallizations are. The optimum shadow fraction of the fine grid is shown to be independent of metal cost and resistivity as well as cell size. The optimum thicknesses of both the fine grid and the bus bar are substantially greater than the values in general use, and the total array cost has a major effect on these values. By analogy, this analysis is adaptable to other solar energy systems.
Guvenc, Senem Yazici; Okut, Yusuf; Ozak, Mert; Haktanir, Birsu; Bilgili, Mehmet Sinan
2017-02-01
In this study, process parameters in chemical oxygen demand (COD) and turbidity removal from metal working industry (MWI) wastewater were optimized by electrocoagulation (EC) using aluminum, iron and steel electrodes. The effects of process variables on COD and turbidity were investigated by developing a mathematical model using central composite design method, which is one of the response surface methodologies. Variance analysis was conducted to identify the interaction between process variables and model responses and the optimum conditions for the COD and turbidity removal. Second-order regression models were developed via the Statgraphics Centurion XVI.I software program to predict COD and turbidity removal efficiencies. Under the optimum conditions, removal efficiencies obtained from aluminum electrodes were found to be 76.72% for COD and 99.97% for turbidity, while the removal efficiencies obtained from iron electrodes were found to be 76.55% for COD and 99.9% for turbidity and the removal efficiencies obtained from steel electrodes were found to be 65.75% for COD and 99.25% for turbidity. Operational costs at optimum conditions were found to be 4.83, 1.91 and 2.91 €/m 3 for aluminum, iron and steel electrodes, respectively. Iron electrode was found to be more suitable for MWI wastewater treatment in terms of operational cost and treatment efficiency.
Kimmel, Stacy A.; Roberts, Robert F.; Ziegler, Gregory R.
1998-01-01
The optimal fermentation temperature, pH, and Bacto-casitone (Difco Laboratories, Detroit, Mich.) concentration for production of exopolysaccharide by Lactobacillus delbrueckii subsp. bulgaricus RR in a semidefined medium were determined by using response surface methods. The design consisted of 20 experiments, 15 unique combinations, and five replications. All fermentations were conducted in a fermentor with a 2.5-liter working volume and were terminated when 90% of the glucose in the medium had been consumed. The population of L. delbrueckii subsp. bulgaricus RR and exopolysaccharide content were measured at the end of each fermentation. The optimum temperature, pH, and Bacto-casitone concentration for exopolysaccharide production were 38°C, 5, and 30 g/liter, respectively, with a predicted yield of 295 mg of exopolysaccharide/liter. The actual yield under these conditions was 354 mg of exopolysaccharide/liter, which was within the 95% confidence interval (217 to 374 mg of exopolysaccharide/liter). An additional experiment conducted under optimum conditions showed that exopolysaccharide production was growth associated, with a specific production at the endpoint of 101.4 mg/g of dry cells. Finally, to obtain material for further characterization, a 100-liter fermentation was conducted under optimum conditions. Twenty-nine grams of exopolysaccharide was isolated from centrifuged, ultrafiltered fermentation broth by ethanol precipitation. PMID:9464404
Three-dimensional imaging from a unidirectional hologram: wide-viewing-zone projection type.
Okoshi, T; Oshima, K
1976-04-01
In ordinary holography reconstructing a virtual image, the hologram must be wider than either the visual field or the viewing zone. In this paper, an economical method of recording a wide-viewing-zone wide-visual-field 3-D holographic image is proposed. In this method, many mirrors are used to collect object waves onto a small hologram. In the reconstruction, a real image from the hologram is projected onto a horizontally direction-selective stereoscreen through the same mirrors. In the experiment, satisfactory 3-D images have been observed from a wide viewing zone. The optimum design and information reduction techniques are also discussed.
A comparison of multiprocessor scheduling methods for iterative data flow architectures
NASA Technical Reports Server (NTRS)
Storch, Matthew
1993-01-01
A comparative study is made between the Algorithm to Architecture Mapping Model (ATAMM) and three other related multiprocessing models from the published literature. The primary focus of all four models is the non-preemptive scheduling of large-grain iterative data flow graphs as required in real-time systems, control applications, signal processing, and pipelined computations. Important characteristics of the models such as injection control, dynamic assignment, multiple node instantiations, static optimum unfolding, range-chart guided scheduling, and mathematical optimization are identified. The models from the literature are compared with the ATAMM for performance, scheduling methods, memory requirements, and complexity of scheduling and design procedures.
Investigation of an ejector heat pump by analytical methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, C.T.
1984-07-01
Using existing theories of ejector design, the optimum geometry of a high-efficiency ejector - including mixing section cross-sectional area, mass flow entrainment rate, ejector efficiency, and overall COP - for a heat pump cycle was determined. A parametric study was performed to evaluate the COP values for different operating conditions. A sensitivity study determined th effects of nozzle efficiency and diffuser efficiency on the overall ejector heat pump COP. The off-design study estimated the COP for an ejector heat pump operating at off-design conditions. Refrigerants 11, 113, and 114 are three of the halocarbons which best satisfy the criteria formore » an ejector heat pump system. The estimated COPs were 0.3 for the cooling mode and 1.3 for the heating mode at standard operating conditions: a boiler temperature of 93.3/sup 0/C (200/sup 0/F), a condenser temperature of 43.3/sup 0/C (110/sup 0/F), and an evaporator temperature of 10/sup 0/C (50/sup 0/F). Based on the same operating conditions, an optimum ejector geometry was estimated for each of the refrigerants R-11 and R-113. Since the COP values for heating obtained in this analysis are greater than unity, the performance of an ejector heat pump operating in the heating mode should be competitive with that of oil- or gas-fired furnaces or electrical resistance heaters.« less
Fang, Hong; Ning, De-sheng; Liang, Xiao-yan
2009-12-01
To study the optimum extraction conditions of triterpenoid saponins from Picria felterrae. The optimum extraction conditions were investigated by the contents of the total glycosides and picfeltarraenine I A and I B, using orthogonal test. The optimum extraction conditions were as follows: using 70% alcohol of 19 times than the amount of original material soaking 3 hours, extracting twice with hot reflux method at 80 degrees C, 3h the first time, 1 h the second time. The selected extraction conditions are convenient and practical with high accuracy, and could be used as a reference for industrial production.
Optimal shield mass distribution for space radiation protection
NASA Technical Reports Server (NTRS)
Billings, M. P.
1972-01-01
Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.
Constant-Envelope Waveform Design for Optimal Target-Detection and Autocorrelation Performances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Satyabrata
2013-01-01
We propose an algorithm to directly synthesize in time-domain a constant-envelope transmit waveform that achieves the optimal performance in detecting an extended target in the presence of signal-dependent interference. This approach is in contrast to the traditional indirect methods that synthesize the transmit signal following the computation of the optimal energy spectral density. Additionally, we aim to maintain a good autocorrelation property of the designed signal. Therefore, our waveform design technique solves a bi-objective optimization problem in order to simultaneously improve the detection and autocorrelation performances, which are in general conflicting in nature. We demonstrate this compromising characteristics of themore » detection and autocorrelation performances with numerical examples. Furthermore, in the absence of the autocorrelation criterion, our designed signal is shown to achieve a near-optimum detection performance.« less
Analysis and test of a breadboard cryogenic hydrogen/Freon heat exchanger
NASA Technical Reports Server (NTRS)
Desjardins, L. F.; Hooper, J.
1973-01-01
System studies required to verify a tube-in-tube cryogenic heat exchanger as optimum for the space shuttle mission are described. Design of the optimum configuration, which could be fabricated from commercially available hardware, is discussed. Finally, testing of the proposed configuration with supercritical hydrogen and Freon 21 is discussed and results are compared with thermal and dynamic analysis.
Michael E. Akresh; Daniel R. Ardia; David I. King
2017-01-01
Maintaining avian eggs and young at optimum temperatures for development can increase hatching success and nestling condition, but this maintenance requires parental energetic demands. Bird nests, which often provide a structure to safely hold the eggs and nestlings and protect them from predators, can additionally be designed to help maintain eggs' optimum...
Shim, Jongmyeong; Park, Changsu; Lee, Jinhyung; Kang, Shinill
2016-08-08
Recently, studies have examined techniques for modeling the light distribution of light-emitting diodes (LEDs) for various applications owing to their low power consumption, longevity, and light weight. The energy mapping technique, a design method that matches the energy distributions of an LED light source and target area, has been the focus of active research because of its design efficiency and accuracy. However, these studies have not considered the effects of the emitting area of the LED source. Therefore, there are limitations to the design accuracy for small, high-power applications with a short distance between the light source and optical system. A design method for compensating for the light distribution of an extended source after the initial optics design based on a point source was proposed to overcome such limits, but its time-consuming process and limited design accuracy with multiple iterations raised the need for a new design method that considers an extended source in the initial design stage. This study proposed a method for designing discrete planar optics that controls the light distribution and minimizes the optical loss with an extended source and verified the proposed method experimentally. First, the extended source was modeled theoretically, and a design method for discrete planar optics with the optimum groove angle through energy mapping was proposed. To verify the design method, design for the discrete planar optics was achieved for applications in illumination for LED flash. In addition, discrete planar optics for LED illuminance were designed and fabricated to create a uniform illuminance distribution. Optical characterization of these structures showed that the design was optimal; i.e., we plotted the optical losses as a function of the groove angle, and found a clear minimum. Simulations and measurements showed that an efficient optical design was achieved for an extended source.
A PC program to optimize system configuration for desired reliability at minimum cost
NASA Technical Reports Server (NTRS)
Hills, Steven W.; Siahpush, Ali S.
1994-01-01
High reliability is desired in all engineered systems. One way to improve system reliability is to use redundant components. When redundant components are used, the problem becomes one of allocating them to achieve the best reliability without exceeding other design constraints such as cost, weight, or volume. Systems with few components can be optimized by simply examining every possible combination but the number of combinations for most systems is prohibitive. A computerized iteration of the process is possible but anything short of a super computer requires too much time to be practical. Many researchers have derived mathematical formulations for calculating the optimum configuration directly. However, most of the derivations are based on continuous functions whereas the real system is composed of discrete entities. Therefore, these techniques are approximations of the true optimum solution. This paper describes a computer program that will determine the optimum configuration of a system of multiple redundancy of both standard and optional components. The algorithm is a pair-wise comparative progression technique which can derive the true optimum by calculating only a small fraction of the total number of combinations. A designer can quickly analyze a system with this program on a personal computer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oang, Key Young; Yang, Cheolhee; Muniyappan, Srinivasan
Determination of the optimum kinetic model is an essential prerequisite for characterizing dynamics and mechanism of a reaction. Here, we propose a simple method, termed as singular value decomposition-aided pseudo principal-component analysis (SAPPA), to facilitate determination of the optimum kinetic model from time-resolved data by bypassing any need to examine candidate kinetic models. We demonstrate the wide applicability of SAPPA by examining three different sets of experimental time-resolved data and show that SAPPA can efficiently determine the optimum kinetic model. In addition, the results of SAPPA for both time-resolved X-ray solution scattering (TRXSS) and transient absorption (TA) data of themore » same protein reveal that global structural changes of protein, which is probed by TRXSS, may occur more slowly than local structural changes around the chromophore, which is probed by TA spectroscopy.« less
Multiobjective optimization in structural design with uncertain parameters and stochastic processes
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.
Patil, A A; Sachin, B S; Shinde, D B; Wakte, P S
2013-07-01
Coumestan wedelolactone is an important phytocomponent from Eclipta alba (L.) Hassk. It possesses diverse pharmacological activities, which have prompted the development of various extraction techniques and strategies for its better utilization. The aim of the present study is to develop and optimize supercritical carbon dioxide assisted sample preparation and HPLC identification of wedelolactone from E. alba (L.) Hassk. The response surface methodology was employed to study the optimization of sample preparation using supercritical carbon dioxide for wedelolactone from E. alba (L.) Hassk. The optimized sample preparation involves the investigation of quantitative effects of sample preparation parameters viz. operating pressure, temperature, modifier concentration and time on yield of wedelolactone using Box-Behnken design. The wedelolactone content was determined using validated HPLC methodology. The experimental data were fitted to second-order polynomial equation using multiple regression analysis and analyzed using the appropriate statistical method. By solving the regression equation and analyzing 3D plots, the optimum extraction conditions were found to be: extraction pressure, 25 MPa; temperature, 56 °C; modifier concentration, 9.44% and extraction time, 60 min. Optimum extraction conditions demonstrated wedelolactone yield of 15.37 ± 0.63 mg/100 g E. alba (L.) Hassk, which was in good agreement with the predicted values. Temperature and modifier concentration showed significant effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Gao, Xun; Li, Qingde; Cheng, Wanli; Han, Guangping; Xuan, Lihui
2016-10-18
The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE) composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott
2014-12-01
This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistancemore » to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.« less
Gao, Xun; Li, Qingde; Cheng, Wanli; Han, Guangping; Xuan, Lihui
2016-01-01
The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE) composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased. PMID:28773963
Performance of combined persulfate/aluminum sulfate for landfill leachate treatment.
Abu Amr, Salem S; Alkarkhi, Abbas F M; Alslaibi, Tamer M; Abujazar, Mohammed Shadi S
2018-08-01
Although landfilling is still the most suitable method for solid waste disposal, generation of large quantity of leachate is still considered as one of the main environmental problem. Efficient treatment of leachate is required prior to final discharge. Persulfate (S 2 O 8 2- ) recently used for leachate oxidation, the oxidation potential of persulfate can be improved by activate and initiate sulfate radical. The current data aimed to evaluate the performance of utilizing Al 2 SO4 reagent for activation of persulfate to treat landfill leachate. The data on chemical oxygen demand (COD), color, and NH 3 -H removals at different setting of the persulfate, Al 2 SO 4 dosages, pH, and reaction time were collected using a central composite design (CCD) were measured to identify the optimum operating conditions. A total of 30 experiments were performed, the optimum conditions for S 2 O 8 2- /Al 2 SO 4 oxidation process was obtained. Quadratic models for chemical oxygen demand (COD), color, and NH 3 -H removals were significant with p-value < 0.0001. The experimental results were in agreement with the optimum results for COD and NH 3 -N removal rates to be 67%, 81%, and 48%, respectively). The results obtained in leachate treatment were compared with those from other treatment processes, such as S 2 O 8 2- only and Al 2 SO 4 only, to evaluate its effectiveness. The combined method (i.e., /S 2 O 8 2- /Al 2 SO 4 ) showed higher removal efficiency for COD, color, and NH 3 -N compared with other studied applications.
Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G
2016-09-01
In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and 6-dof rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.
Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.
2018-01-01
In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and 6-dof rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles. PMID:29348697
Optimum Wing Shape of Highly Flexible Morphing Aircraft for Improved Flight Performance
NASA Technical Reports Server (NTRS)
Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.
2016-01-01
In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and six-degrees-of-freedom rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.
Sarafraz Yazdi, Ali; Raouf Yazdinezhad, Samaneh; Heidari, Tahereh
2014-01-01
Surfactant-enhanced hollow fiber liquid phase (SE-HF-LPME) microextraction was applied for the extraction of melamine in conjunction with high performance liquid chromatography with UV detection (HPLC–UV). Sodium dodecyl sulfate (SDS) was added firstly to the sample solution at pH 1.9 to form hydrophobic ion-pair with protonated melamine. Then the protonated melamine–dodecyl sulfate ion-pair (Mel–DS) was extracted from aqueous phase into organic phase immobilized in the pores and lumen of the hollow fiber. After extraction, the analyte-enriched 1-octanol was withdrawn into the syringe and injected into the HPLC. Preliminary, one variable at a time method was applied to select the type of extraction solvent. Then, in screening step, the other variables that may affect the extraction efficiency of the analyte were studied using a fractional factorial design. In the next step, a central composite design was applied for optimization of the significant factors having positive effects on extraction efficiency. The optimum operational conditions included: sample volume, 5 mL; surfactant concentration, 1.5 mM; pH 1.9; stirring rate, 1500 rpm and extraction time, 60 min. Using the optimum conditions, the method was analytically evaluated. The detection limit, relative standard deviation and linear range were 0.005 μg mL−1, 4.0% (3 μg mL−1, n = 5) and 0.01–8 μg mL−1, respectively. The performance of the procedure in extraction of melamine from the soil samples was good according to its relative recoveries in different spiking levels (95–109%). PMID:26644934
CometBoards Users Manual Release 1.0
NASA Technical Reports Server (NTRS)
Guptill, James D.; Coroneos, Rula M.; Patnaik, Surya N.; Hopkins, Dale A.; Berke, Lazlo
1996-01-01
Several nonlinear mathematical programming algorithms for structural design applications are available at present. These include the sequence of unconstrained minimizations technique, the method of feasible directions, and the sequential quadratic programming technique. The optimality criteria technique and the fully utilized design concept are two other structural design methods. A project was undertaken to bring all these design methods under a common computer environment so that a designer can select any one of these tools that may be suitable for his/her application. To facilitate selection of a design algorithm, to validate and check out the computer code, and to ascertain the relative merits of the design tools, modest finite element structural analysis programs based on the concept of stiffness and integrated force methods have been coupled to each design method. The code that contains both these design and analysis tools, by reading input information from analysis and design data files, can cast the design of a structure as a minimum-weight optimization problem. The code can then solve it with a user-specified optimization technique and a user-specified analysis method. This design code is called CometBoards, which is an acronym for Comparative Evaluation Test Bed of Optimization and Analysis Routines for the Design of Structures. This manual describes for the user a step-by-step procedure for setting up the input data files and executing CometBoards to solve a structural design problem. The manual includes the organization of CometBoards; instructions for preparing input data files; the procedure for submitting a problem; illustrative examples; and several demonstration problems. A set of 29 structural design problems have been solved by using all the optimization methods available in CometBoards. A summary of the optimum results obtained for these problems is appended to this users manual. CometBoards, at present, is available for Posix-based Cray and Convex computers, Iris and Sun workstations, and the VM/CMS system.
Optimum design of bridges with superelastic-friction base isolators against near-field earthquakes
NASA Astrophysics Data System (ADS)
Ozbulut, Osman E.; Hurlebaus, Stefan
2010-04-01
The seismic response of a multi-span continuous bridge isolated with novel superelastic-friction base isolator (S-FBI) is investigated under near-field earthquakes. The isolation system consists of a flat steel-Teflon sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. Sliding bearings limit the maximum seismic forces transmitted to the superstructure to a certain value that is a function of friction coefficient of sliding interface. Superelastic SMA device provides restoring capability to the isolation system together with additional damping characteristics. The key design parameters of an S-FBI system are the natural period of the isolated, yielding displacement of SMA device, and the friction coefficient of the sliding bearings. The goal of this study is to obtain optimal values for each design parameter by performing sensitivity analyses of the isolated bridge. First, a three-span continuous bridge is modeled as a two-degrees-of-freedom with S-FBI system. A neuro-fuzzy model is used to capture rate-dependent nonlinear behavior of SMA device. A time-dependent method which employs wavelets to adjust accelerograms to match a target response spectrum with minimum changes on the other characteristics of ground motions is used to generate ground motions used in the simulations. Then, a set of nonlinear time history analyses of the isolated bridge is performed. The variation of the peak response quantities of the isolated bridge is shown as a function of design parameters. Also, the influence of temperature variations on the effectiveness of S-FBI system is evaluated. The results show that the optimum design of the isolated bridge with S-FBI system can be achieved by a judicious specification of design parameters.
Rigorous analysis of an electric-field-driven liquid crystal lens for 3D displays
NASA Astrophysics Data System (ADS)
Kim, Bong-Sik; Lee, Seung-Chul; Park, Woo-Sang
2014-08-01
We numerically analyzed the optical performance of an electric field driven liquid crystal (ELC) lens adopted for 3-dimensional liquid crystal displays (3D-LCDs) through rigorous ray tracing. For the calculation, we first obtain the director distribution profile of the liquid crystals by using the Erickson-Leslie motional equation; then, we calculate the transmission of light through the ELC lens by using the extended Jones matrix method. The simulation was carried out for a 9view 3D-LCD with a diagonal of 17.1 inches, where the ELC lens was slanted to achieve natural stereoscopic images. The results show that each view exists separately according to the viewing position at an optimum viewing distance of 80 cm. In addition, our simulation results provide a quantitative explanation for the ghost or blurred images between views observed from a 3D-LCD with an ELC lens. The numerical simulations are also shown to be in good agreement with the experimental results. The present simulation method is expected to provide optimum design conditions for obtaining natural 3D images by rigorously analyzing the optical functionalities of an ELC lens.
NASA Astrophysics Data System (ADS)
Liu, Yingyi; Yuan, Haiwen; Zhang, Qingjie; Chen, Degui; Yuan, Haibin
The dynamic characteristics are the key issues in the optimum design of a permanent magnetic actuator (PMA). A new approach to forecast the dynamic characteristics of the multilink PMA is proposed. By carrying out further developments of ADAMS and ANSOFT, a mathematic calculation model describing the coupling of mechanical movement, electric circuit and magnetic field considering eddy current effect, is constructed. With this model, the dynamic characteristics of the multilink PMA are calculated and compared with the experimental results. Factors that affect the opening time of the multilink PMA are analyzed with the model as well. The method is capable of providing a reference for the design of the PMA.
Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer
NASA Astrophysics Data System (ADS)
Barat, David; Benazzi, Giuseppe; Mowlem, Matthew Charles; Ruano, Jesus Miguel; Morgan, Hywel
2010-05-01
Flow cytometry is widely used for analyzing micro-particles such as cells and bacteria. Microfabricated flow cytometers promise reduced instrument size and cost with increased robustness and have application in medicine, life sciences and environmental metrology. Further miniaturisation and robustness can be achieved if integrated optics are used instead of traditional free space optics. We present designs simulation and experimental characterisation of integrated optics for a microfabricated cytometer made from SU-8 resin on a glass substrate. The optics constructed from combinations of optical fibres (positioned with microgrooves), waveguides, and microlenses enable analysis of scattered light and fluorescence from particles positioned near the centre of a microchannel using one dimensional sheath flow. Four different methods for directing the incident light onto the particles are examined and the optimum design discussed.
Mechanical behavior of deformed intravascular NiTi stents differing in design. Numerical simulation
NASA Astrophysics Data System (ADS)
Eremina, Galina M.; Smolin, Alexey Yu.; Krukovskii, Konstantin V.; Lotkov, Aleksandr I.; Kashin, Oleg A.; Kudryashov, Andrey N.
2017-12-01
Self-expanding intravascular NiTi stents serve to recover the lumen of vessels suffered from atherosclerotic stenosis. During their manufacturing or functioning in blood vessels, the stents experience different strains and local stresses that may result in dangerous defects or fracture. Here, using the method of movable cellular automata, we analyze how the design of a stent influences its stress state during shaping to a desired diameter on a mandrel. We consider repeated segments of different stents under two loads: uniform diametric expansion of their crown and expansion with relative displacements. The simulation data agree well with experiments, revealing critical strain, stress, and their localization sites at the shaping stage, and provide the way toward optimum stent designs to minimize the critical stress during shaping.
An instrument thermal data base system. [for future shuttle missions
NASA Technical Reports Server (NTRS)
Bartoszek, J. T.; Csigi, K. I.; Ollendorf, S.; Oberright, J. E.
1981-01-01
The rationale for the implementation of an Instrument Thermal Data Base System (ITDBS) is discussed and the potential application of a data base management system in support of future space missions, the design of scientific instruments needed, and the potential payload groupings is described. Two basic data files are suggested, the first containing a detailed narrative information list pertaining to design configurations and optimum performance of each instrument, and the second consisting of a description of the parameters pertinent to the instruments' thermal control and design in the form of a summary record of coded information, and serving as a recall record. The applicability of a data request sheet for preliminary planning is described and is concluded that the proposed system may additionally prove to be a method of inventory control.
A quantitative method for photovoltaic encapsulation system optimization
NASA Technical Reports Server (NTRS)
Garcia, A., III; Minning, C. P.; Cuddihy, E. F.
1981-01-01
It is pointed out that the design of encapsulation systems for flat plate photovoltaic modules requires the fulfillment of conflicting design requirements. An investigation was conducted with the objective to find an approach which will make it possible to determine a system with optimum characteristics. The results of the thermal, optical, structural, and electrical isolation analyses performed in the investigation indicate the major factors in the design of terrestrial photovoltaic modules. For defect-free materials, minimum encapsulation thicknesses are determined primarily by structural considerations. Cell temperature is not strongly affected by encapsulant thickness or thermal conductivity. The emissivity of module surfaces exerts a significant influence on cell temperature. Encapsulants should be elastomeric, and ribs are required on substrate modules. Aluminum is unsuitable as a substrate material. Antireflection coating is required on cell surfaces.
Design, analysis and test verification of advanced encapsulation systems
NASA Technical Reports Server (NTRS)
Garcia, A.; Minning, C.
1982-01-01
Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. Qualification testing, specimens of various types, and a finalized optimum design are projected.
Razmi, Rasoul; Shahpari, Behrouz; Pourbasheer, Eslam; Boustanifar, Mohammad Hasan; Azari, Zhila; Ebadi, Amin
2016-11-01
A rapid and simple method for the extraction and preconcentration of ceftazidime in aqueous samples has been developed using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography analysis. The extraction parameters, such as the volume of extraction solvent and disperser solvent, salt effect, sample volume, centrifuge rate, centrifuge time, extraction time, and temperature in the dispersive liquid-liquid microextraction process, were studied and optimized with the experimental design methods. Firstly, for the preliminary screening of the parameters the taguchi design was used and then, the fractional factorial design was used for significant factors optimization. At the optimum conditions, the calibration curves for ceftazidime indicated good linearity over the range of 0.001-10 μg/mL with correlation coefficients higher than the 0.98, and the limits of detection were 0.13 and 0.17 ng/mL, for water and urine samples, respectively. The proposed method successfully employed to determine ceftazidime in water and urine samples and good agreement between the experimental data and predictive values has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Silva, Pedro; Silva, Catarina L; Perestrelo, Rosa; Nunes, Fernando M; Câmara, José S
2017-10-20
Sugarcane honey (SCH) is one of the Madeira Island products par excellence and it is now popular worldwide. Its sui generis and peculiar sensory properties, explained by a variety of volatile compounds including furanic derivatives (FDs), arise mainly from manufacturing and storage conditions. A simple high-throughput approach based on semi-automatic microextraction by packed sorbent (MEPS) combined with ultra-high performance liquid chromatography (UHPLC) was developed and validated for identification and quantification of target FDs in sugarcane honey. A Quality-by-Design (QbD) approach was used as a powerful strategy to optimize analytical conditions for high throughput analysis of FDs in complex sugar-rich food matrices. The optimum point into MEPS-Method Operable Design: Region (MODR) was obtained with R-CX sorbent, acetonitrile (ACN) as elution solvent, three loading cycles and 500μL of sample volume. The optimum point into UHPLC-MODR was obtained with a CORTECS column operating at a temperature of 50°C, ACN as eluent and a flow rate of 125μLmin -1 . The robustness was demonstrated by Monte Carlo simulation and capability analysis for estimation of residual errors. The concentration-response relationship for all FDs were described by polynomial function models, being confirmed by Fisher variance (F-test). The% recoveries were in a range of 91.9-112.1%. Good method precision was observed, yielding relative standard deviations (RSDs) less than 4.9% for repeatability and 8.8% for intermediate precision. The limits of quantitation for the analytes ranged from 30.6 to 737.7μgkg -1 . The MEPS R-CX /UHPLC CORTECS -PDA method revealed an effective and potential analytical tool for SCH authenticity control based on target analysis of FDs allowing a strict control and differentiation from other similar or adulterated products. Copyright © 2017 Elsevier B.V. All rights reserved.
Morovati, Amirhosein; Ghaffari, Alireza; Erfani Jabarian, Lale; Mehramizi, Ali
2017-01-01
Guaifenesin, a highly water-soluble active (50 mg/mL), classified as a BCS class I drug. Owing to its poor flowability and compressibility, formulating tablets especially high-dose one, may be a challenge. Direct compression may not be feasible. Bilayer tablet technology applied to Mucinex®, endures challenges to deliver a robust formulation. To overcome challenges involved in bilayer-tablet manufacturing and powder compressibility, an optimized single layer tablet prepared by a binary mixture (Two-in-one), mimicking the dual drug release character of Mucinex ® was purposed. A 3-factor, 3-level Box-Behnken design was applied to optimize seven considered dependent variables (Release "%" in 1, 2, 4, 6, 8, 10 and 12 h) regarding different levels of independent one (X 1 : Cetyl alcohol, X 2 : Starch 1500 ® , X 3 : HPMC K100M amounts). Two granule portions were prepared using melt and wet granulations, blended together prior to compression. An optimum formulation was obtained (X 1 : 37.10, X 2 : 2, X 3 : 42.49 mg). Desirability function was 0.616. F2 and f1 between release profiles of Mucinex® and the optimum formulation were 74 and 3, respectively. An n-value of about 0.5 for both optimum and Mucinex® formulations showed diffusion (Fickian) control mechanism. However, HPMC K100M rise in 70 mg accompanied cetyl alcohol rise in 60 mg led to first order kinetic (n = 0.6962). The K values of 1.56 represented an identical burst drug releases. Cetyl alcohol and starch 1500 ® modulated guaifenesin release from HPMC K100M matrices, while due to their binding properties, improved its poor flowability and compressibility, too.
Morovati, Amirhosein; Ghaffari, Alireza; Erfani jabarian, Lale; Mehramizi, Ali
2017-01-01
Guaifenesin, a highly water-soluble active (50 mg/mL), classified as a BCS class I drug. Owing to its poor flowability and compressibility, formulating tablets especially high-dose one, may be a challenge. Direct compression may not be feasible. Bilayer tablet technology applied to Mucinex®, endures challenges to deliver a robust formulation. To overcome challenges involved in bilayer-tablet manufacturing and powder compressibility, an optimized single layer tablet prepared by a binary mixture (Two-in-one), mimicking the dual drug release character of Mucinex® was purposed. A 3-factor, 3-level Box-Behnken design was applied to optimize seven considered dependent variables (Release “%” in 1, 2, 4, 6, 8, 10 and 12 h) regarding different levels of independent one (X1: Cetyl alcohol, X2: Starch 1500®, X3: HPMC K100M amounts). Two granule portions were prepared using melt and wet granulations, blended together prior to compression. An optimum formulation was obtained (X1: 37.10, X2: 2, X3: 42.49 mg). Desirability function was 0.616. F2 and f1 between release profiles of Mucinex® and the optimum formulation were 74 and 3, respectively. An n-value of about 0.5 for both optimum and Mucinex® formulations showed diffusion (Fickian) control mechanism. However, HPMC K100M rise in 70 mg accompanied cetyl alcohol rise in 60 mg led to first order kinetic (n = 0.6962). The K values of 1.56 represented an identical burst drug releases. Cetyl alcohol and starch 1500® modulated guaifenesin release from HPMC K100M matrices, while due to their binding properties, improved its poor flowability and compressibility, too. PMID:29552045
Design optimization of the S-frame to improve crashworthiness
NASA Astrophysics Data System (ADS)
Liu, Shu-Tian; Tong, Ze-Qi; Tang, Zhi-Liang; Zhang, Zong-Hua
2014-08-01
In this paper, the S-frames, the front side rail structures of automobile, were investigated for crashworthiness. Various cross-sections including regular polygon, non-convex polygon and multi-cell with inner stiffener sections were investigated in terms of energy absorption of S-frames. It was determined through extensive numerical simulation that a multi-cell S-frame with double vertical internal stiffeners can absorb more energy than the other configurations. Shape optimization was also carried out to improve energy absorption of the S-frame with a rectangular section. The center composite design of experiment and the sequential response surface method (SRSM) were adopted to construct the approximate design sub-problem, which was then solved by the feasible direction method. An innovative double S-frame was obtained from the optimal result. The optimum configuration of the S-frame was crushed numerically and more plastic hinges as well as shear zones were observed during the crush process. The energy absorption efficiency of the structure with the optimal configuration was improved compared to the initial configuration.
Method for designing gas tag compositions
Gross, Kenny C.
1995-01-01
For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node #1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node #2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred.
Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.
Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L
2017-10-01
The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.
A comparison of optimum JP and LH2 turbofan engines designed for two subsonic transport missions
NASA Technical Reports Server (NTRS)
Civinskas, K. C.
1974-01-01
The use of liquid hydrogen fuel instead of JP fuel for two subsonic commercial transports was examined. The following determinations which are important to meeting noise reduction requirements were calculated: (1) take off gross weight, (2) energy consumption, and (3) direct operating costs. The optimum engine cycles were found to be the same for both fuels.
NASA Technical Reports Server (NTRS)
Kalton, G.
1983-01-01
A number of surveys were conducted to study the relationship between the level of aircraft or traffic noise exposure experienced by people living in a particular area and their annoyance with it. These surveys generally employ a clustered sample design which affects the precision of the survey estimates. Regression analysis of annoyance on noise measures and other variables is often an important component of the survey analysis. Formulae are presented for estimating the standard errors of regression coefficients and ratio of regression coefficients that are applicable with a two- or three-stage clustered sample design. Using a simple cost function, they also determine the optimum allocation of the sample across the stages of the sample design for the estimation of a regression coefficient.
NASA Technical Reports Server (NTRS)
1982-01-01
Design and test data for packaging, deploying, and assembling structures for near term space platform systems, were provided by testing light type hardware in the Neutral Buoyancy Simulator. An optimum or near optimum structural configuration for varying degrees of deployment utilizing different levels of EVA and RMS was achieved. The design of joints and connectors and their lock/release mechanisms were refined to improve performance and operational convenience. The incorporation of utilities into structural modules to determine their effects on packaging and deployment was evaluated. By simulation tests, data was obtained for stowage, deployment, and assembly of the final structural system design to determine construction timelines, and evaluate system functioning and techniques.
Chang, Yin-Jung
2014-01-13
The investigation of optimum optical designs of interlayers and antireflection (AR) coating for achieving maximum average transmittance (T(ave)) into the CuIn(1-x)Ga(x)Se2 (CIGS) absorber of a typical CIGS solar cell through the suppression of lossy-film-induced angular mismatches is described. Simulated-annealing algorithm incorporated with rigorous electromagnetic transmission-line network approach is applied with criteria of minimum average reflectance (R(ave)) from the cell surface or maximum T(ave) into the CIGS absorber. In the presence of one MgF2 coating, difference in R(ave) associated with optimum designs based upon the two distinct criteria is only 0.3% under broadband and nearly omnidirectional incidence; however, their corresponding T(ave) values could be up to 14.34% apart. Significant T(ave) improvements associated with the maximum-T(ave)-based design are found mainly in the mid to longer wavelengths and are attributed to the largest suppression of lossy-film-induced angular mismatches over the entire CIGS absorption spectrum. Maximum-T(ave)-based designs with a MgF2 coating optimized under extreme deficiency of angular information is shown, as opposed to their minimum-R(ave)-based counterparts, to be highly robust to omnidirectional incidence.
Application of multi response optimization with grey relational analysis and fuzzy logic method
NASA Astrophysics Data System (ADS)
Winarni, Sri; Wahyu Indratno, Sapto
2018-01-01
Multi-response optimization is an optimization process by considering multiple responses simultaneously. The purpose of this research is to get the optimum point on multi-response optimization process using grey relational analysis and fuzzy logic method. The optimum point is determined from the Fuzzy-GRG (Grey Relational Grade) variable which is the conversion of the Signal to Noise Ratio of the responses involved. The case study used in this research are case optimization of electrical process parameters in electrical disharge machining. It was found that the combination of treatments resulting to optimum MRR and SR was a 70 V gap voltage factor, peak current 9 A and duty factor 0.8.
NASA Technical Reports Server (NTRS)
Tomberlin, T. J.
1985-01-01
Research studies of residents' responses to noise consist of interviews with samples of individuals who are drawn from a number of different compact study areas. The statistical techniques developed provide a basis for those sample design decisions. These techniques are suitable for a wide range of sample survey applications. A sample may consist of a random sample of residents selected from a sample of compact study areas, or in a more complex design, of a sample of residents selected from a sample of larger areas (e.g., cities). The techniques may be applied to estimates of the effects on annoyance of noise level, numbers of noise events, the time-of-day of the events, ambient noise levels, or other factors. Methods are provided for determining, in advance, how accurately these effects can be estimated for different sample sizes and study designs. Using a simple cost function, they also provide for optimum allocation of the sample across the stages of the design for estimating these effects. These techniques are developed via a regression model in which the regression coefficients are assumed to be random, with components of variance associated with the various stages of a multi-stage sample design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hack, Madeline; Zhu, Guangdong; Wendelin, Timothy J.
As a line-focus concentrating solar power (CSP) technology, linear Fresnel collectors have the potential to become a low-cost solution for electricity production and a variety of thermal energy applications. However, this technology often suffers from relatively low performance. A secondary reflector is a key component used to improve optical performance of a linear Fresnel collector. The shape of a secondary reflector is particularly critical in determining solar power captured by the absorber tube(s), and thus, the collector's optical performance. However, to the authors' knowledge, no well-established process existed to derive the optimal secondary shape prior to the development of amore » new adaptive method to optimize the secondary reflector shape. The new adaptive method does not assume any pre-defined analytical form; rather, it constitutes an optimum shape through an adaptive process by maximizing the energy collection onto the absorber tube. In this paper, the adaptive method is compared with popular secondary-reflector designs with respect to a collector's optical performance under various scenarios. For the first time, a comprehensive, in-depth comparison was conducted on all popular secondary designs for CSP applications. In conclusion, it is shown that the adaptive design exhibits the best optical performance.« less
Hack, Madeline; Zhu, Guangdong; Wendelin, Timothy J.
2017-09-13
As a line-focus concentrating solar power (CSP) technology, linear Fresnel collectors have the potential to become a low-cost solution for electricity production and a variety of thermal energy applications. However, this technology often suffers from relatively low performance. A secondary reflector is a key component used to improve optical performance of a linear Fresnel collector. The shape of a secondary reflector is particularly critical in determining solar power captured by the absorber tube(s), and thus, the collector's optical performance. However, to the authors' knowledge, no well-established process existed to derive the optimal secondary shape prior to the development of amore » new adaptive method to optimize the secondary reflector shape. The new adaptive method does not assume any pre-defined analytical form; rather, it constitutes an optimum shape through an adaptive process by maximizing the energy collection onto the absorber tube. In this paper, the adaptive method is compared with popular secondary-reflector designs with respect to a collector's optical performance under various scenarios. For the first time, a comprehensive, in-depth comparison was conducted on all popular secondary designs for CSP applications. In conclusion, it is shown that the adaptive design exhibits the best optical performance.« less
NASA Astrophysics Data System (ADS)
Mardawati, Efri; Parlan; Rialita, Tita; Nurhadi, Bambang
2018-03-01
Xylanase is an enzyme used in the industrial world, including food industry. Xylanase can be utilized as a 1,4-β-xylosidic endo-hydrolysis catalyst of xylanase, a hemicellulose component for obtaining a xylose monomer. This study aims to determine the optimum concentration of the fermentation medium using Response Surface Method (RSM) in the production of xylanase enzyme from oil palm empty fruit bunches (OPEFB) through solid state fermentation process. The variables varied in this study used factor A (ammonium sulphate concentration 1.0-2.0 g/L), B (concentration of potassium dihydrogen phosphate 1.5-2.5 g/L) and C (urea concentration 0.2 – 0.5 g/L). The data was analysed by using Design Expert version 10.0.1.0 especially CCD with total 17 running including 3 times replicated of canter point. Trichoderma viride was used for the process production of xylanase enzyme. The ratio between substrate and moistening solution used was 0.63 g / mL with temperature of 32.80C, 60 h incubation time. The analysis of enzyme activity was done by DNS method with 1% xylan as substrate. Analysis of protein content in enzyme was done by Bradford method. The optimum of moistening solution concentration in this fermentation was obtained. They are, the ammonium sulphate concentration of 1.5 g/L, potassium dihydrogen phosphate 2.0 g/L and urea 0.35 g/L with activity of 684.70 U/mL, specific activity enzyme xylanase 6261.58 U/mg, protein content 0.1093 U/mg, the model was validated using experiment design with perfect reliability value 0.96.
Computer Based Porosity Design by Multi Phase Topology Optimization
NASA Astrophysics Data System (ADS)
Burblies, Andreas; Busse, Matthias
2008-02-01
A numerical simulation technique called Multi Phase Topology Optimization (MPTO) based on finite element method has been developed and refined by Fraunhofer IFAM during the last five years. MPTO is able to determine the optimum distribution of two or more different materials in components under thermal and mechanical loads. The objective of optimization is to minimize the component's elastic energy. Conventional topology optimization methods which simulate adaptive bone mineralization have got the disadvantage that there is a continuous change of mass by growth processes. MPTO keeps all initial material concentrations and uses methods adapted from molecular dynamics to find energy minimum. Applying MPTO to mechanically loaded components with a high number of different material densities, the optimization results show graded and sometimes anisotropic porosity distributions which are very similar to natural bone structures. Now it is possible to design the macro- and microstructure of a mechanical component in one step. Computer based porosity design structures can be manufactured by new Rapid Prototyping technologies. Fraunhofer IFAM has applied successfully 3D-Printing and Selective Laser Sintering methods in order to produce very stiff light weight components with graded porosities calculated by MPTO.
Optimization of LDL targeted nanostructured lipid carriers of 5-FU by a full factorial design.
Andalib, Sare; Varshosaz, Jaleh; Hassanzadeh, Farshid; Sadeghi, Hojjat
2012-01-01
Nanostructured lipid carriers (NLC) are a mixture of solid and liquid lipids or oils as colloidal carrier systems that lead to an imperfect matrix structure with high ability for loading water soluble drugs. The aim of this study was to find the best proportion of liquid and solid lipids of different types for optimization of the production of LDL targeted NLCs used in carrying 5-Fu by the emulsification-solvent evaporation method. The influence of the lipid type, cholesterol or cholesteryl stearate for targeting LDL receptors, oil type (oleic acid or octanol), lipid and oil% on particle size, surface charge, drug loading efficiency, and drug released percent from the NLCs were studied by a full factorial design. The NLCs prepared by 54.5% cholesterol and 25% of oleic acid, showed optimum results with particle size of 105.8 nm, relatively high zeta potential of -25 mV, drug loading efficiency of 38% and release efficiency of about 40%. Scanning electron microscopy of nanoparticles confirmed the results of dynamic light scattering method used in measuring the particle size of NLCs. The optimization method by a full factorial statistical design is a useful optimization method for production of nanostructured lipid carriers.
Optimum bus headway for preemption : a simulation approach
DOT National Transportation Integrated Search
1997-01-01
Preemption techniques are designed to provide preferential treatment for buses at signalized intersections. A preemption strategy, if properly designed, can provide continuous green phases for buses at successive intersections, thereby reducing trave...
Computer-aided design of high-frequency transistor amplifiers.
NASA Technical Reports Server (NTRS)
Hsieh, C.-C.; Chan, S.-P.
1972-01-01
A systematic step-by-step computer-aided procedure for designing high-frequency transistor amplifiers is described. The technique makes it possible to determine the optimum source impedance which gives a minimum noise figure.
Entry systems technology assessment
NASA Technical Reports Server (NTRS)
Gay, Archie
1993-01-01
The objectives are: (1) to establish aerothermal environments for hypersonic aerospace vehicles; (2) to develop thermostructural design concepts; (3) to obtain optimum thermostructural designs by performing trade studies; and (4) to identify areas for further development.
Liu, Ya-Fei; Yuan, Hong-Fu; Song, Chun-Feng; Xie, Jin-Chun; Li, Xiao-Yu; Yan, De-Lin
2014-11-01
A new method is proposed for the fast determination of the induction period of gasoline using Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR). A dedicated analysis system with the function of spectral measurement, data processing, display and storage was designed and integrated using a Fourier transform infrared spectrometer module and chemometric software. The sample presentation accessory designed which has advantages of constant optical path, convenient sample injection and cleaning is composed of a nine times reflection attenuated total reflectance (ATR) crystal of zinc selenide (ZnSe) coated with a diamond film and a stainless steel lid with sealing device. The influence of spectral scanning number and repeated sample loading times on the spectral signal-to-noise ratio was studied. The optimum spectral scanning number is 15 times and the optimum sample loading number is 4 times. Sixty four different gasoline samples were collected from the Beijing-Tianjin area and the induction period values were determined as reference data by standard method GB/T 8018-87. The infrared spectra of these samples were collected in the operating condition mentioned above using the dedicated fast analysis system. Spectra were pretreated using mean centering and 1st derivative to reduce the influence of spectral noise and baseline shift A PLS calibration model for the induction period was established by correlating the known induction period values of the samples with their spectra. The correlation coefficient (R2), standard error of calibration (SEC) and standard error of prediction (SEP) of the model are 0.897, 68.3 and 91.9 minutes, respectively. The relative deviation of the model for gasoline induction period prediction is less than 5%, which meets the requirements of repeatability tolerance in GB method. The new method is simple and fast. It takes no more than 3 minutes to detect one sample. Therefore, the method is feasible for implementing fast determination of gasoline induction period, and of a positive meaning in the evaluation of fuel quality.
The Effect of Laminar Flow on Rotor Hover Performance
NASA Technical Reports Server (NTRS)
Overmeyer, Austin D.; Martin, Preston B.
2017-01-01
The topic of laminar flow effects on hover performance is introduced with respect to some historical efforts where laminar flow was either measured or attempted. An analysis method is outlined using combined blade element, momentum method coupled to an airfoil analysis method, which includes the full e(sup N) transition model. The analysis results compared well with the measured hover performance including the measured location of transition on both the upper and lower blade surfaces. The analysis method is then used to understand the upper limits of hover efficiency as a function of disk loading. The impact of laminar flow is higher at low disk loading, but significant improvement in terms of power loading appears possible even up to high disk loading approaching 20 ps f. A optimum planform design equation is derived for cases of zero profile drag and finite drag levels. These results are intended to be a guide for design studies and as a benchmark to compare higher fidelity analysis results. The details of the analysis method are given to enable other researchers to use the same approach for comparison to other approaches.
Conceptual design for aerospace vehicles
NASA Technical Reports Server (NTRS)
Gratzer, Louis B.
1989-01-01
The designers of aircraft and more recently, aerospace vehicles have always struggled with the problems of evolving their designs to produce a machine which would perform its assigned task(s) in some optimum fashion. Almost invariably this involved dealing with more variables and constraints than could be handled in any computationally feasible way. With the advent of the electronic digital computer, the possibilities for introducing more variable and constraints into the initial design process led to greater expectations for improvement in vehicle (system) efficiency. The creation of the large scale systems necessary to achieve optimum designs has, for many reason, proved to be difficult. From a technical standpoint, significant problems arise in the development of satisfactory algorithms for processing of data from the various technical disciplines in a way that would be compatible with the complex optimization function. Also, the creation of effective optimization routines for multi-variable and constraint situations which could lead to consistent results has lagged. The current capability for carrying out the conceptual design of an aircraft on an interdisciplinary bases was evaluated to determine the need for extending this capability, and if necessary, to recommend means by which this could be carried out. Based on a review of available documentation and individual consultations, it appears that there is extensive interest at Langley Research Center as well as in the aerospace community in providing a higher level of capability that meets the technical challenges. By implication, the current design capability is inadequate and it does not operate in a way that allows the various technical disciplines to participate and cooperately interact in the design process. Based on this assessment, it was concluded that substantial effort should be devoted to developing a computer-based conceptual design system that would provide the capability needed for the near-term as well as framework for development of more advanced methods to serve future needs.
TiO₂ beads and TiO₂-chitosan beads for urease immobilization.
Ispirli Doğaç, Yasemin; Deveci, Ilyas; Teke, Mustafa; Mercimek, Bedrettin
2014-09-01
The aim of the present study is to synthesize TiO2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO2 beads. In the first method (A), urease enzyme was immobilized onto TiO2 beads by adsorption and then crosslinking. In the second method (B), TiO2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5mg/ml for A and 1.0mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60°C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70°C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30°C (A), 40°C (B) and 35°C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65°C. However, at this temperature free urease protected only 15% activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluation of green infrastructure designs using the Automated Geospatial Watershed Assessment Tool
USDA-ARS?s Scientific Manuscript database
In arid and semi-arid regions, green infrastructure (GI) designs can address several issues facing urban environments, including augmenting water supply, mitigating flooding, decreasing pollutant loads, and promoting greenness in the built environment. An optimum design captures stormwater, addressi...
Nonlinear Shaping Architecture Designed with Using Evolutionary Structural Optimization Tools
NASA Astrophysics Data System (ADS)
Januszkiewicz, Krystyna; Banachowicz, Marta
2017-10-01
The paper explores the possibilities of using Structural Optimization Tools (ESO) digital tools in an integrated structural and architectural design in response to the current needs geared towards sustainability, combining ecological and economic efficiency. The first part of the paper defines the Evolutionary Structural Optimization tools, which were developed specifically for engineering purposes using finite element analysis as a framework. The development of ESO has led to several incarnations, which are all briefly discussed (Additive ESO, Bi-directional ESO, Extended ESO). The second part presents result of using these tools in structural and architectural design. Actual building projects which involve optimization as a part of the original design process will be presented (Crematorium in Kakamigahara Gifu, Japan, 2006 SANAA“s Learning Centre, EPFL in Lausanne, Switzerland 2008 among others). The conclusion emphasizes that the structural engineering and architectural design mean directing attention to the solutions which are used by Nature, designing works optimally shaped and forming their own environments. Architectural forms never constitute the optimum shape derived through a form-finding process driven only by structural optimization, but rather embody and integrate a multitude of parameters. It might be assumed that there is a similarity between these processes in nature and the presented design methods. Contemporary digital methods make the simulation of such processes possible, and thus enable us to refer back to the empirical methods of previous generations.
Optimum Design of a Ceramic Tensile Creep Specimen Using a Finite Element Method
Wang, Z.; Chiang, C. K.; Chuang, T.-J.
1997-01-01
An optimization procedure for designing a ceramic tensile creep specimen to minimize stress concentration is carried out using a finite element method. The effect of pin loading and the specimen geometry are considered in the stress distribution calculations. A growing contact zone between the pin and the specimen has been incorporated into the problem solution scheme as the load is increased to its full value. The optimization procedures are performed for the specimen, and all design variables including pinhole location and pinhole diameter, head width, neck radius, and gauge length are determined based on a set of constraints imposed on the problem. In addition, for the purpose of assessing the possibility of delayed failure outside the gage section, power-law creep in the tensile specimen is considered in the analysis. Using a particular grade of advanced ceramics as an example, it is found that if the specimen is not designed properly, significant creep deformation and stress redistribution may occur in the head of the specimen resulting in undesirable (delayed) head failure of the specimen during the creep test. PMID:27805126
NASA Astrophysics Data System (ADS)
Harkouss, F.; Biwole, P. H.; Fardoun, F.
2018-05-01
Buildings’ optimization is a smart method to inspect the available design choices starting from passive strategies, to energy efficient systems and finally towards the adequate renewable energy system to be implemented. This paper outlines the methodology and the cost-effectiveness potential for optimizing the design of net-zero energy building in a French city; Embrun. The non-dominated sorting genetic algorithm is chosen in order to minimize thermal, electrical demands and life cycle cost while reaching the net zero energy balance; and thus getting the Pareto-front. Elimination and Choice Expressing the Reality decision making method is applied to the Pareto-front so as to obtain one optimal solution. A wide range of energy efficiency measures are investigated, besides solar energy systems are employed to produce required electricity and hot water for domestic purposes. The results indicate that the appropriate selection of the passive parameters is very important and critical in reducing the building energy consumption. The optimum design parameters yield to a decrease of building’s thermal loads and life cycle cost by 32.96% and 14.47% respectively.
[Determination of ochratoxin A by ELISA I. Study on the preparation of ochratoxin a antigen].
Chen, Xuelan; Xu, Yang; Wu, Chenggang
2002-02-01
Ochratoxin A (OTA) antigen was prepared by activated ester method. Factors influencing OTA antigen were discussed and the optimum conditions was found by L9(3(4)) orthogonal design. The results showed that when the mole ratio was OTA:BSA = 20:1, OTA:NHS(N-hydroxy-succinamide):DCC(dicyclohexylcarbodiimide) = 1:2:4, the activate time was 120 min and the conjugation time was 90 min, the utilization of OTA could reach 48.2% and the best conjugation ratio of OTA and BSA was 9.64.
NASA Astrophysics Data System (ADS)
Mesalhy, O. M.; El-Sayed, Mostafa M.
2015-06-01
Flow and heat transfer characteristics of a plate-fin heat sink cooled by a rectangular impinging jet with different cross-sectional area were studied experimentally and numerically. The study concentrated on investigating the effect of jet width, fin numbers, and fin heights on thermal performance. Entropy generation minimization method was used to define the optimum design and operating conditions. It is found that, the jet width that minimizes entropy generation changes with heat sink height and fin numbers.
Diet expert subsystem for CELSS
NASA Technical Reports Server (NTRS)
Yendler, Boris S.; Nguyen, Thoi K.; Waleh, Ahmad
1991-01-01
An account is given of the mathematical basis of a diet-controlling expert system, designated 'Ceres' for the human crews of a Controlled Ecological Life Support System (CELSS). The Ceres methodology can furnish both steady-state and dynamic diet solutions; the differences between Ceres and a conventional nutritional-modeling method is illustrated by the case of a three-component, potato-wheat-soybean food system. Attention is given to the role of food processing in furnishing flexibility in diet-planning management. Crew diet solutions based on simple optimizations are not necessarily the most suitable for optimum CELSS operation.
SRB attrition rate study of the aft skirt due to water impact cavity collapse loading
NASA Technical Reports Server (NTRS)
Crockett, C. D.
1976-01-01
A methodology was presented so that realistic attrition prediction could aid in selecting an optimum design option for minimizing the effects of updated loads on the Space Shuttle Solid Rocket Booster (SRB) aft skirt. The updated loads resulted in water impact attrition rates greater than 10 percent for the aft skirt structure. Adding weight to reinforce the aft skirt was undesirable. The refined method treats the occurrences of the load distribution probabilistically, radially and longitudinally, with respect to the critical structural response.
Selection of Wavelengths for Optimum Precision in Simultaneous Spectrophotometric Determinations.
ERIC Educational Resources Information Center
DiTusa, Michael R.; Schilt, Alfred A.
1985-01-01
Although many textbooks include a description of simultaneous determinations employing absorption spectrophotometry and treat the mathematics necessary for analytical quantitations, treatment of analytical wavelength selection has been mostly qualitative. Therefore, a general method for selecting wavelengths for optimum precision in simultaneous…
NASA Astrophysics Data System (ADS)
Ghosh, Soumyadeep
Surfactant-polymer (SP) floods have significant potential to recover waterflood residual oil in shallow oil reservoirs. A thorough understanding of surfactant-oil-brine phase behavior is critical to the design of chemical EOR floods. While considerable progress has been made in developing surfactants and polymers that increase the potential of a chemical enhanced oil recovery (EOR) project, very little progress has been made to predict phase behavior as a function of formulation variables such as pressure, temperature, and oil equivalent alkane carbon number (EACN). The empirical Hand's plot is still used today to model the microemulsion phase behavior with little predictive capability as these and other formulation variables change. Such models could lead to incorrect recovery predictions and improper flood designs. Reservoir crudes also contain acidic components (primarily naphthenic acids), which undergo neutralization to form soaps in the presence of alkali. The generated soaps perform synergistically with injected synthetic surfactants to mobilize waterflood residual oil in what is termed alkali-surfactant-polymer (ASP) flooding. The addition of alkali, however, complicates the measurement and prediction of the microemulsion phase behavior that forms with acidic crudes. In this dissertation, we account for pressure changes in the hydrophilic-lipophilic difference (HLD) equation. This new HLD equation is coupled with the net-average curvature (NAC) model to predict phase volumes, solubilization ratios, and microemulsion phase transitions (Winsor II-, III, and II+). This dissertation presents the first modified HLD-NAC model to predict microemulsion phase behavior for live crudes, including optimal solubilization ratio and the salinity width of the three-phase Winsor III region at different temperatures and pressures. This new equation-of-state-like model could significantly aid the design and forecast of chemical floods where key variables change dynamically, and in screening of potential candidate reservoirs for chemical EOR. The modified HLD-NAC model is also extended here for ASP flooding. We use an empirical equation to calculate the acid distribution coefficient from the molecular structure of the soap. Key HLD-NAC parameters like optimum salinities and optimum solubilization ratios are calculated from soap mole fraction weighted equations. The model is tuned to data from phase behavior experiments with real crudes to demonstrate the procedure. We also examine the ability of the new model to predict fish plots and activity charts that show the evolution of the three-phase region. The modified HLD-NAC equations are then made dimensionless to develop important microemulsion phase behavior relationships and for use in tuning the new model to measured data. Key dimensionless groups that govern phase behavior and their effects are identified and analyzed. A new correlation was developed to predict optimum solubilization ratios at different temperatures, pressures and oil EACN with an average relative error of 10.55%. The prediction of optimum salinities with the modified HLD approach resulted in average relative errors of 2.35%. We also present a robust method to precisely determine optimum salinities and optimum solubilization ratios from salinity scan data with average relative errors of 1.17% and 2.44% for the published data examined.
Engine With Regression and Neural Network Approximators Designed
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.
2001-01-01
At the NASA Glenn Research Center, the NASA engine performance program (NEPP, ref. 1) and the design optimization testbed COMETBOARDS (ref. 2) with regression and neural network analysis-approximators have been coupled to obtain a preliminary engine design methodology. The solution to a high-bypass-ratio subsonic waverotor-topped turbofan engine, which is shown in the preceding figure, was obtained by the simulation depicted in the following figure. This engine is made of 16 components mounted on two shafts with 21 flow stations. The engine is designed for a flight envelope with 47 operating points. The design optimization utilized both neural network and regression approximations, along with the cascade strategy (ref. 3). The cascade used three algorithms in sequence: the method of feasible directions, the sequence of unconstrained minimizations technique, and sequential quadratic programming. The normalized optimum thrusts obtained by the three methods are shown in the following figure: the cascade algorithm with regression approximation is represented by a triangle, a circle is shown for the neural network solution, and a solid line indicates original NEPP results. The solutions obtained from both approximate methods lie within one standard deviation of the benchmark solution for each operating point. The simulation improved the maximum thrust by 5 percent. The performance of the linear regression and neural network methods as alternate engine analyzers was found to be satisfactory for the analysis and operation optimization of air-breathing propulsion engines (ref. 4).
Choi, Du Hyung; Shin, Sangmun; Khoa Viet Truong, Nguyen; Jeong, Seong Hoon
2012-09-01
A robust experimental design method was developed with the well-established response surface methodology and time series modeling to facilitate the formulation development process with magnesium stearate incorporated into hydrophilic matrix tablets. Two directional analyses and a time-oriented model were utilized to optimize the experimental responses. Evaluations of tablet gelation and drug release were conducted with two factors x₁ and x₂: one was a formulation factor (the amount of magnesium stearate) and the other was a processing factor (mixing time), respectively. Moreover, different batch sizes (100 and 500 tablet batches) were also evaluated to investigate an effect of batch size. The selected input control factors were arranged in a mixture simplex lattice design with 13 experimental runs. The obtained optimal settings of magnesium stearate for gelation were 0.46 g, 2.76 min (mixing time) for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The optimal settings for drug release were 0.33 g, 7.99 min for a 100 tablet batch and 1.54 g, 6.51 min for a 500 tablet batch. The exact ratio and mixing time of magnesium stearate could be formulated according to the resulting hydrophilic matrix tablet properties. The newly designed experimental method provided very useful information for characterizing significant factors and hence to obtain optimum formulations allowing for a systematic and reliable experimental design method.
Techniques for evaluating optimum data center operation
Hamann, Hendrik F.; Rodriguez, Sergio Adolfo Bermudez; Wehle, Hans-Dieter
2017-06-14
Techniques for modeling a data center are provided. In one aspect, a method for determining data center efficiency is provided. The method includes the following steps. Target parameters for the data center are obtained. Technology pre-requisite parameters for the data center are obtained. An optimum data center efficiency is determined given the target parameters for the data center and the technology pre-requisite parameters for the data center.
Fuzzy observer-based control for maximum power-point tracking of a photovoltaic system
NASA Astrophysics Data System (ADS)
Allouche, M.; Dahech, K.; Chaabane, M.; Mehdi, D.
2018-04-01
This paper presents a novel fuzzy control design method for maximum power-point tracking (MPPT) via a Takagi and Sugeno (TS) fuzzy model-based approach. A knowledge-dynamic model of the PV system is first developed leading to a TS representation by a simple convex polytopic transformation. Then, based on this exact fuzzy representation, a H∞ observer-based fuzzy controller is proposed to achieve MPPT even when we consider varying climatic conditions. A specified TS reference model is designed to generate the optimum trajectory which must be tracked to ensure maximum power operation. The controller and observer gains are obtained in a one-step procedure by solving a set of linear matrix inequalities (LMIs). The proposed method has been compared with some classical MPPT techniques taking into account convergence speed and tracking accuracy. Finally, various simulation and experimental tests have been carried out to illustrate the effectiveness of the proposed TS fuzzy MPPT strategy.
Globally optimal superconducting magnets part II: symmetric MSE coil arrangement.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2009-01-01
A globally optimal superconducting magnet coil design procedure based on the Minimum Stored Energy (MSE) current density map is outlined. The method has the ability to arrange coils in a manner that generates a strong and homogeneous axial magnetic field over a predefined region, and ensures the stray field external to the assembly and peak magnetic field at the wires are in acceptable ranges. The outlined strategy of allocating coils within a given domain suggests that coils should be placed around the perimeter of the domain with adjacent coils possessing alternating winding directions for optimum performance. The underlying current density maps from which the coils themselves are derived are unique, and optimized to possess minimal stored energy. Therefore, the method produces magnet designs with the lowest possible overall stored energy. Optimal coil layouts are provided for unshielded and shielded short bore symmetric superconducting magnets.
Benabdallah, Nadia; Benahmed, Nasreddine; Benyoucef, Boumediene; Bouhmidi, Rachid; Khelif, M'Hamed
2007-08-21
In this paper we present electromagnetic (EM) analysis of the unloaded slotted-tube resonator (STR) with a circular cross section, using the finite element method (FEM) and method of moments (MoM) in two dimensions. This analysis allows the determination of the primary parameters: [L] and [C] matrices, optimization of the field homogeneity, and simulates the frequency response of S(11) at the RF port of the designed STR. The optimum configuration is presented, taking into account the effect of the thickness of the STR and the effect of the RF shield. As an application, we present the design results of a MRI probe using the STR and operating at 500 MHz (proton imaging at 11.74 T). The resonator has -69.37 dB minimum reflection and an unloaded quality factor (Q(o)) > 500 at 500 MHz.
NASA Astrophysics Data System (ADS)
Panyun, YAN; Guozhu, LIANG; Yongzhi, LU; Zhihui, QI; Xingdou, GAO
2017-12-01
The fast simulation of the vehicular cold launch system (VCLS) in the launch process is an essential requirement for practical engineering applications. In particular, a general and fast simulation model of the VCLS will help the designer to obtain the optimum scheme in the initial design phase. For these purposes, a system-level fast simulation model was established for the VCLS based on the subsystem synthesis method. Moreover, a comparison of the load of a seven-axis VCLS on the rigid ground through both theoretical calculations and experiments was carried out. It was found that the error of the load of the rear left outrigger is less than 7.1%, and the error of the total load of all the outriggers is less than 2.8%. Moreover, time taken for completion of the simulation model is only 9.5 min, which is 5% of the time taken by conventional algorithms.
Baskar, Gurunathan; Sathya, Shree Rajesh K
2011-01-01
Statistical and evolutionary optimization of media composition was employed for the production of medicinal exopolysaccharide (EPS) by Lingzhi or Reishi medicinal mushroom Ganoderma lucidium MTCC 1039 using soya bean meal flour as low-cost substrate. Soya bean meal flour, ammonium chloride, glucose, and pH were identified as the most important variables for EPS yield using the two-level Plackett-Burman design and further optimized using the central composite design (CCD) and the artificial neural network (ANN)-linked genetic algorithm (GA). The high value of coefficient of determination of ANN (R² = 0.982) indicates that the ANN model was more accurate than the second-order polynomial model of CCD (R² = 0.91) for representing the effect of media composition on EPS yield. The predicted optimum media composition using ANN-linked GA was soybean meal flour 2.98%, glucose 3.26%, ammonium chloride 0.25%, and initial pH 7.5 for the maximum predicted EPS yield of 1005.55 mg/L. The experimental EPS yield obtained using the predicted optimum media composition was 1012.36 mg/L, which validates the high degree of accuracy of evolutionary optimization for enhanced production of EPS by submerged fermentation of G. lucidium.
Berm design to reduce risks of catastrophic slope failures at solid waste disposal sites.
De Stefano, Matteo; Gharabaghi, Bahram; Clemmer, Ryan; Jahanfar, M Ali
2016-11-01
Existing waste disposal sites are being strained by exceeding their volumetric capacities because of exponentially increasing rates of municipal solid waste generation worldwide, especially in densely populated metropolises. Over the past 40 years, six well-documented and analyzed disposal sites experienced catastrophic failure. This research presents a novel analysis and design method for implementation of a series of in-situ earth berms to slow down the movement of waste material flow following a catastrophic failure. This is the first study of its kind that employs a dynamic landslide analysis model, DAN-W, and the Voellmy rheological model to approximate solid waste avalanche flow. A variety of single and multiple berm configuration scenarios were developed and tested to find an optimum configuration of the various earth berm geometries and number of berms to achieve desired energy dissipation and reduction in total waste material runout length. The case study application of the novel mitigation measure shows that by constructing a series of six relatively inexpensive 3 m high earth berms at an optimum distance of 250 m from the slope toe, the total runout length of 1000 m and associated fatalities of the Leuwigajah dumpsite catastrophic failure in Bandung, Indonesia, could have been reduced by half. © The Author(s) 2016.
Santos Felix, Antonio C.; Novaes, Cleber G.; Pires Rocha, Maísla; Barreto, George E.; do Nascimento, Baraquizio B.; Giraldez Alvarez, Lisandro D.
2018-01-01
In this study, we have determined, using RSM (mixture design and Doehlert matrix), the optimum values of the independent variables to achieve the maximum response for the extraction of total phenolic compounds from Spondias mombin L bagasse agroindustrial residues in order to preserve their antioxidant activity. The extraction of phenolic compounds, as well as their antioxidant capacity and the capacity to scavenge ABTS, was determined by the modified DPPH method at different periods of time, temperature, velocity of rotation and solvents concentration. We observed that the optimum condition for the highest antioxidant yield was obtained using water (60.84%), acetone (30.31%), and ethanol (8.85%) at 30°C during 20 min at 50 rpm. We have also found that the maximum yield of total phenolics was 355.63 ± 9.77 (mg GAE/100 g), showing an EC50 of 3,962.24 ± 41.20 (g fruit/g of DPPH) and 8.36 ± 0.30 (μM trolox/g fruit), which were measured using DPPH and ABTS assays. These results suggest that RSM was successfully applied for optimizing the extraction of phenolics compounds thus preserving their antioxidant activity. PMID:29354632
Dinç Zor, Şule; Aşçı, Bürge; Aksu Dönmez, Özlem; Yıldırım Küçükkaraca, Dilek
2016-07-01
In this study, development and validation of a HPLC method was described for simultaneous determination of potassium sorbate, sodium benzoate, quinoline yellow and sunset yellow. A Box-Behnken design using three variables at three levels was employed to determine the optimum conditions of chromatographic separation: pH of mobile phase, 6.0-7.0; flow rate, 0.8-1.2 mL min(-1) and the ratio of mobile phase composed of a 0.025 M sodium acetate/acetic acid buffer, 80-90%. Resolution was chosen as a response. The optimized method was validated for linearity, the limits of detection and quantification, accuracy, precision and stability. All the validation parameters were within the acceptance range. The applicability of the developed method to the determination of these food additives in commercial lemonade and lemon sauce samples was successfully demonstrated. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mission and system optimization of nuclear electric propulsion vehicles for lunar and Mars missions
NASA Technical Reports Server (NTRS)
Gilland, James H.
1991-01-01
The detailed mission and system optimization of low thrust electric propulsion missions is a complex, iterative process involving interaction between orbital mechanics and system performance. Through the use of appropriate approximations, initial system optimization and analysis can be performed for a range of missions. The intent of these calculations is to provide system and mission designers with simple methods to assess system design without requiring access or detailed knowledge of numerical calculus of variations optimizations codes and methods. Approximations for the mission/system optimization of Earth orbital transfer and Mars mission have been derived. Analyses include the variation of thruster efficiency with specific impulse. Optimum specific impulse, payload fraction, and power/payload ratios are calculated. The accuracy of these methods is tested and found to be reasonable for initial scoping studies. Results of optimization for Space Exploration Initiative lunar cargo and Mars missions are presented for a range of power system and thruster options.
Lenczewski, M E; Kananen, L L
1998-01-01
A procedure was designed to determine the minimum preservative level (MPL) for personal and home care products. A highly preserved sample and an unpreserved sample were combined at different concentrations within a 96-well microtiter plate by using an autodilutor. A unique tip design made it possible to accurately deliver viscous test materials that cannot be dispensed using vacuum- or fluid-filled systems. After inoculation, the sample was evaluated at a specified time interval for the presence of surviving bacteria, yeast, and mold. The lowest concentration of preservative with no microbial growth is the recommended level of preservative for the product. Because sample turbidity may interfere with determination of the endpoint, a colorimetric endpoint was used to indicate growth of microorganisms and to differentiate product from growth. The predicted levels were tested with a modified Cosmetic, Toiletry, and Fragrance Association method. The method successfully predicted effective preservative levels in many personal and home care products with a broad range of viscosities.
Flow analysis and design optimization methods for nozzle-afterbody of a hypersonic vehicle
NASA Technical Reports Server (NTRS)
Baysal, O.
1992-01-01
This report summarizes the methods developed for the aerodynamic analysis and the shape optimization of the nozzle-afterbody section of a hypersonic vehicle. Initially, exhaust gases were assumed to be air. Internal-external flows around a single scramjet module were analyzed by solving the 3D Navier-Stokes equations. Then, exhaust gases were simulated by a cold mixture of Freon and Ar. Two different models were used to compute these multispecies flows as they mixed with the hypersonic airflow. Surface and off-surface properties were successfully compared with the experimental data. The Aerodynamic Design Optimization with Sensitivity analysis was then developed. Pre- and postoptimization sensitivity coefficients were derived and used in this quasi-analytical method. These coefficients were also used to predict inexpensively the flow field around a changed shape when the flow field of an unchanged shape was given. Starting with totally arbitrary initial afterbody shapes, independent computations were converged to the same optimum shape, which rendered the maximum axial thrust.
Flow analysis and design optimization methods for nozzle afterbody of a hypersonic vehicle
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1991-01-01
This report summarizes the methods developed for the aerodynamic analysis and the shape optimization of the nozzle-afterbody section of a hypersonic vehicle. Initially, exhaust gases were assumed to be air. Internal-external flows around a single scramjet module were analyzed by solving the three dimensional Navier-Stokes equations. Then, exhaust gases were simulated by a cold mixture of Freon and Argon. Two different models were used to compute these multispecies flows as they mixed with the hypersonic airflow. Surface and off-surface properties were successfully compared with the experimental data. In the second phase of this project, the Aerodynamic Design Optimization with Sensitivity analysis (ADOS) was developed. Pre and post optimization sensitivity coefficients were derived and used in this quasi-analytical method. These coefficients were also used to predict inexpensively the flow field around a changed shape when the flow field of an unchanged shape was given. Starting with totally arbitrary initial afterbody shapes, independent computations were converged to the same optimum shape, which rendered the maximum axial thrust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auberle, W.M.; Alvarez, V.M.; Leary, J.
1999-07-01
A collaborative program among agencies and professionals in Mexico and the US is designing, developing and delivering specialized workshops for Mexican officials responsible for air quality management. The initial project is development and pilot delivery (Spring 1999) of a workshop for senior officials of SEMARNAP plus selected state and municipal officials. This paper describes the process for design of professional development programs in air quality management for Mexican officials. Key issues include optimum learning styles and delivery techniques; available time of senior managers for education; need for new materials versus adaptation of existing air quality management information; and utilization ofmore » the Internet and asynchronous methods to supplement the traditional workshop format. The paper describes the results of this analysis and design features and content of the initial workshop.« less
NASA Astrophysics Data System (ADS)
Javad Kazemzadeh-Parsi, Mohammad; Daneshmand, Farhang; Ahmadfard, Mohammad Amin; Adamowski, Jan; Martel, Richard
2015-01-01
In the present study, an optimization approach based on the firefly algorithm (FA) is combined with a finite element simulation method (FEM) to determine the optimum design of pump and treat remediation systems. Three multi-objective functions in which pumping rate and clean-up time are design variables are considered and the proposed FA-FEM model is used to minimize operating costs, total pumping volumes and total pumping rates in three scenarios while meeting water quality requirements. The groundwater lift and contaminant concentration are also minimized through the optimization process. The obtained results show the applicability of the FA in conjunction with the FEM for the optimal design of groundwater remediation systems. The performance of the FA is also compared with the genetic algorithm (GA) and the FA is found to have a better convergence rate than the GA.
Design of high strength polymer metal interfaces by laser microstructured surfaces
NASA Astrophysics Data System (ADS)
Steinert, P.; Dittes, A.; Schimmelpfennig, R.; Scharf, I.; Lampke, T.; Schubert, A.
2018-06-01
In the areas of automotive, aeronautics and civil structures, lightweight construction is a current and a future need. Thus, multi material design has rapidly grown in importance, especially hybrid materials based on fiber reinforced plastics and aluminum offer great potential. Therefore, mechanical interlocking is a convenient way of designing the interface. Laser structuring is already used to generate a variety of surface topographies leading to high bond strengths. This paper investigates different laser structures aiming on highest joint strengths for aluminum and glass fiber reinforced polyamide 6 interfaces. Self-organizing pin structures comprised by additional micro/nano features as well as drilled hole structures, both ranging on the micrometer range, are compared to corundum blasting as a standard method for surface conditioning. For the presented surface structures, thermal joining and ultrasonic assisted joining are regarded towards their potential for an optimum joint design.
Hu, Shih-Hao; Kuo, Chia-Hung; Chang, Chieh-Ming J; Liu, Yung-Chuan; Chiang, Wen-Dee; Shieh, Chwen-Jen
2012-01-01
A peptide, N-Ac-Phe-Tyr-NH(2) , with angiotensin I-converting enzyme (ACE) inhibitor activity was synthesized by an α-chymotrypsin-catalyzed condensation reaction of N-acetyl phenylalanine ethyl ester (N-Ac-Phe-OEt) and tyrosinamide (Tyr-NH(2) ). Three kinds of solvents: a Tris-HCl buffer (80 mM, pH 9.0), dimethylsulfoxide (DMSO), and acetonitrile were employed in this study. The optimum reaction solvent component was determined by simplex centroid mixture design. The synthesis efficiency was enhanced in an organic-aqueous solvent (Tris-HCl buffer: DMSO: acetonitrile = 2:1:1) in which 73.55% of the yield of N-Ac-Phe-Tyr-NH(2) could be achieved. Furthermore, the effect of reaction parameters on the yield was evaluated by response surface methodology (RSM) using a central composite rotatable design (CCRD). Based on a ridge max analysis, the optimum condition for this peptide synthesis included a reaction time of 7.4 min, a reaction temperature of 28.1°C, an enzyme activity of 98.9 U, and a substrate molar ratio (Phe:Tyr) of 1:2.8. The predicted and the actual (experimental) yields were 87.6 and 85.5%, respectively. The experimental design and RSM performed well in the optimization of synthesis of N-Ac-Phe-Tyr-NH(2) , so it is expected to be an effective method for obtaining a good yield of enzymatic peptide. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polimeros, G.
1981-01-01
Design criteria for central plants that facilitate energy conversion, utilization, and conservation, an evaluation of project alternatives and an examination of systems and their functions to achieve optimum overall design in the generation of heating, cooling, and electricity are presented.
Optimum performance and potential flow field of hovering rotors
NASA Technical Reports Server (NTRS)
Wu, J. C.; Sigman, R. K.
1975-01-01
Rotor and propeller performance and induced potential flowfields were studied on the basis of a rotating actuator disk concept, with special emphasis on rotors hovering out of ground effect. A new theory for the optimum performance of rotors hovering OGE is developed and presented. An extended theory for the optimum performance of rotors and propellers in axial motion is also presented. Numerical results are presented for the optimum distributions of blade-bound circulation together with axial inflow and ultimate wake velocities for the hovering rotor over the range of thrust coefficient of interest in rotorcraft applications. Shapes of the stream tubes and of the velocities in the slipstream are obtained, using available methods, for optimum and off-optimum circulation distributions for rotors hovering in and out of ground effect. A number of explicit formulae useful in computing rotor and propeller induced flows are presented for stream functions and velocities due to distributions of circular vortices over axi-symmetric surfaces.
NASA Astrophysics Data System (ADS)
Kaur, Avneet; Bakhshi, A. K.
2010-04-01
The interest in copolymers stems from the fact that they present interesting electronic and optical properties leading to a variety of technological applications. In order to get a suitable copolymer for a specific application, genetic algorithm (GA) along with negative factor counting (NFC) method has recently been used. In this paper, we study the effect of change in the ratio of conduction band discontinuity to valence band discontinuity (Δ Ec/Δ Ev) on the optimum solution obtained from GA for model binary copolymers. The effect of varying bandwidths on the optimum GA solution is also investigated. The obtained results show that the optimum solution changes with varying parameters like band discontinuity and band width of constituent homopolymers. As the ratio Δ Ec/Δ Ev increases, band gap of optimum solution decreases. With increasing band widths of constituent homopolymers, the optimum solution tends to be dependent on the component with higher band gap.
NASA Astrophysics Data System (ADS)
Koval, Viacheslav
The seismic design provisions of the CSA-S6 Canadian Highway Bridge Design Code and the AASHTO LRFD Seismic Bridge Design Specifications have been developed primarily based on historical earthquake events that have occurred along the west coast of North America. For the design of seismic isolation systems, these codes include simplified analysis and design methods. The appropriateness and range of application of these methods are investigated through extensive parametric nonlinear time history analyses in this thesis. It was found that there is a need to adjust existing design guidelines to better capture the expected nonlinear response of isolated bridges. For isolated bridges located in eastern North America, new damping coefficients are proposed. The applicability limits of the code-based simplified methods have been redefined to ensure that the modified method will lead to conservative results and that a wider range of seismically isolated bridges can be covered by this method. The possibility of further improving current simplified code methods was also examined. By transforming the quantity of allocated energy into a displacement contribution, an idealized analytical solution is proposed as a new simplified design method. This method realistically reflects the effects of ground-motion and system design parameters, including the effects of a drifted oscillation center. The proposed method is therefore more appropriate than current existing simplified methods and can be applicable to isolation systems exhibiting a wider range of properties. A multi-level-hazard performance matrix has been adopted by different seismic provisions worldwide and will be incorporated into the new edition of the Canadian CSA-S6-14 Bridge Design code. However, the combined effect and optimal use of isolation and supplemental damping devices in bridges have not been fully exploited yet to achieve enhanced performance under different levels of seismic hazard. A novel Dual-Level Seismic Protection (DLSP) concept is proposed and developed in this thesis which permits to achieve optimum seismic performance with combined isolation and supplemental damping devices in bridges. This concept is shown to represent an attractive design approach for both the upgrade of existing seismically deficient bridges and the design of new isolated bridges.
Castro, Samuel Rodrigues; Araújo, Mahira Adna Cota; Lange, Liséte Celina
2013-01-01
Chemical precipitation of struvite as a technique of ammonium nitrogen (NH(4)-N) removal from concentrated wastewater has been shown to be an attractive alternative due to its high effectiveness, reaction rate, simplicity, environmental sustainability and, especially, the application potential of the generated solids for the fertilizer industry. The technique of experimental design has been used in order to identify and evaluate the optimum conditions of chemical precipitation reaction applied in a struvite sedimentation study. The preliminary tests were performed using synthetic effluent with a concentration equal to 500.0 mg N L(-1). The stoichiometric ratio Mg:NH(4):PO(4) equal to 1.5:1.0:1.25 and pH equal to 8.5 were taken to be the optimum conditions, where a NH(4)-N removal equal to 98.6% was achieved with only 10-min reaction time. This condition has been used to evaluate the struvite sedimentation from synthetic wastewaters, intending to check the optimum conditions achieved by the experimental design in different initial concentrations, 1,000 and 2,000 mg N L(-1). The results were typical of a good zonal sedimentation and can be used in the scale up the system.
Chou, K W; Norli, I; Anees, A
2010-11-01
In this study, palm oil mill effluent (POME) was solubilized by batch thermo-alkaline pre-treatments. A three-factor central composite design (CCD) was applied to identify the optimum COD solubilization condition. The individual and interactive effects of three factors, temperature, NaOH concentration and reaction time, on solubilization of POME were evaluated by employing response surface methodology (RSM). The experimental results showed that temperature, NaOH concentration and reaction time all had an individual significant effect on the solubilization of POME. But these three factors were independent, or there was insignificant interaction on the response. The maximum COD solubilization of 82.63% was estimated under the optimum condition at 32.5 degrees C, 8.83g/L of NaOH and 41.23h reaction time. The confirmation experiment of the predicted optimum conditions verified that the RSM with the central composite design was useful for optimizing the solubilization of POME.
Penjumras, Patpen; Abdul Rahman, Russly; Talib, Rosnita A.; Abdan, Khalina
2015-01-01
Response surface methodology was used to optimize preparation of biocomposites based on poly(lactic acid) and durian peel cellulose. The effects of cellulose loading, mixing temperature, and mixing time on tensile strength and impact strength were investigated. A central composite design was employed to determine the optimum preparation condition of the biocomposites to obtain the highest tensile strength and impact strength. A second-order polynomial model was developed for predicting the tensile strength and impact strength based on the composite design. It was found that composites were best fit by a quadratic regression model with high coefficient of determination (R 2) value. The selected optimum condition was 35 wt.% cellulose loading at 165°C and 15 min of mixing, leading to a desirability of 94.6%. Under the optimum condition, the tensile strength and impact strength of the biocomposites were 46.207 MPa and 2.931 kJ/m2, respectively. PMID:26167523