Sample records for optimum extraction time

  1. [Study on extraction process of available components of tea].

    PubMed

    Bai, Qing-Qing; Liu, Yong-Feng; Guo, Mei; Zhao, Jian-Xi; Zhang, Tian-Cai; Di, Duo-Long

    2011-09-01

    To investigate the optimum ethanol extraction process conditions for the available components in the tea - Catechines (CT) including Epigallo catechin gallate (EGCG) and Caffeine (CF). The content of EGCG, CT and CF, extraction rate, DPPH * Free radical scavenging capacity were chosen as the assessment indexes. With the alcohol ratio (A), solid-liquid ratio (B) and reflux time (C) as investigation factors, the optimum ethanol extraction process of the available components from tea was determined by L9 (3(4)) orthogonal experimental design. It would obtain different extraction conditions to analyze the assessment indexes depending on the different extraction purposes. For the purpose of CT, the contents of EGCG and CT, extraction rate and DPPH * Free radical scavenging capacity were chosen as the assessment indexes, the optimum extraction conditions were selected as follows: the ratio of raw material to 75% alcohol was 1: 12, the reflux time was 30 minutes and extraction times were three; For the purpose of CF, the content of CF and extraction rate were chosen as the assessment indexes, the optimum extraction conditions were selected as follows: the ratio of raw material to 60% alcohol was 1: 12, the reflux time was 30 minutes and extraction times were three; For the purpose of integrated extraction, the contents of CT and CF, extraction rate and DPPH * Free radical scavenging capacity were chosen as the assessment indexes, the optimum extraction conditions were selected as follows: the ratio of raw material to 60% alcohol was 1: 8, the reflux time was 30 minutes and extraction times were three. The optimum extraction process in order to attain different purposes can give a reference to the research of a new medicine and industry production.

  2. [Study on extraction technology of soyasaponins from residual of bean ware].

    PubMed

    Lu, Rumei; Zhang, Yizhen; Bi, Yi

    2003-04-01

    To find out the optimum extraction technology of soyasaponins from residual of bean ware. The optimum extraction conditions were investigated by the orthogonal design, and the content of soyasaponins was determined by UV-spectro-pho-tometry. The optimum extraction technology was A3B1C1, that is adding 7 times and 6 times amount of 70% alcohol and refluxing for two times and each time for 1.0 h. The selected technology showed higher yield of soyasaponins, good stability and high efficient.

  3. [Studies on technology optimization for extracting triterpenoid saponins from Picria felterrae by multi-target grading method].

    PubMed

    Fang, Hong; Ning, De-sheng; Liang, Xiao-yan

    2009-12-01

    To study the optimum extraction conditions of triterpenoid saponins from Picria felterrae. The optimum extraction conditions were investigated by the contents of the total glycosides and picfeltarraenine I A and I B, using orthogonal test. The optimum extraction conditions were as follows: using 70% alcohol of 19 times than the amount of original material soaking 3 hours, extracting twice with hot reflux method at 80 degrees C, 3h the first time, 1 h the second time. The selected extraction conditions are convenient and practical with high accuracy, and could be used as a reference for industrial production.

  4. [Extraction and purification technologies of total flavonoids from Aconitum tanguticum].

    PubMed

    Li, Yan-Rong; Yan, Li-Xin; Feng, Wei-Hong; Li, Chun; Wang, Zhi-Min

    2014-04-01

    To optimize the extraction and purification technologies of total flavonoids from Aconitum tanguticum whole plant. With the content of total flavonoids as index, the optimum extraction conditions for the concentration, volume of alcohol, extracting time and times were selected by orthogonal optimized; Comparing the adsorption quantity (mg/g) and resolution (%), four kinds of macroporous adsorption resins including D101, AB-8, X-5 and XAD-16 were investigated for the enrichment ability of total flavonoids from Aconitum tanguticum; Concentration and pH value of sample, sampling amount, elution solvent and loading and elution velocity for the optimum adsorption resin were determined. The content of total flavonoids in Aconitum tanguticum was about 4.39%; The optimum extraction technique was 70% alcohol reflux extraction for three times,each time for one hour, the ratio of material and liquid was 1:10 (w/v); The optimum purification technology was: using XAD-16 macroporous resin, the initial concentration of total flavonoids of Aconitum tanguticum was 8 mg/mL, the sampling amount was 112 mg/g dry resin, the pH value was 5, the loading velocity was 3 mL/min, the elution solvent was 70% ethanol and the elution velocity was 5 mL/min. Under the optimum conditions, the average content of total flavonoids was raised from 4.39% to 46.19%. The optimum extraction and purification technologies for total flavonoids of Aconitum tanguticum were suitable for industrial production for its simplicity and responsibility.

  5. [Study on new extraction technology of astragaloside IV].

    PubMed

    Sun, Haiyan; Guan, Su; Huang, Min

    2005-08-01

    To explore the possibility and the optimal extraction technology of astragaloside IV by SFE-CO2. According the content of astragaloside IV, the optimum extraction technology parameters such as extraction temperature, pressure, extraction time, velocity of fluid and co-solvent were investigated and the result was compared with that of water extraction. The optimum technical parameters were as follows: Extracting pressure 40 Mpa, temperature 45 degrees C, extracting time 2h, co-solvent was 95% ethanol and its dosage was 4ml/g, the ratio of CO2 fluid was 10 kg/kg x h. Extraction technology of astragaloside IV by SFE-CO2 is reliable, stable.

  6. Application of response surface methodology for the optimization of supercritical fluid extraction of essential oil from pomegranate (Punica granatum L.) peel.

    PubMed

    Ara, Katayoun Mahdavi; Raofie, Farhad

    2016-07-01

    Essential oils and volatile components of pomegranate ( Punica granatum L.) peel of the Malas variety from Meybod, Iran, were extracted using supercritical fluid extraction (SFE) and hydro-distillation methods. The experimental parameters of SFE that is pressure, temperature, extraction time, and modifier (methanol) volume were optimized using a central composite design after a (2 4-1 ) fractional factorial design. Detailed chemical composition of the essential oils and volatile components obtained by hydro-distillation and optimum condition of the supercritical CO 2 extraction were analyzed by GC-MS, and seventy-three and forty-six compounds were identified according to their retention indices and mass spectra, respectively. The optimum SFE conditions were 350 atm pressure, 55 °C temperature, 30 min extraction time, and 150 µL methanol. Results showed that oleic acid, palmitic acid and (-)-Borneol were major compounds in both extracts. The optimum extraction yield was 1.18 % (w/w) for SFE and 0.21 % (v/w) for hydro-distillation.

  7. Extraction of coffee silverskin to convert waste into a source of antioxidant

    NASA Astrophysics Data System (ADS)

    Tangguh, Patrick; Kusumocahyo, Samuel P.

    2017-01-01

    Coffee silverskin (CS) is a thin layer of coffee bean, and is regarded as a waste during coffee roasting process. In this work, coffee silverskin was extracted by three types of method: conventional extraction (CE) with agitation, conventional extraction (CE) without agitation and ultrasound-assisted extraction (UAE). The total phenolic content, the total flavonoid content and the antioxidant activity of the extract were analyzed. It was found that the type of extraction method, the extraction time and the extraction temperature strongly influenced the total phenolic content, the total flavonoid content and the antioxidant activity of the extract. Comparison between conventional extraction (CE) and ultrasound-assisted extraction (UAE) were statistically analyzed using 3-way ANOVA test. The optimum extraction time and temperature for each method were analyzed using 2-way ANOVA test. It was found that the optimum condition to obtain a high antioxidant activity of 68.9% was by using CE with agitation with the extraction time and temperature of 60 minutes and 60˚C, respectively.

  8. Study on extraction process and activity of plant polysaccharides

    NASA Astrophysics Data System (ADS)

    Ma, Xiaogen; Wang, Xiaojing; Fan, Shuangli; Chen, Jiezhong

    2017-10-01

    Recent studies have shown that plant polysaccharides have many pharmacological activities, such as hypoglycemic, anti-inflammatory and tumor inhibition. The pharmacological activities of plant polysaccharides were summarized. The extraction methods of plant polysaccharides were discussed. Finally, the extraction process of Herba Taraxaci polysaccharides was optimized by ultrasonic assisted extraction. Through single factor experiments and orthogonal experiment to optimize the optimum extraction process from dandelion polysaccharide, optimum conditions of dandelion root polysaccharide by ultrasonic assisted extraction method for ultrasonic power 320W, temperature 80°C, extraction time 40min, can get higher dandelion polysaccharide extract.

  9. [Study on extraction process of zhanjin ruji].

    PubMed

    Du, Zhi-qian; Du, Tian-xin; Wang, Zhong-dong; Li, Gen-lin

    2003-01-01

    To select the optimum extraction process of Zhanjin Ruji. To observe influence of extraction time upon the extraction rate of volatile oil, the orthogonal test was adopted to observe the extraction process by alcohol from the extraction rate and content of the total saponins in Radix Notoginseng. The three kinds of herbs including Radix Angelicae Sinensis, Resina Olibani and Myrrha were extracted with water for 3 hours, 95% of volatile oil can be distilled. The three kinds of herbs including Radix Notoginseng, Herba Lycopodii and Radix Gentianae Macrophyllac were extracted by alcohol. Four factors such as alcohol concentration(A), extraction times(B), extraction time(C), and solvent amount(D), had not significant effect on the content of total saponins in Radix Notoginseng in herbal extraction, but factor A and B had significant effect on the extraction rate. The optimum extraction process was as follows extracted with 5 times the amount of the solvent volum 60% alcohol for 3 times and with each time for 1 hour. Three times experiments showed that the extraction rate was 26.5% and the content of the total saponins in Radix Notoginseng was 17.28% mg.g-1. The above experimental results can provide experimental basis for deciding the extraction process of Zhanjin Ruji.

  10. Optimization of phycocyanin extraction from microalgae Spirulina platensis by sonication as antioxidant

    NASA Astrophysics Data System (ADS)

    Dianursanti, Indraputri, Claudia Maya; Taurina, Zarahmaida

    2018-02-01

    Cardiovascular disease is known as an epidemic disease which has high casualty in the world. One of its trigger factors is the amount of reactive oxygen species (ROS) inside the body. In order to regulate its amount, antioxidant ingestion is compulsory. Microalgae can be adopted as a source of antioxidant. Spirulina platensis is one of the consistently produced microalgae. It contains phycocyanin, a blue pigment, which is known as a nutritious food agent. Phycocyanin could be assumed as an antioxidant and has been clinically validated both in vitro and in vivo. This research is proposed to determine the optimum extraction time. The experiment was conducted by sonication at 37 kHz using phosphate buffer as the solvent. The result exhibited that increasing the sonication time would increase the yield until it achieved the optimum yield. Based on the experiment, the optimum extraction time was 25 minutes with yield of 8.25 mg/g dry biomass and purity of 0.6. It can be summarized that extraction time also affected the extraction efficiency and its antioxidant activity. This paper shows a prospect on future development in cultivating micro flora in Indonesia, particularly in Depok.

  11. [Studies on technology optimization for extraction and purification of total flavones from root bark of Artocarpus styracifolius].

    PubMed

    Ren, Gang; Liu, Rong-hua; Shao, Feng; Huang, Hui-lian; Wen, Li-rong

    2010-08-01

    To study the technology optimization for extraction and purification of total flavones from root bark of Artocarpus styracifolius. The optimum extraction conditions were investigated by the contents of the total flavones, using orthogonal test; Static adsorption capacity and desorption rate were employed as examine items for the screening of optimum macroporous resin and optimum technology for the purification of total flavones with selected macroporous were also investigated. The optimum extraction conditions were as follows: using 60% alcohol of seven times than amounts of original material soaking 12 hours,extracting once with hot reflux method at 50 degrees C. HPD-500 type macroporous resin showed better adsorption and desorption property. The optimum purification conditions were as follows: the sample solution was prepared at the concentration of 50.0 mg/mL, subjected to HPD-500 type macroporous resin column chromatography with a load ratio of 22.0 mg total flavones per gram of resin. After standing for 1 hour, the column was eluted with 4 BV water before being eluted with 4 BV 80% alcohol. The purity of the product was 86.4%, which enhanced the content of total flavones by 533%. The optimum conditions for extraction and purification of total flavones from root bark of Artocarpus styractifolius are convenient and practical, and could be used as a reference for industrial production.

  12. [Study on extraction process of Radix Bupleuri].

    PubMed

    Zhao, Lei; Liu, Benliang; Wu, Fuxiang; Tao, Lanping; Liu, Jian

    2004-10-01

    The orthogonal design was used to optimize extraction process of Radix Bupleuri with content of total saponin and yield of the extract as markers. Factors that have been chosen were ethanol concentration, ethanol consumption, extraction times and extraction time. Each factor had three levels. The result showed that the optimum extraction condition was 80% ethanol, 4 times the amount of material, refluxing for 4 times, 60 minutes each time. The optimized process was stable and workable.

  13. Microwave-assisted extraction of total bioactive saponin fraction from Gymnema sylvestre with reference to gymnemagenin: a potential biomarker.

    PubMed

    Mandal, Vivekananda; Dewanjee, Saikat; Mandal, Subhash C

    2009-01-01

    To develop a fast and ecofriendly microwave assisted extraction (MAE) technique for the effective and exhaustive extraction of gymnemagenin as an indicative biomarker for the quality control of Gymnema sylvestre. Several extraction parameters such as microwave power, extraction time, solvent composition, pre-leaching time, loading ratio and extraction cycle were studied for the determination of the optimum extraction condition. Scanning electron micrographs were obtained to elucidate the mechanism of extraction. The final optimum extraction conditions as obtained from the study were: 40% microwave power, 6 min irradiation time, 85% v/v methanol as the extraction solvent, 15 min pre-leaching time and 25 : 1 (mL/g) as the solvent-to-material loading ratio. The proposed extraction technique produced a maximum yield of 4.3% w/w gymnemagenin in 6 min which was 1.3, 2.5 and 1.95 times more efficient than 6 h of heat reflux, 24 h of maceration and stirring extraction, respectively. A synergistic heat and mass transfer theory was also proposed to support the extraction mechanism. Comparison with conventional extraction methods revealed that MAE could save considerable amounts of time and energy, whilst the reduction of volume of organic solvent consumed provides an ecofriendly feature.

  14. [Studies on extraction process of Radix Platycodi].

    PubMed

    Wu, Biyuan; Sun, Jun; Jiang, Hongfang

    2002-06-01

    The orthogonal design was used to optimize the extraction process of Radix Platycodi with content of total saponin and yield of the extract as markers. Factors that have been chosen were alcohol concentration, alcohol consumption, extraction times and extraction time. Each factor has three levels. The result showed that the optimum extraction condition obtained was 70% alcohol, 3 times the amount of material, refluxing for 5 times, 60 minutes each time, the optimized process was stable and workable.

  15. [Studies on extraction process optimization of Panax notogingseng saponins].

    PubMed

    Qu, Lin-hai; Zheng, Ming; Lou, Yi-jia

    2006-06-01

    To optimize the conditions for the extraction of panax notogingseng saponins (PNS). After selected extraction solvent and suitable particle, we employed orthogonal experimental design to examine the conditions for the extraction by determination of PNS. Significant effect was observed only in extraction times. The optimum condition for extraction of PNS was to extract panax notogingseng (Burk.) F. H. Chen with 10 times 70% ethanol for 1.5 hours for 3 times.

  16. [Optimal extraction of effective constituents from Aralia elata by central composite design and response surface methodology].

    PubMed

    Lv, Shao-Wa; Liu, Dong; Hu, Pan-Pan; Ye, Xu-Yan; Xiao, Hong-Bin; Kuang, Hai-Xue

    2010-03-01

    To optimize the process of extracting effective constituents from Aralia elata by response surface methodology. The independent variables were ethanol concentration, reflux time and solvent fold, the dependent variable was extraction rate of total saponins in Aralia elata. Linear or no-linear mathematic models were used to estimate the relationship between independent and dependent variables. Response surface methodology was used to optimize the process of extraction. The prediction was carried out through comparing the observed and predicted values. Regression coefficient of binomial fitting complex model was as high as 0.9617, the optimum conditions of extraction process were 70% ethanol, 2.5 hours for reflux, 20-fold solvent and 3 times for extraction. The bias between observed and predicted values was -2.41%. It shows the optimum model is highly predictive.

  17. Optimization of microwave-assisted extraction (MAP) for ginseng components by response surface methodology.

    PubMed

    Kwon, Joong-Ho; Bélanger, Jacqueline M R; Paré, J R Jocelyn

    2003-03-26

    Response surface methodology (RSM) was applied to predict optimum conditions for microwave-assisted extraction-a MAP technology-of saponin components from ginseng roots. A central composite design was used to monitor the effect of ethanol concentration (30-90%, X(1)) and extraction time (30-270 s, X(2)) on dependent variables, such as total extract yield (Y(1)), crude saponin content (Y(2)), and saponin ratio (Y(3)), under atmospheric pressure conditions when focused microwaves were applied at an emission frequency of 2450 MHz. In MAP under pre-established conditions, correlation coefficients (R (2)) of the models for total extract yield and crude saponin were 0.9841 (p < 0.001) and 0.9704 (p < 0.01). Optimum extraction conditions were predicted for each variable as 52.6% ethanol and 224.7 s in extract yield and as 77.3% ethanol and 295.1 s in crude saponins, respectively. Estimated maximum values at predicted optimum conditions were in good agreement with experimental values.

  18. Production of Sterilizing Agents from Calendula officinalis Extracts Optimized by Response Surface Methodology

    PubMed Central

    Goktas, Fatih Mehmet; Sahin, Bilgesu; Yigitarslan, Sibel

    2015-01-01

    The aim of this study was to produce hand sterilizing liquid and wet wipes with the extracts of Calendula officinalis. Since this plant has well known antimicrobial activity due to its phytochemical constituents, the increase in the extraction yield was chosen as the principle part of the production process. To achieve the maximum yield, parameters of solid-to-liquid ratio, extraction temperature, and time were studied. The optimum conditions were determined by response surface methodology as 41°C, 7 h, and 3.3 g/200 mL for temperature, time, and solid-to-liquid ratio, respectively. The yield achieved at those conditions was found to be 90 percent. The highest amounts of flavonoids were detected at optimum, whereas the highest triterpene and saponin constituents were determined at different design points. The microbial efficiencies of extracts were determined by the inhibition of the growth of selected microorganisms. Different dilution rates and interaction times were used as parameters of inhibition. Not any of the constituent but symbiotic relation in-between reached the highest inhibition of 90 percent. The pH values of the extracts were 5.1 to 5.4. As a result, the extraction of Calendula officinalis at the optimum conditions can be used effectively in the production of wet wipes and hand sterilizing liquid. PMID:26064122

  19. Isolation and characterization of hydrophobic compounds from carbohydrate matrix of Pistacia atlantica.

    PubMed

    Samavati, Vahid; Adeli, Mostafa

    2014-01-30

    The present work is focused on the optimization of hydrophobic compounds extraction process from the carbohydrate matrix of Iranian Pistacia atlantica seed at laboratory level using ultrasonic-assisted extraction. Response surface methodology (RSM) was used to optimize oil seed extraction yield. Independent variables were extraction temperature (30, 45, 60, 75 and 90°C), extraction time (10, 15, 20, 25, 30 and 35 min) and power of ultrasonic (20, 40, 60, 80 and 100 W). A second order polynomial equation was used to express the oil extraction yield as a function of independent variables. The responses and variables were fitted well to each other by multiple regressions. The optimum extraction conditions were as follows: extraction temperature of 75°C, extraction time of 25 min, and power of ultrasonic of 80 W. A comparison between seed oil composition extracted by ultrasonic waves under the optimum operating conditions determined by RSM for oil yield and by organic solvent was reported. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design.

    PubMed

    Patil, Ajit A; Sachin, Bhusari S; Wakte, Pravin S; Shinde, Devanand B

    2014-11-01

    The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method.

  1. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design

    PubMed Central

    Patil, Ajit A.; Sachin, Bhusari S.; Wakte, Pravin S.; Shinde, Devanand B.

    2013-01-01

    The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method. PMID:25687584

  2. Optimization of high pressure bioactive compounds extraction from pansies (Viola × wittrockiana) by response surface methodology

    NASA Astrophysics Data System (ADS)

    Fernandes, Luana; Casal, Susana I. P.; Pereira, José A.; Ramalhosa, Elsa; Saraiva, Jorge A.

    2017-07-01

    Response surface methodology (RSM) was employed for the first time to optimize high pressure extraction (HPE) conditions of bioactive compounds from pansies, namely: pressure (X1: 0-500 MPa), time (X2: 5-15 min) and ethanol concentration (X3: 0-100%). Consistent fittings using second-order polynomial models were obtained for flavonoids, tannins, anthocyanins, total reducing capacity (TRC) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity. The optimum extraction conditions based on combination responses for TRC, tannins and anthocyanins were: X1 = 384 MPa, X2 = 15 min and X3 = 35% (v/v) ethanol, shortening the extraction time when compared to the classic method of stirring (approx. 24 h). When the optimum extraction conditions were applied, 65.1 mg of TRC, 42.8 mg of tannins and 56.15 mg of anthocyanins/g dried flower were obtained. Thus, HPE has shown to be a promising technique to extract bioactive compounds from pansies, by reducing the extraction time and by using green solvents (ethanol and water), for application in diverse industrial fields.

  3. Inactivation disinfection property of Moringa Oleifera seed extract: optimization and kinetic studies

    NASA Astrophysics Data System (ADS)

    Idris, M. A.; Jami, M. S.; Hammed, A. M.

    2017-05-01

    This paper presents the statistical optimization study of disinfection inactivation parameters of defatted Moringa oleifera seed extract on Pseudomonas aeruginosa bacterial cells. Three level factorial design was used to estimate the optimum range and the kinetics of the inactivation process was also carried. The inactivation process involved comparing different disinfection models of Chicks-Watson, Collins-Selleck and Homs models. The results from analysis of variance (ANOVA) of the statistical optimization process revealed that only contact time was significant. The optimum disinfection range of the seed extract was 125 mg/L, 30 minutes and 120rpm agitation. At the optimum dose, the inactivation kinetics followed the Collin-Selleck model with coefficient of determination (R2) of 0.6320. This study is the first of its kind in determining the inactivation kinetics of pseudomonas aeruginosa using the defatted seed extract.

  4. Optimization of extraction process by response surface methodology and preliminary structural analysis of polysaccharides from defatted peanut (Arachis hypogaea) cakes.

    PubMed

    Song, Yi; Du, Bingjian; Zhou, Ting; Han, Bing; Yu, Fei; Yang, Rui; Hu, Xiaosong; Ni, Yuanying; Li, Quanhong

    2011-02-01

    In this work, response surface methodology was used to determine optimum conditions for extraction of polysaccharides from defatted peanut cake. A central composite design including independent variables, such as extraction temperature (x(1)), extraction time (x(2)), and ethanol concentration (x(3)) was used. Selected response which evaluates the extraction process was polysaccharide yield, and the second-order model obtained for polysaccharide yield revealed coefficient of determination of 97.81%. The independent variable with the largest effect on response was ethanol concentration (x(3)). The optimum extraction conditions were found to be extraction temperature 48.7°C, extraction time 1.52 h, and ethanol concentration of 61.9% (v/v), respectively. Under these conditions, the extraction efficiency of polysaccharide can increase to 25.89%. The results of structural analysis showed that the main composition of defatted peanut cake polysaccharide was α-galactose. 2010 Elsevier Ltd. All rights reserved.

  5. [Studies on preparative technology and quantitative determination for extracts of total saponin in roof of Panax japonicus].

    PubMed

    He, Yu-min; Lu, Ke-ming; Yuan, Ding; Zhang, Chang-cheng

    2008-11-01

    To explore the optimum extraction and purification condition of the total saponins in the root of Panax japonicus (RPJ), and establish its quality control methods. Designed L16 (4(5)) orthogonal test with the extraction rate of total saponins as index, to determine the rational extraction process, and the techniques of water-saturated n-butanol extraction and acetone precipitation were applied to purify the alcohol extract of RPJ. Total saponins were detected by spectrophotometry and its triterpenoidal sapogenin oleanolic acid detected by HPLC. The optimum conditions of total saponins from RPJ was as follows: the material was pulverized, dipped in 60% ethanol aqueous solution as extract solvent at 10 times of volume, and refluxed 3 times for 3 h each time. Extractant of water-saturated n-butanol with extraction times of 3 and precipitant of acetone with precipitation amount of 4-5 times were included in the purification process, which would obtain the quality products. The content of total saponins could reach to 83.48%, and oleanolic acid to 38.30%. The optimized preparative technology is stable, convenient and practical. The extract rate of RPJ was high and steady with this technology, which provided new evidence for industrializing production of the plant and developing new drug.

  6. Optimization of gelatine extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology.

    PubMed

    Kasankala, Ladislaus M; Xue, Yan; Weilong, Yao; Hong, Sun D; He, Qian

    2007-12-01

    To establish the optimum gelatine extraction conditions from grass carp fish skin, response surface methodology (RSM) was adopted in this study. The effects of concentration of HCl (%, A), pre-treatment time (h, B), extraction temperature ( degrees C, C) and extraction time (h, D) were studied. The responses were yield (%) and gel strength (g). A=1.19%, B=24 h, C=52.61 degrees C and D=5.12h were determined as the optimum conditions while the predicted responses were 19.83% yield and 267 g gel strength. Gelling and melting points were 19.5 degrees C and 26.8 degrees C, respectively. Moreover, grass carp gelatine showed high contents of imino acids (proline and hydroxyproline) 19.47%. RSM provided a powerful tool to optimize the extraction parameters and the results may be adapted for industrial extraction of gelatine from grass carp fish skins.

  7. Partial biochemical characterization of crude extract extracellular chitinase enzyme from Bacillus subtilis B 298

    NASA Astrophysics Data System (ADS)

    Lestari, P.; Prihatiningsih, N.; Djatmiko, H. A.

    2017-02-01

    Extraction and characterization of extracellular chitinase from Bacillus subtilis B 298 have been done. Growth curve determination of B. subtilis B 298, production curve determination of crude extract chitinase from B. subtilis B 298, and partial biochemical characterization of crude extract chitinase have been achieved in this study. Optimum growth of B. subtilis B 298 was achieved at logarithmic phase within 9 hours incubation time, so it was used as inoculum for enzyme production. According to production curve of the enzyme, it was known that incubation time which gave the highest chitinase activity of 15 hours with activity of 6.937 U/mL respectively. Effect of various temperatures on chitinase activity showed that optimum activity was achieved at 40°C with an activity of 5.764 U/mL respectively. Meanwhile, the optimum pH for chitinase activity was achieved at pH of 5.0 with an activity of 6.813 U/mL respectively. This enzyme was then classified as metalloenzyme due to the decline of the activity by EDTA addition. All divalent cations tested acted as inhibitors.

  8. Extraction of bioactives from Orthosiphon stamineus using microwave and ultrasound-assisted techniques: Process optimization and scale up.

    PubMed

    Chan, Chung-Hung; See, Tiam-You; Yusoff, Rozita; Ngoh, Gek-Cheng; Kow, Kien-Woh

    2017-04-15

    This work demonstrated the optimization and scale up of microwave-assisted extraction (MAE) and ultrasonic-assisted extraction (UAE) of bioactive compounds from Orthosiphon stamineus using energy-based parameters such as absorbed power density and absorbed energy density (APD-AED) and response surface methodology (RSM). The intensive optimum conditions of MAE obtained at 80% EtOH, 50mL/g, APD of 0.35W/mL, AED of 250J/mL can be used to determine the optimum conditions of the scale-dependent parameters i.e. microwave power and treatment time at various extraction scales (100-300mL solvent loading). The yields of the up scaled conditions were consistent with less than 8% discrepancy and they were about 91-98% of the Soxhlet extraction yield. By adapting APD-AED method in the case of UAE, the intensive optimum conditions of the extraction, i.e. 70% EtOH, 30mL/g, APD of 0.22W/mL, AED of 450J/mL are able to achieve similar scale up results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Solid Phase Curing Time Effect of Asbuton with Texapon Emulsifier at the Optimum Bitumen Content

    NASA Astrophysics Data System (ADS)

    Sarwono, D.; Surya D, R.; Setyawan, A.; Djumari

    2017-07-01

    Buton asphalt (asbuton) could not be utilized optimally in Indonesia. Asbuton utilization rate was still low because the processed product of asbuton still have impracticable form in the term of use and also requiring high processing costs. This research aimed to obtain asphalt products from asbuton practical for be used through the extraction process and not requiring expensive processing cost. This research was done with experimental method in laboratory. The composition of emulsify asbuton were 5/20 grain, premium, texapon, HCl, and aquades. Solid phase was the mixture asbuton 5/20 grain and premium with 3 minutes mixing time. Liquid phase consisted texapon, HCl and aquades. The aging process was done after solid phase mixing process in order to reaction and tie of solid phase mixed become more optimal for high solubility level of asphalt production. Aging variable time were 30, 60, 90, 120, and 150 minutes. Solid and liquid phase was mixed for emulsify asbuton production, then extracted for 25 minutes. Solubility level of asphalt, water level, and asphalt characteristic was tested at extraction result of emulsify asbuton with most optimum ashphal level. The result of analysis tested data asphalt solubility level at extract asbuton resulted 94.77% on 120 minutes aging variable time. Water level test resulted water content reduction on emulsify asbuton more long time on occurring of aging solid phase. Examination of asphalt characteristic at extraction result of emulsify asbuton with optimum asphalt solubility level, obtain specimen that have rigid and strong texture in order that examination result have not sufficient ductility and penetration value.

  10. [Study on the extraction process and macroporous resin for purification of Timosaponin B II].

    PubMed

    Liu, Yan-Ping; Ding, Yue; Zhang, Tong; Wang, Bing; Cai, Zhen-Zhen; Tao, Jian-Sheng

    2013-06-01

    To optimize the extraction process and macroporous resin for purification of Timosaponin B II from Anemarrhena asphodeloides. Orthogonal design L9 (34) was employed to optimize the circumfluence extraction conditions by taking the extraction yield of Timosaponin B II as index. The absorption-desorption characteristics of eight kinds of macroporous resins were evaluated, then the best resin was chosen to optimize the purification process conditions. The optimum extraction conditions were as follows: the herb was extracted for 2 times (2 hours each time) with 8.5-fold 50% ethanol at the first time and 6-fold 50% ethanol at the second time. HPD100 resin showed a good property for the absorption-desorption of Timosaponin B II. The optimum technological conditions of HPD100 resin were as follows:the solution concentration was 0.23 mg/mL, the amount of saturated adsorption at 4/5 body volumn (BV) resin, the HPD100 resin was washed with 3 BV water and 6 BV 20% ethanol solution to remove the impurity, then the Timosaponin B II was desorbed by 5 BV ethanol solution. The purity of Timosaponin B II was about 50%. The optimized extraction process and purification is stable, efficient and suitable for industrial production.

  11. A method for the preparation of curcumin by ultrasonic-assisted ammonium sulfate/ethanol aqueous two phase extraction.

    PubMed

    Xu, Guangkuan; Hao, Changchun; Tian, Suyang; Gao, Feng; Sun, Wenyuan; Sun, Runguang

    2017-01-15

    This study investigated a new and easy-to-industrialized extracting method for curcumin from Curcuma longa rhizomes using ultrasonic extraction technology combined with ammonium sulfate/ethanol aqueous two-phase system (ATPS), and the preparation of curcumin using the semi-preparative HPLC. The single-factor experiments and response surface methodology (RSM) were utilized to determine the optimal material-solvent ratio, ultrasonic intensity (UI) and ultrasonic time. The optimum extraction conditions were finally determined to be material-solvent rate of 3.29:100, ultrasonic intensity of 33.63W/cm 2 and ultrasonic time of 17min. At these optimum conditions, the extraction yield could reach 46.91mg/g. And the extraction yields of curcumin remained stable in the case of amplification, which indicated that scale-up extraction was feasible and efficient. Afterwards, the semi-preparative HPLC experiment was carried out, in which optimal preparation conditions were elected according to the single factor experiment. The prepared curcumin was obtained and the purity could up to 85.58% by the semi-preparative HPLC. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.).

    PubMed

    Valizadeh Kiamahalleh, Mohammad; Najafpour-Darzi, Ghasem; Rahimnejad, Mostafa; Moghadamnia, Ali Akbar; Valizadeh Kiamahalleh, Meisam

    2016-06-01

    Curcumin is a hydrophobic polyphenolic compound derived from turmeric rhizome, which consists about 2-5% of the total rhizome content and is a more valuable component of turmeric. For reducing the drawbacks of conventional extraction (using organic solvents) of curcumin, the water as a clean solvent was used for extracting curcumin. Subcritical water extraction (SWE) experimental setup was fabricated in a laboratory scale and the influences of some parameters (e.g. extraction temperature, particle size, retention time and pressure) on the yield of extraction were investigated. Optimum extraction conditions such as SWE pressure of 10bar, extractive temperature of 140°C, particle size of 0.71mm and retention time of 14min were defined. The maximum amount of curcumin extracted at the optimum condition was 3.8wt%. The yield of curcumin extraction was more than 76wt% with regards to the maximum possible curcumin content of turmeric, as known to be 5%. The scanning electron microscope (SEM) images from the outer surface of turmeric, before and after extraction, clearly demonstrated the effect of each parameter; changes in porosity and hardness of turmeric that is directly related to the amount of extracted curcumin in process optimization of the extraction parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties.

    PubMed

    Şahin, Selin; Samli, Ruya; Tan, Ayşe Seher Birteksöz; Barba, Francisco J; Chemat, Farid; Cravotto, Giancarlo; Lorenzo, José M

    2017-06-24

    Response surface methodology (RSM) and artificial neural networks (ANN) were evaluated and compared in order to decide which method was the most appropriate to predict and optimize total phenolic content (TPC) and oleuropein yields in olive tree leaf ( Olea europaea ) extracts, obtained after solvent-free microwave-assisted extraction (SFMAE). The SFMAE processing conditions were: microwave irradiation power 250-350 W, extraction time 2-3 min, and the amount of sample 5-10 g. Furthermore, the antioxidant and antimicrobial activities of the olive leaf extracts, obtained under optimal extraction conditions, were assessed by several in vitro assays. ANN had better prediction performance for TPC and oleuropein yields compared to RSM. The optimum extraction conditions to recover both TPC and oleuropein were: irradiation power 250 W, extraction time 2 min, and amount of sample 5 g, independent of the method used for prediction. Under these conditions, the maximal yield of oleuropein (0.060 ± 0.012 ppm) was obtained and the amount of TPC was 2.480 ± 0.060 ppm. Moreover, olive leaf extracts obtained under optimum SFMAE conditions showed antibacterial activity against S. aureus and S. epidermidis , with a minimum inhibitory concentration (MIC) value of 1.25 mg/mL.

  14. Optimization of extraction of chitin from procambarus clarkia shell by Box-Behnken design

    NASA Astrophysics Data System (ADS)

    Dong, Fang; Qiu, Hailong; Jia, Shaoqian; Dai, Cuiping; Kong, Qingxin; Xu, Changliang

    2018-06-01

    This paper investigated the optimizing extraction processing of chitin from procambarus clarkia shell by Box-Behnken design. Firstly, four independent variables were explored in single factor experiments, namely, concentration of hydrochloric acid, soaking time, concentration of sodium hydroxide and reaction time. Then, based on the results of the above experiments, four factors and three levels experiments were planned by Box-Behnken design. According to the experimental results, we harvested a second-order polynomial equation using multiple regression analysis. In addition, the optimum extraction process of chitin of the model was obtained: concentration of HCl solution 1.54mol/L, soaking time 19.87h, concentration of NaOH solution 2.9mol/L and reaction time 3.54h. For proving the accuracy of the model, we finished the verification experiment under the following conditions: concentration of hydrochloric acid 1.5mol/L, soaking time 20h, concentration of sodium hydroxide 3mol/L and reaction time 3.5h. The actual yield of chitin reached 18.76%, which was very close to the predicted yield (18.66%) of the model. The result indicated that the optimum extraction processing of chitin was feasible and practical.

  15. Comparison of supercritical fluid extraction and ultrasound-assisted extraction of fatty acids from quince (Cydonia oblonga Miller) seed using response surface methodology and central composite design.

    PubMed

    Daneshvand, Behnaz; Ara, Katayoun Mahdavi; Raofie, Farhad

    2012-08-24

    Fatty acids of Cydonia oblonga Miller cultivated in Iran were obtained by supercritical (carbon dioxide) extraction and ultrasound-assisted extraction methods. The oils were analyzed by capillary gas chromatography using mass spectrometric detections. The compounds were identified according to their retention indices and mass spectra (EI, 70eV). The experimental parameters of SFE such as pressure, temperature, modifier volume, static and dynamic extraction time were optimized using a Central Composite Design (CCD) after a 2(5) factorial design. Pressure and dynamic extraction time had significant effect on the extraction yield, while the other factors (temperature, static extraction time and modifier volume) were not identified as significant factors under the selected conditions. The results of chemometrics analysis showed the highest yield for SFE (24.32%), which was obtained at a pressure of 353bar, temperature of 35°C, modifier (methanol) volume of 150μL, and static and dynamic extraction times of 10 and 60min, respectively. Ultrasound-assisted extraction (UAE) of Fatty acids from C. oblonga Miller was optimized, using a rotatable central composite design. The optimum conditions were as follows: solvent (n-hexane) volume, 22mL; extraction time, 30min; and extraction temperature, 55°C. This resulted in a maximum oil recovery of 19.5%. The extracts with higher yield from both methods were subjected to transesterification and GC-MS analysis. The results show that the oil obtained by SFE with the optimal operating conditions allowed a fatty acid composition similar to the oil obtained by UAE in optimum condition and no significant differences were found. The major components of oil extract were Linoleic, Palmitic, Oleic, Stearic and Eicosanoic acids. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Ionic liquid-based microwave-assisted extraction of essential oil and biphenyl cyclooctene lignans from Schisandra chinensis Baill fruits.

    PubMed

    Ma, Chun-hui; Liu, Ting-ting; Yang, Lei; Zu, Yuan-gang; Chen, Xiaoqiang; Zhang, Lin; Zhang, Ying; Zhao, Chunjian

    2011-12-02

    Ionic liquid-based microwave-assisted extraction (ILMAE) has been successfully applied in extracting essential oil and four kinds of biphenyl cyclooctene lignans from Schisandra chinensis Baill. 0.25 M 1-lauryl-3-methylimidazolium bromide ionic liquid is selected as solvent. The optimum parameters of dealing with 25.0 g sample are 385 W irradiation power, 40 min microwave extraction time and 1:12 solid-liquid ratio. The yields of essential oil and lignans are 12.12±0.37 ml/kg and 250.2±38.2 mg/kg under the optimum conditions. The composition of the essential oil extracted by hydro-distillation, steam-distillation and ILMAE is analyzed by GC-MS. With ILMAE method, the energy consumption time has not only been shortened to 40 min (hydro-distillation 3.0 h for extracting essential oil and reflux extraction 4.0 h for extracting lignans, respectively), but also the extraction efficiency has been improved (extraction of lignans and distillation of essential oil at the same time) and reduces the environmental pollution. S. chinensis materials treated by different methods are observed by scanning electronic microscopy. Micrographs provide more evidence to prove that ILMAE is a better and faster method. The experimental results also indicate that ILMAE is a simple and efficient technique for sample preparation. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Optimization of Supercritical Carbon Dioxide Extraction of Eucommia ulmoides Seed Oil and Quality Evaluation of the Oil.

    PubMed

    Zhang, Zhen-Shan; Liu, Yu-Lan; Che, Li-Ming

    2018-03-01

    Supercritical carbon dioxide extraction (SC-CO 2 ) technology was used to extract oil from Eucommia ulmoides seed. The optimum conditions and significant parameters in SC-CO 2 were obtained using response surface methodology (RSM). The qualities of the extracted oil were evaluated by physicochemical properties, fatty acid composition, vitamin E composition. It was found that the optimum extraction parameters were at pressure of 37 MPa, temperature of 40°C, extraction time of 125 min and CO 2 flow rate of 2.6 SL/min. Pressure, temperature and time were identified as significant parameter effecting on extraction yield. The importance of evaluated parameters decreased in the order of pressure > extraction time > temperature > CO 2 flow rate. GC analysis indicated that E. ulmoides seed oil contained about 61% of linolenic acid and its fatty acid composition was similar with that of flaxseed oil and perilla oil. The content and composition of vitamin E was determined using HPLC. The E. ulmoides seed oil was rich in vitamin E (190.72 mg/100 g), the predominant vitamin E isomers were γ- tocopherol and δ- tocopherol, which accounted for 70.87% and 24.81% of the total vitamin E, respectively. The high yield and good physicochemical properties of extracted oil support the notion that SC-CO 2 technology is an effective technique for extracting oil from E. ulmoides seed.

  18. [Studies on technology of supercritical-CO2 fluid extraction for volatile oils and saikosaponins in Bupleurum chinense DC].

    PubMed

    Ge, F H; Li, Y; Xie, J M; Li, Q; Ma, G J; Chen, Y H; Lin, Y C; Li, X F

    2000-03-01

    To study the technology of supercritical-CO2 fluid extraction (SFE-CO2) for the volatile oils and saikosaponins in Bupleurum chinense. Exploring the effects of pressure, temperature, extraction time, flow rate of CO2 and entrainers on the yield of the oils and saikosaponin-contained extracts; determining the optimum conditions for SFE-CO2; analyzing the oils by GC/MS and comparing the technology of SFE-CO2 with that of traditional steam distillation. The optimum extraction conditions turned out to be--for volatile oils: pressure (EP) = 20 MPa, temperature (ET) = 30 degrees C, isolator I pressure (1P-I) = 12 MPa, temperature(1T-I) = 65 degrees C, isolator II pressure (1P-II) = 6 MPa, temperature (1T-II) = 40 degrees C, extraction time = 4 hours, and CO2 flow rate = 10-20 kg.(h.kg)-1 crude drug; for saikosaponins: EP = 30 MPa, ET = 65 degrees C, 1P I = 12 MPa, 1T I = 55 degrees C, 1P II = 6 MPa, 1T II = 43 degrees C, extraction time = 3 hours, entrainer = 60% ethanol, and CO2 flow rate = 20-25 kg.(h.kg)-1 crude drug. SFE-CO2 excels the traditional steam distillation in raising yield and reducing extraction time. The oils are composed of 22 constituents including caproaldehyde, and the saikosaponins can only be extracted with the help of entrainers under higher pressure and temperature.

  19. Extraction of Natural Antioxidants from the Thelephora ganbajun Mushroom by an Ultrasound-Assisted Extraction Technique and Evaluation of Antiproliferative Activity of the Extract against Human Cancer Cells.

    PubMed

    Xu, Dong-Ping; Zheng, Jie; Zhou, Yue; Li, Ya; Li, Sha; Li, Hua-Bin

    2016-10-01

    The Thelephora ganbajun mushroom has been found to be a potential rich source of natural antioxidants. In this study, an ultrasound-assisted extraction (UAE) technique together with GRAS (generally recognized as safe) solvents (ethanol and water) was used to maximize the extraction of antioxidants from Thelephora ganbajun . Five extraction parameters (ethanol concentration, solvent to solid ratio, extraction time, temperature and ultrasound power) were investigated by single-factor experiments, and then a central composite rotatable design was employed to study interaction of three key extraction parameters. The optimum conditions were as follows: 57.38% ethanol, 70.15 mL/g solvent to solid ratio, 10.58 min extraction time, 40 °C extraction temperature and 500 W ultrasound power. Under the optimum conditions, the antioxidant activity obtained was 346.98 ± 12.19 µmol Trolox/g DW, in accordance with the predicted value of 344.67 µmol Trolox/g DW. Comparison of UAE with conventional maceration and Soxhlet extraction, the UAE method showed stronger extract efficiency in a shorter extraction time. These results showed that UAE was an effective technique to extract antioxidants from Thelephora ganbajun . Furthermore, the extracts obtained under the optimized conditions exhibited antiproliferative activities toward human lung (A549), breast (MCF-7), liver (HepG2) and colon (HT-29) cancer cells, especially for liver and lung cancer cells. In addition, rutin, 2-hydrocinnamic acid and epicatechin were identified in the extract, which might contribute to antioxidant and antiproliferative activities.

  20. Extraction of Natural Antioxidants from the Thelephora ganbajun Mushroom by an Ultrasound-Assisted Extraction Technique and Evaluation of Antiproliferative Activity of the Extract against Human Cancer Cells

    PubMed Central

    Xu, Dong-Ping; Zheng, Jie; Zhou, Yue; Li, Ya; Li, Sha; Li, Hua-Bin

    2016-01-01

    The Thelephora ganbajun mushroom has been found to be a potential rich source of natural antioxidants. In this study, an ultrasound-assisted extraction (UAE) technique together with GRAS (generally recognized as safe) solvents (ethanol and water) was used to maximize the extraction of antioxidants from Thelephora ganbajun. Five extraction parameters (ethanol concentration, solvent to solid ratio, extraction time, temperature and ultrasound power) were investigated by single-factor experiments, and then a central composite rotatable design was employed to study interaction of three key extraction parameters. The optimum conditions were as follows: 57.38% ethanol, 70.15 mL/g solvent to solid ratio, 10.58 min extraction time, 40 °C extraction temperature and 500 W ultrasound power. Under the optimum conditions, the antioxidant activity obtained was 346.98 ± 12.19 µmol Trolox/g DW, in accordance with the predicted value of 344.67 µmol Trolox/g DW. Comparison of UAE with conventional maceration and Soxhlet extraction, the UAE method showed stronger extract efficiency in a shorter extraction time. These results showed that UAE was an effective technique to extract antioxidants from Thelephora ganbajun. Furthermore, the extracts obtained under the optimized conditions exhibited antiproliferative activities toward human lung (A549), breast (MCF-7), liver (HepG2) and colon (HT-29) cancer cells, especially for liver and lung cancer cells. In addition, rutin, 2-hydrocinnamic acid and epicatechin were identified in the extract, which might contribute to antioxidant and antiproliferative activities. PMID:27706082

  1. Extraction and Production of Omega-3 from UniMAP Puyu (Jade Perch) and Mackarel

    NASA Astrophysics Data System (ADS)

    Nur Izzati, I.; Zainab, H.; Nornadhiratulhusna, M.; Chee Hann, Y.; Khairunissa Syairah, A. S.; Amira Farzana, S.

    2018-03-01

    Extraction techniques to extract fish oil from various types of fish are numerous but not widely accepted because of the use of chemicals that may be harmful to health. In this study, fish oil is extracted using a technique of Microwave-Assisted Extraction, which uses only water. The optimum conditions required for the production of fish oil for extraction is carried out by examining three parameters such as microwave power (300-700W), extraction time (10-30 min) and amount of water used (70-190ml). Optimum conditions were determined after using design of experiments (DOE). The optimum condition obtained was 300 W for microwave power, 10 minutes extraction time and 190 milliliter amounts of water used. Fourier transform infrared spectroscopy (FTIR) was used to analyze the functional groups of fish oil. Two types of fish such as Jade Perch or UniMAP Puyu and Indian Mackerel were used. A standard omega-3 oil sample (Blackmores) purchased from pharmacy was also determined to confirm the presence of omega-3 oil in these fishes. Similar compounds were present in Jade Perch and Indian Mackerel as compared to the standard. Therefore, there were presence of omega-3 fish oil in the two types of fish. From this study, omega-3 in UniMAP Puyu fish was higher compared to Indian Mackerel fish. However, based on the FTIR analysis, besides the presence of omega-3, the two fishes also contain other functional groups such as alkanes, alkenes, aldehyde, ketones and many others. The yield of fish oil for the Jade Perch was low compared to Indian Mackerel which was 9% while Indian Mackerel was 10 %.

  2. Sono-assisted extraction of alcohol-insoluble extract from Althaea rosea: purification and chemical analysis.

    PubMed

    Eskandari, Meghdad; Samavati, Vahid

    2015-01-01

    A Box-Behnken design (BBD) was used to evaluate the effects of ultrasonic power, extraction time, extraction temperature, and water to raw material ratio on extraction yield of alcohol-insoluble polysaccharide of Althaea rosea leaf (ARLP). Purification was carried out by dialysis method. Chemical analysis of ARLP revealed contained 12.69 ± 0.48% moisture, 79.33 ± 0.51% total sugar, 3.82 ± 0.21% protein, 11.25 ± 0.37% uronic acid and 3.77 ± 0.15% ash. The response surface methodology (RSM) showed that the significant quadratic regression equation with high R(2) (=0.9997) was successfully fitted for extraction yield of ARLP as function of independent variables. The overall optimum region was found to be at the combined level of ultrasonic power 91.85 W, extraction time 29.94 min, extraction temperature 89.78 °C, and the ratio of water to raw material 28.77 (mL/g). At this optimum point, extraction yield of ARLP was 19.47 ± 0.41%. No significant (p>0.05) difference was found between the actual and predicted (19.30 ± 0.075%) values. The results demonstrated that ARLP had strong scavenging activities on DPPH and hydroxyl radicals. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Production of N[sup +] ions from a multicusp ion beam apparatus

    DOEpatents

    Kango Leung; Kunkel, W.B.; Walther, S.R.

    1993-03-30

    A method of generating a high purity (at least 98%) N[sup +] ion beam using a multicusp ion source having a chamber formed by a cylindrical chamber wall surrounded by a plurality of magnets, a filament centrally disposed in said chamber, a plasma electrode having an extraction orifice at one end of the chamber, a magnetic filter having two parallel magnets spaced from said plasma electrode and dividing the chamber into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber, maintaining the chamber wall at a positive voltage relative to the filament and at a magnitude for an optimum percentage of N[sup +] ions in the extracted ion beams, disposing a hot liner within the chamber and near the chamber wall to limit recombination of N[sup +] ions into the N[sub 2][sup +] ions, spacing the magnets of the magnetic filter from each other for optimum percentage of N[sup 3] ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8[times]10[sup [minus]4] torr) for an optimum percentage of N[sup +] ions in the extracted ion beam.

  4. Nickel solvent extraction from cold purification filter cakes of Angouran mine concentrate using LIX984N

    NASA Astrophysics Data System (ADS)

    Balesini, A. A.; Zakeri, A.; Razavizadeh, H.; Khani, A.

    2013-11-01

    Cold purification filter cakes generated in the hydrometallurgical processing of Angouran mine zinc concentrate commonly contain significant amounts of Zn, Cd, and Ni ions and thus are valuable resources for metal recovery. In this research, a nickel containing solution that was obtained from sulfuric acid leaching of the filter cake following cadmium and zinc removal was subjected to solvent extraction experiments using 10vol% LIX984N diluted in kerosene. Under optimum experimental conditions (pH 5.3, volume ratio of organic/aqueous (O:A) = 2:1, and contact time = 5 min), more than 97.1% of nickel was extracted. Nickel was stripped from the loaded organic by contacting with a 200 g/L sulfuric acid solution, from which 77.7% of nickel was recovered in a single contact at the optimum conditions (pH 1-1.5, O:A = 5:1, and contact time = 15 min).

  5. Optimisation of low temperature extraction of banana juice using commercial pectinase.

    PubMed

    Sagu, Sorel Tchewonpi; Nso, Emmanuel Jong; Karmakar, Sankha; De, Sirshendu

    2014-05-15

    The objective of this work was to develop a process with optimum conditions for banana juice. The procedure involves hydrolyzing the banana pulp by commercial pectinase followed by cloth filtration. Response surface methodology with Doehlert design was utilised to optimize the process parameters. The temperature of incubation (30-60 °C), time of reaction (20-120 min) and concentration of pectinase (0.01-0.05% v/w) were the independent variables and viscosity, clarity, alcohol insoluble solids (AIS), total polyphenol and protein concentration were the responses. Total soluble sugar, pH, conductivity, calcium, sodium and potassium concentration in the juice were also evaluated. The results showed reduction of AIS and viscosity with reaction time and pectinase concentration and reduction of polyphenol and protein concentration with temperature. Using numerical optimization, the optimum conditions for the enzymatic extraction of banana juice were estimated. Depectinization kinetics was also studied at optimum temperature and variation of kinetic constants with enzyme dose was evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Determination of betulinic acid, oleanolic acid and ursolic acid from Achyranthes aspera L. using RP-UFLC-DAD analysis and evaluation of various parameters for their optimum yield.

    PubMed

    Pai, Sandeep R; Upadhya, Vinayak; Hegde, Harsha V; Joshi, Rajesh K; Kholkute, Sanjiva D

    2016-03-01

    Achyranthes aspera L. is a well known herb commonly used in traditional system of Indian medicine to treat various disorders, such as cough, dysentery, gonorrhea, piles, kidney stone, pneumonia, renal dropsy, skin eruptions, snake bite, etc. Here, we used RP-UFLC-DAD method for determining triterpenoids betulinic acid (BA), oleanolic acid (OA) and ursolic acid (UA) from A. aspera. Optimum yield of these compounds were studied and evaluated using parameters viz., method of extraction, time of extraction, age of plant and plant parts (leaves, stem and roots). Linear relationships in RP-UFLC-DAD analysis were obtained in the range 0.05-100 µg/mL with 0.035, 0.042 and 0.033 µg/mL LOD for BA, OA and UA, respectively. Of the variables tested, extraction method and parts used significantly affected content yield. Continuous shaking extraction (CSE) at ambient temperature gave better extraction efficiency than exposure to ultra sonic extraction (USE) or microwave assisted extraction (MAE) methods. The highest content of BA, OA and UA were determined individually in leaf, stem and root extracts with CSE. Collective yield of these triterpenoids were higher in leaf part exposed to 15 min USE method. To best of our knowledge, the study newly reports UA from A. aspera and the same was confirmed using ATR-FT-IR studies. This study explains the distribution pattern of these major triterpenoids and optimum extraction parameters in detail.

  7. Optimization of palm oil extraction from Decanter cake of small crude palm oil mill by aqueous surfactant solution using RSM

    NASA Astrophysics Data System (ADS)

    Ahmadi Pirshahid, Shewa; Arirob, Wallop; Punsuvon, Vittaya

    2018-04-01

    The use of hexane to extract vegetable oil from oilseeds or seed cake is of growing concern due to its environmental impact such as its smelling and toxicity. In our method, used Response Surface Methodology (RSM) was applied to study the optimum condition of decanter cake obtained from small crude palm oil with aqueous surfactant solution. For the first time, we provide an optimum condition of preliminary study with decanter cake extraction to obtain the maximum of oil yield. The result from preliminary was further used in RSM study by using Central Composite Design (CCD) that consisted of thirty experiments. The effect of four independent variables: the concentration of Sodium Dodecyl Sulfate (SDS) as surfactant, temperature, the ratio by weight to volume of cake to surfactant solution and the amount of sodium chloride (NaCl) on dependent variables are studied. Data were analyzed using Design-Expert 8 software. The results showed that the optimum condition of decanter cake extraction were 0.016M of SDS solution concentration, 73°C of extraction temperature, 1:10 (g:ml) of the ratio of decanter cake to SDS solution and 2% (w/w) of NaCl amount. This condition gave 77.05% (w/w) oil yield. The chemical properties of the extracted palm oil from this aqueous surfactant extraction are further investigated compared with the hexane extraction. The obtained result showed that all properties of both extractions were nearly the same.

  8. [Studies on the extraction process of total saponins from Paris polyphylla Smith].

    PubMed

    Sun, Zhi-Guo; Zhang, Lin; Li, Ling-Jun; Tian, Jing-Kui

    2007-06-01

    To optimize the extraction process of total saopnins from Paris polyphylla Smith. The single factor test and orthogonal experiment were used to determine the optimum extraction process. The optimum extraction process was obtained as follows: the plant materials were extracted with 70% ethanol twice, respectively with 10BV for 2 hours and then with 8BV the solvents for 1.5 hours. The yield of total saponins could be up to 4.24% and the total extraction rate of Paris polyphylla I and Paris polyphylla II was 93.28%. The optimum process obtained is steady, reasonable and feasible.

  9. [Technological process of cell disruption for extracting astaxanthin from Phaffia rhodozyma by acid method under autoclave conditions].

    PubMed

    Lu, Baoju; Xiao, Anfeng; Lil, Lijun; Ni, Hui; Cai, Huinong; Su, Wenjin

    2008-07-01

    Phaffia rhodozyma is one of the organisms for production of astaxanthin, and the key process for extracting intracellular astaxanthin is cell disruption. In this work, cell disruption for extracting astaxanthin from Phaffia rhodozyma was studied with autoclave method at low acid concentration. The optimum disrupting conditions were: autoclave pressure 0.1 MPa, 121 degrees C; hydrochloric acid concentration 0.5 mol/L; liquid to material ratio (V/W) 30 mL/g dry cell weight and disruption time 2 min. Under the optimum conditions, medium scale experiment showed that astaxanthin and total carotenoids recovery from Phaffia rhodozyma were (84.8 +/- 3.2)% and (93.3 +/- 2)%, respectively. This new method can lead to no poisonous residues and get high extraction yield, which have good prospects to be put into industrial production.

  10. Optimisation of steam distillation extraction oil from onion by response surface methodology and its chemical composition.

    PubMed

    Wang, Zhao Dan; Li, Li Hua; Xia, Hui; Wang, Feng; Yang, Li Gang; Wang, Shao Kang; Sun, Gui Ju

    2018-01-01

    Oil extraction from onion was performed by steam distillation. Response surface methodology was applied to evaluate the effects of ratio of water to raw material, extraction time, zymolysis temperature and distillation times on yield of onion oil. The maximum extraction yield (1.779%) was obtained as following conditions: ratio of water to raw material was 1, extraction time was 2.5 h, zymolysis temperature was 36° and distillation time was 2.6 h. The experimental values agreed well with those predicted by regression model. The chemical composition of extracted onion oil under the optimum conditions was analysed by gas chromatography-mass spectrometry technology. The results showed that sulphur compounds, like alkanes, sulphide, alkenes, ester and alcohol, were the major components of onion oil.

  11. Production of N.sup.+ ions from a multicusp ion beam apparatus

    DOEpatents

    Leung, Ka-Ngo; Kunkel, Wulf B.; Walther, Steven R.

    1993-01-01

    A method of generating a high purity (at least 98%) N.sup.+ ion beam using a multicusp ion source (10) having a chamber (11) formed by a cylindrical chamber wall (12) surrounded by a plurality of magnets (13), a filament (57) centrally disposed in said chamber, a plasma electrode (36) having an extraction orifice (41) at one end of the chamber, a magnetic filter having two parallel magnets (21, 22) spaced from said plasma electrode (36) and dividing the chamber (11) into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber (11), maintaining the chamber wall (12) at a positive voltage relative to the filament (57) and at a magnitude for an optimum percentage of N.sup.+ ions in the extracted ion beams, disposing a hot liner (45) within the chamber and near the chamber wall (12) to limit recombination of N.sup.+ ions into the N.sub.2.sup.+ ions, spacing the magnets (21, 22) of the magnetic filter from each other for optimum percentage of N.sup.3 ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8.times.10.sup.-4 torr) for an optimum percentage of N.sup.+ ions in the extracted ion beam.

  12. Ultrahigh hydrostatic pressure extraction of flavonoids from Epimedium koreanum Nakai

    NASA Astrophysics Data System (ADS)

    Hou, Lili; Zhang, Shouqin; Dou, Jianpeng; Zhu, Junjie; Liang, Qing

    2011-02-01

    Herba Epimedii is one of the most famous Chinese herbal medicines listed in the Pharmacopoeia of the People's Republic of China, as one of the representatives of traditional Chinese herb, it has been widely applied in the field of invigorate the kidney and strengthen 'Yang'. The attention to Epimedium extract has more and more increased in recent years. In this work, a novel extraction technique, ultra-high hydrostatic pressure extraction (UPE) technology was applied to extract the total flavonoids of E. koreanum. Three factors (pressure, ethanol concentration and extraction time) were chosen as the variables of extraction experiments, and the optimum UPE conditions were pressure 350 MPa; ethanol concentration 50% (v/v); extraction time 5 min. Compared with Supercritical CO2 extraction, Reflux extraction and Ultrasonic-assisted extraction, UPE has excellent advantages (shorter extraction time, higher yield, better antioxidant activity, lower energy consumption and eco-friendly).

  13. Optimization of squalene produced from crude palm oil waste

    NASA Astrophysics Data System (ADS)

    Wandira, Irda; Legowo, Evita H.; Widiputri, Diah I.

    2017-01-01

    Squalene is a hydrocarbon originally and still mostly extracted from shark liver oil. Due to environmental issues over shark hunting, there have been efforts to extract squalene from alternative sources, such as Palm Fatty Acid Distillate (PFAD), one of crude palm oil (CPO) wastes. Previous researches have shown that squalene can be extracted from PFAD using saponification process followed with liquid-liquid extraction process although the method had yet to be optimized in order to optimize the amount of squalene extracted from PFAD. The optimization was done by optimizing both processes of squalene extraction method: saponification and liquid-liquid extraction. The factors utilized in the saponification process optimization were KOH concentration and saponification duration while during the liquid-liquid extraction (LLE) process optimization, the factors used were the volumes of distilled water and dichloromethane. The optimum percentage of squalene content in the extract (24.08%) was achieved by saponifying the PFAD with 50%w/v KOH for 60 minutes and subjecting the saponified PFAD to LLE, utilizing 100 ml of distilled water along with 3 times addition of fresh dichloromethane, 75 ml each; those factors would be utilized in the optimum squalene extraction method.

  14. [Study on condition for extraction of arctiin from fruits of Arctium lappa using supercritical fluid extraction].

    PubMed

    Dong, Wen-hong; Liu, Ben

    2006-08-01

    To study the feasibility of supercritical fluid extraction (SFE) for arctiin from the fruits of Arctium lappa. The extracts were analyzed by HPLC, optimum extraction conditions were studied by orthogonal tests. The optimal extraction conditions were: pressure 40 MPa, temperature 70 degrees C, using methanol as modifier carrier at the rate of 0.55 mL x min(-1), static extraction time 5 min, dynamic extraction 30 min, flow rate of CO2 2 L x min(-1). SFE has the superiority of adjustable polarity, and has the ability of extracting arctiin.

  15. Combination of artificial neural network and genetic algorithm method for modeling of methylene blue adsorption onto wood sawdust from water samples.

    PubMed

    Khajeh, Mostafa; Sarafraz-Yazdi, Ali; Natavan, Zahra Bameri

    2016-03-01

    The aim of this research was to develop a low price and environmentally friendly adsorbent with abundant of source to remove methylene blue (MB) from water samples. Sawdust solid-phase extraction coupled with high-performance liquid chromatography was used for the extraction and determination of MB. In this study, an experimental data-based artificial neural network model is constructed to describe the performance of sawdust solid-phase extraction method for various operating conditions. The pH, time, amount of sawdust, and temperature were the input variables, while the percentage of extraction of MB was the output. The optimum operating condition was then determined by genetic algorithm method. The optimized conditions were obtained as follows: 11.5, 22.0 min, 0.3 g, and 26.0°C for pH of the solution, extraction time, amount of adsorbent, and temperature, respectively. Under these optimum conditions, the detection limit and relative standard deviation were 0.067 μg L(-1) and <2.4%, respectively. The Langmuir and Freundlich adsorption models were applied to describe the isotherm constant and for the removal and determination of MB from water samples. © The Author(s) 2013.

  16. Optimized microwave-assistant extraction combined ultrasonic pretreatment of flavonoids from Periploca forrestii Schltr. and evaluation of its anti-allergic activity.

    PubMed

    Liang, Qian; Chen, Huaguo; Zhou, Xin; Deng, Qingfang; Hu, Enming; Zhao, Chao; Gong, Xiaojian

    2017-04-01

    Microwave extraction combined ultrasonic pretreatment of flavonoids from Periploca forrestii Schltr. was investigated in this study, extraction process was first performed in an ultrasonic cleaner, then treated by microwave irradiation. The optimum ultrasonic time of 25 min was selected by single-factor experiments. A response surface methodology has been used to obtain a mathematical model that describes the process and analyzes the significant parameters ethanol concentration 59.92%, liquid to raw materials ratio 21.24 mL/g, microwave radiation time 209.53 s, and microwave power 274.14 w. In these optimum conditions, the yield of flavonoids from P. forrestii (TFPF) could be up to 9.11 ± 0.08%, which was increased by 14.30 and 19.86% compared microwave extraction and ultrasonic extraction, respectively. In vitro suppress hyaluronidase experimentation showed that TFPF purified using polyamide exhibited good anti-hyaluronidase ability with IC 50 value of 1.033 mg/mL, possessing certain anti-antiallergic and potential application prospect in pharmaceutical production of treating inflammation and other related fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Use of different sample temperatures in a single extraction procedure for the screening of the aroma profile of plant matrices by headspace solid-phase microextraction.

    PubMed

    Martendal, Edmar; de Souza Silveira, Cristine Durante; Nardini, Giuliana Stael; Carasek, Eduardo

    2011-06-17

    This study proposes a new approach to the optimization of the extraction of the volatile fraction of plant matrices using the headspace solid-phase microextraction (HS-SPME) technique. The optimization focused on the extraction time and temperature using a CAR/DVB/PDMS 50/30 μm SPME fiber and 100mg of a mixture of plants as the sample in a 15-mL vial. The extraction time (10-60 min) and temperature (5-60 °C) were optimized by means of a central composite design. The chromatogram was divided into four groups of peaks based on the elution temperature to provide a better understanding of the influence of the extraction parameters on the extraction efficiency considering compounds with different volatilities/polarities. In view of the different optimum extraction time and temperature conditions obtained for each group, a new approach based on the use of two extraction temperatures in the same procedure is proposed. The optimum conditions were achieved by extracting for 30 min with a sample temperature of 60 °C followed by a further 15 min at 5 °C. The proposed method was compared with the optimized conventional method based on a single extraction temperature (45 min of extraction at 50 °C) by submitting five samples to both procedures. The proposed method led to better results in all cases, considering as the response both peak area and the number of identified peaks. The newly proposed optimization approach provided an excellent alternative procedure to extract analytes with quite different volatilities in the same procedure. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Impact of uneven sample morphology on mass resolving power in linear MALDI-TOF mass spectrometry: A comprehensive theoretical investigation.

    PubMed

    Cai, Yi-Hong; Wang, Yi-Sheng

    2018-04-01

    This work discusses the correlation between the mass resolving power of matrix-assisted laser desorption/ionization time-of-flight mass analyzers and extraction condition with an uneven sample morphology. Previous theoretical calculations show that the optimum extraction condition for flat samples involves an ideal ion source design and extraction delay. A general expression of spectral feature takes into account ion initial velocity, and extraction delay is derived in the current study. The new expression extends the comprehensive calculation to uneven sample surfaces and above 90% Maxell-Boltzmann initial velocity distribution of ions to account for imperfect ionization condition. Calculation shows that the impact of uneven sample surface or initial spatial spread of ions is negligible when the extraction delay is away from the ideal value. When the extraction delay approaches the optimum value, the flight-time topology shows a characteristic curve shape, and the time-domain mass spectral feature broadens with an increase in initial spatial spread of ions. For protonated 2,5-dihydroxybenzoic acid, the mass resolving power obtained from a sample of 3-μm surface roughness is approximately 3.3 times lower than that of flat samples. For ions of m/z 3000 coexpanded with 2,5-dihydroxybenzoic acid, the mass resolving power in the 3-μm surface roughness case only reduces roughly 7%. Comprehensive calculations also show that the mass resolving power of lighter ions is more sensitive to the accuracy of the extraction delay than heavier ions. Copyright © 2018 John Wiley & Sons, Ltd.

  19. [Condition optimization experiment of microwave extaction of flavonoids in rhizome of Drynaria fortunei].

    PubMed

    Yang, Bin; Hu, Fu-chao; Chen, Gong-xi; Jiang, Dao-song

    2009-12-01

    The experiment extracted flavonoids in rhizome of Drynaria fortunei by microwave extraction, and determined the extraction rate through colorimetry. Through the single factor experiment and orthogonal method, the optimum extraction conditions were as follows: ethanol concentration was 40%, solid-liquid ratio was 1:20 (g/mL), microwave power was 325 W, extraction time was 40 s. Under these conditions, the extraction rate reached 1.73%. In all condtions, microwave power has the most significant effect on extraction rate. Microwave extraction has obvious advantages in comparison with traditional sovent refluxing method.

  20. Study of the Effect of Surfactants on Extraction and Determination of Polyphenolic Compounds and Antioxidant Capacity of Fruits Extracts

    PubMed Central

    Hosseinzadeh, Reza; Khorsandi, Khatereh; Hemmaty, Syavash

    2013-01-01

    Micelle/water mixed solutions of different surface active agents were studied for their effectiveness in the extraction of polyphenolic compounds from various varieties of apples from west Azerbaijan province in Iran. The total content of polyphenolic compound in fruit extracts were determined using ferrous tartrate and Folin–Ciocalteu assays methods and chromatographic methods and compared with theme. High performance liquid chromatography is one of the most common and important methods in biochemical compound identification. The effect of pH, ionic strength, surfactant type, surfactant concentration, extraction time and common organic solvent in the apple polyphenolics extractions was studied using HPLC-DAD. Mixtures of surfactants, water and methanol at various ratios were examined and micellar-water solutions of Brij surfactant showed the highest polyphenol extraction efficiency. Optimum conditions for the extraction of polyphenolic compounds from apple occurred at 7 mM Brij35, pH 3. Effect of ionic strength on extraction was determined and 2% (W/V) potassium Chloride was determined to be the optimum salt concentration. The procedure worked well with an ultrasound bath. Total antioxidant capacity also was determined in this study. The method can be safely scaled up for pharmaceutical applications. PMID:23472082

  1. Optimization of Cat's Whiskers Tea (Orthosiphon stamineus) Using Supercritical Carbon Dioxide and Selective Chemotherapeutic Potential against Prostate Cancer Cells

    PubMed Central

    Al-Suede, Fouad Saleih R.; Khadeer Ahamed, Mohamed B.; Abdul Majid, Aman S.; Baharetha, Hussin M.; Hassan, Loiy E. A.; Kadir, Mohd Omar A.; Nassar, Zeyad D.; Abdul Majid, Amin M. S.

    2014-01-01

    Cat's whiskers (Orthosiphon stamineus) leaves extracts were prepared using supercritical CO2 (SC-CO2) with full factorial design to determine the optimum extraction parameters. Nine extracts were obtained by varying pressure, temperature, and time. The extracts were analysed using FTIR, UV-Vis, and GC-MS. Cytotoxicity of the extracts was evaluated on human (colorectal, breast, and prostate) cancer and normal fibroblast cells. Moderate pressure (31.1 MPa) and temperature (60°C) were recorded as optimum extraction conditions with high yield (1.74%) of the extract (B2) at 60 min extraction time. The optimized extract (B2) displayed selective cytotoxicity against prostate cancer (PC3) cells (IC50 28 µg/mL) and significant antioxidant activity (IC50 42.8 µg/mL). Elevated levels of caspases 3/7 and 9 in B2-treated PC3 cells suggest the induction of apoptosis through nuclear and mitochondrial pathways. Hoechst and rhodamine assays confirmed the nuclear condensation and disruption of mitochondrial membrane potential in the cells. B2 also demonstrated inhibitory effects on motility and colonies of PC3 cells at its subcytotoxic concentrations. It is noteworthy that B2 displayed negligible toxicity against the normal cells. Chemometric analysis revealed high content of essential oils, hydrocarbon, fatty acids, esters, and aromatic sesquiterpenes in B2. This study highlights the therapeutic potentials of SC-CO2 extract of cat's whiskers in targeting prostate carcinoma. PMID:25276215

  2. Optimization of conditions of solvent-free microwave extraction and study on antioxidant capacity of essential oil from Schisandra chinensis (Turcz.) Baill.

    PubMed

    Ma, Chun-hui; Yang, Lei; Zu, Yuan-gang; Liu, Ting-ting

    2012-10-15

    In this article, solvent-free microwave extraction (SFME) of essential oil from Schisandra chinensis (Turcz.) Baill was studied. A multivariate study based on central composite design (CCD) was used to evaluate the influence of three major variables affecting the performance of SFME. The optimum parameters were extraction time 30 min, irradiation power 385 W and moisture content of the fruits was 68%. The extraction yield of essential oil was 11 ml/kg under the optimum conditions. The antioxidant capacity of essential oils extracted by different methods were determined, and compared with traditional antioxidants. GC-MS showed the different composition of essential oil extracted by hydro-distillation (HD), steam-distillation (SD) and SFME. S. chinensis materials treated by different methods were observed by scanning electronic microscopy (SEM) and thermo-gravimetric analysis (TGA). Micrographs and thermo gravimetric loss provided more evidences to prove SFME of essential oil is more completed than HD and SD. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  3. Depuration Study of Heavy Metal Lead (Pb) and Copper (Cu) in Green Mussels Perna viridis through Continues-discontinues and Acid Extraction Methods

    NASA Astrophysics Data System (ADS)

    Budiawan; Bakri, Ridla; Cahaya Dani, Intan; Handayani, Sri; Ade Kurnia Putri, Rizki; Tamala, Riska

    2018-01-01

    Green mussel or Perna viridis is filter feeder, which is very susceptible to heavy metals. It takes an effort to release heavy metal contents on the green shell, one of method that can be used to release heavy metal from green shell is depuration proccess. In this research, the depuration process was conducted by continues method of depuration, discontinues method by using various kind of water and acid extraction. The optimum time of continues depuration method is 1.5 hours, with circulation speed 250 L/h and result of Pb metal content decreased is equal to 30.048% and 29.748% for Cu. In the discontinues method, the optimum result was reached at 100oC by using PAM water as the media at 3 h immersion period with decrease of Pb metal content 35.001% and Cu metal content 39.015%. In the acid extraction method, the optimum condition was achieved by 11% acetic acid solvent with decreasing of Pb and Cu levels are 88.224% and 76.298%. For the determination of protein content, the decrease of protein content obtained by treatment with 11% acetic acid extract showed decrease of protein content 36.656% with Kjeldahl method.

  4. [Study on extraction and purification process of total ginsenosides from Radix Ginseng].

    PubMed

    Xie, Li-Ling; Ren, Li; Lai, Xian-Sheng; Cao, Jun-Hui; Mo, Quan-Yi; Chen, Wei-Wen

    2009-10-01

    To optimize the technological parameters of the extraction and purification process of total ginsenosides from Radix Ginseng. With the contents of ginsenoside Rg1, ginsenoside Re and ginsenoside Rb1, the orthogonal design was adopted to optimize the extraction process. The purification process was studied by optimizing the elutive ratio of total ginsenosides as the marker. HPLC and spectrophotometer were employed for the study. The optimum conditions were as follows:Using 8 times volume of 75% ethanol extracting for 120 minutes and 2 times, the extraction temperature was 85 degrees C. AB-8 macroporous resin was selected, and the eluant was 4 BV 70% ethanol. The optimal conditions of extracting and purifying the total ginsenosides from Radix Ginseng is feasible.

  5. Jellyfish skin polysaccharides: extraction and inhibitory activity on macrophage-derived foam cell formation.

    PubMed

    Zhang, Hai-Lin; Cui, Shao-Hua; Zha, Xue-Qiang; Bansal, Vibha; Xue, Lei; Li, Xiao-Long; Hao, Ran; Pan, Li-Hua; Luo, Jian-Ping

    2014-06-15

    In this work, response surface methodology was used to determine optimum conditions for extraction of polysaccharides from jellyfish skin (JSP). The optimum parameters were found to be raw material to water ratio 1:7.5 (w/v), extraction temperature 100°C and extraction time 4h. Under these conditions, the JSP yield reached 1.007 mg/g. Papain (15 U/mL) in combination with Sevag reagent was beneficial in removing proteins from JSP. After precipitation with ethanol at final concentration of 40%, 60% and 80% in turn, three polysaccharide fractions of JSP1, JSP2 and JSP3 were obtained from JSP, respectively. The three fractions exhibited different physicochemical properties with respect to molecular weight distribution, monosaccharide composition, infrared absorption spectra, and glycosyl bond composition. In addition, JSP3 showed strong inhibitory effects on oxidized low-density lipoprotein (oxLDL) induced conversion of macrophages into foam cells, which possibly attributed to the down-regulation of some atherogenesis-related gene expressions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology.

    PubMed

    Teng, Hui; Choi, Yong Hee

    2014-01-01

    The optimum extraction conditions for the maximum recovery of total alkaloid content (TAC), berberine content (BC), palmatine content (PC), and the highest antioxidant capacity (AC) from rhizoma coptidis subjected to ultrasonic-assisted extraction (UAE) were determined using response surface methodology (RSM). Central composite design (CCD) with three variables and five levels was employed, and response surface plots were constructed in accordance with a second order polynomial model. Analysis of variance (ANOVA) showed that the quadratic model was well fitted and significant for responses of TAC, BC, PC, and AA. The optimum conditions obtained through the overlapped contour plot were as follows: ethanol concentration of 59%, extraction time of 46.57min, and temperature of 66.22°C. Verification experiment was carried out, and no significant difference was found between observed and estimated values for each response, suggesting that the estimated models were reliable and valid for UAE of alkaloids. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  7. [Studies on the extraction and purification of total saponins from Parched Semen Ziziphi Spinosae].

    PubMed

    Wu, Yulan; Ding, Anwei; Bao, Beihua

    2005-03-01

    To study the extraction and purification process of the total saponin from Parched Semen Ziziphi Spinosae with ethanol and macroporous resin. The total saponins were extracted with ethanol and purified with macroporous resin by orthogonal design, taking content and purity of jujuboside A as guideline. The optimum extraction condition was adding 6 times amount of 80% ethanol and refluxing 3 times, for 30 minutes each time. The purification process with macroporous resin HPD-100 was using 0.5% NaOH (150ml), 30% ethanol (150ml) to wash out impurity, and 70% ethanol 50 ml to wash out saponin. The purity of jujuboside A was up to 17.9% and the eluted ratio 72.8%.

  8. [Optimizing the extracting technique of ampelopsin from Ampelopsis cantoniensis Planch by a uniform design method].

    PubMed

    He, Zhi-feng; Zeng, Sa; Hou, Juan-juan; Liu, De-yu

    2006-07-01

    To optimize the preparation of ampelopsin from Ampelopsis Cantoniensis Planch. The extraction and purification process was studied by the uniform design with the extract of ampelopsin content and purity as markers. The facters which influence the extraction and the purification of ampelopsin content were studied by uniform design. The optimum extraction and purification process: the concentration for alcohol was 90%, and refluxing quartic, 1.5 h each time; extraction by petroleum ether quintic, the mount of active carbon was 1 g/100 g of the medicine material, and recrystaling thrice. This extraction process has higher yield of ampelopsin and is available for production.

  9. Ultrasound assisted microextraction-nano material solid phase dispersion for extraction and determination of thymol and carvacrol in pharmaceutical samples: experimental design methodology.

    PubMed

    Roosta, Mostafa; Ghaedi, Mehrorang; Daneshfar, Ali; Sahraei, Reza

    2015-01-15

    In the present study, for the first time, a new extraction method based on "ultrasound assisted microextraction-nanomaterial solid phase dispersion (UAME-NMSPD)" was developed to preconcentrate the low quantity of thymol and carvacrol in pharmaceutical samples prior to their HPLC-UV separation/determination. The analytes were accumulated on nickel sulfide nanomaterial loaded on activated carbon (NiS-NP-AC) that with more detail identified by XRD, FESEM and UV-vis technique. Central composite design (CCD) combined with desirability function (DF) was used to search for optimum operational conditions. Working under optimum conditions specified as: 10 min ultrasonic time, pH 3, 0.011 g of adsorbent and 600 μL extraction solvent) permit achievement of high and reasonable linear range over 0.005-2.0 μg mL(-1) (r(2)>0.9993) with LOD of thymol and carvacrol as 0.23 and 0.21 μg L(-1), respectively. The relative standard deviations (RSDs) were less than 4.93% (n=3). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Evaluation of a method for the simultaneous quantification of N-nitrosamines in water samples based on stir bar sorptive extraction combined with high-performance liquid chromatography and diode array detection.

    PubMed

    Talebpour, Zahra; Rostami, Simindokht; Rezadoost, Hassan

    2015-05-01

    A simple, sensitive, and reliable procedure based on stir bar sorptive extraction coupled with high-performance liquid chromatography was applied to simultaneously extract and determine three semipolar nitrosamines including N-nitrosodibutylamine, N-nitrosodiphenylamine, and N-nitrosodicyclohexylamine. To achieve the optimum conditions, the effective parameters on the extraction efficiency including desorption solvent and time, ionic strength of sample, extraction time, and sample volume were systematically investigated. The optimized extraction procedure was carried out by stir bars coated with polydimethylsiloxane. Under optimum extraction conditions, the performance of the proposed method was studied. The linear dynamic range was obtained in the range of 0.95-1000 ng/mL (r = 0.9995), 0.26-1000 ng/mL (r = 0.9988) and both 0.32-100 ng/mL (r = 0.9999) and 100-1000 ng/mL (r = 0.9998) with limits of detection of 0.28, 0.08, and 0.09 ng/mL for N-nitrosodibutylamine, N-nitrosodiphenylamine, and N-nitrosodicyclohexylamine, respectively. The average recoveries were obtained >81%, and the reproducibility of the proposed method presented as intra- and interday precision were also found with a relative standard deviation <6%. Finally, the proposed method was successfully applied to the determination of trace amounts of selected nitrosamines in various water and wastewater samples and the obtained results were confirmed using mass spectrometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Optimization of sample preparation variables for wedelolactone from Eclipta alba using Box-Behnken experimental design followed by HPLC identification.

    PubMed

    Patil, A A; Sachin, B S; Shinde, D B; Wakte, P S

    2013-07-01

    Coumestan wedelolactone is an important phytocomponent from Eclipta alba (L.) Hassk. It possesses diverse pharmacological activities, which have prompted the development of various extraction techniques and strategies for its better utilization. The aim of the present study is to develop and optimize supercritical carbon dioxide assisted sample preparation and HPLC identification of wedelolactone from E. alba (L.) Hassk. The response surface methodology was employed to study the optimization of sample preparation using supercritical carbon dioxide for wedelolactone from E. alba (L.) Hassk. The optimized sample preparation involves the investigation of quantitative effects of sample preparation parameters viz. operating pressure, temperature, modifier concentration and time on yield of wedelolactone using Box-Behnken design. The wedelolactone content was determined using validated HPLC methodology. The experimental data were fitted to second-order polynomial equation using multiple regression analysis and analyzed using the appropriate statistical method. By solving the regression equation and analyzing 3D plots, the optimum extraction conditions were found to be: extraction pressure, 25 MPa; temperature, 56 °C; modifier concentration, 9.44% and extraction time, 60 min. Optimum extraction conditions demonstrated wedelolactone yield of 15.37 ± 0.63 mg/100 g E. alba (L.) Hassk, which was in good agreement with the predicted values. Temperature and modifier concentration showed significant effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Comparison of four kinds of extraction techniques and kinetics of microwave-assisted extraction of vanillin from Vanilla planifolia Andrews.

    PubMed

    Dong, Zhizhe; Gu, Fenglin; Xu, Fei; Wang, Qinghuang

    2014-04-15

    Vanillin yield, microscopic structure, antioxidant activity and overall odour of vanilla extracts obtained by different treatments were investigated. MAE showed the strongest extraction power, shortest time and highest antioxidant activity. Maceration gave higher vanillin yields than UAE and PAE, similar antioxidant activity with UAE, but longer times than UAE and PAE. Overall odour intensity of different vanilla extracts obtained by UAE, PAE and MAE were similar, while higher than maceration extracts. Then, powered vanilla bean with a sample/solvent ratio of 4 g/100 mL was selected as the optimum condition for MAE. Next, compared with other three equations, two-site kinetic equation with lowest RMSD and highest R²(adj) was shown to be more suitable in describing the kinetics of vanillin extraction. By fitting the parameters C(eq), k₁, k₂, and f, a kinetics model was constructed to describe vanillin extraction in terms of irradiation power, ethanol concentration, and extraction time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Optimization of vegetable milk extraction from whole and dehulled Mucuna pruriens (Var Cochinchinensis) flours using central composite design.

    PubMed

    Mang, Dimitry Y; Abdou, Armand B; Njintang, Nicolas Y; Djiogue, Edith J M; Panyo, Emmanuel A; Bernard, Clemence; Ndjouenkeu, Robert; Loura, Benoît B; Mbofung, Carl M F

    2016-01-01

    Extraction conditions for maximum values of protein yield, protein content, sugar content and dry matter of vegetable milk extracts from dehulled Mucuna cochinchinensis bean flour and whole Mucuna cochinchinensis bean flour were investigated using response surface methodology. A Central Composite Design (CCFD) with three factors: temperature (25 to 95 °C); extraction time (6 to 74 min.) and water to flour ratio (6 to 24 mL/g) were used. Data analysis showed that all the factors significantly (p < 0.05) affected the responses variables. The optimal conditions determined for extraction were temperature 63-66 °C, water to flour ratio 12-13 mL/g and extraction time of 57-67 min. At these optimum points the protein and sugar contents, extraction yield of protein and dry matter were respectively 14.0 g/100 mL, 4.8 g/100 mL, 53.8 g/100 g, 12.1 g/100 g for vegetable milk produced from dehulled M. cochinchinensis bean flour and 6.4 g/100 mL, 3.5 g/100 mL, 50.0 g/100 g and 8.0 g/100 g for vegetable milk extracted from whole M. cochinchinensis bean flour milk. The optimal condition was verified at the optimum points for model validation and the response values were not significantly different from the predicted values.

  14. Optimisation of extraction and sludge dewatering efficiencies of bio-flocculants extracted from Abelmoschus esculentus (okra).

    PubMed

    Lee, Chai Siah; Chong, Mei Fong; Robinson, John; Binner, Eleanor

    2015-07-01

    The production of natural biopolymers as flocculants for water treatment is highly desirable due to their inherent low toxicity and low environmental footprint. In this study, bio-flocculants were extracted from Hibiscus/Abelmoschus esculentus (okra) by using a water extraction method, and the extract yield and its performance in sludge dewatering were evaluated. Single factor experimental design was employed to obtain the optimum conditions for extraction temperature (25-90 °C), time (0.25-5 h), solvent loading (0.5-5 w/w) and agitation speed (0-225 rpm). Results showed that extraction yield was affected non-linearly by all experimental variables, whilst the sludge dewatering ability was only influenced by the temperature of the extraction process. The optimum extraction conditions were obtained at 70 °C, 2 h, solvent loading of 2.5 w/w and agitation at 200 rpm. Under the optimal conditions, the extract yield was 2.38%, which is comparable to the extraction of other polysaccharides (0.69-3.66%). The bio-flocculants displayed >98% removal of suspended solids and 68% water recovery during sludge dewatering, and were shown to be comparable with commercial polyacrylamide flocculants. This work shows that bio-flocculants could offer a feasible alternative to synthetic flocculants for water treatment and sludge dewatering applications, and can be extracted using only water as a solvent, minimising the environmental footprint of the extraction process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Content and Color Stability of Anthocyanins Isolated from Schisandra chinensis Fruit

    PubMed Central

    Ma, Chunhui; Yang, Lei; Yang, Fengjian; Wang, Wenjie; Zhao, Chunjian; Zu, Yuangang

    2012-01-01

    In this work, a multivariate study based on Box-Behnken Design was used to evaluate the influence of three major variables affecting the performance of the extraction process of Schisandra chinensis anthocyanins. The optimum parameters were 5.5 h extraction time; 1:19 solid-liquid ratio and 260 r/min stirring rate, respectively. The extraction yield of anthocyanins was 29.06 mg/g under the optimum conditions. Moreover, many factors on the impact of heating, ultrasound, microwave treatment and ultraviolet irradiation on content and color stability of anthocyanins from Schisandra chinensis fruit were investigated. The results show that thermal degradation reaction of anthocyanins complies with the first order reaction kinetics, and the correlation coefficient is greater than 0.9950 at 40–80 °C. Ultrasound and microwave treatment has little effect on the stability of anthocyanins, and the extraction time of ultrasound and microwave should be no more than 60 min and 5 min, respectively. The anthocyanins degradation effect of UVC ultraviolet radiation is greater than UVA and UVB; after 9 h ultraviolet radiation, the anthocyanins content degradation of UVC is 23.9 ± 0.7%, and the ΔE* was changed from 62.81 to 76.52 ± 2.3. Through LC-MS analysis, the major composition of Schisandra chinensis anthocyanins was cyanidin-3-O-xylosylrutinoside. PMID:23203065

  16. [Study on supercritical CO2 extraction of xiaoyaosan and its GC-MS fingerprint].

    PubMed

    Zuo, Ya-Mei; Tian, Jun-Sheng; Guo, Xiao-Qing; Zhou, Yu-Zhi; Gao, Xiao-Xia; Qin, Xue-Mei

    2014-02-01

    To determine the optimum conditions of supercritical CO2 extraction of Xiaoyaosan, and establish its fingerprint by gas chromatography-mass spectrometry (GC-MS), the yield of extract were investigated, an orthogonal test was used to quantify the effects of extraction temperature, pressure, CO2 flow rate and time, and fingerprint analysis of different batches of extracts were by GC-MS. The optimal extraction conditions were determined as follows: extraction pressure 20 MPa, extraction temperature 50 degrees C, CO2 flow rate 25 kg x h(-1), extraction time 3 h, and average yield 2.2%. The GC-MS fingerprint was established and 27 common peaks were found, whose contents add up to 81.89% of the total peak area. Among them, 21 compounds were identified, accounting for 53.20% of the total extract. The extraction process is reasonable and favorable for industrial production. The GC-MS method is accurate, reliable, reproducible, and can be used for quality control of supercritical CO2 extract from Xiaoyaosan.

  17. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein.

    PubMed

    Li, Na; Wang, Yuzhi; Xu, Kaijia; Huang, Yanhua; Wen, Qian; Ding, Xueqin

    2016-05-15

    Six kinds of new type of green betaine-based deep eutectic solvents (DESs) have been synthesized. Deep eutectic solvent aqueous two-phase systems (DES-ATPS) were established and successfully applied in the extraction of protein. Betaine-urea (Be-U) was selected as the suitable extractant. Single factor experiments were carried out to determine the optimum conditions of the extraction process, such as the salt concentration, the mass of DES, the separation time, the amount of protein, the temperature and the pH value. The extraction efficiency could achieve to 99.82% under the optimum conditions. Mixed sample and practical sample analysis were discussed. The back extraction experiment was implemented and the back extraction efficiency could reach to 32.66%. The precision experiment, repeatability experiment and stability experiment were investigated. UV-vis, FT-IR and circular dichroism (CD) spectra confirmed that the conformation of protein was not changed during the process of extraction. The mechanisms of extraction were researched by dynamic light scattering (DLS), the measurement of the conductivity and transmission electron microscopy (TEM). DES-protein aggregates and embraces phenomenon play considerable roles in the separation process. All of these results indicated that betaine-based DES-ATPS may provide a potential substitute new method for the separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root.

    PubMed

    Karami, Zohreh; Emam-Djomeh, Zahra; Mirzaee, Habib Allah; Khomeiri, Morteza; Mahoonak, Alireza Sadeghi; Aydani, Emad

    2015-06-01

    In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1-25:1) and time (2-6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capacities. Optimal condition in microwave assisted method were ethanol 80 % as solvent, extraction time of 5-6 min and liquid/solid ratio of 12.7/1. Results were compared with those obtained by soxhlet extraction. In soxhlet extraction, Optimum conditions were extraction time of 6 h for ethanol 80 % as solvent. Value of phenolic compounds and extraction yield of licorice root in microwave assisted (MAE), and soxhlet were 47.47 mg/g and 16.38 %, 41.709 mg/g and 14.49 %, respectively. These results implied that MAE was more efficient extracting method than soxhlet.

  19. Optimization of antibacterial activity by Gold-Thread (Coptidis Rhizoma Franch) against Streptococcus mutans using evolutionary operation-factorial design technique.

    PubMed

    Choi, Ung-Kyu; Kim, Mi-Hyang; Lee, Nan-Hee

    2007-11-01

    This study was conducted to find the optimum extraction condition of Gold-Thread for antibacterial activity against Streptococcus mutans using The evolutionary operation-factorial design technique. Higher antibacterial activity was achieved in a higher extraction temperature (R2 = -0.79) and in a longer extraction time (R2 = -0.71). Antibacterial activity was not affected by differentiation of the ethanol concentration in the extraction solvent (R2 = -0.12). The maximum antibacterial activity of clove against S. mutans determined by the EVOP-factorial technique was obtained at 80 degrees C extraction temperature, 26 h extraction time, and 50% ethanol concentration. The population of S. mutans decreased from 6.110 logCFU/ml in the initial set to 4.125 logCFU/ml in the third set.

  20. Factors that influence the extraction of polycyclic aromatic hydrocarbons from coal

    USGS Publications Warehouse

    Xue, J.; Liu, Gaisheng; Niu, Z.; Chou, C.-L.; Qi, C.; Zheng, Lingyun; Zhang, H.

    2007-01-01

    Coal samples and carbonaceous mudstone were collected from the Huaibei coalfield, China, and experiments investigating the factors influencing the extraction of the sixteen US EPA (Environmental Protection Agency) priority polycyclic aromatic hydrocarbons (PAHs) were carried out. Different extraction times, solvents, and methods were used. Major interest was focused on finding optimum conditions for extracting the PAHs from coal. We conclude that (1) coal composition, including the H/C and O/C ratios, is an important factor for the distribution of PAHs in coals; (2) the total amount of EPA priority PAHs increases with increasing extraction time, 30 min being suitable for ultrasonic-assisted extraction and 24 h for Soxhlet extraction; (3) CS2 is effective in extracting low molecular weight PAHs, while CH2Cl2 is better for extracting high molecular weight PAHs (both are excellent extraction solvents vs hexane); (4) both Soxhlet and ultrasonic extraction showed a similar PAH concentration profile, but the ultrasonic method is less efficient. ?? 2007 American Chemical Society.

  1. Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel.

    PubMed

    Thirugnanasambandham, K; Sivakumar, V; Prakash Maran, J

    2014-11-04

    Microwave assisted extraction (MAE) technique was employed for the extraction of pectin from dragon fruit peel. The extracting parameters were optimized by using four-variable-three-level Box-Behnken design (BBD) coupled with response surface methodology (RSM). RSM analysis indicated good correspondence between experimental and predicted values. 3D response surface plots were used to study the interactive effects of process variables on extraction of pectin. The optimum extraction conditions for the maximum yield of pectin were power of 400 W, temperature of 45 °C, extracting time of 20 min and solid-liquid ratio of 24 g/mL. Under these conditions, 7.5% of pectin was extracted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Optimization of the trienzyme extraction for the microbiological assay of folate in vegetables.

    PubMed

    Chen, Liwen; Eitenmiller, Ronald R

    2007-05-16

    Response surface methodology was applied to optimize the trienzyme digestion for the extraction of folate from vegetables. Trienzyme extraction is a combined enzymatic digestion by protease, alpha-amylase, and conjugase (gamma-glutamyl hydrolase) to liberate the carbohydrate and protein-bound folates from food matrices for total folate analysis. It is the extraction method used in AOAC Official Method 2004.05 for assay of total folate in cereal grain products. Certified reference material (CRM) 485 mixed vegetables was used to represent the matrix of vegetables. Regression and ridge analysis were performed by statistical analysis software. The predicted second-order polynomial model was adequate (R2 = 0.947), without significant lack of fit (p > 0.1). Both protease and alpha-amylase have significant effects on the extraction. Ridge analysis gave an optimum trienzyme digestion time: Pronase, 1.5 h; alpha-amylase, 1.5 h; and conjugase, 3 h. The experimental value for CRM 485 under this optimum digestion was close to the predicted value from the model, confirming the validity and adequacy of the model. The optimized trienzyme digestion condition was applied to five vegetables and yielded higher folate levels than the trienzyme digestion parameters employed in AOAC Official Method 2004.05.

  3. Enhanced production of laccase from Coriolus versicolor NCIM 996 by nutrient optimization using response surface methodology.

    PubMed

    Arockiasamy, Santhiagu; Krishnan, Indira Packialakshmi Gurusamy; Anandakrishnan, Nimalanandan; Seenivasan, Sabitha; Sambath, Agalya; Venkatasubramani, Janani Priya

    2008-12-01

    Plackett and Burman design criterion and central composite design were applied successfully for enhanced production of laccase by Coriolus versicolor NCIM 996 for the first time. Plackett and Burman design criterion was applied to screen the significance of ten nutrients on laccase production by C. versicolor NCIM 996. Out of the ten nutrients tested, starch, yeast extract, MnSO(4), MgSO(4) x 7H(2)O, and phenol were found to have significant effect on laccase production. A central composite design was applied to determine the optimum concentrations of the significant variables obtained from Plackett-Burman design. The optimized medium composition for production of laccase was (g/l): starch, 30.0; yeast extract, 4.53; MnSO(4), 0.002; MgSO(4) x 7H(2)O, 0.755; and phenol, 0.026, and the optimum laccase production was 6,590.26 (U/l), which was 7.6 times greater than the control.

  4. Factors influencing the Zn and Mn extraction from pyrometallurgical sludge in the steel manufacturing industry.

    PubMed

    Mocellin, J; Mercier, G; Morel, J L; Blais, J F; Simonnot, M O

    2015-08-01

    In this laboratory study, a process has been developed for selectively leaching zinc and manganese from pyrometallurgical sludge produced in the steel manufacturing industry. In the first part, the yield of Zn extraction was studied using four factors and four levels of the Box-Behnken response surface design. The optimum conditions for the step of Zn leaching were determined to be a sulfuric acid concentration of 0.25 mol/L, a pulp density of 10%, an extraction temperature of 20 °C, and three stages of leaching. Under such conditions, 75% of the Zn should be leached. For Mn leaching, the optimum conditions were determined to be a sulfuric acid concentration of 0.25 mol/L, a Na2S2O5/Mn stoichiometry of 1, a leaching time of 120 min and two leaching steps. In this case, 100% of the Mn should be leached. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Development of an ionic liquid-based microwave-assisted method for simultaneous extraction and distillation for determination of proanthocyanidins and essential oil in Cortex cinnamomi.

    PubMed

    Liu, Ye; Yang, Lei; Zu, Yuangang; Zhao, Chunjian; Zhang, Lin; Zhang, Ying; Zhang, Zhonghua; Wang, Wenjie

    2012-12-15

    Cortex cinnamomi is associated with many health benefits and is used in the food and pharmaceutical industries. In this study, an efficient ionic liquid-based microwave-assisted simultaneous extraction and distillation (ILMSED) technique was used to extract cassia oil and proanthocyanidins from Cortex cinnamomi; these were quantified by gas chromatography/mass spectrometry (GC-MS) and the vanillin-HCl colorimetric method, respectively. 0.5M 1-butyl-3-methylimidazolium bromide ionic liquid was selected as solvent. The optimum parameters of dealing with 20.0 g sample were 230 W microwave irradiation power, 15 min microwave extraction time and 10 liquid-solid ratio. The yields of essential oil and proanthocyanidins were 1.24 ± 0.04% and 4.58 ± 0.21% under the optimum conditions. The composition of the essential oil was analysed by GC-MS. Using the ILMSED method, the energy consumption was reduced and the extraction yields were improved. The proposed method was validated using stability, repeatability, and recovery experiments. The results indicated that the developed ILMSED method provided a good alternative for the extraction of both the essential oil and proanthocyanidins from Cortex cinnamomi. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Determination of melamine in soil samples using surfactant-enhanced hollow fiber liquid phase microextraction followed by HPLC–UV using experimental design

    PubMed Central

    Sarafraz Yazdi, Ali; Raouf Yazdinezhad, Samaneh; Heidari, Tahereh

    2014-01-01

    Surfactant-enhanced hollow fiber liquid phase (SE-HF-LPME) microextraction was applied for the extraction of melamine in conjunction with high performance liquid chromatography with UV detection (HPLC–UV). Sodium dodecyl sulfate (SDS) was added firstly to the sample solution at pH 1.9 to form hydrophobic ion-pair with protonated melamine. Then the protonated melamine–dodecyl sulfate ion-pair (Mel–DS) was extracted from aqueous phase into organic phase immobilized in the pores and lumen of the hollow fiber. After extraction, the analyte-enriched 1-octanol was withdrawn into the syringe and injected into the HPLC. Preliminary, one variable at a time method was applied to select the type of extraction solvent. Then, in screening step, the other variables that may affect the extraction efficiency of the analyte were studied using a fractional factorial design. In the next step, a central composite design was applied for optimization of the significant factors having positive effects on extraction efficiency. The optimum operational conditions included: sample volume, 5 mL; surfactant concentration, 1.5 mM; pH 1.9; stirring rate, 1500 rpm and extraction time, 60 min. Using the optimum conditions, the method was analytically evaluated. The detection limit, relative standard deviation and linear range were 0.005 μg mL−1, 4.0% (3 μg mL−1, n = 5) and 0.01–8 μg mL−1, respectively. The performance of the procedure in extraction of melamine from the soil samples was good according to its relative recoveries in different spiking levels (95–109%). PMID:26644934

  7. Ultrasound-assisted extraction of three bufadienolides from Chinese medicine ChanSu.

    PubMed

    Sun, Yinshi; Bi, Jianjie; Zhang, Li; Ye, Baoxing

    2012-11-01

    In this study, the application of ultrasound-assisted extraction (UAE) method was shown to be more efficient in extracting anti-tumor bufadienolides (bufalin, cinobufagin and resibufogenin) from important animal medicine of ChanSu than the maceration extraction (ME) and soxhlet extraction (SE) method. The effects of ultrasonic variables including extraction solvent, solvent concentration, solvent to solid ratio, ultrasound power, temperature, extraction time and particle size on the yields of three bufadienolides were investigated. The optimum extraction conditions found were: 70% (v/v) methanol solution, solvent to solid ratio of 10ml/g, ultrasound power of 125W, temperature of 20°C, extraction time of 20min and particle size of 60-80 mesh. The extraction yields of bufalin, cinobufagin and resibufogenin were 43.17±0.85, 52.58±1.12, 137.70±2.65mg/g, respectively. In order to achieve a similar yield as UAE, soxhlet extraction required 6h and maceration extraction required much longer time of 18h. The results indicated that UAE is an alternative method for extracting bufadienolides from ChanSu. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Extraction of natural anthocyanin and colors from pulp of jamun fruit.

    PubMed

    Maran, J Prakash; Sivakumar, V; Thirugnanasambandham, K; Sridhar, R

    2015-06-01

    In this present study, natural pigment and colors from pulp of jamun fruit were extracted under different extraction conditions such as extraction temperature (40-60 ˚C), time (20-100 min) and solid-liquid ratio (1:10-1: 15 g/ml) by aqueous extraction method. Three factors with three levels Box-Behnken response surface design was employed to optimize and investigate the effect of process variables on the responses (total anthocyanin and color). The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed to predict the responses. Optimum extraction conditions for maximizing the extraction yield of total anthocyanin (10.58 mg/100 g) and colors (10618.3 mg/l) were found to be: extraction temperature of 44 °C, extraction time of 93 min and solid-liquid ratio of 1:15 g/ml. Under these conditions, experimental values are closely agreed with predicted values.

  9. Oil extraction from sheanut (Vitellaria paradoxa Gaertn C.F.) kernels assisted by microwaves.

    PubMed

    Nde, Divine B; Boldor, Dorin; Astete, Carlos; Muley, Pranjali; Xu, Zhimin

    2016-03-01

    Shea butter, is highly solicited in cosmetics, pharmaceuticals, chocolates and biodiesel formulations. Microwave assisted extraction (MAE) of butter from sheanut kernels was carried using the Doehlert's experimental design. Factors studied were microwave heating time, temperature and solvent/solute ratio while the responses were the quantity of oil extracted and the acid number. Second order models were established to describe the influence of experimental parameters on the responses studied. Under optimum MAE conditions of heating time 23 min, temperature 75 °C and solvent/solute ratio 4:1 more than 88 % of the oil with a free fatty acid (FFA) value less than 2, was extracted compared to the 10 h and solvent/solute ratio of 10:1 required for soxhlet extraction. Scanning electron microscopy was used to elucidate the effect of microwave heating on the kernels' microstructure. Substantial reduction in extraction time and volumes of solvent used and oil of suitable quality are the main benefits derived from the MAE process.

  10. Ultrasound-assisted ionic liquid-based micellar extraction combined with microcrystalline cellulose as sorbent in dispersive microextraction for the determination of phenolic compounds in propolis.

    PubMed

    Cao, Jun; Peng, Li-Qing; Du, Li-Jing; Zhang, Qi-Dong; Xu, Jing-Jing

    2017-04-22

    An ionic liquid-(IL) based micellar extraction combined with microcrystalline cellulose- (MCC) assisted dispersive micro solid-phase extraction method was developed to extract phenolic compounds from propolis. A total of 20 target compounds were identified by ultra-high- performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. The main extraction parameters were optimized and included the ultrasonic power, ultrasonic time, sample pH, type of IL, the concentration of [C12mim]Br, extraction time, concentration of MCC, type of sorbent and type of elution solvents. Under the optimum conditions, the proposed method exhibited good linearities (r 2  ≥ 0.999) for all plant phenolic compounds with the lower limits of detection in the range of 0.21-0.41 ng/mL. The recoveries ranged from 82.74% to 97.88% for pinocembrin, chrysin and galangin. Compared with conventional solvent extraction, the present method was simpler and more efficient and required less organic solvent and a shorter extraction time. Finally, the methodology was successfully used for the extraction and enrichment of phenolic compounds in propolis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Solvent Selection for Extraction of Neodymium Concentrates of Monazite Sand Processed Product

    NASA Astrophysics Data System (ADS)

    Setyadji, Moch; Purwani, MV

    2018-02-01

    The extraction of neodymium concentrates of monazite sand processed product has been done. The objective of this investigation was to determine the best solvent to separate Nd from Nd concentrate. As an aqueous phase was Nd(OH)3 concentrated in HNO3 and as solvent or the organic phase was trioctylamine (TOA). tryibuthyl phosphate (TBP). trioctylphosphine oxyde (TOPO) and di-ethyl hexyl phosphoric acid (D2EHPA) in kerosene. The investigated variables were HNO3 concentration. feed concentration. solvent concentration or solvent in kerosene. time and stirring speeds. From the investigation on the selection of solvent for the extraction of Nd(OH)3 concentrate with various solvents. it was concluded that the extraction of Nd could be carried out by using TBP or TOA. Extraction of Nd using TOA at the optimum HNO3 concentration of 2M. feed concentration of 5 gram/10 mL. TOA in kerosene concentration of 6 %. stirring time of 15 minutes. stirring speed of 200 rpm was chosen if the Y concentration in Nd concentrate is small. In these condition DNd obtained was 0.65; extraction efficiency of Nd (ENd)=37.10%. the concentrations of Nd2(C2O4)3 = 67.14%. Ce2(C2O4)3 = 1.79%. La2(C2O4)3 = 1.37% and Y2(C2O4)3 = 24.70%. Extraction of Nd using TBP at the optimum HNO3 concentration of 1M. feed concentration of 5 gram/10 m. the TBP concentration in kerosene of 15%. stirring time of 15 minutes and stirring speed of 200 rpm was chosen if the Ce concentration in Nd concentrate is small. In these condition DNd obtained was 0.20. extraction efficiency of Nd (ENd)=17%. concentration of Nd2(C2O4)3 = 70.84%. Ce2(C2O4)3=15.53%. La2(C2O4)3 = 0.00% and Y2(C2O4)3 = 8.63%.

  12. [Application of microwave technology in extraction process of Guizhi Fuling capsule].

    PubMed

    Wang, Zheng-kuan; Zhou, Mao; Liu, Yuan; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-06-01

    In this paper, optimization of the conditions of microwave technique in extraction process of Guizhi Fuling capsule in the condition of a pilot scale was carried out. First of all, through the single factor experiment investigation of various factors, the overall impact tendency and range of each factor were determined. Secondly, L9 (3(4)) orthogonal test optimization was used, and the contents of gallic acid in liquid, paeoniflorin, benzoic acid, cinnamic acid, benzoyl paeoniflorin, amygdalin of the liquid medicine were detected. The extraction rate and comprehensive evaluation were calculated with the extraction effect, as the judgment basis. Theoptimum extraction process of Guizhi Fuling capsule by microwave technology was as follows: the ratio of liquid to solid was 6: 1 added to drinking water, the microwave power was 6 kW, extraction time was 20 min for 3 times. The process of the three batch of amplification through verification, the results are stable, and compared with conventional water extraction has the advantages of energy saving, time saving, high efficiency advantages. The above results show the optimum extracting technology of high efficiency, stable and feasible.

  13. Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill.

    PubMed

    Cheng, Zhenyu; Song, Haiyan; Yang, Yingjie; Liu, Yan; Liu, Zhigang; Hu, Haobin; Zhang, Yang

    2015-05-01

    A microwave-assisted enzymatic extraction (MAEE) method had been developed, which was optimized by response surface methodology (RSM) and orthogonal test design, to enhance the extraction of crude polysaccharides (CPS) from the fruit of Schisandra chinensis Baill. The optimum conditions were as follows: microwave irradiation time of 10 min, extraction pH of 4.21, extraction temperature of 47.58°C, extraction time of 3h and enzyme concentration of 1.5% (wt% of S. chinensis powder) for cellulase, papain and pectinase, respectively. Under these conditions, the extraction yield of CPS was 7.38 ± 0.21%, which was well in close agreement with the value predicted by the model. The three methods including heat-refluxing extraction (HRE), ultrasonic-assisted extraction (UAE) and enzyme-assisted extraction (EAE) for extracting CPS by RSM were further compared. Results indicated MAEE method had the highest extraction yields of CPS at lower temperature. It was indicated that the proposed approach in this study was a simple and efficient technique for extraction of CPS in S. chinensis Baill. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Recovery of catechin compounds from Korean tea by solvent extraction.

    PubMed

    Row, Kyung Ho; Jin, Yinzhe

    2006-03-01

    Catechin compounds from Korean green tea as potential sources of anticancer and antioxidant components were target materials in this work. The methodologies of solvent extraction and partition were utilized to recover catechin compounds from green tea. The optimum experimental condition was obtained by optimizing operating factors, such as, the extraction solvent, extraction time and operating temperature. After extracting the green tea with water at 80 degrees C for 40 min, the extract was partitioned with water/chloroform, which was best suited to remove caffeine impurity from the extract. Further, the resulting extract was partitioned water/ethyl acetate to deeply purify the catechin compounds of EGC, EC, EGCG and ECG. The experimental result in this work could be extended to preparative HPLC to obtain EGCG on commercial scale.

  15. [Optimization of extraction process for tannins from Geranium orientali-tibeticum by supercritical CO2 method].

    PubMed

    Xie, Song; Tong, Zhi-Ping; Tan, Rui; Liu, Xiao-Zhen

    2014-08-01

    In order to optimize extraction process conditions of tannins from Geranium orientali-tibeticum by supercritical CO2, the content of tannins was determined by phosphomolybdium tungsten acid-casein reaction, with extraction pressure, extraction temper- ature and extraction time as factors, the content of tannins from extract of G. orientali-tibeticum as index, technology conditions were optimized by orthogonal test. Optimum technology conditions were as follows: extraction pressure was 25 MPa, extraction temperature was 50 °C, extracted 1.5 h. The content of tannins in extract was 12.91 mg x g(-1), extract rate was 3.67%. The method established could be used for assay the contents of tannin in G. orientali-tibeticum. The circulated extraction was an effective extraction process that was stable and feasible, and that provides a way of the extraction process conditions of tannin from G. orientali-tibeticum.

  16. Water soluble polysaccharides from Spirulina platensis: extraction and in vitro anti-cancer activity.

    PubMed

    Kurd, Forouzan; Samavati, Vahid

    2015-03-01

    Polysaccharides from Spirulina platensis algae (SP) were extracted by ultrasound-assisted extraction procedure. The optimal conditions for ultrasonic extraction of SP were determined by response surface methodology. The four parameters were, extraction time (X1), extraction temperature (X2), ultrasonic power (X3) and the ratio of water to raw material (X4), respectively. The experimental data obtained were fitted to a second-order polynomial equation. The optimum conditions were extraction time of 25 min, extraction temperature 85°C, ultrasonic power 90 W and ratio of water to raw material 20 mL/g. Under these optimal conditions, the experimental yield was 13.583±0.51%, well matched with the predicted models with the coefficients of determination (R2) of 0.9971. Then, we demonstrated that SP polysaccharides had strong scavenging activities in vitro on DPPH and hydroxyl radicals. Overall, SP may have potential applications in the medical and food industries. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Optimized extraction of polysaccharides from Cymbopogon citratus and its biological activities.

    PubMed

    Thangam, Ramar; Suresh, Veeraperumal; Kannan, Soundarapandian

    2014-04-01

    In this study the extraction of hot water soluble polysaccharides (HWSPs) from Cymbopogon citratus using hot water decoction was discussed. Response surface methodology (RSM) based on a three level, three variable central composite rotatable design (CCRD), was employed to obtain best possible combination of extraction time (X1: 30-180 min), extraction temperature (X2: 70-100 °C) and water to the raw material ratio (X3: 10-60) for maximum HWSPs extraction. The optimum extraction conditions were as follows: extraction time was around 113.81 min, extraction temperature at 99.66 °C and the ratio of water to raw material was 33.11 g/mL. Under these conditions, the experimental yield was 13.24±0.23%, which is well in close agreement with the value predicted by RSM model yield (13.19%). The basic characterization of HWSPs was determined by using the FTIR. These preliminary in vitro biological studies indicated that lemongrass polysaccharides were useful for anticancer therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Application of TAED/H2O2 system for low temperature bleaching of crude cellulose extracted from jute fiber

    NASA Astrophysics Data System (ADS)

    Wen, Zuoqiang; Zou, Linbo; Wang, Weiming

    2018-03-01

    Tetraacetylethylenediamine (TAED) activated hydrogen peroxide system had been applied for bleaching of crude cellulose extracted from jute fiber. Comparing with conventional hydrogen peroxide bleaching system, those results showed that bleaching temperature and time could be effectively reduced, and a preferable whiteness could be produced under faint alkaline condition. And the optimum conditions for activated bleaching system could be summarized as molar ratio of H2O2/TAED 1:0.7, pH 8, pure hydrogen peroxide 0.09 mol/L, temperature 70 °C and time 60min.

  19. Novel Approaches to Extraction Methods in Recovery of Capsaicin from Habanero Pepper (CNPH 15.192).

    PubMed

    Martins, Frederico S; Borges, Leonardo L; Ribeiro, Claudia S C; Reifschneider, Francisco J B; Conceição, Edemilson C

    2017-07-01

    The objective of this study was to compare three capsaicin extraction methods: Shoxlet, Ultrasound-assisted Extraction (UAE), and Shaker-assisted Extraction (SAE) from Habanero pepper, CNPH 15.192. The different parameters evaluated were alcohol degree, time extraction, and solid-solvent ratio using response surface methodology (RSM). The three parameters found significant ( p < 0.05) were for UAE and solvent concentration and extraction time for SAE. The optimum conditions for the capsaicin UAE and SAE were similar 95% alcohol degree, 30 minutes and solid-liquid ratio 2 mg/mL. The Soxhlet increased the extraction in 10-25%; however, long extraction times (45 minutes) degraded 2% capsaicin. The extraction of capsaicin was influenced by extraction method and by the operating conditions chosen. The optimized conditions provided savings of time, solvent, and herbal material. Prudent choice of the extraction method is essential to ensure optimal yield of extract, thereby making the study relevant and the knowledge gained useful for further exploitation and application of this resource. Habanero pepper , line CNPH 15.192, possess capsaicin in higher levels when compared with others speciesHigher levels of ethanolic strength are more suitable to obtain a higher levels of capsaicinBox-Behnken design indicates to be useful to explore the best conditions of ultrasound assisted extraction of capsaicin. Abbreviations used: Nomenclature UAE: Ultrasound-assisted Extraction; SAE: Shaker-assisted Extraction.

  20. Kinetic approach to the study of froth flotation applied to a lepidolite ore

    NASA Astrophysics Data System (ADS)

    Vieceli, Nathália; Durão, Fernando O.; Guimarães, Carlos; Nogueira, Carlos A.; Pereira, Manuel F. C.; Margarido, Fernanda

    2016-07-01

    The number of published studies related to the optimization of lithium extraction from low-grade ores has increased as the demand for lithium has grown. However, no study related to the kinetics of the concentration stage of lithium-containing minerals by froth flotation has yet been reported. To establish a factorial design of batch flotation experiments, we conducted a set of kinetic tests to determine the most selective alternative collector, define a range of pulp pH values, and estimate a near-optimum flotation time. Both collectors (Aeromine 3000C and Armeen 12D) provided the required flotation selectivity, although this selectivity was lost in the case of pulp pH values outside the range between 2 and 4. Cumulative mineral recovery curves were used to adjust a classical kinetic model that was modified with a non-negative parameter representing a delay time. The computation of the near-optimum flotation time as the maximizer of a separation efficiency (SE) function must be performed with caution. We instead propose to define the near-optimum flotation time as the time interval required to achieve 95%-99% of the maximum value of the SE function.

  1. Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane.

    PubMed

    Zereshki, Sina; Daraei, Parisa; Shokri, Amin

    2018-05-18

    Using an emulsion liquid membrane based on edible oils is investigated for removing cationic dyes from aqueous solutions. There is a great potential for using edible oils in food industry extraction processes. The parameters affecting the stability of the emulsion and the extraction rate were studied. These parameters were the emulsification time, the stirring speed, the surfactant concentration, the internal phase concentration, the feed phase concentration, the volume ratio of internal phase to organic phase and the treat ratio. In order to stabilize the emulsion without using a carrier, edible paraffin oil and heptane are used at an 80:20 ratio. The optimum conditions for the extraction of methylene blue (MB), crystal violet and methyl violet (CV and MV) cationic dyes using edible paraffin oil as an environment friendly solvent are represented. A removal percentage of 95% was achieved for a mixture of dyes. The optimum concentration of sodium hydroxide in the internal phase, which results a stabile emulsion with a high stripping efficiency of 96%, was 0.04 M. An excellent membrane recovery was observed and the extraction of dyes did not decrease up to seven run cycles. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Mixture Design and Doehlert Matrix for the Optimization of the Extraction of Phenolic Compounds from Spondias mombin L Apple Bagasse Agroindustrial Residues.

    PubMed

    Santos Felix, Antonio C; Novaes, Cleber G; Pires Rocha, Maísla; Barreto, George E; do Nascimento, Baraquizio B; Giraldez Alvarez, Lisandro D

    2017-01-01

    In this study, we have determined, using RSM (mixture design and Doehlert matrix), the optimum values of the independent variables to achieve the maximum response for the extraction of total phenolic compounds from Spondias mombin L bagasse agroindustrial residues in order to preserve their antioxidant activity. The extraction of phenolic compounds, as well as their antioxidant capacity and the capacity to scavenge ABTS, was determined by the modified DPPH method at different periods of time, temperature, velocity of rotation and solvents concentration. We observed that the optimum condition for the highest antioxidant yield was obtained using water (60.84%), acetone (30.31%), and ethanol (8.85%) at 30°C during 20 min at 50 rpm. We have also found that the maximum yield of total phenolics was 355.63 ± 9.77 (mg GAE/100 g), showing an EC 50 of 3,962.24 ± 41.20 (g fruit/g of DPPH) and 8.36 ± 0.30 (μM trolox/g fruit), which were measured using DPPH and ABTS assays. These results suggest that RSM was successfully applied for optimizing the extraction of phenolics compounds thus preserving their antioxidant activity.

  3. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods.

    PubMed

    Xu, Dong-Ping; Zheng, Jie; Zhou, Yue; Li, Ya; Li, Sha; Li, Hua-Bin

    2017-02-15

    Natural antioxidants are widely used as dietary supplements or food additives. An optimized method of ultrasound-assisted extraction (UAE) was proposed for the effective extraction of antioxidants from the flowers of Limonium sinuatum and evaluated by response surface methodology. In this study, ethanol concentration, ratio of solvent to solid, ultrasonication time and temperature were investigated and optimized using a central composite rotatable design. The optimum extraction conditions were as follows: ethanol concentration, 60%; ratio of solvent to solid, 56.9:1mL/g; ultrasonication time, 9.8min; and temperature, 40°C. Under the optimal UAE conditions, the experimental values (483.01±15.39μmolTrolox/gDW) matched with those predicted (494.13μmolTrolox/gDW) within a 95% confidence level. In addition, the antioxidant activities of UAE were compared with those of conventional maceration and Soxhlet extraction methods, and the ultrasound-assisted extraction could give higher yield of antioxidants and markedly reduce the extraction time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. [Optimum harvest time of Tulipa edulis based on comparison of biomass accumulation and medicinal quality evaluation].

    PubMed

    Yang, Xiao-Hua; Guo, Qiao-Sheng; Zhu, Zai-Biao; Lin, Jian-Luo; Miao, Yuan-Yuan; Sun, Yuan

    2016-02-01

    The optimum harvest time of Tulipa edulis was explored based on biomass accumulation and medicinal quality evaluation. Samples were taken from bud stage (Feb 13th) to dormancy stage (May 14th) and the growth indexes, organs biomasses, drying rate, contents of water-soluble extract and polysaccharides were determined. The results showed that biomass distribution of T. edulis varied with growth center and the bulb gained maximum biomass allocation in the whole growth period. The total biomass accumulation and bulb biomass accumulation increased in the whole growth period and peaked in fructescence stage. No differences were observed in bulb biomass among fructescence stage, withering stage and dormancy stage. The correlation between bulb biomass allocation and other morphological indexes varied with the harvest time. Bulb dry weight biomass had negative correlation with some morphological indexes of aerial part of T. edulis at bud stage, flower stage and fructescence and had significant positive (P<0.05) or extremely significant positive correlation(P<0.01)with other morphological indexes except for root at bearing fruits stage. The drying rate of bulb of T. edulis increased with the extension of harvest time and peaked in dormancy stage. The water-soluble extract of T. edulis bulb was the highest in pre-growing-stage. The tendency of polysaccharides contents showed a W-shape variation during the harvesting period. The polysaccharides content was the lowest in fructescence stage and was the highest in dormancy stage. Considering the yield and medicinal quality of T. edulis bulb, the optimum harvest time of T. edulis is in the withering stage or early stage of dormancy. Copyright© by the Chinese Pharmaceutical Association.

  5. Recovery of phenolic compounds from grape seeds: effect of extraction time and solid-liquid ratio.

    PubMed

    Casazza, Alessandro A; Aliakbarian, Bahar; Perego, Patrizia

    2011-10-01

    The aim of this research was to study the recovery of phenolic compounds from grape seeds, by-products from winemaking industries, using ethanolic solid-liquid extraction. For such a purpose, the combined effects of the extraction time (9, 19 and 29 h) and the solid-liquid ratio (0.10, 0.20 and 0.30 gdw mL(-1)), were investigated (where dw = dry waste). Results demonstrated that Pinot Noir seeds had high levels of both total polyphenols (73.66 mg(Gallic Acid Equivalent) gdw(-1)) and flavonoids (30.90 mg(Catechin Equivalent) gdw(-1)), being the optimum extraction time 19 h approximately. The main phenolic compounds analysed with high performance liquid chromatography were catechin and quercetin with a maximum extraction yield obtained at 29 h (362.23 and 339.35 mg/100 gdw, respectively). Concentration of the polyphenols and their antiradical powers are demonstrated to have a significant linear correlation.

  6. Process optimization for the preparation of antioxidant rich ginger candy using beetroot pomace extract.

    PubMed

    Kumar, Vikas; Kushwaha, Rinku; Goyal, Ankit; Tanwar, Beenu; Kaur, Jaspreet

    2018-04-15

    Now-a-days, there is an increased interest in fruits and vegetables processing by-products due to potential source of phytochemicals and pigments. Beetroot (Beta vulgaris) pomace extract is a rich source of betalain, phenolics and other bioactive components, which possess significant antioxidant activities. In the present study, process optimization was performed for developing ginger (Zingiber officinale) candy enriched with beetroot pomace extract using response surface methodology (RSM). The effect of two process variables: blanching time (0-10 min) and beetroot pomace extract (0-10%) was evaluated on physicochemical characteristics and phytochemicals content of the developed product. Maximum phytochemicals' activities were obtained under optimum conditions of 7.81 min blanching time and 9.24% beetroot pomace extract. FTIR analysis also confirmed the significant effect of beetroot pomace extract and it's blanching on the phytochemical potential of ginger candy. The study would be useful for developing similar novel and antioxidants rich food products supplemented with beetroot pomace extract. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Optimization of soxhlet extraction and physicochemical analysis of crop oil from seed kernel of Feun Kase (Thevetia peruviana)

    NASA Astrophysics Data System (ADS)

    Suwari, Kotta, Herry Z.; Buang, Yohanes

    2017-12-01

    Optimizing the soxhlet extraction of oil from seed kernel of Feun Kase (Thevetia peruviana) for biodiesel production was carried out in this study. The solvent used was petroleum ether and methanol, as well as their combinations. The effect of three factors namely different solvent combinations (polarity), extraction time and extraction temperature were investigated for achieving maximum oil yield. Each experiment was conducted in 250 mL soxhlet apparatus. The physicochemical properties of the oil yield (density, kinematic viscosity, acid value, iodine value, saponification value, and water content) were also analyzed. The optimum conditions were found after 4.5 h with extraction time, extraction temperature at 65 oC and petroleum ether to methanol ratio of 90 : 10 (polarity index 0.6). The oil extract was found to be 51.88 ± 3.18%. These results revealed that the crop oil from seed kernel of Feun Kase (Thevetia peruviana) is a potential feedstock for biodiesel production.

  8. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata).

    PubMed

    Wu, Hao; Zhu, Junxiang; Diao, Wenchao; Wang, Chengrong

    2014-11-26

    An efficient ultrasound-assisted enzymatic extraction (UAEE) of Cucurbita moschata polysaccharides (CMCP) was established and the CMCP antioxidant activities were studied. The UAEE operating parameters (extraction temperature, ultrasonic power, pH, and liquid-to-material ratio) were optimized using the central composite design (CCD) and the mass transfer kinetic study in UAEE procedure was used to select the optimal extraction time. Enzymolysis and ultrasonication that were simultaneously conducted was selected as the UAEE synergistic model and the optimum extraction conditions with a maximum polysaccharide yield of 4.33 ± 0.15% were as follows: extraction temperature, 51.5 °C; ultrasonic power, 440 W; pH, 5.0; liquid-to-material ratio, 5.70:1 mL/g; and extraction time, 20 min. Evaluation of the antioxidant activity in vitro suggested that CMCP has good potential as a natural antioxidant used in the food or medicine industry because of their high reducing power and positive radical scavenging activity for DPPH radical. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Optimization by response surface methodology of lutein recovery from paprika leaves using accelerated solvent extraction.

    PubMed

    Kang, Jae-Hyun; Kim, Suna; Moon, BoKyung

    2016-08-15

    In this study, we used response surface methodology (RSM) to optimize the extraction conditions for recovering lutein from paprika leaves using accelerated solvent extraction (ASE). The lutein content was quantitatively analyzed using a UPLC equipped with a BEH C18 column. A central composite design (CCD) was employed for experimental design to obtain the optimized combination of extraction temperature (°C), static time (min), and solvent (EtOH, %). The experimental data obtained from a twenty sample set were fitted to a second-order polynomial equation using multiple regression analysis. The adjusted coefficient of determination (R(2)) for the lutein extraction model was 0.9518, and the probability value (p=0.0000) demonstrated a high significance for the regression model. The optimum extraction conditions for lutein were temperature: 93.26°C, static time: 5 min, and solvent: 79.63% EtOH. Under these conditions, the predicted extraction yield of lutein was 232.60 μg/g. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of ultrasound on the dissolution of copper from copper converter slag by acid leaching.

    PubMed

    Beşe, Ayşe Vildan

    2007-09-01

    This work presents the optimum conditions of dissolution of copper in copper converter slag in sulphuric acid ferric sulphate mixtures in the presence and absence of ultrasound. The Taguchi method was used to determine the optimum conditions. The parameters investigated were the reaction temperature, acid concentration, ferric sulphate concentration and reaction time. The optimum conditions for the maximum dissolution of copper were determined as follows: reaction temperature, 65 degrees C; acid concentration, 0.2M; ferric sulphate concentration, 0.15M; reaction time 180 min. Under these conditions, extraction efficiency of copper, zinc, cobalt, and iron from slag were 89.28%, 51.32%, 69.87%, and 13.73%, respectively, in the presence of ultrasound, while they are 80.41%, 48.28%, 64.52%, and 12.16%, respectively, in the absence of ultrasound. As seen from the above results, it is clear that ultrasound enhances on the dissolution of Cu, Zn, Co and Fe in the slag.

  11. Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process.

    PubMed

    Chou, Wei-Lung; Wang, Chih-Ta; Yang, Kai-Chiang; Huang, Yen-Hsiang

    2008-12-15

    Supercritical carbon dioxide extraction, which is a feasible "green" alternative, was applied in this study as a sample pretreatment step for the removal of gallium (III) ions from acidic aqueous solution. The effect of various process parameters, including various chelating agents, extraction pressure and temperature, dimensionless CO(2) volume, the concentration of the chelating agent, and the pH of the solution, governing the efficiency and throughput of the procedure were systematically investigated. The performance of the various chelating agents from different studies indicated that the extraction efficiency of supercritical CO(2) was in the order: thiopyridine (PySH)>thenoyltrifluoroacetone (TTAH)>acetylacetone (AcAcH). The optimal extraction pressure and temperature for the supercritical CO(2) extraction of gallium (III) with chelating agent PySH were found to be 70 degrees C and 3000psi, respectively. The optimum concentration of the chelating agent was found to be 50ppm. A value of 7.5 was selected as the optimum dimensionless CO(2) volume. The optimum pH of the solution for supercritical CO(2) extraction should fall in the range of 2.0-3.0.

  12. The effects of temperature and frequencies in ultrasound assisted extraction of phycocyanin from microalgae Spirulina sp

    NASA Astrophysics Data System (ADS)

    Hadiyanto, Suttrisnorhadi, Sutanto, Heri; Suzery, Meiny; Soetrisnanto, Danny; Azizah, Nur

    2015-12-01

    Microalgae Spirulina sp has been identified as source of protein and other high added value compounds. One of the compounds is phycocyanin as also known for antioxidant use. The extraction of this compound by using conventional method (soxhlet extraction) resulted low yield and longer processing time. This research was aimed to extract phycocyanin by using an extraction assisted by ultrasound irradiation. The extraction was performed by using variable of ultrasound frequency and extraction temperature and ethanol was used as a solvent. The result showed that yield of phycocyanin extracted by conventional method was 11.13% while the ultrasound irradiation could increase the yield up to 15.61% at constant frequency of 42 kHz, while the optimum temperature was obtained at 45°C. The analysis of variable interactions showed that both temperature and time has an interaction and temperature was the highest variable in increasing the yield. The conclusion of this research was the ultrasound could improve significantly the efficiency of extraction as well as activity of phycocyanin extracted from microalgae.

  13. The effects of temperature and frequencies in ultrasound assisted extraction of phycocyanin from microalgae Spirulina sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadiyanto,, E-mail: hadiyanto@live.undip.ac.id; Suttrisnorhadi,; Soetrisnanto, Danny

    Microalgae Spirulina sp has been identified as source of protein and other high added value compounds. One of the compounds is phycocyanin as also known for antioxidant use. The extraction of this compound by using conventional method (soxhlet extraction) resulted low yield and longer processing time. This research was aimed to extract phycocyanin by using an extraction assisted by ultrasound irradiation. The extraction was performed by using variable of ultrasound frequency and extraction temperature and ethanol was used as a solvent. The result showed that yield of phycocyanin extracted by conventional method was 11.13% while the ultrasound irradiation could increasemore » the yield up to 15.61% at constant frequency of 42 kHz, while the optimum temperature was obtained at 45°C. The analysis of variable interactions showed that both temperature and time has an interaction and temperature was the highest variable in increasing the yield. The conclusion of this research was the ultrasound could improve significantly the efficiency of extraction as well as activity of phycocyanin extracted from microalgae.« less

  14. Determination of Urease Biochemical Properties of Asparagus Bean (Vigna unguiculata ssp sesquipedalis L.)

    NASA Astrophysics Data System (ADS)

    Zusfahair; Ningsih, D. R.; Fatoni, A.; Pertiwi, D. S.

    2018-04-01

    Urease is enzyme that plays a role in nitrogen metabolism during plant germination. Plants that produce a lot of urease are grains. This study used asparagus bean as source of urease. The purpose of this research is to learn the effect of germination time on the activity of urease enzyme from asparagus bean and its biochemical properties. The research was started by germination of asparagus bean on day 2, 4, 6, 8, 10 and 12. Asparagus bean sprouts were extracted using acetone and separated by centrifugation to obtain the crude extract of urease. The biochemical properties of the crude extract of urease was further determined including: the effect of temperature, pH, substrate concentration, and metal addition to urease activity. The urease activity is determined by the Nessler method. The germination time of asparagus bean in yielding urease enzyme reached the optimum activity on the 8th day with activity value of 593.7 U/mL. The biochemical properties of urease from asparagus bean have optimum activity at 35 °C, pH 7.0 and substrate concentration 0.125% with activity value of 600 U/mL. Addition of CaCl2, SnCl2 and ZnCl2 metals decrease the activity of urease.

  15. Microwave-assisted extraction of oxymatrine from Sophora flavescens.

    PubMed

    Xia, En-Qin; Cui, Bo; Xu, Xiang-Rong; Song, Yang; Ai, Xu-Xia; Li, Hua-Bin

    2011-08-30

    In this paper, microwave-assisted extraction (MAE) of oxymatrine from Sophora flavescens were studied by HPLC-photodiode array detection. Effects of several experimental parameters, such as concentration of extraction solvent, ratio of liquid to material, microwave power, extraction temperature, and extraction time on the extraction efficiencies of oxymatrine were evaluated. The optimal extraction conditions were 60% ethanol, a 20:1 (v/v) ratio of liquid to material and extraction for 10 min at 50 °C under 500 W microwave irradiation. Under the optimum conditions, the yield of oxymatrine was 14.37 mg/g. The crude extract obtained could be used as either a component of some complex traditional medicines or for further isolation and purification of bioactive compounds. The results, which indicated that MAE is a very useful tool for the extraction of important phytochemicals from plant materials, should prove helpful for the full utilization of Sophora flavescens.

  16. Applications products of aviation forecast models

    NASA Technical Reports Server (NTRS)

    Garthner, John P.

    1988-01-01

    A service called the Optimum Path Aircraft Routing System (OPARS) supplies products based on output data from the Naval Oceanographic Global Atmospheric Prediction System (NOGAPS), a model run on a Cyber-205 computer. Temperatures and winds are extracted from the surface to 100 mb, approximately 55,000 ft. Forecast winds are available in six-hour time steps.

  17. Optimization of the Ultrasonic-Assisted Extraction of Bioactive Flavonoids from Ampelopsis grossedentata and Subsequent Separation and Purification of Two Flavonoid Aglycones by High-Speed Counter-Current Chromatography.

    PubMed

    Zhang, Hongbing; Xie, Guoyong; Tian, Mei; Pu, Qian; Qin, Minjian

    2016-08-20

    The fermented leaf of Ampelopsis grossedentata has been used as a beverage and folk medicine called "vine tea" in the southern region of China. In this paper, the optimum extraction conditions for the maximum recovery amounts of total flavonoids (TF), dihydromyricetin (DMY), myricitrin (MYG) and myricetin (MY) from natural Ampelopsis grossedentata leaves subjected to ultrasonic-assisted extraction (UAE) were determined and optimized by using response surface methodology. The method was employed by the Box-Behnken design (BBD) and Derringer's desirability function using methanol concentration, extraction time, liquid/solid ratio as factors and the contents of TF, DMY, MYG and MY as responses. The obtained optimum UAE conditions were as follows: a solvent of 80.87% methanol, an extraction time of 31.98 min and a liquid/solid ratio of 41.64:1 mL/g. Through analysis of the response surface, it implied that methanol concentration and the liquid/solid ratio had significant effects on TF, DMY, MYG and MY yields, whereas extraction time had relatively little effects. The established extraction and analytical methods were successfully applied to determine the contents of the total flavonoids and three individual flavonoids in 10 batches of the leaf samples of A. grossedentata from three counties in Fujian Province, China. The results suggested the variability in the quality of A. grossedentata leaves from different origins. In addition, high purities of dihydromyricetin and myricetin were simultaneously separated and purified from the extract subjected to optimized UAE, by high-speed counter-current chromatography using a solvent system of N-hexane-ethyl acetate-methanol-water (1:3:2:4; v/v/v/v). In a single operation, 200 mg of the extract were separated to yield 86.46 mg of dihydromyricetin and 3.61 mg of myricetin with the purity of 95.03% and 99.21%, respectively. The results would be beneficial for further exploiting the herbal products and controlling the quality of the herb and its derived products.

  18. Optimization of ultrasonic-assisted extraction for determination of polycyclic aromatic hydrocarbons in biochar-based fertilizer by gas chromatography-mass spectrometry.

    PubMed

    Chen, Ping; Sun, Mingxing; Zhu, Zhixiu; Zhang, Jidong; Shen, Guoqing

    2015-08-01

    Application of biochar-based fertilizers is increasingly being considered for its potential agronomic and environmental benefits. However, biochar may contain residues of polycyclic aromatic hydrocarbons (PAHs) as a result of its production by pyrolysis. The strong adsorption of PAHs to biochar makes extraction and analysis of biochar-based fertilizers difficult. This study optimizes the extraction of PAHs in biochar-based fertilizer samples by using an ultrasonic bath for quantification by gas chromatography-mass spectrometry. Among 12 solvents, acetone-cyclohexane (1:1) mixture was selected as the optimum solvent for extraction. Three variables affecting the extraction were studied by Box-Behnken design. The optimum conditions were 57 °C extraction temperature, 81 min extraction time, and two extraction cycles, which were validated by assessing the linearity of analysis, LOD, LOQ, recovery, and levels of PAHs in real biochar-based fertilizer samples. Results revealed that the 16 U.S. EPA PAHs had good linearity, with squared correlation coefficients greater than 0.99. LODs were low, ranging from 2.2 ng g(-1) (acenaphthene) to 23.55 ng g(-1) (indeno[1,2,3-cd]perylene), and LOQs varied from 7.51 ng g(-1) to 78.49 ng g(-1). The recoveries of 16 individual PAHs from the three biochar-based fertilizer samples were 81.8-109.4 %. Graphical Abstract Use of RSM to optimize UAE for extraction of the PAHs in biochar-based fertilizer.

  19. [Optimization of ultrasonic-assisted extraction of total flavonoids from leaves of the Artocarpus heterophyllus by response surface methodology].

    PubMed

    Wang, Hong-wu; Liu, Yan-qing; Wang, Yuan-hong

    2011-07-01

    To investigate the ultrasonic-assisted extract on of total flavonoids from leaves of the Artocarpus heterophyllus. Investigated the effects of ethanol concentration, extraction time, and liquid-solid ratio on flavonoids yield. A 17-run response surface design involving three factors at three levels was generated by the Design-Expert software and experimental data obtained were subjected to quadratic regression analysis to create a mathematical model describing flavonoids extraction. The optimum ultrasonic assisted extraction conditions were: ethanol volume fraction 69.4% and liquid-solid ratio of 22.6:1 for 32 min. Under these optimized conditions, the yield of flavonoids was 7.55 mg/g. The Box-Behnken design and response surface analysis can well optimize the ultrasonic-assisted extraction of total flavonoids from Artocarpus heterophyllus.

  20. Optimization of extraction of linarin from Flos chrysanthemi indici by response surface methodology and artificial neural network.

    PubMed

    Pan, Hongye; Zhang, Qing; Cui, Keke; Chen, Guoquan; Liu, Xuesong; Wang, Longhu

    2017-05-01

    The extraction of linarin from Flos chrysanthemi indici by ethanol was investigated. Two modeling techniques, response surface methodology and artificial neural network, were adopted to optimize the process parameters, such as, ethanol concentration, extraction period, extraction frequency, and solvent to material ratio. We showed that both methods provided good predictions, but artificial neural network provided a better and more accurate result. The optimum process parameters include, ethanol concentration of 74%, extraction period of 2 h, extraction three times, solvent to material ratio of 12 mL/g. The experiment yield of linarin was 90.5% that deviated less than 1.6% from that obtained by predicted result. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The optimization of phenolic compounds extraction from cactus pear (Opuntia ficus-indica) skin in a reflux system using response surface methodology.

    PubMed

    Jorge, Aguirre Joya; Heliodoro, De La Garza Toledo; Alejandro, Zugasti Cruz; Ruth, Belmares Cerda; Noé, Aguilar Cristóbal

    2013-06-01

    To extract, quantify, and evaluate the phenolic content in Opuntia ficus-indica skin for their antioxidant capacity with three different methods (ABTS, DPPH, and lipid oxidation) and to optimize the extraction conditions (time, temperature and ethanol concentration) in a reflux system. The extraction process was done using a reflux system. A San Cristobal II experimental design with three variables and three levels was used. The variables evaluated were time of extraction (h), concentration of ethanol (%, v/v) and temperature (°C). The extraction process was optimized using a response surface methodology. It was observed that at higher temperature more phenolic compounds were extracted, but the antioxidant capacity was decreased. The optimum conditions for phenolic compounds extraction and antioxidant capacity mixing the three methods were as follows: 45% of ethanol, 80 °C and 2 hours of extraction. Values obtained in our results are little higher that other previously reported. It can be concluded the by-products of Opuntia ficus-indica represent a good source of natural antioxidants with possible applications in food, cosmetics or drugs industries.

  2. Acute toxicity assessment of explosive-contaminated soil extracting solution by luminescent bacteria assays.

    PubMed

    Xu, Wenjie; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-11-01

    Explosive-contaminated soil is harmful to people's health and the local ecosystem. The acute toxicity of its extracting solution was tested by bacterial luminescence assay using three kinds of luminescent bacteria to characterize the toxicity of the soil. An orthogonal test L 16 (4 5 ) was designed to optimize the soil extracting conditions. The optimum extracting conditions were obtained when the ultrasonic extraction time, ultrasonic extraction temperature, and the extraction repeat times were 6 h, 40 °C, and three, respectively. Fourier transform infrared spectroscopy (FTIR) results showed that the main components of the contaminated soil's extracting solution were 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO 3 - ); 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO 3 - ); and 2,6-dinitrotoluene (2,6-DNT). Compared with Photobacterium phosphoreum and Vibrio fischeri, Vibrio qinghaiensis sp. Nov. is more suitable for assessing the soil extracting solution's acute toxicity. Soil washing can remove most of the contaminants toxic to luminescent bacterium Vibrio qinghaiensis sp. Nov., suggesting that it may be a potential effective remediation method for explosive-contaminated soil.

  3. Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea.

    PubMed

    Zhang, Yating; Gu, Lingbiao; Wang, Fei; Kong, Lingjun; Qin, Guangyong

    2017-03-30

    As a natural and healthy beverage, tea is widely enjoyed; however, the pesticide residues in tea leaves affect the quality and food safety. To develop a highly selective and efficient method for the facile removal of pesticide residues, the subcritical butane extraction (SBE) technique was employed, and three variables involving temperature, time and extraction cycles were studied. The optimum SBE conditions were found to be as follows: extraction temperature 45 °C, extraction time 30 min, number of extraction cycles 1, and in such a condition that the extraction efficiency reached as high as 92%. Further, the catechins, theanine, caffeine and aroma components, which determine the quality of the tea, fluctuated after SBE treatment. Compared with the uncrushed leaves, pesticide residues can more easily be removed from crushed leaves, and the practical extraction efficiency was 97%. These results indicate that SBE is a useful method to efficiently remove the bifenthrin, and as appearance is not relevant in the production process, tea leaves should first be crushed and then extracted in order that residual pesticides are thoroughly removed.

  4. Ultrasound-assisted dispersive magnetic solid phase extraction based on amino-functionalized Fe3O4 adsorbent for recovery of clomipramine from human plasma and its determination by high performance liquid chromatography: Optimization by experimental design.

    PubMed

    Hamidi, Fatemeh; Hadjmohammadi, Mohammad Reza; Aghaie, Ali B G

    2017-09-15

    The applicability of Amino-functionalized Fe 3 O 4 nanoparticles (NPs) as an effective adsorbent was developed for the extraction and determination of clomipramine (CLP) in plasma sample by ultrasound-assisted dispersive magnetic solid phase extraction (UADM-SPE) and high-performance liquid chromatography-ultraviolet (HPLC-UV) detection. Fabrication of the Fe 3 O 4 @SiO 2 -NH 2 magnetic nanoparticles confirmed by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of different extraction parameters (i.e. pH of the sample solution, the amount of magnetic nanoparticles (MNPs), sample volume, temperature and sonication time) on the extraction recovery of CLP were investigated by response surface methodology through central composite design (CCD). The optimum condition is obtained when the affecting parameters are set to: pH of the sample solution=9, the amount of MNPs=37mg, sample volume=23mL, 25°C temperature and sonication time=1min. Under the optimum condition, extraction recovery was 90.6% with relative standard deviation of 3.5%, and enrichment factor of 117. The linear range for determination of CLP was 0.017-0.70mgL -1 with a determination coefficient (R 2 ) of 0.999. Limit of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.0167mgL -1 , respectively. The established UADM-SPE-HPLC-UV method was rapid, simple and efficient for determination of CLP in human plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Measurement of dielectric constant of organic solvents by indigenously developed dielectric probe

    NASA Astrophysics Data System (ADS)

    Keshari, Ajay Kumar; Rao, J. Prabhakar; Rao, C. V. S. Brahmmananda; Ramakrishnan, R.; Ramanarayanan, R. R.

    2018-04-01

    The extraction, separation and purification of actinides (uranium and plutonium) from various matrices are an important step in nuclear fuel cycle. One of the separation process adopted in an industrial scale is the liquid-liquid extraction or solvent extraction. Liquid-liquid extraction uses a specific ligand/extractant in conjunction with suitable diluent. Solvent extraction or liquid-liquid extraction, involves the partitioning of the solute between two immiscible phases. In most cases, one of the phases is aqueous, and the other one is an organic solvent. The solvent used in solvent extraction should be selective for the metal of interest, it should have optimum distribution ratio, and the loaded metal from the organic phase should be easily stripped under suitable experimental conditions. Some of the important physical properties which are important for the solvent are density, viscosity, phase separation time, interfacial surface tension and the polarity of the extractant.

  6. Antioxidant Compound Extraction from Maqui (Aristotelia chilensis [Mol] Stuntz) Berries: Optimization by Response Surface Methodology

    PubMed Central

    Quispe-Fuentes, Issis; Vega-Gálvez, Antonio; Campos-Requena, Víctor H.

    2017-01-01

    The optimum conditions for the antioxidant extraction from maqui berry were determined using a response surface methodology. A three level D-optimal design was used to investigate the effects of three independent variables namely, solvent type (methanol, acetone and ethanol), solvent concentration and extraction time over total antioxidant capacity by using the oxygen radical absorbance capacity (ORAC) method. The D-optimal design considered 42 experiments including 10 central point replicates. A second-order polynomial model showed that more than 89% of the variation is explained with a satisfactory prediction (78%). ORAC values are higher when acetone was used as a solvent at lower concentrations, and the extraction time range studied showed no significant influence on ORAC values. The optimal conditions for antioxidant extraction obtained were 29% of acetone for 159 min under agitation. From the results obtained it can be concluded that the given predictive model describes an antioxidant extraction process from maqui berry.

  7. Novel Approaches to Extraction Methods in Recovery of Capsaicin from Habanero Pepper (CNPH 15.192)

    PubMed Central

    Martins, Frederico S.; Borges, Leonardo L.; Ribeiro, Claudia S. C.; Reifschneider, Francisco J. B.; Conceição, Edemilson C.

    2017-01-01

    Introduction: The objective of this study was to compare three capsaicin extraction methods: Shoxlet, Ultrasound-assisted Extraction (UAE), and Shaker-assisted Extraction (SAE) from Habanero pepper, CNPH 15.192. Materials and Methods: The different parameters evaluated were alcohol degree, time extraction, and solid–solvent ratio using response surface methodology (RSM). Results: The three parameters found significant (p < 0.05) were for UAE and solvent concentration and extraction time for SAE. The optimum conditions for the capsaicin UAE and SAE were similar 95% alcohol degree, 30 minutes and solid–liquid ratio 2 mg/mL. The Soxhlet increased the extraction in 10–25%; however, long extraction times (45 minutes) degraded 2% capsaicin. Conclusion: The extraction of capsaicin was influenced by extraction method and by the operating conditions chosen. The optimized conditions provided savings of time, solvent, and herbal material. Prudent choice of the extraction method is essential to ensure optimal yield of extract, thereby making the study relevant and the knowledge gained useful for further exploitation and application of this resource. SUMMARY Habanero pepper, line CNPH 15.192, possess capsaicin in higher levels when compared with others speciesHigher levels of ethanolic strength are more suitable to obtain a higher levels of capsaicinBox-Behnken design indicates to be useful to explore the best conditions of ultrasound assisted extraction of capsaicin. Abbreviations used: Nomenclature UAE: Ultrasound-assisted Extraction; SAE: Shaker-assisted Extraction. PMID:28808409

  8. Bioleaching of copper oxide ore by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Shabani, M. A.; Irannajad, M.; Azadmehr, A. R.; Meshkini, M.

    2013-12-01

    Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic bacterium that can produce various organic acids in an appropriate culture medium, and these acids can operate as leaching agents. The parameters, such as particle size, glucose percentage in the culture medium, bioleaching time, and solid/liquid ratio were optimized. Optimum bioleaching conditions were found as follows: particle size of 150-177 μm, glucose percentage of 6%, bioleaching time of 8 d, and solid/liquid ratio of 1:80. Under these conditions, 53% of copper was extracted.

  9. Characterization of Alicyclobacillus disufldooxidans HIB4 Isolated from an Acid Mine Drainage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Suto, Koichi; Joe, Seong Jin; Inoue, Chihiro; Chida, Tadashi

    2006-05-01

    A heterotrophic bacterium, designated as HIB4, having an ability to oxidize ferrous iron was isolated from the sample of an enrichment culture with 9K medium, by using the modified WAYE (washed agarose/yeast extract) medium with ferrous sulphate. This isolate was identified as Alicyclobacillus disulfidooxidans from 16S rDNA sequence analysis. The isolate grew and oxidized ferrous iron in an inorganic medium containing 0.02 % (w/v) of yeast extract and Ferrous iron oxidation occurred at the almost end of its logarithmic phase. Yeast extract was an essential substrate for the isolate because the isolate could not grow or oxidize ferrous iron without yeast extract. However, higher concentration of yeast extract inhibited the growth of the isolate. On the other hand, it was confirmed that the isolate was able to grow without ferrous ion so that it did not get any energy by ferrous ion oxidation. Its optimum concentration of yeast extract was 0.02% (w/v) at the concentration of ferrous ion 0.08mol/liter. Its optimum pH was 1.5 and the optimum temperature was 30 °C These physiological characteristics were completely different from A. disulfidooxidans SD-11 which is the type strain.

  10. The biochemical characterization, stabilization studies and the antiproliferative effect of bromelain against B16F10 murine melanoma cells.

    PubMed

    São Paulo Barretto Miranda, Íngara Keisle; Fontes Suzart Miranda, Anderson; Souza, Fernanda Vidigal Duarte; Vannier-Santos, Marcos André; Pirovani, Carlos Priminho; Pepe, Iuri Muniz; Rodowanski, Ivanoé João; Ferreira, Katiúcia Tícila de Souza Eduvirgens; Mendes Souza Vaz, Luciano; de Assis, Sandra Aparecida

    2017-06-01

    The current study aims to extract bromelain from different parts (stem, crown, peels, pulp and leaves) of Ananas comosus var. comosus AGB 772; to determine of optimum pH and temperature; to test bromelain stability in disodium EDTA and sodium benzoate, and to investigate its pharmacological activity on B16F10 murine melanoma cells in vitro. The highest enzymatic activity was found in bromelain extracted from the pulp and peel. The optimum bromelain pH among all studied pineapple parts was 6.0. The optimum temperature was above 50 °C in all bromelain extracts. The fluorescence analysis confirmed the stability of bromelain in the presence of EDTA and sodium benzoate. Bromelain was pharmacologically active against B16F10 melanoma cells and it was possible verifying approximately 100% inhibition of tumor cell proliferation in vitro. Since bromelain activity was found in different parts of pineapple plants, pineapple residues from the food industry may be used for bromelain extraction.

  11. Ultrasound assisted extraction of polysaccharides from hazelnut skin.

    PubMed

    Yılmaz, Tuncay; Tavman, Şebnem

    2016-03-01

    In this study ultrasound assisted extraction (UAE) of polysaccharides from hazelnut skin has been studied. Optimum sonication time has been evaluated depending on responses such as amount of carbohydrate and dried sample and thermogravimetric analysis. Chemical and structural properties of extracted material have been determined by Fourier transform spectroscopy attenuated-total reflectance (FTIR-ATR) spectroscopy. Pretreated hazelnut skin powders were extracted in distilled water. Mixture was sonicated by ultrasonic processor probe for 15, 30, 45, 60, 90, and 120 min. The results of UAE showed that maximum ethanol insoluble extracts in 60 min and the highest dry matter content could be obtained in 120 min extraction. Although total carbohydrate content of ethanol insoluble dry extract decreased with time, total carbohydrate in ethanol soluble fraction increased. Polysaccharides extracted from hazelnut skin were assumed to be pectic polysaccharide according to the literature survey of FTIR analysis result. Application time of UAE has an important effect on extraction of polysaccharide from hazelnut skin. This affect could be summarized by enhancing extraction yield up to critical level. Decrease of the yield in ethanol insoluble part could be explained by polymer decomposition. Most suitable model was hyperbolic model by having the lowest root mean square error and the highest R(2) values. © The Author(s) 2015.

  12. Extraction of rapamycin (sirolimus) from Streptomyces rapamycinicus using ultrasound.

    PubMed

    More, Amol S; Gadalkar, Sagar; Rathod, Virendra K

    2017-07-03

    The study was designed to investigate the use of ultrasound-assisted extraction (UAE) of rapamycin (sirolimus) from bacterial strain of Streptomyces rapamycinicus NRRL 5491. To achieve the maximum extraction yield, various parameters were optimized which include S. rapamycinicus (10 g) of biomass in toluene (50 mL), temperature (20°C), acoustic intensity (35.67 W/cm 2 ), and duty cycle (40%) for 4 min extraction time with probe tip length of 0.5 cm dipped into extraction solvent from the surface. The maximum extraction yield 60.15 ± 0.01 mg/L was attained under the mentioned optimum parameters. The use of ultrasound for the extraction of rapamycin shows about twofold increase in the yield as compared to the conventional solid-liquid extraction (29.7 ± 0.2 mg/L). The study provides the effective UAE technique to produce potential value-added products.

  13. Optimization protocol for the extraction of 6-gingerol and 6-shogaol from Zingiber officinale var. rubrum Theilade and improving antioxidant and anticancer activity using response surface methodology.

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah

    2015-07-30

    Analysis and extraction of plant matrices are important processes for the development, modernization, and quality control of herbal formulations. Response surface methodology is a collection of statistical and mathematical techniques that are used to optimize the range of variables in various experimental processes to reduce the number of experimental runs, cost , and time, compared to other methods. Response surface methodology was applied for optimizing reflux extraction conditions for achieving high 6-gingerol and 6-shogaol contents, and high antioxidant activity in Zingiber officinale var. rubrum Theilade . The two-factor central composite design was employed to determine the effects of two independent variables, namely extraction temperature (X1: 50-80 °C) and time (X2: 2-4 h), on the properties of the extracts. The 6-gingerol and 6-shogaol contents were measured using ultra-performance liquid chromatography. The antioxidant activity of the rhizome extracts was determined by means of the 1,1-diphenyl-2-picrylhydrazyl assay. Anticancer activity of optimized extracts against HeLa cancer cell lines was measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Increasing the extraction temperature and time induced significant response of the variables. The optimum extraction condition for all responses was at 76.9 °C for 3.4 h. Under the optimum condition, the corresponding predicted response values for 6-gingerol, 6-shogaol, and the antioxidant activity were 2.89 mg/g DW, 1.85 mg/g DW, and 84.3%, respectively. 6-gingerol and 6-shogaol were extracted under optimized condition to check the viability of the models. The values were 2.92 and 1.88 mg/g DW, and 84.0% for 6-gingerol, 6-shogaol, and the antioxidant activity respectively. The experimental values agreed with those predicted, thus indicating suitability of the models employed and the success of RSM in optimizing the extraction condition. With optimizing of reflux extraction anticancer activity of extracts against HeLa cancer cells enhanced about 16.8%. The half inhibition concentration (IC50) value of optimized and unoptimized extract was found at concentration of 20.9 and 38.4 μg/mL respectively. Optimized extract showed more distinct anticancer activities against HeLa cancer cells in a concentration of 40 μg/mL (P < 0.01) without toxicity to normal cells. The results indicated that the pharmaceutical quality of ginger could be improved significantly by optimizing of extraction process using response surface methodology.

  14. Multi-Response Extraction Optimization Based on Anti-Oxidative Activity and Quality Evaluation by Main Indicator Ingredients Coupled with Chemometric Analysis on Thymus quinquecostatus Celak.

    PubMed

    Chang, Yan-Li; Shen, Meng; Ren, Xue-Yang; He, Ting; Wang, Le; Fan, Shu-Sheng; Wang, Xiu-Huan; Li, Xiao; Wang, Xiao-Ping; Chen, Xiao-Yi; Sui, Hong; She, Gai-Mei

    2018-04-19

    Thymus quinquecostatus Celak is a species of thyme in China and it used as condiment and herbal medicine for a long time. To set up the quality evaluation of T. quinquecostatus , the response surface methodology (RSM) based on its 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was introduced to optimize the extraction condition, and the main indicator components were found through an UPLC-LTQ-Orbitrap MS n method. The ethanol concentration, solid-liquid ratio, and extraction time on optimum conditions were 42.32%, 1:17.51, and 1.8 h, respectively. 35 components having 12 phenolic acids and 23 flavonoids were unambiguously or tentatively identified both positive and negative modes to employ for the comprehensive analysis in the optimum anti-oxidative part. A simple, reliable, and sensitive HPLC method was performed for the multi-component quantitative analysis of T. quinquecostatus using six characteristic and principal phenolic acids and flavonoids as reference compounds. Furthermore, the chemometrics methods (principal components analysis (PCA) and hierarchical clustering analysis (HCA)) appraised the growing areas and harvest time of this herb closely relative to the quality-controlled. This study provided full-scale qualitative and quantitative information for the quality evaluation of T. quinquecostatus , which would be a valuable reference for further study and development of this herb and related laid the foundation of further study on its pharmacological efficacy.

  15. Application of hollow cylindrical wheat stem for electromembrane extraction of thorium in water samples

    NASA Astrophysics Data System (ADS)

    Khajeh, Mostafa; Pedersen-Bjergaard, Stig; Barkhordar, Afsaneh; Bohlooli, Mousa

    2015-02-01

    In this study, wheat stem was used for electromembrane extraction (EME) for the first time. The EME technique involved the use of a wheat stem whose channel was filled with 3 M HCl, immersed in 10 mL of an aqueous sample solution. Thorium migrated from aqueous samples, through a thin layer of 1-octanol and 5%v/v Di-(2-ethylhexyl) phosphate (DEHP) immobilized in the pores of a porous stem, and into an acceptor phase solution present inside the lumen of the stem. The pH of donor and acceptor phases, extraction time, voltage, and stirring speed were optimized. At the optimum conditions, an enrichment factor of 50 and a limit of detection of 0.29 ng mL-1 was obtained for thorium. The developed procedure was then applied to the extraction and determination of thorium in water samples and in reference material.

  16. Optimisation of gelatin extraction from Unicorn leatherjacket (Aluterus monoceros) skin waste: response surface approach.

    PubMed

    Hanjabam, Mandakini Devi; Kannaiyan, Sathish Kumar; Kamei, Gaihiamngam; Jakhar, Jitender Kumar; Chouksey, Mithlesh Kumar; Gudipati, Venkateshwarlu

    2015-02-01

    Physical properties of gelatin extracted from Unicorn leatherjacket (Aluterus monoceros) skin, which is generated as a waste from fish processing industries, were optimised using Response Surface Methodology (RSM). A Box-Behnken design was used to study the combined effects of three independent variables, namely phosphoric acid (H3PO4) concentration (0.15-0.25 M), extraction temperature (40-50 °C) and extraction time (4-12 h) on different responses like yield, gel strength and melting point of gelatin. The optimum conditions derived by RSM for the yield (10.58%) were 0.2 M H3PO4 for 9.01 h of extraction time and hot water extraction of 45.83 °C. The maximum achieved gel strength and melting point was 138.54 g and 22.61 °C respectively. Extraction time was found to be most influencing variable and had a positive coefficient on yield and negative coefficient on gel strength and melting point. The results indicated that Unicorn leatherjacket skins can be a source of gelatin having mild gel strength and melting point.

  17. Microwave-assisted micellar extraction of organic and inorganic iodines using zwitterionic surfactants.

    PubMed

    Wang, Shu-Ling; Yi, Ling; Ye, Li-Hong; Cao, Jun; Du, Li-Jing; Peng, Li-Qing; Xu, Jing-Jing; Zhang, Qi-Dong

    2017-08-04

    Zwitterionic surfactant, used as extractant in microwave-assisted extraction (MAE) was investigated for the first time to extract organic and inorganic iodines from kelp samples. Optimized conditions for the MAE were 200W of microwave irradiation power, 100°C of extraction temperature, 10min of microwave irradiation time, 1g of sample, and 20mL of solvent volume. Ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) was used for the quantitative and qualitative analyses of the iodines. Under the optimum experimental conditions, KI, MIT and DIT were identified in kelp samples, the limits of detection of these analytes were ranged between 3.39 and 6.31ng/mL. The recoveries for spiked samples obtained from different areas were all higher than 92.48%. Compared with the ultrasound-assisted extraction, the proposed method is faster and more effective. Thus, the combination of zwitterionic surfactant-MAE and UHPLC-Q-TOF/MS made up a simple, rapid and effective approach for extraction and determination of iodine compounds in complex seaweed materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Mixture design and Doehlert matrix for the optimization of the extraction of Phenolic Compounds from Spondias mombin L Apple Bagasse Agro-industrial Residues

    NASA Astrophysics Data System (ADS)

    Santos Felix, Antonio C.; Novaes, Cleber G.; Pires Rocha, Maísla; Barreto, George E.; do Nascimento, Baraquizio B.; Giraldez Alvarez, Lisandro D.

    2017-12-01

    In this study, we have determined, using RSM (mixture design and Doehlert matrix), the optimum values of the independent variables to achieve the maximum response for the extraction of total phenolic compounds from Spondias mombin L bagasse agroindustrial residues, preserving its antioxidant activity. The assessment with reference to the extraction of phenolic compounds, as well as their capacity to scavenge ABTS and the antioxidant capacity, determined by the modified DPPH method were investigated based on distinct combinations of time, temperature, velocity of rotation and solvents concentration. It was investigated that the optimum condition for the highest antioxidant yield was obtained using water (60.84%), acetone (30.31%) and ethanol (8.85%) at 30 ºC during 20 min at 50 rpm. We have found that the maximum yield of total phenolics was 355.63 ± 9.77 (mg GAE/100 g), showing an EC50 of 3962.24 ± 41.20 (g fruit/g of DPPH) and 8.36 ± 0.30 (µM trolox/g fruit), which were measured using DPPH and ABTS assays. These results suggest that RSM was successfully applied for optimizing the extraction of phenolics compounds preserving its antioxidant activity. This method does not require expensive reagents or high quantities of organic solvents.

  19. Mixture Design and Doehlert Matrix for the Optimization of the Extraction of Phenolic Compounds from Spondias mombin L Apple Bagasse Agroindustrial Residues

    PubMed Central

    Santos Felix, Antonio C.; Novaes, Cleber G.; Pires Rocha, Maísla; Barreto, George E.; do Nascimento, Baraquizio B.; Giraldez Alvarez, Lisandro D.

    2018-01-01

    In this study, we have determined, using RSM (mixture design and Doehlert matrix), the optimum values of the independent variables to achieve the maximum response for the extraction of total phenolic compounds from Spondias mombin L bagasse agroindustrial residues in order to preserve their antioxidant activity. The extraction of phenolic compounds, as well as their antioxidant capacity and the capacity to scavenge ABTS, was determined by the modified DPPH method at different periods of time, temperature, velocity of rotation and solvents concentration. We observed that the optimum condition for the highest antioxidant yield was obtained using water (60.84%), acetone (30.31%), and ethanol (8.85%) at 30°C during 20 min at 50 rpm. We have also found that the maximum yield of total phenolics was 355.63 ± 9.77 (mg GAE/100 g), showing an EC50 of 3,962.24 ± 41.20 (g fruit/g of DPPH) and 8.36 ± 0.30 (μM trolox/g fruit), which were measured using DPPH and ABTS assays. These results suggest that RSM was successfully applied for optimizing the extraction of phenolics compounds thus preserving their antioxidant activity. PMID:29354632

  20. Monitoring leachables from single-use bioreactor bags for mammalian cell culture by dispersive liquid-liquid microextraction followed by ultra high performance liquid chromatography quadrupole time of flight mass spectrometry.

    PubMed

    Dorival-García, N; Bones, J

    2017-08-25

    A method for the identification of leachables in chemically defined media for CHO cell culture using dispersive liquid-liquid microextraction (DLLME) and UHPLC-MS is described. A Box-Behnken design of experiments (DoE) approach was applied to obtain the optimum extraction conditions of the target analytes. Performance of DLLME as extraction technique was studied by comparison of two commercial chemically defined media for CHO cell culture. General extraction conditions for any group of leachables, regardless of their specific chemical functionalities can be applied and similar optimum conditions were obtained with the two media. Extraction efficiency and matrix effects were determined. The method was validated using matrix-matched standard calibration followed by recovery assays with spiked samples. Finally, cell culture media was incubated in 7 single use bioreactors (SUBs) from different vendors and analysed. TBPP was not detected in any of the samples, whereas DtBP and TBPP-ox were found in all samples, with bDtBPP detected in six SUBs. This method can be used for early identification of non-satisfactory SUB films for cultivation of CHO cell lines for biopharmaceutical production. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. [Extraction, isolation and purification for ginkgolide B].

    PubMed

    Zhang, Chenfeng; Li, Minghui; Tang, Yun; Zhang, Yanhai; Shi, Min; Sheng, Longsheng

    2010-08-01

    To establish a simple extraction, isolation and purification method for ginkgolide B from ginkgo leaf. The optimum conditions of extraction, isolation and purification were studied by taking the transfer rate of ginkgolide B as index. Ginkgo leaf was extracted with 70% ethanol for three times, the extracts were concentrated to remove ethanol and diluted by water till the crude drug density reached 0.1 g x mL(-1). The dilution was adsorbed with HPD-450 macroporous resin. The impurities were eluted with 20% ethanol and ginkgolide B was eluted with 80% ethanol. Then the 80% ethanol eluant was concentrated and crystallized. Finally the crude crystals were recrystallized with isopropanol. The purity of the ginkgolide B recrystallization was 95%. The process was stable and easy to operate, which was suited to industrialized production.

  2. Optimization of microwave-assisted extraction of flavonoids from young barley leaves

    NASA Astrophysics Data System (ADS)

    Gao, Tian; Zhang, Min; Fang, Zhongxiang; Zhong, Qifeng

    2017-01-01

    A central composite design combined with response surface methodology was utilized to optimise microwave-assisted extraction of flavonoids from young barley leaves. The results showed that using water as solvent, the optimum conditions of microwave-assisted extraction were extracted twice at 1.27 W g-1 microwave power and liquid-solid ratio 34.02 ml g-1 for 11.12 min. The maximum extraction yield of flavonoids (rutin equivalents) was 80.78±0.52%. Compared with conventional extraction method, the microwave-assisted extraction was more efficient as the extraction time was only 6.18% of conventional extraction, but the extraction yield of flavonoids was increased by 5.47%. The main flavonoid components from the young barley leaf extract were probably 33.36% of isoorientin-7-O-glueoside and 54.17% of isovitexin-7-O-glucoside, based on the HPLC-MS analysis. The barley leaf extract exhibited strong reducing power as well as the DPPH radical scavenging capacity.

  3. Optimisation of Ethanol-Reflux Extraction of Saponins from Steamed Panax notoginseng by Response Surface Methodology and Evaluation of Hematopoiesis Effect.

    PubMed

    Hu, Yupiao; Cui, Xiuming; Zhang, Zejun; Chen, Lijuan; Zhang, Yiming; Wang, Chengxiao; Yang, Xiaoyan; Qu, Yuan; Xiong, Yin

    2018-05-17

    The present study aims to optimize the ethanol-reflux extraction conditions for extracting saponins from steamed Panax notoginseng (SPN). Four variables including the extraction time (0.5⁻2.5 h), ethanol concentration (50⁻90%), water to solid ratio (W/S, 8⁻16), and times of extraction (1⁻5) were investigated by using the Box-Behnken design response surface methodology (BBD-RSM). For each response, a second-order polynomial model with high R² values (>0.9690) was developed using multiple linear regression analysis and the optimum conditions to maximize the yield (31.96%), content (70.49 mg/g), and antioxidant activity (EC 50 value of 0.0421 mg/mL) for saponins extracted from SPN were obtained with a extraction time of 1.51 h, ethanol concentration of 60%, extraction done 3 times, and a W/S of 10. The experimental values were in good consistency with the predicted ones. In addition, the extracted SPN saponins could significantly increase the levels of blood routine parameters compared with the model group (p < 0.01) and there was no significant difference in the hematopoiesis effect between the SPN group and the SPN saponins group, of which the dose was 15 times lower than the former one. It is suggested that the SPN saponins extracted by the optimized method had similar functions of "blood tonifying" at a much lower dose.

  4. An approach of ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergistic extraction for two coumarins preparation from Cortex fraxini.

    PubMed

    Liu, Zaizhi; Gu, Huiyan; Yang, Lei

    2015-10-23

    Ionic liquids/lithium salts solvent system was successfully introduced into the separation technique for the preparation of two coumarins (aesculin and aesculetin) from Cortex fraxini. Ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergy extraction (ILSMP-UMSE) procedure was developed and optimized for the sufficient extraction of these two analytes. Several variables which can potentially influence the extraction yields, including pretreatment time and temperature, [C4mim]Br concentration, LiAc content, ultrasound-microwave synergy extraction (UMSE) time, liquid-solid ratio, and UMSE power were optimized by Plackett-Burman design. Among seven variables, UMSE time, liquid-solid ratio, and UMSE power were the statistically significant variables and these three factors were further optimized by Box-Behnken design to predict optimal extraction conditions and find out operability ranges with maximum extraction yields. Under optimum operating conditions, ILSMP-UMSE showed higher extraction yields of two target compounds than those obtained by reference extraction solvents. Method validation studies also evidenced that ILSMP-UMSE is credible for the preparation of two coumarins from Cortex fraxini. This study is indicative of the proposed procedure that has huge application prospects for the preparation of natural products from plant materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A simple and rapid infrared-assisted self enzymolysis extraction method for total flavonoid aglycones extraction from Scutellariae Radix and mechanism exploration.

    PubMed

    Wang, Liping; Duan, Haotian; Jiang, Jiebing; Long, Jiakun; Yu, Yingjia; Chen, Guiliang; Duan, Gengli

    2017-09-01

    A new, simple, and fast infrared-assisted self enzymolysis extraction (IRASEE) approach for the extraction of total flavonoid aglycones (TFA) mainly including baicalein, wogonin, and oroxylin A from Scutellariae Radix is presented to enhance extraction yield. Extraction enzymolysis temperature, enzymolysis liquid-to-solid ratio, enzymolysis pH, enzymolysis time and infrared power, the factors affecting IRASEE procedure, were investigated in a newly designed, temperature-controlled infrared-assisted extraction (TC-IRAE) system to acquire the optimum analysis conditions. The results illustrated that IRASEE possessed great advantages in terms of efficiency and time compared with other conventional extraction techniques. Furthermore, the mechanism of IRASEE was preliminarily explored by observing the microscopic change of the samples surface structures, studying the main chemical compositions change of the samples before and after extraction and investigating the kinetics and thermodynamics at three temperature levels during the IRASEE process. These findings revealed that IRASEE can destroy the surface microstructures to accelerate the mass transfer and reduce the activation energy to intensify the chemical process. This integrative study presents a simple, rapid, efficient, and environmental IRASEE method for TFA extraction which has promising prospects for other similar herbal medicines. Graphical Abstract ᅟ.

  6. Biodegradation of Decabromodiphenyl Ether (BDE-209) by Crude Enzyme Extract from Pseudomonas aeruginosa.

    PubMed

    Liu, Yu; Gong, Ai-Jun; Qiu, Li-Na; Li, Jing-Rui; Li, Fu-Kai

    2015-09-18

    The biodegradation effect and mechanism of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa were investigated. The results demonstrated that crude enzyme extract exhibited obviously higher degradation efficiency and shorter biodegradation time than Pseudomonas aeruginosa itself. Under the optimum conditions of pH 9.0, 35 °C and protein content of 2000 mg/L, 92.77% of the initial BDE-209 (20 mg/L) was degraded after 5 h. A BDE-209 biodegradation pathway was proposed on the basis of the biodegradation products identified by GC-MS analysis. The biodegradation mechanism showed that crude enzyme extract degraded BDE-209 into lower brominated PBDEs and OH-PBDEs through debromination and hydroxylation of the aromatic rings.

  7. Biodegradation of Decabromodiphenyl Ether (BDE-209) by Crude Enzyme Extract from Pseudomonas aeruginosa

    PubMed Central

    Liu, Yu; Gong, Ai-Jun; Qiu, Li-Na; Li, Jing-Rui; Li, Fu-Kai

    2015-01-01

    The biodegradation effect and mechanism of decabromodiphenyl ether (BDE-209) by crude enzyme extract from Pseudomonas aeruginosa were investigated. The results demonstrated that crude enzyme extract exhibited obviously higher degradation efficiency and shorter biodegradation time than Pseudomonas aeruginosa itself. Under the optimum conditions of pH 9.0, 35 °C and protein content of 2000 mg/L, 92.77% of the initial BDE-209 (20 mg/L) was degraded after 5 h. A BDE-209 biodegradation pathway was proposed on the basis of the biodegradation products identified by GC-MS analysis. The biodegradation mechanism showed that crude enzyme extract degraded BDE-209 into lower brominated PBDEs and OH-PBDEs through debromination and hydroxylation of the aromatic rings. PMID:26393637

  8. Development of two-step process for enhanced biorecovery of Cu-Zn-Ni from computer printed circuit boards.

    PubMed

    Shah, Monal B; Tipre, Devayani R; Purohit, Mamta S; Dave, Shailesh R

    2015-08-01

    Metal pollution due to the huge electronic waste (E-waste) accumulation is widespread across the globe. Extraction of copper, zinc and nickel from computer printed circuit boards (c-PCB) with a two-step bleaching process using ferric sulphate generated by Leptospirillum ferriphilum dominated consortium and the factors influencing the process were investigated in the present study. The studied factors with 10 g/L pulp density showed that pH 2.0 was optimum which resulted in 87.50-97.80% Cu-Zn-Ni extraction. Pre-treatment of PCB powder with acidified distilled water and NaCl solution showed 3.80-7.98% increase in metal extraction corresponding to 94.08% Cu, 99.80% Zn and 97.99% Ni extraction. Particle size of 75 μm for Cu and Zn while 1680 μm for Ni showed 2-folds increase in metal extraction, giving 97.35-99.80% Cu-Zn-Ni extraction in 2-6 days of reaction time. Whereas; 2.76-3.12 folds increase in Cu and Zn extraction was observed with the addition of 0.1% chelating agents. When the studies were carried out with high pulp density, ferric iron concentration of 16.57 g/L was found to be optimum for metal extraction from 75 g/L c-PCB and c-PCB addition in multiple installments resulted in 8.81-26.35% increase in metal extraction compared to single addition. The studied factors can be implemented for the scale-up aimed at faster recovery of multimetals from E-waste and thereby providing a secondary source of metal in an eco-friendly manner. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. [Optimization of extraction technology from Paeoniae Radix Alba using response surface methodology].

    PubMed

    Jin, Lin; Zhao, Wan-shun; Guo, Qiao-sheng; Zhang, Wen-sheng; Ye, Zheng-liang

    2015-08-01

    To ensure the stability of chemistry components and the convenience of operation, ultrasound method was chosen to study in this investigation. As the total common peaks area in chromatograms was set to be evaluation index, the influence on the technology caused by extraction time, ethanol concentration and liquid-to-solid ratio was studied by using single factor methodology, and the extraction technology of Paeoniae Radix Alba was optimized by using response surface methodology. The results showed that the extracting results were most affected by ethanol concentration; liquid-to-solid ratio came the second and extraction time thirdly. The optimum ultrasonic-assisted extraction conditions were as follow: the ultrasonic extraction time was 20.06 min, the ethanol concentration in solvent was 72.04%, and the liquid-to-solid ratio was 53.38 mL · g(-1), the predicted value of total common peaks area was 2.1608 x 10(8). Under the extraction conditions after optimization, the total common peaks area was 2.1422 x 10(8), and the relative deviation between the measured and predicted value was 0.86%, so the optimized extraction technology for Paeoniae Radix Alba is suitable and feasible. Besides, for the purpose of extracting more sufficiently and completely, the optimized extraction technology had more advantages than the extraction method recorded in the monogragh of Paeoniae Radix Alba in Chinese Pharmacopoeia, which will come true the assessment and utilization comprehensively.

  10. Microwave optimization of mucilage extraction from Opuntia ficus indica Cladodes.

    PubMed

    Felkai-Haddache, Lamia; Dahmoune, Farid; Remini, Hocine; Lefsih, Khalef; Mouni, Lotfi; Madani, Khodir

    2016-03-01

    In this study, microwave-assisted extraction (MAE) of polysaccharides from Opuntia ficus indica Cladodes were investigated using response surface methodology (RSM). The effects of three extraction factors on the yield of mucilage were examined. The results indicated that the optimum extraction conditions were determined as follows: microwave power X1, 700 W; extraction time X2, 5.15 minand ratio water/raw material X3, 4.83 mL/g at fixed pH 11. Under these optimal extraction conditions, mucilage yield was found to be Y, 25.6%. A comparison between the model results and experimental data gave a high correlation coefficient (R(2)=0.88), adjusted coefficient (Radj=0.83) and low root mean square error (RMSE=2.45) and showed that the two models were able to predict a mucilage yield by green extraction microwave process. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Synthesize of silver-nanoparticles by plant extract and its application for preconcentration of cadmium followed by flame atomic absorption spectrometry.

    PubMed

    Almertaha, Abdul-Hossein; Eftekhari, Mohammad; Chamsaz, Mahmoud; Gheibi, Mohammad

    2018-02-02

    In this paper, Mentha pulegium leaves extract was used as a green reducing agent for the synthesis of silver-nanoparticles. The synthesized silver-nanoparticles were characterized by UV-VIS spectrophotometry, transmission electron microscopy, X-ray spectroscopy and used as an adsorbent for preconcentration of trace levels of cadmium (ІІ). After the desorption of cadmium (ІІ) in 5 mol L -1 formic acid, the desorbent solution was aspirated into the flame atomic absorption spectrometry for the determination of cadmium. In order to optimize the experimental condition, a response surface methodology based on central composite design was used. The optimum conditions are: pH: 8.6, amounts of adsorbent: 30 mg, 10 min extraction time and desorption time of 2 min. Under the optimum condition, the calibration curve was linear in the range of 5-200 μg L -1 cadmium (ІІ) ion with a correlation coefficient of 0.9995. The limit of detection was 1.1 μg L -1 and the relative standard deviation for 25 μg L -1 cadmium (ІІ) ion was 3.0% (n = 5). In order to check the applicability of the proposed method, different real samples were analyzed. Also, the accuracy of this method was successfully checked by the analysis of certified reference material and spike tests.

  12. Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals

    NASA Astrophysics Data System (ADS)

    Xing, Peng; Ma, Bao-zhong; Zeng, Peng; Wang, Cheng-yan; Wang, Ling; Zhang, Yong-lu; Chen, Yong-qiang; Wang, Shuo; Wang, Qiu-yin

    2017-11-01

    Huge quantities of zinc leaching residues (ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heavy metals (mainly lead). Most ZLRs have not been properly treated and the valuable metals in them have not yet been effectively recovered. Herein, the deep cleaning of a ZLR and recovery of valuable metals via a hydrometallurgical route were investigated. The cleaning process consists of two essential stages: acid leaching followed by calcium chloride leaching. The optimum conditions for extracting zinc, copper, and indium by acid leaching were a sulfuric acid concentration of 200 g·L-1, a liquid/solid ratio of 4:1 (mL/g), a leaching time of 2 h, and a temperature of 90°C. For lead and silver extractions, the optimum conditions were a calcium chloride concentration of 400 g·L-1, a pH value of 1.0, a leaching time of 1 h, and a temperature of 30°C. After calcium chloride leaching, silver and lead were extracted out and the lead was finally recovered as electrolytic lead by electrowinning. The anglesite phase, which poses the greatest potential environmental hazard, was removed from the ZLR after deep cleaning, thus reducing the cost of environmental management of ZLRs. The treatment of chlorine and spent electrolyte generated in the process was discussed.

  13. Application of methyl silane coated iron oxide magnetic nanoparticles for solid-phase extraction and determination of fat-soluble vitamins by high performance liquid chromatography.

    PubMed

    Momenbeik, Fariborz; Yazdani, Elham

    2015-01-01

    Methyl silane coated Fe3O4 magnetic nanoparticles were used for simultaneous extraction of the fat-soluble vitamins (FSVs). The amounts of extracted vitamins were determined by HPLC. The synthesized Fe3O4 nanoparticles were coated with silica and then modified with trimethoxymethylsilane (TMMS). The prepared particles were characterized by different methods. The best amounts of silica and TMMS in sorbent synthesis were 1.2 and 0.5 mL, respectively. The optimum pH values for the sample solution and washing buffer were 5 and 3, respectively. Application of 100 mg sorbent, 700 μL tetrahydrofuran, 5-fold dilution of the sample solution, and 1 min for sorption and desorption times were among the best conditions. At the optimum conditions, the calibration plots for each vitamin were obtained with good linearity (R(2) >0.9992) and suitable linear ranges. This method has a low LOD (<76.1 μg/mL), acceptable repeatability (RSD <5.63%) and reproducibility (RSD <4.71%), and good accuracy (recovery >90.3%). Preconcentration of low concentrations of vitamin D3 was performed, and results showed 3.7 times greater sensitivity after preconcentration. Finally, the amounts of the FSVs in pharmaceutical formulations were determined using the proposed method, and results showed good agreement with those reported by manufacturers.

  14. Extraction and removal of caffeine from green tea by ultrasonic-enhanced supercritical fluid.

    PubMed

    Tang, Wei-Qiang; Li, Di-Cai; Lv, Yang-Xiao; Jiang, Jian-Guo

    2010-05-01

    Low-caffeine or caffeine-removed tea and its products are widely welcomed on market in recent years. In the present study, we adopt ultrasonic-enhanced supercritical fluid extraction process to remove caffeine from green tea. An orthogonal experiment (L16 (4(5))) was applied to optimize the best removal conditions. Extraction pressure, extraction time, power of ultrasound, moisture content, and temperature were the main factors to influence the removal rate of caffeine from green tea. The 5 factors chosen for the present investigation were based on the results of a single-factor test. The optimum removal conditions were determined as follows: extraction pressure of 30 MPa, temperature at 55 degrees C, time of 4 h, 30% moisture content, and ultrasound power of 100 W. Chromatogram and ultraviolet analysis of raw material and decaffeinates suggests that under optimized conditions, the caffeine of green tea was effectively removed and minished without damaging the structure of active ingredients in green tea.

  15. Extraction Optimization for Obtaining Artemisia capillaris Extract with High Anti-Inflammatory Activity in RAW 264.7 Macrophage Cells

    PubMed Central

    Jang, Mi; Jeong, Seung-Weon; Kim, Bum-Keun; Kim, Jong-Chan

    2015-01-01

    Plant extracts have been used as herbal medicines to treat a wide variety of human diseases. We used response surface methodology (RSM) to optimize the Artemisia capillaris Thunb. extraction parameters (extraction temperature, extraction time, and ethanol concentration) for obtaining an extract with high anti-inflammatory activity at the cellular level. The optimum ranges for the extraction parameters were predicted by superimposing 4-dimensional response surface plots of the lipopolysaccharide- (LPS-) induced PGE2 and NO production and by cytotoxicity of A. capillaris Thunb. extracts. The ranges of extraction conditions used for determining the optimal conditions were extraction temperatures of 57–65°C, ethanol concentrations of 45–57%, and extraction times of 5.5–6.8 h. On the basis of the results, a model with a central composite design was considered to be accurate and reliable for predicting the anti-inflammation activity of extracts at the cellular level. These approaches can provide a logical starting point for developing novel anti-inflammatory substances from natural products and will be helpful for the full utilization of A. capillaris Thunb. The crude extract obtained can be used in some A. capillaris Thunb.-related health care products. PMID:26075271

  16. Optimized ultra-high-pressure-assisted extraction of procyanidins from lychee pericarp improves the antioxidant activity of extracts.

    PubMed

    Zhang, Ruifen; Su, Dongxiao; Hou, Fangli; Liu, Lei; Huang, Fei; Dong, Lihong; Deng, Yuanyuan; Zhang, Yan; Wei, Zhencheng; Zhang, Mingwei

    2017-08-01

    To establish optimal ultra-high-pressure (UHP)-assisted extraction conditions for procyanidins from lychee pericarp, a response surface analysis method with four factors and three levels was adopted. The optimum conditions were as follows: 295 MPa pressure, 13 min pressure holding time, 16.0 mL/g liquid-to-solid ratio, and 70% ethanol concentration. Compared with conventional ethanol extraction and ultrasonic-assisted extraction methods, the yields of the total procyanidins, flavonoids, and phenolics extracted using the UHP process were significantly increased; consequently, the oxygen radical absorbance capacity and cellular antioxidant activity of UHP-assisted lychee pericarp extracts were substantially enhanced. LC-MS/MS and high-performance liquid chromatography quantification results for individual phenolic compounds revealed that the yield of procyanidin compounds, including epicatechin, procyanidin A2, and procyanidin B2, from lychee pericarp could be significantly improved by the UHP-assisted extraction process. This UHP-assisted extraction process is thus a practical method for the extraction of procyanidins from lychee pericarp.

  17. The optimization of phenolic compounds extraction from cactus pear (Opuntia ficus-indica) skin in a reflux system using response surface methodology

    PubMed Central

    Jorge, Aguirre Joya; Heliodoro, De La Garza Toledo; Alejandro, Zugasti Cruz; Ruth, Belmares Cerda; Noé, Aguilar Cristóbal

    2013-01-01

    Objective To extract, quantify, and evaluate the phenolic content in Opuntia ficus-indica skin for their antioxidant capacity with three different methods (ABTS, DPPH, and lipid oxidation) and to optimize the extraction conditions (time, temperature and ethanol concentration) in a reflux system. Methods The extraction process was done using a reflux system. A San Cristobal II experimental design with three variables and three levels was used. The variables evaluated were time of extraction (h), concentration of ethanol (%, v/v) and temperature (°C). The extraction process was optimized using a response surface methodology. Results It was observed that at higher temperature more phenolic compounds were extracted, but the antioxidant capacity was decreased. The optimum conditions for phenolic compounds extraction and antioxidant capacity mixing the three methods were as follows: 45% of ethanol, 80 °C and 2 hours of extraction. Values obtained in our results are little higher that other previously reported. Conclusions It can be concluded the by-products of Opuntia ficus-indica represent a good source of natural antioxidants with possible applications in food, cosmetics or drugs industries. PMID:23730555

  18. The extraction process optimization of antioxidant polysaccharides from Marshmallow (Althaea officinalis L.) roots.

    PubMed

    Pakrokh Ghavi, Peyman

    2015-04-01

    Response surface methodology (RSM) with a central composite rotatable design (CCRD) based on five levels was employed to model and optimize four experimental operating conditions of extraction temperature (10-90 °C) and time (6-30 h), particle size (6-24 mm) and water to solid (W/S, 10-50) ratio, obtaining polysaccharides from Althaea officinalis roots with high yield and antioxidant activity. For each response, a second-order polynomial model with high R(2) values (> 0.966) was developed using multiple linear regression analysis. Results showed that the most significant (P < 0.05) extraction conditions that affect the yield and antioxidant activity of extracted polysaccharides were the main effect of extraction temperature and the interaction effect of the particle size and W/S ratio. The optimum conditions to maximize yield (10.80%) and antioxidant activity (84.09%) for polysaccharides extraction from A. officinalis roots were extraction temperature 60.90 °C, extraction time 12.01 h, particle size 12.0mm and W/S ratio of 40.0. The experimental values were found to be in agreement with those predicted, indicating the models suitability for optimizing the polysaccharides extraction conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Optimization of Supercritical CO2 Extraction of Fish Oil from Viscera of African Catfish (Clarias gariepinus)

    PubMed Central

    Sarker, Mohamed Zaidul Islam; Selamat, Jinap; Habib, Abu Sayem Md. Ahsan; Ferdosh, Sahena; Akanda, Mohamed Jahurul Haque; Jaffri, Juliana Mohamed

    2012-01-01

    Fish oil was extracted from the viscera of African Catfish using supercritical carbon dioxide (SC-CO2). A Central Composite Design of Response Surface methodology (RSM) was employed to optimize the SC-CO2 extraction parameters. The oil yield (Y) as response variable was executed against the four independent variables, namely pressure, temperature, flow rate and soaking time. The oil yield varied with the linear, quadratic and interaction of pressure, temperature, flow rate and soaking time. Optimum points were observed within the variables of temperature from 35 °C to 80 °C, pressure from 10 MPa to 40 MPa, flow rate from 1 mL/min to 3 mL/min and soaking time from 1 h to 4 h. However, the extraction parameters were found to be optimized at temperature 57.5 °C, pressure 40 MPa, flow rate 2.0 mL/min and soaking time 2.5 h. At this optimized condition, the highest oil yields were found to be 67.0% (g oil/100 g sample on dry basis) in the viscera of catfish which was reasonable to the yields of 78.0% extracted using the Soxhlet method. PMID:23109854

  20. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    NASA Astrophysics Data System (ADS)

    Alton, G. D.; Bilheux, H.

    2004-05-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j+ext, and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j+ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects.

  1. Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds.

    PubMed

    Al-Dhabi, Naif Abdullah; Ponmurugan, Karuppiah; Maran Jeganathan, Prakash

    2017-01-01

    In this current work, Box-Behnken statistical experimental design (BBD) was adopted to evaluate and optimize USLE (ultrasound-assisted solid-liquid extraction) of phytochemicals from spent coffee grounds. Factors employed in this study are ultrasonic power, temperature, time and solid-liquid (SL) ratio. Individual and interactive effect of independent variables over the extraction yield was depicted through mathematical models, which are generated from the experimental data. Determined optimum process conditions are 244W of ultrasonic power, 40°C of temperature, 34min of time and 1:17g/ml of SL ratio. The predicted values were in correlation with experimental values with 95% confidence level, under the determined optimal conditions. This indicates the significance of selected method for USLE of phytochemicals from SCG. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Application of response surface methodology to optimise supercritical carbon dioxide extraction of volatile compounds from Crocus sativus.

    PubMed

    Shao, Qingsong; Huang, Yuqiu; Zhou, Aicun; Guo, Haipeng; Zhang, Ailian; Wang, Yong

    2014-05-01

    Crocus sativus has been used as a traditional Chinese medicine for a long time. The volatile compounds of C. sativus appear biologically active and may act as antioxidants as well as anticonvulsants, antidepressants and antitumour agents. In order to obtain the highest possible yield of essential oils from C. sativus, response surface methodology was employed to optimise the conditions of supercritical fluid carbon dioxide extraction of the volatile compounds from C. sativus. Four factorswere investigated: temperature, pressure, extraction time and carbon dioxide flow rate. Furthermore, the chemical compositions of the volatile compounds extracted by supercritical fluid extraction were compared with those obtained by hydro-distillation and Soxhlet extraction. The optimum extraction conditions were found to be: optimised temperature 44.9°C, pressure 34.9 MPa, extraction time 150.2 min and CO₂ flow rate 10.1 L h⁻¹. Under these conditions, the mean extraction yield was 10.94 g kg⁻¹. The volatile compounds extracted by supercritical fluid extraction and Soxhlet extraction contained a large amount of unsaturated fatty acids. Response surface methodology was successfully applied for supercritical fluid CO₂ extraction optimisation of the volatile compounds from C. sativus. The study showed that pressure and CO₂ flow rate had significant effect on volatile compounds yield produced by supercritical fluid extraction. This study is beneficial for the further research operating on a large scale. © 2013 Society of Chemical Industry.

  3. Characterization of digestive enzymes from de-oiled mackerel (Scomber japonicus) muscle obtained by supercritical carbon dioxide and n-hexane extraction as a comparative study.

    PubMed

    Asaduzzaman, A K M; Chun, Byung-Soo

    2015-06-01

    The oil in mackerel muscle was extracted using an environmental friendly solvent, supercritical carbon dioxide (SC-CO2) at a semi-batch flow extraction process and an n-hexane. The SC-CO2 was carried out at temperature 45 °C and pressures ranging from 15 to 25 MPa. The flow rate of CO2 (27 g/min) was constant at the entire extraction period of 2 h. The highest oil extracted residues after SC-CO2 extraction was used for activity measurement of digestive enzymes. Four digestive enzymes were found in water soluble extracts after n-hexane and SC-CO2 treated samples. Amylase, lipase and trypsin activities were higher in water soluble extracts after SC-CO2 treated samples except protease. Among the four digestive enzymes, the activity of amylase was highest and the value was 44.57 uM/min/mg of protein. The water soluble extracts of SC-CO2 and n-hexane treated mackerel samples showed same alkaline optimum pH and pH stability for each of the digestive enzymes. Optimum temperature of amylase, lipase, protease and trypsin was 40, 50, 60 and 30 °C, respectively of both extracts. More than 80 % temperature stability of amylase, lipase, protease and trypsin were retained at mentioned optimum temperature in water soluble extracts of both treated samples. Based on protein patterns, prominent protein band showed in water soluble extracts after SC-CO2 treated samples indicates no denaturation of protein than untreated and n-hexane.

  4. Operating characteristics of a new ion source for KSTAR neutral beam injection system.

    PubMed

    Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-01

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  5. Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology.

    PubMed

    Rodrigues, Sueli; Pinto, Gustavo A S; Fernandes, Fabiano A N

    2008-01-01

    Coconut is a tropical fruit largely consumed in many countries. In some areas of the Brazilian coast, coconut shell represents more than 60% of the domestic waste volume. The coconut shell is composed mainly of lignin and cellulose, having a chemical composition very similar to wood and suitable for phenolic extraction. In this work, the use of ultrasound to extract phenolic compounds from coconut shell was evaluated. The effect of temperature, solution to solid ratio, pH and extraction time were evaluated through a 2(4) experimental planning. The extraction process was also optimized using surface response methodology. At the optimum operating condition (30 degrees C, solution to solid ratio of 50, 15 min of extraction and pH 6.5) the process yielded 22.44 mg of phenolic compounds per gram of coconut shell.

  6. Development of extraction procedure for determination of mercury species using SPME-assisted dispersive derivative agent

    NASA Astrophysics Data System (ADS)

    Abdullah, Md Pauzi; Khalik, Wan Mohd Afiq Wan Mohd; Othman, Mohamed Rozali

    2016-11-01

    The extraction procedure for determination of low level mercury using solid phase microextraction was successfully carried out. Design of experimental works using factorial design and central composite design were applied to screen and predict the optimum condition for extraction step. In this study, variables namely concentration level (5 % m/v) and volume of derivatization solution (150 µL) has depicted as main effect for controlling the suitability of derivative reagent condition. Maximum of signal response (account as total peak areas for mercury species) was obtained when extraction procedure was set up at pH of water sample (5.8), extraction time (14 min), extraction temperature (43 °C) and stirring rate (450 rpm). Reducing time required to reach equilibrium is new improvement achieved in this study. Detection limit for each species (MeHg 26.17 ngL-1; EtHg 48.84 ngL-1 and IHg 14.11 ngL-1) was calculated lower than our previous work. Recovery, repeatability and reproducibility trial were recorded varied at acceptable range and relative standard deviation was calculated below than 10 %.

  7. Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties.

    PubMed

    Bayar, Nadia; Bouallegue, Tahani; Achour, Mabrouka; Kriaa, Mouna; Bougatef, Ali; Kammoun, Radhouane

    2017-11-15

    Ultrasonic assisted extraction (UAE) of pectin from Opuntia ficus indica (OFI) cladodes after mucilage removal was attempted using the response surface methodology. The process variables were optimized by the isovariant central composite design in order to improve the pectin extraction yield. The optimum condition obtained was: sonication time 70min, temperature 70°C, pH 1.5 and the water-material ratio 30ml/g. This condition was validated and the performance of experimental extraction was 18.14%±1.41%, which was closely linked to the predicted value (19.06%). Thus, UAE present a promising alternative to conventional extraction process thanks to its high efficiency which was achieved in less time and at lower temperatures. The pectin extracted by UAE from OFI cladodes (UAEPC) has a low degree of esterification, high uronic acid content, important functional properties and good anti-radical activity. These results are in favor of the use of UAEPC as potential additive in food industry. Copyright © 2017. Published by Elsevier Ltd.

  8. [Investigation on Spray Drying Technology of Auricularia auricular Extract].

    PubMed

    Zhou, Rong; Chen, Hui; Xie, Yuan; Chen, Peng; Wang, Luo-lin

    2015-07-01

    To investigate the feasibility of spray drying technology of Auricularia auricular extract and its optimum process. On the basis of single factor test, with the yield of dry extract and the content of polysaccharide as indexes, orthogonal test method was used to optimize the spray drying technology on the inlet air temperature, injection speed and crude drug content. Using ultraviolet spectrophotometry, thin layer chromatography(TLC) and pharmacodynamics as indicators, extracts prepared by traditional alcohol precipitation drying process and spray drying process were compared. Compared with the traditional preparation method, the extract prepared by spray drying had little differences from the polysaccharide content, TLC and the function of reducing TG and TC, and its optimum technology condition were as follows: The inlet air temperature was 180 °C, injection speed was 10 ml/min and crude drugs content was 0. 4 g/mL. Auricularia auricular extract by spray drying technology is stable and feasible with high economic benefit.

  9. Extraction of magnesium from calcined dolomite ore using hydrochloric acid leaching

    NASA Astrophysics Data System (ADS)

    Royani, Ahmad; Sulistiyono, Eko; Prasetiyo, Agus Budi; Subagja, Rudi

    2018-05-01

    Magnesium is widely used in varieties industrial sector. Dolomite is one source of magnesium besides seawater. The extraction of magnesium from dolomite ores can be done by leaching process. In this work, the dolomite leaching to extract magnesium by hydrochloric acid was investigated. The leaching experiments were performed in a spherical glass batch reactor having a capacity of 1000 ml. The effects of the stirring speed, acid concentration, reaction temperature and liquid-solid ratio for each reaction time of 1; 2; and 3 h on the Mg leaching have been evaluated. 5 ml of solution sample were collected from the leached solutions, then it was filtered prior to analysis by ICP OES. The experimental results show that the magnesium extraction increases along with the increase of acid concentration, liquid-solid ratio and temperature. The optimum conditions for magnesium extraction were achieved at temperature 75 °C, extraction time 3 h, the HCl concentration of 2 M, the liquid-solid ratio 20 ml/g and stirring speed of 400 rpm. At this condition 98, 82 % of magnesium were extracted from dolomite. The conclusion obtained from this leaching process is that the magnesium can be extracted from dolomite by using hydrochloric acid solutions.

  10. Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition.

    PubMed

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2012-10-08

    In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM). Process variables were power level (25-75%), temperature (45-55 °C) and sonication time (20-40 min). It was found that all process variables have significant (p < 0.05) effects on the response variable. A central composite design (CCD) was used to determine the optimum process conditions. Optimal conditions were identified as 65% power level, 52 °C temperature and 36 min sonication time for maximum crude yield (108.62 mg-extract/g-dried matter). The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY) of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.

  11. Data set for extraction and transesterification of bio-oil from Stoechospermum marginatum, a brown marine algae.

    PubMed

    Venkatesan, Hariram; Godwin, John J; Sivamani, Seralathan

    2017-10-01

    The article presents the experimental data on the extraction and transesterification of bio-oil derived from Stoechospermum marginatum, a brown macro marine algae. The samples were collected from Mandapam region, Gulf of Mannar, Tamil Nadu, India. The bio-oil was extracted using Soxhlet technique with a lipid extraction efficiency of 24.4%. Single stage transesterification was adopted due to lower free fatty acid content. The yield of biodiesel was optimized by varying the process parameters. The obtained data showed the optimum process parameters as reaction time 90 min, reaction temperature 65 °C, catalyst concentration 0.50 g and 8:1 M ratio. Furthermore, the data pertaining to the physio-chemical properties of the derived algal biodiesel were also presented.

  12. Cellulase-assisted extraction and antioxidant activity of polysaccharides from Rhizoma imperata.

    PubMed

    Jiang, Long-Fa

    2014-08-08

    In this study, the cellulase-assisted extraction and antioxidant activity of the polysaccharides from Rhizoma imperata were investigated. To improve the yield of R. Imperata polysaccharides (RPs), the extraction conditions were optimized as follows: time, 69.48 min; temperature, 45.36°C; pH, 4.58; cellulase amount, 1,200 U/g. Under these optimum conditions, the yield of RPs reached 0.67% (w/w), and was higher than that of the traditionally aqueous extraction method. The sugar content in the RPs product reached up to 93.25% (w/w). The RPs product has high antioxidant activity including hydroxyl radical scavenging activity and 2,2-diphenyl-β-picrylhydrazyl radical scavenging activity at the concentration of 100mg/mL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Optimization of extraction parameters by using response surface methodology, purification, and identification of anthocyanin pigments in Melastoma malabathricum fruit.

    PubMed

    Anuar, Nordiyanah; Mohd Adnan, Ahmad Faris; Saat, Naziz; Aziz, Norkasmani; Mat Taha, Rosna

    2013-01-01

    Anthocyanins not just have various benefits in food industry but also have been used as natural colourants in cosmetic, coating products and as potential natural photosensitizers in solar cell. Thus, the main purpose of this study was to obtain information on the maximum yield of anthocyanin that can be recovered from Melastoma malabathricum fruit. Factors such as extraction temperature, extraction time, and solid to liquid ratio were identified to be significantly affecting anthocyanin extraction efficiency. By using three-level three-factor Box-Behnken design, the optimized conditions for anthocyanin extraction by acidified methanol (R (2) = 0.972) were temperature of 60°C, time of 86.82 min, and 0.5 : 35 (g/mL) solid to liquid ratio while the optimum extraction conditions by acidified ethanol (R (2) = 0.954) were temperature of 60°C, time of 120 min, and 0.5 : 23.06 (g/mL) solid to liquid ratio. The crude anthocyanin extract was further purified by using Amberlite XAD-7 and Sephadex LH-20 column chromatography. Identification of anthocyanins revealed the presence of cyanidin dihexoside, cyanidin hexoside, and delphinidin hexoside as the main anthocyanins in M. malabathricum fruit.

  14. Screening of extraction methods for glycoproteins from jellyfish ( Rhopilema esculentum) oral-arms by high performance liquid chromatography

    NASA Astrophysics Data System (ADS)

    Ren, Guoyan; Li, Bafang; Zhao, Xue; Zhuang, Yongliang; Yan, Mingyan; Hou, Hu; Zhang, Xiukun; Chen, Li

    2009-03-01

    In order to select an optimum extraction method for the target glycoprotein (TGP) from jellyfish ( Rhopilema esculentum) oral-arms, a high performance liquid chromatography (HPLC)-assay for the determination of the TGP was developed. Purified target glycoprotein was taken as a standard glycoprotein. The results showed that the calibration curves for peak area plotted against concentration for TGP were linear ( r = 0.9984, y = 4.5895 x+47.601) over concentrations ranging from 50 to 400 mgL-1. The mean extraction recovery was 97.84% (CV2.60%). The fractions containing TGP were isolated from jellyfish ( R. esculentum) oral-arms by four extraction methods: 1) water extraction (WE), 2) phosphate buffer solution (PBS) extraction (PE), 3) ultrasound-assisted water extraction (UA-WE), 4) ultrasound-assisted PBS extraction (UA-PE). The lyophilized extract was dissolved in Milli-Q water and analyzed directly on a short TSK-GEL G4000PWXL (7.8 mm×300 mm) column. Our results indicated that the UA-PE method was the optimum extraction method selected by HPLC.

  15. Environmentally friendly microwave-assisted sequential extraction method followed by ICP-OES and ion-chromatographic analysis for rapid determination of sulphur forms in coal samples.

    PubMed

    Mketo, Nomvano; Nomngongo, Philiswa N; Ngila, J Catherine

    2018-05-15

    A rapid three-step sequential extraction method was developed under microwave radiation followed by inductively coupled plasma-optical emission spectroscopic (ICP-OES) and ion-chromatographic (IC) analysis for the determination of sulphur forms in coal samples. The experimental conditions of the proposed microwave-assisted sequential extraction (MW-ASE) procedure were optimized by using multivariate mathematical tools. Pareto charts generated from 2 3 full factorial design showed that, extraction time has insignificant effect on the extraction of sulphur species, therefore, all the sequential extraction steps were performed for 5 min. The optimum values according to the central composite designs and counter plots of the response surface methodology were 200 °C (microwave temperature) and 0.1 g (coal amount) for all the investigated extracting reagents (H 2 O, HCl and HNO 3 ). When the optimum conditions of the proposed MW-ASE procedure were applied in coal CRMs, SARM 18 showed more organic sulphur (72%) and the other two coal CRMs (SARMs 19 and 20) were dominated by sulphide sulphur species (52-58%). The sum of the sulphur forms from the sequential extraction steps have shown consistent agreement (95-96%) with certified total sulphur values on the coal CRM certificates. This correlation, in addition to the good precision (1.7%) achieved by the proposed procedure, suggests that the sequential extraction method is reliable, accurate and reproducible. To safe-guard the destruction of pyritic and organic sulphur forms in extraction step 1, water was used instead of HCl. Additionally, the notorious acidic mixture (HCl/HNO 3 /HF) was replaced by greener reagent (H 2 O 2 ) in the last extraction step. Therefore, the proposed MW-ASE method can be applied in routine laboratories for the determination of sulphur forms in coal and coal related matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. [Study on the extraction technology and hypoglycemic activity of lectin from Trichosanthes kirilowi].

    PubMed

    Li, Qiong; Ye, Xiao-Li; Zeng, Hong; Chen, Xin; Li, Xue-Gang

    2012-03-01

    To extract lectins from Trichosanthes kirilowi and study their hypoglycemic activity. The optimal extraction process included the following parameters were conformed by optimization analysis,lectins extracted from Trichosanthes kirilowi was achieved by ammonium sulfate precipitation; The agglutinate activity was determined by using the agglutination test with 5% human blood cells. Human hepatocarcinoma cell HepG2 and the alloxan-induced diabetic mice model were used to assess hypoglycemic activity of Lectin in Trichosanthes kirilowi. The agglutination indexes of lectins extraction buffer were 32; The cell and mice tests indicated that the lectins exhibited hypoglycemic activity in the 70% saturation. The optimum extraction technology is as follows: extraction with PBS, the material-water ratio is 1:30, the extraction time is 24 h, while the concentration of sodium chloride is 0 mol/L and pH is 7.2. Precipitate lectins by ammonium sulfate in the 70% saturation, centrifugal speed is 10 000 tracted from Trichosanthes kirilowi exposes proper hypoglycemic activity.

  17. Dual-cloud point extraction coupled to high performance liquid chromatography for simultaneous determination of trace sulfonamide antimicrobials in urine and water samples.

    PubMed

    Nong, Chunyan; Niu, Zongliang; Li, Pengyao; Wang, Chunping; Li, Wanyu; Wen, Yingying

    2017-04-15

    Dual-cloud point extraction (dCPE) was successfully developed for simultaneous extraction of trace sulfonamides (SAs) including sulfamerazine (SMZ), sulfadoxin (SDX), sulfathiazole (STZ) in urine and water samples. Several parameters affecting the extraction were optimized, such as sample pH, concentration of Triton X-114, extraction temperature and time, centrifugation rate and time, back-extraction solution pH, back-extraction temperature and time, back-extraction centrifugation rate and time. High performance liquid chromatography (HPLC) was applied for the SAs analysis. Under the optimum extraction and detection conditions, successful separation of the SAs was achieved within 9min, and excellent analytical performances were attained. Good linear relationships (R 2 ≥0.9990) between peak area and concentration for SMZ and STZ were optimized from 0.02 to 10μg/mL, for SDX from 0.01 to 10μg/mL. Detection limits of 3.0-6.2ng/mL were achieved. Satisfactory recoveries ranging from 85 to 108% were determined with urine, lake and tap water spiked at 0.2, 0.5 and 1μg/mL, respectively, with relative standard deviations (RSDs, n=6) of 1.5-7.7%. This method was demonstrated to be convenient, rapid, cost-effective and environmentally benign, and could be used as an alternative tool to existing methods for analysing trace residues of SAs in urine and water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Development of a cloud point extraction and spectrophotometry-based microplate method for the determination of nitrite in human urine and blood.

    PubMed

    Zhao, Jiao; Lu, Yunhui; Fan, Chongyang; Wang, Jun; Yang, Yaling

    2015-02-05

    A novel and simple method for the sensitive determination of trace amounts of nitrite in human urine and blood has been developed by combination of cloud point extraction (CPE) and microplate assay. The method is based on the Griess reaction and the reaction product is extracted into nonionic surfactant Triton-X114 using CPE technique. In this study, decolorization treatment of urine and blood was applied to overcome the interference of matrix and enhance the sensitivity of nitrite detection. Multi-sample can be simultaneously detected thanks to a 96-well microplate technique. The effects of different operating parameters such as type of decolorizing agent, concentration of surfactant (Triton X-114), addition of (NH4)2SO4, extraction temperature and time, interfering elements were studied and optimum conditions were obtained. Under the optimum conditions, a linear calibration graph was obtained in the range of 10-400 ng mL(-1) of nitrite with limit of detection (LOD) of 2.5 ng mL(-1). The relative standard deviation (RSD) for determination of 100 ng mL(-1) of nitrite was 2.80%. The proposed method was successfully applied for the determination of nitrite in the urine and blood samples with recoveries of 92.6-101.2%. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effects of processing parameters in the sonic assisted water extraction (SAWE) of 6-gingerol.

    PubMed

    Syed Jaapar, Syaripah Zaimah; Morad, Noor Azian; Iwai, Yoshio; Nordin, Mariam Firdhaus Mad

    2017-09-01

    The use of water in subcritical conditions for extraction has several drawbacks. These include the safety features, higher production costs and possible degradation of the bioactive compounds. To overcome these problems, sonic energy and an entrainer were used as external interventions to decrease the polarity of water at milder operating conditions. The effect of low (28kHz) and high (800kHz) frequencies of sonication in the extraction of the main ginger bioactive compound (6-gingerol) were compared. Six parameters were studied: mean particle size (MPS, mm), time of extraction, applied power, sample to solvent ratio (w/v), temperature of extraction, and the percentage of entrainer. The optimum conditions for high frequency SAWE prototype were MPS 0.89-1.77mm, 45min, 40W applied power, 1:30 (w/v), 45°C, and 15% of ethanol as entrainer. Two-way analysis of variance (ANOVA) gave the most significant parameter, which was power with F (1, 45.07), p<2.50×10 -9 . Although the effect of low frequency was stronger than high frequency, at the optimum conditions of the sample to solvent ratio 1:30 (w/v) with 700mL solvent and temperature 45°C, the concentration and recovery of 6-gingerol from high frequency of SAWE prototype was 2.69 times higher than at low frequency of SAWE. It was found that although the effects of high frequency (800kHz) were negligible in other studies, it could extract suitable compounds, such as 6-gingerol, at lower temperature. Therefore, the effects of sonication, which cause an enlargement in the cell wall of the ginger plant matrix, were observed using a Scanning Electron Microscope (SEM). It was found that the applied power of sonication was the most significant parameter compared to the other parameters. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Optimization of Ultrasound Assisted Extraction of Functional Ingredients from Stevia Rebaudiana Bertoni Leaves

    NASA Astrophysics Data System (ADS)

    Šic Žlabur, Jana; Voća, Sandra; Dobričević, Nadica; Brnčić, Mladen; Dujmić, Filip; Rimac Brnčić, Suzana

    2015-04-01

    The aim of the present study was to reveal an effective extraction procedure for maximization of the yield of steviol glycosides and total phenolic compounds as well as antioxidant activity in stevia extracts. Ultrasound assisted extraction was compared with conventional solvent extraction. The examined solvents were water (100°C/24 h) and 70% ethanol (at 70°C for 30 min). Qualitative and quantitative analyses of steviol glycosides in the extracts obtained were performed using high performance liquid chromatography. Total phenolic compounds, flavonoids, and radical scavenging capacity by 2, 2-azino-di-3-ethylbenzothialozine- sulphonic acid) assay were also determined. The highest content of steviol glycosides, total phenolic compounds, and flavonoids in stevia extracts were obtained when ultrasound assisted extraction was used. The antioxidant activity of the extracts was correlated with the total amount of phenolic compounds. The results indicated that the examined sonication parameters represented as the probe diameter (7 and 22 mm) and treatment time (2, 4, 6, 8, and 10 min) significantly contributed to the yield of steviol glycosides, total phenolic compounds, and flavonoids. The optimum conditions for the maximum yield of steviol glycosides, total phenolic compounds, and flavonoids were as follows: extraction time 10 min, probe diameter 22 mm, and temperature 81.2°C.

  1. Simultaneous spectrophotometric determination of synthetic dyes in food samples after cloud point extraction using multiple response optimizations.

    PubMed

    Heidarizadi, Elham; Tabaraki, Reza

    2016-01-01

    A sensitive cloud point extraction method for simultaneous determination of trace amounts of sunset yellow (SY), allura red (AR) and brilliant blue (BB) by spectrophotometry was developed. Experimental parameters such as Triton X-100 concentration, KCl concentration and initial pH on extraction efficiency of dyes were optimized using response surface methodology (RSM) with a Doehlert design. Experimental data were evaluated by applying RSM integrating a desirability function approach. The optimum condition for extraction efficiency of SY, AR and BB simultaneously were: Triton X-100 concentration 0.0635 mol L(-1), KCl concentration 0.11 mol L(-1) and pH 4 with maximum overall desirability D of 0.95. Correspondingly, the maximum extraction efficiency of SY, AR and BB were 100%, 92.23% and 95.69%, respectively. At optimal conditions, extraction efficiencies were 99.8%, 92.48% and 95.96% for SY, AR and BB, respectively. These values were only 0.2%, 0.25% and 0.27% different from the predicted values, suggesting that the desirability function approach with RSM was a useful technique for simultaneously dye extraction. Linear calibration curves were obtained in the range of 0.02-4 for SY, 0.025-2.5 for AR and 0.02-4 μg mL(-1) for BB under optimum condition. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.009, 0.01 and 0.007 μg mL(-1) (n=10) for SY, AR and BB, respectively. The method was successfully used for the simultaneous determination of the dyes in different food samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Ethanol production from carob extract by using Saccharomyces cerevisiae.

    PubMed

    Turhan, Irfan; Bialka, Katherine L; Demirci, Ali; Karhan, Mustafa

    2010-07-01

    Carob has been widely grown in the Mediterranean region for a long time. It has been regarded as only a forest tree and has been neglected for other economical benefits. However, in recent years, this fruit has gained attention for several applications. As petroleum has become depleted, renewable energy production has started to gain attention all over the world; including the production of ethanol from underutilized agricultural products such as carob. In this project, the optimum extraction conditions were determined for the carob fruit by using the response surface design method. The obtained extract was utilized for production of ethanol by using suspended Saccharomyces cerevisiae fermentation. The effect of various fermentation parameters such as pH, media content and inoculum size were evaluated for ethanol fermentation in carob extract. Also, in order to determine economically appropriate nitrogen sources, four different nitrogen sources were evaluated. The optimum extraction condition for carob extract was determined to be 80 degrees C, 2h in 1:4 dilution rate (fruit: water ratio) according to the result of response surface analysis (115.3g/L). When the fermentation with pH at 5.5 was applied, the final ethanol concentration and production rates were 42.6g/L and 3.37 g/L/h, respectively, which were higher than using an uncontrolled pH. Among inoculum sizes of 1%, 3%, and 5%, 3% was determined as the best inoculum size. The maximum production rate and final ethanol concentration were 3.48 g/L/h and 44.51%, respectively, with an alternative nitrogen source of meat-bone meal. Overall, this study suggested that carob extract can be utilized for production of ethanol in order to meet the demands of renewable energy. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Chlorophyll extraction from suji leaf (Pleomele angustifolia Roxb.) with ZnCl2 stabilizer.

    PubMed

    Rahayuningsih, Edia; Pamungkas, Mukmin Sapto; Olvianas, Muhammad; Putera, Andreas Diga Pratama

    2018-03-01

    Suji ( Pleomele angustifolia Roxb .) leaves are a prominent source of chlorophyll and well-known for their ability to produce green color for food ingredients. However, chlorophyll is suspectible to color degradation at high temperature. Color degradation occurred because porphyrin loses magnesium in its ring and it can be avoided by adding zinc. The aim of this work was to investigate the combined effect of independent variables on chlorophyll extraction process using ZnCl 2 as a stabilizer. Suji leaves were blanched with boiling water for 2 min, Zn-chlorophyll synthesis was done by varying concentration of ZnCl 2 , Zn-chlorophyll extraction with ethanol, and UV-Vis spectrophotometry analysis of the final extracted solutions. A full three-level factorial design under response surface methodology was used to obtain the optimum condition of extraction process. The experimental data were analyzed by analysis of variance and fitted with second order polynomial equation. The coefficient of determination (R 2 ) was found to be 81.99%. The optimum operating conditions were obtained at pH 7, ZnCl 2 concentration of 700 ppm and temperature of 85 °C with desirability value of 1.0000. At the optimum conditions, the total chlorophyll content (TCC) was found to be 47.2975 mg/100 g fresh weight.

  4. Development of monolith-based stir bar sorptive extraction and liquid chromatography tandem mass spectrometry method for sensitive determination of ten sulfonamides in pork and chicken samples.

    PubMed

    Huang, Xiaojia; Chen, Linli; Yuan, Dongxing

    2013-08-01

    A highly sensitive method was developed for the simultaneous determination of ten sulfonamides in pork and chicken samples by monolith-based stir bar sorptive extraction (SBSE) coupled to high-performance liquid chromatography tandem mass spectrometry. The samples were freeze-dried and extracted by acetonitrile, then enriched and further extracted by SBSE which was based on poly(vinylphthalimide-co-N,N-methylenebisacrylamide) monolith (SBSE-VPMB) as coating. To achieve optimum extraction performance of SBSE for sulfonamides, several parameters, including pH value and ionic strength in the sample matrix and extraction and desorption time, were investigated in detail. Under the optimal conditions, the limits of detection (S/N = 3) for target sulfonamides were 1.2-6.1 ng/kg in pork and 2.0-14.6 ng/kg in chicken, respectively. Real samples spiked at the concentration of 0.5 and 5.0 μg/kg showed recoveries above 55% and relative standard deviations below 12%. At the same time, the extraction performances of target sulfonamides on SBSE-VPMB were compared with other SBSE based on porous monolith and commercial SBSE.

  5. Optimized microwave-assisted extraction of 6-gingerol from Zingiber officinale Roscoeand evaluation of antioxidant activity in vitro.

    PubMed

    Liu, Wei; Zhou, Chun-Li; Zhao, Jing; Chen, Dong; Li, Quan-Hong

    2014-01-01

    6-Gingerol is one of the most pharmacologically active and abundant components in ginger, which has a wide array of biochemical and pharmacologic activities. In recent years, the application of microwave-assisted extraction (MAE) for obtaining bioactive compounds from plant materials has shown tremendous research interest and potential. In this study, an efficient microwave-assisted extraction (MAE) technique was developed to extract 6-gingerol from ginger. The extraction efficiency of MAE was also compared with conventional extraction techniques. Fresh gingers (Zingiber officinale Rose.) were harvested at commercial maturity (originally from Shandong, laiwu, China). In single-factor experiments for the recovery of 6-gingerol, proper ranges of ratio of liquid to solid, ethanol proportion, microwave power, extraction time were determined. Based on the values obtained in single-factor experiments, a Box-Behnken design (BBD) was applied to determine the best combination of extraction variables on the yield of 6-gingerol. The optimum extraction conditions were as follows: microwave power 528 W, ratio of liquid to solid 26 mL·g(-1), extraction time 31 s and ethanol proportion 78%. Furthermore, more 6-gingerol and total polyphenols contents were extracted by MAE than conventional methods including Maceration (MAC), Stirring Extraction (SE), Heat reflux extraction (HRE), Ultrasound-assisted extraction (UAE), as well as the antioxidant capacity. Microwave-assisted extraction showed obvious advantages in terms of high extraction efficiency and antioxidant activity of extract within shortest extraction time. Scanning electron microscopy (SEM) images of ginger powder materials after different extractions were obtained to provide visual evidence of the disruption effect. To our best knowledge, this is the first report about usage of MAE of 6-gingerol extraction from ginger, which could be referenced for the extraction of other active compounds from herbal plants.

  6. Optimization of flavanones extraction by modulating differential solvent densities and centrifuge temperatures.

    PubMed

    Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S

    2011-07-15

    Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.

  7. A novel application of three phase hollow fiber based liquid phase microextraction (HF-LPME) for the HPLC determination of two endocrine disrupting compounds (EDCs), n-octylphenol and n-nonylphenol, in environmental waters.

    PubMed

    Villar-Navarro, Mercedes; Ramos-Payán, María; Fernández-Torres, Rut; Callejón-Mochón, Manuel; Bello-López, Miguel Ángel

    2013-01-15

    This work proposes for the first time the use of a three phase hollow fiber liquid phase microextraction (HF-LPME) procedure for the extraction, and the later HPLC determination using fluorescence detection, of two much known endocrine disrupting compounds (EDCs): n-octylphenol (OP) and n-nonylphenol (NP). The extraction was carried out through a dihexyl ether liquid membrane supported on an Accurel® Q3/2 polypropylene hollow fiber. Optimum pH for donor and acceptor phases and extraction time were established. Enrichment (preconcentration) factors of 50 were obtained that allows detection limits of 0.54 and 0.52 ng mL(-1) for OP and NP, respectively. The method was successfully applied to the determination of these EDCs in environmental water samples, including urban wastewaters. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Improvement of lipid yield from microalgae Spirulina platensis using ultrasound assisted osmotic shock extraction method

    NASA Astrophysics Data System (ADS)

    Adetya, NP; Hadiyanto, H.

    2018-01-01

    Microalgae Spirulina sp. has been identified as potential source of natural food supplement and food colorant. The high water content of microalgae (70-90%) causes an obstacle in biomass dehydration which requires large amounts of energy, eventually damaging the lipid in the microalgae. Therefore, the lipid must be extracted by using a suitable method which complies to wet biomass conditions. One of the methods is applying osmotic shock. This study was aimed to investigate the influence of osmotic agent (NaCl) concentration (10-30%) and extraction time (20-50 min) on yield of lipid and also to determine the optimal conditions in the extraction process through response surface methodology. The extraction was conducted at a temperature of 40°C under ultrasound frequency of 40 kHz. The result showed that the optimum yield lipid obtained was 6.39% in 16.98% NaCl concentration for 36 minutes 10 seconds.

  9. Parameters optimization of supercritical fluid-CO2 extracts of frankincense using response surface methodology and its pharmacodynamics effects.

    PubMed

    Zhou, Jing; Ma, Xing-miao; Qiu, Bi-Han; Chen, Jun-xia; Bian, Lin; Pan, Lin-mei

    2013-01-01

    The volatile oil parts of frankincense (Boswellia carterii Birdw.) were extracted with supercritical carbon dioxide under constant pressure (15, 20, or 25 MPa) and fixed temperature (40, 50, or 60°C), given time (60, 90, or 120 min) aiming at the acquisition of enriched fractions containing octyl acetate, compounds of pharmaceutical interest. A mathematical model was created by Box-Behnken design, a popular template for response surface methodology, for the extraction process. The response value was characterized by synthetical score, which comprised yields accounting for 20% and content of octyl acetate for 80%. The content of octyl acetate was determined by GC. The supercritical fluid extraction showed higher selectivity than conventional steam distillation. Supercritical fluid-CO(2) for extracting frankincense under optimum condition was of great validity, which was also successfully verified by the pharmacological experiments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Cellulase-assisted extraction of polysaccharides from Cucurbita moschata and their antibacterial activity.

    PubMed

    Qian, Zhi-Gang

    2014-01-30

    In this study, cellulase-assisted extraction of water soluble polysaccharides from pumpkin (Cucurbita moschata) and their antibacterial activity were investigated. The polysaccharides yield was monitored during the extraction process. The optimum extraction conditions were determined as follows: time, 40 min; temperature, 55°C; pH, 4.5; and cellulase amount, 4,000 U/g. The extracts were centrifuged, filtered, proteins removed by Sevag method, concentrated to approximately 15% (w/v), precipitated with 5 volumes of absolute ethanol, freeze-dried, and pulverized to yield a water soluble powder of pumpkin polysaccharides (PP). The sugar content of the product was 68.3%, and the yield was 17.34% (w/w), respectively. The PP had high antibacterial activity against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli at the concentration of 100 mg/mL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Extraction of gelatin from salmon (Salmo salar) fish skin using trypsin-aided process: optimization by Plackett-Burman and response surface methodological approaches.

    PubMed

    Fan, HuiYin; Dumont, Marie-Josée; Simpson, Benjamin K

    2017-11-01

    Gelatin from salmon ( Salmo salar ) skin with high molecular weight protein chains ( α -chains) was extracted using trypsin-aided process. Response surface methodology was used to optimise the extraction parameters. Yield, hydroxyproline content and protein electrophoretic profile via sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of gelatin were used as responses in the optimization study. The optimum conditions were determined as: trypsin concentration at 1.49 U/g; extraction temperature at 45 °C; and extraction time at 6 h 16 min. This response surface optimized model was significant and produced an experimental value (202.04 ± 8.64%) in good agreement with the predicted value (204.19%). Twofold higher yields of gelatin with high molecular weight protein chains were achieved in the optimized process with trypsin treatment when compared to the process without trypsin.

  12. Homogenization-assisted cavitation hybrid rotation extraction and macroporous resin enrichment of dihydroquercetin from Larix gmelinii.

    PubMed

    Xia, Yu; Wang, Yinhang; Li, Wei; Ma, Chunhui; Liu, Shouxin

    2017-12-01

    Cavitation hybrid rotation, which was and is still looked upon as an unavoidable nuisance in the flow systems, for extraction processing intensification of active chemical compounds from natural products. In this study, a homogenization-assisted cavitation hybrid rotation extraction method was applied to extract dihydroquercetin (DHQ) from larch (Larix gmelinii) wood root. The extraction parameters were optimized in single factor experiments with the DHQ extraction yields as the response values. The optimum conditions were as follows: number of extractions, three; ethanol volume fraction for the extraction, 60%; liquid-solid ratio for homogenization, 10mL/g; homogenization time, 8min; liquid-solid ratio for cavitation extraction, 9mL/g, and cavitation extraction time, 35min. Under these conditions, the DHQ content in extract was 4.50±0.02mg/g, and the extraction efficiency was higher than those of traditional techniques. Cavitation can be effectively used to improve the extraction rate by increasing the mass transfer rates and possible rupture of cell wall due to formation of microcavities leading to higher product yields with reduced processing time and solvent consumption. After the extraction process, macroporous resin column chromatography was used to concentrate and purify the DHQ. Three resins were selected from fifteen macroporous resins for further investigation of their performance. Among these resins, AB-8 resin exhibited relatively better adsorption capacities and desorption ratios for DHQ. The ethanol volume fraction of the solutions for sample loading and desorption, and flow rates for loading and desorption were optimized for the macroporous resin column chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Optimization of ultrasound-assisted extraction (UAE) of phenolic compounds from olive cake.

    PubMed

    Mojerlou, Zohreh; Elhamirad, Amirhhossein

    2018-03-01

    The use of ultrasound in ultrasound-assisted extraction (UAE) is one of the main applications of this technology in food industry. This study aimed to optimize UAE conditions for olive cake extract (OCE) through response surface methodology (RSM). The optimal UAE conditions were obtained with extraction temperature of 56 °C, extraction time of 3 min, duty cycle of 0.6 s, and solid to solvent ratio of 3.6%. At the optimum conditions, the total phenolic compounds (TPC) content and antioxidant activity (AA) were measured 4.04 mg/g and 68.9%, respectively. The linear term of temperature had the most effect on TPC content and AA of OCE prepared by UAE. Protocatechuic acid and cinnamic acid were characterized as the highest (19.5%) and lowest (1.6%) phenolic compound measured in OCE extracted by UAE. This research revealed that UAE is an effective method to extract phenolic compounds from olive cake. RSM successfully optimized UAE conditions for OCE.

  14. "Solvent-free" ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process.

    PubMed

    Adam, Fanny; Abert-Vian, Maryline; Peltier, Gilles; Chemat, Farid

    2012-06-01

    In order to comply with criteria of green chemistry concepts and sustainability, a new procedure has been performed for solvent-free ultrasound-assisted extraction (UAE) to extract lipids from fresh Nannochloropsis oculata biomass. Through response surface methodology (RSM) parameters affecting the oil recovery were optimized. Optimum conditions for oil extraction were estimated as follows: (i) 1000 W ultrasonic power, (ii) 30 min extraction time and (iii) biomass dry weight content at 5%. Yields were calculated by the total fatty acids methyl esters amounts analyzed by GC-FID-MS. The maximum oil recovery was around 0.21%. This value was compared with the one obtained with the conventional extraction method (Bligh and Dyer). Furthermore, effect of temperature on the yield was also investigated. The overall results show an innovative and effective extraction method adapted for microalgae oil recovery, without using solvent and with an enable scaling up. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A study of extraction process and in vitro antioxidant activity of total phenols from Rhizoma Imperatae.

    PubMed

    Zhou, Xian-rong; Wang, Jian-hua; Jiang, Bo; Shang, Jin; Zhao, Chang-qiong

    2013-01-01

    The study investigated the extraction method of Rhizoma Imperatae and its antioxidant activity, and provided a basis for its rational development. The extraction method of Rhizoma Imperatae was determined using orthogonal design test and by total phenol content, its hydroxyl radical scavenging ability was measured by Fenton reaction, and potassium ferricyanide reduction method was used to determine its reducing power. The results showed that the optimum extraction process of Rhizoma Imperatae was a 50-fold volume of water, 30 °C, three times of extraction with 2 h each. Its IC50 for scavenging of hydroxyl radicals was 0.0948 mg/mL, while IC50 of ascorbic acid was 0.1096 mg/mL; in the ferricyanide considerable reduction method, the extract exhibited reducing power comparable to that of the ascorbic acid. The study concluded that Rhizoma Imperatae extract contains relatively large amount of polyphenols, and has a good anti-oxidation ability.

  16. Extraction of essential oil from Bunium Persicum (Boiss.) by instant controlled pressure drop (DIC).

    PubMed

    Feyzi, Elnaz; Eikani, Mohammad H; Golmohammad, Fereshteh; Tafaghodinia, Bahram

    2017-12-29

    Essential oils extraction from Bunium Persicum (Boiss) was performed using instant controlled pressure drop (in French: Détente Instantanée Contrôlée or DIC) thechnology and optimum extraction conditions were obtained. Response surface methodology (RSM) was used to determine the optimal conditions and the results were 20s heating time, 3.5bar pressure, 0.44mm particle diameter and 9 cycles. Essential oils extraction was also compared with Hydrodistillation (HD), ultrasound-assisted extraction (UAE) and Soxhlet (SOX) extraction. Results show higher efficiency of the DIC than other methods and more oxygenated components were observed. Impact of DIC, HD, UAE and SOX on the morphological structure of the plant was studied by SEM. Antioxidant activity and total phenolic content (TPC) of the extract were determined and comapred by HD. Results show that DIC facilitates achieving to higher TPC and more antioxidant activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of storage of shelled Moringa oleifera seeds from reaping time on turbidity removal.

    PubMed

    Golestanbagh, M; Ahamad, I S; Idris, A; Yunus, R

    2011-09-01

    Moringa oleifera is an indigenous plant to Malaysia whose seeds are used for water purification. Many studies on Moringa oleifera have shown that it is highly effective as a natural coagulant for turbidity removal. In this study, two different methods for extraction of Moringa's active ingredient were investigated. Results of sodium chloride (NaCl) and distilled water extraction of Moringa oleifera seeds showed that salt solution extraction was more efficient than distilled water in extracting Moringa's active coagulant ingredient. The optimum dosage of shelled Moringa oleifera seeds extracted by the NaCl solution was comparable with that of the conventional chemical coagulant alum. Moreover, the turbidity removal efficiency was investigated for shelled Moringa oleifera seeds before drying in the oven under different storage conditions (i.e. open and closed containers at room temperature, 27 °C) and durations (fresh, and storage for 2, 4, 6 and 8 weeks from the time the seeds were picked from the trees). Our results indicate that there are no significant differences in coagulation efficiencies and, accordingly, turbidity removals between the examined storage conditions and periods.

  18. Detergent assisted lipid extraction from wet yeast biomass for biodiesel: A response surface methodology approach.

    PubMed

    Yellapu, Sravan Kumar; Bezawada, Jyothi; Kaur, Rajwinder; Kuttiraja, Mathiazhakan; Tyagi, Rajeshwar D

    2016-10-01

    The lipid extraction from the microbial biomass is a tedious and high cost dependent process. In the present study, detergent assisted lipids extraction from the culture of the yeast Yarrowia lipolytica SKY-7 was carried out. Response surface methodology (RSM) was used to investigate the effect of three principle parameters (N-LS concentration, time and temperature) on microbial lipid extraction efficiency % (w/w). The results obtained by statistical analysis showed that the quadratic model fits in all cases. Maximum lipid recovery of 95.3±0.3% w/w was obtained at the optimum level of process variables [N-LS concentration 24.42mg (equal to 48mgN-LS/g dry biomass), treatment time 8.8min and reaction temperature 30.2°C]. Whereas the conventional chloroform and methanol extraction to achieve total lipid recovery required 12h at 60°C. The study confirmed that oleaginous yeast biomass treatment with N-lauroyl sarcosine would be a promising approach for industrial scale microbial lipid recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Heavy metal recovery from electric arc furnace steel slag by using hydrochloric acid leaching

    NASA Astrophysics Data System (ADS)

    Wei, Lim Jin; Haan, Ong Teng; Shean Yaw, Thomas Choong; Chuah Abdullah, Luqman; Razak, Mus'ab Abdul; Cionita, Tezara; Toudehdehghan, Abdolreza

    2018-03-01

    Electric Arc Furnace steel slag (EAFS) is the waste produced in steelmaking industry. Environmental problem such as pollution will occur when dumping the steel slag waste into the landfill. These steel slags have properties that are suitable for various applications such as water treatment and wastewater. The objective of this study is to develop efficient and economical chlorination route for EAFS extraction by using leaching process. Various parameters such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature are investigated to determine the optimum conditions. As a result, the dissolution rate can be determined by changing the parameters, such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature. The optimum conditions for dissolution rates for the leaching process is at 3.0 M hydrochloric acid, particle size of 1.18 mm, reaction time of 2.5 hour and the temperature of 90°C.

  20. Anti-bacteria Effect of Active Ingredients of Cacumen Platycladi on the Spoilage Bacteria of Sauced Pork Head Meat

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Xu, Lingyi; Cui, Yuqian; Pang, Meixia; Wang, Fang; Qi, Jinghua

    2017-12-01

    Extraction and anti-bacteria effect of active ingredients of Cacumen Platycladi were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration(MIC) were valued by Oxford-cup method. The results indicated that kaempferol was the active ingredients of Cacumen Platycladi whose optimum extraction condition for ethanol concentrations were sixty-five percent and twenty minutes with ultrasonic assisted extraction.; the active ingredients of Cacumen Platycladi had anti-bacteria effect on Staphylococcus, Proteus, Bacillus, Serratia and MIC was 0.5 g/mL,0.5 g/mL,0.0313 g/mL and 0.0625 g/mL. The active constituent of Cacumen Platycladi is kaempferol which has obvious anti-bacteria effect and can be used to prolong the shelf-life of Low-temperature meat products.

  1. Correlator data analysis for the array feed compensation system

    NASA Technical Reports Server (NTRS)

    Iijima, B.; Fort, D.; Vilnrotter, V.

    1994-01-01

    The real-time array feed compensation system is currently being evaluated at DSS 13. This system recovers signal-to-noise ratio (SNR) loss due to mechanical antenna deformations by using an array of seven Ka-band (33.7-GHz) horns to collect the defocused signal fields. The received signals are downconverted and digitized, in-phase and quadrature samples are generated, and combining weights are applied before the samples are recombined. It is shown that when optimum combining weights are employed, the SNR of the combined signal approaches the sum of the channel SNR's. The optimum combining weights are estimated directly from the signals in each channel by the Real-Time Block 2 (RTB2) correlator; since it was designed for very-long-baseline interferometer (VLBI) applications, it can process broadband signals as well as tones to extract the required weight estimates. The estimation algorithms for the optimum combining weights are described for tones and broadband sources. Data recorded in correlator output files can also be used off-line to estimate combiner performance by estimating the SNR in each channel, which was done for data taken during a Jupiter track at DSS 13.

  2. Ultrasound-Assisted Extraction of Cannabinoids from Cannabis Sativa L. Optimized by Response Surface Methodology.

    PubMed

    Agarwal, Charu; Máthé, Katalin; Hofmann, Tamás; Csóka, Levente

    2018-03-01

    Ultrasonication was used to extract bioactive compounds from Cannabis sativa L. such as polyphenols, flavonoids, and cannabinoids. The influence of 3 independent factors (time, input power, and methanol concentration) was evaluated on the extraction of total phenols (TPC), flavonoids (TF), ferric reducing ability of plasma (FRAP) and the overall yield. A face-centered central composite design was used for statistical modelling of the response data, followed by regression and analysis of variance in order to determine the significance of the model and factors. Both the solvent composition and the time significantly affected the extraction while the sonication power had no significant impact on the responses. The response predictions obtained at optimum extraction conditions of 15 min time, 130 W power, and 80% methanol were 314.822 mg GAE/g DW of TPC, 28.173 mg QE/g DW of TF, 18.79 mM AAE/g DW of FRAP, and 10.86% of yield. A good correlation was observed between the predicted and experimental values of the responses, which validated the mathematical model. On comparing the ultrasonic process with the control extraction, noticeably higher values were obtained for each of the responses. Additionally, ultrasound considerably improved the extraction of cannabinoids present in Cannabis. Low frequency ultrasound was employed to extract bioactive compounds from the inflorescence part of Cannabis. The responses evaluated were-total phenols, flavonoids, ferric reducing assay and yield. The solvent composition and time significantly influenced the extraction process. Appreciably higher extraction of cannabinoids was achieved on sonication against control. © 2018 Institute of Food Technologists®.

  3. New method to enhance the extraction yield of rutin from Sophora japonica using a novel ultrasonic extraction system by determining optimum ultrasonic frequency.

    PubMed

    Liao, Jianqing; Qu, Baida; Liu, Da; Zheng, Naiqin

    2015-11-01

    A new method has been proposed for enhancing extraction yield of rutin from Sophora japonica, in which a novel ultrasonic extraction system has been developed to perform the determination of optimum ultrasonic frequency by a two-step procedure. This study has systematically investigated the influence of a continuous frequency range of 20-92 kHz on rutin yields. The effects of different operating conditions on rutin yields have also been studied in detail such as solvent concentration, solvent to solid ratio, ultrasound power, temperature and particle size. A higher extraction yield was obtained at the ultrasonic frequency of 60-62 kHz which was little affected under other extraction conditions. Comparative studies between existing methods and the present method were done to verify the effectiveness of this method. Results indicated that the new extraction method gave a higher extraction yield compared with existing ultrasound-assisted extraction (UAE) and soxhlet extraction (SE). Thus, the potential use of this method may be promising for extraction of natural materials on an industrial scale in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Influence of extraction pH on the foaming, emulsification, oil-binding and visco-elastic properties of marama protein.

    PubMed

    Gulzar, Muhammad; Taylor, John Rn; Minnaar, Amanda

    2017-11-01

    Marama bean protein, as extracted previously at pH 8, forms a viscous, adhesive and extensible dough. To obtain a protein isolate with optimum functional properties, protein extraction under slightly acidic conditions (pH 6) was investigated. Two-dimensional electrophoresis showed that pH 6 extracted marama protein lacked some basic 11S legumin polypeptides, present in pH 8 extracted protein. However, it additionally contained acidic high molecular weight polypeptides (∼180 kDa), which were disulfide crosslinked into larger proteins. pH 6 extracted marama proteins had similar emulsification properties to soy protein isolate and several times higher foaming capacity than pH 8 extracted protein, egg white and soy protein isolate. pH 6 extracted protein dough was more elastic than pH 8 extracted protein, approaching the elasticity of wheat gluten. Marama protein extracted at pH 6 has excellent food-type functional properties, probably because it lacks some 11S polypeptides but has additional high molecular weight proteins. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils.

    PubMed

    Goula, Athanasia M; Ververi, Maria; Adamopoulou, Anna; Kaderides, Kyriakos

    2017-01-01

    The objective of this work was to develop a new process for pomegranate peels application in food industries based on ultrasound-assisted extraction of carotenoids using different vegetable oils as solvents. In this way, an oil enriched with antioxidants is produced. Sunflower oil and soy oil were used as alternative solvents and the effects of various parameters on extraction yield were studied. Extraction temperature, solid/oil ratio, amplitude level, and extraction time were the factors investigated with respect to extraction yield. Comparative studies between ultrasound-assisted and conventional solvent extraction were carried out in terms of processing procedure and total carotenoids content. The efficient extraction period for achieving maximum yield of pomegranate peel carotenoids was about 30min. The optimum operating conditions were found to be: extraction temperature, 51.5°C; peels/solvent ratio, 0.10; amplitude level, 58.8%; solvent, sunflower oil. A second-order kinetic model was successfully developed for describing the mechanism of ultrasound extraction under different processing parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Acquisition of Co metal from spent lithium-ion battery using emulsion liquid membrane technology and emulsion stability test

    NASA Astrophysics Data System (ADS)

    Yuliusman; Wulandari, P. T.; Amiliana, R. A.; Huda, M.; Kusumadewi, F. A.

    2018-03-01

    Lithium-ion batteries are the most common type to be used as energy source in mobile phone. The amount of lithium-ion battery wastes is approximated by 200 – 500 ton/year. In one lithium-ion battery, there are 5 – 20% of cobalt metal, depend on the manufacturer. One of the way to recover a valuable metal from waste is leaching process then continued with extraction, which is the aim of this study. Spent lithium-ion batteries will be characterized with EDX and AAS, the result will show the amount of cobalt metal with form of LiCoO2 in the cathode. Hydrochloric acid concentration used is 4 M, temperature 80°C, and reaction time 1 hour. This study will discuss the emulsion stability test on emulsion liquid membrane. The purpose of emulsion stability test in this study was to determine optimum concentration of surfactant and extractant to produce a stable emulsion. Surfactant and extractant used were SPAN 80 and Cyanex 272 respectively with both concentrations varied. Membrane and feed phase ratios used in this experiment was 1 : 2. The optimum results of this study were SPAN 80 concentrations of 10% w/v and Cyanex 272 0.7 M.

  7. Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods.

    PubMed

    Da Porto, Carla; Natolino, Andrea

    2018-08-30

    Analysis of the extraction kinetic modelling for natural compounds is essential for industrial application. The second order rate model was applied to estimate the extraction kinetics of conventional solid-liquid extraction (CSLE), ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) of total polyphenols (TPC) from saffron floral bio-residues at different solid-to-liquid ratios (R S/L )(1:10, 1:20, 1:30, 1:50 g ml -1 ), ethanol 59% as solvent and 66 °C temperature. The optimum solid-to-liquid ratios for TPC kinetics were 1:20 for CLSE, 1:30 for UAE and 1:50 for MAE. The kinetics of total anthocyanins (TA) and antioxidant activity (AA) were investigated for the optimum R S/L for each method. The results showed a good prediction of the model for extraction kinetics in all experiments (R 2  > 0.99; NRMS 0.65-3.35%). The kinetic parameters were calculated and discussed. UAE, compared with the other methods, had the greater efficiency for TPC, TA and AA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The effect of microwave roasting on the antioxidant properties of the Bangladeshi groundnut cultivar.

    PubMed

    Ali, Abbas; Islam, Anowarul; Pal, Tarun K

    2016-01-01

    Groundnut seeds are an important source of bioactive phenolic compounds with noteworthy antioxidant capacity, which may be enhanced by the microwave roasting process. The aim of this work is   to study the changes in antioxidant activity in groundnut seeds during microwave roasting, as a function of roasting time and extract concentration, in order to maximise the phenolic content and antioxidant activity of roasted seeds. The study was conducted to evaluate total phenolic content (TPC), total flavonoid content (TFC), and antioxidative activity of methanolic (GME), ethanolic (GEE), and chloroform (GCE) extracts and methanolic extract of oil (GMO) from groundnut seeds exposed to microwaves. The antioxidant activity was investigated using several assays, namely phosphomolybdenum assay, DPPH radical scavenging activity, H2O2 scavenging activity, hydroxyl radical scavenging activity and reducing power. The microwave roasting process significantly increased the TPC, whilst the TFC decreased with roasting time. Antioxidant activity increased with increased roasting time and extract concentration in all extracts. Antioxidant activity increased significantly at lower concentrations; however, the rate of increment decreased gradually as the concentration of the solvent extract increased. Thus, among all the extracts, methanol extracts at all roasting times and extract concentrations appeared to display the highest effectiveness. The various scavenging activities of the samples are ranked in the following order: GME > GEE > GCE > GMO, in both raw and roasted samples. Both roasting time and extract concentration were found to be critical factors in determining the overall quality of the product. This investigation is important to determine optimum roasting conditions, in order to maximise the anti-oxidative health benefits of the Bangladeshi groundnut cultivar.

  9. Optimisation of supercritical carbon dioxide extraction of essential oil of flowers of tea (Camellia sinensis L.) plants and its antioxidative activity.

    PubMed

    Chen, Zhenchun; Mei, Xin; Jin, Yuxia; Kim, Eun-Hye; Yang, Ziyin; Tu, Youying

    2014-01-30

    To extract natural volatile compounds from tea (Camellia sinensis) flowers without thermal degradation and residue of organic solvents, supercritical fluid extraction (SFE) using carbon dioxide was employed to prepare essential oil of tea flowers in the present study. Four important parameters--pressure, temperature, static extraction time, and dynamic extraction time--were selected as independent variables in the SFE. The optimum extraction conditions were the pressure of 30 MPa, temperature of 50°C, static time of 10 min, and dynamic time of 90 min. Based on gas chromatography-mass spectrometry analysis, 59 compounds, including alkanes (45.4%), esters (10.5%), ketones (7.1%), aldehydes (3.7%), terpenes (3.7%), acids (2.1%), alcohols (1.6%), ethers (1.3%) and others (10.3%) were identified in the essential oil of tea flowers. Moreover, the essential oil of tea flowers showed relatively stronger DPPH radical scavenging activity than essential oils of geranium and peppermint, although its antioxidative activity was weaker than those of essential oil of clove, ascorbic acid, tert-butylhydroquinone, and butylated hydroxyanisole. Essential oil of tea flowers using SFE contained many types of volatile compounds and showed considerable DPPH scavenging activity. The information will contribute to the future application of tea flowers as raw materials in health-care food and food flavour industries. © 2013 Society of Chemical Industry.

  10. Multi-criteria optimization for ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae using response surface methodology, an activity-based approach.

    PubMed

    Zeng, Shanshan; Wang, Lu; Zhang, Lei; Qu, Haibin; Gong, Xingchu

    2013-06-01

    An activity-based approach to optimize the ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae (Chenpi in Chinese) was developed. Response surface optimization based on a quantitative composition-activity relationship model showed the relationships among product chemical composition, antioxidant activity of extract, and parameters of extraction process. Three parameters of ultrasonic-assisted extraction, including the ethanol/water ratio, Chenpi amount, and alkaline amount, were investigated to give optimum extraction conditions for antioxidants of Chenpi: ethanol/water 70:30 v/v, Chenpi amount of 10 g, and alkaline amount of 28 mg. The experimental antioxidant yield under the optimum conditions was found to be 196.5 mg/g Chenpi, and the antioxidant activity was 2023.8 μmol Trolox equivalents/g of the Chenpi powder. The results agreed well with the second-order polynomial regression model. This presented approach promised great application potentials in both food and pharmaceutical industries. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Use of an enzyme-assisted method to improve protein extraction from olive leaves.

    PubMed

    Vergara-Barberán, M; Lerma-García, M J; Herrero-Martínez, J M; Simó-Alfonso, E F

    2015-02-15

    The improvement of protein extraction from olive leaves using an enzyme-assisted protocol has been investigated. Using a cellulase enzyme (Celluclast® 1.5L), different parameters that affect the extraction process, such as the influence and amount of organic solvent, enzyme amount, pH and extraction temperature and time, were optimised. The influence of these factors was examined using the standard Bradford assay and the extracted proteins were characterised by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum extraction parameters were: 30% acetonitrile, 5% (v/v) Celluclast® 1.5L at pH 5.0 and 55°C for 15min. Under these conditions, several protein extracts from olive leaves of different genetic variety (with a total protein amount comprised between 1.87 and 6.64mgg(-1)) were analysed and compared by SDS-PAGE, showing differences in their electrophoretic protein profiles. The developed enzyme-assisted extraction method has shown a faster extraction, higher recovery and reduced solvent usage with respect to the use of the non-enzymatic methods described in literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver.

    PubMed

    Velmurugan, Palanivel; Cho, Min; Lee, Sang-Myeong; Park, Jung-Hee; Bae, Sunyoung; Oh, Byung-Taek

    2014-06-15

    This study aims to investigate the green synthesis of silver nanoparticles (AgNPs) by Erigeron annuus (L.) pers flower extract as reducing and capping agent, and evaluation of their antibacterial activities for the first time. The obtained product was confirmed by UV-Vis spectrum, high resolution-transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction studies. The optimum AgNPs production was achieved at pH 7, metal silver (Ag(+) ion) concentration of 2.0mM, flower extract concentration 4%, and time 335 min. In addition, the antibacterial activity of cotton fabrics and tanned leather loaded with AgNPs, commercial AgNPs, flower extract, Ag(+) ion and blend of flower extract with AgNPs were evaluated against Gram-positive odor causing bacteria Brevibacterium linens and Staphylococcus epidermidis. The results showed maximum zone of inhibition (ZOI) by the cotton fabrics embedded with blend of flower extract and AgNPs against B. linens. The structure and morphology of cotton fabric and leather samples embedded with AgNPs, Ag(+) ion and blend of flower extract with AgNPs were examined under field emission scanning electron microscope. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Optimization of ultrasonic circulating extraction of samara oil from Acer saccharum using combination of Plackett-Burman design and Box-Behnken design.

    PubMed

    Chen, Fengli; Zhang, Qiang; Fei, Shimin; Gu, Huiyan; Yang, Lei

    2017-03-01

    In this study, ultrasonic circulating extraction (UCE) technique was firstly and successfully applied for extraction of samara oil from Acer saccharum. The extraction kinetics were fitted and described, and the extraction mechanism was discussed. Through comparison, n-hexane was selected as the extraction solvent, the influence of solvent type on the responses was detailedly interpreted based on the influence of their properties on the occurrence and intensity of cavitation. Seven parameters potentially influencing the extraction yield of samara oil and content of nervonic acid, including ultrasound irradiation time, ultrasound irradiation power, ultrasound temperature, liquid-solid ratio, soaking time, particle size and stirring rate, were screened through Plackett-Burman design to determine the significant variables. Then, three parameters performed statistically significant, including liquid-solid ratio, ultrasound irradiation time and ultrasound irradiation power, were further optimized using Box-Behnken design to predict optimum extraction conditions. Satisfactory yield of samara oil (11.72±0.38%) and content of nervonic acid (5.28±0.18%) were achieved using the optimal conditions. 1% proportion of ethanol in extraction solvent, 120°C of drying temperature and 6.4% moisture were selected and applied for effective extraction. There were no distinct differences in the physicochemical properties of samara oil obtained by UCE and Soxhlet extraction, and the samara oil obtained by UCE exhibited better antioxidant activities. Therefore, UCE method has enormous potential for efficient extraction of edible oil with high quality from plant materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Thin-film microextraction coupled to LC-ESI-MS/MS for determination of quaternary ammonium compounds in water samples.

    PubMed

    Boyacı, Ezel; Sparham, Chris; Pawliszyn, Janusz

    2014-01-01

    The dual nature of the quaternary ammonium compounds, having permanently charged hydrophilic quaternary ammonium heads and long-chain hydrophobic tails, makes the sample preparation step and analysis of these compounds challenging. A high-throughput method based on thin-film solid-phase microextraction (SPME) and liquid chromatography mass spectrometry was developed for simultaneous quantitative analysis of nine benzylic and aliphatic quaternary ammonium compounds. Chromatographic separation and detection of analytes were obtained in reverse-phase mode in 8 min using a triple quadrupole mass spectrometer. Hydrophilic lipophilic balance particle-coated blades were found to be the most suitable among the different coatings tested in terms of recoveries and carryover on the blades. For desorption solvents, 70/30, v/v (A/B) with 0.1 % formic acid (where A is 10 mM ammonium acetate in acetonitrile/water (95/5 , v/v) and B is 0.1 %  (v/v) formic acid in isopropyl alcohol) was shown to be the most efficient solvent for the desorption of the analytes from the SPME sorbent. The SPME method was optimised in terms of extraction, pH, and preconditioning, as well as extraction and desorption times. Optimum conditions were 45 min of extraction time and 15 min of desorption time, all with agitation. The extraction was found to be optimum in a range of pH 6.0 to 8.0, which is consistent with the natural pH of water samples. Wide linear dynamic ranges with the developed method were obtained for each compound, enabling the application of the method for a wide range of concentrations. The developed method was validated according to the Food and Drug Administration criteria. The proposed method is the first SPME-based approach describing the applicability of the high-throughput thin-film SPME in a 96-well system for analysis of such challenging compounds.

  15. In-coupled syringe assisted octanol-water partition microextraction coupled with high-performance liquid chromatography for simultaneous determination of neonicotinoid insecticide residues in honey.

    PubMed

    Vichapong, Jitlada; Burakham, Rodjana; Srijaranai, Supalax

    2015-07-01

    A simple and fast method namely in-coupled syringe assisted octanol-water partition microextraction combined with high performance liquid chromatography (HPLC) has been developed for the extraction, preconcentration and determination of neonicotinoid insecticide residues (e.g. imidacloprid, acetamiprid, clothianidin, thiacloprid, thiamethoxam, dinotefuran, and nitenpyram) in honey. The experimental parameters affected the extraction efficiency, including kind and concentration of salt, kind of disperser solvent and its volume, kind of extraction solvent and its volume, shooting times and extraction time were investigated. The extraction process was carried out by rapid shooting of two syringes. Therefore, rapid dispersion and mass transfer processes was created between phases, and thus affects the extraction efficiency of the proposed method. The optimum extraction conditions were 10.00 mL of aqueous sample, 10% (w/v) Na2SO4, 1-octanol (100µL) as an extraction solvent, shooting 4 times and extraction time 2min. No disperser solvent and centrifugation step was necessary. Linearity was obtained within the range of 0.1-3000 ngmL(-1), with the correlation coefficients greater than 0.99. The high enrichment factor of the target analytes was 100 fold and low limit of detection (0.25-0.50 ngmL(-1)) could be obtained. This proposed method has been successfully applied in the analysis of neonicotinoid residues in honey, and good recoveries in the range of 96.93-107.70% were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Study on the extraction and purification of glycoprotein from the yellow seahorse, Hippocampus kuda Bleeker

    PubMed Central

    Su, Yuting; Xu, Yongjian

    2015-01-01

    The optimum parameters of extraction for glycoprotein from seahorse were examined and determined by Box-Behnken combined with ultrasonic extraction technology. Column chromatography of glycoprotein was used for further purification. The optimal extraction conditions of seahorse glycoprotein were extracting time 4.3 h, salt concentration 0.08 mol/L, extracting temperature 73°C, raw material, and water ratio 1:6. At the optimal conditions, the yield of saccharide reached to 1.123%, and the yield of protein reached to 5.898%. For purifying the crude glycoprotein, the stage renounces of DEAE-52 column chromatography were done, respectively, with 0.05, 0.1, 0.5 mol/L NaHCO3 solution, and further purification was done with Sephadex G-100 column chromatography. Finally, two pieces of seahorse glycoprotein were obtained by the column chromatography, that is, HG-11 and HG-21. The saccharide content was 56.7975% and 39.479%, the protein content was 30.5475% and 51.747%, respectively. PMID:26288722

  17. In matrix derivatization of trichloroethylene metabolites in human plasma with methyl chloroformate and their determination by solid-phase microextraction-gas chromatography-electron capture detector.

    PubMed

    Mudiam, Mohana Krishna Reddy; Jain, Rajeev; Varshney, Meenu; Ch, Ratnasekhar; Chauhan, Abhishek; Goyal, Sudhir Kumar; Khan, Haider A; Murthy, R C

    2013-04-15

    Trichloroethylene (TCE) is a common industrial chemical that has been widely used as metal degreaser and for many industrial purposes. In humans, TCE is metabolized into dichloroacetic acid (DCA), trichloroacetic acid (TCA) and trichloroethanol (TCOH). A simple and rapid method has been developed for the quantitative determination of TCE metabolites. The procedure involves the in situ derivatization of TCE metabolites with methyl chloroformate (MCF) directly in diluted plasma samples followed by extraction and analysis with solid-phase microextraction (SPME) coupled to gas chromatography-electron capture detector (GC-ECD). Factors which can influence the efficiency of derivatization such as amount of MCF and pyridine (PYR), ratio of water/methanol were optimized. The factors which can affect the extraction efficiencies of SPME were screened using 2(7-4) Placket-Burman Design (PBD). A central composite design (CCD) was then applied to further optimize the most significant factors for optimum SPME extraction. The optimum factors for the SPME extraction were found to be 562.5mg of NaCl, pH at 1 and an extraction time of 22 min. Recoveries and detection limits of all three analytes in plasma were found to be in the range of 92.69-97.55% and 0.036-0.068 μg mL(-1) of plasma, respectively. The correlation coefficients were found to be in the range of 0.990-0.995. The intra- and inter-day precisions for TCE metabolites were found to be in the range of 2.37-4.81% and 5.13-7.61%, respectively. The major advantage of this method is that MCF derivatization allows conversion of TCE metabolites into their methyl esters in very short time (≤30 s) at room temperature directly in the plasma samples, thus makes it a solventless analysis. The method developed was successfully applied to the plasma samples of humans exposed to TCE. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Novel Fluorinated Tensioactive Extractant Combined with Flotation for Decontamination of Extractant Residual during Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Wu, Xue; Chang, Zhidong; Liu, Yao; Choe, Chol Ryong

    2017-12-01

    Solvent-extraction is widely used in chemical industry. Due to the amphiphilic character, a large amount of extractant remains in water phase, which causes not only loss of reagent, but also secondary contamination in water phase. Novel fluorinated extractants with ultra-low solubility in water were regarded as effective choice to reduce extractant loss in aqueous phase. However, trace amount of extractant still remained in water. Based on the high tensioactive aptitude of fluorinated solvent, flotation was applied to separate fluorinated extractant remaining in raffinate. According to the data of surface tension measurement, the surface tension of solution was obviously decreased with the addition of fluorinated extractant tris(2,2,3,3,4,4,5,5-octafluoropentyl) phosphate (FTAP). After flotation, the FTAP dissolved in water can be removed as much as 70%, which proved the feasibility of this key idea. The effects of operation time, gas velocity, pH and salinity of bulk solution on flotation performance were discussed. The optimum operating parameters were determined as gas velocity of 12ml/min, operating time of 15min, pH of 8.7, and NaCl volume concentration of 1.5%, respectively. Moreover, adsorption process of FTAP on bubble surface was simulated by ANSYS VOF model using SIMPLE algorithm. The dynamic mechanism of flotation was also theoretically investigated, which can be considered as supplement to the experimental results.

  19. Extraction of neptunium by trilaurylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, S.K.; Swarup, R.; Ramaniah, M.V.

    1972-07-01

    Trilaurylamine (TLA) is considered as useful solvent for the final purification of plutonium and neptunium. As TLA is considered as an alternate possible extractant for the final purification of plutonium and neptunium at Tarapur Reprocessing Plant under construction, it was considered necessary to study the optimum conditions for the extraction of neptunium using TLA.

  20. Optimization Recovery of Yttrium Oxide in Precipitation, Extraction, and Stripping Process

    NASA Astrophysics Data System (ADS)

    Perwira, N. I.; Basuki, K. T.; Biyantoro, D.; Effendy, N.

    2018-04-01

    Yttrium oxide can be used as a dopant control rod of nuclear reactors in YSH material and superconductors. Yttrium oxide is obtained in the Xenotime mineral derived from byproduct of tin mining PT Timah Bangka which contain rare earth elements (REE) dominant Y, Dy, and Gd whose content respectively about 29.53%, 7.76%, and 2.58%. Both usage in the field of nuclear and non-nuclear science and technology is need to pure from the impurities. The presence of impurities in the yttrium oxide may affect the characteristic of the material and the efficiency of its use. Thus it needs to be separated by precipitation and extraction-stripping and calcination in the making of the oxide. However, to obtain higher levels of Yttrium oxide, it is necessary to determine the optimum conditions for its separation. The purpose of this research was to determine the optimum pH of precipitation, determine acid media and concentration optimum in extraction and stripping process and determine the efficiency of the separation of Y from REE concentrate. This research was conducted with pH variation in the precipitation process that pHs were 4 - 8, the difference of acid media for the extraction process, i.e., HNO3, HCl and H2SO4 with each concentration of 0,5 M; 1 M; 1,5 M; and 2 M and for stripping process were HNO3, HCl, and H2SO4 with each concentration of 1 M; 2M; and 3 M. Based on the result, the optimum pH of precipitation process was 6,5, the optimumacid media was HNO3 0,5 M, and for stripping process media was HNO3 3 M. The efficiency of precipitation process at pH 6,5 was 69,53 %, extraction process was 96.39% and stripping process was 4,50%. The separation process from precipitation to extraction had increased the purity and the highest efficiency recovery of Y was in the extraction process and obtained Y2O3 purer compared to the feed with the Y2O3 content of 92.87%.

  1. Use of green coating (cork) in solid-phase microextraction for the determination of organochlorine pesticides in water by gas chromatography-electron capture detection.

    PubMed

    Neves Dias, Adriana; Simão, Vanessa; Merib, Josias; Carasek, Eduardo

    2015-03-01

    A novel method for the determination of organochlorine pesticides in water samples with extraction using cork fiber and analysis by gas chromatography with electron capture detector was developed. Also, the procedure to extract these pesticides with DVB/Car/PDMS fiber was optimized. The optimization of the variables involved in the extraction of organochlorine pesticides using the aforementioned fibers was carried out by multivariate design. The optimum extraction conditions were sample temperature 75 °C, extraction time 60 min and sodium chloride concentration 10% for the cork fiber and sample temperature 50 °C and extraction time 60 min (without salt) for the DVB/Car/PDMS fiber. The quantification limits for the two fibers varied between 1.0 and 10.0 ng L(-1). The linear correlation coefficients were >0.98 for both fibers. The method applied with the use of the cork fiber provided recovery values between 60.3 and 112.7 and RSD≤25.5 (n=3). The extraction efficiency values for the cork and DVB/Car/PDMS fibers were similar. The results show that cork is a promising alternative as a coating for SPME. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Calcium Alginate-Caged Multiwalled Carbon Nanotubes Dispersive Microsolid Phase Extraction Combined With Gas Chromatography-Flame Ionization Detection for the Determination of Polycyclic Aromatic Hydrocarbons in Water Samples.

    PubMed

    Abboud, Ayad Sami; Sanagi, Mohd Marsin; Ibrahim, Wan Aini Wan; Keyon, Aemi S Abdul; Aboul-Enein, Hassan Y

    2018-02-01

    In this study, caged calcium alginate-caged multiwalled carbon nanotubes dispersive microsolid phase extraction was described for the first time for the extraction of polycyclic aromatic hydrocarbons (PAHs) from water samples prior to gas chromatographic analysis. Fluorene, phenanthrene and fluoranthene were selected as model compounds. The caged calcium alginate-caged multiwalled carbon nanotubes was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and thermal gravimetry analyses. The effective parameters namely desorption solvent, solvent volume, extraction time, desorption time, the mass of adsorbent and sample volume were optimized. Under the optimum extraction conditions, the developed method showed good linearity in the range of 0.5-50 ng mL-1 (R2 ≥ 0.996), low limits of detection and quantification (0.42-0.22 ng mL-1) (0.73-1.38 ng mL-1) respectively, good relative recoveries (71.2-104.2%) and reproducibility (RSD 1.8-12.4%, n = 3) for the studied PAHs in water sample. With high enrichment factor (1,000), short extraction time (<30 min), low amounts of adsorbent (100 mg) and low amounts of solvent (0.1 mol) have proven that the microsolid phase extraction method based on calcium alginate-caged multiwalled carbon nanotubes are environmentally friendly and convenient extraction method to use as an alternative adsorbent in the simultaneous preconcentration of PAHs from environmental water samples. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Influence of extraction methodologies on the analysis of five major volatile aromatic compounds of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) grown in Thailand.

    PubMed

    Chanthai, Saksit; Prachakoll, Sujitra; Ruangviriyachai, Chalerm; Luthria, Devanand L

    2012-01-01

    This paper deals with the systematic comparison of extraction of major volatile aromatic compounds (VACs) of citronella grass and lemongrass by classical microhydrodistillation (MHD), as well as modern accelerated solvent extraction (ASE). Sixteen VACs were identified by GC/MS. GC-flame ionization detection was used for the quantification of five VACs (citronellal, citronellol, geraniol, citral, and eugenol) to compare the extraction efficiency of the two different methods. Linear range, LOD, and LOQ were calculated for the five VACs. Intraday and interday precisions for the analysis of VACs were determined for each sample. The extraction recovery, as calculated by a spiking experiment with known standards of VACs, by ASE and MHD ranged from 64.9 to 91.2% and 74.3 to 95.2%, respectively. The extraction efficiency of the VACs was compared for three solvents of varying polarities (hexane, dichloromethane, and methanol), seven different temperatures (ranging from 40 to 160 degrees C, with a gradual increment of 20 degrees C), five time periods (from 1 to 10 min), and three cycles (1, 2, and 3 repeated extractions). Optimum extraction yields of VACs were obtained when extractions were carried out for 7 min with dichloromethane and two extraction cycles at 120 degrees C. The results showed that the ASE technique is more efficient than MHD, as it results in improved yields and significant reduction in extraction time with automated extraction capabilities.

  4. In vitro callus and in vivo leaf extract of Gymnema sylvestre stimulate β-cells regeneration and anti-diabetic activity in Wistar rats.

    PubMed

    Ahmed, A Bakrudeen Ali; Rao, A S; Rao, M V

    2010-11-01

    A methanol extract of Gymnema sylvestre leaf and callus showed anti-diabetic activities through regenerating β-cells. Optimum callus was developed under stress conditions of blue light with 2,4-D (1.5 mg/l) and KN (0.5 mg/l), which induced maximum biomass of green compact callus at 45 days, as determined by growth curve analysis. Leaf and optimum callus extracts contains gymnemic acid, which was analyzed using TLC, HPTLC and HPLC methods. The research reported here deals with leaf and callus extracts of G. sylvestre, which significantly increase the weight of the whole body, liver, pancreas and liver glycogen content in alloxan-induced diabetic rats (Wistar rats). The gymnemic acid of leaf and callus extracts significantly increases the regeneration of β-cells in treated rats, when compared with the standard diabetic rats. It could have potential as a pharmaceutical drug for insulin-dependent diabetes mellitus (IDDM). Copyright © 2010 Elsevier GmbH. All rights reserved.

  5. Impact of ultrasound on solid-liquid extraction of phenolic compounds from maritime pine sawdust waste. Kinetics, optimization and large scale experiments.

    PubMed

    Meullemiestre, A; Petitcolas, E; Maache-Rezzoug, Z; Chemat, F; Rezzoug, S A

    2016-01-01

    Maritime pine sawdust, a by-product from industry of wood transformation, has been investigated as a potential source of polyphenols which were extracted by ultrasound-assisted maceration (UAM). UAM was optimized for enhancing extraction efficiency of polyphenols and reducing time-consuming. In a first time, a preliminary study was carried out to optimize the solid/liquid ratio (6g of dry material per mL) and the particle size (0.26 cm(2)) by conventional maceration (CVM). Under these conditions, the optimum conditions for polyphenols extraction by UAM, obtained by response surface methodology, were 0.67 W/cm(2) for the ultrasonic intensity (UI), 40°C for the processing temperature (T) and 43 min for the sonication time (t). UAM was compared with CVM, the results showed that the quantity of polyphenols was improved by 40% (342.4 and 233.5mg of catechin equivalent per 100g of dry basis, respectively for UAM and CVM). A multistage cross-current extraction procedure allowed evaluating the real impact of UAM on the solid-liquid extraction enhancement. The potential industrialization of this procedure was implemented through a transition from a lab sonicated reactor (3 L) to a large scale one with 30 L volume. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Dispersive liquid-liquid microextraction of quinolones in porcine blood: Optimization of extraction procedure and CE separation using experimental design.

    PubMed

    Vera-Candioti, Luciana; Teglia, Carla M; Cámara, María S

    2016-10-01

    A dispersive liquid-liquid microextraction procedure was developed to extract nine fluoroquinolones in porcine blood, six of which were quantified using a univariate calibration method. Extraction parameters including type and volume of extraction and dispersive solvent and pH, were optimized using a full factorial and a central composite designs. The optimum extraction parameters were a mixture of 250 μL dichloromethane (extract solvent) and 1250 μL ACN (dispersive solvent) in 500 μL of porcine blood reached to pH 6.80. After shaking and centrifugation, the upper phase was transferred in a glass tube and evaporated under N 2 steam. The residue was resuspended into 50 μL of water-ACN (70:30, v/v) and determined by CE method with DAD, under optimum separation conditions. Consequently, a tenfold enrichment factor can potentially be reached with the pretreatment, taking into account the relationship between initial sample volume and final extract volume. Optimum separation conditions were as follows: BGE solution containing equal amounts of sodium borate (Na 2 B 4 O 7 ) and di-sodium hydrogen phosphate (Na 2 HPO 4 ) with a final concentration of 23 mmol/L containing 0.2% of poly (diallyldimethylammonium chloride) and adjusted to pH 7.80. Separation was performed applying a negative potential of 25 kV, the cartridge was maintained at 25.0°C and the electropherograms were recorded at 275 nm during 4 min. The hydrodynamic injection was performed in the cathode by applying a pressure of 50 mbar for 10 s. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Graphene/TiO2 nanocomposite based solid-phase extraction and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for lipidomic profiling of avocado (Persea americana Mill.).

    PubMed

    Shen, Qing; Yang, Mei; Li, Linqiu; Cheung, Hon-Yeung

    2014-12-10

    Phospholipids possess important physiological, structural and nutritional functions in biological systems. This study described a solid-phase extraction (SPE) method, employing graphene and titanium dioxide (G/TiO2) nanocomposite as sorbent, for the selective isolation and enrichment of phospholipids from avocado (Persea americana Mill.). Based on the principal that the phosphoryl group in the phospholipid can interact with TiO2 via a bridging bidentate mode, an optimum condition was established for SPE, and was successfully applied to prepare avocado samples. The extracts were monitored by matrix-assisted laser desorption ionization time-of-flight/tandem mass spectrometry (MALDI-TOF/MS) in both positive-ion and negative-ion modes. Results showed that phospholipids could be efficiently extracted in a clean manner by G/TiO2 based SPE. In addition, the signals of phospholipids were enhanced while the noise was reduced. Some minor peaks became more obvious. In conclusion, the nanocomposite material of G/TiO2 was proved to be a promising sorbent for selective separation of phospholipids from crude lipid extract. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Extraction and Optimization of Potato Starch and Its Application as a Stabilizer in Yogurt Manufacturing

    PubMed Central

    2018-01-01

    Starch is increasingly used as a functional group in many industrial applications and foods due to its ability to work as a thickener. The experimental values of extracting starch from yellow skin potato indicate the processing conditions at 3000 rpm and 15 min as optimum for the highest yield of extracted starch. The effect of adding different concentrations of extracted starch under the optimized conditions was studied to determine the acidity, pH, syneresis, microbial counts, and sensory evaluation in stored yogurt manufactured at 5 °C for 15 days. The results showed that adding sufficient concentrations of starch (0.75%, 1%) could provide better results in terms of the minimum change in the total acidity, decrease in pH, reduction in syneresis, and preferable results for all sensory parameters. The results revealed that the total bacteria count of all yogurt samples increased throughout the storage time. However, adding different concentrations of optimized extracted starch had a significant effect, decreasing the microbial content compared with the control sample (YC). In addition, the results indicated that coliform bacteria were not found during the storage time. PMID:29382115

  9. Optimization of a new method for extraction of cyanidin chloride and pelargonidin chloride anthocyanins with magnetic solid phase extraction and determination in fruit samples by HPLC with central composite design.

    PubMed

    Yari, Abdollah; Rashnoo, Saba

    2017-11-01

    Here, we are reporting a sensitive, simple and rapid method for the analysis of cyanidin chloride and pelargonidin chloride anthocyanins in cherry, sour cherry, pomegranate and barberry produced in Iran. The analytes were extracted with acetonitrile-hydrochloric acid (1% v/v) mixture under optimized pretreatment conditions. Clean-up of the extract from fruits was conducted by magnetic solid phase extraction using salicylic acid functionalized silica-coated magnetite nanoparticles (SCMNPs) as the adsorbent. The optimized conditions searched with central composite design. Working under optimum conditions specified as: SCMNPs modified with salicylic acid, sorbent contact time and sample 10min, mechanical stirring time 57.3min. HPLC with UV-detection was used for determination of the analytes. The limit of detection, LOD, obtained for the two anthocyanins were 0.02 and 0.03μgg -1 , respectively. The ranges of the spiked recoveries were 80.0-97.6 and 72.9-97.2%, with the relative standard deviations (RSD) of 2.1 and 2.5%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Optimization of phenolics and flavonoids extraction conditions of Curcuma Zedoaria leaves using response surface methodology.

    PubMed

    Azahar, Nur Fauwizah; Gani, Siti Salwa Abd; Mohd Mokhtar, Nor Fadzillah

    2017-10-02

    This study focused on maximizing the extraction yield of total phenolics and flavonoids from Curcuma Zedoaria leaves as a function of time (80-120 min), temperature (60-80 °C) and ethanol concentration (70-90 v/v%). The data were subjected to response surface methodology (RSM) and the results showed that the polynomial equations for all models were significant, did not show lack of fit, and presented adjusted determination coefficients (R 2 ) above 99%, proving their suitability for prediction purposes. Using desirability function, the optimum operating conditions to attain a higher extraction of phenolics and flavonoids was found to be 75 °C, 92 min of extraction time and 90:10 of ethanol concentration ratios. Under these optimal conditions, the experimental values for total phenolics and flavonoids of Curcuma zedoaria leaves were 125.75 ± 0.17 mg of gallic acid equivalents and 6.12 ± 0.23 mg quercetin/g of extract, which closely agreed with the predicted values. Besides, in this study, the leaves from Curcuma zedoaria could be considered to have the strong antioxidative ability and can be used in various cosmeceuticals or medicinal applications.

  11. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  12. Optimisation of the supercritical extraction of toxic elements in fish oil.

    PubMed

    Hajeb, P; Jinap, S; Shakibazadeh, Sh; Afsah-Hejri, L; Mohebbi, G H; Zaidul, I S M

    2014-01-01

    This study aims to optimise the operating conditions for the supercritical fluid extraction (SFE) of toxic elements from fish oil. The SFE operating parameters of pressure, temperature, CO2 flow rate and extraction time were optimised using a central composite design (CCD) of response surface methodology (RSM). High coefficients of determination (R²) (0.897-0.988) for the predicted response surface models confirmed a satisfactory adjustment of the polynomial regression models with the operation conditions. The results showed that the linear and quadratic terms of pressure and temperature were the most significant (p < 0.05) variables affecting the overall responses. The optimum conditions for the simultaneous elimination of toxic elements comprised a pressure of 61 MPa, a temperature of 39.8ºC, a CO₂ flow rate of 3.7 ml min⁻¹ and an extraction time of 4 h. These optimised SFE conditions were able to produce fish oil with the contents of lead, cadmium, arsenic and mercury reduced by up to 98.3%, 96.1%, 94.9% and 93.7%, respectively. The fish oil extracted under the optimised SFE operating conditions was of good quality in terms of its fatty acid constituents.

  13. The high-performance liquid chromatography/multistage electrospray mass spectrometric investigation and extraction optimization of beech (Fagus sylvatica L.) bark polyphenols.

    PubMed

    Hofmann, Tamás; Nebehaj, Esztella; Albert, Levente

    2015-05-08

    The aim of the present work was the high-performance liquid chromatographic separation and multistage mass spectrometric characterization of the polyphenolic compounds of beech bark, as well as the extraction optimization of the identified compounds. Beech is a common and widely used material in the wood industry, yet its bark is regarded as a by-product. Using appropriate extraction methods these compounds could be extracted and utilized in the future. Different extraction methods (stirring, sonication, microwave assisted extraction) using different solvents (water, methanol:water 80:20 v/v, ethanol:water 80:20 v/v) and time/temperature schedules have been compared basing on total phenol contents (Folin-Ciocâlteu) and MRM peak areas of the identified compounds to investigate optimum extraction efficiency. Altogether 37 compounds, including (+)-catechin, (-)-epicatechin, quercetin-O-hexoside, taxifolin-O-hexosides (3), taxifolin-O-pentosides (4), B-type (6) and C-type (6) procyanidins, syringic acid- and coumaric acid-di-O-glycosides, coniferyl alcohol- and sinapyl alcohol-glycosides, as well as other unknown compounds with defined [M-H](-) m/z values and MS/MS spectra have been tentatively identified. The choice of the method, solvent system and time/temperature parameters favors the extraction of different types of compounds. Pure water can extract compounds as efficiently as mixtures containing organic solvents under high-pressure and high temperature conditions. This supports the implementation of green extraction methods in the future. Extraction times that are too long and high temperatures can result in the decrease of the concentrations. Future investigations will focus on the evaluation of the antioxidant capacity and utilization possibilities of the prepared extracts. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fiber powder

    PubMed Central

    Su, Jing; Vielnascher, Robert; Silva, Carla; Cavaco-Paulo, Artur; Guebitz, Georg M.

    2018-01-01

    Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fibre powder was investigated. The effect of ultrasonic probe depth and power input parameters on the type and amount of products extracted was assessed. The results of input energy and radical formation correlated with the calculated values for the anti-nodal point (λ/4; 16.85 mm, maximum amplitude) of the ultrasonic wave in aqueous medium. Ultrasonic treatment at optimum probe depth of 15 mm improve 2.6-fold the extraction efficiencies of hemicellulose and phenolic lignin compounds from bamboo bast fibre powder. LC-Ms-Tof (liquid chromatography-mass spectrometry-time of flight) analysis indicated that ultrasound led to the extraction of coniferyl alcohol, sinapyl alcohol, vanillic acid, cellobiose, in contrast to boiling water extraction only. At optimized conditions, ultrasound caused the formation of radicals confirmed by the presence of (+)-pinoresinol which resulted from the radical coupling of coniferyl alcohol. Ultrasounds revealed to be an efficient methodology for the extraction of hemicellulosic and phenolic compounds from woody bamboo without the addition of harmful solvents. PMID:29856764

  15. Optimization of pectin extraction from banana peels with citric acid by using response surface methodology.

    PubMed

    Oliveira, Túlio Ítalo S; Rosa, Morsyleide F; Cavalcante, Fabio Lima; Pereira, Paulo Henrique F; Moates, Graham K; Wellner, Nikolaus; Mazzetto, Selma E; Waldron, Keith W; Azeredo, Henriette M C

    2016-05-01

    A central composite design was used to determine effects of pH (2.0-4.5), extraction temperature (70-90 °C) and time (120-240 min) on the yield, degree of methoxylation (DM) and galacturonic acid content (GA) of pectins extracted from banana peels with citric acid. Changes in composition during the main steps of pectin extraction were followed by Fourier transform infrared (FTIR) spectroscopy. FTIR was also used to determine DM and GA of pectins. Harsh temperature and pH conditions enhanced the extraction yield, but decreased DM. GA presented a maximum value at 83 °C, 190 min, and pH 2.7. The yield of galacturonic acid (YGA), which took into account both the extraction yield and the pectin purity, was improved by higher temperature and lower pH values. The optimum extraction conditions, defined as those resulting in a maximum YGA while keeping DM at a minimum of 51%, were: 87 °C, 160 min, pH 2.0. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Response surface methodology to optimise Accelerated Solvent Extraction of steviol glycosides from Stevia rebaudiana Bertoni leaves.

    PubMed

    Jentzer, Jean-Baptiste; Alignan, Marion; Vaca-Garcia, Carlos; Rigal, Luc; Vilarem, Gérard

    2015-01-01

    Following the approval of steviol glycosides as a food additive in Europe in December 2011, large-scale stevia cultivation will have to be developed within the EU. Thus there is a need to increase the efficiency of stevia evaluation through germplasm enhancement and agronomic improvement programs. To address the need for faster and reproducible sample throughput, conditions for automated extraction of dried stevia leaves using Accelerated Solvent Extraction were optimised. A response surface methodology was used to investigate the influence of three factors: extraction temperature, static time and cycle number on the stevioside and rebaudioside A extraction yields. The model showed that all the factors had an individual influence on the yield. Optimum extraction conditions were set at 100 °C, 4 min and 1 cycle, which yielded 91.8% ± 3.4% of total extractable steviol glycosides analysed. An additional optimisation was achieved by reducing the grind size of the leaves giving a final yield of 100.8% ± 3.3%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Simultaneous quantification of vitamin E, γ-oryzanols and xanthophylls from rice bran essences extracted by supercritical CO2.

    PubMed

    Sookwong, Phumon; Suttiarporn, Panawan; Boontakham, Pittayaporn; Seekhow, Pattawat; Wangtueai, Sutee; Mahatheeranont, Sugunya

    2016-11-15

    Since the nutrition value of rice is diminished during rice processing, technology that can preserve and sustain functional compounds is necessary. In this study, supercritical carbon dioxide (SC-CO2) extraction was optimized for operational conditions (time, temperature, pressure and modifier) to extract vitamin E, γ-oryzanols and xanthophylls from rice bran. The simultaneous quantification of the compounds was developed using high-performance liquid chromatography with diode array and fluorescence detectors. Central composite design and respond surface methodology were applied to achieve optimum extraction conditions. The optimized conditions were 60min, 43°C, 5420psi with 10% ethanol as a modifier. Pigmented rice bran extracts contained greater amounts of functional phytochemicals than non-pigmented rice bran extracts (0.68, 1410, and non-detectable μg/g compared with 16.65, 2480, and 0.10μg/g of vitamin E, γ-oryzanols and xanthophylls in pigmented and non-pigmented ones, respectively). SC-CO2 extraction with modifier would be promising for preparation of phytochemical essences for therapeutic purpose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Hypercrosslinked particles for the extraction of sweeteners using dispersive solid-phase extraction from environmental samples.

    PubMed

    Lakade, Sameer S; Zhou, Qing; Li, Aimin; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa M

    2018-04-01

    This work presents a new extraction material, namely, Q-100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid-phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q-100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid-phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q-100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid-phase extraction using Q-100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3

    NASA Technical Reports Server (NTRS)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.; Stiles, J. A.; Frost, F. S.; Shanmugam, K. S.; Smith, S. A.; Narayanan, V.; Holtzman, J. C. (Principal Investigator)

    1982-01-01

    Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence.

  20. Anti-bacteria effect of active ingredients of siraitia grosvenorii on the spoilage bacteria isolated from sauced pork head meat

    NASA Astrophysics Data System (ADS)

    Li, X.; Xu, L. Y.; Cui, Y. Q.; Pang, M. X.; Wang, F.; Qi, J. H.

    2018-01-01

    Extraction and anti-bacteria effect of active ingredients of Siraitia grosvenorii were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration (MIC) were valued by Oxford-cup method. The results indicated that optimum extraction condition of active ingredients extracted from Siraitia grosvenorii were described as follows: ethanol concentrations of sixty-five percent and twenty minutes with ultrasonic assisted extraction; the active ingredients of Siraitia grosvenorii had anti-bacteria effect on Staphylococcus epidermidis, Proteus vulgaris, Bacillus sp, Serratia sp and MIC was 0.125g/mL, 0.0625g/mL, 0.125g/mL and 0.125g/mL. The active constituent of Siraitia grosvenorii has obvious anti-bacteria effect on the spoilage bacteria isolated from Sauced pork head meat and can be used as a new natural food preservation to prolong the shelf-life of Low-temperature meat products.

  1. Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity.

    PubMed

    Abedi, Abdol-Samad; Rismanchi, Marjan; Shahdoostkhany, Mehrnoush; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-11-01

    It has been previously reported that the essential oil of Nigella sativa L. seeds and its major active component, thymoquinone (TQ), possess a broad variety of biological activities and therapeutic properties. In this work, microwave-assisted extraction (MAE) of the essential oil from Nigella sativa L. seeds and its antioxidant activity were studied. Response surface methodology based on central composite design was used to evaluate the effects of extraction time, irradiation power and moisture content on extraction yield and TQ content. Optimal parameters obtained by CCD and RSM were extraction time 30 min, irradiation power 450 W, and moisture content 50%. The extraction yield and TQ content of the essential oil were 0.33 and 20% under the optimum conditions, respectively. In contrast, extraction yield and TQ amount of oil obtained by hydrodistillation (HD) were 0.23 and 3.71%, respectively. The main constituents of the essential oil extracted by MAE and HD were p -cymene, TQ, α-thujene and longifolene, comprising more than 60% of total peak area. The antioxidant capacity of essential oils extracted by different methods were evaluated using 2,2-diphenyl-1-picrylhydrazyl and Ferric reducing antioxidant power assays, and compared with traditional antioxidants. The results showed that MAE method was a viable alternative to HD for the essential oil extraction from N. sativa seeds due to the excellent extraction efficiency, higher thymoquinone content, and stronger antioxidant activity.

  2. Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition.

    PubMed

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2013-01-15

    In the present study, supercritical carbon dioxide (SC-CO(2)) extraction of seed oil from winter melon (Benincasa hispida) was investigated. The effects of process variables namely pressure (150-300 bar), temperature (40-50 °C) and dynamic extraction time (60-120 min) on crude extraction yield (CEY) were studied through response surface methodology (RSM). The SC-CO(2) extraction process was modified using ethanol (99.9%) as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD) was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE) and ultrasound assisted extraction (UAE). It was found that the antioxidant activity of the extract obtained by SC-CO(2) extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC) showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO(2) extraction conditions.

  3. [Ionic liquid based ultrasonication-assisted extraction of essential oil from the leaves of Persicaria minor and conductor-like screening model for realistic solvents study].

    PubMed

    Habib, Ullah; Cecilia, D Wilfred; Maizatul, S Shaharun

    2017-06-08

    Ionic liquids (ILs) based ultrasonic-assisted extract has been applied for the extraction of essential oil from Persicaria minor leaves. The effects of temperature, sonication time, and particle size of the plant material on the yield of essential oil were investigated. Among the different ILs employed, 1-ethyl-3-methylimidazolium acetate was the most effective, providing a 9.55% yield of the essential oil under optimum conditions (70 ℃, 25 min, IL:hexane ratio of 7:10 (v/v), particle size 60-80 mesh). The performance of 1-ethyl-3-methylimidazolium acetate in the extraction was attributed to its low viscosity and ability to disintegrate the structural matrix of the plant material. The ability of 1-ethyl-3-methylimidazolium acetate was also confirmed using the conductor like-screening model for realistic solvents. This research proves that ILs can be used to extract essential oils from lignocellulosic biomass.

  4. Determination of steroid sex hormones in wastewater by stir bar sorptive extraction based on poly(vinylpyridine-ethylene dimethacrylate) monolithic material and liquid chromatographic analysis.

    PubMed

    Huang, Xiaojia; Lin, Jianbin; Yuan, Dongxing; Hu, Rongzong

    2009-04-17

    In this study, a simple and rapid method was developed for the determination of seven steroid hormones in wastewater. Sample preparation and analysis were performed by stir bar sorptive extraction (SBSE) based on poly(vinylpyridine-ethylene dimethacrylate) monolithic material (SBSEM) combined with high-performance liquid chromatography with diode array detection. To achieve the optimum extraction performance, several main parameters, including extraction and desorption time, pH value and contents of inorganic salt in the sample matrix, were investigated. Under the optimized experimental conditions, the method showed good linearity and repeatability, as well as advantages such as sensitivity, simplicity, low cost and high feasibility. The extraction performance of SBSEM to the target compounds also compared with commercial SBSE which used polydimethylsiloxane as coating. Finally, the proposed method was successfully applied to the determination of the target compounds in wastewater samples. The recoveries of spiked target compounds in real samples ranged from 48.2% to 110%.

  5. Optimum Extraction, Characterization, and Antioxidant Activities of Polysaccharides from Flowers of Dendrobium devonianum

    PubMed Central

    Wang, Donghui; Fan, Bei; Wang, Yan; Zhang, Lijing

    2018-01-01

    Response surface methodology (RSM) was employed to optimize the conditions for the ultrasonic-assisted extraction (UAE) of polysaccharides from the flowers of Dendrobium devonianum. The optimal conditions for the maximum yields of DDFPs are as follows: an extraction temperature of 63.13°C, an extraction time of 53.10 min, and a water-to-raw material ratio of 22.11 mL/g. Furthermore, three fractions (DDFPs30, DDFPs50, and DDFPs70) were prepared from Dendrobium devonianum flowers polysaccharides (DDFPs) by the stepwise ethanol precipitation method. The DDFPs50 exhibited the highest antioxidant activity compared to the other fractions. The molecular weight, polydispersity, and conformation of these fractions were also characterized. In particular, the monosaccharide composition analysis of the DDFPs indicates that mannose and glucose are the primary components, similar to those of the D. officinale plant. This study provides a rapid extraction technology and essential information for the production of DDFPs, which could be potentially used as healthcare food. PMID:29581723

  6. Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: phenolic composition and cytotoxicity against human breast cancer cells.

    PubMed

    Taamalli, Amani; Arráez-Román, David; Barrajón-Catalán, Enrique; Ruiz-Torres, Verónica; Pérez-Sánchez, Almudena; Herrero, Miguel; Ibañez, Elena; Micol, Vicente; Zarrouk, Mokhtar; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2012-06-01

    A comparison among different advanced extraction techniques such as microwave-assisted extraction (MAE), supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE), together with traditional solid-liquid extraction, was performed to test their efficiency towards the extraction of phenolic compounds from leaves of six Tunisian olive varieties. Extractions were carried out at the best selected conditions for each technique; the obtained extracts were chemically characterized using high-performance liquid chromatography (HPLC) coupled to electrospray time-of-flight mass spectrometry (ESI-TOF-MS) and electrospray ion trap tandem mass spectrometry (ESI-IT-MS(2)). As expected, higher extraction yields were obtained for PLE while phenolic profiles were mainly influenced by the solvent used as optimum in the different extraction methods. A larger number of phenolic compounds, mostly of a polar character, were found in the extracts obtained by using MAE. Best extraction yields do not correlate with highest cytotoxic activity against breast cancer cells, indicating that cytotoxicity is highly dependent on the presence of certain compounds in the extracts, although not exclusively on a single compound. Therefore, a multifactorial behavior is proposed for the anticancer activity of olive leaf compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Ultrasound-assisted extraction, characterization, and antioxidant activity in vitro and in vivo of polysaccharides from Chestnut rose (Rosa roxburghii tratt) fruit.

    PubMed

    Chen, Guangjing; Kan, Jianquan

    2018-03-01

    In this study, the response surface methodology was utilized to determine optimum conditions for extracting the polysaccharides from Rosa roxburghii Tratt fruit (RRTPs) using ultrasonic-assisted extraction, and the characterization and antioxidant activities of the RRTPs were discussed. RRTPs yield was 6.59 ± 1.34%, which was well consistent with the predicted value of 6.716%, under the following optimum conditions: ratio of water to raw material 40.18 mL/g, extraction temperature 78.8 °C, ultrasonic power 148 W, and extraction time 32.8 min. The monosaccharide composition analysis indicated that RRTPs were composed of mannose (Man), rhamnose (Rha), glucuronic acid (GlcA), galacturonic acid (GalA), glucose (Glc), galactose (Gal), arabinose (Ara) and xylose (Xyl). The molecular weight distribution analysis showed that RRTPs had four main components with molecular weights of 332.56, 183.96, 11.92 and 5.95 kDa, respectively. In vitro antioxidant studies revealed RRTPs exhibited significant antioxidant potential on hydroxyl, superoxide and DPPH radicals. In addition, antioxidant assays in vivo demonstrated that RRTPs can significantly increase the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities, and total antioxidant capacity (TAOC) to some extent, as well as decrease the level of malondialdehyde (MDA) in both serum and liver of d-Gal aging-induced mice. These data suggested that RRTPs could be a potential candidate of natural antioxidants for applications in functional food, pharmaceuticals or cosmetic industries. In summary, this work provided an effective method for the exploitation and utilization of value-added R. roxburghii Tratt fruit which would be useful to fully utilize this resource.

  8. Determination of the Optimum Conditions for Leaching of Zinc Cathode Melting Furnace Slag in Ammonium Chloride Media

    NASA Astrophysics Data System (ADS)

    Behnajady, Bahram; Babaeidehkordi, Amin; Moghaddam, Javad

    2014-04-01

    This research is part of a continuing effort to leach zinc from zinc cathode melting furnace slags (ZCMFSs) to produce zinc oxide. The slag with an assay of 68.05 pct Zn was used in ammonium chloride leaching for zinc extraction. In this paper, the effects of influential factors on extraction efficiency of Zn from a ZCMFS were investigated. The Taguchi's method based on orthogonal array (OA) design has been used to arrange the experimental runs in order to maximize zinc extraction from a slag. The softwares named Excel and Design-Expert 7 have been used to design experiments and subsequent analysis. OA L 25 (55) consisting of five parameters, each with five levels, was employed to evaluate the effects of reaction time ( t = 10, 30, 50, 70, 90 minutes), reaction temperature [ T = 313, 323, 333, 343, 353 (40, 50, 60, 70, 80) K (°C)], pulp density ( S/ L = 20, 40, 60, 80, 100 g/L), stirring speed ( R = 300, 400, 500, 600, 700 rpm), and ammonium chloride concentration ( C = 10, 15, 20, 25, 30 pctwt), on zinc extraction percent. Statistical analysis, ANOVA, was also employed to determine the relationship between experimental conditions and yield levels. The results showed that the significant parameters affecting leaching of slag were ammonium chloride concentration and pulp density, and increasing pulp density reduced leaching efficiency of zinc. However, increasing ammonium chloride concentration promoted the extraction of zinc. The optimum conditions for this study were found to be t 4: 70 minutes, T 5: 353 K (80 °C), ( S/ L)2: 40 g/L, R 3: 500 rpm, and C 4: 25 pctwt. Under these conditions, the dissolution percentage of Zn in ammonium chloride media was 94.61 pct.

  9. Extraction of orange peel's essential oil by solvent-free microwave extraction

    NASA Astrophysics Data System (ADS)

    Qadariyah, Lailatul; Amelia, Prilia Dwi; Admiralia, Cininta; Bhuana, Donny S.; Mahfud, Mahfud

    2017-05-01

    Sweet orange peel (Citrus sinensis) is part of orange plant that contains essential oils. Generally, taking essential oil from orange peel is still using hydrodistillation and steam-hydrodistillation method which still needs solvent and takes a long time to produce high quality essential oil. Therefore, the objectives of this experiment are to study the process of orange peel's essential oil extraction using Solvent Free Microwave Extraction (SFME) and to study the operating condition that effect an optimum yield and quality of the essential oil. In this experiment, extraction process with SFME method goes for 60 minutes at atmospheric pressure. Variables for SFME are: variation of orange peel condition (fresh and dry), ratio orange peel mass to distiller volume (0,1; 0,2; 0,3; 0,4 g/mL), orange peel size (±0,5; ±2; ±3,5 cm width), and microwave power (100, 264, 400 Watt). Moisture content of fresh peel is 71,4% and for dry peel is 17,37% which is obtained by sun drying. The result of this experiment will be analyzed with GC-MS, SEM, density, and miscibility in ethanol 90%. The optimum result obtained from this experiment based on the number of the yield under condition of fresh orange peel is at peel mass/distiller volume 0,1 g/mL, orange peel size ±3,5 cm width, and microwave power 400 Watt, results 1,6738% yield. The result of GC-MS for fresh orange peel shows that the dominant compound is Limonene 54,140% and for dry orange peel is Limonene 59,705%. The density obtained is around 0,8282-0,8530 g/mL and miscibility in ethanol 90% is 1:5.

  10. Optimization of free radical scavenging capacity and pH of Hylocereus polyrhizus peel by Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Putranto, A. W.; Dewi, S. R.; Puspitasari, Y.; Nuriah, F. A.

    2018-03-01

    Red dragon fruit (Hylocereus polyrhizus) peel, a by-product of juice processing, contains a high antioxidant that can be used for nutraceuticals. Hence, it is important to extract and investigate its antioxidant stability. The aim of this study was to optimize the free radical scavenging capacity and pH of H. polyrhizus peel extract using Central Composite Design (CCD) under Response Surface Methodology (RSM). The extraction of H. polyrhizus peel was done by using green-Pulsed Electric Field (PEF)-assisted extraction method. Factors optimized were electric field strength (kV/cm) and extraction time (seconds). The result showed that the correlation between responses (free radical-scavenging capacity and pH) and two factors was quadratic model. The optimum conditions was obtained at the electric field strength of 3.96 kV/cm, and treatment time of 31.9 seconds. Under these conditions, the actual free radical-scavenging capacity and pH were 75.86 ± 0.2 % and 4.8, respectively. The verification model showed that the actual values are in accordance with the predicted values, and have error rate values of free radical-scavenging capacity and pH responses were 0.1% and 3.98%, respectively. We suggest to extract the H. polyrhizus peel using a green and non-thermal extraction technology, PEF-assisted extraction, for research, food applications and nutraceuticals industry.

  11. Investigation on microwave heating for direct leaching of chalcopyrite ores and concentrates

    NASA Astrophysics Data System (ADS)

    Onol, Kubra; Saridede, Muhlis Nezihi

    2013-03-01

    The use of microwave energy in materials processing is a relatively new development presenting numerous advantages because of the rapid heating feature. Microwave technology has great potential to improve the extraction efficiency of metals in terms of both a reduction in required leaching time and an increase in the recovery of valuable metals. This method is especially pertinent in view of the increased demand for environment-friendly processes. In the present study, the influence of microwave heating on the direct leaching of chalcopyrite ores and concentrates were investigated. The results of microwave leaching experiments were compared with those obtained under conventional conditions. During these processes, parameters such as leaching media, temperature, and time have been worked to determine the optimum conditions for proper copper dissolution. Experimental results show that microwave leaching is more efficient than conventional leaching. The optimum leaching conditions for microwave leaching are the solid-to-liquid ratio of 1:100 g/mL, the temperature of 140°C, the solution of 0.5 M H2SO4 + 0.05 M Fe2(SO4)3, and the time of 1 h.

  12. Surfactant-enhanced spectrofluorimetric determination of total aflatoxins from wheat samples after magnetic solid-phase extraction using modified Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Manafi, Mohammad Hanif; Allahyari, Mehdi; Pourghazi, Kamyar; Amoli-Diva, Mitra; Taherimaslak, Zohreh

    2015-07-01

    The extraction and preconcentration of total aflatoxins (including aflatoxin B1, B2, G1, and G2) using magnetic nanoparticles based solid phase extraction (MSPE) followed by surfactant-enhanced spectrofluorimetric detection was proposed. Ethylene glycol bis-mercaptoacetate modified silica coated Fe3O4 nanoparticles as an efficient antibody-free adsorbent was successfully applied to extract aflatoxins from wheat samples. High surface area and strong magnetization properties of magnetic nanoparticles were utilized to achieve high enrichment factor (97), and satisfactory recoveries (92-105%) using only 100 mg of the adsorbent. Furthermore, the fast separation time (less than 10 min) avoids many time-consuming cartridge loading or column-passing procedures accompany with the conventional SPE. In determination step, signal enhancement was performed by formation of Triton X-100 micelles around the analytes in 15% (v/v) acetonitrile-water which dramatically increase the sensitivity of the method. Main factors affecting the extraction efficiency and signal enhancement of the analytes including pH of sample solution, desorption conditions, extraction time, sample volume, adsorbent amount, surfactant concentration and volume and time of micelle formation were evaluated and optimized. Under the optimum conditions, wide linear range of 0.1-50 ng mL-1 with low detection limit of 0.03 ng mL-1 were obtained. The developed method was successfully applied to the extraction and preconcentration of aflatoxins in three commercially available wheat samples and the results were compared with the official AOAC method.

  13. Comparison of single-step and two-step purified coagulants from Moringa oleifera seed for turbidity and DOC removal.

    PubMed

    Sánchez-Martín, J; Ghebremichael, K; Beltrán-Heredia, J

    2010-08-01

    The coagulant proteins from Moringa oleifera purified with single-step and two-step ion-exchange processes were used for the coagulation of surface water from Meuse river in The Netherlands. The performances of the two purified coagulants and the crude extract were assessed in terms of turbidity and DOC removal. The results indicated that the optimum dosage of the single-step purified coagulant was more than two times higher compared to the two-step purified coagulant in terms of turbidity removal. And the residual DOC in the two-step purified coagulant was lower than in single-step purified coagulant or crude extract. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Analytical prediction of the heat transfer from a blood vessel near the skin surface when cooled by a symmetrical cooling strip

    NASA Technical Reports Server (NTRS)

    Chato, J. C.; Shitzer, A.

    1971-01-01

    An analytical method was developed to estimate the amount of heat extracted from an artery running close to the skin surface which is cooled in a symmetrical fashion by a cooling strip. The results indicate that the optimum width of a cooling strip is approximately three times the depth to the centerline of the artery. The heat extracted from an artery with such a strip is about 0.9 w/m-C which is too small to affect significantly the temperature of the blood flow through a main blood vessel, such as the carotid artery. The method is applicable to veins as well.

  15. Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds.

    PubMed

    Ghafoor, Kashif; Al-Juhaimi, Fahad Y; Choi, Yong Hee

    2012-12-01

    Supercritical fluid extraction (SFE) technique was applied and optimized for temperature, CO₂ pressure and ethanol (modifier) concentration using orthogonal array design and response surface methodology for the extract yield, total phenols and antioxidants from grape (Vitis labrusca B.) seeds. Effects of extraction temperature and pressure were found to be significant for all these response variables in SFE process. Optimum SFE conditions (44 ~ 46 °C temperature and 153 ~ 161 bar CO₂ pressure) along with ethanol (<7 %) as modifier, for the maximum predicted values of extract yield (12.09 %), total phenols (2.41 mg GAE/ml) and antioxidants (7.08 mg AAE/ml), were used to obtain extracts from grape seeds. The predicted values matched well with the experimental values (12.32 % extract yield, 2.45 mg GAE/ml total phenols and 7.08 mg AAE/ml antioxidants) obtained at optimum SFE conditions. The antiradical assay showed that SFE extracts of grape seeds can scavenge more than 85 % of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The grape seeds extracts were also analyzed for hydroxybenzoic acids which included gallic acid (1.21 ~ 3.84 μg/ml), protocatechuic acid (3.57 ~ 11.78 μg/ml) and p-hydroxybenzoic acid (206.72 ~ 688.18 μg/ml).

  16. Characterization of pectic polysaccharides extracted from apple pomace by hot-compressed water.

    PubMed

    Wang, Xin; Lü, Xin

    2014-02-15

    Response surface methodology (RSM) was used to optimize the extraction of pectic polysaccharides from apple pomace by hot-compressed water, by which the optimum levels of the parameters were obtained as follows: extraction temperature 140 °C, extraction time 5 min, S:W ratio 1:14. Compared with commercial pectin, the Mw, galacturonic acid content, DM and protein of the extracted pectic polysaccharides were lower while ash content and neutral sugars were higher. The endothermic transition temperature and fusion heat of the extracted pectic polysaccharides was lower than commercial one according to DSC analysis. For its rheological properties, it was found that the viscosity of the extracted pectic polysaccharides solution was slightly lower than commercial pectin at lower shear rate region while it decreased sharply when the shear rate increased. Besides, both G' and G" moduli of the extracted pectic polysaccharides were lower than the commercial pectin's possibly because of weaker polymer chain interaction, which was also reflected in gel textural properties. However, the extracted pectic polysaccharides showed higher in vitro antioxidant capability and inhibitory effect on HT-29 colon adenocarcinoma cells than commercial pectin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Optimization of extraction of novel pectinase enzyme discovered in red pitaya (Hylocereus polyrhizus) peel.

    PubMed

    Zohdi, Nor Khanani; Amid, Mehrnoush

    2013-11-20

    Plant peels could be a potential source of novel pectinases for use in various industrial applications due to their broad substrate specificity with high stability under extreme conditions. Therefore, the extraction conditions of a novel pectinase enzyme from pitaya peel was optimized in this study. The effect of extraction variables, namely buffer to sample ratio (2:1 to 8:1, X₁), extraction temperature (-15 to +25 °C, X₂) and buffer pH (4.0 to 12.0, X₃) on specific activity, temperature stability, storage stability and surfactant agent stability of pectinase from pitaya peel was investigated. The study demonstrated that the optimum conditions for the extraction of pectinase from pitaya sources could improve the enzymatic characteristics of the enzyme and protect its activity and stability during the extraction procedure. The optimum extraction conditions cause the pectinase to achieve high specific activity (15.31 U/mg), temperature stability (78%), storage stability (88%) and surfactant agent stability (83%). The most desirable conditions to achieve the highest activity and stability of pectinase enzyme from pitaya peel were the use of 5:1 buffer to sample ratio at 5 °C and pH 8.0.

  18. Optimization of Banana Juice Fermentation for the Production of Microbial Oil †

    PubMed Central

    Vega, Esther Z.; Glatz, Bonita A.; Hammond, Earl G.

    1988-01-01

    Apiotrichum curvatum ATCC 20509 (formerly Candida curvata D), a lipid-accumulating yeast, was grown in banana juice. The optimum conditions for biomass production in shake flasks were 30°C growth temperature, efficient aeration, a juice concentration of 25%, and preliminary heat treatment at less than sterilization conditions. Under controlled conditions in a fermentor, 20% banana juice was optimum. High concentrations of yeast extract (0.3%) increased biomass production by 40% but decreased oil production by 30%. A lower yeast extract concentration (0.05%) increased biomass production by 2% and oil production by 25%. The best growth and oil production were observed when asparagine (1.4 g/liter) and mineral salts were added to the banana juice. The addition of minerals seemed to improve the utilization of carbon. Growth inhibition was observed when the fermentor was aerated with pure oxygen, even when additional nutrients were present. A fed-batch process permitted the juice concentration to be increased from 15 to 82%; biomass accumulation was three times higher than in batch fermentations. However, the cellular lipid content was only 30% of dry weight, and chemical oxygen demand reduction was slow and inefficient. PMID:16347584

  19. Antiproliferative activity of Curcuma phaeocaulis Valeton extract using ultrasonic assistance and response surface methodology.

    PubMed

    Wang, Xiaoqin; Jiang, Ying; Hu, Daode

    2017-01-02

    The objective of the study was to optimize the ultrasonic-assisted extraction of curdione, furanodienone, curcumol, and germacrone from Curcuma phaeocaulis Valeton (Val.) and investigate the antiproliferative activity of the extract. Under the suitable high-performance liquid chromatography condition, the calibration curves for these four tested compounds showed high levels of linearity and the recoveries of these four compounds were between 97.9 and 104.3%. Response surface methodology (RSM) combining central composite design and desirability function (DF) was used to define optimal extraction parameters. The results of RSM and DF revealed that the optimum conditions were obtained as 8 mL g -1 for liquid-solid ratio, 70% ethanol concentration, and 20 min of ultrasonic time. It was found that the surface structures of the sonicated herbal materials were fluffy and irregular. The C. phaeocaulis Val. extract significantly inhibited the proliferation of RKO and HT-29 cells in vitro. The results reveal that the RSM can be effectively used for optimizing the ultrasonic-assisted extraction of bioactive components from C. phaeocaulis Val. for antiproliferative activity.

  20. [Simultaneous determination of the migrations of bisphenol A and phenol in polycarbonate bottles based on subcritical water extraction and high performance liquid chromatography].

    PubMed

    Bai, Weiwei; Liu, Shuhui; Cao, Jiangping; Fan, Yingying; Xie, Qilong

    2013-03-01

    A new method was established for the simultaneous determination of the migration amounts of bisphenol A (BPA) and phenol from polycarbonate (PC) bottles based on subcritical water extraction (SWE) and high performance liquid chromatography. The optimum extraction conditions included an extraction temperature of 120 degree C, a pressure of 6.89 MPa (1000 psi), a static extraction time of 1 h and one cycle. Under the conditions, the migration amounts of the BPA ranged from 6.81 to 1116 micro g/g in 11 samples. Phenol was not detectable in 5 samples, and in other ones the migration amounts of phenol varied in the range of 3.25 -6. 08 micro g/g. The traditional soaking extraction experiments showed that PC was subjected to weak hydrolysis after long-time leaching. The BPA and phenol were separated in 8 min. Good linearities were obtained in the range of 0. 05 - 20 mg/L for BPA and 0.02 - 20 mg/L for phenol ( r > 0.999 7). The limits of detection were 7.6 micro g/L for BPA and 2.0 micro g/L for phenol. Intra-day and inter-day repeatabilities (expressed as RSD) were less than 5.21% and 11.63%, respectively. Compared with traditional water soaking extraction, the extraction efficiencies increased 49 - 106 times using this developed SWE method. The procedure is simple, rapid and environment friendly, and can be utilized to determine the migration amounts of BPA and phenol in PC bottles.

  1. Dynamic ultrasonic nebulisation extraction coupled with headspace ionic liquid-based single-drop microextraction for the analysis of the essential oil in Forsythia suspensa.

    PubMed

    Yang, Jinjuan; Wei, Hongmin; Teng, Xiane; Zhang, Hanqi; Shi, Yuhua

    2014-01-01

    Ionic liquids have attracted much attention as an extraction solvent instead of traditional organic solvent in single-drop microextraction. However, non-volatile ionic liquids are difficult to couple with gas chromatography. Thus, the following injection system for the determination of organic compounds is described. To establish an environmentally friendly, simple, and effective extraction method for preparation and analysis of the essential oil from aromatic plants. The dynamic ultrasonic nebulisation extraction was coupled with headspace ionic liquid-based single-drop microextraction(UNE-HS/IL/SDME)for the extraction of essential oils from Forsythia suspense fruits. After 13 min of extraction for 50 mg sample, the extracts in ionic liquid were evaporated rapidly in the gas chromatography injector through a thermal desorption unit (5 s). The traditional extraction method was carried out for comparative study. The optimum conditions were: 3 μL of 1-methyl-3-octylimidazolium hexafluorophosphate was selected as the extraction solvent, the sample amount was 50 mg, the flow rate of purging gas was 200 mL/min, the extraction time was 13 min, the injection volume was 2 μL, and the thermal desorption temperature and time were 240 °C and 5 s respectively. Comparing with hydrodistillation (HD), the proposed method was environment friendly and efficient. The proposed method is environmentally friendly, time saving, with high efficiency and low consumption. It would extend the application range of the HS/SDME and would be useful especially for aromatic plants analysis. Copyright © 2013 John Wiley & Sons, Ltd.

  2. High-efficiency resonant coupled wireless power transfer via tunable impedance matching

    NASA Astrophysics Data System (ADS)

    Anowar, Tanbir Ibne; Barman, Surajit Das; Wasif Reza, Ahmed; Kumar, Narendra

    2017-10-01

    For magnetic resonant coupled wireless power transfer (WPT), the axial movement of near-field coupled coils adversely degrades the power transfer efficiency (PTE) of the system and often creates sub-resonance. This paper presents a tunable impedance matching technique based on optimum coupling tuning to enhance the efficiency of resonant coupled WPT system. The optimum power transfer model is analysed from equivalent circuit model via reflected load principle, and the adequate matching are achieved through the optimum tuning of coupling coefficients at both the transmitting and receiving end of the system. Both simulations and experiments are performed to evaluate the theoretical model of the proposed matching technique, and results in a PTE over 80% at close coil proximity without shifting the original resonant frequency. Compared to the fixed coupled WPT, the extracted efficiency shows 15.1% and 19.9% improvements at the centre-to-centre misalignment of 10 and 70 cm, respectively. Applying this technique, the extracted S21 parameter shows more than 10 dB improvements at both strong and weak couplings. Through the developed model, the optimum coupling tuning also significantly improves the performance over matching techniques using frequency tracking and tunable matching circuits.

  3. Recovery of Ni Metal from Spent Catalyst with Emulsion Liquid Membrane Using Cyanex 272 as Extractant

    NASA Astrophysics Data System (ADS)

    Yuliusman; Huda, M.; Ramadhan, I. T.; Farry, A. R.; Wulandari, P. T.; Alfia, R.

    2018-03-01

    In this study was conducted to recover nickel metal from spent nickel catalyst resulting from hydrotreating process in petroleum industry. The nickel extraction study with the emulsion liquid membrane using Cyanex 272 as an extractant to extract and separate nickel from the feed phase solution. Feed phase solution was preapred from spent catalyst using sulphuric acid. Liquid membrane consists of a kerosene as diluent, a Span 80 as surfactant, a Cyanex 272 as carrier and sulphuric acid solutions have been used as the stripping solution. The important parameters governing the permeation of nickel and their effect on the separation process have been studied. These parameters are surfactant concentration, extractant concentration feed phase pH. The optimum conditions of the emulsion membrane making process is using 0.06 M Cyanex 272, 8% w/v SPAN 80, 0.05 M H2SO4, internal phase extractant / phase volume ratio: 1/1, and stirring speed 1150 rpm for 60 Minute that can produce emulsion membrane with stability level above 90% after 4 hours. In the extraction process with optimum condition pH 6 for feed phase, ratio of phase emulsion/phase of feed: 1/2, and stirring speed 175 rpm for 15 minutes with result 81.51% nickel was extracted.

  4. Optimization of antifungal activity of Aeollanthus heliotropioides oliv essential oil and Time Kill Kinetic Assay.

    PubMed

    Ngo Mback, M N L; Agnaniet, H; Nguimatsia, F; Jazet Dongmo, P-M; Hzounda Fokou, J-B; Bakarnga-Via, I; Fekam Boyom, F; Menut, C

    2016-09-01

    The limitations encountered in the management of fungal infections are due to the resistance, high toxicity, and overuse of conventional antifungal drugs. For bringing solutions, the antifungal activity of Aeollanthus heliotropioides essential oil will be evaluated and optimized. The aerial parts of A. heliotropioides were harvested and essential oil extracted by hydrodistillation. The chemical composition was determined using gas chromatography and gas chromatography coupled with mass spectrometry and nuclear magnetic resonance. The sensitivity of fungal strains was determined using broth microdilution method. The fungicidal parameters were checked by viability assay using methylene blue dye. The Fractional Inhibitory Concentration Index was determined according the two-dimensional checkboard methods. The efficiency of the simulated optimum concentrations confirmed experimentally on American type culture collection strains, through the Time Kill Kinetic Study. The yield of extraction of essential oil was 0.1%. The major compounds were linalool (38.5%), Z-α-farnesene (25.1%), 9-hexa-decen-1-ol (13.9%) saturated/unsaturated massoia and γ-lactones (4.5%). The MIC of extract on yeast isolates ranged from 0.6mg/mL to 5mg/mL. The combination of essential oil with thymol leads mainly to synergistic effects (0.5≤FICI). The optimums of essential oil (1.6±0.4μl/mL) and thymol (0.6±0.1mg/mL) revealed a total inhibition of yeast after 120 and 180minutes according to the yeasts strains used. This study highlights the in vitro antifungal activity of A. heliotropioides essential oil and it synergistic effect with thymol. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Application of Ultrasound in a Closed System: Optimum Condition for Antioxidants Extraction of Blackberry (Rubus fructicosus) Residues.

    PubMed

    Zafra-Rojas, Quinatzin Y; Cruz-Cansino, Nelly S; Quintero-Lira, Aurora; Gómez-Aldapa, Carlos A; Alanís-García, Ernesto; Cervantes-Elizarrarás, Alicia; Güemes-Vera, Norma; Ramírez-Moreno, Esther

    2016-07-21

    Blackberry processing generates up to 20% of residues composed mainly of peel, seeds and pulp that are abundant in flavonoids. The objective of this study was to optimize the ultrasound conditions, in a closed system, for antioxidants extraction, using the response surface methodology. Blackberry (Rubus fructicosus) residues were analyzed for total phenolics, total anthocyanins, and antioxidant activity by ABTS and DPPH. The selected independent variables were ultrasound amplitude (X₁: 80%-90%) and extraction time (X₂: 10-15 min), and results were compared with conventional extraction methods. The optimal conditions for antioxidants extraction were 91% amplitude for 15 min. The results for total phenolic content and anthocyanins and antioxidant activity by ABTS and DPPH were of 1201.23 mg gallic acid equivalent (GAE)/100 g dry weight basis (dw); 379.12 mg/100 g·dw; 6318.98 µmol Trolox equivalent (TE)/100 g·dw and 9617.22 µmol TE/100 g·dw, respectively. Compared to solvent extraction methods (water and ethanol), ultrasound achieved higher extraction of all compounds except for anthocyanins. The results obtained demonstrated that ultrasound is an alternative to improve extraction yield of antioxidants from fruit residues such as blackberry.

  6. [Study on extracting and separating curcuminoids from Curcuma longa rhizome using ultrasound strengthen by microemulsion].

    PubMed

    Yue, Chun-Hua; Zheng, Li-Tao; Guo, Qi-Ming; Li, Kun-Ping

    2014-05-01

    To establish a new method for the extraction and separation of curcuminoids from Curcuma longa rhizome by cloud-point preconcentration using microemulsions as solvent. The spectrophotometry was used to detect the solubility of curcumin in different oil phase, emulsifier and auxiliary emulsifier, and the microemulsion prescription was used for false three-phase figure optimization. The extraction process was optimized by uniform experiment design. The curcuminoids were separated from microemulsion extract by cloud-point preconcentration. Oil phase was oleic acid ethyl ester; Emulsifier was OP emulsifier; Auxiliary emulsifier was polyethylene glycol(peg) 400; The quantity of emulsifier to auxiliary emulsifier was the ratio of 5: 1; Microemulsion prescription was water-oleic acid ethyl ester-mixed emulsifier (0.45:0.1:0.45). The optimum extraction process was: time for 12.5 min, temperature of 52 degrees C, power of 360 W, frequency of 400 kHz, and the liquid-solid ratio of 40:1. The extraction rate of curcuminoids was 92.17% and 86.85% in microemulsion and oil phase, respectively. Curcuminoids is soluble in this microemulsion prescription with good extraction rate. This method is simple and suitable for curcuminoids extraction from Curcuma longa rhizome.

  7. [Extraction and analysis of the essential oil in Pogostemon cablin by enzymatic hydrolysis and inhibitory activity against Hela cell proliferation].

    PubMed

    Yu, Jing; Qi, Yue; Luo, Gang; Duan, Hong-quan; Zhou, Jing

    2012-05-01

    To optimize the extraction method of essential oil in Pogostemon cablin and analyze its inhibitory activity against Hela cell proliferation. The Pogostemon cablin was treated by hemicellulase before steam distillation. The enzyme dosage, treatment time, treatment temperature, pH were optimized through orthogonal experimental design. The components of essential oil were identified by gas chromatography-mass spectrometry (GC-MS). Inhibitory activity of patchouli oil against Hela cell proliferation was determined by MTP method. The optimum extraction process was as follows: pH 4.5, temperature 45 degrees C, the ratio of hemicellulase to Pogostemon cablin was 1% and enzymatic hydrolysis for 1.0 hour. Extraction ratio of the patchouli oil in steam distillation and hemicellulase extraction method was 2.2220 mg/g, 3.1360 mg/g respectively. Patchouli oil could inhibit Hela cell proliferation. IC50 of the patchouli oil in steam distillation and hemicellulase extraction method was 12.2 +/- 0.46 microg/mL and 0.36 +/- 0.03 microg/mL respectively. In comparison with steam distillation method, extraction ratios of essential oil and the inhibitory activity against Hela cell proliferation can be increased by the hemicellulase extraction method.

  8. Total soluble solids from banana: evaluation and optimization of extraction parameters.

    PubMed

    Carvalho, Giovani B M; Silva, Daniel P; Santos, Júlio C; Izário Filho, Hélcio J; Vicente, António A; Teixeira, José A; Felipe, Maria das Graças A; Almeida e Silva, João B

    2009-05-01

    Banana, an important component in the diet of the global population, is one of the most consumed fruits in the world. This fruit is also very favorable to industry processes (e.g., fermented beverages) due to its rich content on soluble solids and minerals, with low acidity. The main objective of this work was to evaluate the influence of factors such as banana weight and extraction time during a hot aqueous extraction process on the total soluble solids content of banana. The extract is to be used by the food and beverage industries. The experiments were performed with 105 mL of water, considering the moisture of the ripe banana (65%). Total sugar concentrations were obtained in a beer analyzer and the result expressed in degrees Plato (degrees P, which is the weight of the extract or the sugar equivalent in 100 g solution at 20 degrees C), aiming at facilitating the use of these results by the beverage industries. After previous studies of characterization of the fruit and of ripening performance, a 2(2) full-factorial star design was carried out, and a model was developed to describe the behavior of the dependent variable (total soluble solids) as a function of the factors (banana weight and extraction time), indicating as optimum conditions for extraction 38.5 g of banana at 39.7 min.

  9. Simultaneous extraction and quantification of lamotrigine, phenobarbital, and phenytoin in human plasma and urine samples using solidified floating organic drop microextraction and high-performance liquid chromatography.

    PubMed

    Asadi, Mohammad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Abbasi, Bijan

    2015-07-01

    A novel and simple method based on solidified floating organic drop microextraction followed by high-performance liquid chromatography with ultraviolet detection has been developed for simultaneous preconcentration and determination of phenobarbital, lamotrigine, and phenytoin in human plasma and urine samples. Factors affecting microextraction efficiency such as the type and volume of the extraction solvent, sample pH, extraction time, stirring rate, extraction temperature, ionic strength, and sample volume were optimized. Under the optimum conditions (i.e. extraction solvent, 1-undecanol (40 μL); sample pH, 8.0; temperature, 25°C; stirring rate, 500 rpm; sample volume, 7 mL; potassium chloride concentration, 5% and extraction time, 50 min), the limits of detection for phenobarbital, lamotrigine, and phenytoin were 1.0, 0.1, and 0.3 μg/L, respectively. Also, the calibration curves for phenobarbital, lamotrigine, and phenytoin were linear in the concentration range of 2.0-300.0, 0.3-200.0, and 1.0-200.0 μg/L, respectively. The relative standard deviations for six replicate extractions and determinations of phenobarbital, lamotrigine, and phenytoin at 50 μg/L level were less than 4.6%. The method was successfully applied to determine phenobarbital, lamotrigine, and phenytoin in plasma and urine samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology.

    PubMed

    Chen, Shasha; Zeng, Zhi; Hu, Na; Bai, Bo; Wang, Honglun; Suo, Yourui

    2018-03-01

    Lycium ruthenicum Murr. (LR) is a functional food that plays an important role in anti-oxidation due to its high level of phenolic compounds. This study aims to optimize ultrasound-assisted extraction (UAE) of phenolic compounds and antioxidant activities of obtained extracts from LR using response surface methodology (RSM). A four-factor-three-level Box-Behnken design (BBD) was employed to discuss the following extracting parameters: extraction time (X 1 ), ultrasonic power (X 2 ), solvent to sample ratio (X 3 ) and solvent concentration (X 4 ). The analysis of variance (ANOVA) results revealed that the solvent to sample ratio had a significant influence on all responses, while the extraction time had no statistically significant effect on phenolic compounds. The optimum values of the combination of phenolic compounds and antioxidant activities were obtained for X 1 =30min, X 2 =100W, X 3 =40mL/g, and X 4 =33% (v/v). Five phenolic acids, including chlorogenic acid, caffeic acid, syringic acid, p-coumaric acid and ferulic acid, were analyzed by HPLC. Our results indicated that optimization extraction is vital for the quantification of phenolic compounds and antioxidant activity in LR, which may be contributed to large-scale industrial applications and future pharmacological activities research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Application of ionic liquids in vacuum microwave-assisted extraction followed by macroporous resin isolation of three flavonoids rutin, hyperoside and hesperidin from Sorbus tianschanica leaves.

    PubMed

    Gu, Huiyan; Chen, Fengli; Zhang, Qiang; Zang, Jing

    2016-03-01

    Rutin, hyperoside and hesperidin were effectively extracted from Sorbus tianschanica leaves by an ionic liquid vacuum microwave-assisted method. A series of ionic liquids with various anions and alkyl chain length of the cations were studied and the extraction was performed in [C6mim][BF4] aqueous solution. After optimization by a factorial design and response surface methodology, total extraction yield of 2.37mg/g with an error of 0.12mg/g (0.71±0.04mg/g, 1.18±0.06mg/g and 0.48±0.02 for rutin, hyperoside and hesperidin, respectively) was achieved under -0.08MPa for vacuum, 19min and 420W for microwave irradiation time and power, and 15mL/g for liquid-solid ratio. The proposed method here is more efficient and needs a shorter extraction time for rutin, hyperoside and hesperidin from S. tianschanica leaves than reference extraction techniques. In stability studies performed with standard rutin, hyperoside and hesperidin, the target analytes were stable under the optimum conditions. The proposed method had a high reproducibility and precision. In addition, separation of rutin, hyperoside and hesperidin from [C6mim][BF4] extraction solution was completed effectively by AB-8 macroporous resin adsorption and desorption process. Ionic liquid vacuum microwave-assisted extraction is a simple, rapid and efficient sample extraction technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Extraction of valerenic acids from valerian (Valeriana officinalis L.) rhizomes.

    PubMed

    Boyadzhiev, L; Kancheva, D; Gourdon, C; Metcheva, D

    2004-09-01

    Extraction of valerenic acids (valerenic, acetoxyvalerenic and hydroxyvalerenic) from dry ground rhizomes of valerian (Valeriana officinalis L.) was studied. The effect of ethanol concentration in the solvent, extraction temperature and drug particle size on extraction kinetics were investigated and the optimum values of these process parameters were determined for the case of intensively stirred two-phase dispersion. It was found that increased processing temperature favors extraction kinetics, but provokes moderate degradation of valerenic acids.

  13. Investigation on ultrasonication mediated biosurfactant disintegration method in sludge flocs for enhancing hydrolytic enzymes activity and polyhydroxyalkanoates.

    PubMed

    Sethupathy, A; Sivashanmugam, P

    2018-06-04

    In this study, a novel biosurfactant potential bacterial strain Pseudomonas pachastrellae RW43 was isolated from pulp and paper sludge and the biosurfactant namely rhamnolipid produced by Pseudomonas pachastrellae RW43 was investigated by varying pH and incubation time in batch liquid fermentation process. The maximal yield of rhamnolipid was found to be 12.1 g/L at an optimized condition of pH 7 and incubation time of 168 h. NMR analysis was performed for identification of molecular structure of produced rhamnolipid and its results concluded that the product was identified as di rhamnolipid. Then, statistically the global optimum conditions for hydrolytic enzymes extraction parameters (sonication power (100 W), extraction time (15 min) and rhamnolipid dosage (2% v/v)) were established. At 30,456 kJ/kg TS specific energy, ultrasonication with rhamnolipid disintegration method extracted maximal consortium activity of hydrolytic enzymes from mixed sludge (municipal and pulp & paper sludge) and the maximum observed were found to be 42.22, 51.75, 34.26, 24.21, 11.35 Units/g VSS respectively for protease, α-amylase, cellulase, lipase and α-glucosidase. Polyhydroxyalkanoates was recovered from enzymes extracted sludge using various solvents namely chloroform, sodium hypochlorite with chloroform and sodium lauryl sulfate with sodium hypochlorite. The maximum recovery was found to be 74 g/kg using sodium hypochlorite and chloroform extraction solvents.

  14. Optimization of simultaneous ultrasonic-assisted extraction of water-soluble and fat-soluble characteristic constituents from Forsythiae Fructus Using response surface methodology and high-performance liquid chromatography.

    PubMed

    Xia, Yong-Gang; Yang, Bing-You; Liang, Jun; Wang, Di; Yang, Qi; Kuang, Hai-Xue

    2014-07-01

    The compounds (+)-pinoresinol-β-glucoside (1) forsythiaside, (2) phillyrin (3) and phillygenin (4) were elucidated to be the characteristic constituents for quality control of Forsythiae Fructus extract by chromatographic fingerprint in 2010 edition of Chinese Pharmacopoeia due to their numerous important pharmacological actions. It is of great interest to extract these medicinally active constituents from Forsythiae Fructus simultaneously. In this study, a new ultrasound-assisted extraction (UAE) method was developed for the simultaneous extraction of biological components 1-4 in Forsythiae Fructus. The quantitative effects of extraction time, ratio of liquid to solid, extraction temperature, and methanol concentration on yield of these four important biological constituents from Forsythiae Fructus were investigated using response surface methodology with Box-Behnken design. The compounds 1-4 extracted by UAE were quantitative analysis by high-performance liquid chromatography-photodiode array detect (HPLC-PAD), and overall desirability (OD), the geometric mean of the contents of four major biological components, was used as a marker to evaluate the extraction efficiency. By solving the regression equation and analyzing 3-D plots, the optimum condition was at extraction temperature 70°C, time 60 min, ratio of liquid to solid 20, and methanol concentration 76.6%. Under these conditions, extraction yields of compounds 1-4 were 2.92 mg/g, 52.10 mg/g, 0.90 mg/g and 0.57 mg/g, respectively, which were in good agreement with the predicted OD values. In order to achieve a similar yield as UAE, soxhlet extraction required at least 6 h and maceration extraction required much longer time of 24 h. Established UAE method has been successfully applied to sample preparation for the quality control of Forsythiae Fructus. Additionally, a quadrupole time-of-flight mass spectrometry was applied to the structural confirmation of analytes from the complex matrices acquired by UAE. The results indicated that UAE is an effective alternative method for extracting bioactive constituents, which may facilitate a deeper understanding of the extract of active constituents in Forsythiae Fructus from the raw material to its extract for providing the theoretical references.

  15. Extraction and Isolation of Antineoplastic Pristimerin from Mortonia greggii (Celastraceae).

    PubMed

    Mejia-Manzano, Luis Alberto; Barba-Dávila, Bertha A; Gutierrez-Uribe, Janet A; Escalante-Vázquez, Edgardo J; Serna-Saldivar, Sergio O

    2015-11-01

    The aim of this research was to identify, extract and isolate pristimerin in leaves, stems and roots of the Mexican plant Mortonia greggii (Celastraceae). The principal objective was to determine the best laboratory experimental conditions for the extraction and isolation of this powerful natural anticancer agent from the root tissue. Six experimental factors in solid-liquid pristimerin extraction were analyzed: solvent systems, number of extractions, ratio of plant weight (g)/solvent volume (mL) used, time of extraction, temperature and agitation. A mathematical model was generated for pristimerin purity and yield. Ethanol, first extraction, 0.5 ratio of plant weight/solvent volume (g/mL), 0.5 h, 200 rpm and 49.7°C were optimal conditions for the extraction of this phytochemical. The degree of purification of pristimerin root extract was studied by size-exclusion chromatography (SEC) using Sephadex LH-20 reaching fractions with purification indexes (PI) greater than 2 and recoveries of 28.3%. When fractions with purification indices higher than 1 and less than 2 were accumulated, the recovery of pristimerin increased by about 73.6%. By combining the optimum extracts and SEC purification protocols, an enriched fraction containing 245.6 mg pristimerin was obtained from 100 g of root bark, representing about 14.4%, w/w, pristimerin from the total solids presented in the fraction.

  16. Development of green extraction processes for Nannochloropsis gaditana biomass valorization.

    PubMed

    Sánchez-Camargo, Andrea Del Pilar; Pleite, Natalia; Mendiola, José Antonio; Cifuentes, Alejandro; Herrero, Miguel; Gilbert-López, Bienvenida; Ibáñez, Elena

    2018-04-23

    In the present work, the valorization of Nannochloropsis gaditana biomass is proposed within the concept of biorefinery. To this aim, high-pressure homogenization (HPH) was used to break down the strong cell wall and supercritical fluid extraction (SFE) with pure CO 2 was applied as a first step to extract valuable compounds (such as non-polar lipids and pigments). Extraction of the remaining residue for the recovery of bioactive compounds was studied by means of an experimental design based on response surface methodology (RSM) employing pressurized liquid extraction (PLE) with green solvents such as water and ethanol. Optimum extract was achieved with pure ethanol at 170°C for 20 min, providing an important antioxidant capacity (0.72 ± 0.03 mmol trolox eq g -1 extract). Complete chemical characterization of the optimum extract was carried out by using different chromatographic methods such as reverse-phase high-performance liquid chromatography with diode array detection (RP-HPLC-DAD), normal-phase HPLC with evaporative light scattering detection (NP-HPLC-ELSD) and gas chromatography coupled to mass spectrometry detection (GC-MS); carotenoids (e.g. violaxanthin), chlorophylls and polar lipids were the main compounds observed while palmitoleic, palmitic, myristic acids and the polyunsaturated eicosapentanoic (EPA) acid were the predominant fatty acids in all PLE extracts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optimization of ultrasound-assisted aqueous two-phase system extraction of polyphenolic compounds from Aronia melanocarpa pomace by response surface methodology.

    PubMed

    Xu, Yan-Yang; Qiu, Yang; Ren, Hui; Ju, Dong-Hu; Jia, Hong-Lei

    2017-03-16

    Aronia melanocarpa berries are abundant in polyphenolic compounds. After juice production, the pomace of pressed berries still contains a substantial amount of polyphenolic compounds. For efficient utilization of A. melanocarpa berries and the enhancement of polyphenolic compound yields in Aronia melanocarpa pomace (AMP), total phenolics (TP) and total flavonoids (TF) from AMP were extracted, using ultrasound-assisted aqueous two-phase system (UAE-ATPS) extraction method. First, the influences of ammonium sulfate concentration, ethanol-water ratio, ultrasonic time, and ultrasonic power on TP and TF yields were investigated. On this basis, process variables such as ammonium sulfate concentration (0.30-0.35 g mL -1 ), ethanol-water ratio (0.6-0.8), ultrasonic time (40-60 min), and ultrasonic power (175-225 W) were further optimized by implementing Box-Benhnken design with response surface methodology. The experimental results showed that optimal extraction conditions of TP from AMP were as follows: ammonium sulfate concentration of 0.324 g mL -1 , ethanol-water ratio of 0.69, ultrasonic time of 52 min, and ultrasonic power of 200 W. Meanwhile, ammonium sulfate concentration of 0.320 g mL -1 , ethanol-water ratio of 0.71, ultrasonic time of 50 min, and ultrasonic power of 200 W were determined as optimum extraction conditions of TF in AMP. Experimental validation was performed, where TP and TF yields reached 68.15 ± 1.04 and 11.67 ± 0.63 mg g -1 , respectively. Close agreement was found between experimental and predicted values. Overall, the present results demonstrated that ultrasound-assisted aqueous two-phase system extraction method was successfully used to extract total phenolics and flavonoids in A. melanocarpa pomace.

  18. Simultaneous qualification and quantification of baccharane glycosides in Impatientis Semen by HPLC-ESI-MSD and HPLC-ELSD.

    PubMed

    Li, Hui-Jun; Yu, Jun-Jie; Li, Ping

    2011-03-25

    This study presents a high performance liquid chromatography (HPLC) with electrospray ionization mass spectrometric detection (ESI-MSD) and evaporative light scattering detection (ELSD) method for the simultaneous qualification and quantification of eight major baccharane glycosides, namely hosenlosides A, B, C, F, G, K, L, and M in Impatientis Semen, a Chinese herbal medicine derived from the seeds of Impatiens balsamina L. In order to achieve optimum performance, several extraction parameters (including extraction solvent, extraction mode, extraction time) were optimized. The baccharane glycosides were separated on a Shim-pack CLC-ODS column with gradient elution of water and methanol. Temperature for the ELSD drift tube was set at 98°C and the nitrogen flow rate was 2.7l/min. The unambiguous identities of the analytes were realized by comparing retention times and mass data with those of reference compounds. The developed method was fully validated in terms of linearity, sensitivity, precision, repeatability, recovery as well as robustness, and subsequently applied to evaluate the quality of 14 batches of Impatientis Semen commercial samples from different collections. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Preconcentration and determination of ceftazidime in real samples using dispersive liquid-liquid microextraction and high-performance liquid chromatography with the aid of experimental design.

    PubMed

    Razmi, Rasoul; Shahpari, Behrouz; Pourbasheer, Eslam; Boustanifar, Mohammad Hasan; Azari, Zhila; Ebadi, Amin

    2016-11-01

    A rapid and simple method for the extraction and preconcentration of ceftazidime in aqueous samples has been developed using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography analysis. The extraction parameters, such as the volume of extraction solvent and disperser solvent, salt effect, sample volume, centrifuge rate, centrifuge time, extraction time, and temperature in the dispersive liquid-liquid microextraction process, were studied and optimized with the experimental design methods. Firstly, for the preliminary screening of the parameters the taguchi design was used and then, the fractional factorial design was used for significant factors optimization. At the optimum conditions, the calibration curves for ceftazidime indicated good linearity over the range of 0.001-10 μg/mL with correlation coefficients higher than the 0.98, and the limits of detection were 0.13 and 0.17 ng/mL, for water and urine samples, respectively. The proposed method successfully employed to determine ceftazidime in water and urine samples and good agreement between the experimental data and predictive values has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fast methodology of analysing major steviol glycosides from Stevia rebaudiana leaves.

    PubMed

    Lorenzo, Cándida; Serrano-Díaz, Jéssica; Plaza, Miguel; Quintanilla, Carmen; Alonso, Gonzalo L

    2014-08-15

    The aim of this work is to propose an HPLC method for analysing major steviol glycosides as well as to optimise the extraction and clarification conditions for obtaining these compounds. Toward this aim, standards of stevioside and rebaudioside A with purities ⩾99.0%, commercial samples from different companies and Stevia rebaudiana Bertoni leaves from Paraguay supplied by Insobol, S.L., were used. The analytical method proposed is adequate in terms of selectivity, sensitivity and accuracy. Optimum extraction conditions and adequate clarification conditions have been set. Moreover, this methodology is safe and eco-friendly, as we use only water for extraction and do not use solid-phase extraction, which requires solvents that are banned in the food industry to condition the cartridge and elute the steviol glycosides. In addition, this methodology consumes little time as leaves are not ground and the filtration is faster, and the peak resolution is better as we used an HPLC method with gradient elution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The role of aqueous leaf extract of Tinospora crispa as reducing and capping agents for synthesis of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Apriandanu, D. O. B.; Yulizar, Y.

    2017-04-01

    Environmentally friendly method for green synthesis of Au nanoparticles (AuNP) using aqueous leaf extract of Tinospora crispa (TLE) was reported. TLE has the ability for reducing and capping AuNP. Identification of active compounds in aqueous leaf extract was obtained by phytochemical analysis and Fourier transform infrared spectroscopy (FTIR). The AuNP-TLE growth was characterized using UV-Vis spectrophotometer. The particle size and the distribution of AuNP were confirmed by particle size analyzer (PSA). AuNP-TLE formation was optimized by varying the extract concentration and time of the synthesis process. UV-Vis absorption spectrum of optimum AuNP formation displayed by the surface plasmon resonance at maximum wavelength of λmax 536 nm. The PSA result showed that AuNP has size distribution of 80.60 nm and stable up to 21 days. TEM images showed that the size of the AuNP is ± 25 nm.

  2. Production of glutinous rice flour from broken rice via ultrasonic assisted extraction of amylose.

    PubMed

    Setyawati, Yohana Dwi; Ahsan, Sitti Faika; Ong, Lu Ki; Soetaredjo, Felycia Edi; Ismadji, Suryadi; Ju, Yi-Hsu

    2016-07-15

    In this study, a modified aqueous leaching method by complex formation of amylose with glycerol was employed for reducing the amylose content of starch in broken white rice to less than 2%, so that the resulting starch can be classified to that of glutinous rice flour. By employing ultrasonication in alkaline condition, extraction of amylose could be performed by washing at lower temperature in shorter time compared to the existing aqueous leaching method. The effects of glycerol concentration, alkali concentration, ultrasonication and treatment time on the amylose content of the treated starch were systematically investigated. Under optimum condition, amylose content of broken white rice starch can be reduced from 27.27% to 1.43% with a yield of 80.42%. The changes in the physicochemical properties of the rice flour before and after treatment were studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Extraction and identification of isothiocyanates from broccolini seeds.

    PubMed

    Zhang, Bochao; Wang, Xiaoqin; Yang, Yanjing; Zhang, Xuewu

    2011-01-01

    Broccolini (Brassica oleracea Italica x Alboglabra) is a cross between broccoli and kai-lan (Chinese broccoli), which contains abundant glucosinolates. The intact glucosinolates are believed to be inactive, while their hydrolysis products, such as isothiocyanates (ITCs), are found to have bacteriocidal and anticarcinogenic activities. So far, no report is available about generation of ITCs during the process of glucosinolate hydrolysis in broccolini. In this study, the hydrolysis of broccolini seed glucosinolates was investigated under controlled conditions of pH, time and temperature, and the ITCs produced were determined. The results showed that an optimum hydrolysis of glucosinolates could be achieved at a temperature of 250C, at pH 7.0, and a reaction time of eight hours. Furthermore, GC-MS analysis indicated that the extracted ITCs primarily were: 3-BITC (3-benzyl-ITC) (10.8%), 4-methylpentyl-ITC (0.5%), 1-isothiocyanato-butane (26.8%), PEITC (phenethyl-ITC) (22.6%) and SFN (sulforaphane) (19.2%).

  4. Enzymatic extraction of pectin from artichoke (Cynara scolymus L.) by-products using Celluclast®1.5L.

    PubMed

    Sabater, Carlos; Corzo, Nieves; Olano, Agustín; Montilla, Antonia

    2018-06-15

    The aim of this study was to optimise pectin extraction from artichoke by-products with Celluclast ® 1.5L using an experimental design analysed by response-surface methodology (RSM). The variables optimised were artichoke by-product powder concentration (2-7%, X 1 ), enzyme dose (2.2-13.3 U g -1 , X 2 ) and extraction time (6-24 h, X 3 ). The variables studied were galacturonic acid (GalA) (R 2 93.9) and pectic neutral sugars (R 2 92.8) content and pectin yield (R 2 88.6). In the optimum extraction conditions (X 1  = 6.5%; X 2  = 10.1 U g -1 ; X 3  = 27.2 h), pectin yield was 176 mgg -1 dry matter (DM). Considering 27.2 h of treatment as the +α value given by the design, the extraction time was increased up to 48 h obtaining a yield of 221 mg g -1 DM. The enzymatic method optimised allows obtaining artichoke pectin with good yield, high GalA (720 mg g -1 DM) and arabinose (127.6mgg -1 DM) contents and degree of methylation of 19.5%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Enzymatic browning and biochemical alterations in black spots of pineapple [Ananas comosus (L.) Merr.].

    PubMed

    Avallone, Sylvie; Guiraud, Joseph-Pierre; Brillouet, Jean-Marc; Teisson, Claude

    2003-08-01

    Penicillium funiculosum Thom. was consistently isolated from pineapple-infected fruitlet (black spots). Polyphenol oxidase, peroxidase, and laccase activities were determined in extracts from contiguous and infected fruitlets. Healthy fruitlets showed a rather high level of polyphenol oxidase (optimum pH 7.0), and this activity was tremendously increased (X 10) in contiguous infected fruitlets. Furthermore, infected fruitlets also exhibited laccase activity (optimum pH 4.0), while peroxidase was rather constant in both fruitlets. Browning reactions were attributed to qualitative and quantitative modifications of the enzymatic equipment (polyphenol oxidase and laccase) (p < 0.0001). In infected fruiltets, sucrose and L-malic acid were present at significantly lower amounts than in healthy ones, likely owing to fungal metabolism (p < 0.0001), whereas cell wall material was three times higher, which could be viewed as a defense mechanism to limit expansion of the mycelium.

  6. Optimization of water absorbing exopolysaccharide production on local cheap substrates by Bacillus strain CMG1403 using one variable at a time approach.

    PubMed

    Muhammadi; Afzal, Muhammad

    2014-01-01

    Optimum culture conditions, and carbon and nitrogen sources for production of water absorbing exopolysaccharide by Bacillus strain CMG1403 on local cheap substrates were determined using one variable at a time approach. Carbon source was found to be sole substrate for EPS biosynthesis in the presence of yeast extract that supported the growth only and hence, indirectly enhanced the EPS yield. Whereas, urea only coupled with carbon source could enhance the EPS production but no effect on growth. The maximum yield of EPS was obtained when Bacillus strain CMG1403 was grown statically in neutral minimal medium with 25% volumetric aeration at 30°C for 10 days. Under these optimum conditions, a maximum yield of 2.71±0.024, 3.82±0.005, 4.33±0.021, 4.73±0.021, 4.85±0.024, and 5.52±0.016 g/L culture medium was obtained with 20 g (sugar) of sweet whey, glucose, fructose, sucrose, cane molasses and sugar beet the most efficient one respectively as carbon sources. Thus, the present study showed that under optimum culture conditions, the local cheap substrates could be superior and efficient alternatives to synthetic carbon sources providing way for an economical production of water absorbing EPS by indigenous soil bacterium Bacillus strain CMG1403.

  7. Isolation and characterization of coagulant extracted from Moringa oleifera seed by salt solution.

    PubMed

    Okuda, T; Baes, A U; Nishijima, W; Okada, M

    2001-02-01

    It is known that M. oleifera contains a natural coagulant in the seeds. In our previous research, the method using salt water to extract the active coagulation component from M. oleifera seeds was developed and compared with the conventional method using water. In this research, the active coagulation component was purified from a NaCl solution crude extract of Moringa oleifera seeds. The active component was isolated and purified from the crude extract through a sequence of steps that included salting-out by dialysis, removal of lipids and carbohydrates by homogenization with acetone, and anion exchange. Specific coagulation activity of the active material increased up to 34 times more than the crude extract after the ion exchange. The active component was not the same as that of water extract. The molecular weight was about 3000 Da. The Lowry method and the phenol-sulfuric acid method indicated that the active component was neither protein nor polysaccharide. The optimum pH of the purified active component for coagulation of turbidity was pH 8 and above. Different from the conventional water extracts, the active component can be used for waters with low turbidity without increase in the dissolved organic carbon concentration.

  8. Focused microwave-assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies).

    PubMed

    Li, Hui; Chen, Bo; Zhang, Zhaohui; Yao, Shouzhuo

    2004-06-17

    A new focused microwave-assisted solvent extraction method using water as solvent has been developed for leaching geniposidic and chlorogenic acids from Eucommia ulmodies Oliv. The extraction procedures were optimized using a two indexes orthogonal experimental design and graphical analysis, by varying irradiation time, solvent volume, solvent composition and microwave power. The optimum extraction conditions were obtained: for geniposidic acid, 50% micorwave power, 40s irradiation, and 80% (v/v) aqueous methanol as extraction solvent (20mlg(-1) sample); and for chlorogenic acid, 50% micorwave power, 30s irradiation, and 20% aqueous methanol (20mlg(-1) sample). The composition of the extraction solvent was optimized and can be directly used as the mobile phase in the HPLC separation. Quantification of organic acids was done by HPLC at room temperature using Spherigel C(18) chromatographic column (250 mm x4.6 mm , i.d. 5mum), the methanol:water:acetic acid (20:80:1.0, v/v) mobile phase and UV detection at 240nm. The R.S.D. of the extraction process for geniposidic and chlorogenic acid were 3.8 and 4.1%, respectively.

  9. Determination of parabens in human milk and other food samples by capillary electrophoresis after dispersive liquid-liquid microextraction with back-extraction.

    PubMed

    Alshana, Usama; Ertaş, Nusret; Göğer, Nilgün G

    2015-08-15

    Dispersive liquid-liquid microextraction (DLLME) with back-extraction was used prior to capillary electrophoresis (CE) for the extraction of four parabens. Optimum extraction conditions were: 200 μL chloroform (extraction solvent), 1.0 mL acetonitrile (disperser solvent) and 1 min extraction time. Back-extraction of parabens from chloroform into a 50mM sodium hydroxide solution within 10s facilitated their direct injection into CE. The analytes were separated at 12°C and 25 kV with a background electrolyte of 25 mM borate buffer containing 5.0% (v/v) acetonitrile. Enrichment factors were in the range of 4.3-10.7 and limits of detection ranged from 0.1 to 0.2 μg mL(-1). Calibration graphs showed good linearity with coefficients of determination (R(2)) higher than 0.9957 and relative standard deviations (%RSDs) lower than 3.5%. DLLME-CE was demonstrated to be a simple and rapid method for the determination of parabens in human milk and food with relative recoveries in the range of 86.7-103.3%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Concentration of organic compounds in natural waters with solid-phase dispersion based on advesicle modified silica prior to liquid chromatography.

    PubMed

    Parisis, Nikolaos A; Giokas, Dimosthenis L; Vlessidis, Athanasios G; Evmiridis, Nicholaos P

    2005-12-02

    The ability of vesicle-coated silica to aid the extraction of organic compounds from water prior to liquid chromatographic analysis is presented for the first time. The method is based on the formation of silica supported cationic multi-lamellar vesicles of gemini surfactants inherently ensuring the presence of hydrophilic and hydrophobic sites for the partitioning of analytes bearing different properties. Method development is illustrated by studying the adsolubilization of UV absorbing chemicals from swimming pool water. Due to the requirement for external energy input (intense shearing) a method based on solid-phase dispersion (SPD) was applied producing better results than off-line solid-phase extraction (SPE). Meticulous investigation of the experimental parameters was conducted in order to elucidate the mechanisms behind the proposed extraction pattern. Analyte recoveries were quantitative under the optimum experimental conditions offering recoveries higher than 96% with RSD values below 5%.

  11. Palaeococcus pacificus sp. nov., an archaeon from deep-sea hydrothermal sediment.

    PubMed

    Zeng, Xiang; Zhang, Xiaobo; Jiang, Lijing; Alain, Karine; Jebbar, Mohamed; Shao, Zongze

    2013-06-01

    A hyperthermophilic, anaerobic, piezophilic archaeon (strain DY20341(T)) was isolated from a sediment sample collected from an East Pacific Ocean hydrothermal field (1° 37' S 102° 45' W) at a depth of 2737 m. The cells were irregular cocci, 0.8-1.5 µm in diameter. Growth was observed between 50 and 90 °C (optimum 80 °C), pH 5.0 and 8.0 (optimum pH 7.0), 1% and 7% (w/v) sea salts (Sigma, optimum 3%), 1% and 4% (w/v) NaCl (optimum 3%) and 0.1 and 80 MPa (optimum 30 MPa). The minimum doubling time was 66 min at 30 MPa and 80 °C. The isolate was an obligate chemoorganoheterotroph, capable of utilizing complex organic compounds and organic acids including yeast extract, peptone, tryptone, casein, starch, Casamino acids, citrate, lactate, acetate, fumarate, propanoate and pyruvate for growth. It was strictly anaerobic and facultatively dependent on elemental sulfur or sulfate as electron acceptors, but did not reduce sulfite, thiosulfate, Fe(III) or nitrate. The presence of elemental sulfur enhanced growth. The G+C content of the genomic DNA was 43.6 ± 1 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Palaeococcus ferrophilus DMJ(T) (95.7% 16S rRNA gene similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Palaeococcus pacificus sp. nov. is proposed. The type strain is strain DY20341(T) (=JCM 17873(T)=DSM 24777(T)).

  12. Preliminary considerations for extraction of thermal effect from magma

    NASA Astrophysics Data System (ADS)

    Hickox, C. E.; Dunn, J. C.

    Simplified mathematical models are developed to describe the extraction of thermal energy from magma based on the concept of a counter-flow heat exchanger inserted into the magma body. Analytical solutions are used to investigate influence of the basic variables on electric power production. Calculations confirm that the proper heat exchanger flow path is down the annulus with hot fluid returning to the surface through the central core. The core must be insulated from the annulus to achieve acceptable wellhead temperatures, but this insulation thickness can be quite small. The insulation is effective in maintaining the colder annular flow below expected formation temperatures so that a net beat gain from the formation above a magma body is predicted. The analynes show that optimum flow rates exist that maximize electric power production. These optimum flow rates are functions of the heat transfer coefficients that describe magma energy extraction.

  13. Extraction of uranium from tailings by sulfuric acid leaching with oxidants

    NASA Astrophysics Data System (ADS)

    Huang, Jing; Li, Mi; Zhang, Xiaowen; Huang, Chunmei; Wu, Xiaoyan

    2017-06-01

    Recovery of uranium have been performed by leaching uranium-containing tailings in sulfuric acid system with the assistance of HF, HClO4, H2O2 and MnO2. The effect of reagent dosage, sulfuric acid concentration, Liquid/solid ratio, reaction temperature and particle size on the leaching of uranium were investigated. The results show that addiction of HF, HClO4, H2O2 and MnO2 significantly increased the extraction of uranium under 1M sulphuric acid condition and under the optimum reaction conditions a dissolution fraction of 85% by HClO4, 90% by HF, 95% by H2O2 can be reached respectively. The variation of technological mineralogy properites of tailings during leaching process show that the assistants can break gangue effectively. These observations suggest that optimum oxidants could potentially influence the extraction of uranium from tailings even under dilute acid condition.

  14. Optimizing pressurized liquid extraction of microbial lipids using the response surface method.

    PubMed

    Cescut, J; Severac, E; Molina-Jouve, C; Uribelarrea, J-L

    2011-01-21

    Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. SUPERFUND TREATABILITY CLEARINGHOUSE: FINAL REPORT: DEVELOPMENT OF OPTIMUM TREATMENT SYSTEM FOR WASTEWATER LAGOONS PHASE II - SOLVENT EXTRACTION LABORATORY TESTING

    EPA Science Inventory

    The U.S. Army surveyed innovative treatment techniques for restoration of hazardous waste lagoons and selected solvent extraction as cost-effective restoration for further study. This treatability study focuses on treatment of organic (explosive) contaminated lagoon sediments w...

  16. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa.

    PubMed

    Pourmortazavi, Seied Mahdi; Taghdiri, Mehdi; Makari, Vajihe; Rahimi-Nasrabadi, Mehdi

    2015-02-05

    The present study is dealing with the green synthesis of silver nanoparticles using the aqueous extract of Eucalyptus oleosa as a green synthesis procedure without any catalyst, template or surfactant. Colloidal silver nanoparticles were synthesized by reacting aqueous AgNO3 with E. oleosa leaf extract at non-photomediated conditions. The significance of some synthesis conditions such as: silver nitrate concentration, concentration of the plant extract, time of synthesis reaction and temperature of plant extraction procedure on the particle size of synthesized silver particles was investigated and optimized. The participations of the studied factors in controlling the particle size of reduced silver were quantitatively evaluated via analysis of variance (ANOVA). The results of this investigation showed that silver nanoparticles could be synthesized by tuning significant parameters, while performing the synthesis procedure at optimum conditions leads to form silver nanoparticles with 21nm as averaged size. Ultraviolet-visible spectroscopy was used to monitor the development of silver nanoparticles formation. Meanwhile, produced silver nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray, and FT-IR techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Extraction, Antimicrobial, and Antioxidant Activities of Crude Polysaccharides from the Wood Ear Medicinal Mushroom Auricularia auricula-judae (Higher Basidiomycetes).

    PubMed

    Cai, Ming; Lin, Yang; Luo, Yin-long; Liang, Han-hua; Sun, Pei-long

    2015-01-01

    In this study, crude polysaccharides of culinary-medicinal mushroom Auricularia auricular-judae were extracted by hot water extraction and alcohol precipitation, and their antimicrobial and antioxidant activities were investigated. An optimum extraction condition was obtained at a ratio of liquid to solid 70 mL/g, temperature 90°C, time 4 h and extraction number 4. Accordingly, the best yield of crude polysaccharides was 6.89% with 76.12% in purity. Some bacteria and fungi were used for antimicrobial studies. It was found that crude A. auricula-judae had great antimicrobial activities against Escherichia coli and Staphylococcus aureus, but no activities on the others. The inhibitory diameters of antimicrobial zones for the two were 5.55 ± 0.182 and 9.84 ± 0.076 mm, respectively. Moreover, crude A. auricula-judae had significant antioxidant activities in scavenging free radicals, reducing power assays, and Fe2+ chelating ability assay. Results revealed that crude A. auricula-judae has a great potential as antimicrobial and antioxidant, and it can be a supplementary food for human health.

  18. Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization.

    PubMed

    Lefsih, Khalef; Giacomazza, Daniela; Dahmoune, Farid; Mangione, Maria Rosalia; Bulone, Donatella; San Biagio, Pier Luigi; Passantino, Rosa; Costa, Maria Assunta; Guarrasi, Valeria; Madani, Khodir

    2017-04-15

    Optimization of microwave-assisted extraction (MAE) of water-soluble pectin (WSP) from Opuntia ficus indica cladodes was performed using Response Surface Methodology. The effect of extraction time (X 1 ), microwave power (X 2 ), pH (X 3 ) and solid-to-liquid ratio (X 4 ) on the extraction yield was examined. The optimum conditions of MAE were as follows: X 1 =2.15min; X 2 =517W; X 3 =2.26 and X 4 =2g/30.6mL. The maximum obtained yield of pectin extraction was 12.57%. Total carbohydrate content of WSP is about 95.5% including 34.4% of Galacturonic acid. Pectin-related proteins represent only the 0.66% of WSP mass. HPSEC and light scattering analyses reveal that WSP is mostly constituted of high molecular pectin and FTIR measurements show that the microwave treatment does not alter the chemical structure of WSP, in which Galacturonic acid content and yield are 34.4% and 4.33%, respectively. Overall, application of MAE can give rise to high quality pectin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Subcritical n-hexane/isopropanol extraction of lipid from wet microalgal pastes of Scenedesmus obliquus.

    PubMed

    Bian, Xiaoyu; Jin, Wenbiao; Gu, Qiong; Zhou, Xu; Xi, Yuhe; Tu, Renjie; Han, Song-Fang; Xie, Guo-Jun; Gao, Shu-Hong; Wang, Qilin

    2018-02-19

    Subcritical co-solvents of n-hexane/isopropanol were primarily utilized to extract lipid from wet microalgal pastes of Scenedesmus obliquus. The effects of key operational parameters were investigated, and the optimal parameters were obtained: solvent ratio of n-hexane to isopropanol was 3:2 (V:V), phase ratio of co-solvents to microalgal biomass was 35:1 (mL:g), reactor stirring speed was 900 rpm, extraction time was 60 min. Additional pretreatment with acid, ultrasonic and microwave as well as enhanced subcritical pressure/heating treatments were also applied to further study their effects on lipid extraction. The results showed that the lipid recovery rate with acid pretreatment was 8.6 and 6.2% higher than ultrasonic and microwave pretreatment; the optimum enhanced subcritical condition was 55 °C with atmospheric pressure. Under optimal operating conditions, the lipid and FAME yield were 13.5 and 7.2%, which was 82.6 and 135.1% higher than the traditional method. The results indicated that the subcritical n-hexane/isopropanol extraction process had promising application potential.

  20. Fabric phase sorptive extraction of selected penicillin antibiotic residues from intact milk followed by high performance liquid chromatography with diode array detection.

    PubMed

    Samanidou, Victoria; Michaelidou, Katia; Kabir, Abuzar; Furton, Kenneth G

    2017-06-01

    Fabric phase sorptive extraction (FPSE), a novel sorbent-based microextraction method, was evaluated as a simple and rapid strategy for the extraction of four penicillin antibiotic residues (benzylpenicillin, cloxacillin, dicloxacillin and oxacillin) from cows' milk, without prior protein precipitation. Time-consuming solvent evaporation and reconstitution steps were eliminated successfully from the sample preparation workflow. FPSE utilizes a flexible fabric substrate, chemically coated with sol-gel derived, highly efficient, organic-inorganic hybrid sorbent as the extraction medium. Herein short-chain poly(ethylene glycol) provided optimum extraction sensitivity for the selected penicillins, which were analysed using an RP-HPLC method, validated according to the European Decision 657/2002/EC. The limit of quantitation was 10μg/kg for benzylpenicillin, 20μg/kg for cloxacillin, 25μg/kg dicloxacillin and 30μg/kg oxacillin. These are a similar order of magnitude with those reported in the literature and (with the exception of benzylpenicillin) are less than the maximum residue limits (MRL) set by European legislation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Steam distillation extraction of ginger essential oil: Study of the effect of steam flow rate and time process

    NASA Astrophysics Data System (ADS)

    Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi

    2017-01-01

    In Indonesia ginger was usually used as a seasoning for dishes, an ingredient for beverage and a source of herbal medicines. Beside raw usage, ginger can be processed to obtain the essential oil which has many advantages such as proven to be an active antimicrobial and having an antioxidant ability. There are a lot of methods to extract essential oil from ginger, one of which is steam distillation. The aim of the current study was to investigate the effect of variation of time process and steam flow rate in the yield on ginger essential oil steam distillation extraction process. It was found that the best operation condition was 0.35 ml/s as the steam flow rate which yields 2.43% oil. The optimum time process was predicted at 7.5 hours. The composition of the oil was varied depend on the flow rate and every flow rate has its own major component contained in the oil. Curcumene composition in the oil was increased as increased steam flow rate applied, but the composition of camphene was decreased along with the increasing steam flow rate.

  2. Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry.

    PubMed

    Cao, Wan; Ye, Li-Hong; Cao, Jun; Xu, Jing-Jing; Peng, Li-Qing; Zhu, Qiong-Yao; Zhang, Qian-Yun; Hu, Shuai-Shuai

    2015-08-07

    An analytical procedure based on miniaturized solid phase extraction (SPE) and ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed and validated for determination of six flavanones in Citrus fruits. The mesoporous molecular sieve SBA-15 as a solid sorbent was characterised by Fourier transform-infrared spectroscopy and scanning electron microscopy. Additionally, compared with reported extraction techniques, the mesoporous SBA-15 based SPE method possessed the advantages of shorter analysis time and higher sensitivity. Furthermore, considering the different nature of the tested compounds, all of the parameters, including the SBA-15 amount, solution pH, elution solvent, and the sorbent type, were investigated in detail. Under the optimum condition, the instrumental detection and quantitation limits calculated were less than 4.26 and 14.29ngmL(-1), respectively. The recoveries obtained for all the analytes were ranging from 89.22% to 103.46%. The experimental results suggested that SBA-15 was a promising material for the purification and enrichment of target flavanones from complex citrus fruit samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Palaeococcus helgesonii sp. nov., a facultatively anaerobic, hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy.

    PubMed

    Amend, Jan P; Meyer-Dombard, D'Arcy R; Sheth, Seema N; Zolotova, Natalya; Amend, Andrea C

    2003-06-01

    A novel, hyperthermophilic archaeon was isolated from a shallow geothermal well that taps marine waters on the Island of Vulcano in the southern Tyrrhenian Sea, Italy. The cells were irregular cocci, 0.6-1.5 microm in diameter, with multiple polar flagella. Growth was observed at temperatures from 45 to 85 degrees C (optimum at approximately 80 degrees C), pH 5-8 (optimum at 6.5), and 0.5-6.0% NaCl (optimum at approximately 2.8%). The minimum doubling time was 50 min. The isolate was obligately chemoheterotrophic, utilizing complex organic compounds including yeast or beef extract, peptone, tryptone, or casein for best growth. The presence of elemental sulfur enhanced growth. The isolate grew anaerobically as well as microaerobically. The G+C content of the genomic DNA was 42.5 mol%. The 16S rRNA sequence indicated that the new isolate was a member of the Thermococcales within the euryarchaeota, representing the second species in the genus Palaeococcus. Its physiology and phylogeny differed in several key characteristics from those of Palaeococcus ferrophilus, justifying the establishment of a new species; the name Palaeococcus helgesonii sp. nov. is proposed, type strain PI1 (DSM 15127).

  4. Aroma enhancement and enzymolysis regulation of grape wine using β-glycosidase

    PubMed Central

    Zhu, Feng-Mei; Du, Bin; Li, Jun

    2014-01-01

    Adding β-glycosidase into grape wine for enhancing aroma was investigated using gas chromatography-mass spectrometry (GC-MS) and Kramer sensory evaluation. Compared with the extract from control wines, the extract from enzyme-treated wines increased more aromatic compounds using steam distillation extraction (SDE) and GC-MS analyses. Theses aromatic compounds were as follows: 3-methyl-1-butanol formate, 3-pentanol, furfural, 3-methyl-butanoic acid, 2-methyl-butanoic acid, 3-hydroxy-butanoic acid ethyl ester, hexanoic acid, hexanoic acid ethyl ester, benzyl alcohol, octanoic acid, octanoic acid ethyl ester, dodecanoic acid, and ethyl ester. The enzymolysis regulation conditions, including enzymolysis temperature, enzymolysis time, and enzyme amount, were optimized through L9(34) orthogonal test. Kramer sensory evaluation was performed by an 11-man panel of judges. The optimum enzymolysis regulation conditions were found to be temperature of 45°C, enzymolysis time of 90 min, and enzyme amount of 58.32 U/mL grape wine, respectively. The Kramer sensory evaluation supported that the enzyme-treated wines produced a stronger fragrance. PMID:24804072

  5. Determination of phthalate esters from environmental water samples by micro-solid-phase extraction using TiO2 nanotube arrays before high-performance liquid chromatography.

    PubMed

    Zhou, Qingxiang; Fang, Zhi; Liao, Xiangkun

    2015-07-01

    We describe a highly sensitive micro-solid-phase extraction method for the pre-concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high-performance liquid chromatography with a variable-wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2-ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting-out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3-200 μg/L. The limits of detection were 0.04-0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Classification of fresh and frozen-thawed pork muscles using visible and near infrared hyperspectral imaging and textural analysis.

    PubMed

    Pu, Hongbin; Sun, Da-Wen; Ma, Ji; Cheng, Jun-Hu

    2015-01-01

    The potential of visible and near infrared hyperspectral imaging was investigated as a rapid and nondestructive technique for classifying fresh and frozen-thawed meats by integrating critical spectral and image features extracted from hyperspectral images in the region of 400-1000 nm. Six feature wavelengths (400, 446, 477, 516, 592 and 686 nm) were identified using uninformative variable elimination and successive projections algorithm. Image textural features of the principal component images from hyperspectral images were obtained using histogram statistics (HS), gray level co-occurrence matrix (GLCM) and gray level-gradient co-occurrence matrix (GLGCM). By these spectral and textural features, probabilistic neural network (PNN) models for classification of fresh and frozen-thawed pork meats were established. Compared with the models using the optimum wavelengths only, optimum wavelengths with HS image features, and optimum wavelengths with GLCM image features, the model integrating optimum wavelengths with GLGCM gave the highest classification rate of 93.14% and 90.91% for calibration and validation sets, respectively. Results indicated that the classification accuracy can be improved by combining spectral features with textural features and the fusion of critical spectral and textural features had better potential than single spectral extraction in classifying fresh and frozen-thawed pork meat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Microwave assisted extraction of iodine and bromine from edible seaweed for inductively coupled plasma-mass spectrometry determination.

    PubMed

    Romarís-Hortas, Vanessa; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2009-08-15

    The feasibility of microwave energy to assist the solubilisation of edible seaweed samples by tetramethylammonium hydroxide (TMAH) has been investigated to extract iodine and bromine. Inductively coupled plasma-mass spectrometry (ICP-MS) has been used as a multi-element detector. Variables affecting the microwave assisted extraction/solubilisation (temperature, TMAH volume, ramp time and hold time) were firstly screened by applying a fractional factorial design (2(5-1)+2), resolution V and 2 centre points. When extracting both halogens, results showed statistical significance (confidence interval of 95%) for TMAH volume and temperature, and also for the two order interaction between both variables. Therefore, these two variables were finally optimized by a 2(2)+star orthogonal central composite design with 5 centre points and 2 replicates, and optimum values of 200 degrees C and 10 mL for temperature and TMAH volume, respectively, were found. The extraction time (ramp and hold times) was found statistically non-significant, and values of 10 and 5 min were chosen for the ramp time and the hold time, respectively. This means a fast microwave heating cycle. Repeatability of the over-all procedure has been found to be 6% for both elements, while iodine and bromine concentrations of 24.6 and 19.9 ng g(-1), respectively, were established for the limit of detection. Accuracy of the method was assessed by analyzing the NIES-09 (Sargasso, Sargassum fulvellum) certified reference material (CRM) and the iodine and bromine concentrations found have been in good agreement with the indicative values for this CRM. Finally, the method was applied to several edible dried and canned seaweed samples.

  8. Evaluation of Physarum polycephalum plasmodial growth and lipid production using rice bran as a carbon source.

    PubMed

    Tran, Hanh; Stephenson, Steven; Pollock, Erik

    2015-08-01

    The myxomycete Physarum polycephalum appears to have remarkable potential as a lipid source for biodiesel production. The present study evaluated the use of rice bran as a carbon source and determined the medium components for optimum growth and lipid production for this organism. Optimization of medium components by response surface methodology showed that rice bran and yeast extract had significant influences on lipid and biomass production. The optimum medium consisted of 37.5 g/L rice bran, 0.79 g/L yeast extract and 12.5 g/L agar, and this yielded 7.5 g/L dry biomass and 0.9 g/L lipid after 5 days. The biomass and lipid production profiles revealed that these parameters increased over time and reached their maximum values (10.5 and 1.26 g/L, respectively) after 7 days. Physarum polycephalum growth decreased on the spent medium but using the latter increased total biomass and lipid concentrations to 14.3 and 1.72 g/L, respectively. An effective method for inoculum preparation was developed for biomass and lipid production by P. polycephalum on a low-cost medium using rice bran as the main carbon source. These results also demonstrated the feasibility of scaling up and reusing the medium for additional biomass and lipid production.

  9. The use of a natural coagulant (Opuntia ficus-indica) in the removal for organic materials of textile effluents.

    PubMed

    de Souza, Maísa Tatiane Ferreira; Ambrosio, Elizangela; de Almeida, Cibele Andrade; de Souza Freitas, Thábata Karoliny Formicoli; Santos, Lídia Brizola; de Cinque Almeida, Vitor; Garcia, Juliana Carla

    2014-08-01

    The goal of this study was to investigate the activity of the coagulant extracted from the cactus Opuntia ficus-indica (OFI) in the process of coagulation/flocculation of textile effluents. Preliminary tests of a kaolinite suspension achieved maximum turbidity removal of 95 % using an NaCl extraction solution. Optimization assays were conducted with actual effluents using the response surface methodology (RSM) based on the Box-Behnken experimental design. The responses of the variables FeCl3, dosage, cactus dosage, and pH in the removal of COD and turbidity from both effluents were investigated. The optimum conditions determined for jeans washing laundry effluent were the following: FeCl3 160 mg L(-1), cactus dosage 2.60 mg L(-1), and pH 5.0. For the fabric dyeing effluent, the optimum conditions were the following: FeCl3 640 mg L(-1), cactus dosage 160 mg L(-1), and pH 6.0. Investigation of the effects of the storage time and temperature of the cactus O. ficus-indica showed that coagulation efficiency was not significantly affected for storage at room temperature for up to 4 days.

  10. Metal-organic framework based in-syringe solid-phase extraction for the on-site sampling of polycyclic aromatic hydrocarbons from environmental water samples.

    PubMed

    Zhang, Xiaoqiong; Wang, Peiyi; Han, Qiang; Li, Hengzhen; Wang, Tong; Ding, Mingyu

    2018-04-01

    In-syringe solid-phase extraction is a promising sample pretreatment method for the on-site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in-syringe solid-phase extraction device using metal-organic frameworks as the adsorbent was fabricated for the on-site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self-made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal-organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self-made device for on-site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal-organic frameworks in sample preparation and demonstrate the great potential of in-syringe solid-phase extraction for the on-site sampling of trace contaminants in environmental waters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rapid Solid-Liquid Dynamic Extraction (RSLDE): a New Rapid and Greener Method for Extracting Two Steviol Glycosides (Stevioside and Rebaudioside A) from Stevia Leaves.

    PubMed

    Gallo, Monica; Vitulano, Manuela; Andolfi, Anna; DellaGreca, Marina; Conte, Esterina; Ciaravolo, Martina; Naviglio, Daniele

    2017-06-01

    Stevioside and rebaudioside A are the main diterpene glycosides present in the leaves of the Stevia rebaudiana plant, which is used in the production of foods and low-calorie beverages. The difficulties associated with their extraction and purification are currently a problem for the food processing industries. The objective of this study was to develop an effective and economically viable method to obtain a high-quality product while trying to overcome the disadvantages derived from the conventional transformation processes. For this reason, extractions were carried out using a conventional maceration (CM) and a cyclically pressurized extraction known as rapid solid-liquid dynamic extraction (RSLDE) by the Naviglio extractor (NE). After only 20 min of extraction using the NE, a quantity of rebaudioside A and stevioside equal to 1197.8 and 413.6 mg/L was obtained, respectively, while for the CM, the optimum time was 90 min. From the results, it can be stated that the extraction process by NE and its subsequent purification developed in this study is a simple, economical, environmentally friendly method for producing steviol glycosides. Therefore, this method constitutes a valid alternative to conventional extraction by reducing the extraction time and the consumption of toxic solvents and favouring the use of the extracted metabolites as food additives and/or nutraceuticals. As an added value and of local interest, the experiment was carried out on stevia leaves from the Benevento area (Italy), where a high content of rebaudioside A was observed, which exhibits a sweet taste compared to stevioside, which has a significant bitter aftertaste.

  12. Optimization of Processing Parameters for Extraction of Amylase Enzyme from Dragon (Hylocereus polyrhizus) Peel Using Response Surface Methodology

    PubMed Central

    Abdul Manap, Mohd Yazid; Zohdi, Norkhanani

    2014-01-01

    The main goal of this study was to investigate the effect of extraction conditions on the enzymatic properties of thermoacidic amylase enzyme derived from dragon peel. The studied extraction variables were the buffer-to-sample (B/S) ratio (1 : 2 to 1 : 6, w/w), temperature (−18°C to 25°), mixing time (60 to 180 seconds), and the pH of the buffer (2.0 to 8.0). The results indicate that the enzyme extraction conditions exhibited the least significant (P < 0.05) effect on temperature stability. Conversely, the extraction conditions had the most significant (P < 0.05) effect on the specific activity and pH stability. The results also reveal that the main effect of the B/S ratio, followed by its interaction with the pH of the buffer, was significant (P < 0.05) among most of the response variables studied. The optimum extraction condition caused the amylase to achieve high enzyme activity (648.4 U), specific activity (14.2 U/mg), temperature stability (88.4%), pH stability (85.2%), surfactant agent stability (87.2%), and storage stability (90.3%). PMID:25050403

  13. Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling.

    PubMed

    Ameer, Kashif; Bae, Seong-Woo; Jo, Yunhee; Lee, Hyun-Gyu; Ameer, Asif; Kwon, Joong-Ho

    2017-08-15

    Stevia rebaudiana (Bertoni) consists of stevioside and rebaudioside-A (Reb-A). We compared response surface methodology (RSM) and artificial neural network (ANN) modelling for their estimation and predictive capabilities in building effective models with maximum responses. A 5-level 3-factor central composite design was used to optimize microwave-assisted extraction (MAE) to obtain maximum yield of target responses as a function of extraction time (X 1 : 1-5min), ethanol concentration, (X 2 : 0-100%) and microwave power (X 3 : 40-200W). Maximum values of the three output parameters: 7.67% total extract yield, 19.58mg/g stevioside yield, and 15.3mg/g Reb-A yield, were obtained under optimum extraction conditions of 4min X 1 , 75% X 2 , and 160W X 3 . The ANN model demonstrated higher efficiency than did the RSM model. Hence, RSM can demonstrate interaction effects of inherent MAE parameters on target responses, whereas ANN can reliably model the MAE process with better predictive and estimation capabilities. Copyright © 2017. Published by Elsevier Ltd.

  14. Optimizing oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide.

    PubMed

    Salea, Rinaldi; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R

    2014-09-01

    Oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide was optimized using Taguchi method. The factors considered were pressure, temperature, carbon dioxide flowrate and time at levels ranging between 10-25 MPa, 35-60 °C, 10-25 g/min and 60-240 min respectively. The highest oil yield (8.0 %) was achieved at factor combination of 15 MPa, 50 °C, 20 g/min and 180 min whereas the highest xanthorrhizol content (128.3 mg/g oil) in Curcuma xanthorrhiza oil was achieved at a factor combination of 25 MPa, 50 °C, 15 g/min and 60 min. Soxhlet extraction with n-hexane and percolation with ethanol gave oil yield of 5.88 %, 11.73 % and xanthorrhizol content of 42.6 mg/g oil, 75.5 mg/g oil, respectively. The experimental oil yield and xanthorrhizol content at optimum conditions agreed favourably with values predicted by computational process. The xanthorrizol content extracted using supercritical carbon dioxide was higher than extracted using Soxhlet extraction and percolation process.

  15. A new method for fast extraction and determination of chlorophylls in natural water.

    PubMed

    Qiu, Nianwei; Wang, Xiushun; Zhou, Feng

    2018-01-26

    Algae collection and chlorophyll extraction are two troublesome steps in the traditional methods used for the determination of chlorophyll concentration in natural water. A new method was established in this study for fast collection and extraction of chlorophyll. Based on our results, the optimum centrifugation condition for collecting algae was determined as: 5000 g for 15 min at 4 °C, and the optimum dilution ratio of dimethyl sulfoxide: 90% acetone was 1:4. The specific steps were as follows: the algae in water samples were collected by centrifugation at 5000 g at 4 °C for 15 min. The precipitated algae were suspended with 2 mL DMSO. Then the sample was transferred to a 15 mL centrifuge tube, and the tube was incubated at 65 °C for 1-2 h in the dark until the sample turned white. After cooling, the chlorophyll extract was diluted with 8 mL 90% acetone, before centrifugation at 5000 g for 5 min. The absorbance values of the supernatants at 750, 664, 647 and 630 nm were used for the calculation of chlorophyll concentrations by the trichromatic equations. This new method saved the filter cost, simplified the extraction process, improved the algae acquisition efficiency, and accelerated the chlorophyll extraction rate.

  16. Using dispersive liquid-liquid microextraction and liquid chromatography for determination of guaifenesin enantiomers in human urine.

    PubMed

    Hatami, Mehdi; Farhadi, Khalil; Abdollahpour, Assem

    2011-11-01

    A simple, rapid, and efficient method, dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-fluorescence detector, has been developed for the determination of guaifenesin (GUA) enantiomers in human urine samples after an oral dose administration of its syrup formulation. Urine samples were collected during the time intervals 0-2, 2-4, and 4-6 h and concentration and ratio of two enantiomers was determined. The ratio of R-(-) to S-(+) enantiomer concentrations in urine showed an increase with time, with R/S ratios of 0.66 at 2 h and 2.23 at 6 h. For microextraction process, a mixture of extraction solvent (dichloromethane, 100 μL) and dispersive solvent (THF, 1 mL) was rapidly injected into 5.0 mL diluted urine sample for the formation of cloudy solution and extraction of enantiomers into the fine droplets of CH(2)Cl(2). After optimization of HPLC enantioselective conditions, some important parameters, such as the kind and volume of extraction and dispersive solvents, extraction time, temperature, pH, and salt effect were optimized for dispersive liquid-liquid microextraction process. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 10 to 2000 ng/mL for target analytes. LOD was 3.00 ng/mL for both of the enantiomers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Magnetized graphene layers synthesized on the carbon nanofibers as novel adsorbent for the extraction of polycyclic aromatic hydrocarbons from environmental water samples.

    PubMed

    Rezvani-Eivari, Mostafa; Amiri, Amirhassan; Baghayeri, Mehdi; Ghaemi, Ferial

    2016-09-23

    The application of magnetized graphene (G) layers synthesized on the carbon nanofibers (CNFs) (m-G/CNF) was investigated as novel adsorbent for the magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in water samples followed by gas chromatography-flame ionization detector (GC-FID). Six important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 5min for extraction time, 20mg for sorbent amount, dichloromethane as desorption solvent, 1mL for desorption solvent volume, 5min for desorption time and 15% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. The calibration curves were linear over the concentration ranges from 0.012 to 100ngmL(-1) with correlation coefficients (r) between 0.9950 and 0.9967 for all the analytes. The limits of detection (LODs, S/N=3) of the proposed method for the studied PAHs were 0.004-0.03ngmL(-1). The relative standard deviations (RSDs) for five replicates at two concentration levels (0.1 and 50ngmL(-1)) of PAHs were ranged from 3.4 to 5.7%. Appropriate relative recovery values, in the range of 95.5-99.9%, were also obtained for the real water sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A weighted information criterion for multiple minor components and its adaptive extraction algorithms.

    PubMed

    Gao, Yingbin; Kong, Xiangyu; Zhang, Huihui; Hou, Li'an

    2017-05-01

    Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Real-Time Gas Identification by Analyzing the Transient Response of Capillary-Attached Conductive Gas Sensor

    PubMed Central

    Bahraminejad, Behzad; Basri, Shahnor; Isa, Maryam; Hambli, Zarida

    2010-01-01

    In this study, the ability of the Capillary-attached conductive gas sensor (CGS) in real-time gas identification was investigated. The structure of the prototype fabricated CGS is presented. Portions were selected from the beginning of the CGS transient response including the first 11 samples to the first 100 samples. Different feature extraction and classification methods were applied on the selected portions. Validation of methods was evaluated to study the ability of an early portion of the CGS transient response in target gas (TG) identification. Experimental results proved that applying extracted features from an early part of the CGS transient response along with a classifier can distinguish short-chain alcohols from each other perfectly. Decreasing time of exposition in the interaction between target gas and sensing element improved the reliability of the sensor. Classification rate was also improved and time of identification was decreased. Moreover, the results indicated the optimum interval of the early transient response of the CGS for selecting portions to achieve the best classification rates. PMID:22219666

  20. Sensitive method to monitor trace quantities of benzanthrone in workers of dyestuff industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, A.; Khanna, S.K.; Singh, G.B.

    1986-03-01

    Dyestuff workers coming in contact with benzanthrone (an intermediate used for the synthesis of a variety of dyes) develop skin lesions, gastritis, liver malfunctions, and sexual disturbances. A highly sensitive fluorometric method to monitor trace quantities of benzanthrone in urine, serum, and biological tissues for experimental studies, has been developed. Coupled with simple extraction and resolution, optimum fluorescence is obtained in an equal mixture of chloroform:methanol, detecting as low as 2 ng benzanthrone. This method is approximately 250 times more sensitive than currently available colorimetric assay.

  1. Integrating biofiltration with SVE: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesley, M.P.; Rangan, C.R.

    1996-12-01

    A prototype integrated soil vacuum extraction/biofiltration system has been designed and installed at a gasoline contaminated LUST site in southern Delaware. The prototype system remediates contaminated moisture entrained in the air stream, employs automatic water level controls in the filters, and achieves maximum vapor extraction and VOC destruction efficiency with an optimum power input. In addition, the valving and piping layout allows the direction of air flow through the filters to be reversed at a given time interval, which minimizes biofouling, thereby increasing efficiency by minimizing the need for frequent cleaning. This integrated system achieves constant VOC destruction rates ofmore » 40 to 70% while maintaining optimal VOC removal rates from the subsurface. The modular design allows for easy mobilization, setup and demobilization at state-lead LUST sites throughout Delaware.« less

  2. A comparison of solid-phase microextraction and stir bar sorptive extraction coupled to liquid chromatography for the rapid analysis of resveratrol isomers in wines, musts and fruit juices.

    PubMed

    Viñas, Pilar; Campillo, Natalia; Hernández-Pérez, Mónica; Hernández-Córdoba, Manuel

    2008-03-17

    A comparison of direct immersion solid-phase microextraction (DI-SPME) and stir bar sorptive extraction (SBSE) coupled to liquid chromatography (HPLC) with fluorimetric detection for the rapid analysis of resveratrol isomers is described. For DI-SPME, a polar Carbowax-template resin (CW/TPR) 50mum fiber was the most efficient and optimum extraction conditions were 40 degrees C and an extraction time of 30min, stirring in the presence of 5% (m/v) sodium chloride and 0.07M acetate/acetic acid buffer (pH 6). Desorption was carried out using the static mode for 10min. Linearity was obtained in the 5-150 and 2-150ngmL(-1) ranges for trans- and cis-resveratrol, with detection limits of 2 and 0.5ngmL(-1), respectively. When using SBSE, a polydimethylsiloxane (PDMS) twister provided best extraction by means of a derivatization reaction in the presence of acetic anhydride and potassium carbonate. The same time and temperature were used for the extraction step in the presence of 2.5% (m/v) sodium chloride, and liquid desorption was performed with 150microL of a 50/50 (v/v) acetonitrile/1% (v/v) acetic acid solution in a desorption time of 15min. Linearity was now between 0.5 and 50ngmL(-1) for trans-resveratrol with a detection limit of 0.1ngmL(-1), while cis-resveratrol could not be extracted. The proposed methods were successfully applied to determining the resveratrol isomer content of wine, must and fruit juices.

  3. Polypyrrole-magnetite dispersive micro-solid-phase extraction combined with ultraviolet-visible spectrophotometry for the determination of rhodamine 6G and crystal violet in textile wastewater.

    PubMed

    Kamaruddin, Amirah Farhan; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Md Shukri, Dyia S; Abdul Keyon, Aemi S

    2017-11-01

    Polypyrrole-magnetite dispersive micro-solid-phase extraction method combined with ultraviolet-visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole-magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro-solid-phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole-magnetite dispersive micro-solid phase-extraction conditions were sample pH 8, 60 mg polypyrrole-magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole-magnetite dispersive micro-solid-phase extraction with ultraviolet-visible method showed good linearity in the range of 0.05-7 mg/L (R 2  > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4-111.3%) with relative standard deviations < 10%. The method was successfully applied to the analysis of dyes in textile wastewater samples where the concentration found was 1.03 mg (RSD ±7.9%) and 1.13 mg/L (RSD ± 4.6%) for Rhodamine 6G and crystal violet, respectively. It can be concluded that this method can be adopted for the rapid extraction and determination of dyes at trace concentration levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Optimization of solvent extraction of shea butter (Vitellaria paradoxa) using response surface methodology and its characterization.

    PubMed

    Ajala, E O; Aberuagba, F; Olaniyan, A M; Onifade, K R

    2016-01-01

    Shea butter (SB) was extracted from its kernel by using n-hexane as solvent in an optimization study. This was to determine the optima operating variables that would give optimum yield of SB and to study the effect of solvent on the physico-chemical properties and chemical composition of SB extracted using n-hexane. A Box-behnken response surface methodology (RSM) was used for the optimization study while statistical analysis using ANOVA was used to test the significance of the variables for the process. The variables considered for this study were: sample weight (g), solvent volume (ml) and extraction time (min). The physico-chemical properties of SB extracted were determined using standard methods and Fourier Transform Infrared Spectroscopy (FTIR) for the chemical composition. The results of RSM analysis showed that the three variables investigated have significant effect (p < 0.05) on the %yield of SB, with R(2) - 0.8989 which showed good fitness of a second-order model. Based on this model, optima operating variables for the extraction process were established as: sample weight of 30.04 g, solvent volume of 346.04 ml and extraction time of 40 min, which gave 66.90 % yield of SB. Furthermore, the result of the physico-chemical properties obtained for the shea butter extracted using traditional method (SBT) showed that it is a more suitable raw material for food, biodiesel production, cosmetics, medicinal and pharmaceutical purposes than shea butter extracted using solvent extraction method (SBS). Fourier Transform Infrared Spectroscopy (FTIR) results obtained for the two samples were similar to what was obtainable from other vegetable oil.

  5. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix

    NASA Astrophysics Data System (ADS)

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.

  6. Optimization of simultaneous ultrasonic-assisted extraction of water-soluble and fat-soluble characteristic constituents from Forsythiae Fructus Using response surface methodology and high-performance liquid chromatography

    PubMed Central

    Xia, Yong-Gang; Yang, Bing-You; Liang, Jun; Wang, Di; Yang, Qi; Kuang, Hai-Xue

    2014-01-01

    Background: The compounds (+)-pinoresinol-β-glucoside (1) forsythiaside, (2) phillyrin (3) and phillygenin (4) were elucidated to be the characteristic constituents for quality control of Forsythiae Fructus extract by chromatographic fingerprint in 2010 edition of Chinese Pharmacopoeia due to their numerous important pharmacological actions. It is of great interest to extract these medicinally active constituents from Forsythiae Fructus simultaneously. Materials and Methods: In this study, a new ultrasound-assisted extraction (UAE) method was developed for the simultaneous extraction of biological components 1-4 in Forsythiae Fructus. The quantitative effects of extraction time, ratio of liquid to solid, extraction temperature, and methanol concentration on yield of these four important biological constituents from Forsythiae Fructus were investigated using response surface methodology with Box-Behnken design. The compounds 1-4 extracted by UAE were quantitative analysis by high-performance liquid chromatography-photodiode array detect (HPLC-PAD), and overall desirability (OD), the geometric mean of the contents of four major biological components, was used as a marker to evaluate the extraction efficiency. Results: By solving the regression equation and analyzing 3-D plots, the optimum condition was at extraction temperature 70°C, time 60 min, ratio of liquid to solid 20, and methanol concentration 76.6%. Under these conditions, extraction yields of compounds 1-4 were 2.92 mg/g, 52.10 mg/g, 0.90 mg/g and 0.57 mg/g, respectively, which were in good agreement with the predicted OD values. In order to achieve a similar yield as UAE, soxhlet extraction required at least 6 h and maceration extraction required much longer time of 24 h. Established UAE method has been successfully applied to sample preparation for the quality control of Forsythiae Fructus. Additionally, a quadrupole time-of-flight mass spectrometry was applied to the structural confirmation of analytes from the complex matrices acquired by UAE. Conclusion: The results indicated that UAE is an effective alternative method for extracting bioactive constituents, which may facilitate a deeper understanding of the extract of active constituents in Forsythiae Fructus from the raw material to its extract for providing the theoretical references. PMID:25210317

  7. High performance liquid chromatography for the simultaneous analysis of penicillin residues in beef and milk using ion-paired extraction and binary water-acetonitrile mixture.

    PubMed

    Kukusamude, Chunyapuk; Burakham, Rodjana; Chailapakul, Orawon; Srijaranai, Supalax

    2012-04-15

    An ion-paired extraction (IPE) has been developed for the analysis of penicillin antibiotics (penicillin G, oxacillin and cloxacillin) in beef and milk samples using tetrabutylammonium bromide (TBABr) as ion-pairing agent and binary water-acetonitrile as extractant. The factors affecting the IPE efficiency were optimized including solution pH, volume of acetonitrile (ACN), concentration of TBABr and electrolyte salt (NH(4))(2)SO(4). The optimum IPE conditions were 10 mmol L(-1) phosphate buffer pH 8, 2 mL of ACN, 6 mmol L(-1) of TBABr and 2.5 mL of saturated ammonium sulfate. Under the HPLC condition: an Xbridge™ C18 reversed-phase column, isocratic elution of 5 mmol L(-1) phosphate buffer (pH 6.6) and acetonitrile (75:25, v/v) and a flow rate of 1 mL min(-1), with UV detection at 215 nm, the separation of three penicillins was achieved within 10 min. Under the selected optimum conditions, the enhancement of 21-53 folds compared to that without preconcentration and limits of detection (LODs) of 1-2 ng mL(-1) were obtained. Good reproducibility was achieved with RSD<2% for retention time and <5% for slope of calibration curves. The average recoveries higher than 85% were obtained. The proposed IPE-HPLC method has shown to be high efficient preconcentration and analysis method for penicillin residues in beef and milk with LOD lower than the maximum residue limits. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Determination of haloacetic acids in water using layered double hydroxides as a sorbent in dispersive solid-phase extraction followed by liquid chromatography with tandem mass spectrometry.

    PubMed

    Alsharaa, Abdulnaser; Sajid, Muhammad; Basheer, Chanbasha; Alhooshani, Khalid; Lee, Hian Kee

    2016-09-01

    In the present study, highly efficient and simple dispersive solid-phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid-phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH˂4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid-phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05-100 μg/L with detection limits in the range of 0.006-0.05 μg/L. The relative standard deviations were 0.33-3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Highly efficient micellar extraction of toxic picric acid into novel ionic liquid: Effect of parameters, solubilization isotherm, evaluation of thermodynamics and design parameters.

    PubMed

    Bhatt, Darshak R; Maheria, Kalpana C; Parikh, Jigisha K

    2015-12-30

    A simple and new approach in cloud point extraction (CPE) method was developed for removal of picric acid (PA) by the addition of N,N,N,N',N',N'-hexaethyl-ethane-1,2-diammonium dibromide ionic liquid (IL) in non-ionic surfactant Triton X-114 (TX-114). A significant increase in extraction efficiency was found upon the addition of dicationic ionic liquid (DIL) at both nearly neutral and high acidic pH. The effects of different operating parameters such as pH, temperature, time, concentration of surfactant, PA and DIL on extraction of PA were investigated and optimum conditions were established. The extraction mechanism was also proposed. A developed Langmuir isotherm was used to compute the feed surfactant concentration required for the removal of PA up to an extraction efficiency of 90%. The effects of temperature and concentration of surfactant on various thermodynamic parameters were examined. It was found that the values of ΔG° increased with temperature and decreased with surfactant concentration. The values of ΔH° and ΔS° increased with surfactant concentration. The developed approach for DIL mediated CPE has proved to be an efficient and green route for extraction of PA from water sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Peroxidase extraction from jicama skin peels for phenol removal

    NASA Astrophysics Data System (ADS)

    Chiong, T.; Lau, S. Y.; Khor, E. H.; Danquah, M. K.

    2016-06-01

    Phenol and its derivatives exist in various types of industrial effluents, and are known to be harmful to aquatic lives even at low concentrations. Conventional treatment technologies for phenol removal are challenged with long retention time, high energy consumption and process cost. Enzymatic treatment has emerged as an alternative technology for phenol removal from wastewater. These enzymes interact with aromatic compounds including phenols in the presence of hydrogen peroxide, forming free radicals which polymerize spontaneously to produce insoluble phenolic polymers. This work aims to extract peroxidase from agricultural wastes materials and establish its application for phenol removal. Peroxidase was extracted from jicama skin peels under varying extraction conditions of pH, sample-to-buffer ratio (w/v %) and temperature. Experimental results showed that extraction process conducted at pH 10, 40% w/v and 25oC demonstrated a peroxidase activity of 0.79 U/mL. Elevated temperatures slightly enhanced the peroxidase activities. Jicama peroxidase extracted at optimum extraction conditions demonstrated a phenol removal efficiency of 87.5% at pH 7. Phenol removal efficiency was ∼ 97% in the range of 30 - 40oC, and H2O2 dosage has to be kept below 100 mM for maximum removal under phenol concentration tested.

  11. [Fe₃O₄-β-Cyclodextrin Polymer Nano Composites Solid-Phase Extraction-UV-Vis Spectrophotometry for Separation Analysis Malachite Green].

    PubMed

    Feng, Gang; Ping, Wen-hui; Zhu, Xia-shi

    2016-02-01

    In this paper, carboxymethyl-hydroxypropyl-β-cyclodextrin polymer modified magnetic particles Fe₃O₄ (CM-HP-β-CD- CP-MNPs) were prepared and applied to magnetic solid phase extraction of malachite green combined with UV-Visible spectrom- etry detection. The synthesized magnetic particles were characterized by element analysis, Fourier transform infrared spectra and transmission electron microscopy. Several variables affecting the extraction and desorption of malachite green such as pH, the amount of adsorbent, the type and volume of eluent, extraction and desorption time, and temperature were investigated. Under the optimum conditions, malachite green could be adsorbed by CM-HP-β-CDCP-MNPs (RE% = 92), and elution by C₂H₅OH (EE% = 90). the preconcentration factor of the proposed method was approximately 7.5, the CM-HP-β-CDCP-MNPs could be used repeatedly for 5 times and offered better recovery. The linear range and detection limit (DL) were found to be 0.08~8.00 µg · mL⁻¹ and 5.6 ng · mL⁻¹ respectively. This technique had been successfully applied to the determination of malachite green in real samples. The inclusion interaction of CM-HP--CDCP-MNPs with malachite green was studied through FTIR.

  12. Bioleaching of arsenic in contaminated soil using metal-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Lee, So-Ra; Lee, Jong-Un; Chon, Hyo-Taek

    2014-05-01

    A study on the extraction of arsenic in the contaminated soil collected from an old smelting site in Korea was carried out using metal-reducing bacteria. Two types of batch-type experiments, biostimulation and bioaugmentation, were conducted for 28 days under anaerobic conditions. The biostimulation experiments were performed through activation of indigenous bacteria by supply with glucose or lactate as a carbon source. The contaminated, autoclaved soil was inoculated with metal-reducing bacteria, Shewanella oneidensis MR-1 and S. algae BrY, in the bioaugmentation experiments. The results indicated that the maximum concentration of the extracted As was 11.2 mg/L at 4 days from the onset of the experiment when 20 mM glucose was supplied and the extraction efficiency of As ranged 60~63% in the biostimulation experiments. In the case of bioaugmentation, the highest dissolved As concentration was 24.4 mg/L at 2 days, though it dramatically decreased over time through re-adsorption onto soil particles. After both treatments, mode of As occurrence in the soil appeared to be changed to readily extractable fractions. This novel technique of bioleaching may be practically applied for remediation of As-contaminated soil after determination of optimum operational conditions such as operation time and proper carbon source and its concentration.

  13. Determination of arsenic species in solid matrices utilizing supercritical fluid extraction coupled with gas chromatography after derivatization with thioglycolic acid n-butyl ester.

    PubMed

    Wang, Zhifeng; Cui, Zhaojie

    2016-12-01

    A method using derivatization and supercritical fluid extraction coupled with gas chromatography was developed for the analysis of dimethylarsinate, monomethylarsonate and inorganic arsenic simultaneously in solid matrices. Thioglycolic acid n-butyl ester was used as a novel derivatizing reagent. A systematic discussion was made to investigate the effects of pressure, temperature, flow rate of the supercritical CO 2 , extraction time, concentration of the modifier, and microemulsion on extraction efficiency. The application for real environmental samples was also studied. Results showed that thioglycolic acid n-butyl ester was an effective derivatizing reagent that could be applied for arsenic speciation. Using methanol as modifier of the supercritical CO 2 can raise the extraction efficiency, which can be further enhanced by adding a microemulsion that contains Triton X-405. The optimum extraction conditions were: 25 MPa, 90°C, static extraction for 10 min, dynamic extraction for 25 min with a flow rate of 2.0 mL/min of supercritical CO 2 modified by 5% v/v methanol and microemulsion. The detection limits of dimethylarsinate, monomethylarsonate, and inorganic arsenic in solid matrices were 0.12, 0.26, and 1.1 mg/kg, respectively. The optimized method was sensitive, convenient, and reliable for the extraction and analysis of different arsenic species in solid samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Multivariate analysis of the volatile components in tobacco based on infrared-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Yang, Yanqin; Pan, Yuanjiang; Zhou, Guojun; Chu, Guohai; Jiang, Jian; Yuan, Kailong; Xia, Qian; Cheng, Changhe

    2016-11-01

    A novel infrared-assisted extraction coupled to headspace solid-phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane-divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water-bath heating and nonheating extraction methods, the extraction efficiency of infrared-assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above-mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost-effective, and highly efficient method, the infrared-assisted extraction coupled to headspace solid-phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Optimized ultrasonic assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent.

    PubMed

    Sereshti, Hassan; Izadmanesh, Yahya; Samadi, Soheila

    2011-07-22

    Ultrasonic assisted extraction-dispersive liquid-liquid microextraction (UAE-DLLME) coupled with gas chromatography (GC) was applied for extraction and determination of essential oil constituents of the plant Oliveria decumbens Vent. Scanning electron microscopy (SEM) was used to see the effect of ultrasonic radiation on the extraction efficiency. By comparison with hydrodistillation, UAE-DLLME is fast, low cost, simple, efficient and consuming small amount of plant materials (∼1.0 g). The effects of various parameters such as temperature, ultrasonication time, volume of disperser and extraction solvents were investigated by a full factorial design to identify significant variables and their interactions. The results demonstrated that temperature and ultrasonication time had no considerable effect on the results. In the next step, a central composite design (CCD) was performed to obtain the optimum levels of significant parameters. The obtained optimal conditions were: 0.45 mL for disperser solvent (acetonitrile) and 94.84 μL for extraction solvent (chlorobenzene). The limits of detection (LODs), linear dynamic range and determination coefficients (R(2)) were 0.2-29 ng mL(-1), 1-2100 ng mL(-1) and 0.995-0.998, respectively. The main components of the essential oil were: thymol (47.06%), carvacrol (23.31%), gamma-terpinene (18.94%), p-cymene (8.71%), limonene (0.76%) and myristicin (0.63%). Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Optimization of microwave-assisted extraction conditions for preparing lignan-rich extract from Saraca asoca bark using Box-Behnken design.

    PubMed

    Mishra, Shikha; Aeri, Vidhu

    2016-07-01

    Lyoniside is the major constituent of Saraca asoca Linn. (Caesalpiniaceae) bark. There is an immediate need to develop an efficient method to isolate its chemical constituents, since it is a therapeutically important plant. A rapid extraction method for lyoniside based on microwave-assisted extraction of S. asoca bark was developed and optimized using response surface methodology (RSM). Lyoniside was analyzed and quantified by high-performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). The extraction solvent ratio (%), material solvent ratio (g/ml) and extraction time (min) were optimized using Box-Behnken design (BBD) to obtain the highest extraction efficiency. The optimal conditions were the use of 1:30 material solvent ratio with 70:30 mixture of methanol:water for 10 min duration. The optimized microwave-assisted extraction yielded 9.4 mg/g of lyoniside content in comparison to reflux extraction under identical conditions which yielded 4.2 mg/g of lyoniside content. Under optimum conditions, the experimental values agreed closely with the predicted values. The analysis of variance (ANOVA) indicated a high goodness-of-fit model and the success of the RSM method for optimizing lyoniside extraction from the bark of S. asoca. All the three variables significantly affected the lyoniside content. Increased polarity of solvent medium enhances the lyoniside yield. The present study shows the applicability of microwave-assisted extraction in extraction of lyoniside from S. asoca bark.

  17. Enzymatic dehalogenation of pentachlorophenol by extracts from Arthrobacter sp. strain ATCC 33790.

    PubMed Central

    Schenk, T; Müller, R; Mörsberger, F; Otto, M K; Lingens, F

    1989-01-01

    Arthrobacter sp. strain ATCC 33790 was grown with pentachlorophenol (PCP) as the sole source of carbon and energy. Crude extracts, which were prepared by disruption of the bacteria with a French pressure cell, showed no dehalogenating activity with PCP as the substrate. After sucrose density ultracentrifugation of the crude extract at 145,000 x g, various layers were found in the gradient. One yellow layer showed enzymatic conversion of PCP. One chloride ion was released per molecule of PCP. The product of the enzymatic conversion was tetrachlorohydroquinone. NADPH and oxygen were essential for this reaction. EDTA stimulated the enzymatic activity by 67%. The optimum pH for the enzyme activity was 7.5, and the temperature optimum was 25 degrees C. Enzymatic activity was also detected with 2,4,5-trichlorophenol, 2,3,4-trichlorophenol, 2,4,6-trichlorophenol, and 2,3,4,5-tetrachlorophenol as substrates, whereas 3,4,5-trichlorophenol, 2,4-dichlorophenol, 3,4-dichlorophenol, and 4-chlorophenol did not serve as substrates. PMID:2793827

  18. Extraction of rare earth elements from low-grade Bauxite via precipitation reaction

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Nurani, Y.; Bahari, ZJ

    2018-03-01

    The aim of this research was to determine the optimum hydrometallurgical parameters to extract the rare earth elements (REE) from low-grade bauxite through acid leaching and precipitation reaction. REE or lanthanide recovery by a precipitation method with sodium sulphate and sodium phosphate as precipitation agents is reported where the effect of pH and recovery of REE are described. The metal composition of REE in low-grade bauxite after treatment were analyzed by ICP-OES. The total recovery values of REE elements at the first precipitation reaction using sodium sulphate as the precipitation agent at pH 3.5 showed ~68.2% of lanthanum, ~18.9% cerium, and ~7.8% yttrium. Lanthanum was the rare-earth element present at the highest concentration in the low-grade bauxite after the series treatments. An optimum pH of 3.5 for precipitation of rare-earth elements using sodium sulphate was demonstrated where this method is recommended for the extraction of REE elements from low-grade bauxite.

  19. Evaluation of the effect of yellow konjac flour-κ-carrageenan mixed gels and red koji rice extracts on the properties of restructured meat using response surface methodology.

    PubMed

    Widjanarko, Simon Bambang; Amalia, Qory; Hermanto, Mochamad Bagus; Mubarok, Ahmad Zaki

    2018-05-01

    In the present study, the effect of two independent variables, yellow konjac flour-κ-carrageenan (KFC) mixed gels and red koji rice (RKR) extracts for the development of restructured meat product, was investigated using central composite design of response surface methodology (RSM). The assessed physical characteristics were hardness, water holding capacity (WHC), and color (° hue ) of the restructured meat products. The second order regression models with high R 2 value were significantly fitted to predict the changes in hardness, WHC and color. The results showed that the predicted optimum formula of restructured meat were the addition of KFC mixed gels at 10.21% and RKR extracts at 6.11%. The experiments results validate these optimum formula and found to be not statistically different at 5% level. Thus, the RSM was successfully employed and can be used to optimize the formulation of restructured meat.

  20. Ligandless dispersive liquid--liquid microextraction of iron in biological and foodstuff samples and its determination by Electrothermal atomic absorption spectrometry.

    PubMed

    Madadizadeh, Mohadeseh; Taher, Mohammad Ali; Ashkenani, Hamid

    2013-01-01

    A new, simple, and efficient method comprising ligandless dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry is reported for the preconcentration and determination of ultratrace amounts of Fe(III). Carbon tetrachloride and acetone were used as the extraction and disperser solvents, respectively. Some effective parameters of the microextraction such as choice of extraction and disperser solvents, their volume, extraction time and temperature, salt and surfactant effect, and pH were optimized. Under the optimum conditions, the calibration curve was linear in the range of 0.02 to 0.46 microg/L of Fe(III), with LOD and LOQ of 5.2 and 17.4 ng/L, respectively. The RSD for seven replicated determinations of Fe(IIl) ion at 0.1 microg/L concentration level was 5.2%. Operational simplicity, rapidity, low cost, good repeatability, and low consumption of extraction solvent are the main advantages of the proposed method. The method was successfully applied to the determination of iron in biological, food, and certified reference samples.

  1. Extraction of cellulose from agricultural waste using Montmorillonite K-10/LiOH and its conversion to renewable energy: Biofuel by using Myrothecium gramineum.

    PubMed

    Das, Archana M; Hazarika, Manash P; Goswami, Monmi; Yadav, Archana; Khound, Pradip

    2016-05-05

    Cellulose was extracted from agricultural waste like Rice Husk (RH) a renewable resource of India as well as in the World. Cellulose was isolated from rice husk (RH) using eco-friendly method with Montmorillonite K-10/LiOH solution and bleaching with 2% H2O2. The reaction parameters like time, temperature, catalyst, acid and alkali were studied to evaluate the optimum reaction conditions 6h, 80°C, 20% maleic acid and 10% LiOH (in H2O) for time, temperature, acid and alkali, respectively. Renewable energy, biofuel from agricultural waste using Myrothecium gramineum was also investigated herein. Cellulose was converted to glucose by using acid hydrolysis and the optimum reaction conditions were 140°C for 60min. in presence of H2SO4 (5% v/v). It has been recognized significantly as potential sustainable sources of sugars for fermentation to bioethanol. So, our effort was given to obtain bioethanol from RH using new and novel renewable fungal strain M. gramineum. M. gramineum was isolated from acacia plant available in NE region of India. The results revealed that % yields of cellulose, glucose and bioethanol were 68%, 60% and 25%, respectively. Moreover, the bioethanol was compared with the standard ethanol (Laboratory grade) and also the ethanol produced from the known microb Aspergillus niger. The synthesized products were characterized with the help of analytical techniques like FT-IR, GC, TGA, DSC and XRD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Purification and properties of beta-galactosidase from Aspergillus nidulans.

    PubMed

    Díaz, M; Pedregosa, A M; de Lucas, J R; Torralba, S; Monistrol, I F; Laborda, F

    1996-12-01

    Beta-Galactosidase from mycelial extract of Aspergillus nidulans has been purified by substrate affinity chromatography and used to obtain anti-beta-galactosidase polyclonal antibodies. A. nidulans growing in lactose as carbon source synthesizes one active form of beta-galactosidase which seems to be a multimeric enzyme of 450 kDa composed of monomers with 120 and 97 kDa. Although the enzyme was not released to the culture medium, some enzymatic activity was detected in a cell-wall extract, thus suggesting that it can be an extracellular enzyme. Beta-Galactosidase of A. nidulans is a very unstable enzyme with an optimum pH value of 7.5 and an optimum temperature of 30 degrees C. It was only active against beta-galactoside substrates like lactose and p-nitrophenyl-beta-D-galactoside (PNPG).

  3. Phytochemical analysis and antibacterial activities extracts of mangrove leaf against the growth of some pathogenic bacteria.

    PubMed

    Alizadeh Behbahani, Behrooz; Tabatabaei Yazdi, Farideh; Shahidi, Fakhri; Noorbakhsh, Hamid; Vasiee, Alireza; Alghooneh, Ali

    2018-01-01

    In this study, the effects of water, ethanol, methanol and glycerin at five levels (0, 31.25, 83.33, 125 and 250 ml) were investigated on the efficiency of mangrove leaf extraction using mixture optimal design. The antimicrobial effect of the extracts on Streptococcus pneumoniae, Enterococcus faecium and Klebsiella pneumoniae was evaluated using disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. The mangrove leaf extraction components were identified through gas chromatography/mass spectrometry (GC/MS). Phytochemical analysis (alkaloids, tannins, saponins, flavone and glycosides) were evaluated based on qualitative methods. Antioxidant activity of extracts was measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) methods. Maximum antimicrobial effect was observed in Enterococcus faecium and highest resistance against mangrove leaf extract in Enterococcus faecium and Klebsiella pneumoniae, respectively. Increasing concentration of mangrove extracts had a significant effect (p ≤ 0.05) on inhibition zone diameter. The MICs of the mangrove leaf extraction varied from 4 mg/ml to 16 mg/ml. The optimum formulation was found to contain glycerin (0 ml), water (28.22 ml), methanol (59.83 ml) and ethanol (161.95 ml). The results showed that the highest antioxidant activity was related to optimum extract of mangrove leaf and ethanolic extract respectively. The results of phytochemical screening of Avicennia marina leaves extract showed the existence of alkaloids, tannins, saponins, flavone and glycosides. 2-Propenoic acid, 3-phenyl- was the major compound of Avicennia marina. The results of non-significant lack of fit tests, and F value (14.62) indicated that the model was sufficiently accurate. In addition, the coefficient of variations (16.8%) showed an acceptable reproducibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens.

    PubMed

    Souza Silva, Érica A; Saboia, Giovanni; Jorge, Nina C; Hoffmann, Camila; Dos Santos Isaias, Rosy Mary; Soares, Geraldo L G; Zini, Claudia A

    2017-12-01

    A headspace solid phase microextraction (HS-SPME) method combined with gas chromatography-mass spectrometry (GC/MS) was developed and optimized for extraction and analysis of volatile organic compounds (VOC) of leaves and galls of Myrcia splendens. Through a process of optimization of main factors affecting HS-SPME efficiency, the coating divivnilbenzene-carboxen-polydimethylsiloxane (DVB/Car/PDMS) was chosen as the optimum extraction phase, not only in terms of extraction efficiency, but also for its broader analyte coverage. Optimum extraction temperature was 30°C, while an extraction time of 15min provided the best compromise between extraction efficiencies of lower and higher molecular weight compounds. The optimized protocol was demonstrated to be capable of sampling plant material with high reproducibility, considering that most classes of analytes met the 20% RSD FDA criterion. The optimized method was employed for the analysis of three classes of M. splendens samples, generating a final list of 65 tentatively identified VOC, including alcohols, aldehydes, esters, ketones, phenol derivatives, as well as mono and sesquiterpenes. Significant differences were evident amongst the volatile profiles obtained from non-galled leaves (NGL) and leaf-folding galls (LFG) of M. splendens. Several differences pertaining to amounts of alcohols and aldehydes were detected between samples, particularly regarding quantities of green leaf volatiles (GLV). Alcohols represented about 14% of compounds detected in gall samples, whereas in non-galled samples, alcohol content was below 5%. Phenolic derived compounds were virtually absent in reference samples, while in non-galled leaves and galls their content ranged around 0.2% and 0.4%, respectively. Likewise, methyl salicylate, a well-known signal of plant distress, amounted for 1.2% of the sample content of galls, whereas it was only present in trace levels in reference samples. Chemometric analysis based on Heatmap associated with Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) provided a suitable tool to differentiate VOC profiles in vegetal material, and could open new perspectives and opportunities in agricultural and ecological studies for the detection and identification of herbivore-induced plant VOC emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Direct immobilization of tyrosinase enzyme from natural mushrooms (Agaricus bisporus) on D-sorbitol cinnamic ester.

    PubMed

    Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio

    2006-11-10

    Mushroom tyrosinase was immobilized from an extract onto the totally cinnamoylated derivative of D-sorbitol by direct adsorption as a result of the intense hydrophobic interactions that took place. The immobilization pH value and mass of lyophilized mushrooms were important parameters that affected the immobilization efficiency, while the immobilization time and immobilization support concentration were not important in this respect. The extracted/immobilized enzyme could best be measured above pH 3.5 and the optimum measuring temperature was 55 degrees C. The apparent Michaelis constant using 4-tert-butylcatechol as substrate was 0.38+/-0.02 mM, which was lower than for the soluble enzyme from Sigma (1.41+/-0.20 mM). Immobilization stabilized the extracted enzyme against thermal inactivation and made it less susceptible to activity loss during storage. The operational stability was higher than in the case of the tyrosinase supplied by Sigma and immobilized on the same support. The results show that the use of p-nitrophenol as enzyme-inhibiting substrate during enzyme extraction and immobilization made the use of ascorbic acid unnecessary and is a suitable method for extracting and immobilizing the tyrosinase enzyme, providing good enzymatic activity and stability.

  6. Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction.

    PubMed

    Ferreres, Federico; Grosso, Clara; Gil-Izquierdo, Angel; Valentão, Patrícia; Mota, Ana T; Andrade, Paula B

    2017-09-01

    A green microwave-assisted extraction of high value-added compounds from exotic fruits' peels was optimized by Box-Behnken design using 3 factors: solid/solvent ratio, X 1 , temperature, X 2 , and extraction time, X 3 . By using Derringer's desirability function, optimum extraction yields are obtained with X 1 =1/149.95g/mL, X 2 =72.27°C and X 3 =39.39min (white-fleshed red pitaya) and X 1 =1/148.96g/mL, X 2 =72.56°C and X 3 =5.02min (yellow pitaya) and a maximum betacyanin content is achieved with X 1 =1/150g/mL, X 2 =49.33°C and X 3 =5min. None of the factors influenced the extraction of phenolic compounds. Eighteen cinnamoyl derivatives, 17 flavonoid derivatives and 4 betacyanins were identified by HPLC-DAD-ESI/MS n , 23 and 15 new compounds being described in yellow and white-fleshed red pitayas, respectively. These results indicate that it is possible to reuse these by-products to recover compounds for food and pharmaceutical industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Antioxidant activity and optimization of extraction of polysaccharide from the roots of Dipsacus asperoides.

    PubMed

    Tan, Li-Hong; Zhang, Dan; Yu, Bao; Zhao, Sheng-Ping; Wang, Jian-Wei; Yao, Ling; Cao, Wei-Guo

    2015-11-01

    Polysaccharide extraction from Dipsacus asperoides roots (DAP) was proved to possess strong antioxidant activities, including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-Azobis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical scavenging activities, inhibiting β-carotene bleaching and strong reducing power. Cell assay demonstrated that the crude DAP possessed antioxidant activity and were effective against H2O2-induced L02 cells injury. Then, response surface methodology (RSM) was applied to optimize the ultrasonic extraction of DAP. The optimum variables given by central composite design (CCD) were as follows: ratio of water to raw material, 38.61mL/g; ultrasonic power, 308.68W; extraction time, 38.61min; and extraction temperature, 89°C. Under these conditions, the maximum yield of DAP obtained was 7.12±0.45%. Moreover, high performance liquid chromatography (HPLC) analysis suggested that the monosaccharide compositions of DAP contained primarily mannose, ribose, glucose, galactose, xylose and arabinose, with a molar ratio of 0.22:0.48:2.29:0.34:1.39:1.41. The results of the present study showed that DAP could be considered as potential sources of natural antioxidants. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A novel method for harmless disposal and resource reutilization of steel wire rope sludges.

    PubMed

    Zhang, Li; Liu, Yang-Sheng

    2016-10-01

    Rapid development of steel wire rope industry has led to the generation of large quantities of pickling sludge, which causes significant ecological problems and considerable negative environmental effects. In this study, a novel method was proposed for harmless disposal and resource reutilization of the steel wire rope sludge. Based on the method, two steel wire rope sludges (the Pb sludge and the Zn sludge) were firstly extracted by hydrochloric or sulfuric acid and then mixed with the hydrochloride acid extracting solution of aluminum skimmings to produce composite polyaluminum ferric flocculants. The optimum conditions (acid concentration, w/v ratio, reaction time, and reaction temperature) for acid extraction of the sludges were studied. Results showed that 97.03 % of Pb sludge and 96.20 % of Zn sludge were extracted. Leaching potential of the residues after acid extraction was evaluated, and a proposed treatment for the residues had been instructed. The obtained flocculant products were used to purify the real domestic wastewater and showed an equivalent or better performance than the commercial ones. This method is environmental-friendly and cost-effective when compared with the conventional sludge treatments.

  9. One-pot synthesis of ethylenediamine-connected graphene/carbon nanotube composite material for isolation of clenbuterol from pork.

    PubMed

    Yuan, Yanan; Jiao, Xiaoyan; Han, Yehong; Bai, Ligai; Liu, Haiyan; Qiao, Fengxia; Yan, Hongyuan

    2017-09-01

    A fluffy porous ethylenediamine-connected graphene/carbon nanotube composite (EGC), prepared by a simple and time-saving one-pot synthesis, was successfully applied as an adsorbent in pipette-tip solid-phase extraction (PT-SPE) for the rapid extraction and determination of clenbuterol (CLB) from pork. In the one-pot synthesis, carbon nanotubes were inserted into graphene sheets and then connected with ethylenediamine through chemical modification to form a three-dimensional framework structure to prevent agglomeration of the graphene sheets. Under the optimum conditions for extraction and determination, good linearity was achieved for CLB in the range of 15.0-1000.0ngg -1 (r=0.9998) and the recoveries at three spiked levels were in the range of 92.2-96.2% with relative standard deviation ≤9.2% (n=3). In comparison with other adsorbents, including silica, NH 2 , C 18 , and Al 2 O 3 , EGC showed higher extraction and purification efficiency for CLB from pork samples. This analytical method combines excellent adsorption performance of EGC and high extraction efficiency of PT-SPE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Highly selective stir bar coated with dummy molecularly imprinted polymers for trace analysis of bisphenol A in milk.

    PubMed

    Zhan, Wen; Wei, Fangdi; Xu, Guanhong; Cai, Zheng; Du, Shuhu; Zhou, Xuemin; Li, Fei; Hu, Qin

    2012-04-01

    A water compatible molecularly imprinted polymers (MIPs) coated stir bar for bisphenol A(BPA) was prepared with 3,3',5,5'-tetrabromobisphenol A as the dummy template molecule in this study. The dummy molecularly imprinted polymers coated stir bar (DMIPs-SB) showed better selectivity than the bars coated with polydimethylsiloxane or non-imprinted polymers when used to extract BPA and its three analogues. The saturated adsorption amount of the DMIPs coating was 3.0 times over that of the non-imprinted polymers coating. To achieve the optimum extraction performance, several parameters, including extraction and desorption time, pH value, adsorption temperature and stirring speed were investigated. The high-performance liquid chromatography combined with the DMIPs-SB was employed in the analysis of BPA in aqueous solution. The linear range of BPA concentration in aqueous medium was 0.0228-2.28 ng/mL with correlation coefficient of 0.9994 and the detection limit was about 6.84 × 10(-3) ng/mL based on three times ratio of signal to noise. This method was directly applied to the determination of trace BPA in milk with satisfactory results. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by high-performance liquid chromatography with ultraviolet detection and liquid chromatography-tandem mass spectrometry for the determination of triclosan and 2,4-dichlorophenol in water samples.

    PubMed

    Zheng, Cao; Zhao, Jing; Bao, Peng; Gao, Jin; He, Jin

    2011-06-24

    A novel, simple and efficient dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of triclosan and its degradation product 2,4-dichlorophenol in real water samples. The extraction solvent used in this work is of low density, low volatility, low toxicity and proper melting point around room temperature. The extractant droplets can be collected easily by solidifying it at a lower temperature. Parameters that affect the extraction efficiency, including type and volume of extraction solvent and dispersive solvent, salt effect, pH and extraction time, were investigated and optimized in a 5 mL sample system by HPLC-UV. Under the optimum conditions (extraction solvent: 12 μL of 1-dodecanol; dispersive solvent: 300 of μL acetonitrile; sample pH: 6.0; extraction time: 1 min), the limits of detection (LODs) of the pretreatment method combined with LC-MS/MS were in the range of 0.002-0.02 μg L(-1) which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Wide linearities, good precisions and satisfactory relative recoveries were also obtained. The proposed technique was successfully applied to determine triclosan and 2,4-dichlorophenol in real water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. A Novel Liquid-Liquid Extraction for the Determination of Sertraline in Tap Water and Waste Water at Trace Levels by GC-MS.

    PubMed

    Koçoğlu, Elif Seda; Bakırdere, Sezgin; Keyf, Seyfullah

    2017-09-01

    A simple, green and fast analytical method was developed for the determination of sertraline in tap and waste water samples at trace levels by using supportive liquid-liquid extraction with gas chromatography-mass spectrometry. Different parameters affecting extraction efficiency such as types and volumes of extraction and supporter solvents, extraction period, salt type and amount were optimized to get lower detection limits. Ethyl acetate was selected as optimum extraction solvent. In order to improve the precision, anthracene-D10 was used as an internal standard. The calibration plot of sertraline was linear from 1.0 to 1000 ng/mL with a correlation coefficient of 0.999. The limit of detection value under the optimum conditions was found to be 0.43 ng/mL. In real sample measurements, spiking experiments were performed to check the reliability of the method for these matrices. The spiking experiments yielded satisfactory recoveries of 91.19 ± 2.48%, 90.48 ± 5.19% and 95.46 ± 6.56% for 100, 250 and 500 ng/mL sertraline for tap water, and 85.80 ± 2.15% and 92.43 ± 4.02% for 250 and 500 ng/mL sertraline for waste water.

  13. Reductive smelting of spent lead-acid battery colloid sludge in a molten Na2CO3 salt

    NASA Astrophysics Data System (ADS)

    Hu, Yu-jie; Tang, Chao-bo; Tang, Mo-tang; Chen, Yong-ming

    2015-08-01

    Lead extraction from spent lead-acid battery paste in a molten Na2CO3 salt containing ZnO as a sulfur-fixing agent was studied. Some influencing factors, including smelting temperature, reaction time, ZnO and salt dosages, were investigated in detail using single-factor experiments. The optimum conditions were determined as follows: T = 880°C; t = 60 min; Na2CO3/paste mass ratio = 2.8:1; and the ZnO dosage is equal to the stoichiometric requirement. Under the optimum conditions, the direct recovery rate of lead reached 98.14%. The results suggested that increases in temperature and salt dosage improved the direct recovery rate of lead. XRD results and thermodynamic calculations indicated that the reaction approaches of lead and sulfur were PbSO4→Pb and PbSO4→ZnS, respectively. Sulfur was fixed in the form of ZnS, whereas the molten salt did not react with other components, serving only as a reaction medium.

  14. Selective ultrasound-enhanced enzymatic hydrolysis of oleuropein to its aglycon in olive (Olea europaea L.) leaf extracts.

    PubMed

    Delgado-Povedano, María Del Mar; Priego-Capote, Feliciano; Luque de Castro, María Dolores

    2017-04-01

    Hydrolysis of oleuropein, the main phenol in olive (Olea europaea L.) leaf extracts, to oleuropein aglycon and other subsequent products in the hydrolytic pathway can be catalyzed by different enzymes. Three of the most used hydrolases were assayed to catalyze the process, and β-glucosidase from Aspergillus niger was selected. Acceleration of the enzymatic hydrolysis by ultrasound (US) was studied using a Box-Behnken design (duty cycle, amplitude, cycle time) and an oleuropein standard, and the optimum US conditions for achieving maximum yield of oleuropein aglycon were 0.5s/s duty cycle, 50% amplitude and 45s cycle. The method was applied to obtain oleuropein aglycon from commercial and laboratory extracts from olive leaves, which may have a pharmacological use as deduced by its healthy properties. The kinetics of the US-assisted enzymatic hydrolysis was monitored by analysis of the target compounds using liquid chromatography-tandem mass spectrometry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Phenolics extraction from sweet potato peels: modelling and optimization by response surface modelling and artificial neural network.

    PubMed

    Anastácio, Ana; Silva, Rúben; Carvalho, Isabel S

    2016-12-01

    Sweet potato peels (SPP) are a major waste generated during root processing and currently have little commercial value. Phenolics with free radical scavenging activity from SPP may represent a possible added-value product for the food industry. The aqueous extraction of phenolics from SPP was studied using a Central Composite Design with solvent to solid ratio (30-60 mL g -1 ), time (30-90 min) and temperature (25-75 °C) as independent variables. The comparison of response surface methodology (RSM) and artificial neural network (ANN) analysis on extraction modelling and optimising was performed. Temperature and solvent to solid ratio, alone and in interaction, presented a positive effect in TPC, ABTS and DPPH assays. Time was only significant for ABTS assay with a negative influence both as main effect and in interaction with other independent variables. RSM and ANN models predicted the same optimal extraction conditions as 60 mL g -1 for solvent to solid ratio, 30 min for time and 75 °C for temperature. The obtained responses in the optimized conditions were as follow: 11.87 ± 0.69 mg GAE g -1 DM for TPC, 12.91 ± 0.42 mg TE g -1 DM for ABTS assay and 46.35 ± 3.08 mg TE g -1 DM for DPPH assay. SPP presented similar optimum extraction conditions and phenolic content than peels of potato, tea fruit and bambangan. Predictive models and the optimized extraction conditions offers an opportunity for food processors to generate products with high potential health benefits.

  16. Vortex-Assisted Dispersive Micro-Solid Phase Extraction Using CTAB-Modified Zeolite NaY Sorbent Coupled with HPLC for the Determination of Carbamate Insecticides.

    PubMed

    Salisaeng, Pawina; Arnnok, Prapha; Patdhanagul, Nopbhasinthu; Burakham, Rodjana

    2016-03-16

    A vortex-assisted dispersive micro-solid phase extraction (VA-D-μ-SPE) based on cetyltrimethylammonium bromide (CTAB)-modified zeolite NaY was developed for preconcentration of carbamate pesticides in fruits, vegetables, and natural surface water prior to analysis by high performance liquid chromatography with photodiode array detection. The small amounts of solid sorbent were dispersed in a sample solution, and extraction occurred by adsorption in a short time, which was accelerated by vortex agitation. Finally, the sorbents were filtered from the solution, and the analytes were subsequently desorbed using an appropriate solvent. Parameters affecting the VA-D-μ-SPE performance including sorbent amount, sample volume, desorption solvent ,and vortex time were optimized. Under the optimum condition, linear dynamic ranges were achieved between 0.004-24.000 mg kg(-1) (R(2) > 0.9946). The limits of detection (LODs) ranged from 0.004-4.000 mg kg(-1). The applicability of the developed procedure was successfully evaluated by the determination of the carbamate residues in fruits (dragon fruit, rambutan, and watermelon), vegetables (cabbage, cauliflower, and cucumber), and natural surface water.

  17. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry.

    PubMed

    Karadaş, Cennet; Kara, Derya

    2017-04-01

    A novel, simple, rapid, sensitive, inexpensive and environmentally friendly dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop (DLLME-SFO) was developed for the determination of copper by flame atomic absorption spectrometry (FAAS). N-o-Vanillidine-2-amino-p-cresol was used as a chelating ligand and 1-undecanol was selected as an extraction solvent. The main parameters affecting the performance of DLLME-SFO, such as sample pH, volume of extraction solvent, extraction time, concentration of the chelating ligand, salt effect, centrifugation time and sample volume were investigated and optimized. The effect of interfering ions on the recovery of copper was also examined. Under the optimum conditions, the detection limit (3σ) was 0.93μgL -1 for Cu using a sample volume of 20mL, yielding a preconcentration factor of 20. The proposed method was successfully applied to the determination of Cu in tap, river and seawater, rice flour and black tea samples as well as certified reference materials. Copyright © 2016. Published by Elsevier Ltd.

  18. Synthesis of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposites as an adsorbent for the fast determination of 16 priority polycyclic aromatic hydrocarbons in aqueous samples.

    PubMed

    Chen, Kun; Jin, Rongrong; Luo, Chen; Song, Guoxin; Hu, Yaoming; Cheng, Hefa

    2018-04-01

    A novel adsorbent made of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposite was synthesized and applied to determine 16 priority polycyclic aromatic hydrocarbons by magnetic solid phase extraction in water samples. FTIR spectroscopy, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy consistently indicate that the synthesized adsorbents are made of core-shell nanoparticles well dispersed on the surface of graphene and carbon nanotubes. The major factors affecting the extraction efficiency, including the pH value of samples, the amount of adsorbent, adsorption time and desorption time, type and volume of desorption solvent, were systematically optimized. Under the optimum extraction conditions, a linear response was obtained for polycyclic aromatic hydrocarbons between concentrations of 10 and 500 ng/L with the correlation coefficients ranging from 0.9958 to 0.9989, and the limits of detection (S/N = 3) were between 0.1 and 3.0 ng/L. Satisfactory results were also obtained when applying these magnetic graphene/carbon nanotubes/polydopamine hybrid nanocomposites to detect polycyclic aromatic hydrocarbons in several environmental aqueous samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of solvent on the extraction of phenolic compounds and antioxidant capacity of hazelnut kernel.

    PubMed

    Fanali, Chiara; Tripodo, Giusy; Russo, Marina; Della Posta, Susanna; Pasqualetti, Valentina; De Gara, Laura

    2018-03-22

    Hazelnut kernel phenolic compounds were recovered applying two different extraction approaches, namely ultrasound-assisted solid/liquid extraction (UA-SLE) and solid-phase extraction (SPE). Different solvents were tested evaluating total phenolic compounds and total flavonoids contents together to antioxidant activity. The optimum extraction conditions, in terms of the highest value of total phenolic compounds extracted together to other parameters like simplicity and cost were selected for method validation and individual phenolic compounds analysis. The UA-SLE protocol performed using 0.1 g of defatted sample and 15 mL of extraction solvent (1 mL methanol/1 mL water/8 mL methanol 0.1% formic acid/5 mL acetonitrile) was selected. The analysis of hazelnut kernel individual phenolic compounds was obtained by HPLC coupled with DAD and MS detections. Quantitative analysis was performed using a mixture of six phenolic compounds belonging to phenolic classes' representative of hazelnut. Then, the method was fully validated and the resulting RSD% values for retention time repeatability were below 1%. A good linearity was obtained giving R 2 no lower than 0.997.The accuracy of the extraction method was also assessed. Finally, the method was applied to the analysis of phenolic compounds in three different hazelnut kernel varieties observing a similar qualitative profile with differences in the quantity of detected compounds. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Temperature effect of natural organic extraction upon light absorbance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suhaimi, Suriati; Mohamed Siddick, Siti Zubaidah; Retnasamy, Vithyacharan; Abdul Wahid, Mohamad Halim; Ahmad Hambali, Nor Azura Malini; Mohamad Shahimin, Mukhzeer

    2017-02-01

    Natural organic dyes contain pigments which when safely extracted from plants have the potential to be used as a sensitizer while promising a low-cost fabrication, environmental friendly dye-sensitized solar cells (DSSCs). Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella showed different absorption peaks when the extraction process were carried out at different temperatures. Hence, these were used as the basis to determine the conversion efficiency against the dyes extracting temperature. In this study, all dyes extracted in water have shown the best performance at a temperature of 100°C except for Harum Manis mango, while in ethanol, the optimum temperature was obtained between the room temperature, 25°C and 50°C. The absorption spectrum in water showed a broader absorption wavelength vis-à-vis ethanol solvent that resulted in the absorption peak for Ardisia, Harum Manis mango and Rosella between 450 nm and 550 nm. The highest conversion efficiency is observed to be achieved by Oxalis Triangularis extracted in water solution at 100°C, which was approximately 0.96% which corresponds to the broader absorbance trends in the literature. Thus, the optimum condition for extracting temperature for dyes in water and ethanol is room temperature and boiling points of water. Hence, Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella can be an as alternative source for photosensitizer, and the impacts of temperature upon the light absorbance can be further investigated to produce the ultimate natural dye based solar cells.

  1. A novel approach to bar adsorptive microextraction: Cork as extractor phase for determination of benzophenone, triclocarban and parabens in aqueous samples.

    PubMed

    Dias, Adriana Neves; da Silva, Ana Cristine; Simão, Vanessa; Merib, Josias; Carasek, Eduardo

    2015-08-12

    This study describes the use of cork as a new coating for bar adsorptive microextraction (BAμE) and its application in determining benzophenone, triclocarban and parabens in aqueous samples by HPLC-DAD. In this study bars with 7.5 and 15 mm of length were used. The extraction and liquid desorption steps for BAμE were optimized employing multivariate and univariate procedures. The desorption time and solvent used for liquid desorption were optimized by univariate and multivariate studies, respectively. For the extraction step the sample pH was optimized by univariate experiments while the parameters extraction time and ionic strength were evaluated using the Doehlert design. The optimum extraction conditions were sample pH 5.5, NaCl concentration 25% and extraction time 90 min. Liquid desorption was carried out for 30 min with 250 μL (bar length of 15 mm) or 100 μL (bar length of 7.5 mm) of ACN:MeOH (50:50, v/v). The quantification limits varied between 1.6 and 20 μg L(-1) (bar length of 15 mm) and 0.64 and 8 μg L(-1) (bar length of 7.5 mm). The linear correlation coefficients were higher than 0.98 for both bars. The method with 7.5 mm bar length showed recovery values between 65 and 123%. The bar-to-bar reproducibility and the repeatability were lower than 13% (n = 2) and 14% (n = 3), respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Wind/water energy converter

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1979-01-01

    Device will convert wind, water, tidal or wave energy into electrical or mechanical energy. Is comprised of windmill-like paddles or blades synchronously geared to orient themselves to wind direction for optimum energy extraction.

  3. Electrochemical luminescence determination of hyperin using a sol-gel@graphene luminescent composite film modified electrode for solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Zou, Xiaojun; Shang, Fang; Wang, Sui

    2017-02-01

    In this paper, a novel electrochemiluminescence (ECL) sensor of sol-gel@graphene luminescent composite film modified electrode for hyperin determination was prepared using graphene (G) as solid-phase microextraction (SPME) material, based on selective preconcentration of target onto an electrode and followed by luminol ECL detection. Hyperin was firstly extracted from aqueous solution through the modified GCE. Hydrogel, electrogenerated chemiluminescence reagents, pH of working solution, extraction time and temperature and scan rate were discussed. Under the optimum conditions, the change of ECL intensity was in proportion to the concentration of hyperin in the range of 0.02-0.24 μg/mL with a detection limit of 0.01 μg/mL. This method showed good performance in stability, reproducibility and precision for the determination of hyperin.

  4. Application of Taguchi optimisation of electro metal - electro winning (EMEW) for nickel metal from laterite

    NASA Astrophysics Data System (ADS)

    Sudibyo, Hermida, L.; Junaedi, A.; Putra, F. A.

    2017-11-01

    Nickel and cobalt metal able to process from low grade laterite using solvent extraction and electrowinning. One of electrowinning methods which has good performance to produce pure metal is electrometal-electrowinninge(EMEW). In this work, solventextraction was used to separate nickel and cobalt which useCyanex-Versatic Acid in toluene as an organic phase. An aqueous phase of extraction was processed using EMEW in order to deposit the nickel metal in Cathode electrode. The parameters which used in this work were batch temperature, operation time, voltage, and boric acid concentration. Those parameters were studied and optimized using the design of experiment of Taguchi. The Taguchi analysis result shows that the optimum result of EMEW was at 60°C of batch temperature, 2 Voltage, 6 hours operation and 0.5 M of boric acid.

  5. Sorptive thin film microextraction followed by direct solid state spectrofluorimetry: A simple, rapid and sensitive method for determination of carvedilol in human plasma.

    PubMed

    Karimi, Shima; Talebpour, Zahra; Adib, Noushin

    2016-06-14

    A poly acrylate-ethylene glycol (PA-EG) thin film is introduced for the first time as a novel polar sorbent for sorptive extraction method coupled directly to solid-state spectrofluorimetry without the necessity of a desorption step. The structure, polarity, fluorescence property and extraction performance of the developed thin film were investigated systematically. Carvedilol was used as the model analyte to evaluate the proposed method. The entire procedure involved one-step extraction of carvedilol from plasma using PA-EG thin film sorptive phase without protein precipitation. Extraction variables were studied in order to establish the best experimental conditions. Optimum extraction conditions were the followings: stirring speed of 1000 rpm, pH of 6.8, extraction temperature of 60 °C, and extraction time of 60 min. Under optimal conditions, extraction of carvedilol was carried out in spiked human plasma; and the linear range of calibration curve was 15-300 ng mL(-1) with regression coefficient of 0.998. Limit of detection (LOD) for the method was 4.5 ng mL(-1). The intra- and inter-day accuracy and precision of the proposed method were evaluated in plasma sample spiked with three concentration levels of carvedilol; yielding a recovery of 91-112% and relative standard deviation of less than 8%, respectively. The established procedure was successfully applied for quantification of carvedilol in plasma sample of a volunteer patient. The developed PA-EG thin film sorptive phase followed by solid-state spectrofluorimetric method provides a simple, rapid and sensitive approach for the analysis of carvedilol in human plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Total lipid extraction of homogenized and intact lean fish muscles using pressurized fluid extraction and batch extraction techniques.

    PubMed

    Isaac, Giorgis; Waldebäck, Monica; Eriksson, Ulla; Odham, Göran; Markides, Karin E

    2005-07-13

    The reliability and efficiency of pressurized fluid extraction (PFE) technique for the extraction of total lipid content from cod and the effect of sample treatment on the extraction efficiency have been evaluated. The results were compared with two liquid-liquid extraction methods, traditional and modified methods according to Jensen. Optimum conditions were found to be with 2-propanol/n-hexane (65:35, v/v) as a first and n-hexane/diethyl ether (90:10, v/v) as a second solvent, 115 degrees C, and 10 min of static time. PFE extracts were cleaned up using the same procedure as in the methods according to Jensen. When total lipid yields obtained from homogenized cod muscle using PFE were compared yields obtained with original and modified Jensen methods, PFE gave significantly higher yields, approximately 10% higher (t test, P < 0.05). Infrared and NMR spectroscopy suggested that the additional material that inflates the gravimetric results is rather homogeneous and is primarily consists of phospholipid with headgroups of inositidic and/or glycosidic nature. The comparative study demonstrated that PFE is an alternative suitable technique to extract total lipid content from homogenized cod (lean fish) and herring (fat fish) muscle showing a precision comparable to that obtained with the traditional and modified Jensen methods. Despite the necessary cleanup step, PFE showed important advantages in the solvent consumption was cut by approximately 50% and automated extraction was possible.

  7. Extraction and characterization of polysaccharides from Semen Cassiae by microwave-assisted aqueous two-phase extraction coupled with spectroscopy and HPLC.

    PubMed

    Chen, Zhi; Zhang, Wei; Tang, Xunyou; Fan, Huajun; Xie, Xiujuan; Wan, Qiang; Wu, Xuehao; Tang, James Z

    2016-06-25

    A novel and rapid method for simultaneous extraction and separation of the different polysaccharides from Semen Cassiae (SC) was developed by microwave-assisted aqueous two-phase extraction (MAATPE) in a one-step procedure. Using ethanol/ammonium sulfate system as a multiphase solvent, the effects of MAATPE on the extraction of polysaccharides from SC such as the composition of the ATPS, extraction time, temperature and solvent-to-material ratio were investigated by UV-vis analysis. Under the optimum conditions, the yields of polysaccharides were 4.49% for the top phase, 8.80% for the bottom phase and 13.29% for total polysaccharides, respectively. Compared with heating solvent extraction and ultrasonic assisted extraction, MAATPE exhibited the higher extraction yields in shorter time. Fourier-transform infrared spectra showed that two polysaccharides extracted from SC to the top and bottom phases by MAATPE were different from each other in their chemical structures. Through acid hydrolysis and PMP derivatization prior to HPLC, analytical results by indicated that a polysaccharide of the top phases was a relatively homogeneous homepolysaccharide composed of dominant gucose glucose while that of the bottom phase was a water-soluble heteropolysaccharide with multiple components of glucose, xylose, arabinose, galactose, mannose and glucuronic acid. Molar ratios of monosaccharides were 95.13:4.27:0.60 of glucose: arabinose: galactose for the polysaccharide from the top phase and 62.96:14.07:6.67: 6.67:5.19:4.44 of glucose: xylose: arabinose: galactose: mannose: glucuronic acid for that from the bottom phase, respectively. The mechanism for MAATPE process was also discussed in detail. MAATPE with the aid of microwave and the selectivity of the ATPS not only improved yields of the extraction, but also obtained a variety of polysaccharides. Hence, it was proved as a green, efficient and promising alternative to simultaneous extraction of polysaccharides from SC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Variables controlling the recovery of ignitable liquid residues from simulated fire debris samples using solid-phase microextraction/gas chromatography

    NASA Astrophysics Data System (ADS)

    Furton, Kenneth G.; Almirall, Jose R.; Wang, Jing

    1999-02-01

    In this paper, we present data comparing a variety of different conditions for extracting ignitable liquid residues from simulated fire debris samples in order to optimize the conditions for using Solid Phase Microextraction. A simulated accelerant mixture containing 30 components, including those from light petroleum distillates, medium petroleum distillates and heavy petroleum distillates were used to study the important variables controlling Solid Phase Microextraction (SPME) recoveries. SPME is an inexpensive, rapid and sensitive method for the analysis of volatile residues from the headspace over solid debris samples in a container or directly from aqueous samples followed by GC. The relative effects of controllable variables, including fiber chemistry, adsorption and desorption temperature, extraction time, and desorption time, have been optimized. The addition of water and ethanol to simulated debris samples in a can was shown to increase the sensitivity when using headspace SPME extraction. The relative enhancement of sensitivity has been compared as a function of the hydrocarbon chain length, sample temperature, time, and added ethanol concentrations. The technique has also been optimized to the extraction of accelerants directly from water added to the fire debris samples. The optimum adsorption time for the low molecular weight components was found to be approximately 25 minutes. The high molecular weight components were found at a higher concentration the longer the fiber was exposed to the headspace (up to 1 hr). The higher molecular weight components were also found in higher concentrations in the headspace when water and/or ethanol was added to the debris.

  9. Rapid metal extractability tests from polluted mining soils by ultrasound probe sonication and microwave-assisted extraction systems.

    PubMed

    García-Salgado, Sara; Quijano, M Ángeles

    2016-12-01

    Ultrasonic probe sonication (UPS) and microwave-assisted extraction (MAE) were used for rapid single extraction of Cd, Cr, Cu, Ni, Pb, and Zn from soils polluted by former mining activities (Mónica Mine, Bustarviejo, NW Madrid, Spain), using 0.01 mol L -1 calcium chloride (CaCl 2 ), 0.43 mol L -1 acetic acid (CH 3 COOH), and 0.05 mol L -1 ethylenediaminetetraacetic acid (EDTA) at pH 7 as extracting agents. The optimum extraction conditions by UPS consisted of an extraction time of 2 min for both CaCl 2 and EDTA extractions and 15 min for CH 3 COOH extraction, at 30% ultrasound (US) amplitude, whereas in the case of MAE, they consisted of 5 min at 50 °C for both CaCl 2 and EDTA extractions and 15 min at 120 °C for CH 3 COOH extraction. Extractable concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The proposed methods were compared with a reduced version of the corresponding single extraction procedures proposed by the Standards, Measurements and Testing Programme (SM&T). The results obtained showed a great variability on extraction percentages, depending on the metal, the total concentration level and the soil sample, reaching high values in some areas. However, the correlation analysis showed that total concentration is the most relevant factor for element extractability in these soil samples. From the results obtained, the application of the accelerated extraction procedures, such as MAE and UPS, could be considered a useful approach to evaluate rapidly the extractability of the metals studied.

  10. Effect of reaction temperature on biodiesel production from waste cooking oil using lipase as biocatalyst

    NASA Astrophysics Data System (ADS)

    Istiningrum, Reni Banowati; Aprianto, Toni; Pamungkas, Febria Lutfi Udin

    2017-12-01

    This study aims to determine the effect of temperature on conversion of biodiesel from waste cooking oil enzymatically using lipase extracted from rice bran. The feedstock was simulated waste cooking oil and lipase enzyme was extracted with buffer pH variation. The enzyme activity was titrimetrically determined and the optimum pH buffer was used to study the effect of temperature on the transesterification reaction. Temperature effects were assessed in the range of 45-60 °C and the content of methyl esters in biodiesel was determined by GC-MS. The reaction temperature significantly influences the transesterification reaction with optimum biodiesel conversion occurred at 55 °C with methyl ester content of 81.19%. The methyl ester composition in the resulting biodiesel is methyl palmitate, methyl oleate and methyl stearate.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavanaugh, J.E.; McQuarrie, A.D.; Shumway, R.H.

    Conventional methods for discriminating between earthquakes and explosions at regional distances have concentrated on extracting specific features such as amplitude and spectral ratios from the waveforms of the P and S phases. We consider here an optimum nonparametric classification procedure derived from the classical approach to discriminating between two Gaussian processes with unequal spectra. Two robust variations based on the minimum discrimination information statistic and Renyi's entropy are also considered. We compare the optimum classification procedure with various amplitude and spectral ratio discriminants and show that its performance is superior when applied to a small population of 8 land-based earthquakesmore » and 8 mining explosions recorded in Scandinavia. Several parametric characterizations of the notion of complexity based on modeling earthquakes and explosions as autoregressive or modulated autoregressive processes are also proposed and their performance compared with the nonparametric and feature extraction approaches.« less

  12. Extraction of mineral elements from inedible wastes of biological components of a life-support system and their utilization for plant nutrition

    NASA Astrophysics Data System (ADS)

    Gribovskaya, I. V.; Gladchenko, I. A.; Zinenko, G. K.

    Two methods of extracting mineral elements from otherwise deadlock products of a life-support system are presented. We describe first optimum conditions for recovering elements by water extraction from dry wastes of plants, biomass ash, and solid human wastes after passing them through the catalytic furnace; and, second, we describe acid extracts of biogenous elements by 1N and 2N HNO_3 from these products. Ways to use the extracts of elements in plant nutrition are considered in order to increase the extent to which the mineral loop of a life-support system can be closed.

  13. Recovery of steroidal alkaloids from potato peels using pressurized liquid extraction.

    PubMed

    Hossain, Mohammad B; Rawson, Ashish; Aguiló-Aguayo, Ingrid; Brunton, Nigel P; Rai, Dilip K

    2015-05-13

    A higher yield of glycoalkaloids was recovered from potato peels using pressurized liquid extraction (1.92 mg/g dried potato peels) compared to conventional solid-liquid extraction (0.981 mg/g dried potato peels). Response surface methodology deduced the optimal temperature and extracting solvent (methanol) for the pressurized liquid extraction (PLE) of glycoalkaloids as 80 °C in 89% methanol. Using these two optimum PLE conditions, levels of individual steroidal alkaloids obtained were of 597, 873, 374 and 75 µg/g dried potato peel for α-solanine, α-chaconine, solanidine and demissidine respectively. Corresponding values for solid liquid extraction were 59%, 46%, 40% and 52% lower for α-solanine, α-chaconine, solanidine and demissidine respectively.

  14. Musical sound analysis/synthesis using vector-quantized time-varying spectra

    NASA Astrophysics Data System (ADS)

    Ehmann, Andreas F.; Beauchamp, James W.

    2002-11-01

    A fundamental goal of computer music sound synthesis is accurate, yet efficient resynthesis of musical sounds, with the possibility of extending the synthesis into new territories using control of perceptually intuitive parameters. A data clustering technique known as vector quantization (VQ) is used to extract a globally optimum set of representative spectra from phase vocoder analyses of instrument tones. This set of spectra, called a Codebook, is used for sinusoidal additive synthesis or, more efficiently, for wavetable synthesis. Instantaneous spectra are synthesized by first determining the Codebook indices corresponding to the best least-squares matches to the original time-varying spectrum. Spectral index versus time functions are then smoothed, and interpolation is employed to provide smooth transitions between Codebook spectra. Furthermore, spectral frames are pre-flattened and their slope, or tilt, extracted before clustering is applied. This allows spectral tilt, closely related to the perceptual parameter ''brightness,'' to be independently controlled during synthesis. The result is a highly compressed format consisting of the Codebook spectra and time-varying tilt, amplitude, and Codebook index parameters. This technique has been applied to a variety of harmonic musical instrument sounds with the resulting resynthesized tones providing good matches to the originals.

  15. Microbial inactivation of paprika by a high-temperature short-X time treatment. Influence on color properties.

    PubMed

    Almela, Luis; Nieto-Sandoval, José M; Fernández López, José A

    2002-03-13

    High-temperature short-time (HTST) treatments have been used to destroy the bioburden of paprika. With this in mind, we have designed a device to treat samples of paprika with a gas whose temperature, pressure, and composition can be selected. Temperatures and treatment times ranged from 130 to 170 degrees C and 4 to 6 s, respectively. The survival of the most commonly found microorganisms in paprika and any alteration in extractable and superficial color were examined. Data showed that the optimum HTST conditions were 145 degrees C, 1.5 kg/cm2 of overpressure, 6 s operation time, and a thermal fluid of saturated steam. No microbial growth was detected during storage after thermal treatment. To minimize the color losses, treated (HTST) paprika samples should be kept under refrigeration.

  16. The use of graphene-based magnetic nanoparticles as adsorbent for the extraction of triazole fungicides from environmental water.

    PubMed

    Wang, Weina; Ma, Xiaoxing; Wu, Qiuhua; Wang, Chun; Zang, Xiaohuan; Wang, Zhi

    2012-09-01

    A graphene-based magnetic nanocomposite (graphene-ferriferrous oxide; G-Fe(3)O(4)) was synthesized and used as an effective adsorbent for the preconcentration of some triazole fungicides (myclobutanil, tebuconazole, and hexaconazole) in environmental water samples prior to high-performance liquid chromatography-ultraviolet detection. The method, which takes the advantages of both nanoparticle adsorption and magnetic phase separation from the sample solution, could avoid the time-consuming experimental procedures commonly involved in the traditional solid phase extraction such as centrifugation and filtrations. Various experimental parameters affecting the extraction efficiencies such as the amount of the magnetic nanocomposite, extraction time, the pH values of the sample solution, salt concentration, and desorption conditions were investigated. Under the optimum conditions, the enrichment factors of the method for the three analytes were 5824, 3600, and 4761, respectively. A good linearity was observed in the range of 0.1-50 ng/mL for tebuconazole and 0.05-50 ng/mL for myclobutanil and hexaconazole, respectively, with the correlation coefficients ranging from 0.9992 to 0.9996. The limits of detection (S/N = 3) of the method were between 0.005 and 0.01 ng/mL. The results indicated that as a magnetic solid-phase extraction adsorbent, the graphene-ferriferrous oxide (G-Fe(3)O(4)) has a great potential for the preconcentration of some compounds from liquid samples. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Real time tracking by LOPF algorithm with mixture model

    NASA Astrophysics Data System (ADS)

    Meng, Bo; Zhu, Ming; Han, Guangliang; Wu, Zhiguo

    2007-11-01

    A new particle filter-the Local Optimum Particle Filter (LOPF) algorithm is presented for tracking object accurately and steadily in visual sequences in real time which is a challenge task in computer vision field. In order to using the particles efficiently, we first use Sobel algorithm to extract the profile of the object. Then, we employ a new Local Optimum algorithm to auto-initialize some certain number of particles from these edge points as centre of the particles. The main advantage we do this in stead of selecting particles randomly in conventional particle filter is that we can pay more attentions on these more important optimum candidates and reduce the unnecessary calculation on those negligible ones, in addition we can overcome the conventional degeneracy phenomenon in a way and decrease the computational costs. Otherwise, the threshold is a key factor that affecting the results very much. So here we adapt an adaptive threshold choosing method to get the optimal Sobel result. The dissimilarities between the target model and the target candidates are expressed by a metric derived from the Bhattacharyya coefficient. Here, we use both the counter cue to select the particles and the color cur to describe the targets as the mixture target model. The effectiveness of our scheme is demonstrated by real visual tracking experiments. Results from simulations and experiments with real video data show the improved performance of the proposed algorithm when compared with that of the standard particle filter. The superior performance is evident when the target encountering the occlusion in real video where the standard particle filter usually fails.

  18. Optimization of Lactobacillus acidophilus cultivation using taro waste and evaluation of its biological activity.

    PubMed

    Hsieh, Shu-Chen; Liu, Jui-Ming; Pua, Xiao-Hui; Ting, Yuwen; Hsu, Ren-Jun; Cheng, Kuan-Chen

    2016-03-01

    In this study, taro waste (TW) was utilized for Lactobacillus acidophilus BCRC 14079 cultivation and the anti-tumor and immune-modulatory properties of heat-killed cells (HKCs), cytoplasmic fraction (CF), and exopolysaccharide (EPS) were evaluated. The optimum liquefaction enzyme dosage, temperature, and time determined by Box-Behnken design response surface methodology (BBD-RSM) were 9 mL/L of α-amylase, 79.2 °C, and 5 h of reaction, respectively. The optimum temperature and reaction time for saccharification were determined as 60 °C and 3 h. The optimum medium, CGMY1 medium, constitutes of TW hydrolysate containing 37 g/L of glucose, 25 g/L of corn gluten meal (CGM), and 1 g/L of yeast extract (YE). Results of MTT assay showed that HKCs and EPS from CGM medium exhibited the highest anti-proliferative in HT-29 (IC50 of HKCs, 467.25 μg/mL; EPS, 716.10 μg/mL) and in Caco-2 cells (IC50 of EPS, 741.60 μg/mL). Luciferase-based NF-ΚB and COX-2 systems indicated HKCs from CGM medium stimulated the highest expression of luciferin in both systems. The luciferase activities by using 100 and 500 μg/mL of HKCs from CGM were 24.30- and 45.83-fold in NF-ΚB system and 11.54- and 4.93-fold in COX-2 system higher than the control. In conclusion, this study demonstrated the potential of TW medium for L. acidophilus cultivation and the production of non-viable probiotics with enhanced biological activities.

  19. Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring.

    PubMed

    Slepova, Tatiana V; Sokolova, Tatyana G; Kolganova, Tatyana V; Tourova, Tatyana P; Bonch-Osmolovskaya, Elizaveta A

    2009-02-01

    A novel anaerobic, thermophilic, Fe(III)-reducing, CO-utilizing bacterium, strain 1315(T), was isolated from a hot spring of Geyser Valley on the Kamchatka Peninsula. Cells of the new isolate were Gram-positive, short rods. Growth was observed at 52-70 degrees C, with an optimum at 65 degrees C, and at pH 5.5-8.5, with an optimum at pH 6.5-7.2. In the presence of Fe(III) or 9,10-anthraquinone 2,6-disulfonate (AQDS), the bacterium was capable of growth with CO and yeast extract (0.2 g l(-1)); during growth under these conditions, strain 1315(T) produced H(2) and CO(2) and Fe(II) or AQDSH(2), respectively. Strain 1315(T) also grew by oxidation of yeast extract, glucose, xylose or lactate under a N(2) atmosphere, reducing Fe(III) or AQDS. Yeast extract (0.2 g l(-1)) was required for growth. Isolate 1315(T) grew exclusively with Fe(III) or AQDS as an electron acceptor. The generation time under optimal conditions with CO as growth substrate was 9.3 h. The G+C content of the DNA was 41.5+/-0.5 mol%. 16S rRNA gene sequence analysis placed the organism in the genus Carboxydothermus (97.8 % similarity with the closest relative). On the basis of physiological features and phylogenetic analysis, it is proposed that strain 1315(T) should be assigned to a novel species, Carboxydothermus siderophilus sp. nov., with the type strain 1315(T) (=VKPM 9905B(T) =VKM B-2474(T) =DSM 21278(T)).

  20. Encapsulation of Beetroot Pomace Extract: RSM Optimization, Storage and Gastrointestinal Stability.

    PubMed

    Tumbas Šaponjac, Vesna; Čanadanović-Brunet, Jasna; Ćetković, Gordana; Jakišić, Mirjana; Djilas, Sonja; Vulić, Jelena; Stajčić, Slađana

    2016-04-30

    One of the great problems in food production are surplus by-products, usually utilized for feeding animals and for preparation of dietary fibre or biofuel. These products represent potential sources of bioactive antioxidants and colour-giving compounds which could be used in the pharmaceutical industry and as food additives. In the present study beetroot pomace extract was encapsulated in soy protein by a freeze drying method. Process parameters (core: wall ratio, extract concentration and mixing time) were optimized using response surface methodology (RSM) in order to obtain the optimum encapsulate (OE) with the highest polyphenol encapsulation efficiency (EE) and radical scavenging activity on DPPH radicals (SA). Using the calculated optimum conditions, the EE (86.14%) and SA (1668.37 μmol Trolox equivalents/100 g) of OE did not differ significantly (p < 0.05) from the predicted ones. The contents of total polyphenols (326.51 mg GAE/100 g), flavonoids (10.23 mg RE/100 g), and betalains (60.52 mg betanin/100 g and 61.33 mg vulgaxanthin-I/100 g), individual content of phenolic compounds and betalains by HPLC, and the ability to reduce Fe(3+) ions, i.e., reducing power (394.95 μmol Trolox equivalents/100 g) of OE were determined as well. During three months of storage at room temperature, polyphenol retention was much higher (76.67%) than for betalain pigments, betacyanins (17.77%) and betaxanthins (17.72%). In vitro digestion and release of phenolics from OE showed higher release rate in simulated intestinal fluid than in gastric fluid. These results suggest encapsulation as a contemporary method for valorisation of sensitive bioactive compounds from food industry by-products.

  1. Chemically-modified activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions.

    PubMed

    Li, Zhenhua; Chang, Xijun; Zou, Xiaojun; Zhu, Xiangbing; Nie, Rong; Hu, Zheng; Li, Ruijun

    2009-01-26

    A new method that utilizes ethylenediamine-modified activated carbon (AC-EDA) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The new sorbent was prepared by oxidative surface modification. Experimental conditions for effective adsorption of trace levels of Cr(III), Fe(III), Hg(II) and Pb(II) were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4.0. Complete elution of absorbed metal ions from the sorbent surface was carried out using 3.0 mL of 2% (%w/w) thiourea and 0.5 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.4, 28.9, 60.5 and 49.9 mg g(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The time for 94% adsorption of target metal ions was less than 2 min. The detection limits of the method was found to be 0.28, 0.22, 0.09 and 0.17 ng mL(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The precision (R.S.D.) of the method was lower 4.0% (n=8). The prepared sorbent as solid-phase extractant was successfully applied for the preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) in natural and certified samples with satisfactory results.

  2. The Variation Test and Extraction Equipment to Optimum Asphalt by Using Gasoline Solvent

    NASA Astrophysics Data System (ADS)

    Soehardi, Fitridawati

    2017-12-01

    Based on the Binamarga Specification 2010 at third revision, the extraction test should be carried out using the specimen from the loose asphalt mixture extracted from the back of the finisher bitumen machine. The purpose of this research is to find out the result of pretest and posttest extraction asphalt content. The Extraction test using two equipment, they are Soklet and Centrifuge. The specimens was used AMP, Asphalt Finisher and Core, which involved gasoline solvent. Based on the asphalt level extraction test results, the appropriate equipment was used centrifuge with the level accuracy as requirement of Binamarga Specification 2010 at third revision and the level of ease used as equipment in the field study. The asphalt content obtained for AMP 5,51%, Asphalt Finisher5,46% and Core 5.34%. As for the socket asphalt content obtained is AMP 5.55%, Asphalt Finisher 5.50% and Core core 5. 41%. The extract test value of asphalt content decreased, so it can be formulated KA JMF

  3. Optimization of pressurized liquid extraction by response surface methodology of Goji berry (Lycium barbarum L.) phenolic bioactive compounds.

    PubMed

    Tripodo, Giusy; Ibáñez, Elena; Cifuentes, Alejandro; Gilbert-López, Bienvenida; Fanali, Chiara

    2018-01-03

    Pressurized liquid extraction (PLE) has been used for the first time in this work to extract phenolic compounds from Goji berries according to a multilevel factorial design using response surface methodology. The global yield (% w/dw, weight/dry-weight), total phenolic content (TPC), total flavonoid (TF) and antioxidant activity (determined via ABTS assay, expressed as TEAC value) were used as response variables to study the effects of temperature (50-180°C) and green solvent composition (mixtures of ethanol/water). Phenolic compounds characterization was performed by high performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS). The optimum PLE conditions predicted by the model were as follows: 180°C and 86% ethanol in water with a good desirability value of 0.815. The predicted conditions were confirmed experimentally and once the experimental design was validated for commercial fruit samples, the PLE extraction of phenolic compounds from three different varieties of fruit samples (Selvatico mongolo, Bigol, and Polonia) was performed. Nine phenolic compounds were tentatively identified in these extracts, including phenolic acids and their derivatives, and flavonols. The optimized PLE conditions were compared to a conventional solid-liquid extraction, demonstrating that PLE is a useful alternative to extract phenolic compounds from Goji berry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Extraction and preconcentration of residual solvents in pharmaceuticals using dynamic headspace-liquid phase microextraction and their determination by gas chromatography-flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Dehghani, Hamideh; Yadeghari, Adeleh; Khoshmaram, Leila

    2017-02-01

    The present study describes a microextraction and determination method for analyzing residual solvents in pharmaceutical products using dynamic headspace-liquid phase microextraction technique followed by gas chromatography-flame ionization detection. In this method dimethyl sulfoxide (μL level) placed into a GC liner-shaped extraction vessel is used as a collection/extraction solvent. Then the liner is exposed to the headspace of a vial containing the sample solution. The effect of different parameters influencing the microextraction procedure including collection/extraction solvent type and its volume, ionic strength, extraction time, extraction temperature and concentration of NaOH solution used in dissolving the studied pharmaceuticals are investigated and optimized. Under the optimum extraction conditions, the method showed wide linear ranges between 0.5 and 5000 mg L -1 . The other analytical parameters were obtained in the following ranges: enrichment factors 240-327, extraction recoveries 72-98% and limits of detection 0.1-0.8 mg L -1 in solution and 0.6-3.2 μg g -1 in solid. Relative standard deviations for the extraction of 100 mg L -1 of each analyte were obtained in the ranges of 4-7 and 5-8% for intra-day (n = 6) and inter-day (n = 4) respectively. Finally the target analytes were determined in different samples such as erythromycin, azithromycin, cefalexin, amoxicillin and co-amoxiclav by the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Determination of lutein from green tea and green tea by-products using accelerated solvent extraction and UPLC.

    PubMed

    Heo, Ji-Young; Kim, Suna; Kang, Jae-Hyun; Moon, Bokyung

    2014-05-01

    We aimed to identify the optimum conditions for the extraction of lutein from green tea using accelerated solvent extraction, and achieve improved analytical resolution and sensitivity between lutein and zeaxanthin using an ultra performance liquid chromatography (UPLC) system. The optimized method employed 80% ethanol as the extraction solvent, 160 °C as the temperature, 2 static cycles, and 5 min of static time. In the validation of the UPLC method, recovery was found to be in the range approximately 93.73 to 108.79%, with a correlation coefficient of 0.9974 and a relative standard deviation of <9.29% in inter- and intraday precision analyses. Finally, the lutein contents of green tea and green tea by-products were measured as 32.67 ± 0.70 and 18.18 ± 0.68 mg/100g dw, respectively. Furthermore, we verified that green tea by-products, which are discarded after producing green tea beverages, might be used as a great resource for massive lutein production. We have demonstrated that the common problem of inadequate resolution between lutein and zeaxanthin during carotenoid analyses can be overcome by optimizing the combined techniques of accelerated solvent extraction and ultra performance liquid chromatography (UPLC). UPLC was highly effective for saving time, solvent, and labor, as well as providing better resolution. The results in this study demonstrated that green tea by-products could be used as new sources for industrial lutein production owing to their massive production during the extraction of green tea beverages. © 2014 Institute of Food Technologists®

  6. Preconcentration of Trace Neonicotinoid Insecticide Residues Using Vortex-Assisted Dispersive Micro Solid-Phase Extraction with Montmorillonite as an Efficient Sorbent.

    PubMed

    Moyakao, Khwankaew; Santaladchaiyakit, Yanawath; Srijaranai, Supalax; Vichapong, Jitlada

    2018-04-11

    In this work, we investigated montmorillonite for adsorption of neonicotinoid insecticides in vortex-assisted dispersive micro-solid phase extraction (VA-d-μ-SPE). High-performance liquid chromatography with photodiode array detection was used for quantification and determination of neonicotinoid insecticide residues, including thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid. In this method, the solid sorbent was dispersed into the aqueous sample solution and vortex agitation was performed to accelerate the extraction process. Finally, the solution was filtered from the solid sorbent with a membrane filter. The parameters affecting the extraction efficiency of the proposed method were optimized, such as amount of sorbent, sample volume, salt addition, type and volume of extraction solvent, and vortex time. The adsorbing results show that montmorillonite could be reused at least 4 times and be used as an effective adsorbent for rapid extraction/preconcentration of neonicotinoid insecticide residues. Under optimum conditions, linear dynamic ranges were achieved between 0.5 and 1000 ng mL -1 with a correlation of determination ( R² ) greater than 0.99. Limit of detection (LOD) ranged from 0.005 to 0.065 ng mL -1 , while limit of quantification (LOQ) ranged from 0.008 to 0.263 ng mL -1 . The enrichment factor (EF) ranged from 8 to 176-fold. The results demonstrated that the proposed method not only provided a more simple and sensitive method, but also can be used as a powerful alternative method for the simultaneous determination of insecticide residues in natural surface water and fruit juice samples.

  7. Automated multisyringe stir bar sorptive extraction using robust montmorillonite/epoxy-coated stir bars.

    PubMed

    Ghani, Milad; Saraji, Mohammad; Maya, Fernando; Cerdà, Víctor

    2016-05-06

    Herein we present a simple, rapid and low cost strategy for the preparation of robust stir bar coatings based on the combination of montmorillonite with epoxy resin. The composite stir bar was implemented in a novel automated multisyringe stir bar sorptive extraction system (MS-SBSE), and applied to the extraction of four chlorophenols (4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol) as model compounds, followed by high performance liquid chromatography-diode array detection. The different experimental parameters of the MS-SBSE, such as sample volume, selection of the desorption solvent, desorption volume, desorption time, sample solution pH, salt effect and extraction time were studied. Under the optimum conditions, the detection limits were between 0.02 and 0.34μgL(-1). Relative standard deviations (RSD) of the method for the analytes at 10μgL(-1) concentration level ranged from 3.5% to 4.1% (as intra-day RSD) and from 3.9% to 4.3% (as inter-day RSD at 50μgL(-1) concentration level). Batch-to-batch reproducibility for three different stir bars was 4.6-5.1%. The enrichment factors were between 30 and 49. In order to investigate the capability of the developed technique for real sample analysis, well water, wastewater and leachates from a solid waste treatment plant were satisfactorily analyzed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. NAD deamidation "a new reaction" by an enzyme from Aspergillus terreus DSM 826.

    PubMed

    Elzainy, Tahany A; Ali, Thanaa H

    2005-02-01

    NAD deamidation is a non-previously recognized reaction. This reaction has been found to be catalyzed by extracts of Aspergillus terreus DSM 826. Conversion of NAD to the biosynthetic intermediate, deamido NAD, by these extracts, at the optimum pH and temperature did not exceed about 55 of the amount of the substrate added. Completion of the reaction was achieved when the extracts were pre-heated at 50 degrees C for 15 min in absence of the substrate. In a very similar manner, the extracts catalyzed hydrolytic cleavage of the amide linkages of different biomolecules such as nicotinamide, nicotinamide riboside, nicotinamide mononucleotide, L-glutamine, L-asparagine and acetamide. Polyacrylamide was also deamidated under the same conditions. In addition, complete dephosphorylation of the dinucleotide molecule was also effected by the same extracts. Separation of the NAD deamidating enzyme from the NAD dephosphorylating enzyme was achieved on using either DEAE - Sephadex A-25 or Sephadex G-200 column chromatography. The obtained phosphohydrolase-free-deamidase showed optimum activity at pH 8 of 0.1 M phosphate buffer and 50 degrees C. It exhibited broad substrate specificity and hyperbolic substrate saturation kinetics. It was isosterically inhibited by the product of its activity and this inhibition was prevented by heating the extracts at 50 degrees C for 15 min. Its activity was not affected in presence of sodium fluoride, partially inhibited in presence of magnesium chloride and was retained in the freezer for some months.

  9. Study on gold concentrate leaching by iodine-iodide

    NASA Astrophysics Data System (ADS)

    Wang, Hai-xia; Sun, Chun-bao; Li, Shao-ying; Fu, Ping-feng; Song, Yu-guo; Li, Liang; Xie, Wen-qing

    2013-04-01

    Gold extraction by iodine-iodide solution is an effective and environment-friendly method. In this study, the method using iodine-iodide for gold leaching is proved feasible through thermodynamic calculation. At the same time, experiments on flotation gold concentrates were carried out and encouraging results were obtained. Through optimizing the technological conditions, the attained high gold leaching rate is more than 85%. The optimum process conditions at 25°C are shown as follows: the initial iodine concentration is 1.0%, the iodine-to-iodide mole ratio is 1:8, the solution pH value is 7, the liquid-to-solid mass ratio is 4:1, the leaching time is 4 h, the stirring intensity is 200 r/mim, and the hydrogen peroxide consumption is 1%.

  10. Analytical method development using functionalized polysulfone membranes for the determination of chlorinated hydrocarbons in water.

    PubMed

    Nuhu, Abdulmumin A; Basheer, Chanbasha; Abu-Thabit, Nedal Y; Alhooshani, Khalid; Al-Arfaj, Abdul Rahman

    2011-12-15

    In this study, functionalized polysulfone membrane has been utilized as a sorbent for the extraction of chlorinated hydrocarbons (CHCs) in water samples. Two different functionalized polysulfones (i) phosphonic acid functionalized polysulfone (PPSU-A) with different forms (cross-linked and non cross-linked) membranes and (ii) phosphonic ester functionalized polysulfone (PPSU-E) with different forms (cross-linked and non cross-linked) were evaluated for the extraction of CHCs in water. A 10 ml of spiked water sample was extracted with 50mg piece of the functionalized membrane. After extraction, the membrane was desorbed by organic solvent and the extract was analyzed by gas chromatography-mass spectrometry. Eight CHCs, 1,3,5-trichlorobenzene (1,3,5-TCB), 1,2,3-trichlorobenzene (1,2,3-TCB), 1,1,2,3,4,4-hexachloro-1,3-butadiene (HCBD), 1,2,4-trichloro-3-methylbenzene (TCMB), 1,2,3,4-tetrachlorobenzene (1,2,3,4-TeCB), 1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB), pentachlorobenzene (PeCB) and hexachlorobenzene (HCB) were used as model compounds. Experimental parameters such as extraction time, desorption time, types of polymer membrane as well the nature of desorption solvent were optimized. Using optimum extraction conditions calibration curves were linear with coefficients of determination between 0.9954 and 0.9999 over wide range of concentrations (0.05-100 μgl(-1)). The method detection limits (at a signal-to-noise ratio of 3) were in the range of 0.4-3.9 ng l(-1). The proposed method was evaluated for the determination of CHCs in drinking water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: A multivariate study

    NASA Astrophysics Data System (ADS)

    Arain, Salma Aslam; Kazi, Tasneem G.; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-01

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu2+) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu2+ using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046 μg L-1 and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu2+ in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu2+ in serum samples of different viral hepatitis patients and healthy controls.

  12. Application of a dispersive solid-phase extraction method using an amino-based silica-coated nanomagnetic sorbent for the trace quantification of chlorophenoxyacetic acids in water samples.

    PubMed

    Ghambarian, Mahnaz; Behbahani, Mohammad; Esrafili, Ali; Sobhi, Hamid Reza

    2017-09-01

    Herein, an amino-based silica-coated nanomagnetic sorbent was applied for the effective extraction of two chlorophenoxyacetic acids (2-methyl-4-chlorophenoxyacetic acid and 2,4-dichlorophenoxyacetic acid) from various water samples. The sorbent was successfully synthesized and subsequently characterized by scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The analytes were extracted by the sorbent mainly through ionic interactions. Once the extraction of analytes was completed, they were desorbed from the sorbent and detected by high-performance liquid chromatography with ultraviolet detection. A number of factors affecting the extraction and desorption of the analytes were investigated in detail and the optimum conditions were established. Under the optimum conditions, the calibration curves were linear over the concentration range of 1-250, and based on a signal-to-noise ratio of 3, the method detection limits were determined to be 0.5 μg/L for both analytes. Additionally, a preconcentration factor of 314 was achieved for the analytes. The average relative recoveries obtained from the fortified water samples varied in the range of 91-108% with relative standard deviations of 2.9-8.3%. Finally, the method was determined to be robust and effective for environmental water analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Local phase method for designing and optimizing metasurface devices.

    PubMed

    Hsu, Liyi; Dupré, Matthieu; Ndao, Abdoulaye; Yellowhair, Julius; Kanté, Boubacar

    2017-10-16

    Metasurfaces have attracted significant attention due to their novel designs for flat optics. However, the approach usually used to engineer metasurface devices assumes that neighboring elements are identical, by extracting the phase information from simulations with periodic boundaries, or that near-field coupling between particles is negligible, by extracting the phase from single particle simulations. This is not the case most of the time and the approach thus prevents the optimization of devices that operate away from their optimum. Here, we propose a versatile numerical method to obtain the phase of each element within the metasurface (meta-atoms) while accounting for near-field coupling. Quantifying the phase error of each element of the metasurfaces with the proposed local phase method paves the way to the design of highly efficient metasurface devices including, but not limited to, deflectors, high numerical aperture metasurface concentrators, lenses, cloaks, and modulators.

  14. Environmental monitoring using acetylcholinesterase inhibition in vitro. A case study in two Mexican lagoons.

    PubMed

    Rodríguez-Fuentes, G; Gold-Bouchot, G

    2000-01-01

    Cholinesterase inhibition is considered a specific biomarker of exposure and effect for organophosphorous pesticides. Its use for monitoring has been hindered, particularly in tropical countries where organophosphates are widely used for malaria and dengue control, because of the frequent lack of suitable controls. An in vitro technique is proposed as a biochemical method for monitoring pollutant mixtures in sediment toxicity tests. Brain homogenate from the fish Oreochromis niloticus is used as the enzyme source. Optimum incubation time, extraction solvent and effect of crude oil on acetylcholinesterase (AChE) are reported. The method described was used in sediments from two Mexican lagoons, located in an oil extraction area where pesticides are used in agriculture and vector control campaigns. AChE inhibitions from 3 to 21% were found in these lagoons, even in the presence of high concentrations of petroleum.

  15. Preparation of demipermanent and semipermanent hair dyes gels from ethanol extract of Caesalpinia sappan L. using carbomer as gelling agent

    NASA Astrophysics Data System (ADS)

    Indrawati, T.; Syahrin, A.; Irpan

    2017-07-01

    Caesalpinia sappan L. (Cs L) contains of essential oils, saponin, brazilin, brazilein, alkaloids, flavonoids and tannins that have a function as cationic natural dyes. The aim of this research was to prepare the ethanol extract of Cs L wood and to prepare demi-permanent and semi-permanent of hair dye gels by using Carbomer of 2 % and 1.5 % as gelling agent and Cs L extract as cationic dyes. The Extract of Cs L was macerated by using ethanol of 96 % as the solvent, and then thickened. Three formula of demi-permanent hair dye gels were made by using Cs L extract of 3 %, 6% and 9 %. Three formula of semi-permanent hair dye gels were made by using Cs L extract of 2.50 %, 7.00 % and 10.50 %. Those hair dyes gels were prepared by swelling and mixing methods. All products of hair dyes gels were evaluated with organoleptic test, homogeneity test, pH test, consistency test, rheological properties test and dyeing effect test. The demi-permanent hair dye gels products had brown to brown dark black colors, pH of 5.05-5.43, homogeny, specific Cs L odor, and had pseudoplastic thixotropic flow characteristic. The semi-permanent hair dye gels products had red color pH of 6.5-6.25, homogeny, Cs L odor, and have pseudoplastic thixotropic flow characteristics. The optimum formula of demi-permanent was formula gel that contained of 6 % extract of Cs L and the optimum formula of permanent hair dyes gel was formula that contained of 10.50 % extract of Cs L.

  16. A modified approach for isolation of essential oil from fruit of Amorpha fruticosa Linn using microwave-assisted hydrodistillation concatenated liquid-liquid extraction.

    PubMed

    Chen, Fengli; Jia, Jia; Zhang, Qiang; Gu, Huiyan; Yang, Lei

    2017-11-17

    In this work, a modified technique was developed to separate essential oil from the fruit of Amorpha fruticosa using microwave-assisted hydrodistillation concatenated liquid-liquid extraction (MHD-LLE). The new apparatus consists of two series-wound separation columns for separating essential oil, one is the conventional oil-water separation column, and the other is the extraction column of components from hydrosol using an organic solvent. Therefore, the apparatus can simultaneously collect the essential oil separated on the top of hydrosol and the components extracted from hydrosol using an organic solvent. Based on the yield of essential oil in the first and second separation columns, the effects of parameters were investigated by single factor experiments and Box-Behnken design. Under the optimum conditions (2mL ethyl ether as the extraction solvent in the second separation column, 12mL/g liquid-solid ratio, 4.0min homogenate time, 35min microwave irradiation time and 540W microwave irradiation power), satisfactory yields for the essential oil in the first separation column (10.31±0.33g/kg) and second separation column (0.82±0.03g/kg) were obtained. Compared with traditional methods, the developed method gave a higher yield of essential oil in a shorter time. In addition, GC-MS analysis of the essential oil indicated significant differences of the relative contents of individual volatile components in the essential oils obtained in the two separation columns. Therefore, the MHD-LLE technique developed here is a good alternative for the isolation of essential oil from A. fruticosa fruit as well as other herbs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry.

    PubMed

    Li, Zhenhan; Xia, Shanhong; Wang, Jinfen; Bian, Chao; Tong, Jianhua

    2016-01-15

    A novel method for determination of trace mercury in water is developed. The method is performed by extracting mercury firstly with ionic liquids (ILs) and then detecting the concentration of mercury in organic media with anodic stripping voltammetry. Liquid-liquid extraction of mercury(II) ions by four ionic liquids with N-octylpyridinium cations ([OPy](+)) was studied. N-octylpyridinium tetrafluoroborate and N-octylpyridinium trifluoromethylsulfonate were found to be efficient and selective extractant for mercury. Temperature controlled dispersive liquid phase microextraction (TC-DLPME) technique was utilized to improve the performance of preconcentration. After extraction, precipitated IL was diluted by acetonitrile buffer and mercury was detected by differential pulse stripping voltammetry (DPSV) with gold disc electrode. Mercury was enriched by 17 times while interfering ions were reduced by two orders of magnitude in the organic media under optimum condition. Sensitivity and selectivity for electrochemical determination of mercury were improved by using the proposed method. Tap, pond and waste water samples were analyzed with recoveries ranging from 81% to 107% and detection limit of 0.05 μg/L. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The influence of the Tribulus terrestris extract on the parameters of the functional preparedness and athletes' organism homeostasis.

    PubMed

    Milasius, K; Dadeliene, R; Skernevicius, Ju

    2009-01-01

    The influence of the Tribulus terrestris extract on the parameters of the functional preparadness and athletes' organism homeostase was investigated. It was established the positive impact of dietary supplement "Tribulus" (Optimum Nutrition, U.S.A.) using per 1 capsule 3 times a day during 20 days on athletes' physical power in various energy producing zones: anaerobic alactic muscular power and anaerobic alactic glycolytic power statistically reliable increased. Tribulus terrestris extract, after 20 days of consuming it, did not have essential effect on erythrocytes, haemoglobin and thrombocytes indices. During the experimental period statistically importantly increased percentage of granulocytes and decreased percentage of leucocytes show negative impact of this food supplement on changes of leucocytes formula in athletes' blood. Creatinkinase concentration in athletes' blood statistically importantly has increased and creatinine amount has had a tendency to decline during 20 days period of consuming Tribulus terrestris extract. The declining tendency of urea, cholesterol and bilirubin concentrations has appeared. The concentration of blood testosterone increased statistically reliable during the first half (10 days) of the experiment; it did not grow during the next 10 days while consuming Tribulus still.

  19. A new process for preparation of soybean protein concentrate with hexane-aqueous ethanol mixed solvents.

    PubMed

    Zhang, Wei-Nong; Liu, Da-Chuan

    2005-01-01

    A new process for the preparation of soybean protein concentrate (SPC) by directly extracting full-fat soy flour with a mixture of hexane and aqueous ethanol was established. Compared with conventional methods, it has some advantages, such as saving energy and reducing protein denaturation caused by heat action during solvent recovery, because this process saves one step of solvent recovery. The effects of aqueous ethanol concentration and the mixure ratio (hexane to ethanol) on the degree of protein denaturation and product quality were investigated, on the basis of which the orthogonal tests were performed. The optimum technical parameters were obtained by analyzing the results of the orthogonal tests with statistical methods. We found that SPC can be obtained by extracting full-fat soy flour under the following conditions: mixture ratio hexane: 90% ethanol, 9:1, v/v; extraction temperature, 45 degrees C; ratio of solid to solvents, (1:2 w/v); and 5 repeated extractions (15 min each time). The results of quality analysis showed that solubility of the product was improved significantly [nitrogen solubility index (NSI) 46.6%] compared with that for ethanol washing of protein concentrate (NSI 8.7%).

  20. Graphene oxide assisted electromembrane extraction with gas chromatography for the determination of methamphetamine as a model analyte in hair and urine samples.

    PubMed

    Bagheri, Hasan; Zavareh, Alireza Fakhari; Koruni, Mohammad Hossein

    2016-03-01

    In the present study, graphene oxide reinforced two-phase electromembrane extraction (EME) coupled with gas chromatography was applied for the determination of methamphetamine as a model analyte in biological samples. The presence of graphene oxide in the hollow fiber wall can increase the effective surface area, interactions with analyte and polarity of support liquid membrane that leads to an enhancement in the analyte migration. To investigate the influence of the presence of graphene oxide in the support liquid membrane on the extraction efficiency, a comparative study was performed between graphene oxide and graphene oxide/EME methods. The extraction parameters such as type of organic solvent, pH of the donor phase, stirring speed, time, voltage, salt addition and the concentration of graphene oxide were optimized. Under the optimum conditions, the proposed microextraction technique provided low limit of detection (2.4 ng/mL), high preconcentration factor (195-198) and high relative recovery (95-98.5%). Finally, the method was successfully employed for the determination of methamphetamine in urine and hair samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A Paper-Based Analytical Device Based on Combination of Thin Film Microextraction and Reflection Scanometry for Sensitive Colorimetric Determination of Ni(II) in Aqueous Matrix.

    PubMed

    Allafchian, Ali Reza; Farajmand, Bahman; Koupaei, Amin Javaheri

    2018-04-01

    In this research, the thin film microextraction method was applied for the extraction of Ni(II) ion from aqueous matrixes. Chemically modified cellulosic filter paper with phosphorus was used as a thin film extractor. After extraction, the thin film was treated with a solution of dimethylglyoxime. The colored film was captured by flatbed scanner and the absorbance of the images was extracted by some suitable software. Under the optimum conditions and at the pH 7.0, with the sample volume of 100 mL, the stirring rate of 800 rpm, and the extraction time of 50 min, the calibration curve was obtained in the range of 0.05-5 mg/L Ni(II) (R 2  = 0.989). Limit and relative standard deviation were achieved to be 18 µg/L and less than 6.7%, respectively. Relative recoveries were obtained in the range of 87%-105%. Finally, the proposed method was found to be simple and cost-effective, with adequate analytical performance for the rapid detection of Ni(II) in river and wastewater samples.

  2. Optimization of dispersive liquid-phase microextraction based on solidified floating organic drop combined with high-performance liquid chromatography for the analysis of glucocorticoid residues in food.

    PubMed

    Huang, Yuan; Zheng, Zhiqun; Huang, Liying; Yao, Hong; Wu, Xiao Shan; Li, Shaoguang; Lin, Dandan

    2017-05-10

    A rapid, simple, cost-effective dispersive liquid-phase microextraction based on solidified floating organic drop (SFOD-LPME) was developed in this study. Along with high-performance liquid chromatography, we used the developed approach to determine and enrich trace amounts of four glucocorticoids, namely, prednisone, betamethasone, dexamethasone, and cortisone acetate, in animal-derived food. We also investigated and optimized several important parameters that influenced the extraction efficiency of SFOD-LPME. These parameters include the extractant species, volumes of extraction and dispersant solvents, sodium chloride addition, sample pH, extraction time and temperature, and stirring rate. Under optimum experimental conditions, the calibration graph exhibited linearity over the range of 1.2-200.0ng/ml for the four analytes, with a reasonable linearity(r 2 : 0.9990-0.9999). The enrichment factor was 142-276, and the detection limits was 0.39-0.46ng/ml (0.078-0.23μg/kg). This method was successfully applied to analyze actual food samples, and good spiked recoveries of over 81.5%-114.3% were obtained. Copyright © 2017. Published by Elsevier B.V.

  3. Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro.

    PubMed

    Chen, Chun; You, Li-Jun; Abbasi, Arshad Mehmood; Fu, Xiong; Liu, Rui Hai

    2015-10-05

    Single-factor experiment and Box-Behnken design (BBD) were applied to optimize the ultrasound-assisted extraction of mulberry fruits polysaccharides (MFP). Under optimum conditions: ratio of water to raw material 40.25, extraction temperature 69°C, ultrasonic power 190W and extraction time 75 min, the MFP yield was 3.13% (±0.07%), in accordance to the predicted value of 3.04%. The mulberry fruits polysaccharides fractions was obtained by deproteinization (MFP-1), followed by decolorization and deionization (MFP-2). Carbohydrate content in MFP, MFP-1 and MFP-2 was 58.61% (±1.47%), 69.98% (±0.91%), 81.18% (±1.29%), as well as proteins was estimated 16.50% (±0.86%), 1.57% (±0.63%), 1.02% (±0.18%), respectively. The FT-IR indicated that MFP, MFP-1 and MFP-2 were acidic polysaccharides. The MFP-1 exhibited the strongest antioxidant activity, while MFP-2 showed the strongest hyperglycemic activity in vitro. This may be caused by their different compositions and physical properties in the different mulberry fruit polysaccharides fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Vortex-assisted liquid-liquid microextraction for the rapid screening of short-chain chlorinated paraffins in water.

    PubMed

    Chang, Chia-Yu; Chung, Wu-Hsun; Ding, Wang-Hsien

    2016-01-01

    The rapid screening of trace levels of short-chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex-assisted liquid-liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex-assisted liquid-liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex-assisted liquid-liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short-chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. One pot synthesis of magnetic graphene/carbon nanotube composites as magnetic dispersive solid-phase extraction adsorbent for rapid determination of oxytetracycline in sewage water.

    PubMed

    Sun, Yunyun; Tian, Jing; Wang, Lu; Yan, Hongyuan; Qiao, Fengxia; Qiao, Xiaoqiang

    2015-11-27

    A simple and time-saving one pot synthesis of magnetic graphene/carbon nanotube composites (M-G/CNTs) was developed that could avoid the tedious drying process of graphite oxide, and G/CNTs were modified by Fe3O4 nanoparticles in the reduction procedure. It contributed to a shorten duration of the synthesis process of M-G/CNTs. The obtained M-G/CNTs were characterized and the results indicated that CNTs and Fe3O4 nanoparticles were served as spacer distributing to the layers of graphene, which was beneficial for enlarging surface area and improving extraction efficiency. Moreover, M-G/CNTs showed good magnetic property and outstanding thermal stability. Then M-G/CNTs were applied as adsorbent of magnetic dispersive solid-phase extraction for rapid extraction and determination of oxytetracycline in sewage water. Under the optimum conditions, good linearity was obtained in the range of 20-800ngmL(-1) and the recoveries were ranged from 95.5% to 112.5% with relative standard deviations less than 5.8%. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. [Comparison of chemical components of essential oils in needles of Pinus massoniana Lamb and Pinus elliottottii Engelm from Guangxi].

    PubMed

    Shen, Changmao; Duan, Wengui; Cen, Bo; Tan, Jianhui

    2006-11-01

    Essential oils were extracted by steam distillation from the needles of Pinus massoniana Lamb and Pinus elliottottii Engelm grown in Guangxi. Various factors such as pine needle dosage and extraction time which may influence the oil yield were investigated. The optimum conditions were found to be as follows: pine needle dosage 700 g, extraction time 5 h. The essential oil yields from the needles of Pinus massoniana Lamb and Pinus elliottottii Engelm were 0.45% and 0.19%, respectively. Moreover, the chemical compositions of the essential oils were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Sixty four components in the essential oil from needle of Pinus massoniana Lamb were separated and twenty of them (98.59%) were identified while seventy three components in the essential oil from needle of Pinus elliottottii Engelm were separated and twenty nine of them (94.23%) were identified. Generally, the compositions of the essential oils from needles of the two varieties were similar but the contents of some compounds differed greatly. Especially, the content of alpha-pinene in the essential oils from Pinus massoniana Lamb needles was 2.6 times as that from Pinus elliottottii Engelm needles, but the content of beta-pinene was less than the latter. Mono- and sesquiterpenes were the main composition of the essential oils from Pinus massoniana Lamb and Pinus elliottottii Engelm needles.

  7. Method development for optimum recovery of Yersinia pestis ...

    EPA Pesticide Factsheets

    Report The primary goal of this project was to determine the best combination of sampling swab, pre-moistening agent, transport media, and extraction method for a high efficiency recovery of Y. pestis and F. tularensis vegetative cells.

  8. [Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology].

    PubMed

    Shen, Naikun; Qin, Yan; Wang, Qingyan; Xie, Nengzhong; Mi, Huizhi; Zhu, Qixia; Liao, Siming; Huang, Ribo

    2013-10-01

    Succinic acid is an important C4 platform chemical in the synthesis of many commodity and special chemicals. In the present work, different compounds were evaluated for succinic acid production by Actinobacillus succinogenes GXAS 137. Important parameters were screened by the single factor experiment and Plackeet-Burman design. Subsequently, the highest production of succinic acid was approached by the path of steepest ascent. Then, the optimum values of the parameters were obtained by Box-Behnken design. The results show that the important parameters were glucose, yeast extract and MgCO3 concentrations. The optimum condition was as follows (g/L): glucose 70.00, yeast extract 9.20 and MgCO3 58.10. Succinic acid yield reached 47.64 g/L at the optimal condition. Succinic acid increased by 29.14% than that before the optimization (36.89 g/L). Response surface methodology was proven to be a powerful tool to optimize succinic acid production.

  9. Extraction of arbutin and its comparative content in branches, leaves, stems, and fruits of Japanese pear Pyrus pyrifolia cv. Kousui.

    PubMed

    Sasaki, Chizuru; Ichitani, Masaki; Kunimoto, Ko-Ki; Asada, Chikako; Nakamura, Yoshitoshi

    2014-01-01

    Arbutin is a tyrosinase inhibitor and is extensively used as a human skin-whitening agent. This study investigated the optimum conditions for extracting arbutin by ultrasonic homogenization from discarded branches pruned from Japanese pear (Pyrus pyrifolia cv. Kousui) trees. The arbutin content was measured in the branches and also in the leaves, stems, fruit peel, and fruit flesh.

  10. Extraction of palm tree cellulose and its functionalization via graft copolymerization.

    PubMed

    Al-Hoqbani, Abdulmajeed A; Abdel-Halim, E S; Al-Deyab, Salem S

    2014-09-01

    The work in this paper was planned with the aim of extracting the cellulosic component of palm tree waste and functionalizing this cellulose through graft copolymerization with acrylic acid. The cellulose extraction included hot alkali treatment with aqueous sodium hydroxide to remove the non-cellulosic binding materials. The alkali treatment was followed by an oxidative bleaching using peracid/hydrogen peroxide mixture with the aim of removing the rest of non-cellulosic materials to improve the fiber hydrophilicity and accessibility towards further grafting reaction. Optimum conditions for cellulose extraction are boiling in 5% (W/V) NaOH in a material to liquor ratio of 1:20 for 1 h then bleaching with 60 ml/l bleaching mixture at initial pH value of 6.5 for 30 min. The pH of the bleaching medium is turned to the alkaline range 11 and bleaching continues for extra 30 min. Graft copolymerization reaction was initiated by potassium bromate/thiourea dioxide redox system. Optimum conditions for grafting are 30 mmol of potassium bromate, 30 mmol of thiourea dioxide and 150 g of acrylic acid (each per 100 g of cellulose). The polymerization reaction was carried out for 120 min at 50°C using a material to liquor ratio of 1:20. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A determination of the optimum time of year for remotely classifying marsh vegetation from LANDSAT multispectral scanner data. [Louisiana

    NASA Technical Reports Server (NTRS)

    Butera, M. K. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. A technique was used to determine the optimum time for classifying marsh vegetation from computer-processed LANDSAT MSS data. The technique depended on the analysis of data derived from supervised pattern recognition by maximum likelihood theory. A dispersion index, created by the ratio of separability among the class spectral means to variability within the classes, defined the optimum classification time. Data compared from seven LANDSAT passes acquired over the same area of Louisiana marsh indicated that June and September were optimum marsh mapping times to collectively classify Baccharis halimifolia, Spartina patens, Spartina alterniflora, Juncus roemericanus, and Distichlis spicata. The same technique was used to determine the optimum classification time for individual species. April appeared to be the best month to map Juncus roemericanus; May, Spartina alterniflora; June, Baccharis halimifolia; and September, Spartina patens and Distichlis spicata. This information is important, for instance, when a single species is recognized to indicate a particular environmental condition.

  12. Optimization of extraction parameters on the antioxidant properties of banana waste.

    PubMed

    Toh, Pui Yee; Leong, Fei Shan; Chang, Sui Kiat; Khoo, Hock Eng; Yim, Hip Seng

    2016-01-01

    Banana is grown worldwide and consumed as ripe fruit or used for culinary purposes. Peels form about 18-33% of the whole fruit and are discarded as a waste product. With a view to exploiting banana peel as a source of valuable compounds, this study was undertaken to evaluate the effect of different extraction parameters on the antioxidant activities of the industrial by-product of banana waste (peel). Influence of different extraction parameters such as types of solvent, percentages of solvent, and extraction times on total phenolic content (TPC) and antioxidant activity of mature and green peels of Pisang Abu (PA), Pisang Berangan (PB), and Pisang Mas (PM) were investigated. The best extraction parameters were initially selected based on different percentages of ethanol (0-100% v/v), extraction time (1-5 hr), and extraction temperature (25-60°C) for extraction of antioxidants in the banana peels. Total phenolic content (TPC) was evaluated using Folin-Ciocalteu reagent assay while antioxidant activities (AA) of banana peel were accessed by DPPH, ABTS, and β-carotene bleaching (BCB) assays at optimum extraction conditions. Based on different extraction solvents and percentages of solvents used, 70% and 90% of acetone had yielded the highest TPC for the mature and green PA peels, respectively; 90% of ethanol and methanol has yielded the highest TPC for the mature and green PB peels, respectively; while 90% ethanol for the mature and green PM peels. Similar extraction conditions were found for the antioxidant activities for the banana peel assessed using DPPH assay except for green PB peel, which 70% methanol had contributed to the highest AA. Highest TPC and AA were obtained by applying 4, 1, and 2 hrs extraction for the peels of PA, PB and PM, respectively. The best extraction conditions were also used for determination of AAs using ABTS and β-carotene bleaching assays. Therefore, the best extraction conditions used have given the highest TPC and AAs. By-products of banana (peel) can be considered as a potential source of antioxidants in food and pharmaceutical industry.

  13. Optimization of Process Parameters and Kinetic Model of Enzymatic Extraction of Polyphenols from Lonicerae Flos

    PubMed Central

    Kong, Fansheng; Yu, Shujuan; Bi, Yongguang; Huang, Xiaojun; Huang, Mengqian

    2016-01-01

    Objective: To optimize and verify the cellulase extraction of polyphenols from honeysuckle and provide a reference for enzymatic extracting polyphenols from honeysuckle. Materials and Methods: The uniform design was used According to Fick's first law and kinetic model, fitting analysis of the dynamic process of enzymatic extracting polyphenols was conducted. Results: The optimum enzymatic extraction parameters for polyphenols from honeysuckle are found to be 80% (v/v) of alcohol, 35:1 (mL/g) of liquid-solid ratio, 80°C of extraction temperature, 8.5 of pH, 6.0 mg of enzyme levels, and 130 min of extraction time. Under the optimal conditions, the extraction rate of polyphenols was 3.03%. The kinetic experiments indicated kinetic equation had a good linear relationship with t even under the conditions of different levels of enzyme and temperature, which means fitting curve tallies well with the experimental values. Conclusion: The results of quantification showed that the results provide a reference for enzymatic extracting polyphenols from honeysuckle. SUMMARY Lonicerae flos (Lonicera japonica Thunb.) is a material of traditional Chinese medicine and healthy drinks, of which active compounds mainly is polyphenols. At present, plant polyphenols are the hotspots centents of food, cosmetic and medicine, because it has strong bioactivity. Several traditional methods are available for the extraction of plant polyphenols including impregnation, solvent extraction, ultrasonic extraction, hot-water extraction, alkaline dilute alcohol or alkaline water extraction, microwave extraction and Supercritical CO2 extraction. But now, an increasing number of research on using cellulase to extract active ingredients from plants. Enzymatic method is widely used for enzyme have excellent properties of high reaction efficiency and specificity, moderate reaction conditions, shorter extraction time and easier to control, less damage to the active ingredient. At present, the enzymatic extraction of polyphenols from honeysuckle and dynamic had not been reported. In this study, using cellulase to extract polyphenols from honeysuckle is first applied. Moreover, uniform design was used to optimize process and kinetic model of extraction was established to analyze the characteristics of enzymatic extraction, in order to improve the yield of polyphenols from honeysuckle and make maximum use of Lonicerae flos, which provide references for industrial production. PMID:27018039

  14. Laminaria japonica Extract, an Inhibitor of Clavibater michiganense Subsp. Sepedonicum

    PubMed Central

    Cai, Jin; Feng, Jia; Xie, Shulian; Wang, Feipeng; Xu, Qiufeng

    2014-01-01

    Bacterial ring rot of potato is one of the most serious potato plant and tuber diseases. Laminaria japonica extract was investigated for its antimicrobial activity against Clavibater michiganense subsp. sepedonicum (Spieckermann & Kotthoff) Davis et al., the causative agent of bacterial ring rot of potato. The results showed that the optimum extraction conditions of antimicrobial substances from L. japonica were an extraction temperature of 80°C, an extraction time of 12 h, and a solid to liquid ratio of 1∶25. Active compounds of L. japonica were isolated by solvent partition, thin layer chromatography (TLC) and column chromatography. All nineteen fractionations had antimicrobial activities against C. michiganense subsp. sepedonicum, while Fractionation three (Fr.3) had the highest (P<0.05) antimicrobial activity. Chemical composition analysis identified a total of 26 components in Fr.3. The main constituents of Fr.3 were alkanes (80.97%), esters (5.24%), acids (4.87%) and alcohols (2.21%). Antimicrobial activity of Fr.3 against C. michiganense subsp. sepedonicum could be attributed to its ability to damage the cell wall and cell membrane, induce the production of reactive oxygen species (ROS), increase cytosolic Ca2+ concentration, inhibit the glycolytic pathway (EMP) and tricarboxylic acid (TCA) cycle, inhibit protein and nucleic acid synthesis, and disrupt the normal cycle of DNA replication. These findings indicate that L. japonica extracts have potential for inhibiting C. michiganense subsp. sepedonicum. PMID:24714388

  15. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis.

    PubMed

    Yang, Yan-Qin; Yin, Hong-Xu; Yuan, Hai-Bo; Jiang, Yong-Wen; Dong, Chun-Wang; Deng, Yu-Liang

    2018-01-01

    In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP) values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA) allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties.

  16. Determination of the ultrasound power effects on flavonoid compounds from Psidium guajava L. using ANFIS

    NASA Astrophysics Data System (ADS)

    Ratu Ayu, Humairoh; Suryono, Suryono; Endro Suseno, Jatmiko; Kurniawati, Ratna

    2018-05-01

    The Adaptive Neural Fuzzy Inference System (ANFIS) model was used to predict and optimize the content of flavonoid compounds in guava leaves (Psidium Guajava L.). The extraction process was carried out by using ultrasound assisted extraction (UAE) with the variable parameters: temperature ranging from 25°C to 35°C, ultrasonic frequency (30 - 40 kHz) and extraction time (20 - 40 minutes). ANFIS learning procedure began by providing the input variable data set (temperature, frequency and time) and the output of the flavonoid compounds from the experiments that had been done. Subtractive clustering methods was used in the manufacture of FIS (fuzzy inference system) structures by varying the range of influence parameters to generate the ANFIS system. The ANFIS trainingsconducted wereaimed at minimum error value. The results showed that the best ANFIS models used a subtractive clustering method, in which the ranges of influence 0.1 were 0.70 x 10-4 for training RMSE, 8.11 for testing RMSE, 2.7 % MAPE, and 7.72 MAE. The optimum condition was obtained at a temperature of 35°C and frequency of 40 kHz, for 30 minutes. This result proves that the ANFIS model can be used to predict the content of flavonoid compounds in guava leaves.

  17. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis

    PubMed Central

    Yin, Hong-Xu; Yuan, Hai-Bo; Jiang, Yong-Wen; Dong, Chun-Wang; Deng, Yu-Liang

    2018-01-01

    In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP) values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA) allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties. PMID:29494626

  18. Combination of corona discharge ion mobility spectrometry with a novel reagent gas and two immiscible organic solvent liquid-liquid-liquid microextraction for analysis of clomipramine in biological samples.

    PubMed

    Saraji, Mohammad; Bidgoli, Ali Akbar Hajialiakbari; Khayamian, Taghi; Moradmand, Ali

    2011-12-02

    A novel and sensitive method based on combination of two immiscible organic solvents hollow fiber-based liquid-liquid-liquid microextraction and corona discharge ion mobility spectrometry (HF-LLLME-CD-IMS) was employed for the analysis of clomipramine in human urine and plasma. The effect of formic, acetic and propionic acid as the reagent gas (dopant) on the corona discharge ion mobility signal was investigated. The influence of dopant amount was also studied. Optimum mass flow rates of the dopants were 3.7, 1.1 and 1.0 μmol min(-1) for formic, acetic and propionic acid, respectively. Experimental parameters influencing the extraction efficiency of HF-LLLME, such as NaOH concentration as donor solution, ionic strength of the sample, stirring rate, and extraction time were investigated and optimized. Under the optimum conditions, analytical parameters such as linearity, precision and limit of detection were also evaluated. The linear dynamic range was from 1 to 100 μg L(-1) (r(2)=0.9980) and the limit of detection was 0.35 μg L(-1). Intra- and inter-day precisions were satisfactory with a relative standard deviation (RSD) of 5.9 and 6.7%, respectively. The proposed method was satisfactorily applied for the determination of clomipramine in human plasma and urine. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Comparison between dispersive solid-phase and dispersive liquid-liquid microextraction combined with spectrophotometric determination of malachite green in water samples based on ultrasound-assisted and preconcentration under multi-variable experimental design optimization.

    PubMed

    Alipanahpour Dil, Ebrahim; Ghaedi, Mehrorang; Asfaram, Arash; Zare, Fahimeh; Mehrabi, Fatemeh; Sadeghfar, Fardin

    2017-11-01

    The ultrasound-assisted dispersive solid-phase microextraction (USA-DSPME) and the ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) developed for as an ultra preconcentration and/or technique for the determination of malachite green (MG) in water samples. Central composite design based on analysis of variance and desirability function guide finding best operational conditions and represent dependency of response to variables viz. volume of extraction, eluent and disperser solvent, pH, adsorbent mass and ultrasonication time has significant influence on methods efficiency. Optimum conditions was set for USA-DSPME as: 1mg CNTs/Zn:ZnO@Ni 2 P-NCs; 4min sonication time and 130μL eluent at pH 6.0. Meanwhile optimum point for USA-DLLME conditions were fixed at pH 6.0; 4min sonication time and 130, 650μL and 10mL of extraction solvent (CHCl 3 ), disperser solvent (ethanol) and sample volume, respectively. Under the above specified best operational conditions, the enrichment factors for the USA-DSPME and USA-DLLME were 88.89 and 147.30, respectively. The methods has linear response in the range of 20.0 to 4000.0ngmL -1 with the correlation coefficients (r) between 0.9980 to 0.9995, while its reasonable detection limits viz. 1.386 to 2.348ngmL -1 and good relative standard deviations varied from 1.1% to 2.8% (n=10) candidate this method for successful monitoring of analyte from various media. The relative recoveries of the MG dye from water samples at spiking level of 500ngmL -1 were in the range between 94.50% and 98.86%. The proposed methods has been successfully applied to the analysis of the MG dye in water samples, and a satisfactory result was obtained. Copyright © 2017. Published by Elsevier B.V.

  20. Moderate Dilution of Copper Slag by Natural Gas

    NASA Astrophysics Data System (ADS)

    Zhang, Bao-jing; Zhang, Ting-an; Niu, Li-ping; Liu, Nan-song; Dou, Zhi-he; Li, Zhi-qiang

    2018-01-01

    To enable use of copper slag and extract the maximum value from the contained copper, an innovative method of reducing moderately diluted slag to smelt copper-containing antibacterial stainless steel is proposed. This work focused on moderate dilution of copper slag using natural gas. The thermodynamics of copper slag dilution and ternary phase diagrams of the slag system were calculated. The effects of blowing time, temperature, matte settling time, and calcium oxide addition were investigated. The optimum reaction conditions were identified to be blowing time of 20 min, reaction temperature of 1250°C, settling time of 60 min, CaO addition of 4% of mass of slag, natural gas flow rate of 80 mL/min, and outlet pressure of 0.1 MPa. Under these conditions, the Fe3O4 and copper contents of the residue were 7.36% and 0.50%, respectively.

  1. Enzyme-assisted extraction of stabilized chlorophyll from spinach.

    PubMed

    Özkan, Gülay; Ersus Bilek, Seda

    2015-06-01

    Zinc complex formation with chlorophyll derivatives in spinach pulp was studied by adding 300ppm Zn(2+) for production of stable food colorant, followed by the heating at 110°C for 15min. Zinc complex formation increased at pH values of 7.0 or greater. Pectinex Ultra SP-L was selected for enzyme-assisted release of zinc-chlorophyll derivatives from spinach pulp. Effect of enzyme concentration (1-9%), treatment temperature (30-60°C), and time (30-210min) on total chlorophyll content (TCC) were optimized using response surface methodology. A quadratic regression model (R(2)=0.9486) was obtained from the experimental design. Optimum treatment conditions were 8% enzyme concentration, 45°C, and 30min, which yielded a 50.747mgTCC/100g spinach pulp. Enzymatic treatment was followed by solvent extraction with ethanol at a solvent-to-sample ratio of 2.5:1 at 60°C for 45min for the highest TCC recovery. Pretreatment with enzyme and extraction in ethanol resulted in 39% increase in Zn-chlorophyll derivative yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Optimizing the recovery of copper from electroplating rinse bath solution by hollow fiber membrane.

    PubMed

    Oskay, Kürşad Oğuz; Kul, Mehmet

    2015-01-01

    This study aimed to recover and remove copper from industrial model wastewater solution by non-dispersive solvent extraction (NDSX). Two mathematical models were developed to simulate the performance of an integrated extraction-stripping process, based on the use of hollow fiber contactors using the response surface method. The models allow one to predict the time dependent efficiencies of the two phases involved in individual extraction or stripping processes. The optimal recovery efficiency parameters were determined as 227 g/L of H2SO4 concentration, 1.22 feed/strip ratio, 450 mL/min flow rate (115.9 cm/min. flow velocity) and 15 volume % LIX 84-I concentration in 270 min by central composite design (CCD). At these optimum conditions, the experimental value of recovery efficiency was 95.88%, which was in close agreement with the 97.75% efficiency value predicted by the model. At the end of the process, almost all the copper in the model wastewater solution was removed and recovered as CuSO4.5H2O salt, which can be reused in the copper electroplating industry.

  3. Extraction, characterization and antioxidant activity of polysaccharides of spent mushroom compost of Ganoderma lucidum.

    PubMed

    Zhang, Jianjun; Meng, Guangyuan; Zhai, Guoyin; Yang, Yongheng; Zhao, Huajie; Jia, Le

    2016-01-01

    To contribute toward effective exploitation and utilization of spent mushroom compost (SMC) of Ganoderma lucidum (SMC-G), a water-soluble polysaccharide of GPS was extracted, and then two fractions (GPS-1 and GPS-2) were purified from SMC-G. The optimum conditions for GPS extraction were optimized by the central composite design (CCD) and the GPS yield reached 3.84% at a ratio of water to material of 34.5, a precipitation time of 19.82h, and pH of 7.88. Characteristic analysis showed that GPS-1 and GPS-2 were heteropolysaccharides, and had glycosidic structures (OH, CH, CO and COC). Both GPS and its fractions showed potential antioxidant activities by scavenging hydroxyl and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, and increasing the reducing power in vitro; and by improving the CAT activities, and lowing the LPO and MDA contents in vivo, respectively. The results provided a reference for the exploitation of SMC-G which would be significant to sustainable development of industry and agriculture, environmental protection and full utilization of resources. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Micellar electrokinetic chromatographic determination of triazine herbicides in water samples.

    PubMed

    Li, Zhi; Zhang, Shuaihua; Yin, Xiaofang; Wang, Chun; Wang, Zhi

    2014-09-01

    Dispersive liquid-liquid microextraction combined with online sweeping preconcentration in micellar electrokinetic chromatography was developed for the simultaneous determination of five triazine herbicides (atrazine, simazine, propazine, prometon and simetryn) in water samples. Several experimental parameters affecting the extraction efficiencies such as the type and volume of both the extraction and dispersive solvents, the addition of salt to sample solution, the extraction time and the pH of the sample solution were investigated. Under optimum conditions, the linearity of the method was good in the range from 0.33 to 20 ng mL(-1) for simazine, propazine, atrazine and simetryn, and from 0.17 to 20 ng mL(-1) for prometon, respectively. The sensitivity enrichment factors were in the range from 1750 to 2100, depending on the compound. The limit of detection (S/N = 3) ranged from 0.05 to 0.10 ng mL(-1). The developed method was successfully applied to the analysis of the five triazines in river, ground and well waters. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Oxidative Pressure Leaching of Silver from Flotation Concentrates with Ammonium Thiocyanate Solution

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Hai; Yang, Jian-Guang; Liu, Wei; Chen, Geng-Tao; Tang, Mo-Tang; Qiu, Guan-Zhou

    2010-02-01

    The thermodynamics and technologies of the selective pressure leaching of silver from flotation concentrates were investigated in an ammonium thiocyanate medium. Thermodynamic analyses, which include silver solubility in NH4SCN solution and Eh-pH diagrams of the Me-MeS-NH4SCN-H2O system at 25 °C, were discussed. The effects of several factors, such as temperature, leaching time, oxidant, pH value, flotation concentrates concentration, surfactant concentration, and so on, on the extraction percentages of silver and zinc were investigated. The following optimal leaching conditions were obtained: NH4SCN concentration 1.5 M, lignin concentration 0.5 g/L, Fe3+ concentration 2 g/L, flotation concentrates addition 200 g/L, and oxygen pressure 1.2 MPa at 130 °C for 3 hours. Under these optimum conditions, the average extraction percentage of silver exceeded 94 pct, whereas the average extraction percentage of zinc was less than 3 pct. Only 7 pct of ammonium thiocyanate was consumed after 4 cycles, which indicated that ammonium thiocyanate hardly was oxidized under these oxidative pressure leaching conditions.

  6. Improved light extraction efficiency in GaN-based light emitting diode by nano-scale roughening of p-GaN surface.

    PubMed

    Park, Sang Jae; Sadasivam, Karthikeyan Giri; Chung, Tae Hoon; Hong, Gi Cheol; Kim, Jin Bong; Kim, Sang Mook; Park, Si-Hyun; Jeon, Seong-Ran; Lee, June Key

    2008-10-01

    Improvement in light extraction efficiency of Ultra Violet-Light Emitting Diode (UV-LED) is achieved by nano-scale roughening of p-type Gallium Nitride (p-GaN) surface. The process of surface roughening is carried out by using self assembled gold (Au) nano-clusters with support of nano-size silicon-oxide (SiO2) pillars on p-GaN surface as a dry etching mask and by p-GaN regrowth in the regions not covered by the mask after dry etching. Au nano-clusters are formed by rapid thermal annealing (RTA) process carried out at 600 degrees C for 1 min using 15 nm thick Au layer on top of SiO2. The p-GaN roughness is controlled by p-GaN regrowth time. Four different time values of 15 sec, 30 sec, 60 sec and 120 sec are considered for p-GaN regrowth. Among the four different p-GaN regrowth time values 30 sec regrown p-GaN sample has the optimum roughness to increase the electroluminescence (EL) intensity to a value approximately 60% higher than the EL intensity of a conventional LED.

  7. Optimization of microwave-assisted extraction and supercritical fluid extraction of carbamate pesticides in soil by experimental design methodology.

    PubMed

    Sun, Lei; Lee, Hian Kee

    2003-10-03

    Orthogonal array design (OAD) was applied for the first time to optimize microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE) conditions for the analysis of four carbamates (propoxur, propham, methiocarb, chlorpropham) from soil. The theory and methodology of a new OA16 (4(4)) matrix derived from a OA16 (2(15)) matrix were developed during the MAE optimization. An analysis of variance technique was employed as the data analysis strategy in this study. Determinations of analytes were completed using high-performance liquid chromatography (HPLC) with UV detection. Four carbamates were successfully extracted from soil with recoveries ranging from 85 to 105% with good reproducibility (approximately 4.9% RSD) under the optimum MAE conditions: 30 ml methanol, 80 degrees C extraction temperature, and 6-min microwave heating. An OA8 (2(7)) matrix was employed for the SFE optimization. The average recoveries and RSD of the analytes from spiked soil by SFE were 92 and 5.5%, respectively except for propham (66.3+/-7.9%), under the following conditions: heating for 30 min at 60 degrees C under supercritical CO2 at 300 kg/cm2 modified with 10% (v/v) methanol. The composition of the supercritical fluid was demonstrated to be a crucial factor in the extraction. The addition of a small volume (10%) of methanol to CO2 greatly enhanced the recoveries of carbamates. A comparison of MAE with SFE was also conducted. The results indicated that >85% average recoveries were obtained by both optimized extraction techniques, and slightly higher recoveries of three carbamates (propoxur, propham and methiocarb) were achieved using MAE. SFE showed slightly higher recovery for chlorpropham (93 vs. 87% for MAE). The effects of time-aged soil on the extraction of analytes were examined and the results obtained by both methods were also compared.

  8. Carboxydothermus islandicus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic bacterium isolated from a hot spring.

    PubMed

    Novikov, Andrey A; Sokolova, Tatyana G; Lebedinsky, Alexander V; Kolganova, Tatyana V; Bonch-Osmolovskaya, Elizaveta A

    2011-10-01

    An anaerobic, thermophilic bacterium, strain SET IS-9(T), was isolated from an Icelandic hot spring. Cells of strain SET IS-9(T) are short, slightly curved, motile rods. The strain grows chemolithotrophically on CO, producing equimolar quantities of H(2) and CO(2). It also grows fermentatively on lactate or pyruvate in the presence of yeast extract (0.2 g l(-1)). Products of pyruvate fermentation are acetate, CO(2) and H(2). Growth occurs at 50-70 °C, with an optimum at 65 °C, and at pH 5.0-8.0, with an optimum at pH 5.5-6.0. The generation time during chemolithotrophic growth on CO under optimal conditions is 2.0 h. 16S rRNA gene sequence analysis suggested that the organism belongs to the genus Carboxydothermus. On the basis of phenotypic features and phylogenetic analysis, Carboxydothermus islandicus sp. nov. is proposed, with the type strain SET IS-9(T) ( = DSM 21830(T)  = VKM B-2561(T)). An emended description of the genus Carboxydothermus is also given.

  9. Highly sensitive determination of polycyclic aromatic hydrocarbons in ambient air dust by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction.

    PubMed

    Krupadam, Reddithota J; Bhagat, Bhagyashree; Khan, Muntazir S

    2010-08-01

    A method based on solid--phase extraction with a molecularly imprinted polymer (MIP) has been developed to determine five probable human carcinogenic polycyclic aromatic hydrocarbons (PAHs) in ambient air dust by gas chromatography-mass spectrometry (GC-MS). Molecularly imprinted poly(vinylpyridine-co-ethylene glycol dimethacrylate) was chosen as solid-phase extraction (SPE) material for PAHs. The conditions affecting extraction efficiency, for example surface properties, concentration of PAHs, and equilibration times were evaluated and optimized. Under optimum conditions, pre-concentration factors for MIP-SPE ranged between 80 and 93 for 10 mL ambient air dust leachate. PAHs recoveries from MIP-SPE after extraction from air dust were between 85% and 97% and calibration graphs of the PAHs showed a good linearity between 10 and 1000 ng L(-1) (r = 0.99). The extraction efficiency of MIP for PAHs was compared with that of commercially available SPE materials--powdered activated carbon (PAC) and polystyrene-divinylbenzene resin (XAD)--and it was shown that the extraction capacity of the MIP was better than that of the other two SPE materials. Organic matter in air dust had no effect on MIP extraction, which produced a clean extract for GC-MS analysis. The detection limit of the method proposed in this article is 0.15 ng L(-1) for benzo[a]pyrene, which is a marker molecule of air pollution. The method has been applied to the determination of probable carcinogenic PAHs in air dust of industrial zones and satisfactory results were obtained.

  10. Determination of chloropropanols in foods by one-step extraction and derivatization using pressurized liquid extraction and gas chromatography-mass spectrometry.

    PubMed

    Racamonde, I; González, P; Lorenzo, R A; Carro, A M

    2011-09-28

    3-Chloropropane-1,2-diol (3-MCPD) and 1,3-dichloro-2-propanol (1,3-DCP) were determined for the first time in bakery foods using pressurized liquid extraction (PLE) combined with in situ derivatization and GC-MS analysis. This one-step protocol uses N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) as silylation reagent. Initially, screening experimental design was applied to evaluate the effects of the variables potentially affecting the extraction process, namely extraction time (min) and temperature (°C), number of cycles, dispersant reagent (diatomaceous earth in powder form and as particulate matter with high pore volume Extrelut NT) and percent of flush ethyl acetate volume (%). To reduce the time of analysis and improve the sensitivity, derivatization of the compounds was performed in the cell extraction. Conditions, such as the volume of BSTFA, temperature and time for the in situ derivatization of analytes using PLE, were optimized by a screening design followed to a Doehlert response surface design. The effect of the in-cell dispersants/adsorbents with diatomaceous earth, Florisil and sodium sulfate anhydrous was investigated using a Box-Behnken design. Using the final best conditions, 1 g of sample dispersed with 0.1 g of sodium sulfate anhydrous and 2.5 g diatomaceous earth was extracted with ethyl acetate. 1 g of Florisil, as clean-up adsorbent, and 70 μL of BSTFA were used for 3 min at 70°C. Under the optimum conditions, the calibration curves showed good linearity (R(2)>0.9994) and precision (relative standard deviation, RSD≤2.4%) within the tested ranges. The limits of quantification for 1,3-DCP and 3-MCDP, 1.6 and 1.7 μg kg(-1), respectively, are far below the established limits in the European and American legislations. The accuracy, precision, linearity, and limits of quantification provided make this analytical method suitable for routine control. The method was applied to the analysis of several toasted bread, snacks, cookies and cereal samples, none of which contained chloropropanols at concentrations above the legislation levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Optimized ultrasound-assisted emulsification microextraction for simultaneous trace multielement determination of heavy metals in real water samples by ICP-OES.

    PubMed

    Sereshti, Hassan; Heravi, Yeganeh Entezari; Samadi, Soheila

    2012-08-15

    Ultrasonic-assisted emulsification microextraction (USAEME) combined with inductively coupled plasma-optical emission spectrometry (ICP-OES) was used for preconcentration and determination of aluminum, bismuth, cadmium, cobalt, copper, iron, gallium, indium, nickel, lead, thallium and zinc in real water samples. Ammonium pyrrolidine dithiocarbamate (APDC) and carbon tetrachloride (CCl(4)) were used as the chelating agent and extraction solvent, respectively. The effective parameters (factors) of the extraction process such as volume of extraction solvent, pH, sonication time, and concentration of chelating agent were optimized by a small central composite design (CCD). The optimum conditions were found to be 98 μL for extraction solvent, 1476 mg L(-1) for chelating agent, 3.8 for pH and 9 min for sonication time. Under the optimal conditions, the limits of detection (LODs) for Al, Bi, Cd, Co, Cu, Fe, Ga, In, Ni, Pb, Tl and Zn were 0.13, 0.48, 0.19, 0.28, 0.29, 0.27, 0.27, 0.38, 0.44, 0.47, 0.52 and 0.17 μg L(-1), respectively. The linear dynamic range (LDR) was 1-1000 μ gL(-1) with determination coefficients of 0.991-0.998. Relative standard deviations (RSDs, C=200 μg L(-1), n=6) were between 1.87%-5.65%. The proposed method was successfully applied to the extraction and determination of heavy metals in real water samples and the satisfactory relative recoveries (90.3%-105.5%) were obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Novel synthesis of nanocomposite for the extraction of Sildenafil Citrate (Viagra) from water and urine samples: Process screening and optimization.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Purkait, Mihir Kumar

    2017-09-01

    A sensitive analytical method is investigated to concentrate and determine trace level of Sildenafil Citrate (SLC) present in water and urine samples. The method is based on a sample treatment using dispersive solid-phase micro-extraction (DSPME) with laboratory-made Mn@ CuS/ZnS nanocomposite loaded on activated carbon (Mn@ CuS/ZnS-NCs-AC) as a sorbent for the target analyte. The efficiency was enhanced by ultrasound-assisted (UA) with dispersive nanocomposite solid-phase micro-extraction (UA-DNSPME). Four significant variables affecting SLC recovery like; pH, eluent volume, sonication time and adsorbent mass were selected by the Plackett-Burman design (PBD) experiments. These selected factors were optimized by the central composite design (CCD) to maximize extraction of SLC. The results exhibited that the optimum conditions for maximizing extraction of SLC were 6.0 pH, 300μL eluent (acetonitrile) volume, 10mg of adsorbent and 6min sonication time. Under optimized conditions, virtuous linearity of SLC was ranged from 30 to 4000ngmL -1 with R 2 of 0.99. The limit of detection (LOD) was 2.50ngmL -1 and the recoveries at two spiked levels were ranged from 97.37 to 103.21% with the relative standard deviation (RSD) less than 4.50% (n=15). The enhancement factor (EF) was 81.91. The results show that the combination UAE with DNSPME is a suitable method for the determination of SLC in water and urine samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Phenolic Extracts from Wild Olive Leaves and Their Potential as Edible Oils Antioxidants

    PubMed Central

    Lafka, Theodora-Ioanna; Lazou, Andriana E.; Sinanoglou, Vassilia J.; Lazos, Evangelos S.

    2013-01-01

    The kinetics solid-liquid extraction of phenolics from wild olive leaves was elaborated using different mathematical models (Peleg, second order, Elovich, and power law model). As solvents, methanol, ethanol, ethanol:water 1:1, n-propanol, isopropanol and ethyl acetate were used. The second order model best described the solvent extraction process, followed by the Elovich model. The most effective solvent was ethanol with optimum phenol extraction conditions 180 min, solvent to sample ratio 5:1 v/w and pH 2. Ethanol extract exhibited the highest antiradical activity among solvent and supercritical fluid extraction (SFE) extracts, which in addition showed the highest antioxidant capacity compared to synthetic and natural food antioxidants such as BHT, ascorbyl palmitate and vitamin E. Antioxidant potential of SFE extract was quite high, although its phenolic potential was not. Leaf extracts were proven to be good protectors for olive and sunflower oils at levels of 150 ppm. PMID:28239093

  14. Determination of organophosphate flame retardants in soil and fish using ultrasound-assisted extraction, solid-phase clean-up, and liquid chromatography with tandem mass spectrometry.

    PubMed

    Lorenzo, María; Campo, Julián; Picó, Yolanda

    2018-03-22

    A solid-liquid extraction method in combination with high-performance liquid chromatography and tandem mass spectrometry was developed and optimized for extraction and analysis of organophosphorus flame retardants in soil and fish. Methanol was chosen as the optimum extraction solvent, not only in terms of extraction efficiency, but also for its broader analyte coverage. The subsequent clean-up by solid-phase extraction is required to eliminate matrix coextractives and reduce matrix effects. Recoveries of the optimized method were 50-121% for soil and 47-123% for biota, both with high precision (RSDs <12% in soil and <23% in biota). The method limits of detection ranged from 0.06 to 0.20 ng/g dry weight and between 0.02 and 0.30 ng/g wet weight for soil and biota samples, respectively. However, samples with a high lipid content produce several problems as solid-phase extraction cartridge clogging that increase variability and analysis time. The method was successfully applied for the determination of organophosphorus flame retardants in soil and fish from L'Albufera Natural Park (Valencia, Spain). Target compounds were detected in all soil and fish samples with values varying from 13.8 to 89.7 ng/g dry weight and from 3.3 to 53.0 ng/g wet weight, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Liquid chromatographic determination of 6-, 8-, 10-gingerol, and 6-shogaol in ginger (Zingiber officinale) as the raw herb and dried aqueous extract.

    PubMed

    Lee, Samiuela; Khoo, Cheang; Halstead, Clynton Wade; Huynh, Thuy; Bensoussan, Alan

    2007-01-01

    The determination of 6-, 8-, 10-gingerol, and 6-shogaol in dried ginger (Zingiber officinale) and in the dried aqueous extract of ginger is reported. This is the first study to report a validated method for the determination of these 4 analytes. Several extraction solvents and methods were examined, and the optimum combination was determined. The samples were extracted at room temperature by sonication with methanol, and the extract was analyzed by liquid chromatography with photodiode array detection. A C18 column was used with a water-acetonitrile gradient mobile phase. Quantification was at 200 nm. The levels of 6-, 8-, 10-gingerol, and 6-shogaol in the raw herb were 9.3, 1.6, 2.3, and 2.3 mglg, respectively. The levels of gingerols found in the dried aqueous extract were between 5 and 16 times lower than those in the raw herb, but the level of 6-shogaol was higher. Analyte identity was confirmed by negative-ion electrospray ionization tandem mass spectrometry, in which 2 daughter ions were obtained for each analyte. The average recovery was 97% with a relative standard deviation of <8%. The limits of detection for 6-, 8-, 10-gingerol, and 6-shogaol in the raw herb were 0.22, 0.04, 0.09, and 0.07 mglg, respectively, and in the dried aqueous extract, 0.11, 0.02, 0.02, and 0.14 mg/g, respectively.

  16. Development of a simple and valid method for the trace determination of phthalate esters in human plasma using dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry.

    PubMed

    Ebrahim, Karim; Poursafa, Parinaz; Amin, Mohammad Mehdi

    2017-11-01

    A new method was developed for the trace determination of phthalic acid esters in plasma using dispersive liquid-liquid microextraction and gas chromatography with mass spectrometry analysis. Plasma proteins were efficiently precipitated by trichloroacetic acid and then a mixture of chlorobenzene (as extraction solvent) and acetonitrile (as dispersive solvent) rapidly injected to clear supernatant using a syringe. After centrifuging, chlorobenzene sedimented at the bottom of the test tube. 1 μL of this sedimented phase was injected into the gas chromatograph for phthalic acid esters analysis. Different factors affecting the extraction performance, such as the type of extraction and dispersive solvent, their volume, extraction time, and the effects of salt addition were investigated and optimized. Under the optimum conditions, the enrichment factors and extraction recoveries were satisfactory and ranged between 820-1020 and 91-97%, respectively. The linear range was wide (50-1000 ng/mL) and limit of detection was very low (1.5-2.5 ng/mL for all analytes). The relative standard deviations for analysis of 1 μg/mL of the analytes were between 3.2-6.1%. Salt addition showed no significant effect on extraction recovery. Finally, the proposed method was successfully utilized for the extraction and determination of the phthalic acid esters in human plasma samples and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. An efficient microwave-assisted extraction process of stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni).

    PubMed

    Jaitak, Vikas; Bikram Singh, Bandna; Kaul, V K

    2009-01-01

    Stevioside and rebaudioside-A are major low-calorie diterpene steviol glycosides in the leaves of Stevia rebaudiana. They are widely used as natural sweeteners for diabetic patients, but the long extraction procedures required and the optimisation of product yield present challenging problems. To develop a rapid and effective methodology for the extraction of stevioside and rebaudioside-A from S. rebaudiana leaves and to compare yields using different extraction techniques. Dried and powdered leaves of S. rebaudiana were extracted by conventional, ultrasound and microwave-assisted extraction techniques using methanol, ethanol and water as single solvents as well as in binary mixtures. Conventional cold extraction was performed at 25 degrees C for 12 h while ultrasound extraction was carried out at temperature of 35 +/- 5 degrees C for 30 min. Microwave-assisted extraction (MAE) was carried out at a power level of 80 W for 1 min at 50 degrees C. MAE yielded 8.64 and 2.34% of stevioside and rebaudioside-A, respectively, while conventional and ultrasound techniques yielded 6.54 and 1.20%, and 4.20 and 1.98% of stevioside and rebaudioside-A, respectively. A rapid and efficient method has been developed for the extraction of stevioside and rebaudioside-A in optimum yields using MAE procedure. This method has the advantage of rapid extraction and fast screening of a large number of S. rebaudiana samples for assessment of planting material. MAE saves considerable time, energy and has implications in the quality assessment of stevioside and rebaudioside-A prior to their industrial production from the leaves of S. rebaudiana. Copyright (c) 2009 John Wiley & Sons, Ltd.

  18. Development of Non-Optimum Factors for Launch Vehicle Propellant Tank Bulkhead Weight Estimation

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Wallace, Matthew L.; Cerro, Jeffrey A.

    2012-01-01

    Non-optimum factors are used during aerospace conceptual and preliminary design to account for the increased weights of as-built structures due to future manufacturing and design details. Use of higher-fidelity non-optimum factors in these early stages of vehicle design can result in more accurate predictions of a concept s actual weights and performance. To help achieve this objective, non-optimum factors are calculated for the aluminum-alloy gores that compose the ogive and ellipsoidal bulkheads of the Space Shuttle Super-Lightweight Tank propellant tanks. Minimum values for actual gore skin thicknesses and weld land dimensions are extracted from selected production drawings, and are used to predict reference gore weights. These actual skin thicknesses are also compared to skin thicknesses predicted using classical structural mechanics and tank proof-test pressures. Both coarse and refined weights models are developed for the gores. The coarse model is based on the proof pressure-sized skin thicknesses, and the refined model uses the actual gore skin thicknesses and design detail dimensions. To determine the gore non-optimum factors, these reference weights are then compared to flight hardware weights reported in a mass properties database. When manufacturing tolerance weight estimates are taken into account, the gore non-optimum factors computed using the coarse weights model range from 1.28 to 2.76, with an average non-optimum factor of 1.90. Application of the refined weights model yields non-optimum factors between 1.00 and 1.50, with an average non-optimum factor of 1.14. To demonstrate their use, these calculated non-optimum factors are used to predict heavier, more realistic gore weights for a proposed heavy-lift launch vehicle s propellant tank bulkheads. These results indicate that relatively simple models can be developed to better estimate the actual weights of large structures for future launch vehicles.

  19. Preconcentration and Determination of Mefenamic Acid in Pharmaceutical and Biological Fluid Samples by Polymer-grafted Silica Gel Solid-phase Extraction Following High Performance Liquid Chromatography

    PubMed Central

    Bagheri Sadeghi, Hayedeh; Panahi, Homayon Ahmad; Mahabadi, Mahsa; Moniri, Elham

    2015-01-01

    Mefenamic acid is a nonsteroidal anti-inflammatory drug (NSAID) that has analgesic, anti-infammatory and antipyretic actions. It is used to relieve mild to moderate pains. Solid-phase extraction of mefenamic acid by a polymer grafted to silica gel is reported. Poly allyl glycidyl ether/iminodiacetic acid-co-N, N-dimethylacrylamide was synthesized and grafted to silica gel and was used as an adsorbent for extraction of trace mefenamic acid in pharmaceutical and biological samples. Different factors affecting the extraction method were investigated and optimum conditions were obtained. The optimum pH value for sorption of mefenamic acid was 4.0. The sorption capacity of grafted adsorbent was 7.0 mg/g. The best eluent solvent was found to be trifluoroacetic acid-acetic acid in methanol with a recovery of 99.6%. The equilibrium adsorption data of mefenamic acid by grafted silica gel was analyzed by Langmuir model. The conformation of obtained data to Langmuir isotherm model reveals the homogeneous binding sites of grafted silica gel surface. Kinetic study of the mefenamic acid sorption by grafted silica gel indicates the good accessibility of the active sites in the grafted polymer. The sorption rate of the investigated mefenamic acid on the grafted silica gel was less than 5 min. This novel synthesized adsorbent can be successfully applied for the extraction of trace mefenamic acid in human plasma, urine and pharmaceutical samples. PMID:26330865

  20. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: a multivariate study.

    PubMed

    Arain, Salma Aslam; Kazi, Tasneem G; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-10

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu(2+)) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu(2+) using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046μgL(-1) and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu(2+) in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu(2+) in serum samples of different viral hepatitis patients and healthy controls. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Temperature-controlled ionic liquid-based ultrasound-assisted microextraction for preconcentration of trace quantity of cadmium and nickel by using organic ligand in artificial saliva extract of smokeless tobacco products

    NASA Astrophysics Data System (ADS)

    Arain, Sadaf Sadia; Kazi, Tasneem Gul; Arain, Asma Jabeen; Afridi, Hassan Imran; Baig, Jameel Ahmed; Brahman, Kapil Dev; Naeemullah; Arain, Salma Aslam

    2015-03-01

    A new approach was developed for the preconcentration of cadmium (Cd) and nickel (Ni) in artificial saliva extract of dry snuff (brown and black) products using temperature-controlled ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (TIL-UDLLμE) followed by electrothermal atomic absorption spectrometry (ETAAS). The Cd and Ni were complexed with ammonium pyrrolidinedithiocarbamate (APDC), extracted in ionic liquid drops, 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6]. The multivariate strategy was applied to estimate the optimum values of experimental variables influence the % recovery of analytes by TIL-UDLLμE method. At optimum experimental conditions, the limit of detection (3s) were 0.05 and 0.14 μg L-1 while relative standard deviations (% RSD) were 3.97 and 3.55 for Cd and Ni respectively. After extraction, the enhancement factors (EF) were 87 and 79 for Cd and Ni, respectively. The RSD for six replicates of 10 μg L-1 Cd and Ni were 3.97% and 3.55% respectively. To validate the proposed method, certified reference material (CRM) of Virginia tobacco leaves was analyzed, and the determined values of Cd and Ni were in good agreement with the certified values. The concentration of Cd and Ni in artificial saliva extracts corresponds to 39-52% and 21-32%, respectively, of the total contents of both elements in dry brown and black snuff products.

  2. NEEDS - Information Adaptive System

    NASA Technical Reports Server (NTRS)

    Kelly, W. L.; Benz, H. F.; Meredith, B. D.

    1980-01-01

    The Information Adaptive System (IAS) is an element of the NASA End-to-End Data System (NEEDS) Phase II and is focused toward onboard image processing. The IAS is a data preprocessing system which is closely coupled to the sensor system. Some of the functions planned for the IAS include sensor response nonuniformity correction, geometric correction, data set selection, data formatting, packetization, and adaptive system control. The inclusion of these sensor data preprocessing functions onboard the spacecraft will significantly improve the extraction of information from the sensor data in a timely and cost effective manner, and provide the opportunity to design sensor systems which can be reconfigured in near real-time for optimum performance. The purpose of this paper is to present the preliminary design of the IAS and the plans for its development.

  3. Dynamic electrical reconfiguration for improved capacitor charging in microbial fuel cell stacks

    NASA Astrophysics Data System (ADS)

    Papaharalabos, George; Greenman, John; Stinchcombe, Andrew; Horsfield, Ian; Melhuish, Chris; Ieropoulos, Ioannis

    2014-12-01

    A microbial fuel cell (MFC) is a bioelectrochemical device that uses anaerobic bacteria to convert chemical energy locked in biomass into small amounts of electricity. One viable way of increasing energy extraction is by stacking multiple MFC units and exploiting the available electrical configurations for increasing the current or stepping up the voltage. The present study illustrates how a real-time electrical reconfiguration of MFCs in a stack, halves the time required to charge a capacitor (load) and achieves 35% higher current generation compared to a fixed electrical configuration. This is accomplished by progressively switching in-parallel elements to in-series units in the stack, thus maintaining an optimum potential difference between the stack and the capacitor, which in turn allows for a higher energy transfer.

  4. The optimum spanning catenary cable

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.

    2015-03-01

    A heavy cable spans two points in space. There exists an optimum cable length such that the maximum tension is minimized. If the two end points are at the same level, the optimum length is 1.258 times the distance between the ends. The optimum lengths for end points of different heights are also found.

  5. Composite Magnetic Nanoparticles (CuFe₂O₄) as a New Microsorbent for Extraction of Rhodamine B from Water Samples.

    PubMed

    Roostaie, Ali; Allahnoori, Farzad; Ehteshami, Shokooh

    2017-09-01

    In this work, novel composite magnetic nanoparticles (CuFe2O4) were synthesized based on sol-gel combustion in the laboratory. Next, a simple production method was optimized for the preparation of the copper nanoferrites (CuFe2O4), which are stable in water, magnetically active, and have a high specific area used as sorbent material for organic dye extraction in water solution. CuFe2O4 nanopowders were characterized by field-emission scanning electron microscopy (SEM), FTIR spectroscopy, and energy dispersive X-ray spectroscopy. The size range of the nanoparticles obtained in such conditions was estimated by SEM images to be 35-45 nm. The parameters influencing the extraction of CuFe2O4 nanoparticles, such as desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, and extraction time, were investigated and optimized. Under the optimum conditions, a linear calibration curve in the range of 0.75-5.00 μg/L with R2 = 0.9996 was obtained. The LOQ (10Sb) and LOD (3Sb) of the method were 0.75 and 0.25 μg/L (n = 3), respectively. The RSD for a water sample spiked with 1 μg/L rhodamine B was 3% (n = 5). The method was applied for the determination of rhodamine B in tap water, dishwashing foam, dishwashing liquid, and shampoo samples. The relative recovery percentages for these samples were in the range of 95-99%.

  6. A novel magnetic poly(aniline-naphthylamine)-based nanocomposite for micro solid phase extraction of rhodamine B.

    PubMed

    Bagheri, Habib; Daliri, Rasoul; Roostaie, Ali

    2013-09-10

    A novel Fe3O4-poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe3O4/poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, extraction time and stirring rate were optimized. Under the optimum condition, a linear spiked calibration curve in the range of 0.35-5.00μgL(-1) with R(2)=0.9991 was obtained. The limits of detection (3Sb) and limits of quantification (10Sb) of the method were 0.10μgL(-1) and 0.35μgL(-1) (n=3), respectively. The relative standard deviation for water sample with 0.5μgL(-1) of RhB was 4.2% (n=5) and the absolute recovery was 92%. The method was applied for the determination of rhodamine B in dishwashing foam, dishwashing liquid, shampoo, pencil, matches tips and eye shadows samples and the relative recovery percentage were in the range of 94-99%. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Monolithic graphene fibers for solid-phase microextraction.

    PubMed

    Fan, Jing; Dong, Zelin; Qi, Meiling; Fu, Ruonong; Qu, Liangti

    2013-12-13

    Monolithic graphene fibers for solid-phase microextraction (SPME) were fabricated through a dimensionally confined hydrothermal strategy and their extraction performance was evaluated. For the fiber fabrication, a glass pipeline was innovatively used as a hydrothermal reactor instead of a Teflon-lined autoclave. Compared with conventional methods for SPME fibers, the proposed strategy can fabricate a uniform graphene fiber as long as several meters or more at a time. Coupled to capillary gas chromatography (GC), the monolithic graphene fibers in a direct-immersion (DI) mode achieved higher extraction efficiencies for aromatics than those for n-alkanes, especially for polycyclic aromatic hydrocarbons (PAHs), thanks to π-π stacking interaction and hydrophobic effect. Additionally, the fibers exhibited excellent durability and can be repetitively used more than 160 times without significant loss of extraction performance. As a result, an optimum extraction condition of 40°C for 50min with 20% NaCl (w/w) was finally used for SPME of PAHs in aqueous samples. For the determination of PAHs in water samples, the proposed DI-SPME-GC method exhibited linear range of 0.05-200μg/L, limits of detection (LOD) of 4.0-50ng/L, relative standard deviation (RSD) less than 9.4% and 12.1% for one fiber and different fibers, respectively, and recoveries of 78.9-115.9%. The proposed method can be used for analysis of PAHs in environmental water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Ionic-liquid-based ultrasound-assisted extraction of isoflavones from Belamcanda chinensis and subsequent screening and isolation of potential α-glucosidase inhibitors by ultrafiltration and semipreparative high-performance liquid chromatography.

    PubMed

    Li, Senlin; Li, Sainan; Huang, Yu; Liu, Chunming; Chen, Lina; Zhang, Yuchi

    2017-06-01

    The separation of a compound of interest from its structurally similar homologues to produce high-purity natural products is a challenging problem. This work proposes a novel method for the separation of iristectorigenin A from its structurally similar homologues by ionic-liquid-based ultrasound-assisted extraction and the subsequent screening and isolation of potential α-glucosidase inhibitors via ultrafiltration and semipreparative high-performance liquid chromatography. Ionic-liquid-based ultrasound-assisted extraction was successfully applied to the extraction of tectorigenin, iristectorigenin A, irigenin, and irisflorentin from Belamcanda chinensis. The optimum conditions for the efficient extraction of isoflavones were determined as 1.0 M 1-ethyl-3-methylimidazolium tetrafluoroborate with extraction time of 30 min and a solvent to solid ratio of 30 mL/g. Ultrafiltration with liquid chromatography and mass spectrometry was applied to screen and identify α-glucosidase inhibitors from B. chinensis, followed by the application of semipreparative high-performance liquid chromatography to separate and isolate the active constituents. Four major compounds including tectorigenin, iristectorigenin A, irigenin, and irisflorentin were screened and identified as α-glucosidase inhibitors, and then the four active compounds abovementioned were subsequently isolated by semipreparative high-performance liquid chromatography (99.89, 88.97, 99.79, and 99.97% purity, respectively). The results demonstrate that ionic liquid extraction can be successfully applied to the extraction of isoflavones from B. chinensis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO₂ extraction and hydro-distillation.

    PubMed

    Bagheri, Hossein; Abdul Manap, Mohd Yazid Bin; Solati, Zeinab

    2014-04-01

    The aim of this study was to optimize the antioxidant activity of Piper nigrum L. essential oil extracted using the supercritical carbon dioxide (SC-CO₂) technique. Response surface methodology was applied using a three-factor central composite design to evaluate the effects of three independent extraction variables: pressure of 15-30 MPa, temperature of 40-50 °C and dynamic extraction time of 40-80 min. The DPPH radical scavenging method was used to evaluate the antioxidant activity of the extracts. The results showed that the best antioxidant activity was achieved at 30 MPa, 40 °C and 40 min. The extracts were analyzed by GC-FID and GC-MS. The main components extracted using SC-CO₂ extraction in optimum conditions were β-caryophyllene (25.38 ± 0.62%), limonene (15.64 ± 0.15%), sabinene (13.63 ± 0.21%), 3-carene (9.34 ± 0.04%), β-pinene (7.27 ± 0.05%), and α-pinene (4.25 ± 0.06%). The essential oil obtained through this technique was compared with the essential oil obtained using hydro-distillation. For the essential oil obtained by hydro-distillation, the most abundant compounds were β-caryophyllene (18.64 ± 0.84%), limonene (14.95 ± 0.13%), sabinene (13.19 ± 0.17%), 3-carene (8.56 ± 0.11%), β-pinene (9.71 ± 0.12%), and α-pinene (7.96 ± 0.14%). Radical scavenging activity of the extracts obtained by SC-CO₂ and hydro-distillation showed an EC₅₀ of 103.28 and 316.27 µg mL(-1) respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Microextraction of non-steroidal anti-inflammatory drugs from waste water samples by rotating-disk sorptive extraction.

    PubMed

    Manzo, Valentina; Honda, Luis; Navarro, Orielle; Ascar, Loreto; Richter, Pablo

    2014-10-01

    In this study, six non-steroidal anti-inflammatory drugs (NSAIDs) were extracted from water samples using the rotating-disk sorptive extraction (RDSE) technique. The extraction disk device contains a central cavity that allows for the incorporation of a powdered sorbent phase (Oasis™ HLB). The analytes were extracted from water and pre-concentrated on the sorbent to reach the extraction equilibrium, and then they were desorbed with solvent, derivatized and determined by gas chromatography-mass spectrometry (GC-MS). The variables for the extraction were studied using high performance liquid chromatography with a diode array detector (HPLC-DAD) to avoid the derivatization step, and the optimum values were as follows: 60 mg of Oasis™ HLB, a rotation velocity of 3,000 rpm, a pH of 2, a sample volume of 50 mL, and an extraction time of approximately 90-100 min. The recoveries ranged from 71 to 104%, with relative standard deviations (RSD) between 2 and 8%. The detection limits ranged from 0.001 to 0.033 µg L(-1). The described method was applied to the analysis of influents and effluents from wastewater treatment plants (WWTP) in Santiago, Chile. The concentrations of the detected drugs ranged from 1.5 to 13.4 µg L(-1) and from 1.0 to 3.2 µg L(-1) in the influents and effluents, respectively. The samples were extracted by solid phase extraction (SPE). No significant differences were observed in the determined concentrations for most of the NSAIDs, indicating that RDSE is an alternative method for the preparation of water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Protective Effect of Polygonum orientale L. Extracts against Clavibater michiganense subsp. sepedonicum, the Causal Agent of Bacterial Ring Rot of Potato

    PubMed Central

    Cai, Jin; Xie, Shulian; Feng, Jia; Wang, Feipeng; Xu, Qiufeng

    2013-01-01

    The Polygonum orientale L. extracts were investigated for antibacterial activity against Clavibater michiganense subsp. sepedonicum (Spieckermann & Kotthoff) Davis et al., the causal agent of a serious disease called bacterial ring rot of potato. The results showed that the leaf extracts of P. orientale had significantly (p<0.05) greater antibacterial activity against C. michiganense subsp. sepedonicum than root, stem, flower extracts in vitro. According to the results of single factor experiments and L273(13) orthogonal experiments, optimum extraction conditions were A1B3C1, extraction time 6 h, temperature 80°C, solid to liquid ratio 1∶10 (g:mL). The highest (p<0.05) antibacterial activity was observed when pH was 5, excluding the effect of control. The extracts were stable under ultraviolet (UV). In vivo analysis revealed that 50 mg/mL of P. orientale leaf extracts was effective in controlling decay. Under field conditions, 50 mg/mL of P. orientale leaf extracts also improved growth parameters (whole plant length, shoot length, root length, plant fresh weight, shoot fresh weight, root fresh weight, dry weight, and number of leaves), in the 2010 and 2011 two growing seasons. Further solvent partition assays showed that the most active compounds were in the petroleum ether fractionation. Transmission electron microscopy (TEM) showed drastic ultrastructural changes caused by petroleum ether fractionation, including bacterial deformation, electron-dense particles, formation of vacuoles and lack of cytoplasmic materials. These results indicated that P. orientale extracts have strong antibacterial activity against C. michiganense subsp. sepedonicum and a promising effect in control of bacterial ring rot of potato disease. PMID:23861908

  12. Developing an Optimum Protocol for Thermoluminescence Dosimetry with GR-200 Chips using Taguchi Method.

    PubMed

    Sadeghi, Maryam; Faghihi, Reza; Sina, Sedigheh

    2017-06-15

    Thermoluminescence dosimetry (TLD) is a powerful technique with wide applications in personal, environmental and clinical dosimetry. The optimum annealing, storage and reading protocols are very effective in accuracy of TLD response. The purpose of this study is to obtain an optimum protocol for GR-200; LiF: Mg, Cu, P, by optimizing the effective parameters, to increase the reliability of the TLD response using Taguchi method. Taguchi method has been used in this study for optimization of annealing, storage and reading protocols of the TLDs. A number of 108 GR-200 chips were divided into 27 groups, each containing four chips. The TLDs were exposed to three different doses, and stored, annealed and read out by different procedures as suggested by Taguchi Method. By comparing the signal-to-noise ratios the optimum dosimetry procedure was obtained. According to the results, the optimum values for annealing temperature (°C), Annealing Time (s), Annealing to Exposure time (d), Exposure to Readout time (d), Pre-heat Temperature (°C), Pre-heat Time (s), Heating Rate (°C/s), Maximum Temperature of Readout (°C), readout time (s) and Storage Temperature (°C) are 240, 90, 1, 2, 50, 0, 15, 240, 13 and -20, respectively. Using the optimum protocol, an efficient glow curve with low residual signals can be achieved. Using optimum protocol obtained by Taguchi method, the dosimetry can be effectively performed with great accuracy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Ultrasound assisted combined molecularly imprinted polymer for selective extraction of nicotinamide in human urine and milk samples: Spectrophotometric determination and optimization study.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Dashtian, Kheibar

    2017-01-01

    Ultrasound-assisted dispersive solid phase microextraction followed by UV-vis spectrophotometer (UA-DSPME-UV-vis) was designed for extraction and preconcentration of nicotinamide (vitamin B 3 ) by HKUST-1 metal organic framework (MOF) based molecularly imprinted polymer (MIP). This new material was characterized by FTIR and FE-SEM techniques. The preliminary Plackett-Burman design was used for screening and subsequently the central composite design justifies significant terms and possible construction of mathematical equation which give the individual and cooperative contribution of variables like HKUST-1-MOF-NA-MIP mass, sonication time, temperature, eluent volume, pH and vortex time. Accordingly the optimum condition was set as: 2.0mg HKUST-1-MOF-NA-MIP, 200μL eluent and 5.0min sonication time in center points other variables were determined as the best conditions to reach the maximum recovery of the analyte. The UA-DSPME-UV-vis method performances like excellent linearity (LR), limits of detection (LOD), limits of quantification of 10-5000μgL -1 with R 2 of 0.99, LOD (1.96ngmL -1 ), LOQ (6.53μgL -1 ), respectively show successful and accurate applicability of the present method for monitoring analytes with within- and between-day precision of 0.96-3.38%. The average absolute recoveries of the nicotinamide extracted from the urine, milk and water samples were 95.85-101.27%. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Highly sensitive analysis of polycyclic aromatic hydrocarbons in environmental water with porous cellulose/zeolitic imidazolate framework-8 composite microspheres as a novel adsorbent coupled with high-performance liquid chromatography.

    PubMed

    Liang, Xiaotong; Liu, Shengquan; Zhu, Rong; Xiao, Lixia; Yao, Shouzhuo

    2016-07-01

    In this work, novel cellulose/zeolitic imidazolate frameworks-8 composite microspheres have been successfully fabricated and utilized as sorbent for environmental polycyclic aromatic hydrocarbons efficient extraction and sensitive analysis. The composite microspheres were synthesized through the in situ hydrothermal growth of zeolitic imidazolate frameworks-8 on cellulose matrix, and exhibited favorable hierarchical structure with chemical composition as assumed through scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, and Brunauer-Emmett-Teller surface areas characterization. A robust and highly efficient method was then successfully developed with as-prepared composite microspheres as novel solid-phase extraction sorbent with optimum extraction conditions, such as sorbent amount, sample volume, extraction time, desorption conditions, volume of organic modifier, and ionic strength. The method exhibited high sensitivity with low limit of detection down to 0.1-1.0 ng/L and satisfactory linearity with correlation coefficients ranging from 0.9988 to 0.9999, as well as good recoveries of 66.7-121.2% with relative standard deviations less than 10% for environmental polycyclic aromatic hydrocarbons analysis. Thus, our method was convenient and efficient for polycyclic aromatic hydrocarbons extraction and detection, potential for future environmental water samples analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Development and use of Fourier self deconvolution and curve-fitting in the study of coal oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, J.A.

    1986-01-01

    Techniques have been developed for modeling highly overlapped band multiplets. The method is based on a least-squares fit of spectra by a series of bands of known shape. Using synthetic spectra, it was shown that when bands are separated by less than their full width at half height (FWHH), valid analytical data can only be obtained after the width of each component band is narrowed by Fourier self deconvolution (FSD). The optimum method of spectral fitting determined from the study of synthetic spectra was then applied to the characterization of oxidized coals. A medium volatile bituminous coal which was airmore » oxidized at 200/sup 0/C for different lengths of time, was extracted with chloroform. A comparison of the infrared spectra of the whole coal and the extract indicated that the extracted material contains a smaller amount of carbonyl, ether, and ester groups, while the aromatic content is much higher. Oxidation does not significantly affect the aromatic content of the whole cola. Most of the aromatic groups in the CHCl/sub 3/ extract show evidence of reaction, however. The production of relatively large amounts of intramolecular aromatic anhydrides is seen in the spectrum of the extract of coals which have undergone extensive oxidation,while there is only a slight indication of this anhydride in the whole coal.« less

  16. Deep Eutectic Solvents Modified Molecular Imprinted Polymers for Optimized Purification of Chlorogenic Acid from Honeysuckle.

    PubMed

    Li, Guizhen; Wang, Wei; Wang, Qian; Zhu, Tao

    2016-02-01

    Deep eutectic solvents (DES) were synthesized with choline chloride (ChCl), and DES modified molecular imprinted polymers (DES-MIPs), DES modified non-imprinted polymers (DES-NIPs, without template), MIPs and NIPs were prepared in an identical procedure. Fourier transform infrared spectrometer (FT-IR) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained polymers. Rebinding experiment and solid-phase extraction (SPE) were used to prove the high selectivity adsorption properties of the polymers. Box-Behnken design (BBD) with three factors was used to optimize the extraction condition of chlorogenic acid (CA) from honeysuckles. The optimum extraction conditions were found to be ultrasonic time optimized (20 min), the volume fraction of ethanol (60%) and ratio of liquid to material (15 mL g(-1)). Under these conditions, the mean extraction yield of CA was 12.57 mg g(-1), which was in good agreement with the predicted BBD model value. Purification of hawthorn extract was achieved by SPE process, and SPE recoveries of CA were 72.56, 64.79, 69.34 and 60.08% by DES-MIPs, DES-NIPs, MIPs and NIPs, respectively. The results showed DES-MIPs had potential for promising functional adsorption material for the purification of bioactive compounds. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples.

    PubMed

    Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina

    2016-08-15

    Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents.

    PubMed

    Vetriani, Costantino; Speck, Mark D; Ellor, Susan V; Lutz, Richard A; Starovoytov, Valentin

    2004-01-01

    A thermophilic, anaerobic, chemolithoautotrophic bacterium was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at 9 degrees 50' N. Cells of the organism were Gram-negative, motile rods that were about 1.0 microm in length and 0.6 microm in width. Growth occurred between 60 and 80 degrees C (optimum at 75 degrees C), 0.5 and 4.5% (w/v) NaCl (optimum at 2%) and pH 5 and 7 (optimum at 5.5). Generation time under optimal conditions was 1.57 h. Growth occurred under chemolithoautotrophic conditions in the presence of H2 and CO2, with nitrate or sulfur as the electron acceptor and with concomitant formation of ammonium or hydrogen sulfide, respectively. Thiosulfate, sulfite and oxygen were not used as electron acceptors. Acetate, formate, lactate and yeast extract inhibited growth. No chemoorganoheterotrophic growth was observed on peptone, tryptone or Casamino acids. The genomic DNA G+C content was 54.6 mol%. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the organism was a member of the domain Bacteria and formed a deep branch within the phylum Aquificae, with Thermovibrio ruber as its closest relative (94.4% sequence similarity). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the newly described genus Thermovibrio. The type strain is Thermovibrio ammonificans HB-1T (=DSM 15698T=JCM 12110T).

  19. A sustainable woody biomass biorefinery.

    PubMed

    Liu, Shijie; Lu, Houfang; Hu, Ruofei; Shupe, Alan; Lin, Lu; Liang, Bin

    2012-01-01

    Woody biomass is renewable only if sustainable production is imposed. An optimum and sustainable biomass stand production rate is found to be one with the incremental growth rate at harvest equal to the average overall growth rate. Utilization of woody biomass leads to a sustainable economy. Woody biomass is comprised of at least four components: extractives, hemicellulose, lignin and cellulose. While extractives and hemicellulose are least resistant to chemical and thermal degradation, cellulose is most resistant to chemical, thermal, and biological attack. The difference or heterogeneity in reactivity leads to the recalcitrance of woody biomass at conversion. A selection of processes is presented together as a biorefinery based on incremental sequential deconstruction, fractionation/conversion of woody biomass to achieve efficient separation of major components. A preference is given to a biorefinery absent of pretreatment and detoxification process that produce waste byproducts. While numerous biorefinery approaches are known, a focused review on the integrated studies of water-based biorefinery processes is presented. Hot-water extraction is the first process step to extract value from woody biomass while improving the quality of the remaining solid material. This first step removes extractives and hemicellulose fractions from woody biomass. While extractives and hemicellulose are largely removed in the extraction liquor, cellulose and lignin largely remain in the residual woody structure. Xylo-oligomers, aromatics and acetic acid in the hardwood extract are the major components having the greatest potential value for development. Higher temperature and longer residence time lead to higher mass removal. While high temperature (>200°C) can lead to nearly total dissolution, the amount of sugars present in the extraction liquor decreases rapidly with temperature. Dilute acid hydrolysis of concentrated wood extracts renders the wood extract with monomeric sugars. At higher acid concentration and higher temperature the hydrolysis produced more xylose monomers in a comparatively shorter period of reaction time. Xylose is the most abundant monomeric sugar in the hydrolysate. The other comparatively small amounts of monomeric sugars include arabinose, glucose, rhamnose, mannose and galactose. Acetic acid, formic acid, furfural, HMF and other byproducts are inevitably generated during the acid hydrolysis process. Short reaction time is preferred for the hydrolysis of hot-water wood extracts. Acid hydrolysis presents a perfect opportunity for the removal or separation of aromatic materials from the wood extract/hydrolysate. The hot-water wood extract hydrolysate, after solid-removal, can be purified by Nano-membrane filtration to yield a fermentable sugar stream. Fermentation products such as ethanol can be produced from the sugar stream without a detoxification step. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology.

    PubMed

    Yang, Miyi; Wu, Xiaoling; Jia, Yuhan; Xi, Xuefei; Yang, Xiaoling; Lu, Runhua; Zhang, Sanbing; Gao, Haixiang; Zhou, Wenfeng

    2016-02-04

    In this work, a novel effervescence-assisted microextraction technique was proposed for the detection of four fungicides. This method combines ionic liquid-based dispersive liquid-liquid microextraction with the magnetic retrieval of the extractant. A magnetic effervescent tablet composed of Fe3O4 magnetic nanoparticles, sodium carbonate, sodium dihydrogen phosphate and 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonimide) was used for extractant dispersion and retrieval. The main factors affecting the extraction efficiency were screened by a Plackett-Burman design and optimized by a central composite design. Under the optimum conditions, good linearity was obtained for all analytes in pure water model and real water samples. Just for the pure water, the recoveries were between 84.6% and 112.8%, the limits of detection were between 0.02 and 0.10 μg L(-1) and the intra-day precision and inter-day precision both are lower than 4.9%. This optimized method was successfully applied in the analysis of four fungicides (azoxystrobin, triazolone, cyprodinil, trifloxystrobin) in environmental water samples and the recoveries ranged between 70.7% and 105%. The procedure promising to be a time-saving, environmentally friendly, and efficient field sampling technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Rapid determination of caffeine in one drop of beverages and foods using drop-to-drop solvent microextraction with gas chromatography/mass spectrometry.

    PubMed

    Shrivas, Kamlesh; Wu, Hui-Fen

    2007-11-02

    A simple and rapid sample cleanup and preconcentration method for the quantitative determination of caffeine in one drop of beverages and foods by gas chromatography/mass spectrometry (GC/MS) has been proposed using drop-to-drop solvent microextraction (DDSME). The best optimum experimental conditions for DDSME were: chloroform as the extraction solvent, 5 min extraction time, 0.5 microL exposure volume of the extraction phase and no salt addition at room temperature. The optimized methodology exhibited good linearity between 0.05 and 5.0 microg/mL with correlation coefficient of 0.980. The relative standard deviation (RSD) and limits of detection (LOD) of the DDSME/GC/MS method were 4.4% and 4.0 ng/mL, respectively. Relative recovery of caffeine in beverages and foods were found to be 96.6-101%, which showing good reliability of this method. This DDSME excludes the major disadvantages of conventional method of caffeine extraction, like large amount of organic solvent and sample consumption and long sample pre-treatment process. So, this approach proves that the DDSME/GC/MS technique can be applied as a simple, fast and feasible diagnosis tool for environmental, food and biological application for extremely small amount of real sample analysis.

  2. Immobilization of methylene blue onto bentonite and its application in the extraction of mercury (II).

    PubMed

    Hassanien, Mohamed M; Abou-El-Sherbini, Khaled S; Al-Muaikel, Nayef S

    2010-06-15

    Methylene blue was immobilized onto bentonite (BNT). The modified clay (MB-BNT) was used to extract Hg(2+) at pH 6.0 yielding Hg-MB-BNT. BNT, MB-BNT and Hg-MB-BNT were characterized by X-ray diffractometry, infrared spectra, and elemental and thermogravimetric analyses. MB is suggested to be intercalated into the major phase of BNT; montmorillonite mineral (MMT), lying parallel to the aluminosilicate layers, with a capacity of 36 mequiv./100g. MB-BNT shows good stability in 0.1-1M hydrochloric or nitric acids, ammonium hydroxide, and concentrated Na(+), K(+) or NH(4)(+) chlorides or iodides. It shows good selectivity towards Hg(2+) with an extraction capacity of 37 mequiv./100g in the presence of I(-) giving rise to a ratio of MB/Hg(2+)/I(-) 1:1:3 in the clay phase. Extracted Hg(2+) could be quantitatively recovered by ammonia buffer at pH 8.5. MB-BNT was successfully applied to recover Hg(2+) from spiked natural water and cinnabar mineral samples using the optimum conditions; pH 6.0, time of stirring 10 min and 10 mL of 0.05 M NH(4)Cl/NH(4)OH at pH 8.5 as eluent. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Determination of the optimum concentration cellulose baggase in making film bioplastic

    NASA Astrophysics Data System (ADS)

    Chadijah, S.; Rustiah, W. O.; Munir, M. I. D.

    2018-03-01

    The hoarding rubbish synthetic plastic caused pollution and demage in life circles, to cope it can be done with synthesizing the plastic from agriculture substance or called biopolymer (bioplastic). It was that potentially as bioplastic was biopolymer from agriculture substance baggase that contain cellulose 40 %. This research aimed to determine the optimum concentration cellulose baggase in making bioplastic film with adding chitosan and sorbitol plasticizer and also to know the result of characterization film bioplastic. The steps in this research were; the extraction of cellulose, making film bioplastic, tensile strenght test and used characterization spectrofotometer FTIR. In this research showed that optimum concentration cellulose baggase in making film bioplastic was 2% with adding chitosan and sorbitol plasticizer. The optimal result of tensile strenght test was 0,089 Kgf/cm2 with elongation percent 15,90 %. The analyzing FTIR in all of variation that looked almost same with characterization with tapes -OH, -NH and C-O.

  4. Simultaneous leaching of Pt, Pd and Rh from automotive catalytic converters in chloride-containing solutions

    NASA Astrophysics Data System (ADS)

    Hasani, M.; Khodadadi, A.; Koleini, S. M. J.; Saeedi, A. H.; Meléndez, A. M.

    2017-01-01

    Dissolution of platinum group metals (PGM; herein Pt, Pd and Rh) in different chloride-based leaching systems from spent auto catalysts was performed. Response surface methodology and a five-level-five-factor central composite design were used to evaluate the effects of 1) temperature, 2) liquid-to-solid ratio, 3) stirring speed, 4) acid concentration and 5) particle size on extraction yield of PGM by aqua regia. Analysis of variance was used to determine the optimum conditions and most significant factors affecting the overall metal extraction. In the optimum conditions, leaching of Pt, Pd and Rh was 91.58%, 93.49% and 60.15%, respectively. The effect of different oxidizing agents on the PGM dissolution in chloride medium was studied comparatively in the following leaching systems: a) aqua regia/sulfuric acid mixture, b) hydrogen peroxide in sulfuric acid (piranha solution), c) sodium hypochlorite and d) copper(II). Dissolution of Rh is increased in both aqua regia and hydrogen peroxide/hydrochloric acid solutions by adding sulfuric acid.

  5. Biological indicators for steam sterilization: characterization of a rapid biological indicator utilizing Bacillus stearothermophilus spore-associated alpha-glucosidase enzyme.

    PubMed

    Albert, H; Davies, D J; Woodson, L P; Soper, C J

    1998-11-01

    The alpha-glucosidase enzyme was isolated from vegetative cells and spores of Bacillus stearothermophilus, ATCC 7953. Spore-associated enzyme had a molecular weight of approximately 92,700, a temperature optimum of 60 degrees C, and a pH optimum of 7.0-7.5. The enzyme in crude aqueous spore extract was stable for 30 min up to a temperature of 65 degrees C, above which the enzyme was rapidly denatured. The optimal pH for stability of the enzyme was approximately 7.2. The alpha-glucosidase in crude vegetative cell extract had similar characteristics to the spore-associated enzyme but its molecular weight was 86,700. The vegetative cell and spore-associated enzymes were cross-reactive. The enzymes are postulated to derive from a single gene product, which undergoes modification to produce the spore-associated form. The location of alpha-glucosidase in the spore coats (outside the spore protoplast) is consistent with the location of most enzymes involved in activation, germination and outgrowth.

  6. Simulation and optimization of continuous extractive fermentation with recycle system

    NASA Astrophysics Data System (ADS)

    Widjaja, Tri; Altway, Ali; Rofiqah, Umi; Airlangga, Bramantyo

    2017-05-01

    Extractive fermentation is continuous fermentation method which is believed to be able to substitute conventional fermentation method (batch). The recovery system and ethanol refinery will be easier. Continuous process of fermentation will make the productivity increase although the unconverted sugar in continuous fermentation is still in high concentration. In order to make this process more efficient, the recycle process was used. Increasing recycle flow will enhance the probability of sugar to be re-fermented. However, this will make ethanol enter fermentation column. As a result, the accumulated ethanol will inhibit the growth of microorganism. This research aims to find optimum conditions of solvent to broth ratio (S:B) and recycle flow to fresh feed ratio in order to produce the best yield and productivity. This study employed optimization by Hooke Jeeves method using Matlab 7.8 software. The result indicated that optimum condition occured in S: B=2.615 and R: F=1.495 with yield = 50.2439 %.

  7. Gas chromatographic-mass spectrometric analysis of urinary volatile organic metabolites: Optimization of the HS-SPME procedure and sample storage conditions.

    PubMed

    Živković Semren, Tanja; Brčić Karačonji, Irena; Safner, Toni; Brajenović, Nataša; Tariba Lovaković, Blanka; Pizent, Alica

    2018-01-01

    Non-targeted metabolomics research of human volatile urinary metabolome can be used to identify potential biomarkers associated with the changes in metabolism related to various health disorders. To ensure reliable analysis of urinary volatile organic metabolites (VOMs) by gas chromatography-mass spectrometry (GC-MS), parameters affecting the headspace-solid phase microextraction (HS-SPME) procedure have been evaluated and optimized. The influence of incubation and extraction temperatures and times, coating fibre material and salt addition on SPME efficiency was investigated by multivariate optimization methods using reduced factorial and Doehlert matrix designs. The results showed optimum values for temperature to be 60°C, extraction time 50min, and incubation time 35min. The proposed conditions were applied to investigate urine samples' stability regarding different storage conditions and freeze-thaw processes. The sum of peak areas of urine samples stored at 4°C, -20°C, and -80°C up to six months showed a time dependent decrease over time although storage at -80°C resulted in a slight non-significant reduction comparing to the fresh sample. However, due to the volatile nature of the analysed compounds, more than two cycles of freezing/thawing of the sample stored for six months at -80°C should be avoided whenever possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Comparison of hydroxy naphthoquinone from North Qinglongyi with different storage times

    NASA Astrophysics Data System (ADS)

    Xin, G. S.; Ji, Y. B.; Wei, C.

    2017-12-01

    Objective: To determine the appropriate solvent for the extraction of hydroxy naphthoquinone, and to establish a method for the determination of the content of hydroxy naphthoquinone in the North Qinglongyi, and compare the changes of the content of hydroxy naphthoquinone in North Qinglongyi with different storage times. Methods: According to the nature of hydroxy naphthoquinone in alkaline solution will be discolored, so this experiment for Juglone as the standard reagent, 5% KOH solution as a developer, and the absorbance was measured by UV-spectrophotometry at the wavelength of 515 nm. The content of hydroxy naphthoquinone in North Qinglongyi was determined by colorimetric method, and the contents of hydroxy naphthoquinone in North Qinglongyi of different storage times were compared. Results: The optimum extraction solvent was ethyl acetate. The recoveries were 97.73%±1.11% and the RSD was 1.14% (n = 6). The contents of hydroxy naphthoquinone in the North Qinglunyi were 0.0141%, 0.0104% and 0.0073%, respectively, for one year, two years and three years. The content of hydroxy naphthoquinone decreased with the storage time prolonged. Conclusion This experimental method was stability, high recovery rate, simple and reliable. According to the results of this experiment, we can see that the storage time of North Qinglunyi should not be too long. Should try to choose this year’s North Qinglunyi for experimental research.

  9. An Optimized Analytical Method for the Simultaneous Detection of Iodoform, Iodoacetic Acid, and Other Trihalomethanes and Haloacetic Acids in Drinking Water

    PubMed Central

    Jiang, Songhui; Templeton, Michael R.; He, Gengsheng; Qu, Weidong

    2013-01-01

    An optimized method is presented using liquid-liquid extraction and derivatization for the extraction of iodoacetic acid (IAA) and other haloacetic acids (HAA9) and direct extraction of iodoform (IF) and other trihalomethanes (THM4) from drinking water, followed by detection by gas chromatography with electron capture detection (GC-ECD). A Doehlert experimental design was performed to determine the optimum conditions for the five most significant factors in the derivatization step: namely, the volume and concentration of acidic methanol (optimized values  = 15%, 1 mL), the volume and concentration of Na2SO4 solution (129 g/L, 8.5 mL), and the volume of saturated NaHCO3 solution (1 mL). Also, derivatization time and temperature were optimized by a two-variable Doehlert design, resulting in the following optimized parameters: an extraction time of 11 minutes for IF and THM4 and 14 minutes for IAA and HAA9; mass of anhydrous Na2SO4 of 4 g for IF and THM4 and 16 g for IAA and HAA9; derivatization time of 160 min and temperature at 40°C. Under optimal conditions, the optimized procedure achieves excellent linearity (R2 ranges 0.9990–0.9998), low detection limits (0.0008–0.2 µg/L), low quantification limits (0.008–0.4 µg/L), and good recovery (86.6%–106.3%). Intra- and inter-day precision were less than 8.9% and 8.8%, respectively. The method was validated by applying it to the analysis of raw, flocculated, settled, and finished waters collected from a water treatment plant in China. PMID:23613747

  10. A low-cost biosorbent-based coating for the highly sensitive determination of organochlorine pesticides by solid-phase microextraction and gas chromatography-electron capture detection.

    PubMed

    do Carmo, Sângela Nascimento; Merib, Josias; Dias, Adriana Neves; Stolberg, Joni; Budziak, Dilma; Carasek, Eduardo

    2017-11-24

    In this study, an environmentally friendly and low-cost biosorbent coating was evaluated, for the first time, as the extraction phase for solid-phase microextraction (SPME) supported on a nitinol alloy. The characterization of the new fiber was performed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The applicability of the biosorbent-based fiber in the determination of δ-hexachlorocyclohexane, aldrin, heptachlor epoxide, α-endosulfan, endrin and 4,4'-DDD in water samples was verified, with separation/detection by gas chromatography coupled to electron capture detection (GC-ECD). The influencing parameters (temperature, extraction time and ionic strength) were optimized simultaneously using a central composite design. The optimum conditions were: extraction time of 80min at 80°C and sodium chloride concentration of 15% (w/v). Satisfactory analytical performance was achieved with limits of detection (LOD) between 0.19 and 0.71ngL -1 and limits of quantification (LOQ) between 0.65 and 2.38ngL -1 . The relative recoveries for the analytes were determined using river and lake water samples spiked at different concentrations and ranged from 60% for α-endosulfan to 113% for δ-hexachlorocyclohexane, with relative standard deviations (RSD) lower than 21%. The fiber-to-fiber reproducibility (n=3) was also evaluated and the RSD was lower than 14%. The extraction efficiency obtained for the proposed biosorbent coating was compared to a commercially available DVB/Car/PDMS coating. The proposed fiber provided very promising results, including LODs at the level of parts per trillion and highly satisfactory thermal and mechanical stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols.

    PubMed

    Xi, Jun; Xue, Yujing; Xu, Yinxiang; Shen, Yuhong

    2013-11-01

    In this study, the ultrahigh pressure extraction of green tea polyphenols was modeled and optimized by a three-layer artificial neural network. A feed-forward neural network trained with an error back-propagation algorithm was used to evaluate the effects of pressure, liquid/solid ratio and ethanol concentration on the total phenolic content of green tea extracts. The neural network coupled with genetic algorithms was also used to optimize the conditions needed to obtain the highest yield of tea polyphenols. The obtained optimal architecture of artificial neural network model involved a feed-forward neural network with three input neurons, one hidden layer with eight neurons and one output layer including single neuron. The trained network gave the minimum value in the MSE of 0.03 and the maximum value in the R(2) of 0.9571, which implied a good agreement between the predicted value and the actual value, and confirmed a good generalization of the network. Based on the combination of neural network and genetic algorithms, the optimum extraction conditions for the highest yield of green tea polyphenols were determined as follows: 498.8 MPa for pressure, 20.8 mL/g for liquid/solid ratio and 53.6% for ethanol concentration. The total phenolic content of the actual measurement under the optimum predicated extraction conditions was 582.4 ± 0.63 mg/g DW, which was well matched with the predicted value (597.2mg/g DW). This suggests that the artificial neural network model described in this work is an efficient quantitative tool to predict the extraction efficiency of green tea polyphenols. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Extraction, antioxidant and antibacterial activities of Broussonetia papyrifera fruits polysaccharides.

    PubMed

    Han, Qiaohong; Wu, Zili; Huang, Bo; Sun, Liangqi; Ding, Chunbang; Yuan, Shu; Zhang, Zhongwei; Chen, Yanger; Hu, Chao; Zhou, Lijun; Liu, Jing; Huang, Yan; Liao, Jinqiu; Yuan, Ming

    2016-11-01

    Polysaccharides were extracted from Broussonetia papyrifera ((L.) L'Herit. ex Vent.) fruits (BPP), and response surface methodology was used to maximize extraction yield. The optimum extraction conditions were: ratio of water to solid, 30mL/g; extraction duration, 50min; extraction power, 180W; and extraction temperature, 60°C. Under these conditions, the yield of BPP was 8.61%. Then, BPP was purified, and three purified fractions (designated BPP-1, BPP-2 and BPP-3) were obtained for further physicochemical properties, antioxidant activity and antibacterial activity analysis. These fractions were mainly composed of glucose, mannose and arabinose residue, meanwhile, BPP-3 had a significantly higher rhamnose and uronic acid content than BPP-1 and BPP-2. And BPP-3 showed the best hydroxyl radial scavenging activity, ferric reducing activity power (FRAP), antihemolytic activity and antibacterial activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Automated extraction of direct, reactive, and vat dyes from cellulosic fibers for forensic analysis by capillary electrophoresis.

    PubMed

    Dockery, C R; Stefan, A R; Nieuwland, A A; Roberson, S N; Baguley, B M; Hendrix, J E; Morgan, S L

    2009-08-01

    Systematic designed experiments were employed to find the optimum conditions for extraction of direct, reactive, and vat dyes from cotton fibers prior to forensic characterization. Automated microextractions were coupled with measurements of extraction efficiencies on a microplate reader UV-visible spectrophotometer to enable rapid screening of extraction efficiency as a function of solvent composition. Solvent extraction conditions were also developed to be compatible with subsequent forensic characterization of extracted dyes by capillary electrophoresis with UV-visible diode array detection. The capillary electrophoresis electrolyte successfully used in this work consists of 5 mM ammonium acetate in 40:60 acetonitrile-water at pH 9.3, with the addition of sodium dithionite reducing agent to facilitate analysis of vat dyes. The ultimate goal of these research efforts is enhanced discrimination of trace fiber evidence by analysis of extracted dyes.

  14. Optimization of rotor shaft shrink fit method for motor using "Robust design"

    NASA Astrophysics Data System (ADS)

    Toma, Eiji

    2018-01-01

    This research is collaborative investigation with the general-purpose motor manufacturer. To review construction method in production process, we applied the parameter design method of quality engineering and tried to approach the optimization of construction method. Conventionally, press-fitting method has been adopted in process of fitting rotor core and shaft which is main component of motor, but quality defects such as core shaft deflection occurred at the time of press fitting. In this research, as a result of optimization design of "shrink fitting method by high-frequency induction heating" devised as a new construction method, its construction method was feasible, and it was possible to extract the optimum processing condition.

  15. The effects of Vitex agnus castus extract and its interaction with dopaminergic system on LH and testosterone in male mice.

    PubMed

    Nasri, Sima; Oryan, Shahrbano; Rohani, Ali Haeri; Amin, Gholam Reza

    2007-07-15

    The purpose of this study was to evaluate the probable effects of Vitex agnus castus (Vac.) on the male reproductive physiology. It is a well known fact that LH secretion from the anterior pituitary of mammals is controlled by many neurotransmiters such as dopamine. In this experiment, we have studied the effect of Vac. extract on the LH and testosterone hormones and its interaction with the dopaminergic system on male mice. In order to evaluate these effects, we used the hydroalcoholic Vac. extract (for extraction we used percolation technique) injection with the following doses: 65, 165, 265, 365 and 465 mg kg-', bromocriptine as a dopamine receptor agonist (5, 10, 20 mg kg(-1)) and haloperidol as a dopamine receptor antagonist (1, 1.5, 2, 2.5, 3 mg kg(-1)). To study the interaction between Vac. extract and dopaminergic system, we injected the optimum doses of Vac. with bromocriptine or haloperidol at the same time. Intraperitoneal injections were applied in all experiments, once a day for 30 days. The control group remained intact and the sham group received vehicle. After the last injection, we collected the animal blood serums for hormonal assays. LH and testosterone were measured by Radio Immuno Assay (RIA). LH and testosterone, showed significant decrease in bromocriptine group and haloperidol increased these hormones. Vac. extract decreased significantly the LH and testosterone levels. The coadministration of Vac. extract and bromocriptine decreased LH and testosterone. Coadministration of Vac. extract and haloperidol decreased LH and testosterone levels. These results suggest: dopamine regulates the gonadotroph-leydig cells axis. It appears that Vac. exertes effects through dopaminergic system and other pathways. The findings of this study show we can use Vac. extract for pathological cases of increasing LH and testosterone.

  16. Use of Moringa oleifera seed extracts to polish effluents from natural systems treating faecal sludge.

    PubMed

    Ngandjui Tchangoue, Yvan Anderson; Djumyom Wafo, Guy Valerie; Wanda, Christian; Soh Kengne, Ebenezer; Kengne, Ives Magloire; Kouam Fogue, Siméon

    2018-02-15

    The removal of pathogens in irrigation water is of great importance in developing countries. Indeed, wastewater generally reused for agriculture in countries such as Cameroon is associated with health and environmental concerns. Recent studies have shown a strong disinfectant action of the natural coagulant from the seeds of Moringa oleifera. These findings have raised the question whether or not they can be used to polish effluents from natural systems treating faecal sludge. This paper deals with trials carried out to investigate the effect of these extracts in reducing faecal indicators from initially treated faecal sludge leachate. Bacteriological and physico-chemical parameters were used to determine the optimum conditions and assess treatment efficacy. Settling time of 3 h at a concentration of extracts between 267 and 333 mg/L permitted to reduce Escherichia coli and faecal coliforms from 4.85 to 3.92 ulog (86.74%) and from 5.75 to 4.87 ulog (86.39%) respectively with 1 ulog equal to 90%. For the same settling time and at a concentration of 333 mg/L, faecal streptococci were removed from 6.40 to 5.67 ulog (81.33%). This level of removal suggests that this natural coagulant cannot be used alone for disinfection of heavily loaded effluent. Further investigations are therefore still needed to fulfil the Cameroon and WHO guidelines for safe reuse in agriculture.

  17. Development and application of a microwave-assisted extraction and LC/MS/MS methodology to the determination of antifouling booster biocides in sea mullets (Mugil cephalus) organisms.

    PubMed

    Franco-Barrios, Alejandro; Torres-Padrón, María Esther; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2014-01-01

    A method is presented for the extraction, preconcentration, and determination of two commonly used booster biocides, Irgarol 1051 and diuron, in samples of muscle and liver tissues from Mugil cephalus by microwave-assisted extraction (MAE) followed by SPE for the preconcentration and cleanup step, coupled with LC/MS/MS. The optimum conditions for MAE were established as power 200 W and irradiation time 4 min. Using these conditions, the LOD was 0.13 ng/g for diuron and 0.10 ng/g for Irgarol 1051. The recoveries calculated at three concentration levels (0.5, 5, and 50 ng/g) were greater than 74%. Repeatability was less than 7.5% and reproducibility less than 12.7%. The optimized method was used to monitor these compounds in M. cephalus from different harbors of Gran Canaria Island. The samples were collected bimonthly and processed following the optimized method. High levels of Irgarol 1051 (6.9 +/- 1.03 ng/g) were found in the liver, while diuron was undetected. However, diuron was found in the muscle (1.41 +/- 0.45 ng/g). The proposed sentinel organism could be used in tropical and subtropical regions to continuously biomonitor for booster biocides over long periods of time. This technique could be a useful tool for improving the management of ocean and coastal waters.

  18. Gas-assisted dispersive liquid-phase microextraction using ionic liquid as extracting solvent for spectrophotometric speciation of copper.

    PubMed

    Akhond, Morteza; Absalan, Ghodratollah; Pourshamsi, Tayebe; Ramezani, Amir M

    2016-07-01

    Gas-assisted dispersive liquid-phase microextraction (GA-DLPME) has been developed for preconcentration and spectrophotometric determination of copper ion in different water samples. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate and argon gas, respectively, were used as the extracting solvent and disperser. The procedure was based on direct reduction of Cu(II) to Cu(I) by hydroxylamine hydrochloride, followed by extracting Cu(I) into ionic liquid phase by using neocuproine as the chelating agent. Several experimental variables that affected the GA-DLPME efficiency were investigated and optimized. Under the optimum experimental conditions (IL volume, 50µL; pH, 6.0; acetate buffer, 1.5molL(-1); reducing agent concentration, 0.2molL(-1); NC concentration, 120µgmL(-1); Ar gas bubbling time, 6min; argon flow rate, 1Lmin(-1); NaCl concentration, 6% w/w; and centrifugation time, 3min), the calibration graph was linear over the concentration range of 0.30-2.00µgmL(-1) copper ion with a limit of detection of 0.07µgmL(-1). Relative standard deviation for five replicate determinations of 1.0µgmL(-1) copper ion was found to be 3.9%. The developed method was successfully applied to determination of both Cu(I) and Cu(II) species in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Properties of lubrol-extracted uridine diphosphate glucuronyltransferase.

    PubMed

    Howland, R D; Burkhalter, A; Trevor, A J; Hegeman, S; Shirachi, D Y

    1971-12-01

    1. A partially purified UDP-glucuronyltransferase was obtained by extracting rat liver microsomal preparations with Lubrol, a non-ionic detergent. 2. The soluble enzyme catalysed conjugation of both o-aminophenol and p-nitrophenol and was extremely stable when compared with untreated microsomal preparations. 3. The characteristics of the conjugation of the two phenols were found to differ with respect to pH optimum, bivalent cation requirement and Michaelis constants, suggesting that more than one enzyme is involved in the conjugation reaction.

  20. Properties of Lubrol-extracted uridine diphosphate glucuronyltransferase

    PubMed Central

    Howland, R. D.; Burkhalter, A.; Trevor, A. J.; Hegeman, S.; Shirachi, D. Y.

    1971-01-01

    1. A partially purified UDP-glucuronyltransferase was obtained by extracting rat liver microsomal preparations with Lubrol, a non-ionic detergent. 2. The soluble enzyme catalysed conjugation of both o-aminophenol and p-nitrophenol and was extremely stable when compared with untreated microsomal preparations. 3. The characteristics of the conjugation of the two phenols were found to differ with respect to pH optimum, bivalent cation requirement and Michaelis constants, suggesting that more than one enzyme is involved in the conjugation reaction. PMID:5144269

  1. Optimization of chitin yield from shrimp shell waste by Bacillus subtilis and impact of gamma irradiation on production of low molecular weight chitosan.

    PubMed

    Gamal, Rawia F; El-Tayeb, Tarek S; Raffat, Enas I; Ibrahim, Haytham M M; Bashandy, A S

    2016-10-01

    Chitin and chitosan have been produced from the exoskeletons of crustacean shells such as shrimps. In this study, seventy bacterial isolates, isolated from soil, were tested for proteolytic enzymes production. The most efficient one, identified as Bacillus subtilis, was employed to extract chitin from shrimp shell waste (SSW). Following one-variable-at-a-time approach, the relevant factors affecting deproteinization (DP) and demineralization (DM) were sucrose concentration (10%, w/v), SSW concentration (5%, w/v), inoculum size (15%, v/v), and fermentation time (6days). These factors were optimized subsequently using Box-Behnken design and response surface methodology. Maximum DP (97.65%) and DM (82.94%) were predicted at sucrose concentration (5%), SSW concentration (12.5%), inoculum size (10%, containing 35×10(8) CFU/mL), and fermentation time (7days). The predicted optimum values were verified by additional experiment. The values of DP (96.0%) and DM (82.1%) obtained experimentally correlated to the predicted values which justify the authenticity of optimum points. Overall 1.3-fold increase in DP% and DM% was obtained compared with 75.27% and 63.50%, respectively, before optimization. Gamma-irradiation (35kGy) reduced deacetylation time of irradiated chitin by 4.5-fold compared with non-irradiated chitin. The molecular weight of chitosan was decreased from 1.9×10(6) (non-irradiated) to 3.7×10(4)g/mol (at 35kGy). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Natural Dye Extracted from Vitex negundo as a Potential Alternative to Synthetic Dyes for Dyeing of Silk

    NASA Astrophysics Data System (ADS)

    Narayana Swamy, Venkataramanappa; Gowda, Kurikempanadoddi Ninge; Sudhakar, Rajagopal

    2016-04-01

    Since the last decade, the application of natural dyes on textile material has been gaining popularity all over the world, possibly because of the increasing awareness of issues concerning the environment, ecology and pollution control. The present paper investigates extraction of natural dye from leaves of the plant Vitex negundo, which is an abundant, cheap, and readily available agricultural by-product. Water extracts from V. negundo was used to dye silk fabrics. Optimum extraction conditions included pH 9, duration 120 min, and temperature 90 °C. Optimum dyeing conditions included dyeing pH 5 and duration of 60 min. Potash alum, tannic and tartaric acid were used as mordants, all of which are benign to human health and the environment. Color strength and color coordinates in terms of L*, a*, b*, C, and h were examined. A range of shades were obtained when fabrics were dyed with different mordants and mordanting techniques. The extracted dye was tested for some of the eco-parameters using atomic absorption spectrophotometry and GC/MS. The test results were compared with set standards to determine the eco-friendliness of natural dye. Their concentrations were found to be lower than the stipulated limits. Dyed samples were tested for antimicrobial activity against gram-positive and gram-negative bacteria. The dyed silk fabrics showed acceptable fastness properties and were also found to possess antibacterial activity. It can be concluded that the abundantly available agricultural by-product V. negundo has great potential to be effectively utilized as a natural dye for silk.

  3. C18-coated stir bar sorptive extraction combined with high performance liquid chromatography-electrospray tandem mass spectrometry for the analysis of sulfonamides in milk and milk powder.

    PubMed

    Yu, Chunhe; Hu, Bin

    2012-02-15

    A simple, rapid, sensitive, inexpensive and less sample consuming method of C(18)-stir bar sorptive extraction (SBSE)-high performance liquid chromatography (HPLC)-tandem mass spectrometry (MS/MS) was proposed for the determination of six sulfonamides in milk and milk powder samples. C(18) silica particles coated stir bar was prepared by adhesion method, and two kinds of adhesive glue, polydimethylsiloxane (PDMS) sol and epoxy glue were tried. It was found that the C(18)-coated stir bar prepared by PDMS sol as adhesive glue is more robust than that prepared by epoxy glue when liquid desorption was employed, in terms of both lifetime and organic solvent tolerance. The preparation of C(18) stir bar was simple with good mechanic strength and the stir bar could be reused for more than 20 times. Granular coating has relatively high specific surface area and is propitious to sorptive extraction based process. Compared to conventional PDMS SBSE coating, C(18) coating shows good affinity to the target polar/weak polar sulfonamides. To achieve optimum SBSE extraction performance, several parameters including extraction and desorption time, ionic strength, sample pH and stirring speed were investigated. The detection limits of the proposed method for six sulfonamides were in the range of 0.9-10.5 μg/L for milk and 2.7-31.5 μg/kg for milk powder. Good linearities were obtained for sulfonamides with the correlation coefficients (R) above 0.9922. Finally, the proposed method was successfully applied to the determination of sulfonamides in milk and milk powder samples and satisfied recoveries of spiked target compounds in real samples were obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A solid-phase microextraction fiber with carbon nanoparticles as sorbent material prepared by a simple flame-based preparation process.

    PubMed

    Sun, Min; Feng, Juanjuan; Qiu, Huamin; Fan, Lulu; Li, Leilei; Luo, Chuannan

    2013-07-26

    A novel carbon nanoparticles-coated solid-phase microextraction (SPME) fiber was prepared via a simple and low-cost flame-based preparation process, with stainless steel wire as support. Surface characteristic of the fiber was studied with scanning electron microscope. A nano-scaled brushy structure was observed. Coupled to gas chromatography (GC), the fiber was used to extract phthalate esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Analytical performances of the proposed method were investigated under the optimum extraction conditions (extraction temperature, 40°C; content of KCl, 30% (w/v); extraction time, 50min for PAEs and 40min for PAHs) and compared with other reports for the same analytes. Calibration ranges were 0.06-500μgL(-1) for di-n-butyl phthalate (DBP), and 0.1-300μgL(-1) for di-cyclohexyl phthalate (DCHP) and di-(2-ethyl-hexyl) phthalate (DEHP). For the eight PAHs, good linearity was obtained ranging from 0.01 to 150μgL(-1). Limits of detection were 0.005μgL(-1) for three PAEs and 0.001-0.003μgL(-1) for eight PAHs. The fiber exhibited excellent stability. It can be used for 100 times with RSDs of extraction efficiency less than 22.4%. The as-established SPME-GC method was applied to determine PAEs in food-wrap and PAHs in cigarette ash and snow water, and satisfactory results were obtained. The carbon nanoparticles-coated SPME fiber was efficient for sampling of organic compounds from aqueous samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Polymeric ionic liquid modified graphene oxide-grafted silica for solid-phase extraction to analyze the excretion-dynamics of flavonoids in urine by Box-Behnken statistical design.

    PubMed

    Hou, Xiudan; Liu, Shujuan; Zhou, Panpan; Li, Jin; Liu, Xia; Wang, Licheng; Guo, Yong

    2016-07-22

    A solid-phase extraction method for the efficient analysis of the excretion-dynamics of flavonoids in urine was established and described. In this work, in situ surface radical chain-transfer polymerization and in situ anion exchange were utilized to tune the extraction performance of poly(1-vinyl-3-hexylimidazolium bromide)-graphene oxide-grafted silica (poly(VHIm(+)Br(-))@GO@Sil). Graphene oxide (GO) was first coated onto the silica using a layer-by-layer fabrication method, and then the anion of poly(VHIm(+)Br(-))@GO@Sil was changed into hexafluorophosphate (PF6(-)) by in situ anion exchange. The interaction energies between two PILs and four flavonoids were calculated with the Gaussian09 suite of programs. A Box-Behnken design was used for the optimization of four greatly influential parameters after single-factor experiments to obtain more accurate and precise results. Coupled to high performance liquid chromatography, the poly(VHIm(+)PF6(-))@GO@Sil method showed acceptable extraction recoveries for the four flavonoids, with limits of detection in the range of 0.1-0.5μgL(-1), and wide linear ranges with correlation coefficients (R) ranging from 0.9935 to 0.9987. Under the optimum conditions, the proposed method was applied to analyze the urines collected from a healthy volunteer. The excretion amount-time profiles revealed that 4-15h was the main excretion time for the detected flavonoids. The results indicated that the newly developed method offered the advantages of being feasible, green and cost-effective, and could be successfully applied to the extraction and enrichment of flavonoids in human body systems allowing the study of the metabolic kinetics. Copyright © 2016. Published by Elsevier B.V.

  6. Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices.

    PubMed

    Terzopoulou, Zoi; Papageorgiou, Myrsini; Kyzas, George Z; Bikiaris, Dimitrios N; Lambropoulou, Dimitra A

    2016-03-24

    In the present study, a molecularly imprinted solid-phase microextraction fiber (MIP-SPMEf) was synthesized and applied for the selective removal and extraction of the antiviral drug, abacavir (ABA). Morphology and structure characterization of fibers were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The effects on the adsorption behavior of the process parameters were studied and the equilibrium data were fitted by the Langmuir, Freundlich and Langmuir-Freundlich models. The maximum adsorption capability (Qmax) was determined by Langmuir- Freundlich model and was 149 mg/g for MIP-SPMEf. In the next step, SPME methodology followed by liquid desorption and liquid chromatography with mass spectrometry (LC/MS) has been developed and evaluated for the determination of the target compound in environmental and biological matrices (surface waters, wastewaters and urine). Parameters that could influence SPME efficiency were investigated. Then, optimization of stirring speed, extraction time and salt content was carried out by using a central composite design (CCD) and response surface methodology (RSM). A quadratic model between dependent and independent variables was built. Under the optimum conditions (extraction time 40 min, stirring rate 650 rpm and salt content 0.3% NaCl w/v) the validated method presented a high sensitivity and selectivity with LODs and LOQs in the range of 10.1-13.6 and 33.3-43.9 ng/L, respectively. The developed method was successfully applied to the analysis of ABA in real samples. The percentage extraction efficiency ranged from 88 to 99% revealing good accuracy and absence of matrix effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cold column trapping-cloud point extraction coupled to high performance liquid chromatography for preconcentration and determination of curcumin in human urine.

    PubMed

    Rahimi, Marzieh; Hashemi, Payman; Nazari, Fariba

    2014-05-15

    A cold column trapping-cloud point extraction (CCT-CPE) method coupled to high performance liquid chromatography (HPLC) was developed for preconcentration and determination of curcumin in human urine. A nonionic surfactant, Triton X-100, was used as the extraction medium. In the proposed method, a low surfactant concentration of 0.4% v/v and a short heating time of only 2min at 70°C were sufficient for quantitative extraction of the analyte. For the separation of the extraction phase, the resulted cloudy solution was passed through a packed trapping column that was cooled to 0 °C. The temperature of the CCT column was then increased to 25°C and the surfactant rich phase was desorbed with 400μL ethanol to be directly injected into HPLC for the analysis. The effects of different variables such as pH, surfactant concentration, cloud point temperature and time were investigated and optimum conditions were established by a central composite design (response surface) method. A limit of detection of 0.066mgL(-1) curcumin and a linear range of 0.22-100mgL(-1) with a determination coefficient of 0.9998 were obtained for the method. The average recovery and relative standard deviation for six replicated analysis were 101.0% and 2.77%, respectively. The CCT-CPE technique was faster than a conventional CPE method requiring a lower concentration of the surfactant and lower temperatures with no need for the centrifugation. The proposed method was successfully applied to the analysis of curcumin in human urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Assessing the efficacy of PEF treatments for improving polyphenol extraction during red wine vinifications.

    PubMed

    Saldaña, Guillermo; Cebrián, Guillermo; Abenoza, María; Sánchez-Gimeno, Cristina; Álvarez, Ignacio; Raso, Javier

    2017-02-01

    The influence of the electric field intensity and pulse width on the improvement of total polyphenol index (TPI) and colour intensity (CI) during extraction in an ethanolic solution (30%) and during fermentation-maceration has been investigated in different grape varieties: Grenache from two harvesting times, Syrah and Tempranillo. The aim of this study was to develop a procedure to establish the PEF treatment conditions that cause enough permeabilization in the skin cells of different grape varieties to obtain a significant improvement in the vinification process in terms of increment on the polyphenol content or reduction of maceration time. Results obtained in this investigation indicate that extraction of polyphenols in a solution of ethanol (30%) for 2 h could be a suitable procedure to know if the PEF technology is effective for improving extraction of polyphenols from the grapes during vinification and to determine the most suitable PEF treatment conditions to obtain this objective. Improvement in the extraction during vinification only was observed with those grapes and under treatment conditions in which the improvement of the polyphenol extraction was higher than 40%. Other interesting observation from this research is the highest efficacy of PEF when treatments of the same duration are applied using longer pulses. Therefore, in a continuous process, where the flow processed is determined by the frequency applied by the PEF generator, it is possible to increase the processing capacity of the PEF installation. Benefits from PEF treatment of the grapes before the maceration step in the vinification process have been demonstrated. Nevertheless, the characteristics of the grapes may change in different vintages and grape varieties. Therefore, it is of high importance to be able to determine the optimum PEF conditions in order to obtain the desired benefit during the vinification. The rapid method developed permits to determine PEF process parameters before the application of the PEF treatment with the objective of facilitating the phenolic extraction and therefore, reducing the maceration time. In these cases, it would be possible to remove the skins from the rest of the wine earlier, and therefore, increase the processing capacity of the winery.

  9. Optimum conditions for L-glutaminase production by actinomycete strain isolated from estuarine fish, Chanos chanos (Forskal, 1775).

    PubMed

    Sivakumar, K; Sahu, Maloy Kumar; Manivel, P R; Kannan, L

    2006-03-01

    Actinomycetes were isolated from skin, gills and gut contents of estuarine fish. Chanos chanos using Kuster's agar medium. Out of 20 strains tested, the strain LG-10 which was tentatively identified as Streptomyces rimosus showed L-glutaminase activity. Optimum production of L-glutaminase enzyme (17.51 IU/ml) was observed after 96 h of incubation at 27 degrees C, pH 9 and glucose and malt extract as carbon and nitrogen sources, respectively. The present study indicated scope for the use of S. rimosus as an ideal organism for the industrial production of extracellular L-glutaminase.

  10. Arsenic species determination in human scalp hair by pressurized hot water extraction and high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Morado Piñeiro, Andrés; Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío

    2013-02-15

    Analytical methods for the determination of total arsenic and arsenic species (mainly As(III) and As(V)) in human scalp hair have been developed. Inductively coupled plasma-mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) coupled to ICP-MS have been used for total arsenic and arsenic species determination, respectively. The proposed methods include a "green", fast, high efficient and automated species leaching procedure by pressurized hot water extraction (PHWE). The operating parameters for PHWE including modifier concentration, extraction temperature, static time, extraction steps, pressure, mean particle size, diatomaceous earth (DE) mass/sample mass ratio and flush volume were studied using design of experiments (Plackett-Burman design PBD). Optimum condition implies a modifier concentration (acetic acid) of 150 mM and powdered hair samples fully mixed with diatomaceous earth (DE) as a dispersing agent at a DE mass/sample mass ratio of 5. The extraction has been carried out at 100°C and at an extraction pressure of 1500 psi for 5 min in four extraction step. Under optimised conditions, limits of quantification of 7.0, 6.3 and 50.3 ng g(-1) for total As, As(III) and As(V), respectively were achieved. Repeatability of the overall procedure (4.4, 7.2 and 2.1% for total As, As(III) and As(V), respectively) was achieved. The analysis of GBW-07601 (human hair) certified reference material was used for validation. The optimised method has been finally applied to several human scalp hair samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Development of a selective and pH-independent method for the analysis of ultra trace amounts of nitrite in environmental water samples after dispersive magnetic solid phase extraction by spectrofluorimetry.

    PubMed

    Daneshvar Tarigh, Ghazale; Shemirani, Farzaneh

    2014-10-01

    This paper describes an innovative and rapidly dispersive magnetic solid phase extraction spectrofluorimetry (DMSPE-FL) method for the analysis of trace amounts of nitrite in some environmental water samples. The method includes derivatization of aqueous nitrite with 2, 3-diaminonaphthalene (DAN), analysis of highly fluorescent 2, 3-naphthotriazole (NAT) derivative using spectrofluorimetry after DSPME. The novelty of our method is based on forming NAT that was independent with the pH-responsive and was adsorbed on MMWCNT by hydrophobic attractions in both acidic and basic media. The extraction efficiency of the sorbent was investigated by extraction of nitrite. The optimum extraction conditions for NO2(-) were obtained as of extraction time, 1.5 min; 10mg sorbent from 160 mL of the sample solution, and elution with 1 mL of acetone/KOH. Under the optimal conditions, the calibration curves were obtained in the range of 0.1-80 µg L(-1) (R(2)=0.999) and LOD (S/N=3) was obtained in 34 ng L(-1). Relative standard deviations (RSD) were 0.6 % (five replicates at 5 μg L(-1)). In addition, the feasibility of the method was demonstrated with extraction and determination of nitrite from some real samples containing tap, mineral, sea, rain, snow and ground waters, with the recovery in standard addition to real matrix of 94-102 % and RSDs of 1.8-10.6%. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Antibacterial, antioxidant, anti-cholinesterase potential and flavonol glycosides of Biscutella raphanifolia (Brassicaceae).

    PubMed

    Boudouda, Houria Berhail; Zeghib, Assia; Karioti, Anastazia; Bilia, Anna Rita; Öztürk, Mehmet; Aouni, Mahjoub; Kabouche, Ahmed; Kabouche, Zahia

    2015-01-01

    Different extracts of the aerial parts of Biscutella raphanifolia (Brassicaceae), which has not been the subject of any study, were screened for the phytochemical content, anti-microbial, antioxidant and anti-cholinesterase activities. We used four methods to identify the antioxidant activity namely, ABTS(•+), DPPH• scavenging, CUPRAC and ferrous-ions chelating methods. Since there is a relationship between antioxidants and cholinesterase enzyme inhibitors, we used two methods to determine the in vitro anti-cholinesterase activity by the use of the basic enzymes that occur in causing Alzheimer's disease: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The extracts were also tested in vitro antimicrobial activity against various bacteria. The phytochemical study of B. raphanifolia afforded four flavonol glycosides; namely, quercetin-3-O-β-D-g1ucoside, quercetin-3-O-[β-D-glucosyl(1→2)-O-β-D-glucoside], quercetin-3-O-[β-D-glucosyl(1→3)-O-β-D-glucoside] and kaempferol-3-O-[β-D-glucosyl(1→2)-[(6'''p-coumaroyl)- β-D-glucoside], being isolated here for the first time from Biscutella raphanifolia and the genus. The ethyl acetate extract showed the highest activity in ABTS(•+), DPPH• and CUPRAC assays, while the petroleum ether extract demonstrated optimum efficiency metal chelating activity. The dicloromethane and petroleum ether extracts showed a mild inhibition against AChE and BChE. However, the petroleum ether extract showed a good antibacterial activity against the pathovars Enteropathogenic E. coli (EPEC), Enterotoxigenic E. coli (ETEC) and Enterococcus feacalis, whereas the Enterohemorrhagic E. coli (EHEC) strain was more sensitive to dichloromethane and n-butanol extracts.

  13. Applications of organo-silica nanocomposites for SPNE of Hg(II)

    NASA Astrophysics Data System (ADS)

    Kaur, Anupreet

    2016-02-01

    An analytical method using modified SiO2 nanoparticles as solid-phase extractant has been developed for the preconcentration of trace amounts of Hg(II) in different water samples. Conditions of the analysis such as preconcentration factor, effect of pH, sample volume, shaking time, elution conditions and effects of interfering ions for the recovery of analyte were investigated. The adsorption capacity of nanometer SiO2-APTMS was found to be 181.42 µmol g-1 at optimum pH and the detection limit (3σ) was 0.45 µg L-1. The extractant showed rapid kinetic sorption. The adsorption equilibrium of Hg(II) on nanometer SiO2-APTMS was achieved just in 15 min. Adsorbed Hg(II) was easily eluted with 4 mL of 2.0 M hydrochloric acid. The maximum preconcentration factor was 75. The method was applied for the determination of trace amounts of Hg(II) in various synthetic samples and water samples.

  14. Optimization and antioxidant activity of polysaccharides from Plantago depressa.

    PubMed

    Han, Na; Wang, Lin; Song, Zehai; Lin, Junyu; Ye, Chun; Liu, Zhihui; Yin, Jun

    2016-12-01

    Polysaccharide from the herb of Plantago depressa (PDP) was obtained through ethanol precipitation preceded by a water extraction step. The optimum extraction yield of 5.68±0.46% was obtained with the treatment of raw material in water (w/v, 1:25.34) at 80.44°C during 1.97h, 3.28 times. Under these conditions, obtained yield value was in total agreement with value predicted by the model executed by Box-Behnken design (BBD). Following analysis by IR, HPLC-UV, MS and 1 H NMR, the composition of PDP was found to be l-rhamnose, galactose, arabinose, glucose and d-galacturonic acid. The maximum tolerated dose of PDP was 10g/kg. The antioxidant activity of PDP was investigated using five tests and it was found that PDP was able to scavenge hydroxyl, DPPH and ABTS radicals, besides their β-carotene bleaching inhibitory activity. In particular, in the test of β-carotene bleaching inhibition, PDP displayed higher activity than Vitamin C. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Solid-phase microextraction method for the determination of hexanal in hazelnuts as an indicator of the interaction of active packaging materials with food aroma compounds.

    PubMed

    Pastorelli, S; Valzacchi, S; Rodriguez, A; Simoneau, C

    2006-11-01

    Fatty foods are susceptible to lipid oxidation resulting in deterioration of product quality due to the generation of off-flavours. Hexanal is a good indicator of rancidity. Therefore, a method based on solid-phase microextraction (SPME) coupled to gas chromatograph with flame ionization detection was developed to determine hexanal formation in hazelnuts during storage. Optimum conditions were as follows: carboxen-polydimethylsiloxane 75 microm fibre, extraction time 10 min, equilibrium time 10 min and equilibrium temperature 60 degrees C. The effect of oxygen scavengers on the oxidation process was also evaluated by measuring hexanal formation in hazelnuts stored with/without oxygen absorber sachets. Oxygen scavengers were shown to reduce oxidation; however, analysis of the sachet revealed that other volatile compounds from the headspace were also absorbed.

  16. SVD-aided pseudo principal-component analysis: A new method to speed up and improve determination of the optimum kinetic model from time-resolved data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oang, Key Young; Yang, Cheolhee; Muniyappan, Srinivasan

    Determination of the optimum kinetic model is an essential prerequisite for characterizing dynamics and mechanism of a reaction. Here, we propose a simple method, termed as singular value decomposition-aided pseudo principal-component analysis (SAPPA), to facilitate determination of the optimum kinetic model from time-resolved data by bypassing any need to examine candidate kinetic models. We demonstrate the wide applicability of SAPPA by examining three different sets of experimental time-resolved data and show that SAPPA can efficiently determine the optimum kinetic model. In addition, the results of SAPPA for both time-resolved X-ray solution scattering (TRXSS) and transient absorption (TA) data of themore » same protein reveal that global structural changes of protein, which is probed by TRXSS, may occur more slowly than local structural changes around the chromophore, which is probed by TA spectroscopy.« less

  17. Development of pressurised hot water extraction (PHWE) for essential compounds from Moringa oleifera leaf extracts.

    PubMed

    Matshediso, Phatsimo G; Cukrowska, Ewa; Chimuka, Luke

    2015-04-01

    Pressurised hot water extraction (PHWE) is a "green" technology which can be used for the extraction of essential components in Moringa oleifera leaf extracts. The behaviour of three flavonols (myricetin, quercetin and kaempferol) and total phenolic content (TPC) in Moringa leaf powder were investigated at various temperatures using PHWE. The TPC of extracts from PHWE were investigated using two indicators. These are reducing activity and the radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). Flavonols content in the PHWE extracts were analysed on high performance liquid chromatography with ultra violet (HPLC-UV) detection. The concentration of kaempferol and myricetin started decreasing at 150 °C while that of quercetin remained steady with extraction temperature. Optimum extraction temperature for flavonols and DPPH radical scavenging activity was found to be 100 °C. The TPC increased with temperature until 150 °C and then decreased while the reducing activity increased. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Hollow-Fibre-Supported Dispersive Liquid-Liquid Microextraction for Determination of Atrazine and Triclosan in Aqueous Samples

    PubMed Central

    Letseka, Thabiso

    2017-01-01

    We report the application of the dispersive liquid-liquid microextraction coupled to hollow-fibre membrane-assisted liquid-phase microextraction and its application for extraction of atrazine and triclosan. Under optimum conditions, namely, 25 μL of a 1 : 4 chlorobenzene : ethyl acetate mixture dispersed in 1 mL of aqueous sample, 10% (m/v) NaCl, a magnetic stirrer speed at 600 rpm, and 10 minutes' extraction time with toluene-filled fibre as the acceptor phase, the method demonstrates sufficient figures of merit. These include linearity (R2 ≥ 0.9975), intravial precision (%RSD ≤ 7.6), enrichment factors (127 and 142), limits of detection (0.0081 and 0.0169 µg/mL), and recovery from river water and sewerage (96–101%). The relatively high detection limits are attributed to the flame ionization detector which is less preferred than a mass spectrometer in trace analyses. This is the first report of a homogenous mixture of the dispersed organic solvent in aqueous solutions and its employment in extraction of organic compounds from aqueous solutions. It therefore adds yet another candidate in the pool of miniaturised solvent microextraction techniques. PMID:29158736

  19. Zinc Extraction from Zinc Plants Residue Using Selective Alkaline Leaching and Electrowinning

    NASA Astrophysics Data System (ADS)

    Ashtari, Pedram; Pourghahramani, Parviz

    2015-10-01

    Annually, a great amount of zinc plants residue is produced in Iran. One of them is hot filter cake (known as HFC) which can be used as a secondary resource of zinc, cobalt and manganese. Unfortunately, despite its heavy metal content, the HFC is not treated. For the first time, zinc was selectively leached from HFC employing alkaline leaching. Secondly, leaching was optimized to achieve maximum recovery using this method. Effects of factors like NaOH concentration (C = 3, 5, 7 and 9 M), temperature (T = 50, 70, 90 and 105 °C), solid/liquid ratio (weight/volume, S/L = 1/10 and 1/5 W/V) and stirring speed (R = 500 and 800 rpm) were studied on HFC leaching. L16 orthogonal array (OA, two factors in four levels and two factors in two levels) was applied to determine the optimum condition and the most significant factor affecting the overall zinc extraction. As a result, maximum zinc extraction was 83.4 %. Afterwards, a rough test was conducted for zinc electrowinning from alkaline solution according to the common condition available in literature by which pure zinc powder (99.96 %) was successfully obtained.

  20. ZnO nanostructures as electron extraction layers for hybrid perovskite thin films

    NASA Astrophysics Data System (ADS)

    Nikolaidou, Katerina; Sarang, Som; Tung, Vincent; Lu, Jennifer; Ghosh, Sayantani

    Optimum interaction between light harvesting media and electron transport layers is critical for the efficient operation of photovoltaic devices. In this work, ZnO layers of different morphologies are implemented as electron extraction and transport layers for hybrid perovskite CH3NH3PbI3 thin films. These include nanowires, nanoparticles, and single crystalline film. Charge transfer at the ZnO/perovskite interface is investigated and compared through ultra-fast characterization techniques, including temperature and power dependent spectroscopy, and time-resolved photoluminescence. The nanowires cause an enhancement in perovskite emission, which may be attributed to increased scattering and grain boundary formation. However, the ZnO layers with decreasing surface roughness exhibit better electron extraction, as inferred from photoluminescence quenching, reduction in the number of bound excitons, and reduced exciton lifetime in CH3NH3PbI3 samples. This systematic study is expected to provide an understanding of the fundamental processes occurring at the ZnO-CH3NH3PbI3 interface and ultimately, provide guidelines for the ideal configuration of ZnO-based hybrid Perovskite devices. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

Top