Sample records for optimum loop shapes

  1. New technologies for advanced three-dimensional optimum shape design in aeronautics

    NASA Astrophysics Data System (ADS)

    Dervieux, Alain; Lanteri, Stéphane; Malé, Jean-Michel; Marco, Nathalie; Rostaing-Schmidt, Nicole; Stoufflet, Bruno

    1999-05-01

    The analysis of complex flows around realistic aircraft geometries is becoming more and more predictive. In order to obtain this result, the complexity of flow analysis codes has been constantly increasing, involving more refined fluid models and sophisticated numerical methods. These codes can only run on top computers, exhausting their memory and CPU capabilities. It is, therefore, difficult to introduce best analysis codes in a shape optimization loop: most previous works in the optimum shape design field used only simplified analysis codes. Moreover, as the most popular optimization methods are the gradient-based ones, the more complex the flow solver, the more difficult it is to compute the sensitivity code. However, emerging technologies are contributing to make such an ambitious project, of including a state-of-the-art flow analysis code into an optimisation loop, feasible. Among those technologies, there are three important issues that this paper wishes to address: shape parametrization, automated differentiation and parallel computing. Shape parametrization allows faster optimization by reducing the number of design variable; in this work, it relies on a hierarchical multilevel approach. The sensitivity code can be obtained using automated differentiation. The automated approach is based on software manipulation tools, which allow the differentiation to be quick and the resulting differentiated code to be rather fast and reliable. In addition, the parallel algorithms implemented in this work allow the resulting optimization software to run on increasingly larger geometries. Copyright

  2. A class of optimum digital phase locked loops

    NASA Technical Reports Server (NTRS)

    Kumar, R.; Hurd, W. J.

    1986-01-01

    This paper presents a class of optimum digital filters for digital phase locked loops, for the important case in which the maximum update rate of the loop filter and numerically controlled oscillator (NCO) is limited. This case is typical when the loop filter is implemented in a microprocessor. In these situations, pure delay is encountered in the loop transfer function and thus the stability and gain margin of the loop are of crucial interest. The optimum filters designed for such situations are evaluated in terms of their gain margin for stability, dynamic error, and steady-state error performance. For situations involving considerably high phase dynamics an adaptive and programmable implementation is also proposed to obtain an overall optimum strategy.

  3. Near optimum digital phase locked loops.

    NASA Technical Reports Server (NTRS)

    Polk, D. R.; Gupta, S. C.

    1972-01-01

    Near optimum digital phase locked loops are derived utilizing nonlinear estimation theory. Nonlinear approximations are employed to yield realizable loop structures. Baseband equivalent loop gains are derived which under high signal to noise ratio conditions may be calculated off-line. Additional simplifications are made which permit the application of the Kalman filter algorithms to determine the optimum loop filter. Performance is evaluated by a theoretical analysis and by simulation. Theoretical and simulated results are discussed and a comparison to analog results is made.

  4. Noncoherent pseudonoise code tracking performance of spread spectrum receivers

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1977-01-01

    The optimum design and performance of two noncoherent PN tracking loop configurations, namely, the delay-locked loop and tau-dither loop, are described. In particular, the bandlimiting effects of the bandpass arm filters are considered by demonstrating that for a fixed data rate and data signal-to-noise ratio, there exists an optimum filter bandwidth in the sense of minimizing the loop's tracking jitter. Both the linear and nonlinear loop analyses are presented, and the region of validity of the former relative to the latter is indicated. In addition, numerical results are given for several filter types. For example, assuming ideal bandpass arm filters, it is shown that the tau-dither loop requires approximately 1 dB more signal-to-noise ratio than the delay-locked loop for equal rms tracking jitters.

  5. The digital phase-locked loop as a near-optimum FM demodulator.

    NASA Technical Reports Server (NTRS)

    Kelly, C. N.; Gupta, S. C.

    1972-01-01

    This paper presents an approach to the optimum digital demodulation of a continuous-time FM signal using stochastic estimation theory. The primary result is a digital phase-locked loop realization possessing performance characteristics that approach those of the analog counterpart. Some practical considerations are presented and simulation results for a first-order message model are presented.

  6. Supercritical tests of a self-optimizing, variable-Camber wind tunnel model

    NASA Technical Reports Server (NTRS)

    Levinsky, E. S.; Palko, R. L.

    1979-01-01

    A testing procedure was used in a 16-foot Transonic Propulsion Wind Tunnel which leads to optimum wing airfoil sections without stopping the tunnel for model changes. Being experimental, the optimum shapes obtained incorporate various three-dimensional and nonlinear viscous and transonic effects not included in analytical optimization methods. The method is a closed-loop, computer-controlled, interactive procedure and employs a Self-Optimizing Flexible Technology wing semispan model that conformally adapts the airfoil section at two spanwise control stations to maximize or minimize various prescribed merit functions subject to both equality and inequality constraints. The model, which employed twelve independent hydraulic actuator systems and flexible skins, was also used for conventional testing. Although six of seven optimizations attempted were at least partially convergent, further improvements in model skin smoothness and hydraulic reliability are required to make the technique fully operational.

  7. Optimum shape of a blunt forebody in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Ting, L.

    1989-01-01

    The optimum shape of a blunt forebody attached to a symmetric wedge or cone is determined. The length of the forebody, its semi-thickness or base radius, the nose radius and the radius of the fillet joining the forebody to the wedge or cone are specified. The optimum shape is composed of simple curves. Thus experimental models can be built readily to investigate the utilization of aerodynamic heating for boundary layer control. The optimum shape based on the modified Newtonian theory can also serve as the preliminary shape for the numerical solution of the optimum shape using the governing equations for a compressible inviscid or viscous flow.

  8. A class of optimum digital phase locked loops for the DSN advanced receiver

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Kumar, R.

    1985-01-01

    A class of optimum digital filters for digital phase locked loop of the deep space network advanced receiver is discussed. The filter minimizes a weighted combination of the variance of the random component of the phase error and the sum square of the deterministic dynamic component of phase error at the output of the numerically controlled oscillator (NCO). By varying the weighting coefficient over a suitable range of values, a wide set of filters are obtained such that, for any specified value of the equivalent loop-noise bandwidth, there corresponds a unique filter in this class. This filter thus has the property of having the best transient response over all possible filters of the same bandwidth and type. The optimum filters are also evaluated in terms of their gain margin for stability and their steady-state error performance.

  9. Demonstration of Automatically-Generated Adjoint Code for Use in Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Green, Lawrence; Carle, Alan; Fagan, Mike

    1999-01-01

    Gradient-based optimization requires accurate derivatives of the objective function and constraints. These gradients may have previously been obtained by manual differentiation of analysis codes, symbolic manipulators, finite-difference approximations, or existing automatic differentiation (AD) tools such as ADIFOR (Automatic Differentiation in FORTRAN). Each of these methods has certain deficiencies, particularly when applied to complex, coupled analyses with many design variables. Recently, a new AD tool called ADJIFOR (Automatic Adjoint Generation in FORTRAN), based upon ADIFOR, was developed and demonstrated. Whereas ADIFOR implements forward-mode (direct) differentiation throughout an analysis program to obtain exact derivatives via the chain rule of calculus, ADJIFOR implements the reverse-mode counterpart of the chain rule to obtain exact adjoint form derivatives from FORTRAN code. Automatically-generated adjoint versions of the widely-used CFL3D computational fluid dynamics (CFD) code and an algebraic wing grid generation code were obtained with just a few hours processing time using the ADJIFOR tool. The codes were verified for accuracy and were shown to compute the exact gradient of the wing lift-to-drag ratio, with respect to any number of shape parameters, in about the time required for 7 to 20 function evaluations. The codes have now been executed on various computers with typical memory and disk space for problems with up to 129 x 65 x 33 grid points, and for hundreds to thousands of independent variables. These adjoint codes are now used in a gradient-based aerodynamic shape optimization problem for a swept, tapered wing. For each design iteration, the optimization package constructs an approximate, linear optimization problem, based upon the current objective function, constraints, and gradient values. The optimizer subroutines are called within a design loop employing the approximate linear problem until an optimum shape is found, the design loop limit is reached, or no further design improvement is possible due to active design variable bounds and/or constraints. The resulting shape parameters are then used by the grid generation code to define a new wing surface and computational grid. The lift-to-drag ratio and its gradient are computed for the new design by the automatically-generated adjoint codes. Several optimization iterations may be required to find an optimum wing shape. Results from two sample cases will be discussed. The reader should note that this work primarily represents a demonstration of use of automatically- generated adjoint code within an aerodynamic shape optimization. As such, little significance is placed upon the actual optimization results, relative to the method for obtaining the results.

  10. Effects of maneuver dynamics on drag polars of the X-29A forward-swept-wing aircraft with automatic wing camber control

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Moulton, Bryan J.

    1988-01-01

    The camber control loop of the X-29A FSW aircraft was designed to furnish the optimum L/D for trimmed, stabilized flight. A marked difference was noted between automatic wing camber control loop behavior in dynamic maneuvers and in stabilized flight conditions, which in turn affected subsonic aerodynamic performance. The degree of drag level increase was a direct function of maneuver rate. Attention is given to the aircraft flight drag polar effects of maneuver dynamics in light of wing camber control loop schedule. The effect of changing camber scheduling to better track the optimum automatic camber control L/D schedule is discussed.

  11. Optimum design of hybrid phase locked loops

    NASA Technical Reports Server (NTRS)

    Lee, P.; Yan, T.

    1981-01-01

    The design procedure of phase locked loops is described in which the analog loop filter is replaced by a digital computer. Specific design curves are given for the step and ramp input changes in phase. It is shown that the designed digital filter depends explicitly on the product of the sampling time and the noise bandwidth of the phase locked loop. This technique of optimization can be applied to the design of digital analog loops for other applications.

  12. Conformational Changes in a Hyperthermostable Glycoside Hydrolase: Enzymatic Activity Is a Consequence of the Loop Dynamics and Protonation Balance

    PubMed Central

    de Oliveira, Leandro C.; da Silva, Viviam M.; Colussi, Francieli; Cabral, Aline D.; de Oliveira Neto, Mario; Squina, Fabio M.; Garcia, Wanius

    2015-01-01

    Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan) is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5) was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105). In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features. PMID:25723179

  13. Behaviour of fractional loop delay zero crossing digital phase locked loop (FR-ZCDPLL)

    NASA Astrophysics Data System (ADS)

    Nasir, Qassim

    2018-01-01

    This article analyses the performance of the first-order zero crossing digital phase locked loops (FR-ZCDPLL) when fractional loop delay is added to loop. The non-linear dynamics of the loop is presented, analysed and examined through bifurcation behaviour. Numerical simulation of the loop is conducted to proof the mathematical analysis of the loop operation. The results of the loop simulation show that the proposed FR-ZCDPLL has enhanced the performance compared to the conventional zero crossing DPLL in terms of wider lock range, captured range and stable operation region. In addition, extensive experimental simulation was conducted to find the optimum loop parameters for different loop environmental conditions. The addition of the fractional loop delay network in the conventional loop also reduces the phase jitter and its variance especially when the signal-to-noise ratio is low.

  14. Experimental Comparison of Speed : Fuel-flow and Speed-area Controls on a Turbojet Engine for Small Step Disturbances

    NASA Technical Reports Server (NTRS)

    Wenzel, L M; Hart, C E; Craig, R T

    1957-01-01

    Optimum proportional-plus-integral control settings for speed - fuel-flow control, determined by minimization of integral criteria, correlated well with analytically predicted optimum settings. Engine response data are given for a range of control settings around the optimum. An inherent nonlinearity in the speed-area loop necessitated the use of nonlinear controls. Response data for two such nonlinear control schemes are presented.

  15. An approach to the analysis of performance of quasi-optimum digital phase-locked loops.

    NASA Technical Reports Server (NTRS)

    Polk, D. R.; Gupta, S. C.

    1973-01-01

    An approach to the analysis of performance of quasi-optimum digital phase-locked loops (DPLL's) is presented. An expression for the characteristic function of the prior error in the state estimate is derived, and from this expression an infinite dimensional equation for the prior error variance is obtained. The prior error-variance equation is a function of the communication system model and the DPLL gain and is independent of the method used to derive the DPLL gain. Two approximations are discussed for reducing the prior error-variance equation to finite dimension. The effectiveness of one approximation in analyzing DPLL performance is studied.

  16. Stapes surgery: how precisely do different prostheses attach to the long process of the incus with different instruments and different surgeons?

    PubMed

    Kwok, Pingling; Fisch, Ugo; Strutz, Jürgen; May, John

    2002-05-01

    The goal of this study was to compare the attachment of stapes prostheses with differently shaped loops to the long process of the incus. In stapes surgery, the attachment of the prosthesis to the long process of the incus plays an important role concerning the gain in hearing and the development of late complications such as incus erosion and necrosis. Band-shaped and spiral loops have been developed to achieve a broad, firm attachment to the long process of the incus. During stapes surgery, the view at the prosthesis is restricted, making it impossible to evaluate the effects of the differently shaped loops. Gold, steel/Teflon, platinum/Teflon, and two different titanium stapes prostheses were inserted in 30 specially prepared temporal bones by three experienced surgeons using the Fisch technique with the McGee and straight alligator forceps for the crimping of the loops. Photographs were taken with 0- and 70-degree rod lens telescopes at defined views. In all prostheses, a sufficiently firm attachment to the long process of the incus was achieved. The attachment of band-shaped loops proved to be better with the straight alligator forceps. The band-shaped loops showed a better contact with the incus than did the wire loops. However, the broad spiral-shaped loops led to a loss of the perpendicular axis of the piston to the long incus process. The geometry of the loop affects the final length of the piston in the vestibule and its angle to the long process of the incus.

  17. Closed Loop solar array-ion thruster system with power control circuitry

    NASA Technical Reports Server (NTRS)

    Gruber, R. P. (Inventor)

    1979-01-01

    A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power.

  18. STEREOSCOPIC OBSERVATION OF SLIPPING RECONNECTION IN A DOUBLE CANDLE-FLAME-SHAPED SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Tingyu; Liu, Rui; Wang, Yuming

    2016-04-20

    The 2011 January 28 M1.4 flare exhibits two side-by-side candle-flame-shaped flare loop systems underneath a larger cusp-shaped structure during the decay phase, as observed at the northwestern solar limb by the Solar Dynamics Observatory . The northern loop system brightens following the initiation of the flare within the southern loop system, but all three cusp-shaped structures are characterized by ∼10 MK temperatures, hotter than the arch-shaped loops underneath. The “Ahead” satellite of the Solar Terrestrial Relations Observatory provides a top view, in which the post-flare loops brighten sequentially, with one end fixed while the other apparently slipping eastward. By performingmore » stereoscopic reconstruction of the post-flare loops in EUV and mapping out magnetic connectivities, we found that the footpoints of the post-flare loops are slipping along the footprint of a hyperbolic flux tube (HFT) separating the two loop systems and that the reconstructed loops share similarity with the magnetic field lines that are traced starting from the same HFT footprint, where the field lines are relatively flexible. These results argue strongly in favor of slipping magnetic reconnection at the HFT. The slipping reconnection was likely triggered by the flare and manifested as propagative dimmings before the loop slippage is observed. It may contribute to the late-phase peak in Fe xvi 33.5 nm, which is even higher than its main-phase counterpart, and may also play a role in the density and temperature asymmetry observed in the northern loop system through heat conduction.« less

  19. Multi-Response Optimization of WEDM Process Parameters Using Taguchi Based Desirability Function Analysis

    NASA Astrophysics Data System (ADS)

    Majumder, Himadri; Maity, Kalipada

    2018-03-01

    Shape memory alloy has a unique capability to return to its original shape after physical deformation by applying heat or thermo-mechanical or magnetic load. In this experimental investigation, desirability function analysis (DFA), a multi-attribute decision making was utilized to find out the optimum input parameter setting during wire electrical discharge machining (WEDM) of Ni-Ti shape memory alloy. Four critical machining parameters, namely pulse on time (TON), pulse off time (TOFF), wire feed (WF) and wire tension (WT) were taken as machining inputs for the experiments to optimize three interconnected responses like cutting speed, kerf width, and surface roughness. Input parameter combination TON = 120 μs., TOFF = 55 μs., WF = 3 m/min. and WT = 8 kg-F were found to produce the optimum results. The optimum process parameters for each desired response were also attained using Taguchi’s signal-to-noise ratio. Confirmation test has been done to validate the optimum machining parameter combination which affirmed DFA was a competent approach to select optimum input parameters for the ideal response quality for WEDM of Ni-Ti shape memory alloy.

  20. Magnetic forces in high-Tc superconducting bearings

    NASA Technical Reports Server (NTRS)

    Moon, F. C.

    1991-01-01

    In September 1987, researchers at Cornell levitated a small rotor on superconducting bearings at 10,000 rpm. In April 1989, a speed of 120,000 rpm was achieved in a passive bearing with no active control. The bearing material used was YBa2Cu307. There is no evidence that the rotation speed has any significant effect on the lift force. Magnetic force measurements between a permanent rare-earth magnet and high T(sub c) superconducting material versus vertical and lateral displacements were made. A large hysteresis loop results for large displacements, while minor loops result for small displacements. These minor loops seem to give a slope proportional to the magnetic stiffness, and are probably indicative of flux pinning forces. Experiments of rotary speed versus time show a linear decay in a vacuum. Measurements of magnetic dipole over a high-T(sub c) superconducting disc of YBCO show that the lateral vibrations of levitated rotors were measured which indicates that transverse flux motion in the superconductor will create dissipation. As a result of these force measurements, an optimum shape for the superconductor bearing pads which gives good lateral and axial stability was designed. Recent force measurements on melt-quench processed superconductors indicate a substantial increase in levitation force and magnetic stiffness over free sintered materials. As a result, application of high-T(sub c) superconducting bearings are beginning to show great promise at this time.

  1. Carbon-free hydrogen production from low rank coal

    NASA Astrophysics Data System (ADS)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  2. The crimping problem in stapes surgery.

    PubMed

    Kwok, Pingling; Fisch, Ugo; Strutz, Jürgen

    2007-01-01

    The goal of this study was to compare the attachment of stapes prostheses with differently shaped loops to the long process of the incus. Gold, steel/Teflon, platinum/Teflon, and two different titanium stapes prostheses were inserted in 30 specially prepared temporal bones by three experienced surgeons using the Fisch technique with the McGee crimper and straight alligator forceps for the crimping of the loops. In all prostheses, a sufficiently firm attachment of the long process of the incus was achieved. The band-shaped loops showed a better contact with the incus than did the wire loops. However, the broad spiral-shaped loops led to a loss of the perpendicular axis of the piston to the long incus process. The geometry of the loop affects the final length of the piston in the vestibule and its angle to the long process of the incus.

  3. Phase-locked loops. [analog, hybrid, discrete and digital systems

    NASA Technical Reports Server (NTRS)

    Gupta, S. C.

    1974-01-01

    The basic analysis and design procedures are described for the realization of analog phase-locked loops (APLL), hybrid phase-locked loops (HPLL), discrete phase-locked loops, and digital phase-locked loops (DPLL). Basic configurations are diagrammed, and performance curves are given. A discrete communications model is derived and developed. The use of the APLL as an optimum angle demodulator and the Kalman-Bucy approach to APLL design are discussed. The literature in the area of phase-locked loops is reviewed, and an extensive bibliography is given. Although the design of APLLs is fairly well documented, work on discrete, hybrid, and digital PLLs is scattered, and more will have to be done in the future to pinpoint the formal design of DPLLs.

  4. Response of an all digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Garodnick, J.; Greco, J.; Schilling, D. L.

    1974-01-01

    An all digital phase-locked loop (DPLL) is designed, analyzed, and tested. Three specific configurations are considered, generating first, second, and third order DPLL's; and it is found, using a computer simulation of a noise spike, and verified experimentally, that of these configurations the second-order system is optimum from the standpoint of threshold extension. This substantiates results obtained for analog PLL's.

  5. Toroidal core winder

    DOEpatents

    Potthoff, Clifford M.

    1978-01-01

    The disclosure is directed to an apparatus for placing wire windings on a toroidal body, such as a transformer core, having an orifice in its center. The apparatus comprises a wire storage spool, a wire loop holding continuous belt maintained in a C-shaped loop by a belt supporting structure and provision for turning the belt to place and tighten loops of wire on a toroidal body, which is disposed within the gap of the C-shaped belt loop.

  6. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    NASA Astrophysics Data System (ADS)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  7. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.

  8. A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse heart looping dynamics

    PubMed Central

    Le Garrec, Jean-François; Ivanovitch, Kenzo D; Raphaël, Etienne; Bangham, J Andrew; Torres, Miguel; Coen, Enrico; Mohun, Timothy J

    2017-01-01

    How left-right patterning drives asymmetric morphogenesis is unclear. Here, we have quantified shape changes during mouse heart looping, from 3D reconstructions by HREM. In combination with cell labelling and computer simulations, we propose a novel model of heart looping. Buckling, when the cardiac tube grows between fixed poles, is modulated by the progressive breakdown of the dorsal mesocardium. We have identified sequential left-right asymmetries at the poles, which bias the buckling in opposite directions, thus leading to a helical shape. Our predictive model is useful to explore the parameter space generating shape variations. The role of the dorsal mesocardium was validated in Shh-/- mutants, which recapitulate heart shape changes expected from a persistent dorsal mesocardium. Our computer and quantitative tools provide novel insight into the mechanism of heart looping and the contribution of different factors, beyond the simple description of looping direction. This is relevant to congenital heart defects. PMID:29179813

  9. Wing Shaping and Gust Load Controls of Flexible Aircraft: An LPV Approach

    NASA Technical Reports Server (NTRS)

    Hammerton, Jared R.; Su, Weihua; Zhu, Guoming; Swei, Sean Shan-Min

    2018-01-01

    In the proposed paper, the optimum wing shape of a highly flexible aircraft under varying flight conditions will be controlled by a linear parameter-varying approach. The optimum shape determined under multiple objectives, including flight performance, ride quality, and control effort, will be determined as well. This work is an extension of work done previously by the authors, and updates the existing optimization and utilizes the results to generate a robust flight controller.

  10. Automatic temperature adjustment apparatus

    DOEpatents

    Chaplin, James E.

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  11. Thermoelectric thin film thermal coating systems

    NASA Technical Reports Server (NTRS)

    Harpster, J. W.; Bulman, W. E.; Middleton, A. E.; Swinehart, P. R.; Braun, F. D.

    1973-01-01

    Derivation of the fluid loop temperature profile for a model with thermoelectric devices (TED) attached is developed as a function of position, incident radiation intensity, input fluid loop temperature and TED current. The associated temperature of the radiator is also developed so that the temperature difference across the TED can be determined for each position. The temperature difference is used in determining optimum operating conditions and available generated electrical power.

  12. Improved Sensing Coils for SQUIDs

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Hahn, Inseob; Eom, Byeong Ho

    2007-01-01

    An improvement in the design and fabrication of sensing coils of superconducting quantum interference device (SQUID) magnetometers has been proposed to increase sensitivity. It has been estimated that, in some cases, it would be possible to increase sensitivity by about half or to reduce measurement time correspondingly. The pertinent aspects of the problems of design and fabrication can be summarized as follows: In general, to increase the sensitivity of a SQUID magnetometer, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. It is often beneficial to fabricate the coil from a thicker wire to reduce its self-inductance. Moreover, to optimize the design of the coil with respect to sensitivity, it may be necessary to shape the wire to other than a commonly available circular or square cross-section. On the other hand, it is not practical to use thicker superconducting wire for the entire superconducting circuit, especially if the design of a specific device requires a persistent-current loop enclosing a remotely placed SQUID sensor. It may be possible to bond a thicker sensing-coil wire to thinner superconducting wires leading to a SQUID sensor, but it could be difficult to ensure reliable superconducting connections, especially if the bonded wires are made of different materials. The main idea is to mold the sensing coil in place, to more nearly optimum cross sectional shape, instead of making the coil by winding standard pre-fabricated wire. For this purpose, a thin superconducting wire loop that is an essential part of the SQUID magnetometer would be encapsulated in a form that would serve as a mold. A low-melting-temperature superconducting metal (e.g., indium, tin, or a lead/tin alloy) would be melted into the form, which would be sized and shaped to impart the required cross section to the coil thus formed.

  13. Energetics analysis of interstitial loops in single-phase concentrated solid-solution alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Xin; Niu, Liang-Liang; Wang, Shaoqing

    2018-04-01

    Systematic energetics analysis on the shape preference, relative stability and radiation-induced segregation of interstitial loops in nickel-containing single-phase concentrated solid-solution alloys have been conducted using atomistic simulations. It is shown that the perfect loops prefer rhombus shape for its low potential energy, while the Frank faulted loops favor ellipse for its low potential energy and the possible large configurational entropy. The decrease of stacking fault energy with increasing compositional complexity provides the energetic driving force for the formation of faulted loops, which, in conjunction with the kinetic factors, explains the experimental observation that the fraction of faulted loops rises with increasing compositional complexity. Notably, the kinetics is primarily responsible for the absence of faulted loops in nickel-cobalt with a very low stacking fault energy. We further demonstrate that the simultaneous nickel enrichment and iron/chromium depletion on interstitial loops can be fully accounted for by their energetics.

  14. B1 field-insensitive transformers for RF-safe transmission lines.

    PubMed

    Krafft, Axel; Müller, Sven; Umathum, Reiner; Semmler, Wolfhard; Bock, Michael

    2006-11-01

    Integration of transformers into transmission lines suppresses radiofrequency (RF)-induced heating. New figure-of-eight-shaped transformer coils are compared to conventional loop transformer coils to assess their signal transmission properties and safety profile. The transmission properties of figure-of-eight-shaped transformers were measured and compared to transformers with loop coils. Experiments to quantify the effect of decoupling from the B1 field of the MR system were conducted. Temperature measurements were performed to demonstrate the effective reduction of RF-induced heating. The transformers were investigated during active tracking experiments. Coupling to the B1 field was reduced by 18 dB over conventional loop-shaped transformer coils. MR images showed a significantly reduced artifact for the figure-of-eight- shaped coils generated by local flip-angle amplification. Comparable transmission properties were seen for both transformer types. Temperature measurements showed a maximal temperature increase of 30 K/3.5 K for an unsegmented/segmented cable. With a segmented transmission line a robotic assistance system could be successfully localized using active tracking. The figure-of-eight-shaped transformer design reduces both RF field coupling with the MR system and artifact sizes. Anatomical structure close to the figure-of-eight-shaped transformer may be less obscured as with loop-shaped transformers if these transformers are integrated into e.g. intravascular catheters.

  15. Multiple symbol partially coherent detection of MPSK

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Divsalar, D.

    1992-01-01

    It is shown that by using the known (or estimated) value of carrier tracking loop signal to noise ratio (SNR) in the decision metric, it is possible to improve the error probability performance of a partially coherent multiple phase-shift-keying (MPSK) system relative to that corresponding to the commonly used ideal coherent decision rule. Using a maximum-likeihood approach, an optimum decision metric is derived and shown to take the form of a weighted sum of the ideal coherent decision metric (i.e., correlation) and the noncoherent decision metric which is optimum for differential detection of MPSK. The performance of a receiver based on this optimum decision rule is derived and shown to provide continued improvement with increasing length of observation interval (data symbol sequence length). Unfortunately, increasing the observation length does not eliminate the error floor associated with the finite loop SNR. Nevertheless, in the limit of infinite observation length, the average error probability performance approaches the algebraic sum of the error floor and the performance of ideal coherent detection, i.e., at any error probability above the error floor, there is no degradation due to the partial coherence. It is shown that this limiting behavior is virtually achievable with practical size observation lengths. Furthermore, the performance is quite insensitive to mismatch between the estimate of loop SNR (e.g., obtained from measurement) fed to the decision metric and its true value. These results may be of use in low-cost Earth-orbiting or deep-space missions employing coded modulations.

  16. Antenna Linear-Quadratic-Gaussian (LQG) Ccontrollers: Properties, Limits of Performance, and Tuning

    NASA Technical Reports Server (NTRS)

    Gawronski, Wodek K.

    2004-01-01

    The LQG controllers significantly improve antenna tracking precision, but their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller, and the selection of weights of the LQG performance index. The paper selects the coordinates of the open-loop model that simplify the shaping of the closed-loop performance. and analyzes the impact of thc weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. Finally, it presents the LQG controller tuning procedure that rationally shapes the closed-loop performance.

  17. Device for removing foreign objects from anatomic organs

    NASA Technical Reports Server (NTRS)

    Angulo, Earl D. (Inventor)

    1992-01-01

    A device is disclosed for removing foreign objects from anatomic organs such as the ear canal or throat. It has a housing shaped like a flashlight, an electrical power source such as a battery or AC power from a wall socket, and a tip extending from the housing. The tip has at least one wire loop made from a shape-memory-effect alloy, such as Nitinol, switchably connected to the electrical power source such that when electric current flows through the wire loop the wire loop heats up and returns to a previously programmed shape such as a curet or tweezers so as to facilitate removal of the foreign object.

  18. Pattern drilling exploration: Optimum pattern types and hole spacings when searching for elliptical shaped targets

    USGS Publications Warehouse

    Drew, L.J.

    1979-01-01

    In this study the selection of the optimum type of drilling pattern to be used when exploring for elliptical shaped targets is examined. The rhombic pattern is optimal when the targets are known to have a preferred orientation. Situations can also be found where a rectangular pattern is as efficient as the rhombic pattern. A triangular or square drilling pattern should be used when the orientations of the targets are unknown. The way in which the optimum hole spacing varies as a function of (1) the cost of drilling, (2) the value of the targets, (3) the shape of the targets, (4) the target occurrence probabilities was determined for several examples. Bayes' rule was used to show how target occurrence probabilities can be revised within a multistage pattern drilling scheme. ?? 1979 Plenum Publishing Corporation.

  19. Preliminary design and implementation of the baseline digital baseband architecture for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Yeh, H.-G.

    1993-01-01

    The baseline design and implementation of the digital baseband architecture for advanced deep space transponders is investigated and identified. Trade studies on the selection of the number of bits for the analog-to-digital converter (ADC) and optimum sampling schemes are presented. In addition, the proposed optimum sampling scheme is analyzed in detail. Descriptions of possible implementations for the digital baseband (or digital front end) and digital phase-locked loop (DPLL) for carrier tracking are also described.

  20. Frequency stability of maser oscillators operated with cavity Q. [hydrogen and rubidium masers

    NASA Technical Reports Server (NTRS)

    Tetu, M.; Tremblay, P.; Lesage, P.; Petit, P.; Audoin, C.

    1982-01-01

    The short term frequency stability of masers equipped with an external feedback loop to increase the cavity quality factor was studied. The frequency stability of a hydrogen and a rubidium maser were measured and compared with theoretical evaluation. It is shown that the frequency stability passes through an optimum when the cavity Q is varied. Long term fluctuations are discussed and the optimum mid term frequency stability achievably by small size active and passive H-masers is considered.

  1. Software Would Largely Automate Design of Kalman Filter

    NASA Technical Reports Server (NTRS)

    Chuang, Jason C. H.; Negast, William J.

    2005-01-01

    Embedded Navigation Filter Automatic Designer (ENFAD) is a computer program being developed to automate the most difficult tasks in designing embedded software to implement a Kalman filter in a navigation system. The most difficult tasks are selection of error states of the filter and tuning of filter parameters, which are timeconsuming trial-and-error tasks that require expertise and rarely yield optimum results. An optimum selection of error states and filter parameters depends on navigation-sensor and vehicle characteristics, and on filter processing time. ENFAD would include a simulation module that would incorporate all possible error states with respect to a given set of vehicle and sensor characteristics. The first of two iterative optimization loops would vary the selection of error states until the best filter performance was achieved in Monte Carlo simulations. For a fixed selection of error states, the second loop would vary the filter parameter values until an optimal performance value was obtained. Design constraints would be satisfied in the optimization loops. Users would supply vehicle and sensor test data that would be used to refine digital models in ENFAD. Filter processing time and filter accuracy would be computed by ENFAD.

  2. On the Tuning of High-Resolution NMR Probes

    PubMed Central

    Pöschko, Maria Theresia; Schlagnitweit, Judith; Huber, Gaspard; Nausner, Martin; Horničáková, Michaela; Desvaux, Hervé; Müller, Norbert

    2014-01-01

    Three optimum conditions for the tuning of NMR probes are compared: the conventional tuning optimum, which is based on radio-frequency pulse efficiency, the spin noise tuning optimum based on the line shape of the spin noise signal, and the newly introduced frequency shift tuning optimum, which minimizes the frequency pushing effect on strong signals. The latter results if the radiation damping feedback field is not in perfect quadrature to the precessing magnetization. According to the conventional RLC (resistor–inductor–capacitor) resonant circuit model, the optima should be identical, but significant deviations are found experimentally at low temperatures, in particular on cryogenically cooled probes. The existence of different optima with respect to frequency pushing and spin noise line shape has important consequences on the nonlinearity of spin dynamics at high polarization levels and the implementation of experiments on cold probes. PMID:25210000

  3. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback

    NASA Astrophysics Data System (ADS)

    Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.

    2018-02-01

    We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.

  4. Nonlinear model predictive control for chemical looping process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng

    A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to amore » CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.« less

  5. A comparative approach to closed-loop computation.

    PubMed

    Roth, E; Sponberg, S; Cowan, N J

    2014-04-01

    Neural computation is inescapably closed-loop: the nervous system processes sensory signals to shape motor output, and motor output consequently shapes sensory input. Technological advances have enabled neuroscientists to close, open, and alter feedback loops in a wide range of experimental preparations. The experimental capability of manipulating the topology-that is, how information can flow between subsystems-provides new opportunities to understand the mechanisms and computations underlying behavior. These experiments encompass a spectrum of approaches from fully open-loop, restrained preparations to the fully closed-loop character of free behavior. Control theory and system identification provide a clear computational framework for relating these experimental approaches. We describe recent progress and new directions for translating experiments at one level in this spectrum to predictions at another level. Operating across this spectrum can reveal new understanding of how low-level neural mechanisms relate to high-level function during closed-loop behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A comparison of methods for DPLL loop filter design

    NASA Technical Reports Server (NTRS)

    Aguirre, S.; Hurd, W. J.; Kumar, R.; Statman, J.

    1986-01-01

    Four design methodologies for loop filters for a class of digital phase-locked loops (DPLLs) are presented. The first design maps an optimum analog filter into the digital domain; the second approach designs a filter that minimizes in discrete time weighted combination of the variance of the phase error due to noise and the sum square of the deterministic phase error component; the third method uses Kalman filter estimation theory to design a filter composed of a least squares fading memory estimator and a predictor. The last design relies on classical theory, including rules for the design of compensators. Linear analysis is used throughout the article to compare different designs, and includes stability, steady state performance and transient behavior of the loops. Design methodology is not critical when the loop update rate can be made high relative to loop bandwidth, as the performance approaches that of continuous time. For low update rates, however, the miminization method is significantly superior to the other methods.

  7. Optimization of natural frequencies of a slender beam shaped in a linear combination of its mode shapes

    NASA Astrophysics Data System (ADS)

    Silva, Guilherme Augusto Lopes da; Nicoletti, Rodrigo

    2017-06-01

    This work focuses on the placement of natural frequencies of beams to desired frequency regions. More specifically, we investigate the effects of combining mode shapes to shape a beam to change its natural frequencies, both numerically and experimentally. First, we present a parametric analysis of a shaped beam and we analyze the resultant effects for different boundary conditions and mode shapes. Second, we present an optimization procedure to find the optimum shape of the beam for desired natural frequencies. In this case, we adopt the Nelder-Mead simplex search method, which allows a broad search of the optimum shape in the solution domain. Finally, the obtained results are verified experimentally for a clamped-clamped beam in three different optimization runs. Results show that the method is effective in placing natural frequencies at desired values (experimental results lie within a 10% error to the expected theoretical ones). However, the beam must be axially constrained to have the natural frequencies changed.

  8. Defining scaffold geometries for interacting with proteins: geometrical classification of secondary structure linking regions.

    PubMed

    Tran, Tran T; Kulis, Christina; Long, Steven M; Bryant, Darryn; Adams, Peter; Smythe, Mark L

    2010-11-01

    Medicinal chemists synthesize arrays of molecules by attaching functional groups to scaffolds. There is evidence suggesting that some scaffolds yield biologically active molecules more than others, these are termed privileged substructures. One role of the scaffold is to present its side-chains for molecular recognition, and biologically relevant scaffolds may present side-chains in biologically relevant geometries or shapes. Since drug discovery is primarily focused on the discovery of compounds that bind to proteinaceous targets, we have been deciphering the scaffold shapes that are used for binding proteins as they reflect biologically relevant shapes. To decipher the scaffold architecture that is important for binding protein surfaces, we have analyzed the scaffold architecture of protein loops, which are defined in this context as continuous four residue segments of a protein chain that are not part of an α-helix or β-strand secondary structure. Loops are an important molecular recognition motif of proteins. We have found that 39 clusters reflect the scaffold architecture of 89% of the 23,331 loops in the dataset, with average intra-cluster and inter-cluster RMSD of 0.47 and 1.91, respectively. These protein loop scaffolds all have distinct shapes. We have used these 39 clusters that reflect the scaffold architecture of protein loops as biological descriptors. This involved generation of a small dataset of scaffold-based peptidomimetics. We found that peptidomimetic scaffolds with reported biological activities matched loop scaffold geometries and those peptidomimetic scaffolds with no reported biologically activities did not. This preliminary evidence suggests that organic scaffolds with tight matches to the preferred loop scaffolds of proteins, implies the likelihood of the scaffold to be biologically relevant.

  9. Defining scaffold geometries for interacting with proteins: geometrical classification of secondary structure linking regions

    NASA Astrophysics Data System (ADS)

    Tran, Tran T.; Kulis, Christina; Long, Steven M.; Bryant, Darryn; Adams, Peter; Smythe, Mark L.

    2010-11-01

    Medicinal chemists synthesize arrays of molecules by attaching functional groups to scaffolds. There is evidence suggesting that some scaffolds yield biologically active molecules more than others, these are termed privileged substructures. One role of the scaffold is to present its side-chains for molecular recognition, and biologically relevant scaffolds may present side-chains in biologically relevant geometries or shapes. Since drug discovery is primarily focused on the discovery of compounds that bind to proteinaceous targets, we have been deciphering the scaffold shapes that are used for binding proteins as they reflect biologically relevant shapes. To decipher the scaffold architecture that is important for binding protein surfaces, we have analyzed the scaffold architecture of protein loops, which are defined in this context as continuous four residue segments of a protein chain that are not part of an α-helix or β-strand secondary structure. Loops are an important molecular recognition motif of proteins. We have found that 39 clusters reflect the scaffold architecture of 89% of the 23,331 loops in the dataset, with average intra-cluster and inter-cluster RMSD of 0.47 and 1.91, respectively. These protein loop scaffolds all have distinct shapes. We have used these 39 clusters that reflect the scaffold architecture of protein loops as biological descriptors. This involved generation of a small dataset of scaffold-based peptidomimetics. We found that peptidomimetic scaffolds with reported biological activities matched loop scaffold geometries and those peptidomimetic scaffolds with no reported biologically activities did not. This preliminary evidence suggests that organic scaffolds with tight matches to the preferred loop scaffolds of proteins, implies the likelihood of the scaffold to be biologically relevant.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudneva, Irina A.; Timofeeva, Tatiana A.; Ignatieva, Anna V.

    In the present study we assessed pleiotropic characteristics of the antibody-selected mutations. We examined pH optimum of fusion, temperatures of HA heat inactivation, and in vitro and in vivo replication kinetics of the previously obtained influenza H5 escape mutants. Our results showed that HA1 N142K mutation significantly lowered the pH of fusion optimum. Mutations of the escape mutants located in the HA lateral loop significantly affected H5 HA thermostability (P<0.05). HA changes at positions 131, 144, 145, and 156 and substitutions at positions 131, 142, 145, and 156 affected the replicative ability of H5 escape mutants in vitro and inmore » vivo, respectively. Overall, a co-variation between antigenic specificity and different HA phenotypic properties has been demonstrated. We believe that the monitoring of pleiotropic effects of the HA mutations found in H5 escape mutants is essential for accurate prediction of mutants with pandemic potential. - Highlights: • HA1 N142K mutation significantly lowered the pH of fusion optimum. • Mutations located in the HA lateral loop significantly affected H5 HA thermostability. • HA changes at positions 131, 142, 144, 145, and 156 affected the replicative ability of H5 mutants. • Acquisition of glycosylation site could lead to the emergence of multiple pleiotropic effects.« less

  11. Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem

    NASA Astrophysics Data System (ADS)

    Webb, William

    2013-04-01

    Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!

  12. On wings and keels (2)

    NASA Astrophysics Data System (ADS)

    Slooff, J. W.

    1985-05-01

    The physical mechanisms governing the hydrodynamics of sailing yacht keels and the parameters that, through these mechanisms, determine keel performance are discussed. It is concluded that due to the presence of the free water surface optimum keel shapes differ from optimum shapes for aircraft wings. Utilizing computational fluid dynamics analysis and optimization it is found that the performance of conventional keels can be improved significantly by reducing taper or even applying inverse taper (upside-down keel) and that decisive improvements in performance can be realized through keels with winglets.

  13. Improvement of the optimum pH of Aspergillus niger xylanase towards an alkaline pH by site-directed mutagenesis.

    PubMed

    Li, Fei; Xie, Jingcong; Zhang, Xuesong; Zhao, Linguo

    2015-01-01

    In an attempt to shift the optimal pH of the xylanase B (XynB) from Aspergillus niger towards alkalinity, target mutation sites were selected by alignment between Aspergillus niger xylanase B and other xylanases that have alkalophilic pH optima that highlight charged residues in the eight-residues-longer loop in the alkalophilic xylanase. Multiple engineered XynB mutants were created by site-directed mutagenesis with substitutions Q164K and Q164K+D117N. The variant XynB-117 had the highest optimum pH (at 5.5), which corresponded to a basic 0.5 pH unit shift when compared with the wild-type enzyme. However, the optimal pH of the XynB- 164 mutation was not changed, similar to the wild type. These results suggest that the residues at positions 164 and 117 in the eight-residues-longer loop and the cleft's edge are important in determining the pH optima of XynB from Aspergillus niger.

  14. Effect of Loop Geometry on TEM Response Over Layered Earth

    NASA Astrophysics Data System (ADS)

    Qi, Youzheng; Huang, Ling; Wu, Xin; Fang, Guangyou; Yu, Gang

    2014-09-01

    A large horizontal loop located on the ground or carried by an aircraft are the most common sources of the transient electromagnetic method. Although topographical factors or airplane outlines make the loop of arbitrary shape, magnetic sources are generally represented as a magnetic dipole or a circular loop, which may bring about significant errors in the calculated response. In this paper, we present a method for calculating the response of a loop of arbitrary shape (for which the description can be obtained by different methods, including GPS localization) in air or on the surface of a stratified earth. The principle of reciprocity is firstly used to exchange the functions of the transmitting loop and the dipole receiver, then the response of a vertical or a horizontal magnetic dipole is calculated beforehand, and finally the line integral of the second kind is employed to get the transient response. Analytical analysis and comparisons depict that our work got very good results in many situations. Synthetic and field examples are given in the end to show the effect of loop geometry and how our method improves the precision of the EM response.

  15. Digital pulse processing and electronic noise analysis for improving energy resolutions in planar TlBr detectors

    NASA Astrophysics Data System (ADS)

    Tada, Tsutomu; Hitomi, Keitaro; Tanaka, Tomonobu; Wu, Yan; Kim, Seong-Yun; Yamazaki, Hiromichi; Ishii, Keizo

    2011-05-01

    Digital pulse processing and electronic noise analysis are proposed for improving energy resolution in planar thallium bromide (TlBr) detectors. An energy resolution of 5.8% FWHM at 662 keV was obtained from a 0.5 mm thick planar TlBr detector at room temperature using a digitizer with a sampling rate of 100 MS/s and 8 bit resolution. The electronic noise in the detector-preamplifier system was measured as a function of pulse shaping time in order to investigate the optimum shaping time for the detector. The depth of interaction (DOI) in TlBr detectors for incident gamma-rays was determined by taking the ratio of pulse heights for fast-shaped to slow-shaped signals. FWHM energy resolution of the detector was improved from 5.8% to 4.2% by implementing depth correction and by using the obtained optimum shaping time.

  16. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOEpatents

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  17. An automatic frequency control loop using overlapping DFTs (Discrete Fourier Transforms)

    NASA Technical Reports Server (NTRS)

    Aguirre, S.

    1988-01-01

    An automatic frequency control (AFC) loop is introduced and analyzed in detail. The new scheme is a generalization of the well known Cross Product AFC loop that uses running overlapping discrete Fourier transforms (DFTs) to create a discriminator curve. Linear analysis is included and supported with computer simulations. The algorithm is tested in a low carrier to noise ratio (CNR) dynamic environment, and the probability of loss of lock is estimated via computer simulations. The algorithm discussed is a suboptimum tracking scheme with a larger frequency error variance compared to an optimum strategy, but offers simplicity of implementation and a very low operating threshold CNR. This technique can be applied during the carrier acquisition and re-acquisition process in the Advanced Receiver.

  18. Automated Droplet Manipulation Using Closed-Loop Axisymmetric Drop Shape Analysis.

    PubMed

    Yu, Kyle; Yang, Jinlong; Zuo, Yi Y

    2016-05-17

    Droplet manipulation plays an important role in a wide range of scientific and industrial applications, such as synthesis of thin-film materials, control of interfacial reactions, and operation of digital microfluidics. Compared to micron-sized droplets, which are commonly considered as spherical beads, millimeter-sized droplets are generally deformable by gravity, thus introducing nonlinearity into control of droplet properties. Such a nonlinear drop shape effect is especially crucial for droplet manipulation, even for small droplets, at the presence of surfactants. In this paper, we have developed a novel closed-loop axisymmetric drop shape analysis (ADSA), integrated into a constrained drop surfactometer (CDS), for manipulating millimeter-sized droplets. The closed-loop ADSA generalizes applications of the traditional drop shape analysis from a surface tension measurement methodology to a sophisticated tool for manipulating droplets in real time. We have demonstrated the feasibility and advantages of the closed-loop ADSA in three applications, including control of drop volume by automatically compensating natural evaporation, precise control of surface area variations for high-fidelity biophysical simulations of natural pulmonary surfactant, and steady control of surface pressure for in situ Langmuir-Blodgett transfer from droplets. All these applications have demonstrated the accuracy, versatility, applicability, and automation of this new ADSA-based droplet manipulation technique. Combining with CDS, the closed-loop ADSA holds great promise for advancing droplet manipulation in a variety of material and surface science applications, such as thin-film fabrication, self-assembly, and biophysical study of pulmonary surfactant.

  19. Monitoring transients in low inductance circuits

    DOEpatents

    Guilford, Richard P.; Rosborough, John R.

    1987-01-01

    A pair of flat cable transmission lines are monitored for transient current spikes by using a probe connected to a current transformer by a pickup loop and monitoring the output of the current transformer. The approach utilizes a U-shaped pickup probe wherein the pair of flat cable transmission lines are received between the legs of the U-shaped probe. The U-shaped probe is preferably formed of a flat coil conductor adhered to one side of a flexible substrate. On the other side of the flexible substrate there is a copper foil shield. The copper foil shield is connected to one end of the flat conductor coil and connected to one leg of the pickup loop which passes through the current transformer. The other end of the flat conductor coil is connected to the other leg of the pickup loop.

  20. Misfit stress relaxation in composite core-shell nanowires with parallelepiped cores using rectangular prismatic dislocation loops

    NASA Astrophysics Data System (ADS)

    Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu

    2018-03-01

    The misfit stress relaxation via generation of rectangular prismatic dislocation loops at the interface in core-shell nanowires is considered. The core has the shape of a long parallelepiped of a square cross-section. The energy change caused by loop generation in such nanowires is calculated. Critical conditions for the onset of such loops are calculated and analyzed.

  1. Geometrical shape design of nanophotonic surfaces for thin film solar cells.

    PubMed

    Nam, W I; Yoo, Y J; Song, Y M

    2016-07-11

    We present the effect of geometrical parameters, particularly shape, on optical absorption enhancement for thin film solar cells based on crystalline silicon (c-Si) and gallium arsenide (GaAs) using a rigorous coupled wave analysis (RCWA) method. It is discovered that the "sweet spot" that maximizes efficiency of solar cells exists for the design of nanophotonic surfaces. For the case of ultrathin, rod array is practical due to the effective optical resonances resulted from the optimum geometry whereas parabola array is viable for relatively thicker cells owing to the effective graded index profile. A specific value of thickness, which is the median value of other two devices tailored by rod and paraboloid, is optimized by truncated shape structure. It is therefore worth scanning the optimum shape of nanostructures in a given thickness in order to achieve high performance.

  2. The effects of intraparticle and interparticle interactions on the magnetic hysteresis loop of frozen suspensions of bionized nanoferrite particles

    NASA Astrophysics Data System (ADS)

    Boekelheide, Zoe; Gruettner, Cordula; Dennis, Cindi

    Bionized nano-ferrite (iron oxide/dextran) nanoparticles have been shown to have a large heating response in an alternating magnetic field, making them very promising for applications in magnetic nanoparticle hyperthermia cancer treatment. Magnetic hysteresis loop measurements of these particles provide insight into the magnetic reversal behavior of these particles, and thus their heating response. Measurements have been performed on frozen suspensions of nanoparticles dispersed in H2O, which have been frozen in a range of applied fields in order to tune the interparticle dipolar interactions through formation of linear chains. These experimental results are compared with micromagnetic models of both monolithic (single-domain) and internally structured (multi-grain) particles. It is found that the internal structure of the nanoparticles, which are made up of parallelepiped-shaped grains, is important for describing the magnetic reversal behavior of the particles and the resulting shape of the hysteresis loops. In addition to this, interparticle interactions between particles in a linear chain modify the reversal behavior and thus the shape of the hysteresis loop.

  3. Modeling the Lac repressor-operator assembly: The influence of DNA looping on Lac repressor conformation

    PubMed Central

    Swigon, David; Coleman, Bernard D.; Olson, Wilma K.

    2006-01-01

    Repression of transcription of the Escherichia coli Lac operon by the Lac repressor (LacR) is accompanied by the simultaneous binding of LacR to two operators and the formation of a DNA loop. A recently developed theory of sequence-dependent DNA elasticity enables one to relate the fine structure of the LacR–DNA complex to a wide range of heretofore-unconnected experimental observations. Here, that theory is used to calculate the configuration and free energy of the DNA loop as a function of its length and base-pair sequence, its linking number, and the end conditions imposed by the LacR tetramer. The tetramer can assume two types of conformations. Whereas a rigid V-shaped structure is observed in the crystal, EM images show extended forms in which two dimer subunits are flexibly joined. Upon comparing our computed loop configurations with published experimental observations of permanganate sensitivities, DNase I cutting patterns, and loop stabilities, we conclude that linear DNA segments of short-to-medium chain length (50–180 bp) give rise to loops with the extended form of LacR and that loops formed within negatively supercoiled plasmids induce the V-shaped structure. PMID:16785444

  4. Commande en boucle fermee sur un profil d'aile deformable dans la soufflerie Price-Paidoussis

    NASA Astrophysics Data System (ADS)

    Brossard, Jeremy

    The purpose of the ATR-42 project is to apply the concept of morphing wings by fabricating a morphing composite wing model of the Regional Transport Aircraft-42 to reduce drag and improve the aerodynamic performance. A control-command system coupled to an actuator mechanism will morph the wing skin. However, for best results, the control of the deformation must be studied carefully to insure the precision. Thus, a dual digitalexperimental approach is required. The solution proposed in this paper focuses on the controlled deformation of the upper wing of the ATR-42. A composite wing model with morphing capabilities was built and tested in the wind tunnel to evaluate its aerodynamic performance and serve as reference. A deformation mechanism, consisting of two engines and two camshafts, was subsequently designed and integrated within this model to obtain the optimum wing shapes according to the different flight condition. A control loop position was modeled in Matlab / Simulink and implemented experimentally to control the mechanism. Two types of results have been obtained. The first set concerned regulation and the second concerned aerodynamics. The control loop has achieved the desired skin displacement with an accuracy of 5%. Deformations of the upper skin were performed by a actuation system driven by motors, limitations supply were assured by the regulation architecture. For several flight conditions, the pressure measurements, validated with simulation results, have confirmed a reduction of the induced drag, compared to the original ATR-42 airfoil drag reduction.

  5. Digital receiver study and implementation

    NASA Technical Reports Server (NTRS)

    Fogle, D. A.; Lee, G. M.; Massey, J. C.

    1972-01-01

    Computer software was developed which makes it possible to use any general purpose computer with A/D conversion capability as a PSK receiver for low data rate telemetry processing. Carrier tracking, bit synchronization, and matched filter detection are all performed digitally. To aid in the implementation of optimum computer processors, a study of general digital processing techniques was performed which emphasized various techniques for digitizing general analog systems. In particular, the phase-locked loop was extensively analyzed as a typical non-linear communication element. Bayesian estimation techniques for PSK demodulation were studied. A hardware implementation of the digital Costas loop was developed.

  6. Structural tailoring of counter rotation propfans

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth W.; Hopkins, D. A.

    1989-01-01

    The STAT program was designed for the optimization of single rotation, tractor propfan designs. New propfan designs, however, generally consist of two counter rotating propfan rotors. STAT is constructed to contain two levels of analysis. An interior loop, consisting of accurate, efficient approximate analyses, is used to perform the primary propfan optimization. Once an optimum design has been obtained, a series of refined analyses are conducted. These analyses, while too computer time expensive for the optimization loop, are of sufficient accuracy to validate the optimized design. Should the design prove to be unacceptable, provisions are made for recalibration of the approximate analyses, for subsequent reoptimization.

  7. Optimal control of multiphoton ionization dynamics of small alkali aggregates

    NASA Astrophysics Data System (ADS)

    Lindinger, A.; Bartelt, A.; Lupulescu, C.; Vajda, S.; Woste, Ludger

    2003-11-01

    We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters like wavelength range or its phase and amplitude; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photo-chemical process. First, we present the vibrational dynamics of bound electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced ioniziation experiments were carried out. The controllability of 3-photon ionization pathways is investigated on the model-like systems NaK and K2. A closed learning loop for adaptive feedback control is used to find the optimal fs pulse shape. Sinusoidal parameterizations of the spectral phase modulation are investigated in regard to the obtained optimal field. By reducing the number of parameters and thereby the complexity of the phase moduation, optimal pulse shapes can be generated that carry fingerprints of the molecule's dynamical properties. This enables to find "understandable" optimal pulse forms and offers the possiblity to gain insight into the photo-induced control process. Characteristic motions of the involved wave packets are proposed to explain the optimized dynamic dissociation pathways.

  8. Looped star polymers show conformational transition from spherical to flat toroidal shapes.

    PubMed

    Reiss, Pascal; Fritsche, Miriam; Heermann, Dieter W

    2011-11-01

    Inspired by the topological organization of the circular Escherichia coli chromosome, which is compacted by separate domains, we study a polymer architecture consisting of a central ring to which either looped or linear side chains are grafted. A shape change from a spherical to a toroidal organization takes place as soon as the inner ring becomes large enough for the attached arms to fit within its circumference. Building up a torus, the system flattens, depending on the effective bending rigidity of the chain induced by entropic repulsion of the attached loops and, to a lesser extent, linear arms. Our results suggest that the natural formation of a toroidal structure with a decreased amount of writhe induced by a specific underlying topology could be one driving force, among others, that nature exploits to ensure proper packaging of the genetic material within a rod-shaped, bacterial envelope.

  9. Tracking performance and cycle slipping in the all-digital symbol synchronizer loop of the block 5 receiver

    NASA Astrophysics Data System (ADS)

    Aung, M.

    1992-11-01

    Computer simulated noise performance of the symbol synchronizer loop (SSL) in the Block 5 receiver is compared with the theoretical noise performance. Good agreement is seen at the higher loop SNR's (SNR(sub L)'s), with gradual degradation as the SNR(sub L) is decreased. For the different cases simulated, cycle slipping is observed (within the simulation time of 10(exp 4) seconds) at SNR(sub L)'s below different thresholds, ranging from 6 to 8.5 dB, comparable to that of a classical phase-locked loop. An important point, however, is that to achieve the desired loop SNR above the seemingly low threshold to avoid cycle slipping, a large data-to-loop-noise power ratio, P(sub D)/(N(sub 0)B(sub L)), is necessary (at least 13 dB larger than the desired SNR(sub L) in the optimum case and larger otherwise). This is due to the large squaring loss (greater than or equal to 13 dB) inherent in the SSL. For the special case of symbol rates approximately equaling the loop update rate, a more accurate equivalent model accounting for an extra loop update period delay (characteristic of the SSL phase detector design) is derived. This model results in a more accurate estimation of the noise-equivalent bandwidth of the loop.

  10. Tracking performance and cycle slipping in the all-digital symbol synchronizer loop of the block 5 receiver

    NASA Technical Reports Server (NTRS)

    Aung, M.

    1992-01-01

    Computer simulated noise performance of the symbol synchronizer loop (SSL) in the Block 5 receiver is compared with the theoretical noise performance. Good agreement is seen at the higher loop SNR's (SNR(sub L)'s), with gradual degradation as the SNR(sub L) is decreased. For the different cases simulated, cycle slipping is observed (within the simulation time of 10(exp 4) seconds) at SNR(sub L)'s below different thresholds, ranging from 6 to 8.5 dB, comparable to that of a classical phase-locked loop. An important point, however, is that to achieve the desired loop SNR above the seemingly low threshold to avoid cycle slipping, a large data-to-loop-noise power ratio, P(sub D)/(N(sub 0)B(sub L)), is necessary (at least 13 dB larger than the desired SNR(sub L) in the optimum case and larger otherwise). This is due to the large squaring loss (greater than or equal to 13 dB) inherent in the SSL. For the special case of symbol rates approximately equaling the loop update rate, a more accurate equivalent model accounting for an extra loop update period delay (characteristic of the SSL phase detector design) is derived. This model results in a more accurate estimation of the noise-equivalent bandwidth of the loop.

  11. Performance characterization of a Bosch CO sub 2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1980-01-01

    The performance of Bosch hardware at the subsystem level (up to five-person capacity) in terms of five operating parameters was investigated. The five parameters were: (1) reactor temperature, (2) recycle loop mass flow rate, (3) recycle loop gas composition (percent hydrogen), (4) recycle loop dew point and (5) catalyst density. Experiments were designed and conducted in which the five operating parameters were varied and Bosch performance recorded. A total of 12 carbon collection cartridges provided over approximately 250 hours of operating time. Generally, one cartridge was used for each parameter that was varied. The Bosch hardware was found to perform reliably and reproducibly. No startup, reaction initiation or carbon containment problems were observed. Optimum performance points/ranges were identified for the five parameters investigated. The performance curves agreed with theoretical projections.

  12. Tuning and performance evaluation of PID controller for superheater steam temperature control of 200 MW boiler using gain phase assignment algorithm

    NASA Astrophysics Data System (ADS)

    Begum, A. Yasmine; Gireesh, N.

    2018-04-01

    In superheater, steam temperature is controlled in a cascade control loop. The cascade control loop consists of PI and PID controllers. To improve the superheater steam temperature control the controller's gains in a cascade control loop has to be tuned efficiently. The mathematical model of the superheater is derived by sets of nonlinear partial differential equations. The tuning methods taken for study here are designed for delay plus first order transfer function model. Hence from the dynamical model of the superheater, a FOPTD model is derived using frequency response method. Then by using Chien-Hrones-Reswick Tuning Algorithm and Gain-Phase Assignment Algorithm optimum controller gains has been found out based on the least value of integral time weighted absolute error.

  13. Wavefront control in adaptive microscopy using Shack-Hartmann sensors with arbitrarily shaped pupils.

    PubMed

    Dong, Bing; Booth, Martin J

    2018-01-22

    In adaptive optical microscopy of thick biological tissue, strong scattering and aberrations can change the effective pupil shape by rendering some Shack-Hartmann spots unusable. The change of pupil shape leads to a change of wavefront reconstruction or control matrix that should be updated accordingly. Modified slope and modal wavefront control methods based on measurements of a Shack-Hartmann wavefront sensor are proposed to accommodate an arbitrarily shaped pupil. Furthermore, we present partial wavefront control methods that remove specific aberration modes like tip, tilt and defocus from the control loop. The proposed control methods were investigated and compared by simulation using experimentally obtained aberration data. The performance was then tested experimentally through closed-loop aberration corrections using an obscured pupil.

  14. MAP-Motivated Carrier Synchronization of GMSK Based on the Laurent AMP Representation

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1998-01-01

    Using the MAP estimation approach to carrier synchronization of digital modulations containing ISI together with a two pulse stream AMP representation of GMSK, it is possible to obtain an optimum closed loop configuration in the same manner as has been previously proposed for other conventional modulations with ISI.

  15. Shaping of Looped Miniaturized Chalcogenide Fiber Sensing Heads for Mid-Infrared Sensing

    PubMed Central

    Houizot, Patrick; Anne, Marie-Laure; Boussard-Plédel, Catherine; Loréal, Olivier; Tariel, Hugues; Lucas, Jacques; Bureau, Bruno

    2014-01-01

    Chalcogenide glass fibers are promising photonic tools to develop Fiber Evanescent Wave Spectroscopy (FEWS) optical sensors working in the mid-infrared region. Numerous pioneering works have already been carried out showing their efficiency, especially for bio-medical applications. Nevertheless, this technology remains confined to academic studies at the laboratory scale because chalcogenide glass fibers are difficult to shape to produce reliable, sensitive and compact sensors. In this paper, a new method for designing and fabricating a compact and robust sensing head with a selenide glass fiber is described. Compact looped sensing heads with diameter equal to 2 mm were thus shaped. This represents an outstanding achievement considering the brittleness of such uncoated fibers. FEWS experiments were implemented using alcoholic solutions as target samples showing that the sensitivity is higher than with the routinely used classical fiber. It is also shown that the best compromise in term of sensitivity is to fabricate a sensing head including two full loops. From a mechanical point of view, the breaking loads of the loop shaped head are also much higher than with classical fiber. Finally, this achievement paves the way for the use of mid-infrared technology during in situ and even in vivo medical operations. Indeed, is is now possible to slide a chalcogenide glass fiber in the operating channel of a standard 2.8 mm diameter catheter. PMID:25264953

  16. Optimum design calculations for detectors based on ZnSe(Те,О) scintillators

    NASA Astrophysics Data System (ADS)

    Katrunov, K.; Ryzhikov, V.; Gavrilyuk, V.; Naydenov, S.; Lysetska, O.; Litichevskyi, V.

    2013-06-01

    Light collection in scintillators ZnSe(X), where X is an isovalent dopant, was studied using Monte Carlo calculations. Optimum design was determined for detectors of "scintillator—Si-photodiode" type, which can involve either one scintillation element or scintillation layers of large area made of small-crystalline grains. The calculations were carried out both for determination of the optimum scintillator shape and for design optimization of light guides, on the surface of which the layer of small-crystalline grains is formed.

  17. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  18. Shape Morphing Adaptive Radiator Technology (SMART) Updates to Techport Entry

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa; Bertagne, Christopher; Hartl, Darren; Witcomb, John; Cognata, Thomas

    2017-01-01

    The Shape-Morphing Adaptive Radiator Technology (SMART) project builds off the FY16 research effort that developed a flexible composite radiator panel and demonstrated its ability to actuate from SMA's attached to it. The proposed FY17 Shape-Morphing Adaptive Radiator Technology (SMART) project's goal is to 1) develop a practical radiator design with shape memory alloys (SMAs) bonded to the radiator's panel, and 2) build a multi-panel radiator prototype for subsequent system level thermal vacuum tests. The morphing radiator employs SMA materials to passively change its shape to adapt its rate of heat rejection to vehicle requirements. Conceptually, the radiator panel has a naturally closed position (like a cylinder) in a cold environment. Whenever the radiator's temperature gradually rises, SMA's affixed to the face sheet will pull the face sheet open a commensurate amount - increasing the radiators view to space and causing it to reject more heat. In a vehicle, the radiator's variable heat rejection capabilities would reduce the number of additional heat rejection devices in a vehicle's thermal control system. This technology aims to help achieve the required maximum to minimum heat rejection ratio required for manned space vehicles to adopt a lighter, simpler, single loop thermal control architecture (ATCS). Single loop architectures are viewed as an attractive means to reduce mass and complexity over traditional dual-loop solutions. However, fluids generally considered safe enough to flow within crewed cabins (e.g. propylene glycol-water mixtures) have much higher freezing points and viscosities than those used in the external sides of dual loop ATCSs (e.g. Ammonia and HFE7000).

  19. Nailfold capillary patterns in healthy subjects: a real issue in capillaroscopy.

    PubMed

    Ingegnoli, Francesca; Gualtierotti, Roberta; Lubatti, Chiara; Bertolazzi, Chiara; Gutierrez, Marwin; Boracchi, Patrizia; Fornili, Marco; De Angelis, Rossella

    2013-11-01

    Nailfold capillaroscopy has been extensively applied in a broad spectrum of pathologic conditions, but very few data have been published in healthy individuals. The aim of this study was to describe the nailfold capillary findings on a large series of healthy subjects using the video-capillaroscopy technique. Nailfold capillaries were studied based on their morphology, dimensions and density. Then, to evaluate jointly the association between different capillary findings in groups of subjects which were homogeneous for their characteristics, cluster analysis was performed. The results (median) of capillary measurements were as follows: loop length 207μm, external diameter 39μm, internal diameter 17μm, apical diameter 17μm, and intercapillary distance 143μm. Based on the cluster analysis three major "normal" morphologic capillaroscopic patterns were depicted: 1) the "normal" pattern mainly with 2 to 5 U-shaped loops/mm and ≤2 tortuous loops/mm; 2) the "perfect normal" pattern with ≥5 U-shaped loops/mm and 3) the "unusual normal" with at least 1 meandering or bushy loop, or at least 1 microhemorrhage, or with >4 crossed loops/mm. Regarding the loop measurements, the majority of subjects had a median of 7capillaries/mm with a median length of 198μm. © 2013 Elsevier Inc. All rights reserved.

  20. Three-dimensional geometry of coronal loops inferred by the Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Nakariakov, Valery

    We propose a new method for the determination of the three dimensional (3D) shape of coronal loops from stereoscopy. The common approach requires to find a 1D geometric curve, as circumference or ellipse, that best-fits the 3D tie-points which sample the loop shape in a given coordinate system. This can be easily achieved by the Principal Component (PC) analysis. It mainly consists in calculating the eigenvalues and eigenvectors of the covariance matrix of the 3D tie-points: the eigenvalues give a measure of the variability of the distribution of the tie-points, and the corresponding eigenvectors define a new cartesian reference frame directly related to the loop. The eigenvector associated with the smallest eigenvalues defines the normal to the loop plane, while the other two determine the directions of the loop axes: the major axis is related to the largest eigenvalue, and the minor axis with the second one. The magnitude of the axes is directly proportional to the square roots of these eigenvalues. The technique is fast and easily implemented in some examples, returning best-fitting estimations of the loop parameters and 3D reconstruction with a reasonable small number of tie-points. The method is suitable for serial reconstruction of coronal loops in active regions, providing a useful tool for comparison between observations and theoretical magnetic field extrapolations from potential or force-free fields.

  1. Magnetization reversal in epitaxial exchange-biased IrMn/FeGa bilayers with anisotropy geometries controlled by oblique deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zhan, Qingfeng; Zuo, Zhenghu; Yang, Huali; Zhang, Xiaoshan; Dai, Guohong; Liu, Yiwei; Yu, Ying; Wang, Jun; Wang, Baomin; Li, Run-Wei

    2015-05-01

    We fabricated epitaxial exchange biased (EB) IrMn/FeGa bilayers by oblique deposition and systematically investigated their magnetization reversal. Two different configurations with the uniaxial magnetic anisotropy Ku parallel and perpendicular to the unidirectional anisotropy Ke b were obtained by controlling the orientation of the incident FeGa beam during deposition. A large ratio of Ku/Ke b was obtained by obliquely depositing the FeGa layer to achieve a large Ku while reducing the IrMn thickness to obtain a small Ke b. Besides the previously reported square loops, conventional asymmetrically shaped loops, and one-sided and two-sided two-step loops, unusual asymmetrically shaped loops with a three-step magnetic transition for the descending branch and a two-step transition for the ascending branch and biased three-step loops were observed at various field orientations in the films of both IrMn (tIrMn=1.5 to 20 nm)/FeGa (10 nm) with Ku⊥ Ke b and IrMn (tIrMn≤2 nm)/FeGa (10 nm) with Ku|| Ke b . Considering the geometries of anisotropies, a model based on domain wall nucleation and propagation was employed to quantitatively describe the angular dependent behaviors of IrMn/FeGa bilayers. The biased three-step magnetic switching was predicted to take place when | Ku|> ɛ90°+Ke b , where ɛ90° is the 90° domain wall nucleation energy, and the EB leads to the appearance of the unusual asymmetrically shaped hysteresis loops.

  2. Cooperative and noncooperative magnetization reversal in alnicos

    DOE PAGES

    Skomski, Ralph; Ke, Liqin; Kramer, Matthew J.; ...

    2017-02-08

    Here, we investigate how magnetostatic interactions affect the coercivity of alnico-type magnets. Starting from exact micromagnetic relations, we also analyze two limits, namely cooperative reversal processes operative on short lengths scales and noncooperative reversal processes on long length scales. Furthermore, in alnicos, intrawire interactions are predominantly cooperative, whereas interwire effects are typically noncooperative. However, the transition between the regimes depends on feature size and hysteresis-loop shape, and interwire cooperative effects are largest for nearly rectangular loops. Our analysis revises the common shape-anisotropy interpretation of alnicos.

  3. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  4. Computer program CORDET. [computerized simulation of digital phase-lock loop for Omega navigation receiver

    NASA Technical Reports Server (NTRS)

    Palkovic, R. A.

    1974-01-01

    A FORTRAN 4 computer program provides convenient simulation of an all-digital phase-lock loop (DPLL). The DPLL forms the heart of the Omega navigation receiver prototype. Through the DPLL, the phase of the 10.2 KHz Omega signal is estimated when the true signal phase is contaminated with noise. This investigation has provided a convenient means of evaluating loop performance in a variety of noise environments, and has proved to be a useful tool for evaluating design changes. The goals of the simulation are to: (1) analyze the circuit on a bit-by-bit level in order to evaluate the overall design; (2) see easily the effects of proposed design changes prior to actual breadboarding; and (3) determine the optimum integration time for the DPLL in an environment typical of general aviation conditions.

  5. Electron emitting filaments for electron discharge devices

    DOEpatents

    Leung, Ka-Ngo; Pincosy, Philip A.; Ehlers, Kenneth W.

    1988-01-01

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600.degree. C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for non-uniform current distribution along the filament due to the emission of electrons from the filament.

  6. Electron emitting filaments for electron discharge devices

    DOEpatents

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1983-06-10

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600/sup 0/C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for nonuniform current distribution along the filament due to the emission of electrons from the filament.

  7. Preliminary development of digital signal processing in microwave radiometers

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.

    1980-01-01

    Topics covered involve a number of closely related tasks including: the development of several control loop and dynamic noise model computer programs for simulating microwave radiometer measurements; computer modeling of an existing stepped frequency radiometer in an effort to determine its optimum operational characteristics; investigation of the classical second order analog control loop to determine its ability to reduce the estimation error in a microwave radiometer; investigation of several digital signal processing unit designs; initiation of efforts to develop required hardware and software for implementation of the digital signal processing unit; and investigation of the general characteristics and peculiarities of digital processing noiselike microwave radiometer signals.

  8. Vibration isolation using extreme geometric nonlinearity

    NASA Astrophysics Data System (ADS)

    Virgin, L. N.; Santillan, S. T.; Plaut, R. H.

    2008-08-01

    A highly deformed, slender beam (or strip), attached to a vertically oscillating base, is used in a vibration isolation application to reduce the motion of a supported mass. The isolator is a thin strip that is bent so that the two ends are clamped together, forming a loop. The clamped ends are attached to an excitation source and the supported system is attached at the loop midpoint directly above the base. The strip is modeled as an elastica, and the resulting nonlinear boundary value problem is solved numerically using a shooting method. First the equilibrium shapes of the loop with varying static loads and lengths are studied. The analysis reveals a large degree of stiffness tunability; the stiffness is dependent on the geometric configuration, which itself is determined by the supported mass, loop length, and loop self-weight. Free vibration frequencies and mode shapes are also found. Finally, the case of forced vibration is studied, and the displacement transmissibility over a large range of forcing frequencies is determined for varying parameter values. Experiments using polycarbonate strips are conducted to verify equilibrium and dynamic behavior.

  9. Approaches in controllable generation of artificial pinning center in REBa2Cu3O y -coated conductor for high-flux pinning

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Miura, S.; Tsuchiya, Y.; Ichino, Y.; Awaji, S.; Matsumoto, K.; Ichinose, A.

    2017-10-01

    This paper reviews the progress of studies to determine optimum shapes of the artificial pinning center (APC) of REBa2Cu3O y thin films and coated conductors towards superconducting magnets operating at temperatures of 77 K or less. Superconducting properties vary depending on the kind and quantity of BaMO3 materials. Therefore, we study changes in the shapes of nanorods that are due to the difference in the quality of additives and growth temperature. In addition, we aim to control the APC using an optimum shape that matches the operating temperature. In particular, we describe the shape control of nanorods in SmBCO thin films and coated conductors by employing lower temperature growth (LTG) technology using seed layers. From the cross-sectional transmission electron microscopy observations, we confirmed that using the LTG method, the BaHfO3 (BHO) nanorods, which were comparatively thin and short in length, formed a firework structure in the case of SmBCO films with coated conductors. The superconducting properties in the magnetic field of the SmBCO-coated conductor with the optimum amount of BHO showed that {F}{{p}}\\max = 1.6 TN m-3 on a single crystalline substrate and 1.5 TN m-3 on metallic substrate with a biaxially textured MgO layer fabricated by ion-beam assisted deposition method tape 4.2 K.

  10. Jet Spreading Increase by Passive Control and Associated Performance Penalty

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1999-01-01

    This paper reviews the effects of 'screech', 'asymmetric nozzle shaping', 'tabs' and 'overexpansion' on the spreading of free jets. Corresponding thrust penalty for the tabs and overexpanded condition are also evaluated. The asymmetric shapes include rectangular ones with varying aspect ratio. Tabs investigated are triangular shaped 'delta-tabs' placed at the exit of a convergent circular nozzle. The effect of overexpansion is examined with circular convergent-divergent (C-D) nozzles. Tabs and overexpansion are found to yield the largest increase in jet spreading. Each, however, involves a performance penalty, i.e., a loss in thrust coefficient. Variation of the size of four delta-tabs show that there exists an optimum size for which the gain in jet spreading is the maximum per unit loss in thrust coefficient. With the C-D nozzles, the minimum in thrust coefficient is expected near the beginning of the overexpanded regime based on idealized flow calculations. The maximum increase in jet spreading, however, is found to occur at higher pressure ratios well into the overexpanded regime. The optimum benefit with the overexpanded flow, in terms of gain in spreading for unit penalty, is found to be comparable to the optimum tab case.

  11. Feedback Control Systems Loop Shaping Design with Practical Considerations

    NASA Technical Reports Server (NTRS)

    Kopsakis, George

    2007-01-01

    This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.

  12. Effect of filling ratio and orientation on the thermal performance of closed loop pulsating heat pipe using ethanol

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Chowdhury, Mehrin; Islam, Nawshad Arslan; Mufti, Sayed Muhammad; Ali, Mohammad

    2016-07-01

    Pulsating heat pipe (PHP) is a new, promising yet ambiguous technology for effective heat transfer of microelectronic devices where heat is carried by the vapor plugs and liquid slugs of the working fluid. The aim of this research paper is to better understand the operation of PHP through experimental investigations and obtain comparative results for different parameters. A series of experiments are conducted on a closed loop PHP (CLPHP) with 8 loops made of copper capillary tube of 2 mm inner diameter. Ethanol is taken as the working fluid. The operating characteristics are studied for the variation of heat input, filling ratio (FR) and orientation. The filling ratios are 40%, 50%, 60% and 70% based on its total volume. The orientations are 0° (vertical), 30°, 45° and 60°. The results clearly demonstrate the effect of filling ratio and inclination angle on the performance, operational stability and heat transfer capability of ethanol as working fluid of CLPHP. Important insight of the operational characteristics of CLPHP is obtained and optimum performance of CLPHP using ethanol is thus identified. Ethanol works best at 50-60%FR at wide range of heat inputs. At very low heat inputs, 40%FR can be used for attaining a good performance. Filling ratio below 40%FR is not suitable for using in CLPHP as it gives a low performance. The optimum performance of the device can be obtained at vertical position.

  13. Shape and Reinforcement Optimization of Underground Tunnels

    NASA Astrophysics Data System (ADS)

    Ghabraie, Kazem; Xie, Yi Min; Huang, Xiaodong; Ren, Gang

    Design of support system and selecting an optimum shape for the opening are two important steps in designing excavations in rock masses. Currently selecting the shape and support design are mainly based on designer's judgment and experience. Both of these problems can be viewed as material distribution problems where one needs to find the optimum distribution of a material in a domain. Topology optimization techniques have proved to be useful in solving these kinds of problems in structural design. Recently the application of topology optimization techniques in reinforcement design around underground excavations has been studied by some researchers. In this paper a three-phase material model will be introduced changing between normal rock, reinforced rock, and void. Using such a material model both problems of shape and reinforcement design can be solved together. A well-known topology optimization technique used in structural design is bi-directional evolutionary structural optimization (BESO). In this paper the BESO technique has been extended to simultaneously optimize the shape of the opening and the distribution of reinforcements. Validity and capability of the proposed approach have been investigated through some examples.

  14. Screening actuator locations for static shape control

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.

    1990-01-01

    Correction of shape distortion due to zero-mean normally distributed errors in structural sizes which are random variables is examined. A bound on the maximum improvement in the expected value of the root-mean-square shape error is obtained. The shape correction associated with the optimal actuators is also characterized. An actuator effectiveness index is developed and shown to be helpful in screening actuator locations in the structure. The results are specialized to a simple form for truss structures composed of nominally identical members. The bound and effectiveness index are tested on a 55-m radiometer antenna truss structure. It is found that previously obtained results for optimum actuators had a performance close to the bound obtained here. Furthermore, the actuators associated with the optimum design are shown to have high effectiveness indices. Since only a small fraction of truss elements tend to have high effectiveness indices, the proposed screening procedure can greatly reduce the number of truss members that need to be considered as actuator sites.

  15. Assessment of the accuracy of plasma shape reconstruction by the Cauchy condition surface method in JT-60SA

    NASA Astrophysics Data System (ADS)

    Miyata, Y.; Suzuki, T.; Takechi, M.; Urano, H.; Ide, S.

    2015-07-01

    For the purpose of stable plasma equilibrium control and detailed analysis, it is essential to reconstruct an accurate plasma boundary on the poloidal cross section in tokamak devices. The Cauchy condition surface (CCS) method is a numerical approach for calculating the spatial distribution of the magnetic flux outside a hypothetical surface and reconstructing the plasma boundary from the magnetic measurements located outside the plasma. The accuracy of the plasma shape reconstruction has been assessed by comparing the CCS method and an equilibrium calculation in JT-60SA with a high elongation and triangularity of plasma shape. The CCS, on which both Dirichlet and Neumann conditions are unknown, is defined as a hypothetical surface located inside the real plasma region. The accuracy of the plasma shape reconstruction is sensitive to the CCS free parameters such as the number of unknown parameters and the shape in JT-60SA. It is found that the optimum number of unknown parameters and the size of the CCS that minimizes errors in the reconstructed plasma shape are in proportion to the plasma size. Furthermore, it is shown that the accuracy of the plasma shape reconstruction is greatly improved using the optimum number of unknown parameters and shape of the CCS, and the reachable reconstruction errors in plasma shape and locations of strike points are within the target ranges in JT-60SA.

  16. Bending and twisting the embryonic heart: a computational model for c-looping based on realistic geometry

    PubMed Central

    Shi, Yunfei; Yao, Jiang; Young, Jonathan M.; Fee, Judy A.; Perucchio, Renato; Taber, Larry A.

    2014-01-01

    The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and cytoskeletal contraction in the omphalomesenteric veins (primitive atria) and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test the physical plausibility of this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study. PMID:25161623

  17. Bending and twisting the embryonic heart: a computational model for c-looping based on realistic geometry.

    PubMed

    Shi, Yunfei; Yao, Jiang; Young, Jonathan M; Fee, Judy A; Perucchio, Renato; Taber, Larry A

    2014-01-01

    The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and cytoskeletal contraction in the omphalomesenteric veins (primitive atria) and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test the physical plausibility of this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study.

  18. Equilibrium models of coronal loops that involve curvature and buoyancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindman, Bradley W.; Jain, Rekha, E-mail: hindman@solarz.colorado.edu

    2013-12-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to amore » detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.« less

  19. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25.

    PubMed

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-11-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg(-1) GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25.

  20. Graph Structured Program Evolution: Evolution of Loop Structures

    NASA Astrophysics Data System (ADS)

    Shirakawa, Shinichi; Nagao, Tomoharu

    Recently, numerous automatic programming techniques have been developed and applied in various fields. A typical example is genetic programming (GP), and various extensions and representations of GP have been proposed thus far. Complex programs and hand-written programs, however, may contain several loops and handle multiple data types. In this chapter, we propose a new method called Graph Structured Program Evolution (GRAPE). The representation of GRAPE is a graph structure; therefore, it can represent branches and loops using this structure. Each programis constructed as an arbitrary directed graph of nodes and a data set. The GRAPE program handles multiple data types using the data set for each type, and the genotype of GRAPE takes the form of a linear string of integers. We apply GRAPE to three test problems, factorial, exponentiation, and list sorting, and demonstrate that the optimum solution in each problem is obtained by the GRAPE system.

  1. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25

    PubMed Central

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-01-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg−1 GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25. PMID:24804053

  2. Stabilizing windings for tilting and shifting modes

    DOEpatents

    Jardin, Stephen C.; Christensen, Uffe R.

    1984-01-01

    This invention relates to passive conducting loops for stabilizing a plasma ring against unstable tilting and/or shifting modes. To this end, for example, plasma ring in a spheromak is stabilized by a set of four figure-8 shaped loops having one pair on one side of the plasma and one pair on the other side with each pair comprising two loops whose axes are transverse to each other.

  3. FREQ: A computational package for multivariable system loop-shaping procedures

    NASA Technical Reports Server (NTRS)

    Giesy, Daniel P.; Armstrong, Ernest S.

    1989-01-01

    Many approaches in the field of linear, multivariable time-invariant systems analysis and controller synthesis employ loop-sharing procedures wherein design parameters are chosen to shape frequency-response singular value plots of selected transfer matrices. A software package, FREQ, is documented for computing within on unified framework many of the most used multivariable transfer matrices for both continuous and discrete systems. The matrices are evaluated at user-selected frequency-response values, and singular values against frequency. Example computations are presented to demonstrate the use of the FREQ code.

  4. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  5. Antenna Linear-Quadratic-Gaussian (LQG) Controllers: Properties, Limits of Performance, and Tuning Procedure

    NASA Technical Reports Server (NTRS)

    Gawronski, W.

    2004-01-01

    Wind gusts are the main disturbances that depreciate tracking precision of microwave antennas and radiotelescopes. The linear-quadratic-Gaussian (LQG) controllers - as compared with the proportional-and-integral (PI) controllers significantly improve the tracking precision in wind disturbances. However, their properties have not been satisfactorily understood; consequently, their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller model and the selection of weights of the LQG performance index. This article analyzes properties of an open- and closed-loop antenna. It shows that the proper choice of coordinates of the open-loop model simplifies the shaping of the closed-loop performance. The closed-loop properties are influenced by the LQG weights. The article shows the impact of the weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. The bandwidth and the disturbance rejection characterize the antenna performance, while the acceleration represents the performance limit set by the antenna hardware (motors). The article presents the controller tuning procedure, based on the coordinate selection and the weight properties. The procedure rationally shapes the closed-loop performance, as an alternative to the trial-and-error approach.

  6. Optimum Design of High Speed Prop-Rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    1992-01-01

    The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.

  7. Optimum shape control of flexible beams by piezo-electric actuators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    The utilization of piezoelectric actuators in controlling the static deformation and shape of flexible beams is examined. An optimum design procedure is presented to enable the selection of the optimal location, thickness and excitation voltage of the piezoelectric actuators in a way that would minimize the deflection of the beam to which these actuators are bonded. Numerical examples are presented to illustrate the application of the developed optimization procedure in minimizing structural deformation of beams using ceramic and polymeric piezoelectric actuators bonded to the beams with a typical bonding agent. The obtained results emphasize the importance of the devised rational produce in designing beam-actuator systems with minimal elastic distortions.

  8. Scavenging a Piston-ported Two-stroke Cylinder

    NASA Technical Reports Server (NTRS)

    Rogowski, A R; Bouchard, C L

    1938-01-01

    An investigation was made with a specially designed engine to determine the scavenging characteristics of a large number of inlet-port shapes and arrangements and the optimum port arrangement and timing for this particular type of engine. A special cylinder construction permitted wide variations in timing for this particular type of engine. A special cylinder construction permitted wide variations in timing as well as in shape and arrangement of both the inlet and exhaust ports. The study of the effect of port shape combinations and timings on engine performance was made using illuminating gas as a fuel. Through variations in inlet-port arrangement and port timings, the value of the scavenging efficiency was increased from an original 44 percent to approximately 67 percent with a corresponding increase in power. With the optimum port arrangement and timing determined, a large number of performance runs were made under both spark-ignition and compression-ignition operation.

  9. Ku-band signal design study. [for space shuttle orbiter communication links

    NASA Technical Reports Server (NTRS)

    Lindsey, W. L.; Woo, K. T.

    1977-01-01

    The acquisition/tracking performance of a practical squaring loop in which the times two multiplier is mechanized as a limiter/multiplier combination is evaluated. This squaring approach serves to produce the absolute value of the arriving signal as opposed to the perfect square law action which is required in order to render acquisition and tracking performance equivalent to that of a Costas loop. The Ku-Band orbiter signal design for the forward link is assessed. Acquisition time results and acquisition and tracking thresholds are summarized. A tradeoff study which pertains to bit synchronization techniques for the high rate Ku-Band channel is included and an optimum selection is made based upon the appropriate design constraints.

  10. Preisach modeling of piezoceramic and shape memory alloy hysteresis

    NASA Astrophysics Data System (ADS)

    Hughes, Declan; Wen, John T.

    1997-06-01

    Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit hysteresis, and the larger the input signal the larger the effect. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys (SMAs), we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.

  11. Preisach modeling of piezoceramic and shape memory alloy hysteresis

    NASA Astrophysics Data System (ADS)

    Hughes, Declan C.; Wen, John T.

    1996-05-01

    Smart materials such as piezoceramics, magnetostrictive materials, and shape memory alloys exhibit significant hysteresis, especially when driven with large input signals. Hysteresis can lead to unwanted harmonics, inaccuracy in open loop control, and instability in closed loop control. The Preisach independent domain hysteresis model has been shown to capture the major features of hysteresis arising in ferromagnetic materials. Noting the similarity between the microscopic domain kinematics that generate static hysteresis effects in ferromagnetics, piezoceramics, and shape memory alloys, we apply the Preisach model for the hysteresis in piezoceramic and shape memory alloy materials. This paper reviews the basic properties of the Preisach model, discusses control-theoretic issues such as identification, simulation, and inversion, and presents experimental results for piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of a beam.

  12. Efficiently computing exact geodesic loops within finite steps.

    PubMed

    Xin, Shi-Qing; He, Ying; Fu, Chi-Wing

    2012-06-01

    Closed geodesics, or geodesic loops, are crucial to the study of differential topology and differential geometry. Although the existence and properties of closed geodesics on smooth surfaces have been widely studied in mathematics community, relatively little progress has been made on how to compute them on polygonal surfaces. Most existing algorithms simply consider the mesh as a graph and so the resultant loops are restricted only on mesh edges, which are far from the actual geodesics. This paper is the first to prove the existence and uniqueness of geodesic loop restricted on a closed face sequence; it contributes also with an efficient algorithm to iteratively evolve an initial closed path on a given mesh into an exact geodesic loop within finite steps. Our proposed algorithm takes only an O(k) space complexity and an O(mk) time complexity (experimentally), where m is the number of vertices in the region bounded by the initial loop and the resultant geodesic loop, and k is the average number of edges in the edge sequences that the evolving loop passes through. In contrast to the existing geodesic curvature flow methods which compute an approximate geodesic loop within a predefined threshold, our method is exact and can apply directly to triangular meshes without needing to solve any differential equation with a numerical solver; it can run at interactive speed, e.g., in the order of milliseconds, for a mesh with around 50K vertices, and hence, significantly outperforms existing algorithms. Actually, our algorithm could run at interactive speed even for larger meshes. Besides the complexity of the input mesh, the geometric shape could also affect the number of evolving steps, i.e., the performance. We motivate our algorithm with an interactive shape segmentation example shown later in the paper.

  13. Loop Shaping Control Design for a Supersonic Propulsion System Model Using Quantitative Feedback Theory (QFT) Specifications and Bounds

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George

    2010-01-01

    This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.

  14. Assessment of the accuracy of plasma shape reconstruction by the Cauchy condition surface method in JT-60SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Y.; Suzuki, T.; Takechi, M.

    2015-07-15

    For the purpose of stable plasma equilibrium control and detailed analysis, it is essential to reconstruct an accurate plasma boundary on the poloidal cross section in tokamak devices. The Cauchy condition surface (CCS) method is a numerical approach for calculating the spatial distribution of the magnetic flux outside a hypothetical surface and reconstructing the plasma boundary from the magnetic measurements located outside the plasma. The accuracy of the plasma shape reconstruction has been assessed by comparing the CCS method and an equilibrium calculation in JT-60SA with a high elongation and triangularity of plasma shape. The CCS, on which both Dirichletmore » and Neumann conditions are unknown, is defined as a hypothetical surface located inside the real plasma region. The accuracy of the plasma shape reconstruction is sensitive to the CCS free parameters such as the number of unknown parameters and the shape in JT-60SA. It is found that the optimum number of unknown parameters and the size of the CCS that minimizes errors in the reconstructed plasma shape are in proportion to the plasma size. Furthermore, it is shown that the accuracy of the plasma shape reconstruction is greatly improved using the optimum number of unknown parameters and shape of the CCS, and the reachable reconstruction errors in plasma shape and locations of strike points are within the target ranges in JT-60SA.« less

  15. Optimum performance and potential flow field of hovering rotors

    NASA Technical Reports Server (NTRS)

    Wu, J. C.; Sigman, R. K.

    1975-01-01

    Rotor and propeller performance and induced potential flowfields were studied on the basis of a rotating actuator disk concept, with special emphasis on rotors hovering out of ground effect. A new theory for the optimum performance of rotors hovering OGE is developed and presented. An extended theory for the optimum performance of rotors and propellers in axial motion is also presented. Numerical results are presented for the optimum distributions of blade-bound circulation together with axial inflow and ultimate wake velocities for the hovering rotor over the range of thrust coefficient of interest in rotorcraft applications. Shapes of the stream tubes and of the velocities in the slipstream are obtained, using available methods, for optimum and off-optimum circulation distributions for rotors hovering in and out of ground effect. A number of explicit formulae useful in computing rotor and propeller induced flows are presented for stream functions and velocities due to distributions of circular vortices over axi-symmetric surfaces.

  16. Eigenspace techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.

    1987-01-01

    The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.

  17. Coronal Seismology -- Achievements and Perspectives

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael

    Coronal seismology is a new and fast developing branch of the solar physics. The main idea of coronal seismology is the same as of any branches of seismology: to determine basic properties of a medium using properties of waves propagating in this medium. The waves and oscillations in the solar corona are routinely observed in the late space missions. In our brief review we concentrate only on one of the most spectacular type of oscillations observed in the solar corona - the transverse oscillations of coronal magnetic loops. These oscillations were first observed by TRACE on 14 July 1998. At present there are a few dozens of similar observations. Shortly after the first observation of the coronal loop transverse oscillations they were interpreted as kink oscillations of magnetic tubes with the ends frozen in the dense photospheric plasma. The frequency of the kink oscillation is proportional to the magnetic field magnitude and inversely proportional to the tube length times the square root of the plasma density. This fact was used to estimate the magnetic field magnitude in the coronal loops. In 2004 the first simultaneous observation of the fundamental mode and first overtone of the coronal loop transverse oscillation was reported. If we model a coronal loop as a homogeneous magnetic tube, then the ratio of the frequencies of the first overtone and the fundamental mode should be equal to 2. However, the ratio of the observed frequencies was smaller than 2. This is related to the density variation along the loop. If we assume that the corona is isothermal and prescribe the loop shape (usually it is assumed that it has the shape of half-circle), then, using the ratio of the two frequencies, we can determine the temperature of the coronal plasma. The first observation of transverse oscillations of the coronal loops showed that they were strongly damped. This phenomenon was confirmed by the subsequent observations. At present, the most reliable candidate for the explanation of the oscillation damping is resonant absorption. The damping due to resonant absorption is, broadly speaking, proportional to the inhomogeneity scale of the density in the loop in the transverse direction. This fact was used to estimate the density inhomogeneity scale from the observations. The first observation of the coronal loop transverse oscillations gave a strong boost to the theoretical study of this phenomenon. In the last ten years theorists sufficiently refined their models taking into account such loop properties as the density variation in the longitudinal and transverse directions, the twist of the magnetic field, the non-circular loop cross-section, the variation of the cross-section along the loop, and the loop curvature. Now, to obtain more accurate estimates of the coronal plasma parameters, we need the following from the observations: (i) Since the frequency of the loop oscillation depends on the plasma density, more accurate data on this quantity is required. (ii) Since the estimate of the coronal temperature strongly depends of the loop shape, an accurate three-dimensional picture of the loop is desirable. (iii) The fundamental frequency and first overtone of the loop oscillation are sufficiently affected by the variation of the loop cross-section. The observational data on this quantity is important for further progress of the coronal seismology.

  18. Right- and left-loop short shRNAs have distinct and unusual mechanisms of gene silencing

    PubMed Central

    Dallas, Anne; Ilves, Heini; Ge, Qing; Kumar, Pavan; Shorenstein, Joshua; Kazakov, Sergei A.; Cuellar, Trinna L.; McManus, Michael T.; Behlke, Mark A.; Johnston, Brian H.

    2012-01-01

    Small hairpin RNAs (shRNAs) having duplex lengths of 25–29 bp are normally processed by Dicer into short interfering RNAs (siRNAs) before incorporation into the RNA-induced silencing complex (RISC). However, shRNAs of ≤19 bp [short shRNAs (sshRNAs)] are too short for Dicer to excise their loops, raising questions about their mechanism of action. sshRNAs are designated as L-type or R-type according to whether the loop is positioned 3′ or 5′ to the guide sequence, respectively. Using nucleotide modifications that inhibit RNA cleavage, we show that R- but not L-sshRNAs require loop cleavage for optimum activity. Passenger-arm slicing was found to be important for optimal functioning of L-sshRNAs but much less important for R-sshRNAs that have a cleavable loop. R-sshRNAs could be immunoprecipitated by antibodies to Argonaute-1 (Ago1); complexes with Ago1 contained both intact and loop-cleaved sshRNAs. In contrast, L-sshRNAs were immunoprecipitated with either Ago1 or Ago2 and were predominantly sliced in the passenger arm of the hairpin. However, ‘pre-sliced’ L-sshRNAs were inactive. We conclude that active L-sshRNAs depend on slicing of the passenger arm to facilitate opening of the duplex, whereas R-sshRNAs primarily act via loop cleavage to generate a 5′-phosphate at the 5′-end of the guide strand. PMID:22810205

  19. Optimum size of nanorods for heating application

    NASA Astrophysics Data System (ADS)

    Seshadri, G.; Thaokar, Rochish; Mehra, Anurag

    2014-08-01

    Magnetic nanoparticles (MNP's) have become increasingly important in heating applications such as hyperthermia treatment of cancer due to their ability to release heat when a remote external alternating magnetic field is applied. It has been shown that the heating capability of such particles varies significantly with the size of particles used. In this paper, we theoretically evaluate the heating capability of rod-shaped MNP's and identify conditions under which these particles display highest efficiency. For optimally sized monodisperse particles, the power generated by rod-shaped particles is found to be equal to that generated by spherical particles. However, for particles which are not mono dispersed, rod-shaped particles are found to be more effective in heating as a result of the greater spread in the power density distribution curve. Additionally, for rod-shaped particles, a dispersion in the radius of the particle contributes more to the reduction in loss power when compared to a dispersion in the length. We further identify the optimum size, i.e the radius and length of nanorods, given a bi-variate log-normal distribution of particle size in two dimensions.

  20. Space Science

    NASA Image and Video Library

    2003-01-01

    These banana-shaped loops are part of a computer-generated snapshot of our sun's magnetic field. The solar magnetic-field lines loop through the sun's corona, break through the sun's surface, and cornect regions of magnetic activity, such as sunspots. This image --part of a magnetic-field study of the sun by NASA's Allen Gary -- shows the outer portion (skins) of interconnecting systems of hot (2 million degrees Kelvin) coronal loops within and between two active magnetic regions on opposite sides of the sun's equator. The diameter of these coronal loops at their foot points is approximately the same size as the Earth's radius (about 6,000 kilometers).

  1. A “loop” shape descriptor and its application to automated segmentation of airways from CT scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Jiantao; Jin, Chenwang, E-mail: jcw76@163.com; Yu, Nan

    2015-06-15

    Purpose: A novel shape descriptor is presented to aid an automated identification of the airways depicted on computed tomography (CT) images. Methods: Instead of simplifying the tubular characteristic of the airways as an ideal mathematical cylindrical or circular shape, the proposed “loop” shape descriptor exploits the fact that the cross sections of any tubular structure (regardless of its regularity) always appear as a loop. In implementation, the authors first reconstruct the anatomical structures in volumetric CT as a three-dimensional surface model using the classical marching cubes algorithm. Then, the loop descriptor is applied to locate the airways with a concavemore » loop cross section. To deal with the variation of the airway walls in density as depicted on CT images, a multiple threshold strategy is proposed. A publicly available chest CT database consisting of 20 CT scans, which was designed specifically for evaluating an airway segmentation algorithm, was used for quantitative performance assessment. Measures, including length, branch count, and generations, were computed under the aid of a skeletonization operation. Results: For the test dataset, the airway length ranged from 64.6 to 429.8 cm, the generation ranged from 7 to 11, and the branch number ranged from 48 to 312. These results were comparable to the performance of the state-of-the-art algorithms validated on the same dataset. Conclusions: The authors’ quantitative experiment demonstrated the feasibility and reliability of the developed shape descriptor in identifying lung airways.« less

  2. Optimum constrained image restoration filters

    NASA Technical Reports Server (NTRS)

    Riemer, T. E.; Mcgillem, C. D.

    1974-01-01

    The filter was developed in Hilbert space by minimizing the radius of gyration of the overall or composite system point-spread function subject to constraints on the radius of gyration of the restoration filter point-spread function, the total noise power in the restored image, and the shape of the composite system frequency spectrum. An iterative technique is introduced which alters the shape of the optimum composite system point-spread function, producing a suboptimal restoration filter which suppresses undesirable secondary oscillations. Finally this technique is applied to multispectral scanner data obtained from the Earth Resources Technology Satellite to provide resolution enhancement. An experimental approach to the problems involving estimation of the effective scanner aperture and matching the ERTS data to available restoration functions is presented.

  3. Structural Analysis of Alkaline β-Mannanase from Alkaliphilic Bacillus sp. N16-5: Implications for Adaptation to Alkaline Conditions

    PubMed Central

    Zhao, Yueju; Zhang, Yunhua; Cao, Yang; Qi, Jianxun; Mao, Liangwei; Xue, Yanfen; Gao, Feng; Peng, Hao; Wang, Xiaowei; Gao, George F.; Ma, Yanhe

    2011-01-01

    Significant progress has been made in isolating novel alkaline β-mannanases, however, there is a paucity of information concerning the structural basis for alkaline tolerance displayed by these β-mannanases. We report the catalytic domain structure of an industrially important β-mannanase from the alkaliphilic Bacillus sp. N16-5 (BSP165 MAN) at a resolution of 1.6 Å. This enzyme, classified into subfamily 8 in glycosyl hydrolase family 5 (GH5), has a pH optimum of enzymatic activity at pH 9.5 and folds into a classic (β/α)8-barrel. In order to gain insight into molecular features for alkaline adaptation, we compared BSP165 MAN with previously reported GH5 β-mannanases. It was revealed that BSP165 MAN and other subfamily 8 β-mannanases have significantly increased hydrophobic and Arg residues content and decreased polar residues, comparing to β-mannanases of subfamily 7 or 10 in GH5 which display optimum activities at lower pH. Further, extensive structural comparisons show alkaline β-mannanases possess a set of distinctive features. Position and length of some helices, strands and loops of the TIM barrel structures are changed, which contributes, to a certain degree, to the distinctly different shaped (β/α)8-barrels, thus affecting the catalytic environment of these enzymes. The number of negatively charged residues is increased on the molecular surface, and fewer polar residues are exposed to the solvent. Two amino acid substitutions in the vicinity of the acid/base catalyst were proposed to be possibly responsible for the variation in pH optimum of these homologous enzymes in subfamily 8 of GH5, identified by sequence homology analysis and pK a calculations of the active site residues. Mutational analysis has proved that Gln91 and Glu226 are important for BSP165 MAN to function at high pH. These findings are proposed to be possible factors implicated in the alkaline adaptation of GH5 β-mannanases and will help to further understanding of alkaline adaptation mechanism. PMID:21436878

  4. Loop Analysis of Causal Feedback in Epidemiology: An Illustration Relating To Urban Neighborhoods and Resident Depressive Experiences

    PubMed Central

    2008-01-01

    The causal feedback implied by urban neighborhood conditions that shape human health experiences, that in turn shape neighborhood conditions through a complex causal web, raises a challenge for traditional epidemiological causal analyses. This article introduces the loop analysis method, and builds off of a core loop model linking neighborhood property vacancy rate, resident depressive symptoms, rate of neighborhood death, and rate of neighborhood exit in a feedback network. I justify and apply loop analysis to the specific example of depressive symptoms and abandoned urban residential property to show how inquiries into the behavior of causal systems can answer different kinds of hypotheses, and thereby compliment those of causal modeling using statistical models. Neighborhood physical conditions that are only indirectly influenced by depressive symptoms may nevertheless manifest in the mental health experiences of their residents; conversely, neighborhood physical conditions may be a significant mental health risk for the population of neighborhood residents. I find that participatory greenspace programs are likely to produce adaptive responses in depressive symptoms and different neighborhood conditions, which are different in character to non-participatory greenspace interventions. PMID:17706851

  5. Advanced photonic filters based on cascaded Sagnac loop reflector resonators in silicon-on-insulator nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Jiayang; Moein, Tania; Xu, Xingyuan; Moss, David J.

    2018-04-01

    We demonstrate advanced integrated photonic filters in silicon-on-insulator (SOI) nanowires implemented by cascaded Sagnac loop reflector (CSLR) resonators. We investigate mode splitting in these standing-wave (SW) resonators and demonstrate its use for engineering the spectral profile of on-chip photonic filters. By changing the reflectivity of the Sagnac loop reflectors (SLRs) and the phase shifts along the connecting waveguides, we tailor mode splitting in the CSLR resonators to achieve a wide range of filter shapes for diverse applications including enhanced light trapping, flat-top filtering, Q factor enhancement, and signal reshaping. We present the theoretical designs and compare the CSLR resonators with three, four, and eight SLRs fabricated in SOI. We achieve versatile filter shapes in the measured transmission spectra via diverse mode splitting that agree well with theory. This work confirms the effectiveness of using CSLR resonators as integrated multi-functional SW filters for flexible spectral engineering.

  6. Ubiquitous Geometry: Some Examples Showing the Significance of Size and Shape in the Works of Man and Nature.

    ERIC Educational Resources Information Center

    Bachman, C. H.

    1988-01-01

    Presents examples to show the ubiquitous nature of geometry. Illustrates the relationship between the perimeter and area of two-dimensional objects and between the area and volume of three-dimensional objects. Provides examples of distribution systems, optimum shapes, structural strength, biological heat engines, man's size, and reflection and…

  7. Effect of orientation of prismatic dislocation loops on interaction with free surfaces in BCC iron

    NASA Astrophysics Data System (ADS)

    Fikar, Jan; Gröger, Roman; Schäublin, Robin

    2017-12-01

    The prismatic loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, shape, size, orientation and depth of the loop in the foil, they can escape to the free surface creating denuded loop-free zones and thus invalidating TEM observations. In our previous studies we described a simple general method to determine the critical depth and the critical stress to move prismatic dislocation loops. The critical depths can be further used to correct measurements of the loop density by TEM. Here, we use this procedure to compare 〈100〉 loops and 1/2 〈111〉 loops in body-centered cubic (BCC) iron. The influences of the interatomic potential and the loop orientation are studied in detail. The difference between interstitial and vacancy type loop is also investigated.

  8. Effect of anode shape on correlation of neutron emission with pinch energy for a 2.7 kJ Mather-type plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, S. S.; Murtaza, Ghulam; Zakaullah, M.

    Correlation of neutron emission with pinch energy for a Mather-type plasma focus energized by a single capacitor 12.5 muF, 21 kV (2.7 kJ) is investigated by employing time resolved and time integrated detectors for two different anode shapes. The maximum average neutron yield of about 1.3x10{sup 8} per shot is recorded with cylindrical anode, that increases to 1.6x10{sup 8} per shot for tapered anode. At optimum pressure the input energy converted to pinch energy is about 24% for cylindrical anode as compared to 36% for tapered anode. It is found that the tapered anode enhances neutron flux about 25+-5% bothmore » in axial and radial directions and also broadens the pressure range for neutron emission as well as pinch energy. The neutron yield and optimum gas filling pressures are found strongly dependent on the anode shape.« less

  9. Optimal Dynamic Detection of Explosives (ODD-EX)

    DTIC Science & Technology

    2011-12-29

    2. Control of nitromethane photoionization efficiency with shaped femtosecond pulses, J. Roslund, O. Shir, A. Dogariu, R. Miles, H. Rabitz, J. Chem...feedback loop. 2. Control of nitromethane photoionization efficiency with shaped femtosecond pulses, J. Roslund, O. Shir, A. Dogariu, R. Miles, H. Rabitz...resonances that allow a significant increase in the photoionization efficiency of nitromethane with shaped near-infrared femtosecond pulses. The

  10. Design and Benchmarking of a Network-In-the-Loop Simulation for Use in a Hardware-In-the-Loop System

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot; Thomas, George; Culley, Dennis; Kratz, Jonathan

    2017-01-01

    Distributed engine control (DEC) systems alter aircraft engine design constraints because of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.

  11. Design and Benchmarking of a Network-In-the-Loop Simulation for Use in a Hardware-In-the-Loop System

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot D.; Thomas, George Lindsey; Culley, Dennis E.; Kratz, Jonathan L.

    2017-01-01

    Distributed engine control (DEC) systems alter aircraft engine design constraints be- cause of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.

  12. Computer Generated Snapshot of Our Sun's Magnetic Field

    NASA Technical Reports Server (NTRS)

    2003-01-01

    These banana-shaped loops are part of a computer-generated snapshot of our sun's magnetic field. The solar magnetic-field lines loop through the sun's corona, break through the sun's surface, and cornect regions of magnetic activity, such as sunspots. This image --part of a magnetic-field study of the sun by NASA's Allen Gary -- shows the outer portion (skins) of interconnecting systems of hot (2 million degrees Kelvin) coronal loops within and between two active magnetic regions on opposite sides of the sun's equator. The diameter of these coronal loops at their foot points is approximately the same size as the Earth's radius (about 6,000 kilometers).

  13. Methodologies for Root Locus and Loop Shaping Control Design with Comparisons

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2017-01-01

    This paper describes some basics for the root locus controls design method as well as for loop shaping, and establishes approaches to expedite the application of these two design methodologies to easily obtain control designs that meet requirements with superior performance. The two design approaches are compared for their ability to meet control design specifications and for ease of application using control design examples. These approaches are also compared with traditional Proportional Integral Derivative (PID) control in order to demonstrate the limitations of PID control. Robustness of these designs is covered as it pertains to these control methodologies and for the example problems.

  14. Neurellipes rhoko sp. n. from the Cross River Loop, Eastern Nigeria (Lepidoptera: Lycaenidae: Polyommatinae).

    PubMed

    Sáfián, Szabolcs

    2014-09-04

    A new species belonging to the recently revised Neurellipes mahota-group has been found in the Cross River Loop, Eastern Nigeria. It resembles the recently described Liberian N. georgiadisi Larsen, 2009, but differs from it by the wing shape and the extent and shape of orange patches on the hindwing, also on the forewing, especially in the discoidal cell. The species is described as N. rhoko sp. n.; a detailed comparison with the other species in the N. mahota-group is given, as well as notes on the biogeography of N. rhoko and its Liberian sub-region vicariant N. georgiadisi. 

  15. Electrical Engineering and Nontechnical Design Variables of Multiple Inductive Loop Systems for Auditoriums

    ERIC Educational Resources Information Center

    Alterovitz, Gil

    2004-01-01

    This research analyzed both engineering and nontechnical issues involved in the use of Induction Loop Amplification (ILA) devices in auditoriums or large gathering places for hard-of-hearing individuals. A variety of parameters need to be taken into account to determine an optimal shape/configuration for the ILA device. In many cases, an optimal…

  16. Advanced Receiver tracking of Voyager 2 near solar conjunction

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Hurd, W. J.; Vilnrotter, V. A.; Wiggins, J. D.

    1988-01-01

    The Advanced Receiver (ARX) was used to track the Voyager 2 spacecraft at low Sun-Earth-Probe (SEP) angles near solar conjunction in December of 1987. The received carrier signal exhibited strong fluctuations in both phase and amplitude. The ARX used spectral estimation and mathematical modeling of the phase and receiver noise processes to set an optimum carrier tracking bandwidth. This minimized the mean square phase error in tracking carrier phase and thus minimized the loss in the telemetry signal-to-noise ratio due to the carrier loop. Recovered symbol SNRs and errors in decoded engineering data for the ARX are compared with those for the current Block 3 telemetry stream. Optimum bandwidths are plotted against SEP angle. Measurements of the power spectral density of the solar phase and amplitude fluctuations are also given.

  17. Analysis of QRS loop changes in the beat-to-beat Vectocardiogram of ischemic patients undergoing PTCA.

    PubMed

    Correa, Raul; Laciar, Eric; Arini, Pedro; Jane, Raimon

    2009-01-01

    In the present work, we have studied dynamic changes of QRS loop in the Vectocardiogram (VCG) of 80 patients that underwent Percutaneous Transluminal Coronary Angioplasty (PTCA). The VCG was obtained for each patient using the XYZ orthogonal leads of their electrocardiographic (ECG) records acquired before, during and after PTCA procedure. In order to analyze the variations of VCG, it has been proposed in this study the following parameters a) Maximum module of the cardiac depolarization vector, b) Volume, c) and Area of vectocardiographic loop corresponding to the QRS complex of each beat, d) Maximum distance between Centroid and the Loop, e) Angle between the XY plane and the Optimum Plane, f) Relation between the Area and Perimeter. The results obtained indicate that the parameters proposed show significant statistics differences (p-value<0.05) before, during (with some exceptions at the first minute of balloon inflation) and after PTCA. We conclude that the variations observed in the proposed parameters correctly represent not only the morphological changes in the depolarization VCG but also they reflect the modifications in the levels of cardiac ischemia induced by PTCA.

  18. ALARA: The next link in a chain of activation codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, P.P.H.; Henderson, D.L.

    1996-12-31

    The Adaptive Laplace and Analytic Radioactivity Analysis [ALARA] code has been developed as the next link in the chain of DKR radioactivity codes. Its methods address the criticisms of DKR while retaining its best features. While DKR ignored loops in the transmutation/decay scheme to preserve the exactness of the mathematical solution, ALARA incorporates new computational approaches without jeopardizing the most important features of DKR`s physical modelling and mathematical methods. The physical model uses `straightened-loop, linear chains` to achieve the same accuracy in the loop solutions as is demanded in the rest of the scheme. In cases where a chain hasmore » no loops, the exact DKR solution is used. Otherwise, ALARA adaptively chooses between a direct Laplace inversion technique and a Laplace expansion inversion technique to optimize the accuracy and speed of the solution. All of these methods result in matrix solutions which allow the fastest and most accurate solution of exact pulsing histories. Since the entire history is solved for each chain as it is created, ALARA achieves the optimum combination of high accuracy, high speed and low memory usage. 8 refs., 2 figs.« less

  19. Novel design methods for magnetic flux loops in the National Compact Stellarator Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomphrey, N.; Lazarus, E.; Zarnstorff, M.

    2007-05-15

    Magnetic pickup loops on the vacuum vessel (VV) can provide an abundance of equilibrium information for stellarators. A substantial effort has gone into designing flux loops for the National Compact Stellarator Experiment (NCSX) [Zarnstorff et al., Plasma Phys. Controlled Fusion 43, A237 (2001)], a three-field period quasi-axisymmetric stellarator under construction at the Princeton Plasma Physics Laboratory. The design philosophy, to measure all of the magnetic field distributions normal to the VV that can be measured, has necessitated the development of singular value decomposition algorithms for identifying efficient loop locations. Fields are expected to be predominantly stellarator symmetric (SS)--the symmetry ofmore » the machine design--with toroidal mode numbers per torus (n) equal to a multiple of 3 and possessing reflection symmetry in a period. However, plasma instabilities and coil imperfections will generate non-SS fields that must also be diagnosed. The measured symmetric fields will yield important information on the plasma current and pressure profile as well as on the plasma shape. All fields that obey the design symmetries could be measured by placing flux loops in a single half-period of the VV, but accurate resolution of nonsymmetric modes, quantified by the condition number of a matrix, requires repositioning loops to equivalent locations on the full torus. A subarray of loops located along the inside wall of the vertically elongated cross section was designed to detect n=3, m=5 or 6 resonant field perturbations that can cause important islands. Additional subarrays included are continuous in the toroidal and poloidal directions. Loops are also placed at symmetry points of the VV to obtain maximal sensitivity to asymmetric perturbations. Combining results from various calculations which have made extensive use of a database of 2500 free-boundary VMEC equilibria, has led to the choice of 225 flux loops for NCSX, of which 151 have distinct shapes.« less

  20. Optimum Wing Shape Determination of Highly Flexible Morphing Aircraft for Improved Flight Performance.

    PubMed

    Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G

    2016-09-01

    In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and 6-dof rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.

  1. Optimum Wing Shape Determination of Highly Flexible Morphing Aircraft for Improved Flight Performance

    PubMed Central

    Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.

    2018-01-01

    In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and 6-dof rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles. PMID:29348697

  2. Optimum Wing Shape of Highly Flexible Morphing Aircraft for Improved Flight Performance

    NASA Technical Reports Server (NTRS)

    Su, Weihua; Swei, Sean Shan-Min; Zhu, Guoming G.

    2016-01-01

    In this paper, optimum wing bending and torsion deformations are explored for a mission adaptive, highly flexible morphing aircraft. The complete highly flexible aircraft is modeled using a strain-based geometrically nonlinear beam formulation, coupled with unsteady aerodynamics and six-degrees-of-freedom rigid-body motions. Since there are no conventional discrete control surfaces for trimming the flexible aircraft, the design space for searching the optimum wing geometries is enlarged. To achieve high performance flight, the wing geometry is best tailored according to the specific flight mission needs. In this study, the steady level flight and the coordinated turn flight are considered, and the optimum wing deformations with the minimum drag at these flight conditions are searched by utilizing a modal-based optimization procedure, subject to the trim and other constraints. The numerical study verifies the feasibility of the modal-based optimization approach, and shows the resulting optimum wing configuration and its sensitivity under different flight profiles.

  3. Relationships between Perron-Frobenius eigenvalue and measurements of loops in networks

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Kou, Yingxin; Li, Zhanwu; Xu, An; Chang, Yizhe

    2018-07-01

    The Perron-Frobenius eigenvalue (PFE) is widely used as measurement of the number of loops in networks, but what exactly the relationship between the PFE and the number of loops in networks is has not been researched yet, is it strictly monotonically increasing? And what are the relationships between the PFE and other measurements of loops in networks? Such as the average loop degree of nodes, and the distribution of loop ranks. We make researches on these questions based on samples of ER random network, NW small-world network and BA scale-free network, and the results confirm that, both the number of loops in network and the average loop degree of nodes of all samples do increase with the increase of the PFE in general trend, but neither of them are strictly monotonically increasing, so the PFE is capable to be used as a rough estimative measurement of the number of loops in networks and the average loop degree of nodes. Furthermore, we find that a majority of the loop ranks of all samples obey Weibull distribution, of which the scale parameter A and the shape parameter B have approximate power-law relationships with the PFE of the samples.

  4. A linear quadratic Gaussian with loop transfer recovery proximity operations autopilot for spacecraft. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Chen, George T.

    1987-01-01

    An automatic control scheme for spacecraft proximity operations is presented. The controller is capable of holding the vehicle at a prescribed location relative to a target, or maneuvering it to a different relative position using straight line-of-sight translations. The autopilot uses a feedforward loop to initiate and terminate maneuvers, and for operations at nonequilibrium set-points. A multivariate feedback loop facilitates precise position and velocity control in the presence of sensor noise. The feedback loop is formulated using the Linear Quadratic Gaussian (LQG) with Loop Transfer Recovery (LTR) design procedure. Linear models of spacecraft dynamics, adapted from Clohessey-Wiltshire Equations, are augmented and loop shaping techniques are applied to design a target feedback loop. The loop transfer recovery procedure is used to recover the frequency domain properties of the target feedback loop. The resulting compensator is integrated into an autopilot which is tested in a high fidelity Space Shuttle Simulator. The autopilot performance is evaluated for a variety of proximity operations tasks envisioned for future Shuttle flights.

  5. Circuit breaker lock out assembly

    DOEpatents

    Gordy, W.T.

    1983-05-18

    A lock out assembly for a circuit breaker which consists of a generally step-shaped unitary base with an aperture in the small portion of the step-shaped base and a roughly S shaped retaining pin which loops through the large portion of the step-shaped base. The lock out assembly is adapted to fit over a circuit breaker with the handle switch projecting through the aperture, and the retaining pin projecting into an opening of the handle switch, preventing removal.

  6. Circuit breaker lock out assembly

    DOEpatents

    Gordy, Wade T.

    1984-01-01

    A lock out assembly for a circuit breaker which consists of a generally step-shaped unitary base with an aperture in the small portion of the step-shaped base and a roughly "S" shaped retaining pin which loops through the large portion of the step-shaped base. The lock out assembly is adapted to fit over a circuit breaker with the handle switch projecting through the aperture, and the retaining pin projecting into an opening of the handle switch, preventing removal.

  7. A sensitive and stable confocal Fabry-Pérot interferometer for surface ultrasonic vibration detection

    NASA Astrophysics Data System (ADS)

    Ding, Hong-sheng; Tong, Li-ge; Chen, Geng-hua

    2001-08-01

    A new confocal Fabry-Pérot interferometer (CFPI) has been constructed. By using both of the conjugate rays, the sensitivity of the system was doubled. Moreover, the negative feedback control loop of a single-chip microcomputer (MCS-51) was applied to stabilize the working point at an optimum position. The system has been used in detecting the piezoelectric ultrasonic vibration on the surface of an aluminium sample.

  8. An integrated optimum design approach for high speed prop-rotors including acoustic constraints

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Wells, Valana; Mccarthy, Thomas; Han, Arris

    1993-01-01

    The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop multilevel decomposition optimization process. The procedures involve the consideration of blade-aeroelastic aerodynamic performance, structural-dynamic design requirements, and acoustics. Further, since the design involves consideration of several different objective functions, multiobjective function formulation techniques are developed.

  9. A Culture-Behavior-Brain Loop Model of Human Development.

    PubMed

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudík, J.; Del Zanna, G.; Mason, H. E.

    2014-04-01

    We present SDO/AIA observations of an eruptive X-class flare of 2012 July 12, and compare its evolution with the predictions of a three-dimensional (3D) numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the Atmospheric Imaging Assembly (AIA) 131 Å observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km s{sup –1} along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flaremore » loops. A differential emission measure analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a coronal mass ejection observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the 'standard solar flare model in 3D.' This model matches the observations well, reproducing the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of the reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.« less

  11. Past Organizational Change and Managerial Evaluations of Crisis: A Case of Double-Loop Learning Effects in Non-Profit Organizations

    ERIC Educational Resources Information Center

    Mano, Rita S.

    2010-01-01

    Purpose: This paper examines the critical effect of learning from past changes on employees' evaluations regarding the extent that a crisis can be controlled and prevented. It is suggested that previous changes incorporate elements of a double-loop learning process that shape managerial perceptions of crisis controllability and crisis prevention.…

  12. Optimization of the structural and control system for LSS with reduced-order model

    NASA Technical Reports Server (NTRS)

    Khot, N. S.

    1989-01-01

    The objective is the simultaneous design of the structural and control system for space structures. The minimum weight of the structure is the objective function, and the constraints are placed on the closed loop distribution of the frequencies and the damping parameters. The controls approach used is linear quadratic regulator with constant feedback. A reduced-order control system is used. The effect of uncontrolled modes is taken into consideration by the model error sensitivity suppression (MESS) technique which modified the weighting parameters for the control forces. For illustration, an ACOSS-FOUR structure is designed for a different number of controlled modes with specified values for the closed loop damping parameters and frequencies. The dynamic response of the optimum designs for an initial disturbance is compared.

  13. High frequency, high temperature specific core loss and dynamic B-H hysteresis loop characteristics of soft magnetic alloys

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1990-01-01

    Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.

  14. Resistively Loaded Microstrip-Patch Antenna

    NASA Technical Reports Server (NTRS)

    Bailey, Marion C.

    1993-01-01

    Strips of thin resistive material added near two edges of conventional micro-strip-patch antenna. Bandwidth doubled by simple modification. Optimum bandwidth performance obtained by adjustment of shapes, resistances, and locations of resistive strips.

  15. Beyond singular values and loop shapes

    NASA Technical Reports Server (NTRS)

    Stein, G.

    1985-01-01

    The status of singular value loop-shaping as a design paradigm for multivariable feedback systems is reviewed. It shows that this paradigm is an effective design tool whenever the problem specifications are spacially round. The tool can be arbitrarily conservative, however, when they are not. This happens because singular value conditions for robust performance are not tight (necessary and sufficient) and can severely overstate actual requirements. An alternate paradign is discussed which overcomes these limitations. The alternative includes a more general problem formulation, a new matrix function mu, and tight conditions for both robust stability and robust performance. The state of the art currently permits analysis of feedback systems within this new paradigm. Synthesis remains a subject of research.

  16. Photon momentum transfer plane for asteroid, meteoroid, and comet orbit shaping

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor)

    2004-01-01

    A spacecraft docks with a spinning and/or rotating asteroid, meteoroid, comet, or other space object, utilizing a tether shaped in a loop and utilizing subvehicles appropriately to control loop instabilities. The loop is positioned about a portion of the asteroid and retracted thereby docking the spacecraft to the asteroid, meteoroid, comet, or other space object. A deployable rigidized, photon momentum transfer plane of sufficient thickness may then be inflated and filled with foam. This plane has a reflective surface that assists in generating a larger momentum from impinging photons. This plane may also be moved relative to the spacecraft to alter the forces acting on it, and thus on the asteroid, meteoroid, comet, or other space object to which it is attached. In general, these forces may be utilized, over time, to alter the orbits of asteroids, meteoroids, comets, or other space objects. Sensors and communication equipment may be utilized to allow remote operation of the rigidized, photon momentum transfer plane and tether.

  17. Disruption of a stem-loop structure located upstream of pseudoknot domain in Tobacco mosaic virus enhanced its infectivity and viral RNA accumulation.

    PubMed

    Guo, Song; Wong, Sek-Man

    2018-06-01

    A predicted stem-loop structure of 25 nucleotides, located in the coat protein (CP) gene and 3'-UTR sequences of Tobacco mosaic virus (TMV), was validated previously (Guo et al., 2015). In this study, both disrupted stem-loop and nucleotide deletion mutants of TMV replicated more rapidly in Nicotiana benthamiana protoplasts. The TMV mutant with a complete mirrored stem-loop structure showed similar level of viral RNA accumulation as TMV. Recovering the stem-loop structure also resulted in a similar replication level as TMV. All these mutants induced necrosis in N. benthamiana and assembled into typical rigid rod-shaped virions. TMV mutant without the stem-loop structure induced more local lesions in Chenopodium quinoa. When the putative stem-loop structure in Tomato mosaic virus (ToMV) was disrupted, the mutant also showed an enhanced virus replication. This suggests that the stem-loop structure of TMV is a new cis-acting element with a role in virus replication. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Flexible Connectors between Capsomer Subunits that Regulate Capsid Assembly.

    PubMed

    Hasek, Mary L; Maurer, Joshua B; Hendrix, Roger W; Duda, Robert L

    2017-08-04

    Viruses build icosahedral capsids of specific size and shape by regulating the spatial arrangement of the hexameric and pentameric protein capsomers in the growing shell during assembly. In the T=7 capsids of Escherichia coli bacteriophage HK97 and other phages, 60 capsomers are hexons, while the rest are pentons that are correctly positioned during assembly. Assembly of the HK97 capsid to the correct size and shape has been shown to depend on specific ionic contacts between capsomers. We now describe additional ionic interactions within capsomers that also regulate assembly. Each is between the long hairpin, the "E-loop," that extends from one subunit to the adjacent subunit within the same capsomer. Glutamate E153 on the E-loop and arginine R210 on the adjacent subunit's backbone alpha-helix form salt bridges in hexamers and pentamers. Mutations that disrupt these salt bridges were lethal for virus production, because the mutant proteins assembled into tubes or sheets instead of capsids. X-ray structures show that the E153-R210 links are flexible and maintained during maturation despite radical changes in capsomer shape. The E153-R210 links appear to form early in assembly to enable capsomers to make programmed changes in their shape during assembly. The links also prevent flattening of capsomers and premature maturation. Mutant phenotypes and modeling support an assembly model in which flexible E153-R210 links mediate capsomer shape changes that control where pentons are placed to create normal-sized capsids. The E-loop may be conserved in other systems in order to play similar roles in regulating assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dislocation loops in ultra-high purity Fe(Cr) alloys after 7.2 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Chen, J.; Duval, F.; Jung, P.; Schäublin, R.; Gao, N.; Barthe, M. F.

    2018-05-01

    Ultra-high purity Fe(Cr) alloys (from 0 wt% Cr to 14 wt% Cr) were 3D homogeneously irradiated by 0-7.2 MeV protons to 0.3 dpa at nominal temperatures from 270 °C to 500 °C. Microstructural changes were observed by transmission electron microscopy (TEM). The results showed that evolution of dislocation loops depends on the Cr content. Below 300 °C, large ½ a0 <111> loops are dominating. Above 300 °C, a0 <100> loops with a habit plane {100} appear. Loop sizes of both types are more or less the same. At temperatures from 310 °C to 400 °C, a0 <100> loops form clusters with the same {100} habit plane as the one of the loops forming them. This indicates that <100> loops of the same variant start gliding under mutual elastic interaction. At 500 °C, dislocation loops form disc shaped clusters about 1000 nm in diameter and sitting on {111} and/or {100} planes in the pure Fe samples. Based on these observations a quantitative analysis of the dislocation loops configurations and their temperature dependence is made, leading to an understanding of the basic mechanisms of formation of these loops.

  20. OSCILLATION OF NEWLY FORMED LOOPS AFTER MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn

    With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and movemore » toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.« less

  1. Application of level set method to optimal vibration control of plate structures

    NASA Astrophysics Data System (ADS)

    Ansari, M.; Khajepour, A.; Esmailzadeh, E.

    2013-02-01

    Vibration control plays a crucial role in many structures, especially in the lightweight ones. One of the most commonly practiced method to suppress the undesirable vibration of structures is to attach patches of the constrained layer damping (CLD) onto the surface of the structure. In order to consider the weight efficiency of a structure, the best shapes and locations of the CLD patches should be determined to achieve the optimum vibration suppression with minimum usage of the CLD patches. This paper proposes a novel topology optimization technique that can determine the best shape and location of the applied CLD patches, simultaneously. Passive vibration control is formulated in the context of the level set method, which is a numerical technique to track shapes and locations concurrently. The optimal damping set could be found in a structure, in its fundamental vibration mode, such that the maximum modal loss factor of the system is achieved. Two different plate structures will be considered and the damping patches will be optimally located on them. At the same time, the best shapes of the damping patches will be determined too. In one example, the numerical results will be compared with those obtained from the experimental tests to validate the accuracy of the proposed method. This comparison reveals the effectiveness of the level set approach in finding the optimum shape and location of the CLD patches.

  2. An improved current potential method for fast computation of stellarator coil shapes

    NASA Astrophysics Data System (ADS)

    Landreman, Matt

    2017-04-01

    Several fast methods for computing stellarator coil shapes are compared, including the classical NESCOIL procedure (Merkel 1987 Nucl. Fusion 27 867), its generalization using truncated singular value decomposition, and a Tikhonov regularization approach we call REGCOIL in which the squared current density is included in the objective function. Considering W7-X and NCSX geometries, and for any desired level of regularization, we find the REGCOIL approach simultaneously achieves lower surface-averaged and maximum values of both current density (on the coil winding surface) and normal magnetic field (on the desired plasma surface). This approach therefore can simultaneously improve the free-boundary reconstruction of the target plasma shape while substantially increasing the minimum distances between coils, preventing collisions between coils while improving access for ports and maintenance. The REGCOIL method also allows finer control over the level of regularization, it preserves convexity to ensure the local optimum found is the global optimum, and it eliminates two pathologies of NESCOIL: the resulting coil shapes become independent of the arbitrary choice of angles used to parameterize the coil surface, and the resulting coil shapes converge rather than diverge as Fourier resolution is increased. We therefore contend that REGCOIL should be used instead of NESCOIL for applications in which a fast and robust method for coil calculation is needed, such as when targeting coil complexity in fixed-boundary plasma optimization, or for scoping new stellarator geometries.

  3. Active Knits for Radical Change Air Force Structures

    DTIC Science & Technology

    2012-10-01

    for self - healing structures, but the material distribution could be optimized to achieve desired mechanical properties or obtain a predetermined...causes the material to transition from the soft martensite phase to the stiff austenite phase. When heated the loops attempt to return to their...nominally straight, is bent into the loop shape when in the cold, relatively soft martensite state. When heated to the relatively stiff austenite

  4. The Identification and Modeling of Visual Cue Usage in Manual Control Task Experiments

    NASA Technical Reports Server (NTRS)

    Sweet, Barbara Townsend; Trejo, Leonard J. (Technical Monitor)

    1999-01-01

    Many fields of endeavor require humans to conduct manual control tasks while viewing a perspective scene. Manual control refers to tasks in which continuous, or nearly continuous, control adjustments are required. Examples include flying an aircraft, driving a car, and riding a bicycle. Perspective scenes can arise through natural viewing of the world, simulation of a scene (as in flight simulators), or through imaging devices (such as the cameras on an unmanned aerospace vehicle). Designers frequently have some degree of control over the content and characteristics of a perspective scene; airport designers can choose runway markings, vehicle designers can influence the size and shape of windows, as well as the location of the pilot, and simulator database designers can choose scene complexity and content. Little theoretical framework exists to help designers determine the answers to questions related to perspective scene content. An empirical approach is most commonly used to determine optimum perspective scene configurations. The goal of the research effort described in this dissertation has been to provide a tool for modeling the characteristics of human operators conducting manual control tasks with perspective-scene viewing. This is done for the purpose of providing an algorithmic, as opposed to empirical, method for analyzing the effects of changing perspective scene content for closed-loop manual control tasks.

  5. Using Signal Detection Theory and Time Window-based Human-In-The-Loop simulation as a tool for assessing the effectiveness of different qualitative shapes in continuous monitoring tasks.

    PubMed

    Kim, Jung Hyup; Rothrock, Ling; Laberge, Jason

    2014-05-01

    This paper provides a case study of Signal Detection Theory (SDT) as applied to a continuous monitoring dual-task environment. Specifically, SDT was used to evaluate the independent contributions of sensitivity and bias to different qualitative gauges used in process control. To assess detection performance in monitoring the gauges, we developed a Time Window-based Human-In-The-Loop (TWHITL) simulation bed. Through this test bed, we were able to generate a display similar to those monitored by console operators in oil and gas refinery plants. By using SDT and TWHITL, we evaluated the sensitivity, operator bias, and response time of flow, level, pressure, and temperature gauge shapes developed by Abnormal Situation Management(®) (ASM(®)) Consortium (www.asmconsortium.org). Our findings suggest that display density influences the effectiveness of participants in detecting abnormal shapes. Furthermore, results suggest that some shapes elicit better detection performance than others. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. 3′ Cap-Independent Translation Enhancers of Plant Viruses

    PubMed Central

    Simon, Anne E.; Miller, W. Allen

    2014-01-01

    In the absence of a 5′ cap, plant positive-strand RNA viruses have evolved a number of different elements in their 3′ untranslated region (UTR) to attract initiation factors and/or ribosomes to their templates. These 3′ cap-independent translational enhancers (3′ CITEs) take different forms, such as I-shaped, Y-shaped, T-shaped, or pseudoknotted structures, or radiate multiple helices from a central hub. Common features of most 3′ CITEs include the ability to bind a component of the translation initiation factor eIF4F complex and to engage in an RNA-RNA kissing-loop interaction with a hairpin loop located at the 5′ end of the RNA. The two T-shaped structures can bind to ribosomes and ribosomal subunits, with one structure also able to engage in a simultaneous long-distance RNA-RNA interaction. Several of these 3′ CITEs are interchangeable and there is evidence that natural recombination allows exchange of modular CITE units, which may overcome genetic resistance or extend the virus’s host range. PMID:23682606

  7. A Robust H ∞ Controller for an UAV Flight Control System.

    PubMed

    López, J; Dormido, R; Dormido, S; Gómez, J P

    2015-01-01

    The objective of this paper is the implementation and validation of a robust H ∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H ∞ robust controller in the inner loop, H ∞ control methodology is used. The two controllers that conform the outer loop are designed using the H ∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

  8. Transmitter Pulse Estimation and Measurements for Airborne TDEM Systems

    NASA Astrophysics Data System (ADS)

    Vetrov, A.; Mejzr, I.

    2013-12-01

    The processing and interpretation of Airborne Time Domain EM data requires precise description of the transmitter parameters, including shape, amplitude and length of the transmitted pulse. There are several ways to measure pulse shape of the transmitter loop. Transmitted pulse can be recorded by a current monitor installed on the loop. The current monitor readings do not give exact image due to own time-domain physical characteristics of the current monitor. Another way is to restore the primary pulse shape from the receiver data recorded on-time, if such is possible. The receiver gives exact image of the primary field projection combined with the ground response, which can be minimized at high altitude pass, usually with a transmitter elevation higher than 1500 ft from the ground. The readings on the receiver are depending on receiver position and orientation. Modeling of airborne TDEM transmitter pulse allows us to compare estimated and measured shape of the pulse and apply required corrections. Airborne TDEM system transmitter pulse shape has been studied by authors while developing P-THEM system. The data has been gathered during in-doors and out-doors ground tests in Canada, as well as during flight tests in Canada and in India. The P-THEM system has three-axes receiver that is suspended on a tow-cable in the midpoint between the transmitter and the helicopter. The P-THEM receiver geometry does not require backing coils to dump the primary field. The system records full-wave data from the receiver and current monitor installed on the transmitter loop, including on-time and off-time data. The modeling of the transmitter pulse allowed us to define the difference between estimated and measured values. The higher accuracy pulse shape can be used for better data processing and interpretation. A developed model can be applied to similar systems and configurations.

  9. Experimental investigation on thermal performance of a closed loop pulsating heat pipe (CLPHP) using methanol and distilled water at different filling ratios

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Swarna, Anindita Dhar; Ahmed, Syed Nasif Uddin; Perven, Sanjida; Ali, Mohammad

    2016-07-01

    Pulsating Heat Pipes, the new two-phase heat transfer devices, with no counter current flow between liquid and vapor have become a modern topic for research in the field of thermal management. This paper focuses on the performance of methanol and distilled water as working fluid in a closed loop pulsating heat pipe (CLPHP). This performances are compared in terms of thermal resistance, heat transfer co-efficient, and evaporator and condenser wall temperature with variable heat inputs. Methanol and Distilled water are selected for their lower surface tension, dynamic viscosity and sensible heat. A closed loop PHP made of copper with 2mm ID and 2.5mm OD having total 8 loops are supplied with power input varied from 10W to 60W. During the experiment the PHP is kept vertical, while the filling ratio (FR) is increased gradually from 40% to 70% with 10% increment. The optimum filling ratio for a minimum thermal resistance is found to be 60% and 40% for distilled water and methanol respectively and methanol is found to be the better working fluid compared to distilled water in terms of its lower thermal resistance and higher heat transfer coefficient.

  10. Timing performance of phased-locked loops in optical pulse position modulation communication systems

    NASA Technical Reports Server (NTRS)

    Lafaw, D. A.; Gardner, C. S.

    1984-01-01

    An optical digital communication system requires that an accurate clock signal be available at the receiver for proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. Timing errors cause energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. A timing subsystem for a satellite-to-satellite optical PPM communication link is simulated. The receiver employs direct photodetection, preprocessing of the detected signal, and a phase-locked loop for timing synchronization. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical calculations.

  11. Timing performance of phased-locked loops in optical pulse position modulation communication systems

    NASA Astrophysics Data System (ADS)

    Lafaw, D. A.; Gardner, C. S.

    1984-08-01

    An optical digital communication system requires that an accurate clock signal be available at the receiver for proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. Timing errors cause energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. A timing subsystem for a satellite-to-satellite optical PPM communication link is simulated. The receiver employs direct photodetection, preprocessing of the detected signal, and a phase-locked loop for timing synchronization. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical calculations.

  12. In vivo electrode implanting system

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor)

    1989-01-01

    A cylindrical intramuscular implantable electrode is provided with a strip of fabric secured around it. The fabric is woven from a polyester fiber having loops of the fiber protruding. The end of the main cylindrical body is provided with a blunt conductive nose, and the opposite end is provided with a smaller diameter rear section with an annular groove to receive tips of fingers extending from a release tube. The fingers are formed to spring outwardly and move the fingertips out of the annular groove in order to release the electrode from the release tube when a sheath over the electrode is drawn back sufficiently. The sheath compresses the fingers of the release tube and the fabric loops until it is drawn back. Muscle tissue grows into the loops to secure the electrode in place after the sheath is drawn back. The entire assembly of electrode, release tube and sheath can be inserted into the patient's muscle to the desired position through a hypodermic needle. The release tube may be used to manipulate the electrode in the patient's muscle to an optimum position before the electrode is released.

  13. Shape Optimization of Rubber Bushing Using Differential Evolution Algorithm

    PubMed Central

    2014-01-01

    The objective of this study is to design rubber bushing at desired level of stiffness characteristics in order to achieve the ride quality of the vehicle. A differential evolution algorithm based approach is developed to optimize the rubber bushing through integrating a finite element code running in batch mode to compute the objective function values for each generation. Two case studies were given to illustrate the application of proposed approach. Optimum shape parameters of 2D bushing model were determined by shape optimization using differential evolution algorithm. PMID:25276848

  14. Homeostatic theory of obesity

    PubMed Central

    2015-01-01

    Health is regulated by homeostasis, a property of all living things. Homeostasis maintains equilibrium at set-points using feedback loops for optimum functioning of the organism. Imbalances in homeostasis causing overweight and obesity are evident in more than 1 billion people. In a new theory, homeostatic obesity imbalance is attributed to a hypothesized ‘Circle of Discontent’, a system of feedback loops linking weight gain, body dissatisfaction, negative affect and over-consumption. The Circle of Discontent theory is consistent with an extensive evidence base. A four-armed strategy to halt the obesity epidemic consists of (1) putting a stop to victim-blaming, stigma and discrimination; (2) devalorizing the thin-ideal; (3) reducing consumption of energy-dense, low-nutrient foods and drinks; and (4) improving access to plant-based diets. If fully implemented, interventions designed to restore homeostasis have the potential to halt the obesity epidemic. PMID:28070357

  15. Development of variable-width ribbon heating elements for liquid-metal and gas-cooled fast breeder reactor fuel-pin simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCulloch, R.W.; Post, D.W.; Lovell, R.T.

    1981-04-01

    Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relatemore » this profile to that generated by the coils in completed fuel pin simulators.« less

  16. Implementation of Nonlinear Control Laws for an Optical Delay Line

    NASA Technical Reports Server (NTRS)

    Hench, John J.; Lurie, Boris; Grogan, Robert; Johnson, Richard

    2000-01-01

    This paper discusses the implementation of a globally stable nonlinear controller algorithm for the Real-Time Interferometer Control System Testbed (RICST) brassboard optical delay line (ODL) developed for the Interferometry Technology Program at the Jet Propulsion Laboratory. The control methodology essentially employs loop shaping to implement linear control laws. while utilizing nonlinear elements as means of ameliorating the effects of actuator saturation in its coarse, main, and vernier stages. The linear controllers were implemented as high-order digital filters and were designed using Bode integral techniques to determine the loop shape. The nonlinear techniques encompass the areas of exact linearization, anti-windup control, nonlinear rate limiting and modal control. Details of the design procedure are given as well as data from the actual mechanism.

  17. Discriminative Features Mining for Offline Handwritten Signature Verification

    NASA Astrophysics Data System (ADS)

    Neamah, Karrar; Mohamad, Dzulkifli; Saba, Tanzila; Rehman, Amjad

    2014-03-01

    Signature verification is an active research area in the field of pattern recognition. It is employed to identify the particular person with the help of his/her signature's characteristics such as pen pressure, loops shape, speed of writing and up down motion of pen, writing speed, pen pressure, shape of loops, etc. in order to identify that person. However, in the entire process, features extraction and selection stage is of prime importance. Since several signatures have similar strokes, characteristics and sizes. Accordingly, this paper presents combination of orientation of the skeleton and gravity centre point to extract accurate pattern features of signature data in offline signature verification system. Promising results have proved the success of the integration of the two methods.

  18. Integrated Research/Education University Aircraft Design Program Development

    DTIC Science & Technology

    2017-04-06

    iterations and loop shaping compared to MIMO control methods. Despite the drawbacks, loop closure and classical methods are the design methods most commonly...AFRL-AFOSR-VA-TR-2017-0077 Integrated Research/Education University Aircraft Design Program Development Eli Livne UNIVERSITY OF WASHINGTON 4333...SUBTITLE Integrated Research/Education University Aircraft Design Program Development 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0027 5c.  PROGRAM

  19. Investigation of Multi-Input Multi-Output Robust Control Methods to Handle Parametric Uncertainties in Autopilot Design.

    PubMed

    Kasnakoğlu, Coşku

    2016-01-01

    Some level of uncertainty is unavoidable in acquiring the mass, geometry parameters and stability derivatives of an aerial vehicle. In certain instances tiny perturbations of these could potentially cause considerable variations in flight characteristics. This research considers the impact of varying these parameters altogether. This is a generalization of examining the effects of particular parameters on selected modes present in existing literature. Conventional autopilot designs commonly assume that each flight channel is independent and develop single-input single-output (SISO) controllers for every one, that are utilized in parallel for actual flight. It is demonstrated that an attitude controller built like this can function flawlessly on separate nominal cases, but can become unstable with a perturbation no more than 2%. Two robust multi-input multi-output (MIMO) design strategies, specifically loop-shaping and μ-synthesis are outlined as potential substitutes and are observed to handle large parametric changes of 30% while preserving decent performance. Duplicating the loop-shaping procedure for the outer loop, a complete flight control system is formed. It is confirmed through software-in-the-loop (SIL) verifications utilizing blade element theory (BET) that the autopilot is capable of navigation and landing exposed to high parametric variations and powerful winds.

  20. Investigation of Multi-Input Multi-Output Robust Control Methods to Handle Parametric Uncertainties in Autopilot Design

    PubMed Central

    Kasnakoğlu, Coşku

    2016-01-01

    Some level of uncertainty is unavoidable in acquiring the mass, geometry parameters and stability derivatives of an aerial vehicle. In certain instances tiny perturbations of these could potentially cause considerable variations in flight characteristics. This research considers the impact of varying these parameters altogether. This is a generalization of examining the effects of particular parameters on selected modes present in existing literature. Conventional autopilot designs commonly assume that each flight channel is independent and develop single-input single-output (SISO) controllers for every one, that are utilized in parallel for actual flight. It is demonstrated that an attitude controller built like this can function flawlessly on separate nominal cases, but can become unstable with a perturbation no more than 2%. Two robust multi-input multi-output (MIMO) design strategies, specifically loop-shaping and μ-synthesis are outlined as potential substitutes and are observed to handle large parametric changes of 30% while preserving decent performance. Duplicating the loop-shaping procedure for the outer loop, a complete flight control system is formed. It is confirmed through software-in-the-loop (SIL) verifications utilizing blade element theory (BET) that the autopilot is capable of navigation and landing exposed to high parametric variations and powerful winds. PMID:27783706

  1. Using in-cell SHAPE-Seq and simulations to probe structure–function design principles of RNA transcriptional regulators

    PubMed Central

    Takahashi, Melissa K.; Watters, Kyle E.; Gasper, Paul M.; Abbott, Timothy R.; Carlson, Paul D.; Chen, Alan A.

    2016-01-01

    Antisense RNA-mediated transcriptional regulators are powerful tools for controlling gene expression and creating synthetic gene networks. RNA transcriptional repressors derived from natural mechanisms called attenuators are particularly versatile, though their mechanistic complexity has made them difficult to engineer. Here we identify a new structure–function design principle for attenuators that enables the forward engineering of new RNA transcriptional repressors. Using in-cell SHAPE-Seq to characterize the structures of attenuator variants within Escherichia coli, we show that attenuator hairpins that facilitate interaction with antisense RNAs require interior loops for proper function. Molecular dynamics simulations of these attenuator variants suggest these interior loops impart structural flexibility. We further observe hairpin flexibility in the cellular structures of natural RNA mechanisms that use antisense RNA interactions to repress translation, confirming earlier results from in vitro studies. Finally, we design new transcriptional attenuators in silico using an interior loop as a structural requirement and show that they function as desired in vivo. This work establishes interior loops as an important structural element for designing synthetic RNA gene regulators. We anticipate that the coupling of experimental measurement of cellular RNA structure and function with computational modeling will enable rapid discovery of structure–function design principles for a diverse array of natural and synthetic RNA regulators. PMID:27103533

  2. Dynamic Droop–Based Inertial Control of a Doubly-Fed Induction Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Min; Muljadi, Eduard; Park, Jung-Wook

    2016-07-01

    If a large disturbance occurs in a power grid, two auxiliary loops for the inertial control of a wind turbine generator have been used: droop loop and rate of change of frequency (ROCOF) loop. Because their gains are fixed, difficulties arise in determining them suitable for all grid and wind conditions. This paper proposes a dynamic droop-based inertial control scheme of a doubly-fed induction generator (DFIG). The scheme aims to improve the frequency nadir (FN) and ensure stable operation of a DFIG. To achieve the first goal, the scheme uses a droop loop, but it dynamically changes its gain basedmore » on the ROCOF to release a large amount of kinetic energy during the initial stage of a disturbance. To do this, a shaping function that relates the droop to the ROCOF is used. To achieve the second goal, different shaping functions, which depend on rotor speeds, are used to give a large contribution in high wind conditions and prevent over-deceleration in low wind conditions during inertial control. The performance of the proposed scheme was investigated under various wind conditions using an EMTP-RV simulator. The results indicate that the scheme improves the FN and ensures stable operation of a DFIG.« less

  3. Wilson loops in supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Pestun, Vasily

    This thesis is devoted to several exact computations in four-dimensional supersymmetric gauge field theories. In the first part of the thesis we prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N = 4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N = 2 and the N* = 2 supersymmetric Yang-Mills theory on a four-sphere. Circular supersymmetric Wilson loops in four-dimensional N = 2 superconformal gauge theory are treated similarly. In the second part we consider supersymmetric Wilson loops of arbitrary shape restricted to a two-dimensional sphere in the four-dimensional N = 4 supersymmetric Yang-Mills theory. We show that expectation value for these Wilson loops can be exactly computed using a two-dimensional theory closely related to the topological two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for the complexified gauge group.

  4. Airfoil Design and Optimization by the One-Shot Method

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Taasan, Shlomo; Salas, M. D.

    1995-01-01

    An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Lagrange multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.

  5. Airfoil optimization by the one-shot method

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Taasan, Shlomo; Salas, M. D.

    1994-01-01

    An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (Governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Language multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.

  6. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yue; Xu, Ke; Jiang, Weilin

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less

  7. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    DOE PAGES

    Cao, Yue; Xu, Ke; Jiang, Weilin; ...

    2015-07-03

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less

  8. Control of a flexible link by shaping the closed loop frequency response function through optimised feedback filters

    NASA Astrophysics Data System (ADS)

    Del Vescovo, D.; D'Ambrogio, W.

    1995-01-01

    A frequency domain method is presented to design a closed-loop control for vibration reduction flexible mechanisms. The procedure is developed on a single-link flexible arm, driven by one rotary degree of freedom servomotor, although the same technique may be applied to similar systems such as supports for aerospace antennae or solar panels. The method uses the structural frequency response functions (FRFs), thus avoiding system identification, that produces modeling uncertainties. Two closed-loops are implemented: the inner loop uses acceleration feedback with the aim of making the FRF similar to that of an equivalent rigid link; the outer loop feeds back displacements to achieve a fast positioning response and null steady state error. In both cases, the controller type is established a priori, while actual characteristics are defined by an optimisation procedure in which the relevant FRF is constrained into prescribed bounds and stability is taken into account.

  9. Research on the Dynamic Hysteresis Loop Model of the Residence Times Difference (RTD)-Fluxgate

    PubMed Central

    Wang, Yanzhang; Wu, Shujun; Zhou, Zhijian; Cheng, Defu; Pang, Na; Wan, Yunxia

    2013-01-01

    Based on the core hysteresis features, the RTD-fluxgate core, while working, is repeatedly saturated with excitation field. When the fluxgate simulates, the accurate characteristic model of the core may provide a precise simulation result. As the shape of the ideal hysteresis loop model is fixed, it cannot accurately reflect the actual dynamic changing rules of the hysteresis loop. In order to improve the fluxgate simulation accuracy, a dynamic hysteresis loop model containing the parameters which have actual physical meanings is proposed based on the changing rule of the permeability parameter when the fluxgate is working. Compared with the ideal hysteresis loop model, this model has considered the dynamic features of the hysteresis loop, which makes the simulation results closer to the actual output. In addition, other hysteresis loops of different magnetic materials can be explained utilizing the described model for an example of amorphous magnetic material in this manuscript. The model has been validated by the output response comparison between experiment results and fitting results using the model. PMID:24002230

  10. Studying DNA looping by single-molecule FRET.

    PubMed

    Le, Tung T; Kim, Harold D

    2014-06-28

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.

  11. Studying DNA Looping by Single-Molecule FRET

    PubMed Central

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA. PMID:24998459

  12. Determine Neuronal Tuning Curves by Exploring Optimum Firing Rate Distribution for Information Efficiency

    PubMed Central

    Han, Fang; Wang, Zhijie; Fan, Hong

    2017-01-01

    This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy consumption is composed of two parts: neuronal basic energy consumption and neuronal spike emission energy consumption. A parameter to model the relative importance of energy consumption is introduced in the definition of the information efficiency. Then, we designed a combination of exponential functions to describe the optimum firing rate distribution based on the analysis of the dependency of the mutual information and the energy consumption on the shape of the functions of the firing rate distributions. Furthermore, we developed a rapid algorithm to search the parameter values of the optimum firing rate distribution function. Finally, we found with the rapid algorithm that a combination of two different exponential functions with two free parameters can describe the optimum firing rate distribution accurately. We also found that if the energy consumption is relatively unimportant (important) compared to the mutual information or the neuronal basic energy consumption is relatively large (small), the curve of the optimum firing rate distribution will be relatively flat (steep), and the corresponding optimum tuning curve exhibits a form of sigmoid if the stimuli distribution is normal. PMID:28270760

  13. Conceptual design of a thermalhydraulic loop for multiple test geometries at supercritical conditions named Supercritical Phenomena Experimental Test Apparatus (SPETA)

    NASA Astrophysics Data System (ADS)

    Adenariwo, Adepoju

    The efficiency of nuclear reactors can be improved by increasing the operating pressure of current nuclear reactors. Current CANDU-type nuclear reactors use heavy water as coolant at an outlet pressure of up to 11.5 MPa. Conceptual SuperCritical Water Reactors (SCWRs) will operate at a higher coolant outlet pressure of 25 MPa. Supercritical water technology has been used in advanced coal plants and its application proves promising to be employed in nuclear reactors. To better understand how supercritical water technology can be applied in nuclear power plants, supercritical water loops are used to study the heat transfer phenomena as it applies to CANDU-type reactors. A conceptual design of a loop known as the Supercritical Phenomena Experimental Apparatus (SPETA) has been done. This loop has been designed to fit in a 9 m by 2 m by 2.8 m enclosure that will be installed at the University of Ontario Institute of Technology Energy Research Laboratory. The loop include components to safely start up and shut down various test sections, produce a heat source to the test section, and to remove reject heat. It is expected that loop will be able to investigate the behaviour of supercritical water in various geometries including bare tubes, annulus tubes, and multi-element-type bundles. The experimental geometries are designed to match the fluid properties of Canadian SCWR fuel channel designs so that they are representative of a practical application of supercritical water technology in nuclear plants. This loop will investigate various test section orientations which are the horizontal, vertical, and inclined to investigate buoyancy effects. Frictional pressure drop effects and satisfactory methods of estimating hydraulic resistances in supercritical fluid shall also be estimated with the loop. Operating limits for SPETA have been established to be able to capture the important heat transfer phenomena at supercritical conditions. Heat balance and flow calculations have been done to appropriately size components in the loop. Sensitivity analysis has been done to find the optimum design for the loop.

  14. Feedback control methods for drug dosage optimisation. Concepts, classification and clinical application.

    PubMed

    Vozeh, S; Steimer, J L

    1985-01-01

    The concept of feedback control methods for drug dosage optimisation is described from the viewpoint of control theory. The control system consists of 5 parts: (a) patient (the controlled process); (b) response (the measured feedback); (c) model (the mathematical description of the process); (d) adaptor (to update the parameters); and (e) controller (to determine optimum dosing strategy). In addition to the conventional distinction between open-loop and closed-loop control systems, a classification is proposed for dosage optimisation techniques which distinguishes between tight-loop and loose-loop methods depending on whether physician's interaction is absent or included as part of the control step. Unlike engineering problems where the process can usually be controlled by fully automated devices, therapeutic situations often require that the physician be included in the decision-making process to determine the 'optimal' dosing strategy. Tight-loop and loose-loop methods can be further divided into adaptive and non-adaptive, depending on the presence of the adaptor. The main application areas of tight-loop feedback control methods are general anaesthesia, control of blood pressure, and insulin delivery devices. Loose-loop feedback methods have been used for oral anticoagulation and in therapeutic drug monitoring. The methodology, advantages and limitations of the different approaches are reviewed. A general feature common to all application areas could be observed: to perform well under routine clinical conditions, which are characterised by large interpatient variability and sometimes also intrapatient changes, control systems should be adaptive. Apart from application in routine drug treatment, feedback control methods represent an important research tool. They can be applied for the investigation of pathophysiological and pharmacodynamic processes. A most promising application is the evaluation of the relationship between an intermediate response (e.g. drug level), which is often used as feedback for dosage adjustment, and the final therapeutic goal.

  15. Assessment of optimum threshold and particle shape parameter for the image analysis of aggregate size distribution of concrete sections

    NASA Astrophysics Data System (ADS)

    Ozen, Murat; Guler, Murat

    2014-02-01

    Aggregate gradation is one of the key design parameters affecting the workability and strength properties of concrete mixtures. Estimating aggregate gradation from hardened concrete samples can offer valuable insights into the quality of mixtures in terms of the degree of segregation and the amount of deviation from the specified gradation limits. In this study, a methodology is introduced to determine the particle size distribution of aggregates from 2D cross sectional images of concrete samples. The samples used in the study were fabricated from six mix designs by varying the aggregate gradation, aggregate source and maximum aggregate size with five replicates of each design combination. Each sample was cut into three pieces using a diamond saw and then scanned to obtain the cross sectional images using a desktop flatbed scanner. An algorithm is proposed to determine the optimum threshold for the image analysis of the cross sections. A procedure was also suggested to determine a suitable particle shape parameter to be used in the analysis of aggregate size distribution within each cross section. Results of analyses indicated that the optimum threshold hence the pixel distribution functions may be different even for the cross sections of an identical concrete sample. Besides, the maximum ferret diameter is the most suitable shape parameter to estimate the size distribution of aggregates when computed based on the diagonal sieve opening. The outcome of this study can be of practical value for the practitioners to evaluate concrete in terms of the degree of segregation and the bounds of mixture's gradation achieved during manufacturing.

  16. Optimum designs for superpressure balloons

    NASA Astrophysics Data System (ADS)

    Smith, M. S.; Rainwater, E. L.

    2004-01-01

    The elastica shape is now well known to be the best basic shape for superpressure balloon design. This shape, also known as the pumpkin, or natural shape for balloons, has been well understood since the early 1900s when it was applied to the determination of the shape of descending parachutes. The elastica shape was also investigated in the 1950s when high strength films were used to produce superpressure cylinder balloons. The need for uniform stress distribution in shells of early superpressure balloons led to a long period of the development of spherical superpressure balloons. Not until the late 1970s was the elastica shape revisited for the purpose of the producing superpressure balloons. This paper will review various development efforts in the field of superpressure design and will elaborate on the current state-of-the-art with suggestions for future developments.

  17. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks.

    PubMed

    Neves, Susana R; Tsokas, Panayiotis; Sarkar, Anamika; Grace, Elizabeth A; Rangamani, Padmini; Taubenfeld, Stephen M; Alberini, Cristina M; Schaff, James C; Blitzer, Robert D; Moraru, Ion I; Iyengar, Ravi

    2008-05-16

    The role of cell size and shape in controlling local intracellular signaling reactions, and how this spatial information originates and is propagated, is not well understood. We have used partial differential equations to model the flow of spatial information from the beta-adrenergic receptor to MAPK1,2 through the cAMP/PKA/B-Raf/MAPK1,2 network in neurons using real geometries. The numerical simulations indicated that cell shape controls the dynamics of local biochemical activity of signal-modulated negative regulators, such as phosphodiesterases and protein phosphatases within regulatory loops to determine the size of microdomains of activated signaling components. The model prediction that negative regulators control the flow of spatial information to downstream components was verified experimentally in rat hippocampal slices. These results suggest a mechanism by which cellular geometry, the presence of regulatory loops with negative regulators, and key reaction rates all together control spatial information transfer and microdomain characteristics within cells.

  18. Optimum Design of High-Speed Prop-Rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; McCarthy, Thomas Robert

    1993-01-01

    An integrated multidisciplinary optimization procedure is developed for application to rotary wing aircraft design. The necessary disciplines such as dynamics, aerodynamics, aeroelasticity, and structures are coupled within a closed-loop optimization process. The procedure developed is applied to address two different problems. The first problem considers the optimization of a helicopter rotor blade and the second problem addresses the optimum design of a high-speed tilting proprotor. In the helicopter blade problem, the objective is to reduce the critical vibratory shear forces and moments at the blade root, without degrading rotor aerodynamic performance and aeroelastic stability. In the case of the high-speed proprotor, the goal is to maximize the propulsive efficiency in high-speed cruise without deteriorating the aeroelastic stability in cruise and the aerodynamic performance in hover. The problems studied involve multiple design objectives; therefore, the optimization problems are formulated using multiobjective design procedures. A comprehensive helicopter analysis code is used for the rotary wing aerodynamic, dynamic and aeroelastic stability analyses and an algorithm developed specifically for these purposes is used for the structural analysis. A nonlinear programming technique coupled with an approximate analysis procedure is used to perform the optimization. The optimum blade designs obtained in each case are compared to corresponding reference designs.

  19. Shaping-lathe roundup machine is key to profitable manufacturing of composite sheathing panels in Massachusetts or Maine

    Treesearch

    N. Springate; I. Plough; P. Koch

    1978-01-01

    A process is described in which a shaping-lathe headrig produces flakes of optimum geometry while rounding 8-foot peeler bolts to their maximum cylindrical diameter. The cylinders are then passed, at a rate of 5 to 7 per minute, to a veneer lathe for production of continuoua veneer, which is subsequently clipped into 4- by 8-foot sheets. Veneer cores are flaked in a...

  20. Shaping-lathe roundup machine is key to profitable manufacture of composite sheathing panels in Massachusetts or Maine

    Treesearch

    Norman Springate; Peter Koch; Irving Plough

    1978-01-01

    A process is described in which a shaping-lathe headrig produces flakes of optimum geometry while rounding 8-foot peeler bolts to their maximum cylindrical diameter. The cylinder are then passed, at a rate of 5 to 7 per minute, to a veneer lathe for production of continuous veneer, which is Subsequently clipped into 4- by 8-foot sheet.. Veneer cores are flaked in a...

  1. A Robust H ∞ Controller for an UAV Flight Control System

    PubMed Central

    López, J.

    2015-01-01

    The objective of this paper is the implementation and validation of a robust H ∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H ∞ robust controller in the inner loop, H ∞ control methodology is used. The two controllers that conform the outer loop are designed using the H ∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements. PMID:26221622

  2. Eddy-Current Sensors with Asymmetrical Point Spread Function

    PubMed Central

    Gajda, Janusz; Stencel, Marek

    2016-01-01

    This paper concerns a special type of eddy-current sensor in the form of inductive loops. Such sensors are applied in the measuring systems classifying road vehicles. They usually have a rectangular shape with dimensions of 1 × 2 m, and are installed under the surface of the traffic lane. The wide Point Spread Function (PSF) of such sensors causes the information on chassis geometry, contained in the measurement signal, to be strongly averaged. This significantly limits the effectiveness of the vehicle classification. Restoration of the chassis shape, by solving the inverse problem (deconvolution), is also difficult due to the fact that it is ill-conditioned. An original approach to solving this problem is presented in this paper. It is a hardware-based solution and involves the use of inductive loops with an asymmetrical PSF. Laboratory experiments and simulation tests, conducted with models of an inductive loop, confirmed the effectiveness of the proposed solution. In this case, the principle applies that the higher the level of sensor spatial asymmetry, the greater the effectiveness of the deconvolution algorithm. PMID:27782033

  3. 2 µm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser

    NASA Astrophysics Data System (ADS)

    Du, Tuanjie; Li, Weiwei; Ruan, Qiujun; Wang, Kaijie; Chen, Nan; Luo, Zhengqian

    2018-05-01

    We report direct generation of a high-power, large-energy dissipative soliton resonance (DSR) in a 2 µm Tm-doped double-clad fiber laser. A compact σ-shaped cavity is formed by a fiber Bragg grating and a 10/90 fiber loop mirror (FLM). The 10/90 FLM is not only used as an output mirror, but also acts as a nonlinear optical loop mirror for initiating mode locking. The mode-locked laser can deliver high-power, nanosecond DSR pulses at 2005.9 nm. We further perform a comparison study of the effect of the FLM’s loop length on the mode-locking threshold, peak power, pulse energy, and optical spectrum of the DSR pulses. We achieve a maximum average output power as high as 1.4 W, a maximum pulse energy of 353 nJ, and a maximum peak power of 84 W. This is, to the best of our knowledge, the highest power for 2 µm DSR pulses obtained in a mode-locked fiber laser.

  4. Eddy-Current Sensors with Asymmetrical Point Spread Function.

    PubMed

    Gajda, Janusz; Stencel, Marek

    2016-10-04

    This paper concerns a special type of eddy-current sensor in the form of inductive loops. Such sensors are applied in the measuring systems classifying road vehicles. They usually have a rectangular shape with dimensions of 1 × 2 m, and are installed under the surface of the traffic lane. The wide Point Spread Function (PSF) of such sensors causes the information on chassis geometry, contained in the measurement signal, to be strongly averaged. This significantly limits the effectiveness of the vehicle classification. Restoration of the chassis shape, by solving the inverse problem (deconvolution), is also difficult due to the fact that it is ill-conditioned. An original approach to solving this problem is presented in this paper. It is a hardware-based solution and involves the use of inductive loops with an asymmetrical PSF. Laboratory experiments and simulation tests, conducted with models of an inductive loop, confirmed the effectiveness of the proposed solution. In this case, the principle applies that the higher the level of sensor spatial asymmetry, the greater the effectiveness of the deconvolution algorithm.

  5. Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations.

    PubMed

    Han, Nanyu; Mu, Yuguang

    2013-01-01

    Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.

  6. Plasticity of 150-Loop in Influenza Neuraminidase Explored by Hamiltonian Replica Exchange Molecular Dynamics Simulations

    PubMed Central

    Han, Nanyu; Mu, Yuguang

    2013-01-01

    Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147–150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus. PMID:23593372

  7. Active vibration damping using smart material

    NASA Technical Reports Server (NTRS)

    Baras, John S.; Yan, Zhuang

    1994-01-01

    We consider the modeling and active damping of an elastic beam using distributed actuators and sensors. The piezoelectric ceramic material (PZT) is used to build the actuator. The sensor is made of the piezoelectric polymer polyvinylidene fluoride (PVDF). These materials are glued on both sides of the beam. For the simple clamped beam, the closed loop controller has been shown to be able to extract energy from the beam. The shape of the actuator and its influence on the closed loop system performance are discussed. It is shown that it is possible to suppress the selected mode by choosing the appropriate actuator layout. It is also shown that by properly installing the sensor and determining the sensor shape we can further extract and manipulate the sensor signal for our control need.

  8. Development of cubic Bezier curve and curve-plane intersection method for parametric submarine hull form design to optimize hull resistance using CFD

    NASA Astrophysics Data System (ADS)

    Chrismianto, Deddy; Zakki, Ahmad Fauzan; Arswendo, Berlian; Kim, Dong Joon

    2015-12-01

    Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create a parametric model for a complex shape with irregular curves, such as a submarine hull form. In this study, the cubic Bezier curve and curve-plane intersection method are used to generate a solid model of a parametric submarine hull form taking three input parameters into account: nose radius, tail radius, and length-height hull ratio ( L/ H). Application program interface (API) scripting is also used to write code in the ANSYS design modeler. The results show that the submarine shape can be generated with some variation of the input parameters. An example is given that shows how the proposed method can be applied successfully to a hull resistance optimization case. The parametric design of the middle submarine type was chosen to be modified. First, the original submarine model was analyzed, in advance, using CFD. Then, using the response surface graph, some candidate optimal designs with a minimum hull resistance coefficient were obtained. Further, the optimization method in goal-driven optimization (GDO) was implemented to find the submarine hull form with the minimum hull resistance coefficient ( C t ). The minimum C t was obtained. The calculated difference in C t values between the initial submarine and the optimum submarine is around 0.26%, with the C t of the initial submarine and the optimum submarine being 0.001 508 26 and 0.001 504 29, respectively. The results show that the optimum submarine hull form shows a higher nose radius ( r n ) and higher L/ H than those of the initial submarine shape, while the radius of the tail ( r t ) is smaller than that of the initial shape.

  9. Integrated Plasma Control for Alternative Plasma Shape on EAST

    NASA Astrophysics Data System (ADS)

    Xiao, Bingjia

    2017-10-01

    To support long pulse plasma operation in high performance, a set of plasma control algorithms such as PEFIT real-time equilibrium reconstruction, radiation feedback, Beta and loop voltage feedback and quasi-snowflake shape f control have been implemented on EAST Plasma Control system (PCS) which was adapted from DIII-D PCS. PEFIT is a parallelized version of EFIT by using GPU with highest computation acceleration ratio up to 100 with respect to EFIT. It demonstrated high performance both in DIII-D data analysis and in the real-time shape control on EAST plasma either in normal or quasi-snowflake shape. Loop voltage has been successfully controlled by Low Hybrid Wave (LHW) while the plasma current is maintained by poloidal field coil set. Beta control has been also demonstrated by using LHW and it will be extended to other heating sources because the PCS interface is ready. Radiation feedback control has been achieved by Neon seeding by Super-Sonic Molecular Beam Injection (SMBI). For the plasma operation in quasi-snowflake, we have reached 20 s ELMy free high confinement non-inductive discharges with betap 2, H98 1.1 and plasma current 250 kA. EAST orals.

  10. Use of CDMA access technology in mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Ramasastry, Jay; Wiedeman, Bob

    1995-01-01

    Use of Code Division Multiple Access (CDMA) technology in terrestrial wireless systems is fairly well understood. Similarly, design and operation of Power Control in a CDMA-based system in a terrestrial environment is also well established. Terrestrial multipath characteristics, and optimum design of the CDMA receiver to deal with multipath and fading conditions are reliably established. But the satellite environment is different. When the CDMA technology is adopted to the satellite environment, other design features need to be incorporated (for example; interleaving, open-loop and closed-loop power control design, diversity characteristics) to achieve comparable level of system performance. In fact, the GLOBALSTAR LEO/MSS system has incorporated all these features. Contrary to some published reports, CDMA retains the advantages in the satellite environment that are similar to those achieved in the terrestrial environment. This document gives a description of the CDMA waveform and other design features adopted for mobile satellite applications.

  11. Rapid and sensitive detection of Lily symptomless virus by reverse transcription loop-mediated isothermal amplification.

    PubMed

    He, Xiangfeng; Xue, Fei; Xu, Shufa; Wang, Wenhe

    2016-12-01

    Lily symptomless virus (LSV) is one of the most prevalent viruses that infect lily plants worldwide. A rapid and sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for detection of LSV, using two primer pairs that specifically amplified the conserved sequence of LSV coat protein. The optimum reaction conditions were as follows: 4mM MgCl 2 and 0.8M betaine with incubation at 64°C for 30min. The limit of detection of LSV from infected lily leaves was 10-fold higher for RT-LAMP than for conventional RT-PCR. Moreover, RT-LAMP detected LSV in not only symptomatic, but also in symptomless tissues of infected plants. These findings indicate that our RT-LAMP method for LSV can serve as a low-cost, simple, and rapid alternative to conventional detection assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. High temperature acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    A system is described for acoustically levitating an object within a portion of a chamber that is heated to a high temperature, while a driver at the opposite end of the chamber is maintained at a relatively low temperature. The cold end of the chamber is constructed so it can be telescoped to vary the length (L sub 1) of the cold end portion and therefore of the entire chamber, so that the chamber remains resonant to a normal mode frequency, and so that the pressure at the hot end of the chamber is maximized. The precise length of the chamber at any given time, is maintained at an optimum resonant length by a feedback loop. The feedback loop includes an acoustic pressure sensor at the hot end of the chamber, which delivers its output to a control circuit which controls a motor that varies the length (L) of the chamber to a level where the sensed acoustic pressure is a maximum.

  13. Analysis of pressure head-flow loops of pulsatile rotodynamic blood pumps.

    PubMed

    Jahren, Silje E; Ochsner, Gregor; Shu, Fangjun; Amacher, Raffael; Antaki, James F; Vandenberghe, Stijn

    2014-04-01

    The clinical importance of pulsatility is a recurring topic of debate in mechanical circulatory support. Lack of pulsatility has been identified as a possible factor responsible for adverse events and has also demonstrated a role in myocardial perfusion and cardiac recovery. A commonly used method for restoring pulsatility with rotodynamic blood pumps (RBPs) is to modulate the speed profile, synchronized to the cardiac cycle. This introduces additional parameters that influence the (un)loading of the heart, including the timing (phase shift) between the native cardiac cycle and the pump pulses, and the amplitude of speed modulation. In this study, the impact of these parameters upon the heart-RBP interaction was examined in terms of the pressure head-flow (HQ) diagram. The measurements were conducted using a rotodynamic Deltastream DP2 pump in a validated hybrid mock circulation with baroreflex function. The pump was operated with a sinusoidal speed profile, synchronized to the native cardiac cycle. The simulated ventriculo-aortic cannulation showed that the level of (un)loading and the shape of the HQ loops strongly depend on the phase shift. The HQ loops displayed characteristic shapes depending on the phase shift. Increased contribution of native contraction (increased ventricular stroke work [WS ]) resulted in a broadening of the loops. It was found that the previously described linear relationship between WS and the area of the HQ loop for constant pump speeds becomes a family of linear relationships, whose slope depends on the phase shift. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  14. Shape design sensitivity analysis and optimization of three dimensional elastic solids using geometric modeling and automatic regridding. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yao, Tse-Min; Choi, Kyung K.

    1987-01-01

    An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.

  15. Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.

    2015-06-28

    Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops weremore » open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.« less

  16. Using in-cell SHAPE-Seq and simulations to probe structure-function design principles of RNA transcriptional regulators.

    PubMed

    Takahashi, Melissa K; Watters, Kyle E; Gasper, Paul M; Abbott, Timothy R; Carlson, Paul D; Chen, Alan A; Lucks, Julius B

    2016-06-01

    Antisense RNA-mediated transcriptional regulators are powerful tools for controlling gene expression and creating synthetic gene networks. RNA transcriptional repressors derived from natural mechanisms called attenuators are particularly versatile, though their mechanistic complexity has made them difficult to engineer. Here we identify a new structure-function design principle for attenuators that enables the forward engineering of new RNA transcriptional repressors. Using in-cell SHAPE-Seq to characterize the structures of attenuator variants within Escherichia coli, we show that attenuator hairpins that facilitate interaction with antisense RNAs require interior loops for proper function. Molecular dynamics simulations of these attenuator variants suggest these interior loops impart structural flexibility. We further observe hairpin flexibility in the cellular structures of natural RNA mechanisms that use antisense RNA interactions to repress translation, confirming earlier results from in vitro studies. Finally, we design new transcriptional attenuators in silico using an interior loop as a structural requirement and show that they function as desired in vivo. This work establishes interior loops as an important structural element for designing synthetic RNA gene regulators. We anticipate that the coupling of experimental measurement of cellular RNA structure and function with computational modeling will enable rapid discovery of structure-function design principles for a diverse array of natural and synthetic RNA regulators. © 2016 Takahashi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves

    NASA Technical Reports Server (NTRS)

    Baker, David (Inventor)

    1998-01-01

    A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.

  18. Chromospheric counterparts of solar transition region unresolved fine structure loops

    NASA Astrophysics Data System (ADS)

    Pereira, Tiago M. D.; Rouppe van der Voort, Luc; Hansteen, Viggo H.; De Pontieu, Bart

    2018-04-01

    Low-lying loops have been discovered at the solar limb in transition region temperatures by the Interface Region Imaging Spectrograph (IRIS). They do not appear to reach coronal temperatures, and it has been suggested that they are the long-predicted unresolved fine structures (UFS). These loops are dynamic and believed to be visible during both heating and cooling phases. Making use of coordinated observations between IRIS and the Swedish 1-m Solar Telescope, we study how these loops impact the solar chromosphere. We show for the first time that there is indeed a chromospheric signal of these loops, seen mostly in the form of strong Doppler shifts and a conspicuous lack of chromospheric heating. In addition, we find that several instances have a inverse Y-shaped jet just above the loop, suggesting that magnetic reconnection is driving these events. Our observations add several puzzling details to the current knowledge of these newly discovered structures; this new information must be considered in theoretical models. Two movies associated to Fig. 1 are available at http://https://www.aanda.org

  19. Autoclave heat treatment for prealloyed powder products

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ashbrook, R. L.

    1973-01-01

    Technique could be applied directly to loose powders as part of hot pressing process of forming them to any required shapes. This would eliminate initial extrusion step commonly applied to prealloyed powders, substantially reduce cost of forming operation, and result in optimum properties.

  20. An evaluation of Seasat-A data in relation to optimum track ship weather routing and site specific forecasting for the offshore oil industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daley, C.; Johnson, R.G.; Thomson, J.C.

    1981-07-01

    The usefulness of Seasat-A SASS and altimeter measurements is reviewed. Five oceanic areas were selected: the Gulf of Alaska, central and western north Atlantic, eastern north Pacific, southern Indian Ocean, and the North Sea. Both Seasat-aided and conventional analyses were used in offshore hindcast and optimum ship routing situations. Where conventional observations are relatively dense, Seasat wind and wave data have greater impact in determining the shape of major map features than in positioning the features. In data sparse areas, Seasat data permit greater definition of surface features as well as their precise location. The use of Seasat data inmore » optimum ship routing is quantified by means of comparative studies in the Gulf of Alaska.« less

  1. Mitotic chromosome compaction via active loop extrusion

    NASA Astrophysics Data System (ADS)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.

  2. Timing performance of phase-locked loops in optical pulse position modulation communication systems

    NASA Astrophysics Data System (ADS)

    Lafaw, D. A.

    In an optical digital communication system, an accurate clock signal must be available at the receiver to provide proper synchronization with the transmitted signal. Phase synchronization is especially critical in M-ary pulse position modulation (PPM) systems where the optimum decision scheme is an energy detector which compares the energy in each of M time slots to decide which of M possible words was sent. A timing error causes energy spillover into adjacent time slots (a form of intersymbol interference) so that only a portion of the signal energy may be attributed to the correct time slot. This effect decreases the effective signal, increases the effective noise, and increases the probability of error. This report simulates a timing subsystem for a satellite-to-satellite optical PPM communication link. The receiver employs direct photodetection, preprocessing of the optical signal, and a phase-locked loop for timing synchronization. The photodetector output is modeled as a filtered, doubly stochastic Poisson shot noise process. The variance of the relative phase error is examined under varying signal strength conditions as an indication of loop performance, and simulation results are compared to theoretical relations.

  3. FINE STRUCTURES AND OVERLYING LOOPS OF CONFINED SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn

    2014-10-01

    Using the Hα observations from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we focus on the fine structures of three confined flares and the issue why all the three flares are confined instead of eruptive. All the three confined flares take place successively at the same location and have similar morphologies, so can be termed homologous confined flares. In the simultaneous images obtained by the Solar Dynamics Observatory, many large-scale coronal loops above the confined flares are clearly observed in multi-wavelengths. At the pre-flare stage, two dipoles emerge near the negative sunspot, and the dipolar patches aremore » connected by small loops appearing as arch-shaped Hα fibrils. There exists a reconnection between the small loops, and thus the Hα fibrils change their configuration. The reconnection also occurs between a set of emerging Hα fibrils and a set of pre-existing large loops, which are rooted in the negative sunspot, a nearby positive patch, and some remote positive faculae, forming a typical three-legged structure. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive.« less

  4. Polarization switching in undoped and La-doped TlInS2 ferroelectric-semiconductors

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Mikailzade, Faik A.; Suleymanov, Rauf A.; Aliyeva, Vafa B.; Mammadov, Tofig G.; Sharifov, Galib M.

    2017-12-01

    Dielectric hysteresis loops of pure and lanthanum doped TlInS2 ferroelectric-semiconductors were studied at the frequency 50 Hz for different temperatures below the Curie temperature (Tc). It has been revealed that, without any poling procedure, pure TlInS2 exhibits normal single hysteresis loops at T < Tc. After electric field-cooled treatment of TlInS2 the shape of hysteresis loops was strongly affected by corresponding charged deep level defects which were previously activated during the poling process. As a result, an additional defect polarization state from space charges accumulated on the intrinsic deep level defects has been revealed in pure TlInS2 at the temperatures below Tc. Besides, unusual multiple hysteresis loops were observed in La doped TlInS2 at T < Tc after application of different external perturbations (electric field, exposition and memory effect) to the sample. Measurements of the hysteresis loops in TlInS2:La revealed the slim single, double and even triple polarization-electric field (P-E) hysteresis loops. This intriguing phenomenon is attributed to the domain pinning by photo- and electrically active La-impurity centers. The temperature variation of double-hysteresis loop was also investigated. Due to the heat elimination of the random local defect polar moments, the double-hysteresis loops were transformed into a normal single hysteresis loops on increasing the temperature.

  5. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    PubMed Central

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  6. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy.

    PubMed

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-18

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  7. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  8. Manifestation of two-channel nonlocal spin transport in the shapes of Hanle curves

    NASA Astrophysics Data System (ADS)

    Roundy, R. C.; Prestgard, M. C.; Tiwari, A.; Mishchenko, E. G.; Raikh, M. E.

    2014-09-01

    The dynamics of charge-density fluctuations in a system of two tunnel-coupled wires contains two diffusion modes with dispersion iω =Dq2 and iω =Dq2+2/τt, where D is the diffusion coefficient and τt is the tunneling time between the wires. The dispersion of corresponding spin-density modes depends on magnetic field as a result of the spin precession with Larmour frequency ωL. The presence of two modes affects the shape of the Hanle curve describing the spin-dependent resistance R between the ferromagnetic strips covering the nonmagnetic wires. We demonstrate that the relative shapes of the R (ωL) curves, one measured within the same wire and the other measured between the wires, depends on the ratio τt/τs, where τs is the spin-diffusion time. If the coupling between the wires is local, i.e., only at the point x =0, then the difference of the shapes of intrawire and interwire Hanle curves reflects the difference in statistics of diffusive trajectories, which "switch" or do not switch near x =0. When one of the coupled wires is bent into a loop with a radius a, the shape of the Hanle curve reflects the statistics of random walks on the loop. This statistics is governed by the dimensionless parameter a /√Dτs .

  9. Short-term departures from an optimum ambient temperature are associated with increased risk of out-of-hospital cardiac arrest.

    PubMed

    Dahlquist, Marcus; Raza, Auriba; Bero-Bedada, Getahun; Hollenberg, Jacob; Lind, Tomas; Orsini, Nicola; Sjögren, Bengt; Svensson, Leif; Ljungman, Petter L

    2016-07-01

    Associations have been reported between daily ambient temperature and all-cause and cardiovascular mortality. However, the potential harmful effect of temperature on out-of-hospital cardiac arrest (OHCA) is insufficiently studied. The objective of this study was to investigate the short-term association between ambient temperature and the occurrence of OHCA. In 5961 cases of OHCAs treated by Emergency Medical Service occurring in Stockholm County we investigated the association between the preceding 24-h and 1h mean ambient temperature, obtained from a fixed monitoring station, and OHCA using a time-stratified case-crossover design. We observed a V-shaped relationship between preceding mean 24-h and 1-h ambient temperature and the occurrence of OHCAs. For mean 24-h temperature we observed an odds ratio (OR) of 1.05 (1.00-1.11) for each 5°C below the optimum temperature and 1.05 (0.96-1.18) for each 5°C above the optimum. We observed similar results for 1-h mean temperature exposure. Results for temperatures above the optimum temperature showed evidence of confounding by ozone. Ambient temperature below an optimum temperature was associated with increased risk of OHCA in Stockholm. Temperature above an optimum temperature was not significantly associated with OHCA. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Segmented saddle-shaped passive stabilization conductors for toroidal plasmas

    DOEpatents

    Leuer, James A.

    1990-05-01

    A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented.

  11. Optimum design of high speed prop rotors including the coupling of performance, aeroelastic stability and structures

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.; Madden, John F., III

    1992-01-01

    An optimization procedure is developed for the design of high speed prop-rotors to be used in civil tiltrotor applications. The goal is to couple aerodynamic performance, aeroelastic stability, and structural design requirements inside a closed-loop optimization procedure. The objective is to minimize the gross weight and maximize the propulsive efficiency in high speed cruise. Constraints are imposed on the rotor aeroelastic stability in both hover and cruise and rotor figure of merit in hover. Both structural and aerodynamic design variables are used.

  12. Packaging of electronic modules

    NASA Technical Reports Server (NTRS)

    Katzin, L.

    1966-01-01

    Study of design approaches that are taken toward optimizing the packaging of electronic modules with respect to size, shape, component orientation, interconnections, and structural support. The study does not present a solution to specific packaging problems, but rather the factors to be considered to achieve optimum packaging designs.

  13. The FPase properties and morphology changes of a cellulolytic bacterium, Sporocytophaga sp. JL-01, on decomposing filter paper cellulose.

    PubMed

    Wang, Xiuran; Peng, Zhongqi; Sun, Xiaoling; Liu, Dongbo; Chen, Shan; Li, Fan; Xia, Hongmei; Lu, Tiancheng

    2012-01-01

    Sporocytophaga sp. JL-01 is a sliding cellulose degrading bacterium that can decompose filter paper (FP), carboxymethyl cellulose (CMC) and cellulose CF11. In this paper, the morphological characteristics of S. sp. JL-01 growing in FP liquid medium was studied by Scanning Electron Microscope (SEM), and one of the FPase components of this bacterium was analyzed. The results showed that the cell shapes were variable during the process of filter paper cellulose decomposition and the rod shape might be connected with filter paper decomposing. After incubating for 120 h, the filter paper was decomposed significantly, and it was degraded absolutely within 144 h. An FPase1 was purified from the supernatant and its characteristics were analyzed. The molecular weight of the FPase1 was 55 kDa. The optimum pH was pH 7.2 and optimum temperature was 50°C under experiment conditions. Zn(2+) and Co(2+) enhanced the enzyme activity, but Fe(3+) inhibited it.

  14. Influence of rotational speed of centrifugal casting process on appearance, microstructure, and sliding wear behaviour of Al-2Si cast alloy

    NASA Astrophysics Data System (ADS)

    Mukunda, P. G.; Shailesh, Rao A.; Rao, Shrikantha S.

    2010-02-01

    Although the manner in which the molten metal flows plays a major role in the formation of the uniform cylinder in centrifugal casting, not much information is available on this topic. The flow in the molten metal differs at various rotational speeds, which in turn affects the final casting. In this paper, the influence of the flow of molten metal of hyper eutectic Al-2Si alloys at various rotational speeds is discussed. At an optimum speed of 800 rpm, a uniform cylinder was formed. For the rotational speeds below and above these speeds, an irregular shaped casting was formed, which is mainly due to the influence of melt. Primary á-Al particles were formed in the tube periphery at low rotational speed, and their sizes and shapes were altered with changes in rotational speeds. The wear test for the inner surface of the casting showed better wear properties for the casting prepared at the optimum speed of rotation.

  15. Perspectives of shaped pulses for EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Spindler, Philipp E.; Schöps, Philipp; Kallies, Wolfgang; Glaser, Steffen J.; Prisner, Thomas F.

    2017-07-01

    This article describes current uses of shaped pulses, generated by an arbitrary waveform generator, in the field of EPR spectroscopy. We show applications of sech/tanh and WURST pulses to dipolar spectroscopy, including new pulse schemes and procedures, and discuss the more general concept of optimum-control-based pulses for applications in EPR spectroscopy. The article also describes a procedure to correct for experimental imperfections, mostly introduced by the microwave resonator, and discusses further potential applications and limitations of such pulses.

  16. Motion Coordination and Adaptation Using Deception and Human Interactions

    DTIC Science & Technology

    2016-11-18

    evolves an interface (front) by embedding it as a hyper - surface in a higher dimension, where time is the augmented dimension. Automatic handling of...the open- loop system trajectories. The results are depicted in Fig. 32. From the shape of the value function in Fig. 32(b) it is seen that the value is...estimate of the value function only over the area of the state space visited by the sampled (open- loop ) trajectories. In that sense, the areas not

  17. Mathematical theory of a relaxed design problem in structural optimization

    NASA Technical Reports Server (NTRS)

    Kikuchi, Noboru; Suzuki, Katsuyuki

    1990-01-01

    Various attempts have been made to construct a rigorous mathematical theory of optimization for size, shape, and topology (i.e. layout) of an elastic structure. If these are represented by a finite number of parametric functions, as Armand described, it is possible to construct an existence theory of the optimum design using compactness argument in a finite dimensional design space or a closed admissible set of a finite dimensional design space. However, if the admissible design set is a subset of non-reflexive Banach space such as L(sup infinity)(Omega), construction of the existence theory of the optimum design becomes suddenly difficult and requires to extend (i.e. generalize) the design problem to much more wider class of design that is compatible to mechanics of structures in the sense of variational principle. Starting from the study by Cheng and Olhoff, Lurie, Cherkaev, and Fedorov introduced a new concept of convergence of design variables in a generalized sense and construct the 'G-Closure' theory of an extended (relaxed) optimum design problem. A similar attempt, but independent in large extent, can also be found in Kohn and Strang in which the shape and topology optimization problem is relaxed to allow to use of perforated composites rather than restricting it to usual solid structures. An identical idea is also stated in Murat and Tartar using the notion of the homogenization theory. That is, introducing possibility of micro-scale perforation together with the theory of homogenization, the optimum design problem is relaxed to construct its mathematical theory. It is also noted that this type of relaxed design problem is perfectly matched to the variational principle in structural mechanics.

  18. Wrinkles, loops, and topological defects in twisted ribbons

    NASA Astrophysics Data System (ADS)

    Chopin, Julien

    Nature abounds with elastic ribbon like shapes including double-stranded semiflexible polymers, graphene and metal oxide nanoribbons which are examples of elongated elastic structures with a strongly anisotropic cross-section. Due to this specific geometry, it is far from trivial to anticipate if a ribbon should be considered as a flat flexible filament or a narrow thin plate. We thus perform an experiment in which a thin elastic ribbon is loaded using a twisting and traction device coupled with a micro X-ray computed tomography machine allowing a full 3D shape reconstruction. A wealth of morphological behaviors can be observed including wrinkled helicoids, curled and looped configurations, and faceted ribbons. In this talk, I will show that most morphologies can be understood using a far-from-threshold approach and simple scaling arguments. Further, we find that the various shapes can be organized in a phase diagram using the twist, the tension, and the geometry of the ribbon as control parameters. Finally, I will discuss the spontaneous formation of topological defects with negatively-signed Gaussian charge at large twist and small but finite stretch.

  19. Computing Shapes Of Cascade Diffuser Blades

    NASA Technical Reports Server (NTRS)

    Tran, Ken; Prueger, George H.

    1993-01-01

    Computer program generates sizes and shapes of cascade-type blades for use in axial or radial turbomachine diffusers. Generates shapes of blades rapidly, incorporating extensive cascade data to determine optimum incidence and deviation angle for blade design based on 65-series data base of National Advisory Commission for Aeronautics and Astronautics (NACA). Allows great variability in blade profile through input variables. Also provides for design of three-dimensional blades by allowing variable blade stacking. Enables designer to obtain computed blade-geometry data in various forms: as input for blade-loading analysis; as input for quasi-three-dimensional analysis of flow; or as points for transfer to computer-aided design.

  20. Antidot shape dependence of switching mechanism in permalloy samples

    NASA Astrophysics Data System (ADS)

    Yetiş, Hakan; Denizli, Haluk

    2017-01-01

    We study antidot shape dependence of the switching magnetization for various permalloy samples with square and triangular arrays of nanometer scale antidots. The remnant magnetization, squareness ratio, and coercive fields of the samples are extracted from the hysteresis loops which are obtained by solving the Landau-Lifshitz-Gilbert (LLG) equation numerically. We find several different magnetic spin configurations which reveal the existence of superdomain wall structures. Our results are discussed in terms of the local shape anisotropy, array geometry, and symmetry properties in order to explain the formation of inhomogeneous domain structures.

  1. Loop shaping design for tracking performance in machine axes.

    PubMed

    Schinstock, Dale E; Wei, Zhouhong; Yang, Tao

    2006-01-01

    A modern interpretation of classical loop shaping control design methods is presented in the context of tracking control for linear motor stages. Target applications include noncontacting machines such as laser cutters and markers, water jet cutters, and adhesive applicators. The methods are directly applicable to the common PID controller and are pertinent to many electromechanical servo actuators other than linear motors. In addition to explicit design techniques a PID tuning algorithm stressing the importance of tracking is described. While the theory behind these techniques is not new, the analysis of their application to modern systems is unique in the research literature. The techniques and results should be important to control practitioners optimizing PID controller designs for tracking and in comparing results from classical designs to modern techniques. The methods stress high-gain controller design and interpret what this means for PID. Nothing in the methods presented precludes the addition of feedforward control methods for added improvements in tracking. Laboratory results from a linear motor stage demonstrate that with large open-loop gain very good tracking performance can be achieved. The resultant tracking errors compare very favorably to results from similar motions on similar systems that utilize much more complicated controllers.

  2. Effect of loop structure of bovine lactoferricin on apoptosis in Jurkat cells.

    PubMed

    Zhang, Tie-nan; Yang, Wei; Liu, Ning

    2010-06-01

    Bovine lactoferricin (LfcinB) is a cationic peptide that selectively induces apoptosis in Jurkat cells. However less is known about the influence of this kind of apoptosis on the intra-cellular ceramide metabolism and the structure-function relationship between the loop structure of LfcinB and its action of inducing apoptosis in Jurkat cells. In the present study, the artificially synthesized LfcinB and LfcinB-derived peptide (Cys 19 residue in LfcinB was replaced by Ala) was added in Jurkat cells, the nucleolus shape was observed by fluorescent microscopy, the ceramide concentration in Jurkat cells was determined by reversed phase high performance liquid chromatography (RP-HPLC). The results of MTT assay showed that LfcinB inhibited proliferation of Jurkat cells, and the inhibition rate was approximately 18.90%. Moreover, the inhibition rate of LfcinB together with MAPP was upto approximately 59.89%. The RP-HPLC result showed that LfcinB improved the ceramide level in Jurkat cells. By using the DNA fragmentation assay and observing the nucleolus shape, the result displayed deficiency of the loop structure could cause LfcinB losing the biological activity of inducing apoptosis in Jurkat cells.

  3. The shaped pulses control and operation on the SG-III prototype facility

    NASA Astrophysics Data System (ADS)

    Ping, Li; Wei, Wang; Sai, Jin; Wanqing, Huang; Wenyi, Wang; Jingqin, Su; Runchang, Zhao

    2018-04-01

    The laser driven inertial confined fusion experiments require careful temporal shape control of the laser pulse. Two approaches are introduced to improve the accuracy and efficiency of the close loop feedback system for long term operation in TIL; the first one is a statistical model to analyze the variation of the parameters obtained from previous shots, the other is a matrix algorithm proposed to relate the electrical signal and the impulse amplitudes. With the model and algorithm applied in the pulse shaping in TIL, a variety of shaped pulses were produced with a 10% precision in half an hour for almost three years under different circumstance.

  4. Dynamic response of fluid inside a penny shaped crack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Kazuo; Seki, Hitoshi

    1997-12-31

    In order to discuss the method for estimating the geometric characteristics of geothermal reservoir cracks, a theoretical study is performed on the dynamic response of the fluid inside a reservoir crack in a rock mass subjected to a dynamic excitation due to propagation of an elastic wave. As representative models of reservoir cracks, a penny shaped crack and a two-dimensional crack which are connected to a borehole are considered. It is found that the resonance frequency of the fluid motion is dependent on the crack size, the fluid`s viscosity and the permeability of the formation. The intensity of the resonancemore » is dependent on the fluid`s viscosity when the size, the aperture and the permeability are fixed. It is also found that, at a value of the fluid`s viscosity, the resonance of fluid pressure becomes strongest. The optimum value of the fluid`s viscosity is found to be almost perfectly determined by the permeability of the formation. Furthermore, it is revealed that, if the fluid`s viscosity is fixed to be the optimum value, the resonance frequency is almost independent of the permeability and aperture, but is dependent on the size of crack. Inversely speaking, this implies that the size of the reservoir crack can be estimated from the resonance frequency, if the fluid with the above mentioned optimum value of viscosity is employed for hydraulic fracturing.« less

  5. The base pairing RNA Spot 42 participates in a multi-output feedforward loop to help enact catabolite repression in Escherichia coli

    PubMed Central

    Beisel, Chase L.; Storz, Gisela

    2011-01-01

    SUMMARY Bacteria selectively consume some carbon sources over others through a regulatory mechanism termed catabolite repression. Here, we show that the base pairing RNA Spot 42 plays a broad role in catabolite repression in Escherichia coli by directly repressing genes involved in central and secondary metabolism, redox balancing, and the consumption of diverse non-preferred carbon sources. Many of the genes repressed by Spot 42 are transcriptionally activated by the global regulator CRP. Since CRP represses Spot 42, these regulators participate in a specific regulatory circuit called a multi-output feedforward loop. We found that this loop can reduce leaky expression of target genes in the presence of glucose and can maintain repression of target genes under changing nutrient conditions. Our results suggest that base pairing RNAs in feedforward loops can help shape the steady-state levels and dynamics of gene expression. PMID:21292161

  6. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 2: Data

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Schmidt, D. K.

    1985-01-01

    Two analysis methods are applied to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop modal analysis technique. This method considers the effect of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Both analyses indicated that dynamic aeroelastic effects caused a degradation in vehicle tracking performance, based on the evaluation of some simulation results. Volume 2 consists of the presentation of the state variable models of the flexible aircraft configurations used in the analysis applications mode shape plots for the structural modes, numerical results from the modal analysis frequency response plots from the pilot in the loop analysis and a listing of the modal analysis computer program.

  7. Breakage of IUDs in utero. (Letter).

    PubMed

    Jackson, M C

    1977-06-01

    I was interested in the note in the February 1977 issue of the "IPPF MEdical Bulletin" by Biale et al. about the breakage of IUDs in utero. They do not say where and by whom their loops were made, and omit 1 highly important factor in their assessment, i.e., the quality of the plastic. I think we all know that there was a batch of loops produced in Hong Kong in the early 1970s which started, within months of insertion, breaking up in utero; I spent many anxious hours extracting the pieces, and Gladys Dodds must have spent weeks and months removing the thousands of "HK loops" she had inserted in Hong Kong. Conversely, not long ago I removed a Lippes Loop (given me by Jack Lippes) which I had inserted in 1962. It had been in situ for 14 years and it was as resilient as when it went in and was in perfect shape.

  8. Dracograllus trukensis sp. nov. (Draconematidae: Nematoda) from a seagrass bed ( Zostera spp.) in Chuuk Islands, Micronesia, Central Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Min, Wongi; Kim, Dongsung; Decraemer, Wilfrida; Rho, Hyun Soo

    2016-09-01

    A new species of free-living marine draconematid nematode, Dracograllus trukensis sp. nov., is described based on the specimens collected from the sediments of a intertidal seagrass bed from Chuuk Islands, Micronesia. Dracograllus trukensis sp. nov. differs from other species of the genus by the combination of the following characteristics: the presence of numerous minute spiny ornamented body cuticular annules in both sexes, eight cephalic adhesion tubes inserted on the head capsule in both sexes, the presence of stiff posteriorly directed setae anterior to posterior adhesion tubes in both sexes, the shape (large, elongated, open loop-shaped in male and large, elongated, closed loop-shaped in female) and position (longer ventral arm extending to the first body annule in male) of amphideal fovea, shorter spicule length (34-42 μm), the presence of sexual dimorphism in shape and length of the non-annulated tail terminus, and number of posterior sublateral adhesion tubes (10 in male and 13-15 in female) and posterior subventral adhesion tubes (8-10 in male and 9-11 in female). A comparative table on the biogeographical and ecological characteristics of the species of Dracograllus is presented. This is the first taxonomic report on the genus Dracograllus from Chuuk Islands, Micronesia, central western Pacific Ocean.

  9. Using Extreme Groups Strategy When Measures Are Not Normally Distributed.

    ERIC Educational Resources Information Center

    Fowler, Robert L.

    1992-01-01

    A Monte Carlo simulation explored how to optimize power in the extreme groups strategy when sampling from nonnormal distributions. Results show that the optimum percent for the extreme group selection was approximately the same for all population shapes, except the extremely platykurtic (uniform) distribution. (SLD)

  10. Optimum three-dimensional atmospheric entry from the analytical solution of Chapman's exact equations

    NASA Technical Reports Server (NTRS)

    Busemann, A.; Vinh, N. X.; Culp, R. D.

    1974-01-01

    The general solution for the optimum three-dimensional aerodynamic control of a lifting vehicle entering a planetary atmosphere is developed. A set of dimensionless variables, modified Chapman variables, is introduced. The resulting exact equations of motion, referred to as Chapman's exact equations, have the advantage that they are completely free of the physical characteristics of the vehicle. Furthermore, a completely general lift-drag relationship is used in the derivation. The results obtained apply to any type of vehicle of arbitrary weight, dimensions and shape, having an arbitrary drag polar, and entering any planetary atmosphere. The aerodynamic controls chosen are the lift coefficient and the bank angle. General optimum control laws for these controls are developed. Several earlier particular solutions are shown to be special cases of this general result. Results are valid for both free and constrained terminal position.

  11. Verification and extension of the MBL technique for photo resist pattern shape measurement

    NASA Astrophysics Data System (ADS)

    Isawa, Miki; Tanaka, Maki; Kazumi, Hideyuki; Shishido, Chie; Hamamatsu, Akira; Hasegawa, Norio; De Bisschop, Peter; Laidler, David; Leray, Philippe; Cheng, Shaunee

    2011-03-01

    In order to achieve pattern shape measurement with CD-SEM, the Model Based Library (MBL) technique is in the process of development. In this study, several libraries which consisted by double trapezoid model placed in optimum layout, were used to measure the various layout patterns. In order to verify the accuracy of the MBL photoresist pattern shape measurement, CDAFM measurements were carried out as a reference metrology. Both results were compared to each other, and we confirmed that there is a linear correlation between them. After that, to expand the application field of the MBL technique, it was applied to end-of-line (EOL) shape measurement to show the capability. Finally, we confirmed the possibility that the MBL could be applied to more local area shape measurement like hot-spot analysis.

  12. Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation

    DOEpatents

    Geisbrecht, Rodney A; Williams, Mark C

    2003-10-21

    A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.

  13. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng

    2014-08-20

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases stronglymore » suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.« less

  14. Finding optimum airfoil shape to get maximum aerodynamic efficiency for a wind turbine

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci; Bozkurt, Ismail

    2017-02-01

    In this study, aerodynamic performances of S-series wind turbine airfoil of S 825 are investigated to find optimum angle of attack. Aerodynamic performances calculations are carried out by utilization of a Computational Fluid Dynamics (CFD) method withstand finite capacity approximation by using Reynolds-Averaged-Navier Stokes (RANS) theorem. The lift and pressure coefficients, lift to drag ratio of airfoil S 825 are analyzed with SST turbulence model then obtained results crosscheck with wind tunnel data to verify the precision of computational Fluid Dynamics (CFD) approximation. The comparison indicates that SST turbulence model used in this study can predict aerodynamics properties of wind blade.

  15. Development and evaluation of a SUAS perching system

    NASA Astrophysics Data System (ADS)

    Reynolds, Ryan

    Perching has been proposed as a possible landing technique for Small Unmanned Aircraft Systems (SUAS). The current research study develops an onboard open loop perching system for a fixed-wing SUAS and examines the impact of initial flight speed and sensor placement on the perching dynamics. A catapult launcher and modified COTS aircraft were used for the experiments, while an ultrasonic sensor on the aircraft was used to detect the perching target. Thirty tests were conducted varying the initial launch speed and ultrasonic sensor placement to see if they affected the time the aircraft reaches its maximum pitch angle, since the maximum pitch angle is the optimum perching point for the aircraft. High-speed video was analyzed to obtain flight data, along with data from an onboard inertial measuring unit. The data were analyzed using a model 1, two-way ANOVA to determine if launch speed and sensor placement affect the optimum perching point where the aircraft reaches its maximum pitch angle during the maneuver. The results show the launch speed does affect the time at which the maximum pitch angle occurs, but sensor placement does not. This means a closed loop system will need to adjust its perching distance based on its initial velocity. The sensor placement not having any noticeable effect means the ultrasonic sensor can be placed on the nose or the wing of the aircraft as needed for the design. There was also no noticeable interaction between the two variables. Aerodynamic parameters such as lift, drag, and moment coefficients were derived from the dynamic equations of motion for use in numerical simulations and dynamic perching models.

  16. Explicit analytical tuning rules for digital PID controllers via the magnitude optimum criterion.

    PubMed

    Papadopoulos, Konstantinos G; Yadav, Praveen K; Margaris, Nikolaos I

    2017-09-01

    Analytical tuning rules for digital PID type-I controllers are presented regardless of the process complexity. This explicit solution allows control engineers 1) to make an accurate examination of the effect of the controller's sampling time to the control loop's performance both in the time and frequency domain 2) to decide when the control has to be I, PI and when the derivative, D, term has to be added or omitted 3) apply this control action to a series of stable benchmark processes regardless of their complexity. The former advantages are considered critical in industry applications, since 1) most of the times the choice of the digital controller's sampling time is based on heuristics and past criteria, 2) there is little a-priori knowledge of the controlled process making the choice of the type of the controller a trial and error exercise 3) model parameters change often depending on the control loop's operating point making in this way, the problem of retuning the controller's parameter a much challenging issue. Basis of the proposed control law is the principle of the PID tuning via the Magnitude Optimum criterion. The final control law involves the controller's sampling time T s within the explicit solution of the controller's parameters. Finally, the potential of the proposed method is justified by comparing its performance with the conventional PID tuning when controlling the same process. Further investigation regarding the choice of the controller's sampling time T s is also presented and useful conclusions for control engineers are derived. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  17. A loop-based neural architecture for structured behavior encoding and decoding.

    PubMed

    Gisiger, Thomas; Boukadoum, Mounir

    2018-02-01

    We present a new type of artificial neural network that generalizes on anatomical and dynamical aspects of the mammal brain. Its main novelty lies in its topological structure which is built as an array of interacting elementary motifs shaped like loops. These loops come in various types and can implement functions such as gating, inhibitory or executive control, or encoding of task elements to name a few. Each loop features two sets of neurons and a control region, linked together by non-recurrent projections. The two neural sets do the bulk of the loop's computations while the control unit specifies the timing and the conditions under which the computations implemented by the loop are to be performed. By functionally linking many such loops together, a neural network is obtained that may perform complex cognitive computations. To demonstrate the potential offered by such a system, we present two neural network simulations. The first illustrates the structure and dynamics of a single loop implementing a simple gating mechanism. The second simulation shows how connecting four loops in series can produce neural activity patterns that are sufficient to pass a simplified delayed-response task. We also show that this network reproduces electrophysiological measurements gathered in various regions of the brain of monkeys performing similar tasks. We also demonstrate connections between this type of neural network and recurrent or long short-term memory network models, and suggest ways to generalize them for future artificial intelligence research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Optical microresonator for application to an opto-electronic oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Mei; Vivien, Laurent; Cassan, Eric; Luong, Vu Hai Nam; Nguyen, Lam Duy; Journet, Bernard

    2010-02-01

    Optoelectronic oscillators are classically based on a feedback fiber loop acting as a delay line for high spectral purity. One of the problems due to long fiber loops is the size and the requirement of temperature control. Going toward integrated solutions requires the introduction of optical resonators with a very high quality factor. A structure based on silicon on insulator material has been designed for application to an oscillator working at 8 GHz. The micro-resonator has a stadium shape with a ridge of 30 nm height, 1 μm width, a millimetric radius and a gap of some microns in agreement with the required free spectral range. A quality factor of 500000 can be achieved leading to an equivalent fiber loop of 2 km.

  19. Fixture for winding transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, M. T.

    1980-01-01

    Bench-mounted fixture assists operator in winding toroid-shaped transformer cores. Toroid is rigidly held in place as wires are looped around. Arrangement frees both hands for rapid winding and untangling of wires that occurs when core is hand held.

  20. Segmented saddle-shaped passive stabilization conductors for toroidal plasmas

    DOEpatents

    Leuer, J.A.

    1990-05-01

    A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented. 5 figs.

  1. Current Bypassing Properties by Thermal Switch for PCS Application on NMR/MRI HTS Magnets

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Takahashi, M.; Saito, R.; Park, Y. J.; Lee, M. W.; Oh, Y. K.; Ann, H. S.

    We develop the compact NMR/MRI device using high temperature superconducting (HTS) wires with the persistent current mode operating. So, the joint techniques between 2G wires are very important issue and many studies have been carried out. Recently, the Kbigdot JOINS, Inc. has developed successfully the high performance superconducting joints between 2G wires by partial melting diffusion and oxygenation annealing process [1]. In this study, the current bypassing properties in a loop-shaped 2G wire are measured experimentally to develop the permanent current switch (PSC). The current bypassing properties of loop-shaped test coil wound with 2G wire (GdBCO) are evaluated by measured the self-magnetic field due to bypassed current by Hall sensors. The strain gauge was used as heater for persistent current switch, and thermal properties against various thermal inputs were investigated experimentally.

  2. Swiveling Lathe Jaw Concept for Holding Irregular Pieces

    NASA Technical Reports Server (NTRS)

    David, J.

    1966-01-01

    Clamp holds irregularly shaped pieces in lathe chuck without damage and eliminates excessive time in selecting optimum mounting. Interchangeable jaws ride in standard jaw slots but swivel so that the jaw face bears evenly against the workpiece regardless of contour. The jaws can be used on both engine and turret lathes.

  3. Crystal structure of native and a mutant of Lampyris turkestanicus luciferase implicate in bioluminescence color shift.

    PubMed

    Kheirabadi, Mitra; Sharafian, Zohreh; Naderi-Manesh, Hossein; Heineman, Udo; Gohlke, Ulrich; Hosseinkhani, Saman

    2013-12-01

    Firefly bioluminescence reaction in the presence of Mg(2+), ATP and molecular oxygen is carried out by luciferase. The luciferase structure alterations or modifications of assay conditions determine the bioluminescence color of firefly luciferase. Among different beetle luciferases, Phrixothrix hirtus railroad worm emits either yellow or red bioluminescence color. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional arginine residue at 353 that is absent in other firefly luciferases. It was reported that insertion of Arg in an important flexible loop350-359 showed changes in bioluminescence color from green to red and the optimum temperature activity was also increased. To explain the color tuning mechanism of firefly luciferase, the structure of native and a mutant (E354R/356R/H431Y) of Lampyris turkestanicus luciferase is determined at 2.7Å and 2.2Å resolutions, respectively. The comparison of structure of both types of Lampyris turkestanicus luciferases reveals that the conformation of this flexible loop is significantly changed by addition of two Arg in this region. Moreover, its surface accessibility is affected considerably and some ionic bonds are made by addition of two positive charge residues. Furthermore, we noticed that the hydrogen bonding pattern of His431 with the flexible loop is changed by replacing this residue with Tyr at this position. Juxtaposition of a flexible loop (residues 351-359) in firefly luciferase and corresponding ionic and hydrogen bonds are essential for color emission. © 2013.

  4. The pH-dependent tertiary structure of a designed helix-loop-helix dimer.

    PubMed

    Dolphin, G T; Baltzer, L

    1997-01-01

    De novo designed helix-loop-helix motifs can fold into well-defined tertiary structures if residues or groups of residues are incorporated at the helix-helix boundary to form helix-recognition sites that restrict the conformational degrees of freedom of the helical segments. Understanding the relationship between structure and function of conformational constraints therefore forms the basis for the engineering of non-natural proteins. This paper describes the design of an interhelical HisH+-Asp- hydrogen-bonded ion pair and the conformational stability of the folded helix-loop-helix motif. GTD-C, a polypeptide with 43 amino acid residues, has been designed to fold into a hairpin helix-loop-helix motif that can dimerise to form a four-helix bundle. The folded motif is in slow conformational exchange on the NMR timescale and has a well-dispersed 1H NMR spectrum, a narrow temperature interval for thermal denaturation and a near-UV CD spectrum with some fine structure. The conformational stability is pH dependent with an optimum that corresponds to the pH for maximum formation of a hydrogen-bonded ion pair between HisH17+ in helix I and Asp27- in helix II. The formation of an interhelical salt bridge is strongly suggested by the pH dependence of a number of spectroscopic probes to generate a well-defined tertiary structure in a designed helix-loop-helix motif. The thermodynamic stability of the folded motif is not increased by the formation of the salt bridge, but neighbouring conformations are destabilised. The use of this novel design principle in combination with hydrophobic interactions that provide sufficient binding energy in the folded structure should be of general use in de novo design of native-like proteins.

  5. Evaporation of binary mixtures in microgravity

    NASA Technical Reports Server (NTRS)

    Girgis, Morris; Matta, Nabil; Kolli, Kiran; Brown, Leon; Chubb, Kevin

    1995-01-01

    The motivation of this research is to obtain a better understanding of phase-change heat transfer within single and binary liquid meniscii, both in 1-g and 0-g environments. During phase 1 and part of phase 2, in a glass test cell with an inclined heated plate, 1-6 experiments on pentane with additions of decane up to 3% were conducted to determine the optimum concentration that will exhibit the maximum heat transfer and stability. During phase 2 emphasis was given to explore fundamental research issues and to ultimately develop a reliable capillary pumped loop (CPL) device for low gravity. In related experimental work, it was found that thermocapillary stresses near the contract line could result in a degraded wettability which ultimately could explain the observed failure of CPL devices in zero-gravity environment. Therefore, the current experimental effort investigates the effect of adding binary constituents in improving the thermocapillary characteristics near the contact line within the loop configuration. Achievements during second phase include: (1) Further enhancement of Central State University's Microgravity Laboratory by adding or improving upon capabilities of photography, video imaging, fluid visualization, and general experimental testing capabilities; (2) Experimental results for the inclined plate cell; (3) Modeling effort with a detailed scaling analysis; (4) Additional testing with a tube loop configuration to extend experimental work by Dickens, et al.; (5) Fabrication of a capillary loop to be tested using binary fluid (pentane/decane). The device that has been recently completed will be set up horizontally so that the effect of gravity on the performance is negligible. Testing will cover a wide range of parameters such as decane/pentane concentration, heat input value, heat input location (below or above meniscus), and loop temperature.

  6. Automated Coronal Loop Identification Using Digital Image Processing Techniques

    NASA Technical Reports Server (NTRS)

    Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.

    2003-01-01

    The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.

  7. First-order irreversible thermodynamic approach to a simple energy converter

    NASA Astrophysics Data System (ADS)

    Arias-Hernandez, L. A.; Angulo-Brown, F.; Paez-Hernandez, R. T.

    2008-01-01

    Several authors have shown that dissipative thermal cycle models based on finite-time thermodynamics exhibit loop-shaped curves of power output versus efficiency, such as it occurs with actual dissipative thermal engines. Within the context of first-order irreversible thermodynamics (FOIT), in this work we show that for an energy converter consisting of two coupled fluxes it is also possible to find loop-shaped curves of both power output and the so-called ecological function versus efficiency. In a previous work Stucki [J. W. Stucki, Eur. J. Biochem. 109, 269 (1980)] used a FOIT approach to describe the modes of thermodynamic performance of oxidative phosphorylation involved in adenosine triphosphate (ATP) synthesis within mithochondrias. In that work the author did not use the mentioned loop-shaped curves and he proposed that oxidative phosphorylation operates in a steady state at both minimum entropy production and maximum efficiency simultaneously, by means of a conductance matching condition between extreme states of zero and infinite conductances, respectively. In the present work we show that all Stucki’s results about the oxidative phosphorylation energetics can be obtained without the so-called conductance matching condition. On the other hand, we also show that the minimum entropy production state implies both null power output and efficiency and therefore this state is not fulfilled by the oxidative phosphorylation performance. Our results suggest that actual efficiency values of oxidative phosphorylation performance are better described by a mode of operation consisting of the simultaneous maximization of both the so-called ecological function and the efficiency.

  8. Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Ding-wen; Balke, Nina; Kalinin, Sergei V

    2011-01-01

    A recently developed technique, electrochemical strain microscopy (ESM), utilizes the strong coupling between ionic current and anisotropic volumetric chemical expansion of lithium-ion electrode materials to dynamically probe the sub-one-hundred? nm inter-facial kinetic intercalation properties. A numerical technique based on the finite element method was developed to analyze the underlying physics that govern the ESM signal generation and establish relations to battery performance. The performed analysis demonstrates that the diffusion path within a thin film is tortuous and the extent of lithium diffusion into the electrode is dependent on the SPM-tip-imposed overpotential frequency. The detected surface actuation gives rise to themore » development of an electromechanical hysteresis loop whose shape is dependent on grain size and overpotential frequency. Shape and tilting angle of the loop are classified into low and high frequency regimes, separated by a transition frequency which is also a function of lithium diffusivity and grain size, f{sub T} = D//{sup 2}. Research shows that the crystallographic orientation of the surface actuated grain has a significant impact on the shape of the loop. The polycrystalline crystallographic orientation of the grains induces a diffusion path network in the electrode which impacts on the mechanical reliability of the battery. Simulations demonstrate that continuous battery cycling results in a cumulative capacity loss as a result of the hysteric non-reversible lithium intercalation. Furthermore, results suggest that ESM has the capability to infer the local out-of-plane lithium diffusivity and the out-of-plane contribution to Vegard tensor.« less

  9. Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Ding-Wen; Balke, Nina; Kalinin, Sergei V.

    2011-08-03

    A recently developed technique, electrochemical strain microscopy (ESM), utilizes the strong coupling between ionic current and anisotropic volumetric chemical expansion of lithium-ion electrode materials to dynamically probe the sub-one-hundred? nm inter-facial kinetic intercalation properties. A numerical technique based on the finite element method was developed to analyze the underlying physics that govern the ESM signal generation and establish relations to battery performance. The performed analysis demonstrates that the diffusion path within a thin film is tortuous and the extent of lithium diffusion into the electrode is dependent on the SPM-tip-imposed overpotential frequency. The detected surface actuation gives rise to themore » development of an electromechanical hysteresis loop whose shape is dependent on grain size and overpotential frequency. Shape and tilting angle of the loop are classified into low and high frequency regimes, separated by a transition frequency which is also a function of lithium diffusivity and grain size, f T = D/l₂. Research shows that the crystallographic orientation of the surface actuated grain has a significant impact on the shape of the loop. The polycrystalline crystallographic orientation of the grains induces a diffusion path network in the electrode which impacts on the mechanical reliability of the battery. Simulations demonstrate that continuous battery cycling results in a cumulative capacity loss as a result of the hysteric non-reversible lithium intercalation. Furthermore, results suggest that ESM has the capability to infer the local out-of-plane lithium diffusivity and the out-of-plane contribution to Vegard tensor.« less

  10. Rise Time Reduction of Thermal Actuators Operated in Air and Water through Optimized Pre-Shaped Open-Loop Driving.

    PubMed

    Larsen, T; Doll, J C; Loizeau, F; Hosseini, N; Peng, A W; Fantner, G; Ricci, A J; Pruitt, B L

    2017-01-01

    Electrothermal actuators have many advantages compared to other actuators used in Micro-Electro-Mechanical Systems (MEMS). They are simple to design, easy to fabricate and provide large displacements at low voltages. Low voltages enable less stringent passivation requirements for operation in liquid. Despite these advantages, thermal actuation is typically limited to a few kHz bandwidth when using step inputs due to its intrinsic thermal time constant. However, the use of pre-shaped input signals offers a route for reducing the rise time of these actuators by orders of magnitude. We started with an electrothermally actuated cantilever having an initial 10-90% rise time of 85 μs in air and 234 μs in water for a standard open-loop step input. We experimentally characterized the linearity and frequency response of the cantilever when operated in air and water, allowing us to obtain transfer functions for the two cases. We used these transfer functions, along with functions describing desired reduced rise-time system responses, to numerically simulate the required input signals. Using these pre-shaped input signals, we improved the open-loop 10-90% rise time from 85 μs to 3 μs in air and from 234 μs to 5 μs in water, an improvement by a factor of 28 and 47, respectively. Using this simple control strategy for MEMS electrothermal actuators makes them an attractive alternative to other high speed micromechanical actuators such as piezoelectric stacks or electrostatic comb structures which are more complex to design, fabricate, or operate.

  11. Automatic design of conformal cooling channels in injection molding tooling

    NASA Astrophysics Data System (ADS)

    Zhang, Yingming; Hou, Binkui; Wang, Qian; Li, Yang; Huang, Zhigao

    2018-02-01

    The generation of cooling system plays an important role in injection molding design. A conformal cooling system can effectively improve molding efficiency and product quality. This paper provides a generic approach for building conformal cooling channels. The centrelines of these channels are generated in two steps. First, we extract conformal loops based on geometric information of product. Second, centrelines in spiral shape are built by blending these loops. We devise algorithms to implement the entire design process. A case study verifies the feasibility of this approach.

  12. Modal Filtering for Control of Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Mavris, Dimitri N.

    2013-01-01

    Modal regulators and deformation trackers are designed for an open-loop fluttering wing model. The regulators are designed with modal coordinate and accelerometer inputs respectively. The modal coordinates are estimated with simulated fiber optics. The robust stability of the closed-loop systems is compared in a structured singular-value vector analysis. Performance is evaluated and compared in a gust alleviation and flutter suppression simulation. For the same wing and flight condition two wing-shape-tracking control architectures are presented, which achieve deformation control at any point on the wing.

  13. Study on the effects of flow in the volute casing on the performance of a sirocco fan

    NASA Astrophysics Data System (ADS)

    Adachi, Tsutomu; Sugita, Naohiro; Ohomori, Satoshi

    2004-08-01

    The flow at the exit from the runner blade of a centrifugal fan with forward curved blades (a sirocco fan) sometimes separates and becomes unstable. We have conducted many researches on the impeller shape of a sirocco fan, proper inlet and exit blade angles were considered to obtain optimum performance. In this paper, the casing shape were decided by changing the circumferential angle, magnifying angle and the width, 21 sorts of casings were used. Performance tests, inner flow velocity and pressure distributions were measured as well. Computational fluid dynamic calculations were also made and compared with the experimental results. Finally, the most suitable casing shape for best performance is considered.

  14. Production of atmospheric pressure microwave plasma with dielectric half-mirror resonator and its application to polymer surface treatment

    NASA Astrophysics Data System (ADS)

    Sasai, Kensuke; Keyamura, Kazuki; Suzuki, Haruka; Toyoda, Hirotaka

    2018-06-01

    For the surface treatment of a polymer tube, a ring-shaped atmospheric pressure microwave plasma (APMP) using a coaxial waveguide is studied. In this APMP, a dielectric plate is used not only as a partial mirror for cavity resonation but also for the precise alignment of the discharge gap for ring-shaped plasma production. The optimum position of the dielectric plate is investigated by electromagnetic wave simulation. On the basis of simulation results, a ring-shaped plasma with good uniformity along the ring is produced. The coaxial APMP is applied to the surface treatment of ethylene tetrafluoroethylene. A very fast surface modification within 3 s is observed.

  15. Magnetic properties of co-precipitated hexaferrite powders with Sm-Co substitutions optimized with the molten flux method

    NASA Astrophysics Data System (ADS)

    Serletis, C.; Litsardakis, G.; Pavlidou, E.; Efthimiadis, K. G.

    2017-11-01

    In this work, using the chemical coprecipitation method, Sr1-xSmxFe12-xCoxO19 (x = 0, 0.1, 0.2) hexaferrite powders were prepared. Major magnetization loops were recorded at room temperature in order to determine the correct calcination temperature for optimum hard magnetic properties. It is found that a small degree of substitution increases substantially the coercive field. Also, the use of the molten flux calcination method increases the remanent magnetization. SEM/EDXS and XRD measurements were performed at the calcined powders: the results show that a single hexaferrite phase is formed and that the substituted powders consist of an assembly of grains with a mean diameter of 40 nm. Measurements of minor magnetization loops and of the temperature and time dependence of the magnetization confirm that the powders consist of a non-oriented single domain magnetic particles assembly. The results indicate that Sm could be a viable replacement for La in the manufacturing of hexaferrites with a high-energy product.

  16. Analysis of spacecraft battery charger systems

    NASA Astrophysics Data System (ADS)

    Kim, Seong J.; Cho, Bo H.

    In spacecraft battery charger systems, switching regulators are widely used for bus voltage regulation, charge current regulation, and peak power tracking. Small-signal dynamic characteristics of the battery charging subsystem of direct energy transfer (DET) and peak power tracking (PPT) systems are analyzed to facilitate design of the control loop for optimum performance and stability. Control loop designs of the charger in various modes of operation are discussed. Analyses are verified through simulations. It is shown that when the charger operates in the bus voltage regulation mode, the control-to-voltage transfer function has a negative DC gain and two LHP zeros in both the DET and PPT systems. The control-to-inductor current transfer function also has a negative DC gain and a RHP zero. Thus, in the current-mode control, the current loop can no longer be used to stabilize the system. When the system operates in the charge current regulation mode, the charger operates with a fixed duty cycle which is determined by the regulated bus voltage and the battery voltage. Without an input filter, the converter becomes a first-order system. When the peak power tracker is inactive, the operating point of the solar array output moves to the voltage source region. Thus, the solar array behaves as a stiff voltage source to a constant power load.

  17. Mobile and replicated alignment of arrays in data-parallel programs

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    When a data-parallel language like FORTRAN 90 is compiled for a distributed-memory machine, aggregate data objects (such as arrays) are distributed across the processor memories. The mapping determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. A common approach is to break the mapping into two stages: first, an alignment that maps all the objects to an abstract template, and then a distribution that maps the template to the processors. We solve two facets of the problem of finding alignments that reduce residual communication: we determine alignments that vary in loops, and objects that should have replicated alignments. We show that loop-dependent mobile alignment is sometimes necessary for optimum performance, and we provide algorithms with which a compiler can determine good mobile alignments for objects within do loops. We also identify situations in which replicated alignment is either required by the program itself (via spread operations) or can be used to improve performance. We propose an algorithm based on network flow that determines which objects to replicate so as to minimize the total amount of broadcast communication in replication. This work on mobile and replicated alignment extends our earlier work on determining static alignment.

  18. New soft magnetic amorphous cobalt based alloys with high hysteresis loop linearity

    NASA Astrophysics Data System (ADS)

    Nosenko, V. K.; Maslov, V. V.; Kochkubey, A. P.; Kirilchuk, V. V.

    2008-02-01

    The new amorphous Co56÷59(Fe,Ni,Mn)21÷24(Si0.2B0.8)20-based metal alloys (AMA) with high saturation induction (BS>=1T) were developed. Toroidal tape wound magnetic cores made from these AMA after heat-magnetic treatment (HMT) in a reversal field are characterized by high hysteresis loop linearity, minimum effective magnetic permeability and its high field stability in combination with low coercivity Hc (1-3 A/m, 1 kHz). For the most prospecting alloy compositions the value of effective magnetic permeability decreases compared to known alloys up to 550 - 670 units and remains constant in the wide magnetic field range 1100 - 1300 A/m. Maximum remagnetization loop linearity is achieved after optimum HMT in high Ni containing AMAs, which are characterized by the record low squareness ratio values Ks=0.002-0.02 and Hc=1.0 A/m. Magnetic cores made from the new amorphous alloys can be used both in filter chokes of switch-mode power supply units and in matching mini-transformers of telecommunication systems; at that, high efficiency and accuracy of signal transmission including high frequency pulses are ensured under conditions of long-term influence of dc magnetic bias.

  19. Energy-Aware Multipath Routing Scheme Based on Particle Swarm Optimization in Mobile Ad Hoc Networks

    PubMed Central

    Robinson, Y. Harold; Rajaram, M.

    2015-01-01

    Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique. PMID:26819966

  20. Retargeting of existing FORTRAN program and development of parallel compilers

    NASA Technical Reports Server (NTRS)

    Agrawal, Dharma P.

    1988-01-01

    The software models used in implementing the parallelizing compiler for the B-HIVE multiprocessor system are described. The various models and strategies used in the compiler development are: flexible granularity model, which allows a compromise between two extreme granularity models; communication model, which is capable of precisely describing the interprocessor communication timings and patterns; loop type detection strategy, which identifies different types of loops; critical path with coloring scheme, which is a versatile scheduling strategy for any multicomputer with some associated communication costs; and loop allocation strategy, which realizes optimum overlapped operations between computation and communication of the system. Using these models, several sample routines of the AIR3D package are examined and tested. It may be noted that automatically generated codes are highly parallelized to provide the maximized degree of parallelism, obtaining the speedup up to a 28 to 32-processor system. A comparison of parallel codes for both the existing and proposed communication model, is performed and the corresponding expected speedup factors are obtained. The experimentation shows that the B-HIVE compiler produces more efficient codes than existing techniques. Work is progressing well in completing the final phase of the compiler. Numerous enhancements are needed to improve the capabilities of the parallelizing compiler.

  1. Verifying the Performance of RTDs in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Hashemian, H. M.

    2003-09-01

    This paper describes a number of techniques that have been developed for nuclear power plants to ensure that optimum steady-state and transient performance is achieved with the resistance temperature detectors (RTDs) that are used in the plant for critical temperature measurements. This includes precision laboratory calibration of RTDs, the Loop Current Step Response (LCSR) method for in-situ response time measurements, a cross calibration technique to verify the steady-state performance of RTDs as installed in the plant, and the Time Domain Reflectometry (TDR) test that is used to identify the location of a problem along RTD cables.

  2. Control Design Strategies to Enhance Long-Term Aircraft Structural Integrity

    NASA Technical Reports Server (NTRS)

    Newman, Brett A.

    1999-01-01

    Over the operational lifetime of both military and civil aircraft, structural components are exposed to hundreds of thousands of low-stress repetitive load cycles and less frequent but higher-stress transient loads originating from maneuvering flight and atmospheric gusts. Micro-material imperfections in the structure, such as cracks and debonded laminates, expand and grow in this environment, reducing the structural integrity and shortening the life of the airframe. Extreme costs associated with refurbishment of critical load-bearing structural components in a large fleet, or altogether reinventoring the fleet with newer models, indicate alternative solutions for life extension of the airframe structure are highly desirable. Increased levels of operational safety and reliability are also important factors influencing the desirability of such solutions. One area having significant potential for impacting crack growth/fatigue damage reduction and structural life extension is flight control. To modify the airframe response dynamics arising from command inputs and gust disturbances, feedback loops are routinely applied to vehicles. A dexterous flight control system architecture senses key vehicle motions and generates critical forces/moments at multiple points distributed throughout the airframe to elicit the desired motion characteristics. In principle, these same control loops can be utilized to influence the level of exposure to harmful loads during flight on structural components. Project objectives are to investigate and/or assess the leverage control has on reducing fatigue damage and enhancing long-term structural integrity, without degrading attitude control and trajectory guidance performance levels. In particular, efforts have focused on the effects inner loop control parameters and architectures have on fatigue damage rate. To complete this research, an actively controlled flexible aircraft model and a new state space modeling procedure for crack growth have been utilized. Analysis of the analytical state space model for crack growth revealed the critical mathematical factors, and hence the physical mechanism they represent, that influenced high rates of airframe crack growth. The crack model was then exercised with simple load inputs to uncover and expose key crack growth behavior. To characterize crack growth behavior, both "short-term" laboratory specimen test type inputs and "long-term" operational flight type inputs were considered. Harmonic loading with a single overload revealed typical exponential crack growth behavior until the overload application, after which time the crack growth was retarded for a period of time depending on the overload strength. An optimum overload strength was identified which leads to maximum retardation of crack growth. Harmonic loading with a repeated overload of varying strength and frequency again revealed an optimum overload trait for maximizing growth retardation. The optimum overload strength ratio lies near the range of 2 to 3 with dependency on frequency. Experimental data was found to correlate well with the analytical predictions.

  3. Graphene and temperature controlled butterfly shape in permittivity-field loops of ferroelectric polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Adohi, B. J. P.; Brosseau, C.; Laur, V.; Haidar, B.

    2017-01-01

    We report on the field-dependent polarization of graphene (GE) filled poly[vinylidene fluoride-co-trifluoroethylene] P(VDF-TrFE) nanostructures fabricated by mechanical melt mixing. This study shows an increase in effective permittivity of these nanomaterials on increasing the GE loading in a manner that is consistent with standard mixing law. Detailed characterization of the unsaturated ferroelectric hysteresis, as well as the butterfly shape of the effective permittivity versus electric bias, of the samples are presented. For GE content set to 9.1 wt. % in the samples containing 50/50 wt. % (VDF/TrFE), the maximum polarization increases by 260% with respect to that of the neat polymer matrix. With a higher VDF content, 73 wt. %, the coercive field remains constant over the range of GE content explored. Additionally, our results highlight the strong impact of the GE loading and temperature on the butterfly shape in permittivity-field loops of these nanocomposites. The experimental findings are consistent with theoretical predictions of the modified Johnson's model [Narayanan et al., Appl. Phys. Lett. 100, 022907 (2012)]. Our findings can open avenues for interplay between conductive nanofillers and ferroelectricity in soft nanomaterials with controlled phase transitions.

  4. CUSP-SHAPED STRUCTURE OF A JET OBSERVED BY IRIS AND SDO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuzong; Zhang, Jun, E-mail: yuzong@nao.cas.cn, E-mail: zjun@nao.cas.cn

    2017-01-01

    On 2014 August 29, the trigger and evolution of a cusp-shaped jet were captured in detail at 1330 Å by the Interface Region Imaging Spectrograph . At first, two neighboring mini-prominences arose in turn from the low solar atmosphere and collided with a loop-like system over them. The collisions between the loop-like system and the mini-prominences lead to the blowout, and then a cusp-shaped jet formed with a spire and an arch-base. In the spire, many brightening blobs originating from the junction between the spire and the arch-base moved upward in a rotating manner and then in a straight line inmore » the late phase of the jet. In the arch-base, dark and bright material simultaneously tracked in a fan-like structure, and the majority of the material moved along the fan's threads. At the later phase of the jet's evolution, bidirectional flows emptied the arch-base, while downflows emptied the spire, thus making the jet entirely vanish. The extremely detailed observations in this study shed new light on how magnetic reconnection alters the inner topological structure of a jet and provides a beneficial complement for understanding current jet models.« less

  5. OBSERVATIONS OF AN X-SHAPED RIBBON FLARE IN THE SUN AND ITS THREE-DIMENSIONAL MAGNETIC RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Ding, M. D.; Yang, K.

    2016-05-20

    We report evolution of an atypical X-shaped flare ribbon that provides novel observational evidence of three-dimensional (3D) magnetic reconnection at a separator. The flare occurred on 2014 November 9. High-resolution slit-jaw 1330 Å images from the Interface Region Imaging Spectrograph reveal four chromospheric flare ribbons that converge and form an X-shape. Flare brightening in the upper chromosphere spreads along the ribbons toward the center of the “X” (the X-point), and then spreads outward in a direction more perpendicular to the ribbons. These four ribbons are located in a quadrupolar magnetic field. Reconstruction of magnetic topology in the active region suggestsmore » the presence of a separator connecting to the X-point outlined by the ribbons. The inward motion of flare ribbons in the early stage therefore indicates 3D magnetic reconnection between two sets of non-coplanar loops that approach laterally, and reconnection proceeds downward along a section of vertical current sheet. Coronal loops are also observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory confirming the reconnection morphology illustrated by ribbon evolution.« less

  6. Central safety factor and β N control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, M. D.; Andre, R.; Gates, D. A.

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, amore » flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.« less

  7. Feedback control of combustion instabilities from within limit cycle oscillations using H∞ loop-shaping and the ν-gap metric

    PubMed Central

    Morgans, Aimee S.

    2016-01-01

    Combustion instabilities arise owing to a two-way coupling between acoustic waves and unsteady heat release. Oscillation amplitudes successively grow, until nonlinear effects cause saturation into limit cycle oscillations. Feedback control, in which an actuator modifies some combustor input in response to a sensor measurement, can suppress combustion instabilities. Linear feedback controllers are typically designed, using linear combustor models. However, when activated from within limit cycle, the linear model is invalid, and such controllers are not guaranteed to stabilize. This work develops a feedback control strategy guaranteed to stabilize from within limit cycle oscillations. A low-order model of a simple combustor, exhibiting the essential features of more complex systems, is presented. Linear plane acoustic wave modelling is combined with a weakly nonlinear describing function for the flame. The latter is determined numerically using a level set approach. Its implication is that the open-loop transfer function (OLTF) needed for controller design varies with oscillation level. The difference between the mean and the rest of the OLTFs is characterized using the ν-gap metric, providing the minimum required ‘robustness margin’ for an H∞ loop-shaping controller. Such controllers are designed and achieve stability both for linear fluctuations and from within limit cycle oscillations. PMID:27493558

  8. Defining the loop structures in proteins based on composite β-turn mimics.

    PubMed

    Dhar, Jesmita; Chakrabarti, Pinak

    2015-06-01

    Asx- and ω-turns are β-turn mimics, which replace the conventional main-chain hydrogen bonds seen in the latter by those involving the side chains, and both involve three residues. In this paper we analyzed the cases where these turns occur together--side by side, with or without any gap, overlapping and in any order. These composite turns (of length 3-15 residues), occurring at ∼1 per 100 residues, may constitute the full length of many loops, and when the residues in the two component turns overlap or are adjacent to each other, the composite may take well-defined shape. It is thus possible for non-regular regions in protein structure to form local structural motifs, akin to the regular geometrical features exhibited by secondary structures. Composites having the order ω-turns followed by Asx-turns can constitute N-terminal helix capping motif. Ternary composite turns (made up of ω-, Asx- and ST-turns), some with characteristic shape, have also been identified. Delineation of composite turns would help in characterizing loops in protein structures, which often have functional roles. Some sequence patterns seen in composites can be used for their incorporation in protein design. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Central safety factor and βN control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.

    2015-05-01

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of βN and the safety factor profile. In this work, a novel approach to simultaneously controlling βN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.

  10. Multifunctional Dumbbell-Shaped DNA-Templated Selective Formation of Fluorescent Silver Nanoclusters or Copper Nanoparticles for Sensitive Detection of Biomolecules.

    PubMed

    Chen, Jinyang; Ji, Xinghu; Tinnefeld, Philip; He, Zhike

    2016-01-27

    In this work, a multifunctional template for selective formation of fluorescent silver nanoclusters (AgNCs) or copper nanoparticles (CuNPs) is put forward. This dumbbell-shaped (DS) DNA template is made up of two cytosine hairpin loops and an adenine-thymine-rich double-helical stem which is closed by the loops. The cytosine loops act as specific regions for the growth of AgNCs, and the double-helical stem serves as template for the CuNPs formation. By carefully investigating the sequence and length of DS DNA, we present the optimal design of the template. Benefiting from the smart design and facile synthesis, a simple, label-free, and ultrasensitive fluorescence strategy for adenosine triphosphate (ATP) detection is proposed. Through the systematic comparison, it is found that the strategy based on CuNPs formation is more sensitive for ATP assay than that based on AgNCs synthesis, and the detection limitation was found to be 81 pM. What's more, the CuNPs formation-based method is successfully applied in the detection of ATP in human serum as well as the determination of cellular ATP. In addition to small target molecule, the sensing strategy was also extended to the detection of biomacromolecule (DNA), which illustrates the generality of this biosensor.

  11. Special mandrel permits uniform welding of out-of-round tubing

    NASA Technical Reports Server (NTRS)

    Dor, M. E.; Fueg, L. B.; Whiffen, E. L.

    1966-01-01

    Clamp holds irregularly shaped pieces in lathe chuck without damage and eliminates excessive time in selecting optimum mounting. Interchangeable jaws ride in standard jaw slots but swivel so that the jaw face bears evenly against the workpiece regardless of contour. The jaws can be used on both engine and turret lathes.

  12. Effect of Powder Size and Shape on the SLS Processability and Mechanical Properties of a TPU Elastomer

    NASA Astrophysics Data System (ADS)

    Dadbakhsh, Sasan; Verbelen, Leander; Vandeputte, Tom; Strobbe, Dieter; Van Puyvelde, Peter; Kruth, Jean-Pierre

    This work investigates the influence of powder size/shape on selective laser sintering (SLS) of a thermoplastic polyurethane (TPU) elastomer. It examines a TPU powder which had been cryogenically milled in two different sizes; coarse powder (D50∼200μm) with rough surfaces in comparison with a fine powder (D50∼63μm) with extremely fine flow additives. It is found that the coarse powder coalesces at lower temperatures and excessively smokes during the SLS processing. In comparison, the fine powder with flow additives is better processable at significantly higher powder bed temperatures, allowing a lower optimum laser energy input which minimizes smoking and degradation of the polymer. In terms of mechanical properties, good coalescence of both powders lead to parts with acceptable shear-punch strengths compared to injection molded parts. However, porosity and degradation from the optimum SLS parameters of the coarse powder drastically reduce the tensile properties to about one-third of the parts made from the fine powders as well as those made by injection molding (IM).

  13. Optimum structure of Whipple shield against hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Lee, M.

    2014-05-01

    Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.

  14. FISHER'S GEOMETRIC MODEL WITH A MOVING OPTIMUM

    PubMed Central

    Matuszewski, Sebastian; Hermisson, Joachim; Kopp, Michael

    2014-01-01

    Fisher's geometric model has been widely used to study the effects of pleiotropy and organismic complexity on phenotypic adaptation. Here, we study a version of Fisher's model in which a population adapts to a gradually moving optimum. Key parameters are the rate of environmental change, the dimensionality of phenotype space, and the patterns of mutational and selectional correlations. We focus on the distribution of adaptive substitutions, that is, the multivariate distribution of the phenotypic effects of fixed beneficial mutations. Our main results are based on an “adaptive-walk approximation,” which is checked against individual-based simulations. We find that (1) the distribution of adaptive substitutions is strongly affected by the ecological dynamics and largely depends on a single composite parameter γ, which scales the rate of environmental change by the “adaptive potential” of the population; (2) the distribution of adaptive substitution reflects the shape of the fitness landscape if the environment changes slowly, whereas it mirrors the distribution of new mutations if the environment changes fast; (3) in contrast to classical models of adaptation assuming a constant optimum, with a moving optimum, more complex organisms evolve via larger adaptive steps. PMID:24898080

  15. Transverse Oscillations of Coronal Loops

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael S.; Erdélyi, Robert

    2009-12-01

    On 14 July 1998 TRACE observed transverse oscillations of a coronal loop generated by an external disturbance most probably caused by a solar flare. These oscillations were interpreted as standing fast kink waves in a magnetic flux tube. Firstly, in this review we embark on the discussion of the theory of waves and oscillations in a homogeneous straight magnetic cylinder with the particular emphasis on fast kink waves. Next, we consider the effects of stratification, loop expansion, loop curvature, non-circular cross-section, loop shape and magnetic twist. An important property of observed transverse coronal loop oscillations is their fast damping. We briefly review the different mechanisms suggested for explaining the rapid damping phenomenon. After that we concentrate on damping due to resonant absorption. We describe the latest analytical results obtained with the use of thin transition layer approximation, and then compare these results with numerical findings obtained for arbitrary density variation inside the flux tube. Very often collective oscillations of an array of coronal magnetic loops are observed. It is natural to start studying this phenomenon from the system of two coronal loops. We describe very recent analytical and numerical results of studying collective oscillations of two parallel homogeneous coronal loops. The implication of the theoretical results for coronal seismology is briefly discussed. We describe the estimates of magnetic field magnitude obtained from the observed fundamental frequency of oscillations, and the estimates of the coronal scale height obtained using the simultaneous observations of the fundamental frequency and the frequency of the first overtone of kink oscillations. In the last part of the review we summarise the most outstanding and acute problems in the theory of the coronal loop transverse oscillations.

  16. A new method for 3D thinning of hybrid shaped porous media using artificial intelligence. Application to trabecular bone.

    PubMed

    Jennane, Rachid; Aufort, Gabriel; Benhamou, Claude Laurent; Ceylan, Murat; Ozbay, Yüksel; Ucan, Osman Nuri

    2012-04-01

    Curve and surface thinning are widely-used skeletonization techniques for modeling objects in three dimensions. In the case of disordered porous media analysis, however, neither is really efficient since the internal geometry of the object is usually composed of both rod and plate shapes. This paper presents an alternative to compute a hybrid shape-dependent skeleton and its application to porous media. The resulting skeleton combines 2D surfaces and 1D curves to represent respectively the plate-shaped and rod-shaped parts of the object. For this purpose, a new technique based on neural networks is proposed: cascade combinations of complex wavelet transform (CWT) and complex-valued artificial neural network (CVANN). The ability of the skeleton to characterize hybrid shaped porous media is demonstrated on a trabecular bone sample. Results show that the proposed method achieves high accuracy rates about 99.78%-99.97%. Especially, CWT (2nd level)-CVANN structure converges to optimum results as high accuracy rate-minimum time consumption.

  17. Opto-electronic oscillator: moving toward solutions based on polymer materials

    NASA Astrophysics Data System (ADS)

    Nguyên, Lâm Duy; Journet, Bernard; Zyss, Joseph

    2008-02-01

    Optoelectronic oscillators have been studied since many years now, their high spectral purity being one of their most interesting quality for photonics signal processing, communication or radio over fiber systems. One part of the structure is a long fiber optic feedback loop acting as a delay line. Different techniques have been introduced such as multiple loops in order to get very narrow spectral lines and large mode spacing. One of the problems due to long fiber loops is the size and the requirement of temperature control. In order to go toward integrated solutions it is also possible to introduce optical resonators instead of a delay line structure (as for classical electronic oscillators). But such resonators should present very high quality factor. In this paper we demonstrate solutions using resonators based on polymer materials such as PMMA-DCM. Structures such as micro-rings, micro-disks or stadium-shaped resonator have been realized at the laboratory. Quality factor of 6000 have already been achieved leading to an equivalent fiber loop of 19 m for an oscillator at 10 GHz. But it has been already theoretically proved that quality factor greater than one thousand hundred could be obtained. These resonators can be directly implemented with Mach-Zehnder optical modulators based on electro-optic polymer such as PMMA-DR1 leading to integrated solutions. And in the future it should be also possible to add a laser made with polymer material, with a structure as stadium-shape polymer micro-laser. The fully integrated photonic chip is not so far. The last important function to be implemented is the tuning of the oscillation frequency.

  18. Characterizing Solution Surface Loop Conformational Flexibility of the GM2 Activator Protein

    PubMed Central

    2015-01-01

    GM2AP has a β-cup topology with numerous X-ray structures showing multiple conformations for some of the surface loops, revealing conformational flexibility that may be related to function, where function is defined as either membrane binding associated with ligand binding and extraction or interaction with other proteins. Here, site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and molecular dynamic (MD) simulations are used to characterize the mobility and conformational flexibility of various structural regions of GM2AP. A series of 10 single cysteine amino acid substitutions were generated, and the constructs were chemically modified with the methanethiosulfonate spin label. Continuous wave (CW) EPR line shapes were obtained and subsequently simulated using the microscopic order macroscopic disorder (MOMD) program. Line shapes for sites that have multiple conformations in the X-ray structures required two spectral components, whereas spectra of the remaining sites were adequately fit with single-component parameters. For spin labeled sites L126C and I66C, spectra were acquired as a function of temperature, and simulations provided for the determination of thermodynamic parameters associated with conformational change. Binding to GM2 ligand did not alter the conformational flexibility of the loops, as evaluated by EPR and NMR spectroscopies. These results confirm that the conformational flexibility observed in the surface loops of GM2AP crystals is present in solution and that the exchange is slow on the EPR time scale (>ns). Furthermore, MD simulation results are presented and agree well with the conformational heterogeneity revealed by SDSL. PMID:25127419

  19. Designing Hysteresis with Dipolar Chains

    NASA Astrophysics Data System (ADS)

    Concha, Andrés; Aguayo, David; Mellado, Paula

    2018-04-01

    Materials that have hysteretic response to an external field are essential in modern information storage and processing technologies. A myriad of magnetization curves of several natural and artificial materials have previously been measured and each has found a particular mechanism that accounts for it. However, a phenomenological model that captures all the hysteresis loops and at the same time provides a simple way to design the magnetic response of a material while remaining minimal is missing. Here, we propose and experimentally demonstrate an elementary method to engineer hysteresis loops in metamaterials built out of dipolar chains. We show that by tuning the interactions of the system and its geometry we can shape the hysteresis loop which allows for the design of the softness of a magnetic material at will. Additionally, this mechanism allows for the control of the number of loops aimed to realize multiple-valued logic technologies. Our findings pave the way for the rational design of hysteretical responses in a variety of physical systems such as dipolar cold atoms, ferroelectrics, or artificial magnetic lattices, among others.

  20. Designing Hysteresis with Dipolar Chains.

    PubMed

    Concha, Andrés; Aguayo, David; Mellado, Paula

    2018-04-13

    Materials that have hysteretic response to an external field are essential in modern information storage and processing technologies. A myriad of magnetization curves of several natural and artificial materials have previously been measured and each has found a particular mechanism that accounts for it. However, a phenomenological model that captures all the hysteresis loops and at the same time provides a simple way to design the magnetic response of a material while remaining minimal is missing. Here, we propose and experimentally demonstrate an elementary method to engineer hysteresis loops in metamaterials built out of dipolar chains. We show that by tuning the interactions of the system and its geometry we can shape the hysteresis loop which allows for the design of the softness of a magnetic material at will. Additionally, this mechanism allows for the control of the number of loops aimed to realize multiple-valued logic technologies. Our findings pave the way for the rational design of hysteretical responses in a variety of physical systems such as dipolar cold atoms, ferroelectrics, or artificial magnetic lattices, among others.

  1. Relaxation oscillations and hierarchy of feedbacks in MAPK signaling

    NASA Astrophysics Data System (ADS)

    Kochańczyk, Marek; Kocieniewski, Paweł; Kozłowska, Emilia; Jaruszewicz-Błońska, Joanna; Sparta, Breanne; Pargett, Michael; Albeck, John G.; Hlavacek, William S.; Lipniacki, Tomasz

    2017-01-01

    We formulated a computational model for a MAPK signaling cascade downstream of the EGF receptor to investigate how interlinked positive and negative feedback loops process EGF signals into ERK pulses of constant amplitude but dose-dependent duration and frequency. A positive feedback loop involving RAS and SOS, which leads to bistability and allows for switch-like responses to inputs, is nested within a negative feedback loop that encompasses RAS and RAF, MEK, and ERK that inhibits SOS via phosphorylation. This negative feedback, operating on a longer time scale, changes switch-like behavior into oscillations having a period of 1 hour or longer. Two auxiliary negative feedback loops, from ERK to MEK and RAF, placed downstream of the positive feedback, shape the temporal ERK activity profile but are dispensable for oscillations. Thus, the positive feedback introduces a hierarchy among negative feedback loops, such that the effect of a negative feedback depends on its position with respect to the positive feedback loop. Furthermore, a combination of the fast positive feedback involving slow-diffusing membrane components with slower negative feedbacks involving faster diffusing cytoplasmic components leads to local excitation/global inhibition dynamics, which allows the MAPK cascade to transmit paracrine EGF signals into spatially non-uniform ERK activity pulses.

  2. SU-C-BRB-02: Symmetric and Asymmetric MLC Based Lung Shielding and Dose Optimization During Translating Bed TBI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, S; Kakakhel, MB; Ahmed, SBS

    2015-06-15

    Purpose: The primary aim was to introduce a dose optimization method for translating bed total body irradiation technique that ensures lung shielding dynamically. Symmetric and asymmetric dynamic MLC apertures were employed for this purpose. Methods: The MLC aperture sizes were defined based on the radiological depth values along the divergent ray lines passing through the individual CT slices. Based on these RD values, asymmetrically shaped MLC apertures were defined every 9 mm of the phantom in superior-inferior direction. Individual MLC files were created with MATLAB™ and were imported into Eclipse™ treatment planning system for dose calculations. Lungs can be shieldedmore » to an optimum level by reducing the MLC aperture width over the lungs. The process was repeated with symmetrically shaped apertures. Results: Dose-volume histogram (DVH) analysis shows that the asymmetric MLC based technique provides better dose coverage to the body and optimum shielding of the lungs compared to symmetrically shaped beam apertures. Midline dose homogeneity is within ±3% with asymmetric MLC apertures whereas it remains within ±4.5% with symmetric ones (except head region where it drops down to −7%). The substantial over and under dosage of ±5% at tissue interfaces has been reduced to ±2% with asymmetric MLC technique. Lungs dose can be reduced to any desired limit. In this experiment lungs dose was reduced to 80% of the prescribed dose, as was desired. Conclusion: The novel asymmetric MLC based technique assures optimum shielding of OARs (e.g. lungs) and better 3-D dose homogeneity and body-dose coverage in comparison with the symmetric MLC aperture optimization. The authors acknowledge the financial and infrastructural support provided by Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad and Aga Khan University Hospital (AKUH), Karachi during the course of this research project. Authors have no conflict of interest with any national / international body for the presented work.« less

  3. Determination of Shapes of Boattail Bodies of Revolution for Minimum Wave Drag

    NASA Technical Reports Server (NTRS)

    Adams, Mac C.

    1951-01-01

    By use of an approximate equation for the wave drag of slender bodies of revolution in a supersonic flow field, the optimum shapes of certain boattail bodies are determined for minimum wave drag. The properties of three specific families of bodies are determined, the first family consisting of bodies having a given length and base area and a contour passing through a prescribed point between the nose and base, the second family having fixed length, base area, and maximum area, and the third family having given length, volume, and base area. The method presented is easily generalized to determine minimum-wave-drag profile shapes which have contours that must pass through any prescribed number of points. According to linearized theory, the optimum profiles are found to have infinite slope at the nose but zero radius of curvature so that the bodies appear to have pointed noses, a zero slope at the body base, and no variation of wave drag with Mach number. For those bodies having a specified intermediate.diameter (that is, location and magnitude given), the maximum body diameter is shown to be larger, in general, than the specified diameter. It is also shown that, for bodies having a specified maximum diameter, the location of the maximum diameter is not arbitrary but is determined from the ratio of base diameter to maximum diameter.

  4. Simulation and Fabrication of Wagon-Wheel-Shaped Piezoelectric Transducer for Raindrop Energy Harvesting Application

    NASA Astrophysics Data System (ADS)

    Wong, Chin Hong; Dahari, Zuraini; Jumali, Mohammad Hafizuddin; Mohamed, Khairudin; Mohamed, Julie Juliewatty

    2017-03-01

    Harvesting vibrational energy from impacting raindrops using piezoelectric material has been proven to be a promising approach for future outdoor applications, providing a good alternative resource that can be applied in outdoor rainy environments. We present herein an optimum novel polyvinylidene fluoride (PVDF) piezoelectric transducer specifically developed to harvest raindrop energy. The finite-element method was applied for simulation and optimization of the piezoelectric raindrop energy harvester (PREH) using COMSOL Multiphysics software, investigating the electrical potential, surface charge density, and total displacement for different transducer dimensions. According to the simulation results, the structure that generated the highest electrical potential and surface charge density was a wagon-wheel-shaped structure consisting of six spokes with wheel diameter of 30 mm, spoke width of 2 mm, center pad diameter of 6 mm, and thickness of 25 μm. This optimum wagon-wheel-shaped device was then fabricated by spin coating of PVDF, sputtering of aluminum, a poling process, and computer numerical control machining of a polytetrafluoroethylene stand. The fabricated PREH was characterized by x-ray diffraction analysis and Fourier-transform infrared spectroscopy. Finally, the fabricated PREH was tested under actual rain conditions with an alternating current to direct current converter connected in parallel, revealing that a single cell could generate average peak voltage of 22.5 mV and produce electrical energy of 3.4 nJ from ten impacts in 20 s.

  5. Robust and adjustable C-shaped electron vortex beams

    NASA Astrophysics Data System (ADS)

    Mousley, M.; Thirunavukkarasu, G.; Babiker, M.; Yuan, J.

    2017-06-01

    Wavefront engineering is an important quantum technology, often applied to the production of states carrying orbital angular momentum (OAM). Here, we demonstrate the design and production of robust C-shaped beam states carrying OAM, in which the usual doughnut-shaped transverse intensity structure of the vortex beam contains an adjustable gap. We find that the presence of the vortex lines in the core of the beam is crucial for maintaining the stability of the C-shape structure during beam propagation. The topological charge of the vortex core controls mainly the size of the C-shape, while its opening angle is related to the presence of vortex-anti-vortex loops. We demonstrate the generation and characterisation of C-shaped electron vortex beams, although the result is equally applicable to other quantum waves. C-shaped electron vortex beams have potential applications in nanoscale fabrication of planar split-ring structures and three-dimensional chiral structures as well as depth sensing and magnetic field determination through rotation of the gap in the C-shape.

  6. Optimization of multi-element airfoils for maximum lift

    NASA Technical Reports Server (NTRS)

    Olsen, L. E.

    1979-01-01

    Two theoretical methods are presented for optimizing multi-element airfoils to obtain maximum lift. The analyses assume that the shapes of the various high lift elements are fixed. The objective of the design procedures is then to determine the optimum location and/or deflection of the leading and trailing edge devices. The first analysis determines the optimum horizontal and vertical location and the deflection of a leading edge slat. The structure of the flow field is calculated by iteratively coupling potential flow and boundary layer analysis. This design procedure does not require that flow separation effects be modeled. The second analysis determines the slat and flap deflection required to maximize the lift of a three element airfoil. This approach requires that the effects of flow separation from one or more of the airfoil elements be taken into account. The theoretical results are in good agreement with results of a wind tunnel test used to corroborate the predicted optimum slat and flap positions.

  7. Additional flow field studies of the GA(W)-1 airfoil with 30-percent chord Fowler flap including slot-gap variations and cove shape modifications

    NASA Technical Reports Server (NTRS)

    Wentz, W. H., Jr.; Ostowari, C.

    1983-01-01

    Experimental measurements were made to determine the effects of slot gap opening and flap cove shape on flap and airfoil flow fields. Test model was the GA(W)-1 airfoil with 0.30c Fowler flap deflected 35 degrees. Tests were conducted with optimum, wide and narrow gaps, and with three cove shapes. Three test angles were selected, corresponding to pre-stall and post-stall conditions. Reynolds number was 2,200,000 and Mach number was 0.13. Force, surface pressure, total pressure, and split-film turbulence measurements were made. Results were compared with theory for those parameters for which theoretical values were available.

  8. Improved process robustness by using closed loop control in deep drawing applications

    NASA Astrophysics Data System (ADS)

    Barthau, M.; Liewald, M.; Christian, Held

    2017-09-01

    The production of irregular shaped deep-drawing parts with high quality requirements, which are common in today’s automotive production, permanently challenges production processes. High requirements on lightweight construction of passenger car bodies following European regulations until 2020 have been massively increasing the use of high strength steels substantially for years and are also leading to bigger challenges in sheet metal part production. Of course, the more and more complex shapes of today’s car body shells also intensify the issue due to modern and future design criteria. The metal forming technology tries to meet these challenges by developing a highly sophisticated layout of deep drawing dies that consider part quality requirements, process robustness and controlled material flow during the deep or stretch drawing process phase. A new method for controlling material flow using a closed loop system was developed at the IFU Stuttgart. In contrast to previous approaches, this new method allows a control intervention during the deep-drawing stroke. The blank holder force around the outline of the drawn part is used as control variable. The closed loop is designed as trajectory follow up with feed forward control. The used command variable is the part-wall stress that is measured with a piezo-electric measuring pin. In this paper the used control loop will be described in detail. The experimental tool that was built for testing the new control approach is explained here with its features. A method for gaining the follow up trajectories from simulation will also be presented. Furthermore, experimental results considering the robustness of the deep drawing process and the gain in process performance with developed control loop will be shown. Finally, a new procedure for the industrial application of the new control method of deep drawing will be presented by using a new kind of active element to influence the local blank holder pressure onto part flange.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitta, L. P.; Peter, H.; Solanki, S. K.

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistentmore » opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.« less

  10. Multiple roles of mobile active center loops in the E1 component of the Escherichia coli pyruvate dehydrogenase complex - Linkage of protein dynamics to catalysis

    PubMed Central

    Jordan, Frank; Arjunan, Palaniappa; Kale, Sachin; Nemeria, Natalia S.; Furey, William

    2009-01-01

    The region encompassing residues 401–413 on the E1 component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli comprises a loop (the inner loop) which was not seen in the X-ray structure in the presence of thiamin diphosphate, the required cofactor for the enzyme. This loop is seen in the presence of a stable analogue of the pre-decarboxylation intermediate, the covalent adduct between the substrate analogue methyl acetylphosphonate and thiamin diphosphate, C2α-phosphonolactylthiamin diphosphate. It has been shown that the residue H407 and several other residues on this loop are required to reduce the mobility of the loop so electron density corresponding to it can be seen once the pre-decarboxylation intermediate is formed. Concomitantly, the loop encompassing residues 541–557 (the outer loop) appears to work in tandem with the inner loop and there is a hydrogen bond between the two loops ensuring their correlated motion. The inner loop was shown to: a) sequester the active center from carboligase side reactions; b) assist the interaction between the E1 and the E2 components, thereby affecting the overall reaction rate of the entire multienzyme complex; c) control substrate access to the active center. Using viscosity effects on kinetics it was shown that formation of the pre-decarboxylation intermediate is specifically affected by loop movement. A cysteine-less variant was created for the E1 component, onto which cysteines were substituted at selected loop positions. Introducing an electron spin resonance spin label and an 19F NMR label onto these engineered cysteines, the loop mobility was examined: a) both methods suggested that in the absence of ligand, the loop exists in two conformations; b) line-shape analysis of the NMR signal at different temperatures, enabled estimation of the rate constant for loop movement, and this rate constant was found to be of the same order of magnitude as the turnover number for the enzyme under the same conditions. Furthermore, this analysis gave important insights into rate-limiting thermal loop dynamics. Overall, the results suggest that the dynamic properties correlate with catalytic events on the E1 component of the pyruvate dehydrogenase complex. PMID:20160956

  11. A novel algorithm for fast and efficient multifocus wavefront shaping

    NASA Astrophysics Data System (ADS)

    Fayyaz, Zahra; Nasiriavanaki, Mohammadreza

    2018-02-01

    Wavefront shaping using spatial light modulator (SLM) is a popular method for focusing light through a turbid media, such as biological tissues. Usually, in iterative optimization methods, due to the very large number of pixels in SLM, larger pixels are formed, bins, and the phase value of the bins are changed to obtain an optimum phase map, hence a focus. In this study an efficient optimization algorithm is proposed to obtain an arbitrary map of focus utilizing all the SLM pixels or small bin sizes. The application of such methodology in dermatology, hair removal in particular, is explored and discussed

  12. The drag of magnetically suspended wind-tunnel models with nose-cones of various shapes

    NASA Technical Reports Server (NTRS)

    Dubois, G.

    1983-01-01

    This article concerns the experimental determination of optimum nose-cones (minimum drag) of a body of revolution at supersonic and hypersonic speeds by means of ONERA magnetic suspension. The study concerns two groups of models, specifically: a group whose nose-cone has a profile in the shape of X(n); the AGARD B group whose nose-cone is plotted in accordance with a given law. The results obtained for the first group are comparable to those calculated with the approximations of Cole and Newton and the experiments carried out by Kubota.

  13. Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding.

    PubMed

    Zhang, Guang; Zhou, Qinling; Yu, Chunlei; Hu, Lili; Chen, Danping

    2012-06-15

    We report on high-power fiber lasers based on index-guiding, all-solid neodymium-doped (Nd-doped) phosphate photonic crystal fiber (PCF) with a hexagonal-shaped inner cladding. The optimum fiber laser with a 36 cm length active fiber, generated up to 7.92 W output power at 1053 nm, which benefited from a high absorption coefficient for pump power due to its noncircular inner cladding. The guiding properties of the all-solid PCF were also investigated. A stable mode with a donut-shaped profile and a power-dependent laser beam quality have been observed experimentally and analyzed.

  14. The Impact of Prepersuasion Social Influence Tactics on Military Decision Making

    DTIC Science & Technology

    2011-03-01

    prepersuasion influence. 15. NUMBER OF PAGES 89 14. SUBJECT TERMS Military Decision Making, OODA Loop, Social Influence, Prepersuasion, Storytelling ...Operations ............13 2. Storytelling ..........................................................................................14 3. Limiting and...2. Postinvasion Effects of Fortitude South...........................................40 3. Storytelling and Expectation Setting Shape the Cognitive

  15. Cutting a Drop of Water Pinned by Wire Loops Using a Superhydrophobic Surface and Knife

    PubMed Central

    Yanashima, Ryan; García, Antonio A.; Aldridge, James; Weiss, Noah; Hayes, Mark A.; Andrews, James H.

    2012-01-01

    A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation. PMID:23029297

  16. Shape induced magnetic vortex state in hexagonal ordered cofe nanodot arrays using ultrathin alumina shadow mask

    NASA Astrophysics Data System (ADS)

    Sellarajan, B.; Saravanan, P.; Ghosh, S. K.; Nagaraja, H. S.; Barshilia, Harish C.; Chowdhury, P.

    2018-04-01

    The magnetization reversal process of hexagonal ordered CoFe nanodot arrays was investigated as a function of nanodot thickness (td) varying from 10 to 30 nm with fixed diameter. For this purpose, ordered CoFe nanodots with a diameter of 80 ± 4 nm were grown by sputtering using ultra-thin alumina mask. The vortex annihilation and the dynamic spin configuration in the ordered CoFe nanodots were analyzed by means of magnetic hysteresis loops in complement with the micromagnetic simulation studies. A highly pinched hysteresis loop observed at 20 nm thickness suggests the occurrence of vortex state in these nanodots. With increase in dot thickness from 10 to 30 nm, the estimated coercivity values tend to increase from 80 to 175 Oe, indicating irreversible change in the nucleation/annihilation field of vortex state. The measured magnetic properties were then corroborated with the change in the shape of the nanodots from disk to hemisphere through micromagnetic simulation.

  17. A new planar broadband antenna based on meandered line loops for portable wireless communication devices

    NASA Astrophysics Data System (ADS)

    Alibakhshi-Kenari, Mohammad; Naser-Moghadasi, Mohammad; Sadeghzadeh, R. A.; Virdee, Bal S.; Limiti, Ernesto

    2016-07-01

    This article presents the design of a novel planar antenna structure comprising two pairs of interconnected meandered line loops that are grounded to a truncated T-shaped ground plane through two via holes. The T-shaped ground plane is used as a reflector to enhance the performance of the antenna. The resulting antenna is compact occupying an area of 38.5 × 36.6 mm2 (0.070λo × 0.067λo), where free-space wavelength is 550 MHz. The antenna radiates omnidirectionally in the E plane across its operational bandwidth (550 MHz to 3.85 GHz) with peak gain and efficiency of 5.5 dBi and 90.1%, respectively, at 2.35 GHz and reflection coefficient better than -10 dB. These characteristics make the antenna suitable for numerous applications, in particular, JCDMA, UHF RFID, GSM 900, GPS, KPCS, DCS, IMT-2000, WiMAX, WiFi, and Bluetooth.

  18. Micromagnetic simulation study of magnetization reversal in torus-shaped permalloy nanorings

    NASA Astrophysics Data System (ADS)

    Mishra, Amaresh Chandra; Giri, R.

    2017-09-01

    Using micromagnetic simulation, the magnetization reversal of soft permalloy rings of torus shape with major radius R varying within 20-100 nm has been investigated. The minor radius r of the torus rings was increased from 5 nm up to a maximum value rmax such that R- rmax = 10 nm. Micromagnetic simulation of in-plane hysteresis curve of these nanorings revealed that in the case of very thin rings (r ≤ 10 nm), the remanent state is found to be an onion state, whereas for all other rings, the remanent state is a vortex state. The area of the hysteresis loop was found to be decreasing gradually with the increment of r. The normalized area under the hysteresis loops (AN) increases initially with increment of r. It attains a maximum for a certain value of r = r0 and again decreases thereafter. This value r0 increases as we decrease R and as a result, this peak feature is hardly visible in the case of smaller rings (rings having small R).

  19. Mass resolution of linear quadrupole ion traps with round rods.

    PubMed

    Douglas, D J; Konenkov, N V

    2014-11-15

    Auxiliary dipole excitation is widely used to eject ions from linear radio-frequency quadrupole ion traps for mass analysis. Linear quadrupoles are often constructed with round rod electrodes. The higher multipoles introduced to the electric potential by round rods might be expected to change the ion ejection process. We have therefore investigated the optimum ratio of rod radius, r, to field radius, r0, for excitation and ejection of ions. Trajectory calculations are used to determine the excitation contour, S(q), the fraction of ions ejected when trapped at q values close to the ejection (or excitation) q. Initial conditions are randomly selected from Gaussian distributions of the x and y coordinates and a thermal distribution of velocities. The N = 6 (12 pole) and N = 10 (20 pole) multipoles are added to the quadrupole potential. Peak shapes and resolution were calculated for ratios r/r0 from 1.09 to 1.20 with an excitation time of 1000 cycles of the trapping radio-frequency. Ratios r/r0 in the range 1.140 to 1.160 give the highest resolution and peaks with little tailing. Ratios outside this range give lower resolution and peaks with tails on either the low-mass side or the high-mass side of the peaks. This contrasts with the optimum ratio of 1.126-1.130 for a quadrupole mass filter operated conventionally at the tip of the first stability region. With the optimum geometry the resolution is 2.7 times greater than with an ideal quadrupole field. Adding only a 2.0% hexapole field to a quadrupole field increases the resolution by a factor of 1.6 compared with an ideal quadrupole field. Addition of a 2.0% octopole lowers resolution and degrades peak shape. With the optimum value of r/r0 , the resolution increases with the ejection time (measured in cycles of the trapping rf, n) approximately as R0.5 = 6.64n, in contrast to a pure quadrupole field where R0.5 = 1.94n. Adding weak nonlinear fields to a quadrupole field can improve the resolution with mass-selective ejection of ions by up to a factor of 2.7. The optimum ratio r/r0 is 1.14 to 1.16, which differs from the optimum ratio for a mass filter of 1.128-1.130. Copyright © 2014 John Wiley & Sons, Ltd.

  20. PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Wei; Chen Qingrong; Petrosian, Vahe

    2013-04-20

    Where particle acceleration and plasma heating take place in relation to magnetic reconnection is a fundamental question for solar flares. We report analysis of an M7.7 flare on 2012 July 19 observed by SDO/AIA and RHESSI. Bi-directional outflows in forms of plasmoid ejections and contracting cusp-shaped loops originate between an erupting flux rope and underlying flare loops at speeds of typically 200-300 km s{sup -1} up to 1050 km s{sup -1}. These outflows are associated with spatially separated double coronal X-ray sources with centroid separation decreasing with energy. The highest temperature is located near the nonthermal X-ray loop-top source wellmore » below the original heights of contracting cusps near the inferred reconnection site. These observations suggest that the primary loci of particle acceleration and plasma heating are in the reconnection outflow regions, rather than the reconnection site itself. In addition, there is an initial ascent of the X-ray and EUV loop-top source prior to its recently recognized descent, which we ascribe to the interplay among multiple processes including the upward development of reconnection and the downward contractions of reconnected loops. The impulsive phase onset is delayed by 10 minutes from the start of the descent, but coincides with the rapid speed increases of the upward plasmoids, the individual loop shrinkages, and the overall loop-top descent, suggestive of an intimate relation of the energy release rate and reconnection outflow speed.« less

  1. EUV Waves Driven by the Sudden Expansion of Transequatorial Loops Caused by Coronal Jets

    NASA Astrophysics Data System (ADS)

    Shen, Yuandeng; Tang, Zehao; Miao, Yuhu; Su, Jiangtao; Liu, Yu

    2018-06-01

    We present two events to study the driving mechanism of extreme-ultraviolet (EUV) waves that are not associated with coronal mass ejections (CMEs), by using high-resolution observations taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. Observational results indicate that the observed EUV waves were accompanied by flares and coronal jets, but not the CMEs that were regarded as drivers of most EUV waves in previous studies. In the first case, it is observed that a coronal jet is ejected along a transequatorial loop system at a plane-of-the-sky (POS) speed of 335 ± 22 km s{}-1; in the meantime, an arc-shaped EUV wave appeared on the eastern side of the loop system. In addition, the EUV wave further interacted with another interconnecting loop system and launched a fast propagating (QFP) magnetosonic wave along the loop system, which had a period of 200 s and a speed of 388 ± 65 km s{}-1, respectively. In the second case, we observed a coronal jet that ejected at a POS speed of 282 ± 44 km s{}-1 along a transequatorial loop system as well as the generation of bright EUV waves on the eastern side of the loop system. Based on the observational results, we propose that the observed EUV waves on the eastern side of the transequatorial loop systems are fast-mode magnetosonic waves and that they are driven by the sudden lateral expansion of the transequatorial loop systems due to the direct impingement of the associated coronal jets, while the QFP wave in the fist case formed due to the dispersive evolution of the disturbance caused by the interaction between the EUV wave and the interconnecting coronal loops. It is noted that EUV waves driven by sudden loop expansions have shorter lifetimes than those driven by CMEs.

  2. Dislocation loop models for the high temperature creep of Al-5.5 at.% Mg alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, S.U.; Blum, W.

    1995-04-15

    The Al-5.5 at.% Mg alloy is a typical class I type solution hardened material. The dislocation loop models proposed by Orlova and Cadek and by Mills et al., respectively are widely applied models in describing the high temperature creep behavior of the Al-5.5 at.% Mg alloy. These models, however, are in conflict in explaining dislocation loop theory. Orlova and Cadek suggest that in class I solution hardened alloys screw dislocations are relatively easier to migrate because they are subject to a smaller resistance in motion than edge dislocations. Consequently, the migration rate of screw dislocations is higher than that ofmore » edge dislocations. However, since dislocation loops are composed of both screw and edge components, the overall migration rate of screw dislocations are reduced by that of the edge component. Mills et al. on the contrary, used a different dislocation loop model. As the loop grows while it moves, it takes on the shape of an ellipsoid due to the unbalance in growth rate, the score segment moving much easier than the edge. Therefore, as shown in the results of the stress reduction tests, rapid elastic ({Delta} {var_epsilon}{sub el}) and anelastic contraction ({Delta} {var_epsilon}{sub an}) occur simultaneously directly after stress reduction. During the movement of the dislocation loop, the screw component hence becomes severely curved, while the edge component retains a straight line. This has been proved through dislocation structure observations by TEM.« less

  3. Spatiotemporal Analysis of Coronal Loops Using Seismology of Damped Kink Oscillations and Forward Modeling of EUV Intensity Profiles

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Anfinogentov, S. A.; Goddard, C. R.; Nakariakov, V. M.

    2018-06-01

    The shape of the damping profile of kink oscillations in coronal loops has recently allowed the transverse density profile of the loop to be estimated. This requires accurate measurement of the damping profile that can distinguish the Gaussian and exponential damping regimes, otherwise there are more unknowns than observables. Forward modeling of the transverse intensity profile may also be used to estimate the width of the inhomogeneous layer of a loop, providing an independent estimate of one of these unknowns. We analyze an oscillating loop for which the seismological determination of the transverse structure is inconclusive except when supplemented by additional spatial information from the transverse intensity profile. Our temporal analysis describes the motion of a coronal loop as a kink oscillation damped by resonant absorption, and our spatial analysis is based on forward modeling the transverse EUV intensity profile of the loop under the isothermal and optically thin approximations. We use Bayesian analysis and Markov chain Monte Carlo sampling to apply our spatial and temporal models both individually and simultaneously to our data and compare the results with numerical simulations. Combining the two methods allows both the inhomogeneous layer width and density contrast to be calculated, which is not possible for the same data when each method is applied individually. We demonstrate that the assumption of an exponential damping profile leads to a significantly larger error in the inferred density contrast ratio compared with a Gaussian damping profile.

  4. Diode laser detection of greenhouse gases in the near-infrared region by wavelength modulation spectroscopy: pressure dependence of the detection sensitivity.

    PubMed

    Asakawa, Takashi; Kanno, Nozomu; Tonokura, Kenichi

    2010-01-01

    We have investigated the pressure dependence of the detection sensitivity of CO(2), N(2)O and CH(4) using wavelength modulation spectroscopy (WMS) with distributed feed-back diode lasers in the near infrared region. The spectral line shapes and the background noise of the second harmonics (2f) detection of the WMS were analyzed theoretically. We determined the optimum pressure conditions in the detection of CO(2), N(2)O and CH(4), by taking into consideration the background noise in the WMS. At the optimum total pressure for the detection of CO(2), N(2)O and CH(4), the limits of detection in the present system were determined.

  5. Constraints on the wing morphology of pterosaurs

    PubMed Central

    Palmer, Colin; Dyke, Gareth

    2012-01-01

    Animals that fly must be able to do so over a huge range of aerodynamic conditions, determined by weather, wind speed and the nature of their environment. No single parameter can be used to determine—let alone measure—optimum flight performance as it relates to wing shape. Reconstructing the wings of the extinct pterosaurs has therefore proved especially problematic: these Mesozoic flying reptiles had a soft-tissue membranous flight surface that is rarely preserved in the fossil record. Here, we review basic mechanical and aerodynamic constraints that influenced the wing shape of pterosaurs, and, building on this, present a series of theoretical modelling results. These results allow us to predict the most likely wing shapes that could have been employed by these ancient reptiles, and further show that a combination of anterior sweep and a reflexed proximal wing section provides an aerodynamically balanced and efficient theoretical pterosaur wing shape, with clear benefits for their flight stability. PMID:21957137

  6. Extraction of mineral elements from inedible wastes of biological components of a life-support system and their utilization for plant nutrition

    NASA Astrophysics Data System (ADS)

    Gribovskaya, I. V.; Gladchenko, I. A.; Zinenko, G. K.

    Two methods of extracting mineral elements from otherwise deadlock products of a life-support system are presented. We describe first optimum conditions for recovering elements by water extraction from dry wastes of plants, biomass ash, and solid human wastes after passing them through the catalytic furnace; and, second, we describe acid extracts of biogenous elements by 1N and 2N HNO_3 from these products. Ways to use the extracts of elements in plant nutrition are considered in order to increase the extent to which the mineral loop of a life-support system can be closed.

  7. Personal manufacturing systems

    NASA Astrophysics Data System (ADS)

    Bailey, P.

    1992-04-01

    Personal Manufacturing Systems are the missing link in the automation of the design-to- manufacture process. A PMS will act as a CAD peripheral, closing the loop around the designer enabling him to directly produce models, short production runs or soft tooling with as little fuss as he might otherwise plot a drawing. Whereas conventional 5-axis CNC machines are based on orthogonal axes and simple incremental movements, the PMS is based on a geodetic structure and complex co-ordinated 'spline' movements. The software employs a novel 3D pixel technique for give itself 'spatial awareness' and an expert system to determine the optimum machining conditions. A completely automatic machining strategy can then be determined.

  8. Effect of two types of helium circulators on the performance of a subsonic nuclear powered airplane

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1971-01-01

    Two types of helium circulators are analytically compared on the bases of their influence on airplane payload and on propulsion system variables. One type of circulator is driven by the turbofan engines with power takeoff shafting while the other, a turbocirculator, is powered by a turbine placed in the helium loop between the nuclear reactor and the helium-to-air heat exchangers inside the engines. Typical results show that the turbocirculator yields more payload for circulator efficiencies greater than 0.82. Optimum engine and heat exchanger temperatures and pressures are significantly lower in the turbocirculator case compared to the engine-driven circulator scheme.

  9. Differential tissue growth and cell adhesion alone drive early tooth morphogenesis: An ex vivo and in silico study

    PubMed Central

    Savriama, Yoland; Jernvall, Jukka

    2018-01-01

    From gastrulation to late organogenesis animal development involves many genetic and bio-mechanical interactions between epithelial and mesenchymal tissues. Ectodermal organs, such as hairs, feathers and teeth are well studied examples of organs whose development is based on epithelial-mesenchymal interactions. These develop from a similar primordium through an epithelial folding and its interaction with the mesenchyme. Despite extensive knowledge on the molecular pathways involved, little is known about the role of bio-mechanical processes in the morphogenesis of these organs. We propose a simple computational model for the biomechanics of one such organ, the tooth, and contrast its predictions against cell-tracking experiments, mechanical relaxation experiments and the observed tooth shape changes over developmental time. We found that two biomechanical processes, differential tissue growth and differential cell adhesion, were enough, in the model, for the development of the 3D morphology of the early tooth germ. This was largely determined by the length and direction of growth of the cervical loops, lateral folds of the enamel epithelium. The formation of these cervical loops was found to require accelerated epithelial growth relative to other tissues and their direction of growth depended on specific differential adhesion between the three tooth tissues. These two processes and geometrical constraints in early tooth bud also explained the shape asymmetry between the lateral cervical loops and those forming in the anterior and posterior of the tooth. By performing mechanical perturbations ex vivo and in silico we inferred the distribution and direction of tensile stresses in the mesenchyme that restricted cervical loop lateral growth and forced them to grow downwards. Overall our study suggests detailed quantitative explanations for how bio-mechanical processes lead to specific morphological 3D changes over developmental time. PMID:29481561

  10. NON-POTENTIAL FIELDS IN THE QUIET SUN NETWORK: EXTREME-ULTRAVIOLET AND MAGNETIC FOOTPOINT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.

    The quiet Sun (QS) magnetic network is known to contain dynamics which are indicative of non-potential fields. Non-potential magnetic fields forming ''S-shaped'' loop arcades can lead to the breakdown of static activity and have only been observed in high temperature X-ray coronal structures—some of which show eruptive behavior. Thus, analysis of this type of atmospheric structuring has been restricted to large-scale coronal fields. Here we provide the first identification of non-potential loop arcades exclusive to the QS supergranulation network. High-resolution Atmospheric Imaging Assembly data from the Solar Dynamics Observatory have allowed for the first observations of fine-scale ''S-shaped'' loop arcadesmore » spanning the network. We have investigated the magnetic footpoint flux evolution of these arcades from Heliospheric and Magnetic Imager data and find evidence of evolving footpoint flux imbalances accompanying the formation of these non-potential fields. The existence of such non-potentiality confirms that magnetic field dynamics leading to the build up of helicity exist at small scales. QS non-potentiality also suggests a self-similar formation process between the QS network and high temperature corona and the existence of self-organized criticality (SOC) in the form of loop-pair reconnection and helicity dissipation. We argue that this type of behavior could lead to eruptive forms of SOC as seen in active region (AR) and X-ray sigmoids if sufficient free magnetic energy is available. QS magnetic network dynamics may be considered as a coronal proxy at supergranular scales, and events confined to the network can even mimic those in coronal ARs.« less

  11. The mechanics of trick roping

    NASA Astrophysics Data System (ADS)

    Brun, Pierre-Thomas

    2014-03-01

    Trick roping evolved from humble origins as a cattle-catching tool into a sport that delights audiences the world over with its complex patterns or ``tricks,'' such as the Merry-Go-Round , the Wedding-Ring, the Spoke-Jumping, the Texas Skip... Its implement is the lasso, a length of rope with a small loop (``honda'') at one end through which the other end is passed to form a large loop. Here, we study the physics of the simplest rope trick, the Flat Loop, in which the motion of the lasso is forced by a uniform circular motion of the cowboy's/cowgirl's hand in a horizontal plane. To avoid accumulating twist in the rope, the cowboy/cowgirl rolls it between his/her thumb and forefinger while spinning it. The configuration of the rope is stationary in a reference frame that rotates with the hand. Exploiting this fact we derive a dynamical ``string'' model in which line tension is balanced by the centrifugal force and the rope's weight. Using a numerical continuation method, we calculate the steady shapes of a lasso with a fixed honda, examine their stability, and determine a bifurcation diagram exhibiting coat-hanger shapes and whirling modes in addition to flat loops. We then extend the model to a honda with finite sliding friction by using matched asymptotic expansions to determine the structure of the boundary layer where bending forces are significant, thereby obtaining a macroscopic criterion for frictional sliding of the honda. We compare our theoretical results with high-speed videos of a professional trick roper and experiments performed using a laboratory ``robo-cowboy.'' Finally, we conclude with a practical guidance on how to spin a lasso in the air based on the results of our analysis. With the support of Univ. Paris Sud (Lab. FAST/CNRS) and UPMC (d'Alembert/CNRS).

  12. Detection of Naja atra Cardiotoxin Using Adenosine-Based Molecular Beacon.

    PubMed

    Shi, Yi-Jun; Chen, Ying-Jung; Hu, Wan-Ping; Chang, Long-Sen

    2017-01-07

    This study presents an adenosine (A)-based molecular beacon (MB) for selective detection of Naja atra cardiotoxin (CTX) that functions by utilizing the competitive binding between CTX and the poly(A) stem of MB to coralyne. The 5'- and 3'-end of MB were labeled with a reporter fluorophore and a non-fluorescent quencher, respectively. Coralyne induced formation of the stem-loop MB structure through A₂-coralyne-A₂ coordination, causing fluorescence signal turn-off due to fluorescence resonance energy transfer between the fluorophore and quencher. CTX3 could bind to coralyne. Moreover, CTX3 alone induced the folding of MB structure and quenching of MB fluorescence. Unlike that of snake venom α-neurotoxins, the fluorescence signal of coralyne-MB complexes produced a bell-shaped concentration-dependent curve in the presence of CTX3 and CTX isotoxins; a turn-on fluorescence signal was noted when CTX concentration was ≤80 nM, while a turn-off fluorescence signal was noted with a further increase in toxin concentrations. The fluorescence signal of coralyne-MB complexes yielded a bell-shaped curve in response to varying concentrations of N. atra crude venom but not those of Bungarus multicinctus and Protobothrops mucrosquamatus venoms. Moreover, N. nigricollis venom also functioned as N. atra venom to yield a bell-shaped concentration-dependent curve of MB fluorescence signal, again supporting that the hairpin-shaped MB could detect crude venoms containing CTXs. Taken together, our data validate that a platform composed of coralyne-induced stem-loop MB structure selectively detects CTXs.

  13. Stress analyses for the glass joints of contemporary sodium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Jung, Keeyoung; Lee, Solki; Kim, Goun; Kim, Chang-Soo

    2014-12-01

    During the manufacturing and thermal cycles of advanced contemporary large sized sodium sulfur (NaS) batteries, thermally driven stresses can be applied to the glass sealing joints, which may result in catastrophic cell failure. To minimize the thermal stresses at the joints, there is a need to develop a method to properly estimate the maximum thermal stresses by varying the materials properties and shapes of the sealing area, and thereby determine the properties and shapes of sealing material at the joints. In the present study, the optimum coefficient of thermal expansion (CTE) of the glass sealant and end shape of the glass sealing area (i.e., concave, flat, and convex shapes) have been determined using the finite-element analysis (FEA) computation technique. The results showed that the CTE value of 7.8 × 10-6 K-1 with a convex end shape would have the lowest stress concentration in the vicinity of glass sealing joints for the prototype tubular NaS cell design adopted in this work.

  14. Flow analysis and design optimization methods for nozzle-afterbody of a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Baysal, O.

    1992-01-01

    This report summarizes the methods developed for the aerodynamic analysis and the shape optimization of the nozzle-afterbody section of a hypersonic vehicle. Initially, exhaust gases were assumed to be air. Internal-external flows around a single scramjet module were analyzed by solving the 3D Navier-Stokes equations. Then, exhaust gases were simulated by a cold mixture of Freon and Ar. Two different models were used to compute these multispecies flows as they mixed with the hypersonic airflow. Surface and off-surface properties were successfully compared with the experimental data. The Aerodynamic Design Optimization with Sensitivity analysis was then developed. Pre- and postoptimization sensitivity coefficients were derived and used in this quasi-analytical method. These coefficients were also used to predict inexpensively the flow field around a changed shape when the flow field of an unchanged shape was given. Starting with totally arbitrary initial afterbody shapes, independent computations were converged to the same optimum shape, which rendered the maximum axial thrust.

  15. Flow analysis and design optimization methods for nozzle afterbody of a hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1991-01-01

    This report summarizes the methods developed for the aerodynamic analysis and the shape optimization of the nozzle-afterbody section of a hypersonic vehicle. Initially, exhaust gases were assumed to be air. Internal-external flows around a single scramjet module were analyzed by solving the three dimensional Navier-Stokes equations. Then, exhaust gases were simulated by a cold mixture of Freon and Argon. Two different models were used to compute these multispecies flows as they mixed with the hypersonic airflow. Surface and off-surface properties were successfully compared with the experimental data. In the second phase of this project, the Aerodynamic Design Optimization with Sensitivity analysis (ADOS) was developed. Pre and post optimization sensitivity coefficients were derived and used in this quasi-analytical method. These coefficients were also used to predict inexpensively the flow field around a changed shape when the flow field of an unchanged shape was given. Starting with totally arbitrary initial afterbody shapes, independent computations were converged to the same optimum shape, which rendered the maximum axial thrust.

  16. A novel pulsed gas metal arc welding system with direct droplet transfer close-loop control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Q.; Li, P.; Zhang, L.

    1994-12-31

    In pulsed gas metal arc welding (GMAW), a predominant parameter that has to be monitored and controlled in real time for maintaining process stability and ensuring weld quality, is droplet transfer. Based on the close correlation between droplet transfer and arc light radiant flux in GMAW of steel and aluminum, a direct closed-loop droplet transfer control system for pulsed GMAW with arc light sensor has been developed. By sensing the droplet transfer directly via the arc light signal, a pulsed GMAW process with real and exact one-pulse, one-droplet transfer has been achieved. The novel pulsed GMAW machine consists of threemore » parts: a sensing system, a controlling system, and a welding power system. The software used in this control system is capable of data sampling and processing, parameter matching, optimum parameter restoring, and resetting. A novel arc light sensing system has been developed. The sensor is small enough to be clamped to a semiautomatic welding torch. Based on thissensingn system, a closed-loop droplet transfer control system of GMAW of steel and aluminum has been built and a commercial prototype has been made. The system is capable of keeping one-pulse, one-droplet transfer against external interferences. The welding process with this control system has been proved to be stable, quiet, with no spatter, and provide good weld formation.« less

  17. Analysis of Carbon Nanotubes and Graphene Nanoribbons with Folded Racket Shapes

    NASA Astrophysics Data System (ADS)

    Borum, Andy; Plaut, Raymond; Dillard, David

    2011-10-01

    When carbon nanotubes and graphene nanoribbons become long, they may self-fold and form tennis racket-like shapes. This phenomenon is analyzed in two ways by treating a nanotube or nanoribbon as an elastica. First, an approach from adhesion science is used, in which the two sides of the racket handle are assumed to be straight and bonded together with constant or no separation. New analytical results are obtained involving the shape, bending energy, and adhesion energy of the self-folded structures. These relations show that the dimensions of the racket loop are proportional to the square root of the flexural rigidity. The second analysis uses the Lennard-Jones potential to model the van der Waals forces between the two sides of the racket. A nanoribbon is considered, and the interatomic forces are integrated along the length and across the width of the nanoribbon. The resulting integro-differential equations are solved using the finite difference method. The racket handle is found to be in compression and the separation between the two sides of the racket handle decreases in the direction of the racket loop. The results for the Lennard-Jones model approximately satisfy the relationship between the dimensions and the flexural rigidity found using the adhesion model.

  18. A method for optimum PSA setting in the absence of a pure α or β emitter and its application in the determination of (237)Np/(233)Pa.

    PubMed

    Feng, Xiao-gui; He, Qian-ge; Wang, Jian-chen; Chen, Jing

    2014-11-01

    In the application of liquid scintillation counting (LSC), the α/β discrimination is carried out with the function of pulse shape analysis (PSA), which requires the setting of the optimum PSA level. The optimum PSA are usually determined by the generation of cross-over plots, whereby a pair of vials, one containing a pure α emitter and the other a pure β emitter, is counted. However, in some cases such as the determination of (237)Np/(233)Pa, a pure α emitter or a pure β emitter is not available. Therefore, we have developed a new approach to set the optimum PSA by measuring the sample itself of mixed α/β emitters. The count rate of the sample in the α-multi-channel analyzer changes monotonically with the increase of the PSA, and there is always an inflection point which is related to the optimum PSA. By fitting the data near the inflection point with the function y=ax(3)+bx(2)+cx+d, we can obtain the optimum PSA as -b/(3a), which can be used to determine the radioactivity of (237)Np/(233)Pa. The results obtained with this new approach were in good agreement with those obtained by HPGe γ spectrometry that was calibrated with an LSC sample of (237)Np/(233)Pa under a radioactive secular equilibrium. The new approach is promising to be used in simultaneous determination of gross α and β emitters, especially in the absence of a pure α or β emitter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Mechanical behavior of deformed intravascular NiTi stents differing in design. Numerical simulation

    NASA Astrophysics Data System (ADS)

    Eremina, Galina M.; Smolin, Alexey Yu.; Krukovskii, Konstantin V.; Lotkov, Aleksandr I.; Kashin, Oleg A.; Kudryashov, Andrey N.

    2017-12-01

    Self-expanding intravascular NiTi stents serve to recover the lumen of vessels suffered from atherosclerotic stenosis. During their manufacturing or functioning in blood vessels, the stents experience different strains and local stresses that may result in dangerous defects or fracture. Here, using the method of movable cellular automata, we analyze how the design of a stent influences its stress state during shaping to a desired diameter on a mandrel. We consider repeated segments of different stents under two loads: uniform diametric expansion of their crown and expansion with relative displacements. The simulation data agree well with experiments, revealing critical strain, stress, and their localization sites at the shaping stage, and provide the way toward optimum stent designs to minimize the critical stress during shaping.

  20. Effect of the Potential Shape on the Stochastic Resonance Processes

    NASA Astrophysics Data System (ADS)

    Kenmoé, G. Djuidjé; Ngouongo, Y. J. Wadop; Kofané, T. C.

    2015-10-01

    The stochastic resonance (SR) induced by periodic signal and white noises in a periodic nonsinusoidal potential is investigated. This phenomenon is studied as a function of the friction coefficient as well as the shape of the potential. It is done through an investigation of the hysteresis loop area which is equivalent to the input energy lost by the system to the environment per period of the external force. SR is evident in some range of the shape parameter of the potential, but cannot be observed in the other range. Specially, variation of the shape potential affects significantly and not trivially the heigh of the potential barrier in the Kramers rate as well as the occurrence of SR. The finding results show crucial dependence of the temperature of occurrence of SR on the shape of the potential. It is noted that the maximum of the input energy generally decreases when the friction coefficient is increased.

  1. Effect of varying molecular weight of dextran on acrylic-derivatized dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery.

    PubMed

    Sahota, Tarsem; Sawicka, Kirsty; Taylor, Joan; Tanna, Sangeeta

    2011-03-01

    Dextran methacrylate (dex-MA) and concanavalin A (con A)-methacrylamide were photopolymerized to produce covalently cross-linked glucose-sensitive gels for the basis of an implantable closed-loop insulin delivery device. The viscoelastic properties of these polymerized gels were tested rheologically in the non-destructive oscillatory mode within the linear viscoelastic range at glucose concentrations between 0 and 5% (w/w). For each cross-linked gel, as the glucose concentration was raised, a decrease in storage modulus, loss modulus and complex viscosity (compared at 1 Hz) was observed, indicating that these materials were glucose responsive. The higher molecular weight acrylic-derivatized dextrans [degree of substitution (DS) 3 and 8%] produced higher complex viscosities across the glucose concentration range. These studies coupled with in vitro diffusion experiments show that dex-MA of 70 kDa and DS (3%) was the optimum mass average molar mass to produce gels that show reduced component leach, glucose responsiveness, and insulin transport useful as part of a self-regulating insulin delivery device.

  2. Glucose-driven chemo-mechanical autonomous drug-release system with multi-enzymatic amplification toward feedback control of blood glucose in diabetes.

    PubMed

    Munkhjargal, Munkhbayar; Hatayama, Kohdai; Matsuura, Yuki; Toma, Koji; Arakawa, Takahiro; Mitsubayashi, Kohji

    2015-05-15

    A second-generation novel chemo-mechanical autonomous drug release system, incorporating various improvements over our first-generation system, was fabricated and evaluated. Enhanced oxygen uptake by the enzyme membrane of the organic engine was facilitated by optimizing the quantity of enzyme immobilizer, PVA-SbQ, and by hydrophobizing the membrane surface. Various quantities of PVA-SbQ were evaluated in the organic engine by measuring the decompression rate, with 1.5 mg/cm(2) yielding optimum results. When fluororesin was used as a hydrophobizing coating, the time to reach the peak decompression rate was shortened 2.3-fold. The optimized elements of the system were evaluated as a unit, first in an open loop and then in a closed loop setting, using a mixture of glucose solution (25 mmol/L), ATP and MgCI2 with glucose hexokinase enzyme (HK) as a glucose reducer. In conclusion, feedback-control of physiologically relevant glucose concentration was demonstrated by the second-generation drug release system without any requirement for external energy. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Rapid detection of Piper yellow mottle virus and Cucumber mosaic virus infecting black pepper (Piper nigrum) by loop-mediated isothermal amplification (LAMP).

    PubMed

    Bhat, A I; Siljo, A; Deeshma, K P

    2013-10-01

    The loop-mediated isothermal amplification (LAMP) assay for Piper yellow mottle virus and the reverse transcription (RT) LAMP assay for Cucumber mosaic virus each consisted of a set of five primers designed against the conserved sequences in the viral genome. Both RNA and DNA isolated from black pepper were used as a template for the assay. The results were assessed visually by checking turbidity, green fluorescence and pellet formation in the reaction tube and also by gel electrophoresis. The assay successfully detected both viruses in infected plants whereas no cross-reactions were recorded with healthy plants. Optimum conditions for successful amplification were determined in terms of the concentrations of magnesium sulphate and betaine, temperature, and duration. The detection limit for both LAMP and RT-LAMP was up to 100 times that for conventional PCR and up to one-hundredth of that for real-time PCR. The optimal conditions arrived at were validated by testing field samples of infected vines of three species from different regions. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Double closed-loop resonant micro optic gyro using hybrid digital phase modulation.

    PubMed

    Ma, Huilian; Zhang, Jianjie; Wang, Linglan; Jin, Zhonghe

    2015-06-15

    It is well-known that the closed-loop operation in optical gyros offers wider dynamic range and better linearity. By adding a stair-like digital serrodyne wave to a phase modulator can be used as a frequency shifter. The width of one stair in this stair-like digital serrodyne wave should be set equal to the optical transmission time in the resonator, which is relaxed in the hybrid digital phase modulation (HDPM) scheme. The physical mechanism for this relaxation is firstly indicated in this paper. Detailed theoretical and experimental investigations are presented for the HDPM. Simulation and experimental results show that the width of one stair is not restricted by the optical transmission time, however, it should be optimized according to the rise time of the output of the digital-to-analogue converter. Based on the optimum parameters of the HDPM, a bias stability of 0.05°/s for the integration time of 400 seconds in 1 h has been carried out in an RMOG with a waveguide ring resonator with a length of 7.9 cm and a diameter of 2.5 cm.

  5. Influence of membrane fouling reducers (MFRs) on filterability of disperse mixed liquor of jet loop bioreactors.

    PubMed

    Koseoglu-Imer, Derya Yuksel; Dizge, Nadir; Karagunduz, Ahmet; Keskinler, Bulent

    2011-07-01

    The effects of membrane fouling reducers (MFRs) (the cationic polyelectrolyte (CPE) and FeCI(3)) on membrane fouling were studied in a lab-scale jet loop submerged membrane bioreactor (JL-SMBR) system. The optimum dosages of MFRs (CPE dosage=20 mg g(-1)MLSS, FeCI(3) dosage=14 mg g(-1)MLSS) were continuously fed to JL-SMBR system. The soluble and bound EPS concentrations as well as MLSS concentration in the mixed liquor of JL-SMBR were not changed substantially by the addition of MFRs. However, significant differences were observed in particle size and relative hydrophobicity. Filtration tests were performed by using different membrane types (polycarbonate (PC) and nitrocellulose mixed ester (ME)) and various pore sizes (0.45-0.22-0.1 μm). The steady state fluxes (J(ss)) of membranes increased at all membranes after MFRs addition to JL-SMBR. The filtration results showed that MFRs addition was an effective approach in terms of improvement in filtration performance for both membrane types. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. An Army Force Structure for the Future

    DTIC Science & Technology

    1992-03-31

    realization: deterring aggression; ensuring access to foreign markets , energy, mineral resources, the oceans, and space; maintaining stable regional...establish the optimum organisational mix for independent and highly flexible operational-level activity." 7 Two factors are driving this structural change...armored forces; and optimizing the force mix of the three. However, before describing the specific changes needed to shape the future Army, a delineation

  7. Multivariant function model generation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The development of computer programs applicable to space vehicle guidance was conducted. The subjects discussed are as follows: (1) determination of optimum reentry trajectories, (2) development of equations for performance of trajectory computation, (3) vehicle control for fuel optimization, (4) development of equations for performance trajectory computations, (5) applications and solution of Hamilton-Jacobi equation, and (6) stresses in dome shaped shells with discontinuities at the apex.

  8. Experiments on water/melt explosions, nature of products, and models of dispersal

    NASA Technical Reports Server (NTRS)

    Sheridan, M. F.; Wohletz, K. H.

    1984-01-01

    Experiments were carried out in a steel pressure device using controlled amounts of water and thermite melt to examine the mechanical energy released on explosive mixing following the initial contact of the two materials. An experimental design was used to allow the direct calculation of the mechanical energy by the dynamic lift of the device as recorded both optically and physically. A large number of experiments were run to accurately determine the optimum mixture of water and melt for the conversion of thermal to mechanical energy. The maximum efficiency observed was about 12% at a water/thermite mass ratio of 0.50. These experiments are the basis for the development of models of hydroexplosions and melt fragmentation. Particles collected from the experimental products are similar in size and shape to pyroclasts produced by much larger hydrovolcanic explosions. Melt rupture at optimum ratios produces very fine particles whereas rupture at high or low water/melt ratios produces large melt fragments. Grain surface textures in the experimental products are also related to the water/melt ratio and the mechanism of explosive mixing. It is thus possible to have qualitative information about the nature of the explosion from the sizes and shapes of the fragments produced.

  9. Magnetization reversal modes in fourfold Co nano-wire systems

    NASA Astrophysics Data System (ADS)

    Blachowicz, T.; Ehrmann, A.

    2015-09-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities.

  10. Combined input shaping and feedback control for double-pendulum systems

    NASA Astrophysics Data System (ADS)

    Mar, Robert; Goyal, Anurag; Nguyen, Vinh; Yang, Tianle; Singhose, William

    2017-02-01

    A control system combining input shaping and feedback is developed for double-pendulum systems subjected to external disturbances. The proposed control method achieves fast point-to-point response similar to open-loop input-shaping control. It also minimizes transient deflections during the motion of the system, and disturbance-induced residual swing using the feedback control. Effects of parameter variations such as the mass ratio of the double pendulum, the suspension length ratio, and the move distance were studied via numerical simulation. The most important results were also verified with experiments on a small-scale crane. The controller effectively suppresses the disturbances and is robust to modelling uncertainties and task variations.

  11. Soft container for explosive nuts

    NASA Technical Reports Server (NTRS)

    Glenn, D. C.; Drummond, W. E.; Miller, G.

    1981-01-01

    Flexible fabric fits over variety of assembly shapes to contain debris produced by detonations or safety tests. Bag material is woven multifilament polyamide or aramid. Belt loops hold bag to clamp. Ring supports explosive nut structure and detonator wires, and after nut is mounted, bag and clamp are slipped over ring and fastened.

  12. Pilot-in-the-Loop CFD Method Development

    DTIC Science & Technology

    2014-06-16

    CFD analysis. Coupled simulations will be run at PSU on the COCOA -4 cluster, a high performance computing cluster. The CRUNCH CFD software has...been installed on the COCOA -4 servers and initial software tests are being conducted. Initial efforts will use the Generic Frigate Shape SFS-2 to

  13. Optimal Control of Airfoil Flow Separation using Fluidic Excitation

    NASA Astrophysics Data System (ADS)

    Shahrabi, Arireza F.

    This thesis deals with the control of flow separation around a symmetric airfoils with the aid of multiple synthetic jet actuators (SJAs). CFD simulation methods have been implemented to uncover the flow separation regimes and associated properties such as frequencies and momentum ratio. In the first part of the study, the SJA was studied thoroughly. Large Eddy Simulations (LES) were performed for one individual cavity; the time history of SJA of the outlet velocity profile and the net momentum imparted to the flow were analyzed. The studied SJA is asymmetrical and operates with the aid of a piezoelectric (PZT) ceramic circular plate actuator. A three-dimensional mesh for the computational domain of the SJA and the surrounding volume was developed and was used to evaluate the details of the airflow conditions inside the SJA as well as at the outlet. The vibration of the PZT ceramic actuator was used as a boundary condition in the computational model to drive the SJA. Particular attention was given to developing a predictive model of the SJA outlet velocity. Results showed that the SJA velocity output is correlated to the PZT ceramic plate vibration, especially for the first frequency mode. SJAs are a particular class of zero net mass flux (ZNMF) fluidic devices with net imparted momentum to the flow. The net momentum imparted to the flow in the separated region is such that positive enhancement during AFC operations is achieved. Flows around the NACA 0015 airfoil were simulated for a range of operating conditions. Attention was given to the active open and closed loop control solutions for an airfoil with SJA at different angles of attack and flap angles. A large number of simulations using RANS & LES models were performed to study the effects of the momentum ratio (Cμ) in the range of 0 to 11% and of the non-dimensional frequency, F+, in the range of 0 to 2 for the control of flow separation at a practical angle of attack and flap angle. The optimum value of Cμ as well as F+ were evaluated and discussed. The computational model predictions showed good agreement with the experimental data. It was observed that different angles of attack and flap angles have different requirements for the minimum value of the momentum coefficient, Cμ, in order for the SJA to be effective for control of separation. It was also found that the variation of F + noticeably affects the lift and drag forces acting on the airfoil. The optimum values of parameters during open loop control simulations have been applied in order to introduce the optimal open loop control outcome. An innovative approach has been implemented to formulate optimal frequencies and momentum ratios of vortex shedding which depends on angle of attack and static pressure of the separation zone in the upper chord. Optimal open loop results have been compared with the optimal closed loop results. Cumulative case studies in the matter of angle of attacks, flap angles, Re, Cμ and F+ provide a convincing collection of evidence to the following conclusion. An improvement of a direct closed loop control was demonstrated, and an analytical formula describing the properties of a separated flow and vortex shedding was proposed. Best AFC solutions are offered by providing optimal frequencies and momentum ratios at a variety of flow conditions.

  14. Spatial Structure of Multimode Oscillations in a Solar Flare on 14 May 2013 in EUV and Radio Bands

    NASA Astrophysics Data System (ADS)

    Kolotkov, Dmitry; Nakariakov, Valery; Nisticò, Giuseppe; Shibasaki, Kiyoto; Kupriyanova, Elena

    Quasi-periodic pulsations and coronal loop oscillations in an X-class solar flare on 14 May 2013 are considered. Rapidly decaying kink oscillations of coronal loops with periods of several minutes in the flaring active region detected in the EUV band with SDO/AIA after the impulsive phase of the flare. Oscillations of neighbouring loops are excited simultaneously, but get rapidly out of phase. In the impulsive phase, observations in the radio band with the Nobeyama Radioheliograph and Radiopolarimeter show quasi-periodic pulsations that are most pronounced in the 17 GHz band. In the correlation plots and the integrated flux the pulsations have a symmetric triangular shape. The period of pulsations is about 1 min. Analysis of the spatial locations of the radio sources reveal that the triangularity is likely to be caused by superposition of several harmonic modes.

  15. Design of a compact static Fourier transform spectrometer in integrated optics based on a leaky loop structure.

    PubMed

    Martin, Bruno; Morand, Alain; Benech, Pierre; Leblond, Gregory; Blaize, Sylvain; Lerondel, Gilles; Royer, Pascal; Kern, Pierre; Le Coarer, Etienne

    2009-01-15

    A compact static Fourier transform spectrometer for integrated optics is proposed. It is based on a plane leaky loop structure combined with a plane waveguide. The interference pattern produced in the loop structure leaks outside of it and is guided in the plane waveguide to the photodetector array. This configuration allows one to control the shape of the field pattern at the end of the plane waveguide. A large fringe pattern with a high interference fringe contrast is obtained. A two-dimensional model based on an aperiodic Fourier modal method is used to modelize the coupling between the bent and the plane waveguides, completed with the Helmholtz-Kirchhoff propagation. This concept gives access to plan and compact spectrometers requiring only a single low-cost realization process step. The simulation has been done to realize a spectrometer in glass integrated optics (Deltalambda=6.1 nm at 1500 nm).

  16. Solar Coronal Loop Dynamics Near the Null Point Above Active Region NOAA 2666

    NASA Astrophysics Data System (ADS)

    Filippov, B.

    2018-06-01

    We analyse observations of a saddle-like structure in the corona above the western limb of the Sun on 2017 July 18. The structure was clearly outlined by coronal loops with typical coronal temperature no more than 1 MK. The dynamics of loops showed convergence towards the centre of the saddle in the vertical direction and divergence in the horizontal direction. The event is a clear example of smooth coronal magnetic field reconnection. No heating manifestations in the reconnection region or magnetically connected areas were observed. Potential magnetic field calculations, which use as the boundary condition the SDO/HMI magnetogram taken on July 14, showed the presence of a null point at the height of 122 arcsec above the photosphere just at the centre of the saddle structure. The shape of field lines fits the fan-spine magnetic configuration above NOAA 2666.

  17. Decentralized control of sound radiation using iterative loop recovery.

    PubMed

    Schiller, Noah H; Cabell, Randolph H; Fuller, Chris R

    2010-10-01

    A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units.

  18. Refrigerator with anti-sweat hot liquid loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolley, S.J.; Cushing, D.S.; Jenkins, T.E.

    A cabinet assembly for a refrigerator having a freezer compartment ontop with two top front corners, a fresh food compartment on the bottom, a mullion partition between the compartments and a hot liquid anti-sweat loop is described comprising; an outer sheet metal shell having a top panel, side panels and a front face, a brace located at each of the two top front corners of the cabinet and having two formed sections at right angles to each other and each section is formed as an inwardly open U-shaped channel having a base, a first leg and a second leg spacedmore » apart and integrally joined to the base, fastening means for rigidly attaching each of the second leg of the corner braces to the flange of the third wall of the front face, and means to secure a portion of the hot liquid anti-sweat loop to the braces.« less

  19. Decentralized Control of Sound Radiation Using Iterative Loop Recovery

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.

    2009-01-01

    A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units.

  20. A new class of energy based control laws for revolute robot arms - Tracking control, robustness enhancement and adaptive control

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz, Kenneth; Bayard, David S.

    1988-01-01

    A class of joint-level control laws for all-revolute robot arms is introduced. The analysis is similar to the recently proposed energy Liapunov function approach except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. By using energy Liapunov functions with the modified potential energy, a much simpler analysis can be used to show closed-loop global asymptotic stability and local exponential stability. When Coulomb and viscous friction and model parameter errors are present, a sliding-mode-like modification of the control law is proposed to add a robustness-enhancing outer loop. Adaptive control is also addressed within the same framework. A linear-in-the-parameters formulation is adopted, and globally asymptotically stable adaptive control laws are derived by replacing the model parameters in the nonadaptive control laws by their estimates.

  1. Imaging diagnosis--Complex intrahepatic portosystemic shunt in a dog.

    PubMed

    D'Anjou, Marc-André; Huneault, Louis

    2008-01-01

    An unusual form of congenital intrahepatic portosystemic shunt was identified in a 3 1/2-month-old female Labrador Retriever with neurologic signs. Ultrasonography and contrast-enhanced computed tomography were used to characterize the shunt morphology. An unusual, looping right-divisional shunt connected back to the portal vein that formed an ampula in the right-central portion of the liver. An irregularly shaped window-like opening connected the combined right-divisional loop and aneurysmal portal vein, and the caudal vena cava, while this vascular pool gradually fused more cranially. Imaging features of this complex vascular anomaly, which has not been previously reported, are presented.

  2. The serpentine optical waveguide: engineering the dispersion relations and the stopped light points.

    PubMed

    Scheuer, Jacob; Weiss, Ori

    2011-06-06

    We present a study a new type of optical slow-light structure comprising a serpentine shaped waveguide were the loops are coupled. The dispersion relation, group velocity and GVD are studied analytically using a transfer matrix method and numerically using finite difference time domain simulations. The structure exhibits zero group velocity points at the ends of the Brillouin zone, but also within the zone. The position of mid-zone zero group velocity point can be tuned by modifying the coupling coefficient between adjacent loops. Closed-form analytic expressions for the dispersion relations, group velocity and the mid-zone zero v(g) points are found and presented.

  3. Dynamic magnetic hysteresis and nonlinear susceptibility of antiferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Ouari, Bachir; Titov, Serguey V.

    2016-08-01

    The nonlinear ac stationary response of antiferromagnetic nanoparticles subjected to both external ac and dc fields of arbitrary strength and orientation is investigated using Brown's continuous diffusion model. The nonlinear complex susceptibility and dynamic magnetic hysteresis (DMH) loops of an individual antiferromagnetic nanoparticle are evaluated and compared with the linear regime for extensive ranges of the anisotropy, the ac and dc magnetic fields, damping, and the specific antiferromagnetic parameter. It is shown that the shape and area of the DMH loops of antiferromagnetic particles are substantially altered by applying a dc field that permits tuning of the specific magnetic power loss in the nanoparticles.

  4. High Temperature Fatigue Properties Research of GH4169 under Multiaxial Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Ma, Shaojun; Tong, Dihua; Li, Liyun; Cheng, Yangyang; Hu, Benrun; Chen, Bo

    2018-03-01

    The high temperature (550°C and 650°C) fatigue properties of GH4169 for thin-wall tube specimen are investigated under uniaxial tension, uniaxial torsion, proportional tension-torsion and nonproportional tension-torsion. All tests are strain-controlled. The results indicate that the shape of the hysteresis loops of uniaxial tension, uniaxial torsion and proportional tension-torsion are similar, but hysteresis loop of non-proportional tension-torsion has distortion; the cyclic softening behavior is shown for GH4169 under uniaxial tension, uniaxial torsion and proportional tension-torsion, but the cyclic hardening behavior is shown for the first several cycles of nonproportional tension-torsion.

  5. Open-loop characteristics of magnetic suspension systems using electromagnets mounted in a planar array

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Britcher, Colin P.

    1992-01-01

    The open-loop characteristics of a Large-Gap Magnetic Suspension System (LGMSS) were studied and numerical results are presented. The LGMSS considered provides five-degree-of-freedom control. The suspended element is a cylinder that contains a core composed of permanent magnet material. The magnetic actuators are air core electromagnets mounted in a planar array. Configurations utilizing five, six, seven, and eight electromagnets were investigated and all configurations were found to be controllable from coil currents and observable from suspended element positions. Results indicate that increasing the number of coils has an insignificant effect on mode shapes and frequencies.

  6. Origin of steps in magnetization loops of martensitic Ni-Mn-Ga films on MgO(001)

    NASA Astrophysics Data System (ADS)

    Laptev, Aleksej; Lebecki, Kristof; Welker, Gesa; Luo, Yuansu; Samwer, Konrad; Fonin, Mikhail

    2016-09-01

    We study the temperature dependent magnetization properties of (010)-oriented Ni-Mn-Ga epitaxial films on MgO(001) substrates. In the martensitic phase, we observe pronounced abrupt slope changes in the magnetization loops for all studied samples. Our experimental findings are discussed in conjunction with the micromagnetic simulations, revealing that the characteristic magnetization behavior is governed solely by the magnetization switching within the specific martensitic variant pattern, and no reorientation of twin variants is involved in the process. Our study emphasizes the important role of the magnetostatic interactions in the magnetization behavior of magnetic shape memory alloy thin films.

  7. Research on the critical parameters initialization of optical PMD compensator in high bit-rate systems

    NASA Astrophysics Data System (ADS)

    Zhao, Wenyu; Zhang, Haiyi; Ji, Yuefeng; Xu, Daxiong

    2004-05-01

    Based on the proposed polarization mode dispersion (PMD) compensation simulation model and statistical analysis method (Monte-Carlo), the critical parameters initialization of two typical optical domain PMD compensators, which include optical PMD method with fixed compensation differential group delay (DGD) and that with variable compensation DGD, are detailedly investigated by numerical method. In the simulation, the line PMD values are chosen as 3ps, 4ps and 5ps and run samples are set to 1000 in order to achieve statistical evaluation for PMD compensated systems, respectively. The simulation results show that for the PMD value pre-known systems, the value of the fixed DGD compensator should be set to 1.5~1.6 times of line PMD value in order to reach the optimum performance, but for the second kind of PMD compensator, the DGD range of lower limit should be 1.5~1.6 times of line PMD provided that of upper limit is set to 3 times of line PMD, if no effective ways are chosen to resolve the problem of local minimum in optimum process. Another conclusion can be drawn from the simulation is that, although the second PMD compensator holds higher PMD compensation performance, it will spend more feedback loops to look up the optimum DGD value in the real PMD compensation realization, and this will bring more requirements on adjustable DGD device, not only wider adjustable range, but rapid adjusting speed for real time PMD equalization.

  8. Apparatus for Use in Determining Surface Conductivity at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Hearn, Chase P. (Inventor)

    1995-01-01

    An apparatus is provided for use in determining surface conductivity of a flat or shaped conductive material at microwave frequencies. A plate has an electrically conductive surface with first and second holes passing through the plate. An electrically conductive material under test (MUT) is maintained in a spaced apart relationship with the electrically conductive surface of the plate by one or more nonconductive spacers. A first coupling loop is electrically shielded within the first hole while a second coupling loop is electrically shielded within the second hole. A dielectric resonator element is positioned between the first and second coupling loops, while also being positioned closer to the MUT than the electrically conductive surface of the plate. Microwave energy at an operating frequency f is supplied from a signal source to the first coupling loop while microwave energy received at the second coupling loop is measured. The apparatus is capable of measuring the Q-factor of the dielectric resonator situated in the 'cavity' existing between the electrically conductive surface of the plate and the MUT. Surface conductivity of the electrically conductive surface can be determined via interpolation using: 1 ) the measured Q-factor with the electrically conductive surface in place, and 2) the measured Q-factor when the MUT is replaced with reference standards having known surface conductivities.

  9. [Vascular Lesions of Vocal Folds - Part 2: Perpendicular Vascular Lesions].

    PubMed

    Arens, C; Glanz, H; Voigt-Zimmermann, S

    2015-11-01

    The present work aims at a systematic pathogenetic description of perpendicular vascular changes in the vocal folds. Unlike longitudinal vascular changes, like ectasia and meander, perpendicular vascular changes can be observed in bening lesions. They predominantly occur as typical vascular loops in exophytic lesions, especially in recurrent respiratory papillomatosis (RRP), pre-cancerous and cancerous diseases of the larynx and vocal folds. Neoangiogenesis is caused by an epithelial growth stimulus in the early phase of cancerous genesis. In RRP the VVC impress by a single, long vessel loop with a narrow angle turning point in the each single papilla of the papilloma. In pre- and cancerous lesions the vascular loop is located directly underneath the epithelium. During progressive tumor growth, vascular loops develop an increasingly irregular, convoluted, spirally shape. The arrangement of the vascular loops is primarily still symmetrical. In the preliminary stage of tumor development occurs by neoangiogenesis to a microvascular compression. In advanced vocal fold carcinoma the regular vascular vocal fold structure is destroyed. The various stages of tumor growth are also characterized by typical primary epithelial and secondary connective tissue changes. The characteristic triad of vascular, epithelial and connective tissue changes therefore plays an important role in differential diagnosis. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Optical fiber loops and helices: tools for integrated photonic device characterization and microfluidic trapping

    NASA Astrophysics Data System (ADS)

    Ren, Yundong; Zhang, Rui; Ti, Chaoyang; Liu, Yuxiang

    2016-09-01

    Tapered optical fibers can deliver guided light into and carry light out of micro/nanoscale systems with low loss and high spatial resolution, which makes them ideal tools in integrated photonics and microfluidics. Special geometries of tapered fibers are desired for probing monolithic devices in plane as well as optical manipulation of micro particles in fluids. However, for many specially shaped tapered fibers, it remains a challenge to fabricate them in a straightforward, controllable, and repeatable way. In this work, we fabricated and characterized two special geometries of tapered optical fibers, namely fiber loops and helices, that could be switched between one and the other. The fiber loops in this work are distinct from previous ones in terms of their superior mechanical stability and high optical quality factors in air, thanks to a post-annealing process. We experimentally measured an intrinsic optical quality factor of 32,500 and a finesse of 137 from a fiber loop. A fiber helix was used to characterize a monolithic cavity optomechanical device. Moreover, a microfluidic "roller coaster" was demonstrated, where microscale particles in water were optically trapped and transported by a fiber helix. Tapered fiber loops and helices can find various applications ranging from on-the-fly characterization of integrated photonic devices to particle manipulation and sorting in microfluidics.

  11. Speed-constrained three-axes attitude control using kinematic steering

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Piggott, Scott

    2018-06-01

    Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.

  12. Temperature and Electron Density Diagnostics of a Candle-Flame Shaped Flare. Asymmetric Reconnection Evidence

    NASA Astrophysics Data System (ADS)

    Guidoni, Silvina E.; McKenzie, David E.; Longcope, Dana W.; Plowman, Joseph E.; Yoshimura, Keiji

    2013-03-01

    Candle-flame shaped flares are archetypical structures that represent indirect evidence of magnetic reconnection. For long-lived events, most of their observed features can be explained with the classic magnetic reconnection model of solar flares, the CSHKP model. A flare resembling 1992 Tsuneta's famous candle-flame flare occurred on January 28 2011; we present its temperature and electron density diagnostics. This flare was observed with Hinode/XRT, SDO/AIA, and STEREO (A)/EUVI, resulting in high resolution, broad temperature coverage, and stereoscopic views of this iconic structure. Our XRT filter-ratio temperature and density maps corroborate the general reconnection scenario. The high temperature images reveal a brightening that grows in size to form a tower-like structure at the top of the post-flare arcade, a feature that has been observed in other long duration events. This tower is a localized density increase, as shown by our XRT electron density maps. Despite the extensive work on the standard reconnection scenario, there is no complete agreement among models regarding the nature of this tower-like structure. The XRT maps also reveal that reconnected loops that are successively connected at their tops to this tower develop a density increase in one of their legs that can reach over 2 times the density value of the other leg, giving the appearance of ``half-loops''. Their density is nevertheless still lower than at the tower. These jumps in density last longer than several acoustic transit times along the loops. We use STEREO images to show that the half-loop brightening is not a line-of- sight projection effect of the type suggested by Forbes and Acton (1996). This would indicate that asymmetric reconnection took place between loops originally belonging to systems with different magnetic field strengths, densities, and temperatures. We hypothesize that the heat generated by reconnection's slow shocks is then transferred to each leg of the loop at different rates. Therefore, the increase in electron density due to chromospheric evaporation is different in each leg. Thermal pressure balance between the legs is prevented by shocked plasma at the top of the loops. We also present preliminary results comparing a new fast DEM method that uses SDO/AIA data with the XRT filter ratio method. Both methods complement each other, they agree at the overlap between their instruments' temperature response functions (3-12 MK) while the SDO/AIA method works well at lower temperatures and the XRT one at higher temperatures.

  13. Optimum Design Rules for CMOS Hall Sensors

    PubMed Central

    Crescentini, Marco; Biondi, Michele; Romani, Aldo; Tartagni, Marco; Sangiorgi, Enrico

    2017-01-01

    This manuscript analyzes the effects of design parameters, such as aspect ratio, doping concentration and bias, on the performance of a general CMOS Hall sensor, with insight on current-related sensitivity, power consumption, and bandwidth. The article focuses on rectangular-shaped Hall probes since this is the most general geometry leading to shape-independent results. The devices are analyzed by means of 3D-TCAD simulations embedding galvanomagnetic transport model, which takes into account the Lorentz force acting on carriers due to a magnetic field. Simulation results define a set of trade-offs and design rules that can be used by electronic designers to conceive their own Hall probes. PMID:28375191

  14. Optimum Design Rules for CMOS Hall Sensors.

    PubMed

    Crescentini, Marco; Biondi, Michele; Romani, Aldo; Tartagni, Marco; Sangiorgi, Enrico

    2017-04-04

    This manuscript analyzes the effects of design parameters, such as aspect ratio, doping concentration and bias, on the performance of a general CMOS Hall sensor, with insight on current-related sensitivity, power consumption, and bandwidth. The article focuses on rectangular-shaped Hall probes since this is the most general geometry leading to shape-independent results. The devices are analyzed by means of 3D-TCAD simulations embedding galvanomagnetic transport model, which takes into account the Lorentz force acting on carriers due to a magnetic field. Simulation results define a set of trade-offs and design rules that can be used by electronic designers to conceive their own Hall probes.

  15. Preliminary Sizing of Vertical Take-off Rocket-based Combined-cycle Powered Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; McCurdy, David R.

    2001-01-01

    The task of single-stage-to-orbit has been an elusive goal due to propulsion performance, materials limitations, and complex system integration. Glenn Research Center has begun to assemble a suite of relationships that tie Rocket-Based Combined-Cycle (RBCC) performance and advanced material data into a database for the purpose of preliminary sizing of RBCC-powered launch vehicles. To accomplish this, a near optimum aerodynamic and structural shape was established as a baseline. The program synthesizes a vehicle to meet the mission requirements, tabulates the results, and plots the derived shape. A discussion of the program architecture and an example application is discussed herein.

  16. Multiobjective Aerodynamic Shape Optimization Using Pareto Differential Evolution and Generalized Response Surface Metamodels

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. The DE algorithm has been recently extended to multiobjective optimization problem by using a Pareto-based approach. In this paper, a Pareto DE algorithm is applied to multiobjective aerodynamic shape optimization problems that are characterized by computationally expensive objective function evaluations. To improve computational expensive the algorithm is coupled with generalized response surface meta-models based on artificial neural networks. Results are presented for some test optimization problems from the literature to demonstrate the capabilities of the method.

  17. Stress Distribution Around a Circular Hole in Square Plates, Loaded Uniformly in the Plane, on Two Opposite Sides of the Square. Optimum Shapes of Central Holes in Square Plates Subjected to Uniaxial Uniform Load. Optimization of Hole Shapes in Circular Cylindrical Shells Under Axial Tension,

    DTIC Science & Technology

    1981-09-01

    brittle and photoelastic coatings, gages, grids, holography and speckle to solve two- and three-dimensional problems in elasticity, plasticity...weight by 10%. The efficiency coefficient is increased from 0.59 to 0.95. Tests with 4 brittle material show an increase in strength of 20%. An ideal...particularly useful for components made with brittle materials, or components made with ductile materials subjected to fatigue. Ple I Fa 441 ( .t

  18. Different designs of kinase-phosphatase interactions and phosphatase sequestration shapes the robustness and signal flow in the MAPK cascade

    PubMed Central

    2012-01-01

    Background The three layer mitogen activated protein kinase (MAPK) signaling cascade exhibits different designs of interactions between its kinases and phosphatases. While the sequential interactions between the three kinases of the cascade are tightly preserved, the phosphatases of the cascade, such as MKP3 and PP2A, exhibit relatively diverse interactions with their substrate kinases. Additionally, the kinases of the MAPK cascade can also sequester their phosphatases. Thus, each topologically distinct interaction design of kinases and phosphatases could exhibit unique signal processing characteristics, and the presence of phosphatase sequestration may lead to further fine tuning of the propagated signal. Results We have built four architecturally distinct types of models of the MAPK cascade, each model with identical kinase-kinase interactions but unique kinases-phosphatases interactions. Our simulations unravelled that MAPK cascade’s robustness to external perturbations is a function of nature of interaction between its kinases and phosphatases. The cascade’s output robustness was enhanced when phosphatases were sequestrated by their target kinases. We uncovered a novel implicit/hidden negative feedback loop from the phosphatase MKP3 to its upstream kinase Raf-1, in a cascade resembling the B cell MAPK cascade. Notably, strength of the feedback loop was reciprocal to the strength of phosphatases’ sequestration and stronger sequestration abolished the feedback loop completely. An experimental method to verify the presence of the feedback loop is also proposed. We further showed, when the models were activated by transient signal, memory (total time taken by the cascade output to reach its unstimulated level after removal of signal) of a cascade was determined by the specific designs of interaction among its kinases and phosphatases. Conclusions Differences in interaction designs among the kinases and phosphatases can differentially shape the robustness and signal response behaviour of the MAPK cascade and phosphatase sequestration dramatically enhances the robustness to perturbations in each of the cascade. An implicit negative feedback loop was uncovered from our analysis and we found that strength of the negative feedback loop is reciprocally related to the strength of phosphatase sequestration. Duration of output phosphorylation in response to a transient signal was also found to be determined by the individual cascade’s kinase-phosphatase interaction design. PMID:22748295

  19. Structural optimization: Status and promise

    NASA Astrophysics Data System (ADS)

    Kamat, Manohar P.

    Chapters contained in this book include fundamental concepts of optimum design, mathematical programming methods for constrained optimization, function approximations, approximate reanalysis methods, dual mathematical programming methods for constrained optimization, a generalized optimality criteria method, and a tutorial and survey of multicriteria optimization in engineering. Also included are chapters on the compromise decision support problem and the adaptive linear programming algorithm, sensitivity analyses of discrete and distributed systems, the design sensitivity analysis of nonlinear structures, optimization by decomposition, mixed elements in shape sensitivity analysis of structures based on local criteria, and optimization of stiffened cylindrical shells subjected to destabilizing loads. Other chapters are on applications to fixed-wing aircraft and spacecraft, integrated optimum structural and control design, modeling concurrency in the design of composite structures, and tools for structural optimization. (No individual items are abstracted in this volume)

  20. Investigation of Blade Angle of an Open Cross-Flow Runner

    NASA Astrophysics Data System (ADS)

    Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi

    2015-04-01

    The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.

  1. Clouds Versus Carbon: Predicting Vegetation Roughness by Maximizing Productivity

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.

    2004-01-01

    Surface roughness is one of the dominant vegetation properties that affects land surface exchange of energy, water, carbon, and momentum with the overlying atmosphere. We hypothesize that the canopy structure of terrestrial vegetation adapts optimally to climate by maximizing productivity, leading to an optimum surface roughness. An optimum should exist because increasing values of surface roughness cause increased surface exchange, leading to increased supply of carbon dioxide for photosynthesis. At the same time, increased roughness enhances evapotranspiration and cloud cover, thereby reducing the supply of photosynthetically active radiation. We demonstrate the optimum through sensitivity simulations using a coupled dynamic vegetation-climate model for present day conditions, in which we vary the value of surface roughness for vegetated surfaces. We find that the maximum in productivity occurs at a roughness length of 2 meters, a value commonly used to describe the roughness of today's forested surfaces. The sensitivity simulations also illustrate the strong climatic impacts of vegetation roughness on the energy and water balances over land: with increasing vegetation roughness, solar radiation is reduced by up to 20 W/sq m in the global land mean, causing shifts in the energy partitioning and leading to general cooling of the surface by 1.5 K. We conclude that the roughness of vegetated surfaces can be understood as a reflection of optimum adaptation, and it is associated with substantial changes in the surface energy and water balances over land. The role of the cloud feedback in shaping the optimum underlines the importance of an integrated perspective that views vegetation and its adaptive nature as an integrated component of the Earth system.

  2. Surgical Force-Measuring Probe

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Roberts, Paul W.; Scott, Charles E.

    1993-01-01

    Aerodynamic balance adapted to medical use. Electromechanical probe measures forces and moments applied to human tissue during surgery. Measurements used to document optimum forces and moments for surgical research and training. In neurosurgical research, measurements correlated with monitored responses of nerves. In training, students learn procedures by emulating forces used by experienced surgeons. Lightweight, pen-shaped probe easily held by surgeon. Cable feeds output signals to processing circuitry.

  3. Enabling two-phase microfluidic thermal transport systems using a novel thermal-flux degassing and fluid charging approach

    NASA Astrophysics Data System (ADS)

    Singh Dhillon, Navdeep; Pisano, Albert P.

    2014-03-01

    A novel two-port thermal-flux method has been proposed and demonstrated for degassing and charging two-phase microfluidic thermal transport systems with a degassed working fluid. In microscale heat pipes and loop heat pipes (mLHPs), small device volumes and large capillary forces associated with smaller feature sizes render conventional vacuum pump-based degassing methods quite impractical. Instead, we employ a thermally generated pressure differential to purge non-condensable gases from these devices before charging them with a degassed working fluid in a two-step process. Based on the results of preliminary experiments studying the effectiveness and reliability of three different high temperature-compatible device packaging approaches, an optimized compression packaging technique was developed to degas and charge a mLHP device using the thermal-flux method. An induction heating-based noninvasive hermetic sealing approach for permanently sealing the degassed and charged mLHP devices has also been proposed. To demonstrate the efficacy of this approach, induction heating experiments were performed to noninvasively seal 1 mm square silicon fill-hole samples with donut-shaped solder preforms. The results show that the minimum hole sealing induction heating time is heat flux limited and can be estimated using a lumped capacitance thermal model. However, further continued heating of the solder uncovers the hole due to surface tension-induced contact line dynamics of the molten solder. It was found that an optimum mass of the solder preform is required to ensure a wide enough induction-heating time window for successful sealing of a fill-hole.

  4. Not simply more of the same: distinguishing between patient heterogeneity and parameter uncertainty.

    PubMed

    Vemer, Pepijn; Goossens, Lucas M A; Rutten-van Mölken, Maureen P M H

    2014-11-01

    In cost-effectiveness (CE) Markov models, heterogeneity in the patient population is not automatically taken into account. We aimed to compare methods of dealing with heterogeneity on estimates of CE, using a case study in chronic obstructive pulmonary disease (COPD). We first present a probabilistic sensitivity analysis (PSA) in which we sampled only from distributions representing parameter uncertainty. This ignores any heterogeneity. Next, we explored heterogeneity by presenting results for subgroups, using a method that samples parameter uncertainty simultaneously with heterogeneity in a single-loop PSA. Finally, we distinguished parameter uncertainty from heterogeneity in a double-loop PSA by performing a nested simulation within each PSA iteration. Point estimates and uncertainty differed substantially between methods. The incremental CE ratio (ICER) ranged from € 4900 to € 13,800. The single-loop PSA led to a substantially different shape of the CE plane and an overestimation of the uncertainty compared with the other 3 methods. The CE plane for the double-loop PSA showed substantially less uncertainty and a stronger negative correlation between the difference in costs and the difference in effects compared with the other methods. This came at the cost of higher calculation times. Not accounting for heterogeneity, subgroup analysis and the double-loop PSA can be viable options, depending on the decision makers' information needs. The single-loop PSA should not be used in CE research. It disregards the fundamental differences between heterogeneity and sampling uncertainty and overestimates uncertainty as a result. © The Author(s) 2014.

  5. Tepidibacillus decaturensis sp. nov., a microaerophilic, moderately thermophilic iron-reducing bacterium isolated from 1.7 km depth groundwater

    DOE PAGES

    Dong, Yiran; Sanford, Robert A.; Boyanov, Maxim I.; ...

    2016-10-01

    Here, a Gram-stain-negative, microaerophilic rod-shaped organism designated as strain Z9 T was isolated from groundwater of 1.7 km depth from the Mt. Simon Sandstone of the Illinois Basin, Illinois, USA. Cells of strain Z9 T were rod shaped with dimensions of 0.3×(1–10) µm and stained Gram-negative. Strain Z9 T grew within the temperature range 20–60 °C (optimum at 30–40 °C), between pH 5 and 8 (optimum 5.2–5.8) and under salt concentrations of 1–5 % (w/v) NaCl (optimum 2.5 % NaCl). In addition to growth by fermentation and nitrate reduction, this strain was able to reduce Fe(III), Mn(IV), Co(III) and Cr(VI)more » when H 2 or organic carbon was available as the electron donor, but did not actively reduce oxidized sulfur compounds (e.g. sulfate, thiosulfate or S 0). The G+C content of the DNA from strain Z9 T was 36.1 mol%. Phylogenetic analysis of the 16S rRNA gene from strain Z9 T showed that it belongs to the class Bacilli and shares 97 % sequence similarity with the only currently characterized member of the genus Tepidibacillus, T. fermentans. Based on the physiological distinctness and phylogenetic information, strain Z9 T represents a novel species within the genus Tepidibacillus, for which the name Tepidibacillus decaturensis sp. nov. is proposed. The type strain is Z9 T (=ATCC BAA-2644 T=DSM 103037 T).« less

  6. Tepidibacillus decaturensis sp. nov., a microaerophilic, moderately thermophilic iron-reducing bacterium isolated from 1.7 km depth groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yiran; Sanford, Robert A.; Boyanov, Maxim I.

    Here, a Gram-stain-negative, microaerophilic rod-shaped organism designated as strain Z9 T was isolated from groundwater of 1.7 km depth from the Mt. Simon Sandstone of the Illinois Basin, Illinois, USA. Cells of strain Z9 T were rod shaped with dimensions of 0.3×(1–10) µm and stained Gram-negative. Strain Z9 T grew within the temperature range 20–60 °C (optimum at 30–40 °C), between pH 5 and 8 (optimum 5.2–5.8) and under salt concentrations of 1–5 % (w/v) NaCl (optimum 2.5 % NaCl). In addition to growth by fermentation and nitrate reduction, this strain was able to reduce Fe(III), Mn(IV), Co(III) and Cr(VI)more » when H 2 or organic carbon was available as the electron donor, but did not actively reduce oxidized sulfur compounds (e.g. sulfate, thiosulfate or S 0). The G+C content of the DNA from strain Z9 T was 36.1 mol%. Phylogenetic analysis of the 16S rRNA gene from strain Z9 T showed that it belongs to the class Bacilli and shares 97 % sequence similarity with the only currently characterized member of the genus Tepidibacillus, T. fermentans. Based on the physiological distinctness and phylogenetic information, strain Z9 T represents a novel species within the genus Tepidibacillus, for which the name Tepidibacillus decaturensis sp. nov. is proposed. The type strain is Z9 T (=ATCC BAA-2644 T=DSM 103037 T).« less

  7. Closing the Loop: How We Better Serve Our Students through a Comprehensive Assessment Process

    ERIC Educational Resources Information Center

    Arcario, Paul; Eynon, Bret; Klages, Marisa; Polnariev, Bernard A.

    2013-01-01

    Outcomes assessment is often driven by demands for accountability. LaGuardia Community College's outcomes assessment model has advanced student learning, shaped academic program development, and created an impressive culture of faculty-driven assessment. Our inquiry-based approach uses ePortfolios for collection of student work and demonstrates…

  8. Anisotropy and shape of hysteresis loop of frozen suspensions of iron oxide nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Boekelheide, Zoe; Gruettner, Cordula; Dennis, Cindi

    2014-03-01

    Colloidal suspensions of nanoparticles in liquids have many uses in biomedical applications. We studied approximately 50 nm diameter iron oxide particles dispersed in H2O for magnetic nanoparticle hyperthermia cancer treatment. Interactions between nanoparticles have been indicated for increasing the heat output under application of an alternating magnetic field, as in hyperthermia. Interactions vary dynamically with an applied field as the nanoparticles reorient and rearrange within the liquid. Therefore, we studied the samples below the liquid freezing point in a range of magnetic field strengths to literally freeze in the effects of interactions. We found that the shape of the magnetic hysteresis loop is squarer (higher anisotropy) when the sample was cooled in a high field, and less square (lower anisotropy) when the sample was cooled in a low or zero field. The cause is most likely the formation of long chains of nanoparticles up to 500 μm, which we observe optically. This increase in anisotropy may indicate improved heating ability for these nanoparticles under an alternating magnetic field.

  9. Application of an integrated flight/propulsion control design methodology to a STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane L.

    1991-01-01

    Results are presented from the application of an emerging Integrated Flight/Propulsion Control (IFPC) design methodology to a Short Take Off and Vertical Landing (STOVL) aircraft in transition flight. The steps in the methodology consist of designing command shaping prefilters to provide the overall desired response to pilot command inputs. A previously designed centralized controller is first validated for the integrated airframe/engine plant used. This integrated plant is derived from a different model of the engine subsystem than the one used for the centralized controller design. The centralized controller is then partitioned in a decentralized, hierarchical structure comprising of airframe lateral and longitudinal subcontrollers and an engine subcontroller. Command shaping prefilters from the pilot control effector inputs are then designed and time histories of the closed loop IFPC system response to simulated pilot commands are compared to desired responses based on handling qualities requirements. Finally, the propulsion system safety and nonlinear limited protection logic is wrapped around the engine subcontroller and the response of the closed loop integrated system is evaluated for transients that encounter the propulsion surge margin limit.

  10. Does the nerve supply to both the superficial and deep surfaces of pectoralis major imply two separate developmental origins?

    PubMed Central

    Shinohara, H

    1996-01-01

    The nature of the nerve supply to the "pocket' of pectoralis major was examined on 7 randomly selected sides of 5 embalmed cadavers. The pocket was a U-shaped muscular fold, opening cranially. The anterior limb and inner surface of the fold were supplied by nerve branches that originated from the middle segment of the pectoral nerve loop and penetrated pectoralis minor. The outer surface of the posterior limb was supplied by one or two branches that extended from the caudal segment of the pectoral nerve loop. If the muscular U-shaped fold is unfolded, it becomes obvious that the posterior wall of the pocket forms the most caudal part of pectoralis major and is supplied from both the superficial (anterior) and deep (posterior) surfaces. This dual surface supply does not suggest any aspect of the developmental origin of the pocket but may simply be due to the relative positions of the pectoralis major and its nerve. Images Fig. 1 Fig. 2 Fig. 3 PMID:8621324

  11. Three-dimensional interaction and movements of various dislocations in anisotropic bicrystals with semicoherent interfaces

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Pan, E.

    2018-07-01

    Lattice dislocation interactions with semicoherent interfaces are investigated by means of anisotropic field solutions in metallic homo- and hetero-structures. The present framework is based on the mathematically elegant and computationally powerful Stroh formalism, combining further with the Fourier integral and series transforms, which cover different shapes and dimensions of various extrinsic and intrinsic dislocations. Two-dimensional equi-spaced arrays of straight lattice dislocations and finite arrangements of piled-up dislocations as well as any polygonal and elliptical dislocation loops in three dimensions are considered using a superposition scheme. Self, image and Peach-Koehler forces are derived to compute the equilibrium dislocation positions in pile-ups, including the internal structures and energetics of the interfacial dislocation networks. For illustration, the effects due to the elastic and misfit mismatches are discussed in the pure misfit Au/Cu and heterophase Cu/Nb systems, while discrepancies resulting from the approximation of isotropic elasticity are clearly exhibited. These numerical examples not only feature and enhance the existing works in anisotropic bimaterials, but also promote a novel opportunity of analyzing the equilibrium shapes of planar glide dislocation loops at nanoscale.

  12. SELEX and SHAPE reveal that sequence motifs and an extended hairpin in the 5' portion of Turnip crinkle virus satellite RNA C mediate fitness in plants.

    PubMed

    Bayne, Charlie F; Widawski, Max E; Gao, Feng; Masab, Mohammed H; Chattopadhyay, Maitreyi; Murawski, Allison M; Sansevere, Robert M; Lerner, Bryan D; Castillo, Rinaldys J; Griesman, Trevor; Fu, Jiantao; Hibben, Jennifer K; Garcia-Perez, Alma D; Simon, Anne E; Kushner, David B

    2018-07-01

    Noncoding RNAs use their sequence and/or structure to mediate function(s). The 5' portion (166 nt) of the 356-nt noncoding satellite RNA C (satC) of Turnip crinkle virus (TCV) was previously modeled to contain a central region with two stem-loops (H6 and H7) and a large connecting hairpin (H2). We now report that in vivo functional selection (SELEX) experiments assessing sequence/structure requirements in H2, H6, and H7 reveal that H6 loop sequence motifs were recovered at nonrandom rates and only some residues are proposed to base-pair with accessible complementary sequences within the 5' central region. In vitro SHAPE of SELEX winners indicates that the central region is heavily base-paired, such that along with the lower stem and H2 region, one extensive hairpin exists composing the entire 5' region. As these SELEX winners are highly fit, these characteristics facilitate satRNA amplification in association with TCV in plants. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Influence of different temperatures on the thermal fatigue behavior and thermal stability of hot-work tool steel processed by a biomimetic couple laser technique

    NASA Astrophysics Data System (ADS)

    Meng, Chao; Zhou, Hong; Zhou, Ying; Gao, Ming; Tong, Xin; Cong, Dalong; Wang, Chuanwei; Chang, Fang; Ren, Luquan

    2014-04-01

    Three kinds of biomimetic non-smooth shapes (spot-shape, striation-shape and reticulation-shape) were fabricated on the surface of H13 hot-work tool steel by laser. We investigated the thermal fatigue behavior of biomimetic non-smooth samples with three kinds of shapes at different thermal cycle temperature. Moreover, the evolution of microstructure, as well as the variations of hardness of laser affected area and matrix were studied and compared. The results showed that biomimetic non-smooth samples had better thermal fatigue behavior compared to the untreated samples at different thermal cycle temperatures. For a given maximal temperature, the biomimetic non-smooth sample with reticulation-shape had the optimum thermal fatigue behavior, than with striation-shape which was better than that with the spot-shape. The microstructure observations indicated that at different thermal cycle temperatures the coarsening degrees of microstructures of laser affected area were different and the microstructures of laser affected area were still finer than that of the untreated samples. Although the resistance to thermal cycling softening of laser affected area was lower than that of the untreated sample, laser affected area had higher microhardness than the untreated sample at different thermal cycle temperature.

  14. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  15. A comparative study of optimum and suboptimum direct-detection laser ranging receivers

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.

    1978-01-01

    A summary of previously proposed receiver strategies for direct-detection laser ranging receivers is presented. Computer simulations are used to compare performance of candidate implementation strategies in the 1- to 100-photoelectron region. Under the condition of no background radiation, the maximum-likelihood and minimum mean-square error estimators were found to give the same performance for both bell-shaped and rectangular optical-pulse shapes. For signal energies greater than 100 photoelectrons, the root-mean-square range error is shown to decrease as Q to the -1/2 power for bell-shaped pulses and Q to the -1 power for rectangular pulses, where Q represents the average pulse energy. Of several receiver implementations presented, the matched-filter peak detector was found to be preferable. A similar configuration, using a constant-fraction discriminator, exhibited a signal-level dependent time bias.

  16. Static shape control for adaptive wings

    NASA Astrophysics Data System (ADS)

    Austin, Fred; Rossi, Michael J.; van Nostrand, William; Knowles, Gareth; Jameson, Antony

    1994-09-01

    A theoretical method was developed and experimentally validated, to control the static shape of flexible structures by employing internal translational actuators. A finite element model of the structure, without the actuators present, is employed to obtain the multiple-input, multiple-output control-system gain matrices for actuator-load control as well as actuator-displacement control. The method is applied to the quasistatic problem of maintaining an optimum-wing cross section during various transonic-cruise flight conditions to obtain significant reductions in the shock-induced drag. Only small, potentially achievable, adaptive modifications to the profile are required. The adaptive-wing concept employs actuators as truss elements of active ribs to reshape the wing cross section by deforming the structure. Finite element analyses of an adaptive-rib model verify the controlled-structure theory. Experiments on the model were conducted, and arbitrarily selected deformed shapes were accurately achieved.

  17. APPR-1 RESEARCH AND DEVELOPMENT PROGRAM DECONTAMINATION PROGRAM. TASK II. VOLUME II. EVALUATION OF CHEMICAL AGENTS FOR NUCLEAR REACTOR DECONTAMINATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zegger, J.L.; Pancer, G.P.

    1959-02-15

    The caustic permanganante-rinse decontamination studies were performed to determine optimum operating conditions as well as the metallurgical effects of the treatment. A treatment with 10% NaOH and 5% potassium by a rinse with a 5% ammorium citrate, 2% citric acid and 1/2% Versene solution was chosen for the decontamination of a stainless steel steam generator, Decontamination factors of greater than 50 were obtained in loop tests using the above treatment. Corrosion and metallurgical results indicated a total penetration of less than 0.01 mil on annealed type 304 stainless steel with no evidence of any deleterious effects. (auth)

  18. Effects of automobile steering characteristics on driver vehicle system dynamics in regulation tasks

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Klein, R.

    1975-01-01

    A regulation task which subjected the automobile to a random gust disturbance which is countered by driver control action is used to study the effects of various automobile steering characteristics on the driver/vehicle system. The experiments used a variable stability automobile specially configured to permit insertion of the simulated gust disturbance and the measurement of the driver/vehicle system characteristics. Driver/vehicle system dynamics were measured and interpreted as an effective open loop system describing function. Objective measures of system bandwidth, stability, and time delays were deduced and compared. These objective measures were supplemented by driver ratings. A tentative optimum range of vehicle dynamics for the directional regulation task was established.

  19. Improvement of vertical stabilization on KSTAR

    NASA Astrophysics Data System (ADS)

    Mueller, D.; Bak, J. G.; Boyer, M. D.; Eideitis, N.; Hahn, S. H.; Humphreys, D. A.; Kim, H. S.; Jeon, Y. M.; Lanctot, M.; Walker, M. L.

    2017-10-01

    The successful control of strongly shaped plasmas on the Korea Superconducting Tokamak Advanced Research (KSTAR) device requires active feedback of fast motion of the plasma vertical position by the use of internal normal conducting coils (IVC). This has required new electronics to supply relative flux loop differences, for zp, and voltage loop differences, for dzp/dt, as well as a novel technique (Zfast) to use a high-pass filter, typically 1 Hz, on the error in the signal in the feedback loop. Use of Zfast avoids the potential contention encountered when the internal coil attempts to perform control of the plasma shape which should be controlled by the slower and more powerful superconducting coils. A common problem of this contention is saturation of the IVC and loss of fast vertical control. This is eliminated by proper use of the Zfast. A Ziegler-Nichols relay feedback system was used to fine tune the required feedback gains. The selection of the magnetic sensors, filter time constants, control gains and of the Zfast control strategy which allowed vertically stable operation at a plasma elongation, kappa. of up to 2.16 at li = 1.15 and Betap = 2.4 will be discussed which is beyond the design reference of KSTAR of kappa = 2.0 at li = 1.2 and Betap = 1.9. Work Supported by U.S.D.O.E. Contract No. DE-AC02-09CH11466 and DE-SC0010685 and the KSTAR project.

  20. Thermohydraulic behavior of the liquid metal target of a spallation neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Y.

    1996-06-01

    The author presents work done on three main problems. (1) Natural circulation in double coaxial cylindircal container: The thermohydraulic behaviour of the liquid metal target of the spallation neutron source at PSI has been investigated. The configuration is a natural-circulation loop in a concentric double-tube-type container. The results show that the natural-circulation loop concept is valid for the design phase of the target construction, and the current specified design criteria will be fulfilled with the proposed parameter values. (2) Flow around the window: Water experiments were performed for geometry optimisation of the window shape of the SINQ container for avoidingmore » generating recirculation zones at peripheral area and the optimal cooling of the central part of the beam entrance window. Flow visualisation technique was mainly used for various window shapes, gap distance between the window and the guide tube edge. (3) Flow in window cooling channels: Flows in narrow gaps of cooling channels of two different types of windows were studied by flow visualisation techniques. One type is a slightly curved round cooling channel and the other is hemispherical shape, both of which have only 2 mm gap distance and the water inlet is located on one side and flows out from the opposite side. In both cases, the central part of the flow area has lower velocity than peripheral area.« less

  1. CFD-Based Design Optimization Tool Developed for Subsonic Inlet

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the optimum design satisfied the upper limits at takeoff and rolling takeoff while retaining the desirable cruise performance. Further studies are being conducted to include static and cross-wind operating conditions in the design optimization procedure. This work was carried out in collaboration with Dr. E.S. Reddy of NYMA, Inc.

  2. [Three-dimensional finite element analysis of maxillary incisor retraction with step-shaped vertical closing loop].

    PubMed

    Zhang, Sheng; Mai, Li-xiang; Liu, Cong-hua; Wang, Da-wei

    2011-07-01

    To investigate the displacement and stress distribution of upper incisors in three-dimensional (3D) space controlled by step-shaped vertical closing loop. The maxillary teeth and alveolar bone of a volunteer with normal occlusion were scanned with 3D spiral CT. Modeling and calculation were only carried out on right upper central incisor, lateral incisor and their alveolar bone in order to simplify the procedures. A 3D finite element model of archwire-brackets-upper incisors and periodontal tissues was developed using Ansys finite element package. Finally, a 3D finite element model of archwire-brackets-upper incisors and periodontal tissues was established based on mirror symmetry principle. The displacement of maxillary incisors and stress distribution in periodontal tissues were analyzed. When step-shaped vertical closing loop was simply drew back 1 mm, the maximum displacement of upper central incisor in labial and lingual direction were 5.29 × 10(-2) and 0.71 × 10(-2) mm; 10.47 × 10(-3) and 10.20 × 10(-3) mm in gingival and occlusal direction, 10.26 × 10(-3) and 1.63 × 10(-3) mm in medial and distal direction; the maximum displacement of upper lateral incisor in labial and lingual direction were 3.31 × 10(-2) and 0.41 × 10(-2) mm, 10.52 × 10(-3) and 5.10 × 10(-3) mm in gingival and occlusal direction, 6.29 × 10(-3) and 4.64 × 10(-3) mm in medial and distal direction, the displacement trend of them were moving lingually and gingivally similar to bodily movement. The stress peach of upper central incisor, periodontal ligament and alveolar bone were 31.35, 2.52 and 4.64 MPa, the stress peach of upper lateral incisor, periodontal ligament and alveolar bone were 19.59, 1.28 and 4.12 Mpa, the stress distribution of them were similar and the periodontal ligament buffered the stress imposed on the tooth.

  3. Use of ILTV Control Laws for LaNCETS Flight Research

    NASA Technical Reports Server (NTRS)

    Moua, Cheng

    2010-01-01

    A report discusses the Lift and Nozzle Change Effects on Tail Shock (LaNCETS) test to investigate the effects of lift distribution and nozzle-area ratio changes on tail shock strength of an F-15 aircraft. Specific research objectives are to obtain inflight shock strength for multiple combinations of nozzle-area ratio and lift distribution; compare results with preflight prediction tools; and update predictive tools with flight results. The objectives from a stability and control perspective are to ensure adequate aircraft stability for the changes in lift distribution and plume shape, and ensure manageable transient from engaging and disengaging the ILTV research control laws. In order to change the lift distribution and plume shape of the F-15 aircraft, a decade-old Inner Loop Thrust Vectoring (ILTV) research control law was used. Flight envelope expansion was performed for the test configuration and flight conditions prior to the probing test points. The approach for achieving the research objectives was to utilize the unique capabilities of NASA's NF-15B-837 aircraft to allow the adjustment of the nozzle-area ratio and/or canard positions by engaging the ILTV research control laws. The ILTV control laws provide the ability to add trim command biases to canard positions, nozzle area ratios, and thrust vectoring through the use of datasets. Datasets consist of programmed test inputs (PTIs) that define trims to change the nozzle-area ratio and/or canard positions. The trims are applied as increments to the normally commanded positions. A LaNCETS non-linear, six-degrees-of-freedom simulation capable of realtime pilot-in-the-loop, hardware-in-the-loop, and non-real-time batch support was developed and validated. Prior to first flight, extensive simulation analyses were performed to show adequate stability margins with the changes in lift distribution and plume shape. Additionally, engagement/disengagement transient analysis was also performed to show manageable transients.

  4. Effect of the combination of different welding parameters on melting characteristics of grade 1 titanium with a pulsed Nd-Yag laser.

    PubMed

    Bertrand, C; Laplanche, O; Rocca, J P; Le Petitcorps, Y; Nammour, S

    2007-11-01

    The laser is a very attractive tool for joining dental metallic alloys. However, the choice of the setting parameters can hardly influence the welding performances. The aim of this research was to evaluate the impact of several parameters (pulse shaping, pulse frequency, focal spot size...) on the quality of the microstructure. Grade 1 titanium plates have been welded with a pulsed Nd-Yag laser. Suitable power, pulse duration, focal spot size, and flow of argon gas were fixed by the operator. Five different pulse shapes and three pulse frequencies were investigated. Two pulse shapes available on this laser unit were eliminated because they considerably hardened the metal. As the pulse frequency rose, the metal was more and more ejected, and a plasma on the surface of the metal increased the oxygen contamination in the welded area. Frequencies of 1 or 2 Hz are optimum for a dental use. Three pulse shapes can be used for titanium but the rectangular shape gives better results.

  5. Research of optical coherence tomography microscope based on CCD detector

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Xu, Zhongbao; Zhang, Shuomo

    2008-12-01

    The reference wave phase was modulated with a sinusoidal vibrating mirror attached to a Piezoelectric Transducer (PZT), the integration was performed by a CCD, and the charge storage period of the CCD image sensor was one-quarter period of the sinusoidal phase modulation. With the frequency- synchronous detection technique, four images (four frames of interference pattern) were recorded during one period of the phase modulation. In order to obtain the optimum modulation parameter, the values of amplitude and phase of the sinusoidal phase modulation were determined by considering the measurement error caused by the additive noise contained in the detected values. The PZT oscillation was controlled by a closed loop control system based on PID controller. An ideal discrete digital sine function at 50Hz with adjustable amplitude was used to adjust the vibrating of PZT, and a digital phase shift techniques was used to adjust vibrating phase of PZT so that the phase of the modulation could reach their optimum values. The CCD detector was triggered with software at 200Hz. Based on work above a small coherent signal masked by the preponderant incoherent background with a CCD detector was obtained.

  6. A numerical study on flexoelectric bistable energy harvester

    NASA Astrophysics Data System (ADS)

    Kumar, Anuruddh; Sharma, Anshul; Vaish, Rahul; Kumar, Rajeev; Jain, Satish Chandra

    2018-07-01

    A flexoelectric energy harvesting can be a viable solution of energy source for low power devices and sensors due to its higher performance at nano/micro domain size. Numerical study has been performed on energy harvester based on flexoelectric phenomenon of dielectric materials. Cantilever type structure was opted here as it induces the polarization due to the breaking of lattice symmetry upon bending. Host layer of cantilever is made of barium strontium titanate (BST) as it has high flexoelectric coefficient, and electrodes are attached with the host layer to collect the charges. In this study, nonlinearity has been introduced using pair of magnets at the free end of the cantilever. Characteristics of the harvester performance (linear-non-linear) changes by varying the distance between magnets. Results revealed that the bistable energy harvester gives more operating frequency range when excitation is random as compared to the linear energy harvester. For the given dimension of the harvester, when magnets distance d = 6 mm, effective harvesting frequency ranges are 5-17.3 and 17.6-26 Hz as compared to linear harvester. Further, role of load resistance was investigated to understand the impact on the performance. Hysteresis loop between voltage and displacement significantly varies with the resistance. This hysteresis loop confirmed the backward coupling of flexoelectric layer, in which voltage affects the displacement due to actuation. Area under the hysteresis loop is maximum for optimum resistance value (20.4 kΩ) which confirms the maximum extraction of power during vibration.

  7. Surface charge modification increases firefly luciferase rigidity without alteration in bioluminescence spectra.

    PubMed

    Mortazavi, Mojtaba; Hosseinkhani, Saman

    2017-01-01

    Protein engineering can provide useful approaches for loop anchoring and mutation of surface-exposed loop residues to Arg for the design of thermostable proteins. In this context and due to the high proportion of surface loops, some of the solvent-exposed residues in the Lampyris turkestanicus luciferase were mutated to Arg. Using the red-emitter mutant luciferase (E354R/Arg356), the single (-Q35R, -I182R, -I232R and -L300R), double (-Q35R/I232R) and triple (-Q35R/I232R/I182R) mutant luciferases were introduced. The relative remaining activity of -I232R, double and triple mutants increased significantly compared to the wild-type at 40°C. The optimal temperature of these mutants increased up to 40°C which were 15°C more than wild-type luciferase. It is anticipated that these mutations increased the local interactions that finally improved the thermostability and optimum temperature of luciferase. It should be noted that Arg substitution at amino acid positions 35, 182 and 232 had no effect on the bioluminescence emission spectra. Furthermore, these mutations have not significantly changed the specific activities of firefly luciferases. Finally, with the use of the homology modeling and molecular docking, the effects of these substitutions were evaluated. In conclusion, this study provides beneficial insights on how the thermal stability of luciferase can be improved by protein engineering for biological applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Dynamics of flare sprays. [in sun

    NASA Technical Reports Server (NTRS)

    Tandberg-Hanssen, E.; Martin, S. F.; Hansen, R. T.

    1980-01-01

    During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable passband filters, multislit spectroscopy and extended angular field coronagraphs). From combined analysis of 13 well-observed sprays which occurred between 1969-1974 it is concluded that (1) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (2) the spray material is confined within a steadily expanding, loop-shaped (presumable magnetically controlled) envelope with part of the materials draining back down along one or both legs of the loop.

  9. Modern CACSD using the Robust-Control Toolbox

    NASA Technical Reports Server (NTRS)

    Chiang, Richard Y.; Safonov, Michael G.

    1989-01-01

    The Robust-Control Toolbox is a collection of 40 M-files which extend the capability of PC/PRO-MATLAB to do modern multivariable robust control system design. Included are robust analysis tools like singular values and structured singular values, robust synthesis tools like continuous/discrete H(exp 2)/H infinity synthesis and Linear Quadratic Gaussian Loop Transfer Recovery methods and a variety of robust model reduction tools such as Hankel approximation, balanced truncation and balanced stochastic truncation, etc. The capabilities of the toolbox are described and illustated with examples to show how easily they can be used in practice. Examples include structured singular value analysis, H infinity loop-shaping and large space structure model reduction.

  10. Optimal shapes of surface-slip driven self-propelled swimmers

    NASA Astrophysics Data System (ADS)

    Vilfan, Andrej; Osterman, Natan

    2012-11-01

    If one defines the swimming efficiency of a microorganism as the power needed to move it against viscous drag, divided by the total dissipated power, one usually finds values no better than 1%. In order to find out how close this is to the theoretically achievable optimum, we first introduced a new efficiency measure at the level of a single cilium or an infinite ciliated surface and numerically determined the optimal beating patterns according to this criterion. In the following we also determined the optimal shape of a swimmer such that the total power is minimal while maintaining the volume and the swimming speed. The resulting shape depends strongly on the allowed maximum curvature. When sufficient curvature is allowed the optimal swimmer exhibits two protrusions along the symmetry axis. The results show that prolate swimmers such as Paramecium have an efficiency that is ~ 20% higher than that of a spherical body, whereas some microorganisms have shapes that allow even higher efficiency.

  11. Influence of current pulse shape on directly modulated system performance in metro area optical networks

    NASA Astrophysics Data System (ADS)

    Campos, Carmina del Rio; Horche, Paloma R.; Martin-Minguez, Alfredo

    2011-03-01

    Due to the fact that a metro network market is very cost sensitive, direct modulated schemes appear attractive. In this paper a CWDM (Coarse Wavelength Division Multiplexing) system is studied in detail by means of an Optical Communication System Design Software; a detailed study of the modulated current shape (exponential, sine and gaussian) for 2.5 Gb/s CWDM Metropolitan Area Networks is performed to evaluate its tolerance to linear impairments such as signal-to-noise-ratio degradation and dispersion. Point-to-point links are investigated and optimum design parameters are obtained. Through extensive sets of simulation results, it is shown that some of these shape pulses are more tolerant to dispersion when compared with conventional gaussian shape pulses. In order to achieve a low Bit Error Rate (BER), different types of optical transmitters are considered including strongly adiabatic and transient chirp dominated Directly Modulated Lasers (DMLs). We have used fibers with different dispersion characteristics, showing that the system performance depends, strongly, on the chosen DML-fiber couple.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Milovich, J. L.; Hinkel, D. E.

    Recent experimental results using the “high foot” pulse shape for inertial confinement fusion ignition experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] have shown encouraging progress compared to earlier “low foot” experiments. These results strongly suggest that controlling ablation front instability growth can significantly improve implosion performance even in the presence of persistent, large, low-mode distortions. Simultaneously, hydrodynamic growth radiography experiments have confirmed that ablation front instability growth is being modeled fairly well in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes couldmore » be modified to improve one-dimensional implosion performance while maintaining the stability properties demonstrated with the high foot. This paper presents such a survey of pulse shapes intermediate between the low and high foot extremes in search of an intermediate foot optimum. Of the design space surveyed, it is found that a higher picket version of the low foot pulse shape shows the most promise for improved compression without loss of stability.« less

  13. Are Complex Magnetic Field Structures Responsible for the Confined X-class Flares in Super Active Region 12192?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun; Li, Ting; Chen, Huadong, E-mail: zjun@nao.cas.cn, E-mail: hdchen@nao.cas.cn

    From 2014 October 19 to 27, six X-class flares occurred in super active region (AR) 12192. They were all confined flares and were not followed by coronal mass ejections. To examine the structures of the four flares close to the solar disk center from October 22 to 26, we firstly employ composite triple-time images in each flare process to display the stratified structure of these flare loops. The loop structures of each flare in both the lower (171 Å) and higher (131 Å) temperature channels are complex, e.g., the flare loops rooting at flare ribbons are sheared or twisted (enwound)more » together, and the complex structures were not destroyed during the flares. For the first flare, although the flare loop system appears as a spindle shape, we can estimate its structures from observations, with lengths ranging from 130 to 300 Mm, heights from 65 to 150 Mm, widths at the middle part of the spindle from 40 to 100 Mm, and shear angles from 16° to 90°. Moreover, the flare ribbons display irregular movements, such as the left ribbon fragments of the flare on October 22 sweeping a small region repeatedly, and both ribbons of the flare on October 26 moved along the same direction instead of separating from each other. These irregular movements also imply that the corresponding flare loops are complex, e.g., several sets of flare loops are twisted together. Although previous studies have suggested that the background magnetic fields prevent confined flares from erupting,based on these observations, we suggest that complex flare loop structures may be responsible for these confined flares.« less

  14. A New Model Based on Adaptation of the External Loop to Compensate the Hysteresis of Tactile Sensors

    PubMed Central

    Sánchez-Durán, José A.; Vidal-Verdú, Fernando; Oballe-Peinado, Óscar; Castellanos-Ramos, Julián; Hidalgo-López, José A.

    2015-01-01

    This paper presents a novel method to compensate for hysteresis nonlinearities observed in the response of a tactile sensor. The External Loop Adaptation Method (ELAM) performs a piecewise linear mapping of the experimentally measured external curves of the hysteresis loop to obtain all possible internal cycles. The optimal division of the input interval where the curve is approximated is provided by the error minimization algorithm. This process is carried out off line and provides parameters to compute the split point in real time. A different linear transformation is then performed at the left and right of this point and a more precise fitting is achieved. The models obtained with the ELAM method are compared with those obtained from three other approaches. The results show that the ELAM method achieves a more accurate fitting. Moreover, the involved mathematical operations are simpler and therefore easier to implement in devices such as Field Programmable Gate Array (FPGAs) for real time applications. Furthermore, the method needs to identify fewer parameters and requires no previous selection process of operators or functions. Finally, the method can be applied to other sensors or actuators with complex hysteresis loop shapes. PMID:26501279

  15. CHROMOSOMAL DIFFERENTIATIONS OF THE LAMPBRUSH TYPE FORMED BY THE Y CHROMOSOME IN DROSOPHILA HYDEI AND DROSOPHILA NEOHYDEI

    PubMed Central

    Hess, Oswald; Meyer, Günther F.

    1963-01-01

    The nuclei of growing spermatocytes in Drosophila hydei and D. neohydei are characterized by the appearance of phase-specific, paired, loop-shaped structures thought to be similar to the loops in lampbrush chromosomes of amphibian oocytes. In X/O-males of D. hydei spermatogenesis is completely blocked before the first maturation division. No spermatozoa are formed in such testes. In the nuclei of X/O-spermatocytes, paired loop formations are absent. This shows the dependence of these chromosomal functional structures upon the Y chromosome. The basis of this dependence could be shown through an investigation of males with two Y chromosomes. All loop pairs are present in duplicate in XYY males. This proves that the intranuclear formations are structural modifications of the Y chromosome itself. These functional structures are species-specific and characteristically different in Drosophila hydei and D. neohydei. Reciprocal species crosses and a backcross showed that the spermatocyte nuclei of all hybrid males possess the functional structures corresponding to the species which donated the Y chromosome. This shows that the morphological character of the functional structures is also determined by the Y chromosome. PMID:13954225

  16. Control of nitromethane photoionization efficiency with shaped femtosecond pulses.

    PubMed

    Roslund, Jonathan; Shir, Ofer M; Dogariu, Arthur; Miles, Richard; Rabitz, Herschel

    2011-04-21

    The applicability of adaptive femtosecond pulse shaping is studied for achieving selectivity in the photoionization of low-density polyatomic targets. In particular, optimal dynamic discrimination (ODD) techniques exploit intermediate molecular electronic resonances that allow a significant increase in the photoionization efficiency of nitromethane with shaped near-infrared femtosecond pulses. The intensity bias typical of high-photon number, nonresonant ionization is accounted for by reference to a strictly intensity-dependent process. Closed-loop adaptive learning is then able to discover a pulse form that increases the ionization efficiency of nitromethane by ∼150%. The optimally induced molecular dynamics result from entry into a region of parameter space inaccessible with intensity-only control. Finally, the discovered pulse shape is demonstrated to interact with the molecular system in a coherent fashion as assessed from the asymmetry between the response to the optimal field and its time-reversed counterpart.

  17. Superelastic SMA U-shaped dampers with self-centering functions

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zhu, Songye

    2018-05-01

    As high-performance metallic materials, shape memory alloys (SMAs) have been investigated increasingly by the earthquake engineering community in recent years, because of their remarkable self-centering (SC) and energy-dissipating capabilities. This paper systematically presents an experimental study on a novel superelastic SMA U-shaped damper (SMA-UD) with SC function under cyclic loading. The mechanical properties, including strength, SC ability, and energy-dissipating capability with varying loading amplitudes and strain rates are evaluated. Test results show that excellent and stable flag-shaped hysteresis loops are exhibited in multiple loading cycles. Strain rate has a negligible effect on the cyclic behavior of the SMA-UD within the dynamic frequency range of typical interest in earthquake engineering. Furthermore, a numerical investigation is performed to understand the mechanical behavior of the SMA-UD. The numerical model is calibrated against the experimental results with reasonable accuracy. Then, the stress–strain states with different phase transformations are also discussed.

  18. Efficiency of Hysteresis Rods in Small Spacecraft Attitude Stabilization

    PubMed Central

    Farrahi, Assal; Sanz-Andrés, Ángel

    2013-01-01

    A semiempirical method for predicting the damping efficiency of hysteresis rods on-board small satellites is presented. It is based on the evaluation of dissipating energy variation of different ferromagnetic materials for two different rod shapes: thin film and circular cross-section rods, as a function of their elongation. Based on this formulation, an optimum design considering the size of hysteresis rods, their cross section shape, and layout has been proposed. Finally, the formulation developed was applied to the case of four existing small satellites, whose corresponding in-flight data are published. A good agreement between the estimated rotational speed decay time and the in-flight data has been observed. PMID:24501579

  19. Optimal Configurations for Rotating Spacecraft Formations

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Hall, Christopher D.

    2000-01-01

    In this paper a new class of formations that maintain a constant shape as viewed from the Earth is introduced. An algorithm is developed to place n spacecraft in a constant shape formation spaced equally in time using the classical orbital elements. To first order, the dimensions of the formation are shown to be simple functions of orbit eccentricity and inclination. The performance of the formation is investigated over a Keplerian orbit using a performance measure based on a weighted average of the angular separations between spacecraft in formation. Analytic approximations are developed that yield optimum configurations for different values of n. The analytic approximations are shown to be in excellent agreement with the exact solutions.

  20. A Magnetic Reconnection Event in the Solar Atmosphere Driven by Relaxation of a Twisted Arch Filament System

    NASA Astrophysics Data System (ADS)

    Huang, Zhenghua; Mou, Chaozhou; Fu, Hui; Deng, Linhua; Li, Bo; Xia, Lidong

    2018-02-01

    We present high-resolution observations of a magnetic reconnection event in the solar atmosphere taken with the New Vacuum Solar Telescope, Atmospheric Imaging Assembly (AIA), and Helioseismic and Magnetic Imager (HMI). The reconnection event occurred between the threads of a twisted arch filament system (AFS) and coronal loops. Our observations reveal that the relaxation of the twisted AFS drives some of its threads to encounter the coronal loops, providing inflows of the reconnection. The reconnection is evidenced by flared X-shape features in the AIA images, a current-sheet-like feature apparently connecting post-reconnection loops in the Hα + 1 Å images, small-scale magnetic cancelation in the HMI magnetograms and flows with speeds of 40–80 km s‑1 along the coronal loops. The post-reconnection coronal loops seen in the AIA 94 Å passband appear to remain bright for a relatively long time, suggesting that they have been heated and/or filled up by dense plasmas previously stored in the AFS threads. Our observations suggest that the twisted magnetic system could release its free magnetic energy into the upper solar atmosphere through reconnection processes. While the plasma pressure in the reconnecting flux tubes are significantly different, the reconfiguration of field lines could result in transferring of mass among them and induce heating therein.

  1. Minimal area surfaces dual to Wilson loops and the Mathieu equation

    DOE PAGES

    Huang, Changyu; He, Yifei; Kruczenski, Martin

    2016-08-11

    The AdS/CFT correspondence relates Wilson loops in N=4 SYM to minimal area surfaces in AdS 5 × S 5 space. Recently, a new approach to study minimal area surfaces in AdS 3 c AdS 5 was discussed based on a Schroedinger equation with a periodic potential determined by the Schwarzian derivative of the shape of the Wilson loop. Here we use the Mathieu equation, a standard example of a periodic potential, to obtain a class of Wilson loops such that the area of the dual minimal area surface can be computed analytically in terms of eigenvalues of such equation. Asmore » opposed to previous examples, these minimal surfaces have an umbilical point (where the principal curvatures are equal) and are invariant under λ-deformations. In various limits they reduce to the single and multiple wound circular Wilson loop and to the regular light-like polygons studied by Alday and Maldacena. In this last limit, the periodic potential becomes a series of deep wells each related to a light-like segment. Small corrections are described by a tight-binding approximation. In the circular limit they are well approximated by an expansion developed by A. Dekel. In the particular case of no umbilical points they reduce to a previous solution proposed by J. Toledo. The construction works both in Euclidean and Minkowski signature of AdS 3.« less

  2. An improved method of renal tissue engineering, by combining renal dissociation and reaggregation with a low-volume culture technique, results in development of engineered kidneys complete with loops of Henle.

    PubMed

    Chang, C-Hong; Davies, Jamie A

    2012-01-01

    Tissue engineering of functional kidney tissue is an important goal for clinical restoration of renal function in patients damaged by infectious, toxicological, or genetic disease. One promising approach is the use of the self-organizing abilities of embryonic kidney cells to arrange themselves, from a simply reaggregated cell suspension, into engineered organs similar to fetal kidneys. The previous state-of-the-art method for this results in the formation of a branched collecting duct tree, immature nephrons (S-shaped bodies) beside and connected to it, and supportive stroma. It does not, though, result in the significant formation of morphologically detectable loops of Henle - anatomical features of the nephron that are critical to physiological function. We have combined the best existing technique for renal tissue engineering from cell suspensions with a low-volume culture technique that allows intact kidney rudiments to make loops of Henle to test whether engineered kidneys can produce these loops. The result is the formation of loops of Henle in engineered cultured 'fetal kidneys', very similar in both morphology and in number to those formed by intact organ rudiments. This brings the engineering technique one important step closer to production of a fully realistic organ. Copyright © 2012 S. Karger AG, Basel.

  3. Nonlifting wing-body combinations with certain geometric restraints having minimum wave drag at low supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard

    1957-01-01

    Several variational problems involving optimum wing and body combinations having minimum wave drag for different kinds of geometrical restraints are analyzed. Particular attention is paid to the effect on the wave drag of shortening the fuselage and, for slender axially symmetric bodies, the effect of fixing the fuselage diameter at several points or even of fixing whole portions of its shape.

  4. Epoxy/Fluoroether Composites

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Taylor, M. S.

    1986-01-01

    Composite materials made from unfilled and glass-fiber-reinforced epoxy toughened by copolymerization with elastomeric prepolymers of perfluoroalkyl ether diacyl fluoride (EDAF). Improved properties due to hydrogen bonding between rubber phase and epoxy matrix, plus formation of rubberlike phase domains that molecularly interpenetrate with epoxy matrix. With optimum rubber content, particle size, and particle shape, entire molecular structure reinforced and toughened. Improved composites also show increased failure strength, stiffness, glass-transition temperature, and resistance to water.

  5. Performance Analysis of MIMO Relay Network via Propagation Measurement in L-Shaped Corridor Environment

    NASA Astrophysics Data System (ADS)

    Lertwiram, Namzilp; Tran, Gia Khanh; Mizutani, Keiichi; Sakaguchi, Kei; Araki, Kiyomichi

    Setting relays can address the shadowing problem between a transmitter (Tx) and a receiver (Rx). Moreover, the Multiple-Input Multiple-Output (MIMO) technique has been introduced to improve wireless link capacity. The MIMO technique can be applied in relay network to enhance system performance. However, the efficiency of relaying schemes and relay placement have not been well investigated with experiment-based study. This paper provides a propagation measurement campaign of a MIMO two-hop relay network in 5GHz band in an L-shaped corridor environment with various relay locations. Furthermore, this paper proposes a Relay Placement Estimation (RPE) scheme to identify the optimum relay location, i.e. the point at which the network performance is highest. Analysis results of channel capacity show that relaying technique is beneficial over direct transmission in strong shadowing environment while it is ineffective in non-shadowing environment. In addition, the optimum relay location estimated with the RPE scheme also agrees with the location where the network achieves the highest performance as identified by network capacity. Finally, the capacity analysis shows that two-way MIMO relay employing network coding has the best performance while cooperative relaying scheme is not effective due to shadowing effect weakening the signal strength of the direct link.

  6. How predation shaped fish: the impact of fin spines on body form evolution across teleosts.

    PubMed

    Price, S A; Friedman, S T; Wainwright, P C

    2015-11-22

    It is well known that predators can induce morphological changes in some fish: individuals exposed to predation cues increase body depth and the length of spines. We hypothesize that these structures may evolve synergistically, as together, these traits will further enlarge the body dimensions of the fish that gape-limited predators must overcome. We therefore expect that the orientation of the spines will predict which body dimension increases in the presence of predators. Using phylogenetic comparative methods, we tested this prediction on the macroevolutionary scale across 347 teleost families, which display considerable variation in fin spines, body depth and width. Consistent with our predictions, we demonstrate that fin spines on the vertical plane (dorsal and anal fins) are associated with a deeper-bodied optimum. Lineages with spines on the horizontal plane (pectoral fins) are associated with a wider-bodied optimum. Optimal body dimensions across lineages without spines paralleling the body dimension match the allometric expectation. Additionally, lineages with longer spines have deeper and wider body dimensions. This evolutionary relationship between fin spines and body dimensions across teleosts reveals functional synergy between these two traits and a potential macroevolutionary signature of predation on the evolutionary dynamics of body shape. © 2015 The Author(s).

  7. Thermoelectric and Magnetic Properties of Sn1- x O2:Mn0.5 x Co0.5 x Nanoparticles Produced by the Microwave Technique

    NASA Astrophysics Data System (ADS)

    Salah, Numan; Habib, Sami; Azam, Ameer

    2017-02-01

    Nanoparticles (NPs) of Sn1- x O2:Mn0.5 x Co0.5 x with x = 0.02, 0.04, 0.06, 0.08 and 0.1 were synthesized by the microwave-assisted route and characterized for their thermoelectric and magnetic properties. As a result of Mn and Co co-doping, a considerable increase in the values of energy band gap and lattice constant c of Sn1- x O2:Mn0.5 x Co0.5 x NPs was observed. The x-ray photoelectron spectroscopy spectra revealed that Mn and Co ions were incorporated in their 4+ and 2+ states, respectively. The resistivity and calculated activation energy of these NPs were found to decrease by increasing the Mn and Co contents. A negative Seebeck coefficient was observed, whose value was found to be significantly increased by increasing the value of x. The magnetic measurement results revealed that all the microwave-synthesized Sn1- x O2:Mn0.5 x Co0.5 x NPs including the pure SnO2 have distinctly wide hysteresis loops. This indicates that samples have room-temperature ferromagnetism. The optimum value for x to have maximum saturation magnetism was observed to be 0.04. Diamagnetic contributions from the core of these NPs were noticed at higher magnetic fields. The observed magnetism was attributed to the presence of defects at the NPs' interfacing sites, grain boundaries, atom vacancies and an optimum level of Mn and Co co-dopants. The observed wide hysteresis loops in these NPs might be useful for producing nanoscale magnets and magnetic memory devices. Moreover, the observed thermoelectric properties, i.e. Seebeck coefficient and power factor in these NPs, might be useful for the development of thermoelectric devices.

  8. Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization.

    PubMed

    Phakthong, Wilaiwan; Liawruangrath, Boonsom; Liawruangrath, Saisunee

    2014-12-01

    A reversed flow injection (rFI) system was designed and constructed for gallic acid determination. Gallic acid was determined based on the formation of chromogen between gallic acid and rhodanine, resulting in a colored product with a λmax at 520 nm. The optimum conditions for determining gallic acid were also investigated. Optimizations of the experimental conditions were carried out based on the so-call univariate method. The conditions obtained were 0.6% (w/v) rhodanine, 70% (v/v) ethanol, 0.9 mol L(-1) NaOH, 2.0 mL min(-1) flow rate, 75 μL injection loop and 600 cm mixing tubing length, respectively. Comparative optimizations of the experimental conditions were also carried out by multivariate or simplex optimization method. The conditions obtained were 1.2% (w/v) rhodanine, 70% (v/v) ethanol, 1.2 mol L(-1) NaOH, flow rate 2.5 mL min(-1), 75 μL injection loop and 600 cm mixing tubing length, respectively. It was found that the optimum conditions obtained by the former optimization method were mostly similar to those obtained by the latter method. The linear relationship between peak height and the concentration of gallic acid was obtained over the range of 0.1-35.0 mg L(-1) with the detection limit 0.081 mg L(-1). The relative standard deviations were found to be in the ranges 0.46-1.96% for 1, 10, 30 mg L(-1) of gallic acid (n=11). The method has the advantages of simplicity extremely high selectivity and high precision. The proposed method was successfully applied to the determination of gallic acid in longan samples without interferent effects from other common phenolic compounds that might be present in the longan samples collected in northern Thailand. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Generation of programmable temporal pulse shape and applications in micromachining

    NASA Astrophysics Data System (ADS)

    Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.

    2009-02-01

    In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.

  10. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler.

    PubMed

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O'Connor, Mary; Shapiro, Bruce A

    2008-10-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes.

  11. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler☆

    PubMed Central

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O’Connor, Mary; Shapiro, Bruce A.

    2013-01-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes. PMID:18838281

  12. A method and the results of loop colostomy.

    PubMed

    Browning, G G; Parks, A G

    1983-04-01

    A technique of loop colostomy which avoids a sutured skin wound, employs a deep tension suture with retained polythene sleeve as a bridge, and permits routine use of standard terminal colostomy appliances is described. The clinical results in 51 patients are reported and the advantages of this method of construction discussed. All patients were able to use standard, terminal colostomy appliances routinely from the time of construction. There were no immediate postoperative complications. Delayed complications occurred in 5 (10 per cent) patients. Intraperitoneal closure was performed in 43 patients and was complicated by 1 (2.3 per cent) transient fecal leak and 4 (9.3 per cent) would infections. The absence of a sutured skin wound, the small bridge size, and the circular shape of the stoma facilitate use of accurately fitting, standard terminal colostomy appliances rather than the usual loop colostomy apparatus. This results in an improved skin seal, reduced fecal leakage, easier nursing and stoma care, and better patient morale.

  13. [Blood vessels of the epiphysis in comparative-anatomical aspect].

    PubMed

    Selin, Iu M

    1977-05-01

    The structure of the epiphysis and its inner blood vessels were studied in the representatives of nine orders of placental mammals and in man by means of injection of stained masses into the arteries and veins and subsequent preparation of histological sections. Not only form and topography of the organ differ in the representatives of different orders, but histological picture of the epiphysis is specific for each of them. In insectivores and chiroptera the loops of the inner three-dimensional capillary network are stretched along the longitudinal axis of the organ. In the epiphysis of carnivores, ungulata and monkey, the intraorganic vessels are situated in stromal trabeculae and the loops of the capillary network have polygonal shape. The intraepiphyseal vessels in man are arranged in peculiar baskets which envelope parenchymal lobules. The intraorganic veins beginning from the loops of the capillary network do not follow the arteries penetrating into the organ, but independently go to different surface parts of the organ where they flow into extraorganic veins.

  14. The I domain of the AAA+ HslUV protease coordinates substrate binding, ATP hydrolysis, and protein degradation

    PubMed Central

    Sundar, Shankar; Baker, Tania A; Sauer, Robert T

    2012-01-01

    In the AAA+ HslUV protease, substrates are bound and unfolded by a ring hexamer of HslU, before translocation through an axial pore and into the HslV degradation chamber. Here, we show that the N-terminal residues of an Arc substrate initially bind in the HslU axial pore, with key contacts mediated by a pore loop that is highly conserved in all AAA+ unfoldases. Disordered loops from the six intermediate domains of the HslU hexamer project into a funnel-shaped cavity above the pore and are positioned to contact protein substrates. Mutations in these I-domain loops increase KM and decrease Vmax for degradation, increase the mobility of bound substrates, and prevent substrate stimulation of ATP hydrolysis. HslU-ΔI has negligible ATPase activity. Thus, the I domain plays an active role in coordinating substrate binding, ATP hydrolysis, and protein degradation by the HslUV proteolytic machine. PMID:22102327

  15. Generalized nucleation and looping model for epigenetic memory of histone modifications

    PubMed Central

    Erdel, Fabian; Greene, Eric C.

    2016-01-01

    Histone modifications can redistribute along the genome in a sequence-independent manner, giving rise to chromatin position effects and epigenetic memory. The underlying mechanisms shape the endogenous chromatin landscape and determine its response to ectopically targeted histone modifiers. Here, we simulate linear and looping-driven spreading of histone modifications and compare both models to recent experiments on histone methylation in fission yeast. We find that a generalized nucleation-and-looping mechanism describes key observations on engineered and endogenous methylation domains including intrinsic spatial confinement, independent regulation of domain size and memory, variegation in the absence of antagonists, and coexistence of short- and long-term memory at loci with weak and strong constitutive nucleation. These findings support a straightforward relationship between the biochemical properties of chromatin modifiers and the spatiotemporal modification pattern. The proposed mechanism gives rise to a phase diagram for cellular memory that may be generally applicable to explain epigenetic phenomena across different species. PMID:27382173

  16. Crystal structure of a transcribing RNA Polymerase II complex reveals a complete transcription bubble

    PubMed Central

    Barnes, Christopher O.; Calero, Monica; Malik, Indranil; Graham, Brian W.; Spahr, Henrik; Lin, Guowu; Cohen, Aina; Brown, Ian S.; Zhang, Qiangmin; Pullara, Filippo; Trakselis, Michael A.; Kaplan, Craig D.; Calero, Guillermo

    2015-01-01

    Summary Notwithstanding numerous published structures of RNA Polymerase II (Pol II), structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. Here, we report the structures of TFIIF stabilized transcribing Pol II complexes, revealing the upstream duplex and full transcription bubble. The upstream duplex lies over a wedge-shaped loop from Rpb2 that engages its minor groove, providing part of the structural framework for DNA tracking during elongation. At the upstream transcription bubble fork, rudder and fork loop-1 residues spatially coordinate strand annealing and the nascent RNA transcript. At the downstream fork, a network of Pol II interactions with the non-template strand forms a rigid domain with the Trigger Loop (TL), allowing visualization of its open state. Overall, our observations suggest that “open/closed” conformational transitions of the TL may be linked to interactions with the non-template strand, possibly in a synchronized ratcheting manner conducive to polymerase translocation. PMID:26186291

  17. A nonlinear dynamical analogue model of geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Baker, D. N.; Roberts, D. A.; Fairfield, D. H.; Buechner, J.

    1992-01-01

    Consideration is given to the solar wind-magnetosphere interaction within the framework of deterministic nonlinear dynamics. An earlier dripping faucet analog model of the low-dimensional solar wind-magnetosphere system is reviewed, and a plasma physical counterpart to that model is constructed. A Faraday loop in the magnetotail is considered, and the relationship of electric potentials on the loop to changes in the magnetic flux threading the loop is developed. This approach leads to a model of geomagnetic activity which is similar to the earlier mechanical model but described in terms of the geometry and plasma contents of the magnetotail. The model is characterized as an elementary time-dependent global convection model. The convection evolves within a magnetotail shape that varies in a prescribed manner in response to the dynamical evolution of the convection. The result is a nonlinear model capable of exhibiting a transition from regular to chaotic loading and unloading. The model's behavior under steady loading and also some elementary forms of time-dependent loading is discussed.

  18. Consistency of patterns in concentration‐discharge plots

    USGS Publications Warehouse

    Chanat, Jeffrey G.; Rice, Karen C.; Hornberger, George M.

    2002-01-01

    Concentration‐discharge (c‐Q) plots have been used to infer how flow components such as event water, soil water, and groundwater mix to produce the observed episodic hydrochemical response of small catchments. Because c‐Q plots are based only on observed streamflow and solute concentration, their interpretation requires assumptions about the relative volume, hydrograph timing, and solute concentration of the streamflow end‐members. Evans and Davies [1998] present a taxonomy of c‐Q loops resulting from three‐component conservative mixing. Their analysis, based on a fixed template of end‐member hydrograph volume, timing, and concentration, suggests a unique relationship between c‐Q loop form and the rank order of end‐member concentrations. Many catchments exhibit variability in component contributions to storm flow in response to antecedent conditions or rainfall characteristics, but the effects of such variation on c‐Q relationships have not been studied systematically. Starting with a “baseline” condition similar to that assumed by Evans and Davies [1998], we use a simple computer model to characterize the variability in c‐Q plot patterns resulting from variation in end‐member volume, timing, and solute concentration. Variability in these three factors can result in more than one c‐Q loop shape for a given rank order of end‐member solute concentrations. The number of resulting hysteresis patterns and their relative frequency depends on the rank order of solute concentrations and on their separation in absolute value. In ambiguous cases the c‐Q loop shape is determined by the relative “prominence” of the event water versus soil water components. This “prominence” is broadly defined as a capacity to influence the total streamflow concentration and may result from a combination of end‐member volume, timing, or concentration. The modeling results indicate that plausible hydrological variability in field situations can confound the interpretation of c‐Q plots, even when fundamental end‐member mixing assumptions are satisfied.

  19. Vibration nullification of MEMS device using input shaping

    NASA Astrophysics Data System (ADS)

    Jordan, Scott; Lawrence, Eric M.

    2003-07-01

    The active silicon microstructures known as Micro-Electromechanical Systems (MEMS) are improving many existing technologies through simplification and cost reduction. Many industries have already capitalized on MEMS technology such as those in fields as diverse as telecommunications, computing, projection displays, automotive safety, defense and biotechnology. As they grow in sophistication and complexity, the familiar pressures to further reduce costs and increase performance grow for those who design and manufacture MEMS devices and the engineers who specify them for their end applications. One example is MEMS optical switches that have evolved from simple, bistable on/off elements to microscopic, freelypositionable beam steering optics. These can be actuated to discrete angular positions or to continuously-variable angular states through applied command signals. Unfortunately, elaborate closed-loop actuation schemes are often necessitated in order to stabilize the actuation. Furthermore, preventing one actuated micro-element from vibrationally cross-coupling with its neighbors is another reason costly closed-loop approaches are thought to be necessary. The Laser Doppler Vibrometer (LDV) is a valuable tool for MEMS characterization that provides non-contact, real-time measurements of velocity and/or displacement response. The LDV is a proven technology for production metrology to determine dynamical behaviors of MEMS elements, which can be a sensitive indicator of manufacturing variables such as film thickness, etch depth, feature tolerances, handling damage and particulate contamination. They are also important for characterizing the actuation dynamics of MEMS elements for implementation of a patented controls technique called Input Shaping«, which we show here can virtually eliminate the vibratory resonant response of MEMS elements even when subjected to the most severe actuation profiles. In this paper, we will demonstrate the use of the LDV to determine how the application of this compact, efficient algorithm can improve the performance of both open- and closed-loop MEMS devices, eliminating the need for costly closed-loop approaches. This can greatly reduce the complexity, cost and yield of MEMS design and manufacture.

  20. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been provEn effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. Several approaches that have proven effective for other evolutionary algorithms are modified and implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for standard test optimization problems and for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  1. Genetic algorithms for multicriteria shape optimization of induction furnace

    NASA Astrophysics Data System (ADS)

    Kůs, Pavel; Mach, František; Karban, Pavel; Doležel, Ivo

    2012-09-01

    In this contribution we deal with a multi-criteria shape optimization of an induction furnace. We want to find shape parameters of the furnace in such a way, that two different criteria are optimized. Since they cannot be optimized simultaneously, instead of one optimum we find set of partially optimal designs, so called Pareto front. We compare two different approaches to the optimization, one using nonlinear conjugate gradient method and second using variation of genetic algorithm. As can be seen from the numerical results, genetic algorithm seems to be the right choice for this problem. Solution of direct problem (coupled problem consisting of magnetic and heat field) is done using our own code Agros2D. It uses finite elements of higher order leading to fast and accurate solution of relatively complicated coupled problem. It also provides advanced scripting support, allowing us to prepare parametric model of the furnace and simply incorporate various types of optimization algorithms.

  2. Shape Changing Airfoil

    NASA Technical Reports Server (NTRS)

    Ott, Eric A.

    2005-01-01

    Scoping of shape changing airfoil concepts including both aerodynamic analysis and materials-related technology assessment effort was performed. Three general categories of potential components were considered-fan blades, booster and compressor blades, and stator airfoils. Based on perceived contributions to improving engine efficiency, the fan blade was chosen as the primary application for a more detailed assessment. A high-level aerodynamic assessment using a GE90-90B Block 4 engine cycle and fan blade geometry indicates that blade camber changes of approximately +/-4deg would be sufficient to result in fan efficiency improvements nearing 1 percent. Constraints related to flight safety and failed mode operation suggest that use of the baseline blade shape with actuation to the optimum cruise condition during a portion of the cycle would be likely required. Application of these conditions to the QAT fan blade and engine cycle was estimated to result in an overall fan efficiency gain of 0.4 percent.

  3. HEART Aerothermodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza

    2012-01-01

    This paper presents an assessment of the aerothermodynamic environment around an 8.3 meter High Energy Atmospheric Reentry Test (HEART) vehicle. This study generated twelve nose shape configurations and compared their responses at the peak heating trajectory point against the baseline nose shape. The heat flux sensitivity to the angle of attack variations are also discussed. The possibility of a two-piece Thermal Protection System (TPS) design at the nose is also considered, as are the surface catalytic affects of the aeroheating environment of such configuration. Based on these analyses, an optimum nose shape is proposed to minimize the surface heating. A recommendation is also made for a two-piece TPS design, for which the surface catalytic uncertainty associated with the jump in heating at the nose-IAD juncture is reduced by a minimum of 93%. In this paper, the aeroshell is assumed to be rigid and the inflatable fluid interaction effect is left for future investigations.

  4. An improved computer model for prediction of axial gas turbine performance losses

    NASA Technical Reports Server (NTRS)

    Jenkins, R. M.

    1984-01-01

    The calculation model performs a rapid preliminary pitchline optimization of axial gas turbine annular flowpath geometry, as well as an initial estimate of blade profile shapes, given only a minimum of thermodynamic cycle requirements. No geometric parameters need be specified. The following preliminary design data are determined: (1) the optimum flowpath geometry, within mechanical stress limits; (2) initial estimates of cascade blade shapes; and (3) predictions of expected turbine performance. The model uses an inverse calculation technique whereby blade profiles are generated by designing channels to yield a specified velocity distribution on the two walls. Velocity distributions are then used to calculate the cascade loss parameters. Calculated blade shapes are used primarily to determine whether the assumed velocity loadings are physically realistic. Model verification is accomplished by comparison of predicted turbine geometry and performance with an array of seven NASA single-stage axial gas turbine configurations.

  5. Systematization of material consumption norms in spray-coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lelyukh, I.M.

    1995-03-01

    Regulating the consumption of materials is particularly important in the economics and organization of spray-coating operations. Three main factors are taken into account when establishing norms for the consumption of the materials of the coating: the physicomechanical and chemical properties of the particles; the shape of the substrate; the dimensions of the substrate. The most important parameters of the spraying regime are the velocity and temperature of the particles. Given the same velocity, the optimum particle kinetic energy for producing a strong bond with the substrate depends on particle shape and size and the density of the materials being spray-coated.more » These parameters determine the heating of the particles in the plasma jet or, in the case of the use of a detonation gun, during collision with the surface of the part. Powders of fragmented or drop shape are used to obtain coatings by spraying.« less

  6. High-Energy Atmospheric Reentry Test Aerothermodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza

    2013-01-01

    This paper presents an assessment of the aerothermodynamic environment around an 8.3 meter High Energy Atmospheric Reentry Test (HEART) vehicle. This study generated twelve nose shape configurations and compared their responses at the peak heating trajectory point against the baseline nose shape. The heat flux sensitivity to the angle of attack variations are also discussed. The possibility of a two-piece Thermal Protection System (TPS) design at the nose is also considered, as are the surface catalytic affects of the aeroheating environment of such configuration. Based on these analyses, an optimum nose shape is proposed to minimize the surface heating. A recommendation is also made for a two-piece TPS design, for which the surface catalytic uncertainty associated with the jump in heating at the nose-IAD juncture is reduced by a minimum of 93%. In this paper, the aeroshell is assumed to be rigid and the inflatable fluid interaction effect is left for future investigations

  7. A comprehensive method for preliminary design optimization of axial gas turbine stages

    NASA Technical Reports Server (NTRS)

    Jenkins, R. M.

    1982-01-01

    A method is presented that performs a rapid, reasonably accurate preliminary pitchline optimization of axial gas turbine annular flowpath geometry, as well as an initial estimate of blade profile shapes, given only a minimum of thermodynamic cycle requirements. No geometric parameters need be specified. The following preliminary design data are determined: (1) the optimum flowpath geometry, within mechanical stress limits; (2) initial estimates of cascade blade shapes; (3) predictions of expected turbine performance. The method uses an inverse calculation technique whereby blade profiles are generated by designing channels to yield a specified velocity distribution on the two walls. Velocity distributions are then used to calculate the cascade loss parameters. Calculated blade shapes are used primarily to determine whether the assumed velocity loadings are physically realistic. Model verification is accomplished by comparison of predicted turbine geometry and performance with four existing single stage turbines.

  8. Biomolecular and structural analyses of cauliflower-like DNAs by ultraviolet, circular dichroism, and fluorescence spectroscopies in comparison with natural DNA.

    PubMed

    Gill, Pooria; Ranjbar, Bijan; Saber, Reza; Khajeh, Khosro; Mohammadian, Mehdi

    2011-07-01

    Cauliflower-like DNAs are stem-loop DNAs that are fabricated periodically in inverted repetitions from deoxyribonucleic acid phosphates (dNTPs) by loop-mediated isothermal amplification (LAMP). Cauliflower-like DNAs have ladder-shape behaviors on gel electrophoresis, and increasing the time of LAMP leads to multiplying the repetitions, stem-loops, and electrophoretic bands. Cauliflower-like DNAs were fabricated via LAMP using two loop primers, two bumper primers, dNTPs, a λ-phage DNA template, and a Bst DNA polymerase in 75- and 90-min periods. These times led to manufacturing two types of cauliflower-like DNAs with different contents of inverted repetitions and stem-loops, which were clearly indicated by two comparable electrophoresis patterns in agarose gel. LAMP-fabricated DNAs and natural dsB-DNA (salmon genomic DNA) were dialyzed in Gomori phosphate buffer (10 mM, pH 7.4) to be isolated from salts, nucleotides, and primers. Dialyzed DNAs were studied using UV spectroscopy, circular dichroism spectropolarimetry, and fluorescence spectrophotometry. Structural analyses indicated reduction of the molecular ellipticity and extinction coefficients in comparison with B-DNA. Also, cauliflower-like DNAs demonstrated less intrinsic and more extrinsic fluorescence in comparison with natural DNA. The overwinding and lengthening of the cauliflower-like configurations of LAMP DNAs led to changes in physical parameters of this type of DNA in comparison with natural DNA. The results obtained introduced new biomolecular characteristics of DNA macromolecules fabricated within a LAMP process and show the effects of more inverted repeats and stem-loops, which are manufactured by lengthening the process.

  9. Design and test of a regenerative satellite transmultiplexer

    NASA Astrophysics Data System (ADS)

    Hung, Kenny King-Ming

    1993-05-01

    In a multiple access scheme for regenerative satellite communications, the bulk frequency division multiple access (FDMA) uplink signal is demodulated on board the satellite and then remodulated for time division multiplexing (TDM) downlink transmission. Conversion from frequency to time division multiplex format requires that the uplink signal be frequency demultiplexed and each individual carrier be subsequently demodulated. For thin-route application which consists of a large number of channels with fixed data rate, multicarrier demodulation can be accomplished efficiently by a digital transmultiplexer (TMUX) using a fast Fourier transform processor followed by a bank of per-channel processors. A time domain description of the TMUX algorithm is derived which elucidates how the TMUX functions. The per-channel processor performs timing and carrier recovery for optimum and coherent data detection. Timing recovery is necessarily achieved asynchronously by a filter coefficient interpolation. Carrier recovery is performed using an all-digital phase-locked loop. The combination of both timing and carrier loops is investigated for a multi-user system. The performance of the overall system is assessed over a multi-user, additive white Gaussian noise channel for a bit energy to noise power spectral density ratio down to zero dB.

  10. A Digital Microfluidics Platform for Loop-Mediated Isothermal Amplification Detection

    PubMed Central

    Veigas, Bruno; Águas, Hugo; Fortunato, Elvira; Martins, Rodrigo; Baptista, Pedro Viana; Igreja, Rui

    2017-01-01

    Digital microfluidics (DMF) arises as the next step in the fast-evolving field of operation platforms for molecular diagnostics. Moreover, isothermal schemes, such as loop-mediated isothermal amplification (LAMP), allow for further simplification of amplification protocols. Integrating DMF with LAMP will be at the core of a new generation of detection devices for effective molecular diagnostics at point-of-care (POC), providing simple, fast, and automated nucleic acid amplification with exceptional integration capabilities. Here, we demonstrate for the first time the role of coupling DMF and LAMP, in a dedicated device that allows straightforward mixing of LAMP reagents and target DNA, as well as optimum temperature control (reaction droplets undergo a temperature variation of just 0.3 °C, for 65 °C at the bottom plate). This device is produced using low-temperature and low-cost production processes, adaptable to disposable and flexible substrates. DMF-LAMP is performed with enhanced sensitivity without compromising reaction efficacy or losing reliability and efficiency, by LAMP-amplifying 0.5 ng/µL of target DNA in just 45 min. Moreover, on-chip LAMP was performed in 1.5 µL, a considerably lower volume than standard bench-top reactions. PMID:29144379

  11. Modeling the Alzheimer Abeta17-42 fibril architecture: tight intermolecular sheet-sheet association and intramolecular hydrated cavities.

    PubMed

    Zheng, Jie; Jang, Hyunbum; Ma, Buyong; Tsai, Chung-Jun; Nussinov, Ruth

    2007-11-01

    We investigate Abeta(17-42) protofibril structures in solution using molecular dynamics simulations. Recently, NMR and computations modeled the Abeta protofibril as a longitudinal stack of U-shaped molecules, creating an in-parallel beta-sheet and loop spine. Here we study the molecular architecture of the fibril formed by spine-spine association. We model in-register intermolecular beta-sheet-beta-sheet associations and study the consequences of Alzheimer's mutations (E22G, E22Q, E22K, and M35A) on the organization. We assess the structural stability and association force of Abeta oligomers with different sheet-sheet interfaces. Double-layered oligomers associating through the C-terminal-C-terminal interface are energetically more favorable than those with the N-terminal-N-terminal interface, although both interfaces exhibit high structural stability. The C-terminal-C-terminal interface is essentially stabilized by hydrophobic and van der Waals (shape complementarity via M35-M35 contacts) intermolecular interactions, whereas the N-terminal-N-terminal interface is stabilized by hydrophobic and electrostatic interactions. Hence, shape complementarity, or the "steric zipper" motif plays an important role in amyloid formation. On the other hand, the intramolecular Abeta beta-strand-loop-beta-strand U-shaped motif creates a hydrophobic cavity with a diameter of 6-7 A, allowing water molecules and ions to conduct through. The hydrated hydrophobic cavities may allow optimization of the sheet association and constitute a typical feature of fibrils, in addition to the tight sheet-sheet association. Thus, we propose that Abeta fiber architecture consists of alternating layers of tight packing and hydrated cavities running along the fibrillar axis, which might be possibly detected by high-resolution imaging.

  12. Stabilizing detached Bridgman melt crystal growth: Model-based nonlinear feedback control

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.

    2012-12-01

    The dynamics and operability limits of a nonlinear-proportional-integral controller designed to stabilize detached vertical Bridgman crystal growth are studied. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. The controller consists of a model-based nonlinear component coupled with a standard proportional-integral controller. The nonlinear component is based on a capillary model of shape stability. Perturbations to gap width, pressure difference, wetting angle, and growth angle are studied under both shape stable and shape unstable conditions. The nonlinear-PI controller allows a wider operating range of gain than a standard PI controller used alone, is easier to tune, and eliminates solution multiplicity from closed-loop operation.

  13. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Heczko, O.; Drahokoupil, J.; Straka, L.

    2015-05-01

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  14. Reliability Based Design for a Raked Wing Tip of an Airframe

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.

    2011-01-01

    A reliability-based optimization methodology has been developed to design the raked wing tip of the Boeing 767-400 extended range airliner made of composite and metallic materials. Design is formulated for an accepted level of risk or reliability. The design variables, weight and the constraints became functions of reliability. Uncertainties in the load, strength and the material properties, as well as the design variables, were modeled as random parameters with specified distributions, like normal, Weibull or Gumbel functions. The objective function and constraint, or a failure mode, became derived functions of the risk-level. Solution to the problem produced the optimum design with weight, variables and constraints as a function of the risk-level. Optimum weight versus reliability traced out an inverted-S shaped graph. The center of the graph corresponded to a 50 percent probability of success, or one failure in two samples. Under some assumptions, this design would be quite close to the deterministic optimum solution. The weight increased when reliability exceeded 50 percent, and decreased when the reliability was compromised. A design could be selected depending on the level of risk acceptable to a situation. The optimization process achieved up to a 20-percent reduction in weight over traditional design.

  15. On convergence of differential evolution over a class of continuous functions with unique global optimum.

    PubMed

    Ghosh, Sayan; Das, Swagatam; Vasilakos, Athanasios V; Suresh, Kaushik

    2012-02-01

    Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.

  16. Virgibacillus ainsalahensis sp. nov., a Moderately Halophilic Bacterium Isolated from Sediment of a Saline Lake in South of Algeria.

    PubMed

    Amziane, Meriam; Darenfed-Bouanane, Amel; Abderrahmani, Ahmed; Selama, Okba; Jouadi, Lydia; Cayol, Jean-Luc; Nateche, Farida; Fardeau, Marie-Laure

    2017-02-01

    A Gram-positive, moderately halophilic, endospore-forming bacterium, designated MerV T , was isolated from a sediment sample of a saline lake located in Ain Salah, south of Algeria. The cells were rod shaped and motile. Isolate MerV T grew at salinity interval of 0.5-25% NaCl (optimum, 5-10%), pH 6.0-12.0 (optimum, 8.0), and temperature between 10 and 40 °C (optimum, 30 °C).The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, a glycolipid, a phospholipid, and two lipids, and MK-7 is the predominant menaquinone. The predominant cellular fatty acids were anteiso C 15:0 and anteiso C 17:0 . The DNA G+C content was 45.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain MerV T was most closely related to Virgibacillus halodenitrificans (gene sequence similarity of 97.0%). On the basis of phenotypic, chemotaxonomic properties, and phylogenetic analyses, strain MerV T (=DSM = 28944 T ) should be placed in the genus Virgibacillus as a novel species, for which the name Virgibacillus ainsalahensis is proposed.

  17. Laser beam shaping for biomedical microscopy techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei

    2016-04-01

    Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to be realized by an imaging optical system which can include microscope objectives and tube lenses. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in microscopy systems. Examples of real implementations and experimental results will be presented as well.

  18. Coherent control of alkali cluster fragmentation dynamics

    NASA Astrophysics Data System (ADS)

    Lindinger, Albrecht; Lupulescu, Cosmin; Bartelt, Andreas; Vajda, Štefan; Wöste, Ludger

    2003-06-01

    Metal clusters exhibit extraordinary chemical and catalytic properties, which sensitively depend upon their size. This behavior makes them interesting candidates for the real-time analysis of ultrafast photo-induced processes—ultimately leading to coherent control scenarii. We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters, like its phase, amplitude and duration; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photochemical process. We present first the vibrational dynamics of bound, dissociated, and pre-dissociated electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced fragmentation experiments on bifurcating reaction channels were carried out. In these experiments different branching ionization and fragmentation pathways of electronically excited Na 2K were investigated. By employing an evolutionary algorithm for optimizing the phase and amplitude of the applied laser field, the yield of the resulting parent or fragment ions could significantly be influenced and interesting features could be concluded from the obtained optimum pulse shapes revealing the characteristic molecular oscillation period. Moreover, the influence on the optimal pulse shape due to fragmentation from larger clusters into NaK is obtained. The substructure of the optimal pulse shape thereby offers new insight into the fragmentation channel during the control process. Characteristic motions of the involved wave packets are proposed, in order to explain the optimized dynamic dissociation pathways.

  19. Conformational Rearrangement Within the Soluble Domains of the CD4 Receptor is Ligand-Specific

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashish,F.; Juncadella, I.; Garg, R.

    2008-01-01

    Ligand binding induces shape changes within the four modular ectodomains (D1-D4) of the CD4 receptor, an important receptor in immune signaling. Small angle x-ray scattering (SAXS) on both a two-domain and a four-domain construct of the soluble CD4 (sCD4) is consistent with known crystal structures demonstrating a bilobal and a semi-extended tetralobal Z conformation in solution, respectively. Detection of conformational changes within sCD4 as a result of ligand binding was followed by SAXS on sCD4 bound to two different glycoprotein ligands: the tick saliva immunosuppressor Salp15 and the HIV-1 envelope protein gp120. Ab initio modeling of these data showed thatmore » both Salp15 and gp120 bind to the D1 domain of sCD4 and yet induce drastically different structural rearrangements. Upon binding, Salp15 primarily distorts the characteristic lobal architecture of the sCD4 without significantly altering the semi-extended shape of the sCD4 receptor. In sharp contrast, the interaction of gp120 with sCD4 induces a shape change within sCD4 that can be described as a Z-to-U bi-fold closure of the four domains across its flexible D2-D3 linker. Placement of known crystal structures within the boundaries of the SAXS-derived models suggests that the ligand-induced shape changes could be a result of conformational changes within this D2-D3 linker. Functionally, the observed shape changes in CD4 receptor causes dissociation of lymphocyte kinase from the cytoplasmic domain of Salp15-bound CD4 and facilitates an interaction between the exposed V3 loops of CD4-bound gp120 molecule to the extracellular loops of its co-receptor, a step essential for HIV-1 viral entry.« less

  20. Micromagnetic Modeling: a Tool for Studying Remanence in Magnetite

    NASA Astrophysics Data System (ADS)

    ter Maat, G. W.; Fabian, K.; Church, N. S.; McEnroe, S. A.

    2017-12-01

    Micromagnetic modeling is a useful tool in understanding magnetic particle behavior. The domain state of, and interaction between, particles is influenced by their shape, size and spacing. Rocks contain a collection of grains with varying geometries. This study presents models of true geometries obtained by dual-beam focused ion beam scanning electron microscopy (FIB-SEM). Using focused ion beam nanotomography (FIB-nT) the shape and size of individual grains and their spacing are accurately determined. The particle assemblages discussed here are basalts from the Stardalur volcano in Iceland. The main carrier of the magnetization is oxy-exsolved magnetite which contains extensive microstructures from the micron to nanometer scale. The complex morphologies vary in shape from spherical to elongated to sheet-like shapes with SD to PSD domain states. We investigate large oxy-exsolved magnetite grains as well as smaller oxy-exsolved dendritic grains. The obtained 3D volumes are modeled using finite element micromagnetics software MERRILL, to calculate magnetization structures. By modeling a full hysteresis loop we can observe the complete switching process and visualize the mechanism of the reversal of the magnetization. Micromagnetic simulation of hysteresis loops of grains with varying geometry and spacing shows the magnetization state of, and magnetostatic interaction between, different grains. From the simulations the remanence state of the modeled reconstructed geometry is obtained. Modeling the behavior of separate individual grains is compared with modeling assemblages of grains with varying spacing to study the effect of interaction. The use of realistic geometries of oxy-exsolved magnetite in micromagnetic models allows the examination of the influence of shape, size and spacing on the magnetic properties of single particles, and magnetostatic interactions between them.These parameters are varied and tested to find if there is an increase in remanence-carrying capacity. The use of modeling of the realistic representation of the widespread microstructures allow us to test proposed enhancement of remanence, and more stable paleomagnetic recorders.

  1. Implementation of the nudged elastic band method in a dislocation dynamics formalism: Application to dislocation nucleation

    NASA Astrophysics Data System (ADS)

    Geslin, Pierre-Antoine; Gatti, Riccardo; Devincre, Benoit; Rodney, David

    2017-11-01

    We propose a framework to study thermally-activated processes in dislocation glide. This approach is based on an implementation of the nudged elastic band method in a nodal mesoscale dislocation dynamics formalism. Special care is paid to develop a variational formulation to ensure convergence to well-defined minimum energy paths. We also propose a methodology to rigorously parametrize the model on atomistic data, including elastic, core and stacking fault contributions. To assess the validity of the model, we investigate the homogeneous nucleation of partial dislocation loops in aluminum, recovering the activation energies and loop shapes obtained with atomistic calculations and extending these calculations to lower applied stresses. The present method is also applied to heterogeneous nucleation on spherical inclusions.

  2. Interfacial Stresses and the Anomalous Character of Thermoelastic-Deformation Curves of a Cu-Al-Ni Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Malygin, G. A.; Nikolaev, V. I.; Pulnev, S. A.; Chikiryaka, A. V.

    2017-12-01

    Thermoelastic-deformation curves of a single-crystalline Cu-13.5 wt % Al-4.0 wt % Ni shapememory (SM) alloy have been studied. Cyclic temperature variation in a 300-450 K interval revealed an anomalous character of thermoelastic hysteresis loops with regions of accelerated straining at both heating and cooling stages. The observed phenomenon can be used for increasing the response speed of SM-alloy based drive and sensor devices. Analysis of this phenomenon in the framework of the theory of diffuse martensitic transformations showed that the anomalous character of thermoelastic hysteresis loops may be related to the influence of interfacial stresses on the dynamics of martensitic transformations in these SM alloys.

  3. Antenna radiation patterns in the whistler wave regime measured in a large laboratory plasma

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1976-01-01

    Antenna radiation patterns of balanced electric dipoles and shielded magnetic loop antennas are obtained by measuring the relative wave amplitude with a small receiver antenna scanned around the exciter in a large uniform collisionless magnetized laboratory plasma in the whistler wave regime. The boundary effects are assumed to be negligible even for many farfield patterns. Characteristic differences are observed between electrically short and long antennas, the former exhibiting resonance cones and the latter showing dipole-like antenna patterns along the magnetic field. Resonance cones due to small electric dipoles and magnetic loops are observed in both the near zone and the far zone. A self-focusing process is revealed which produces a pencil-shaped field-aligned radiation pattern.

  4. [Results after planned extracapsular cataract extraction with the Klöti stripper and implantation of UV light-absorbent Simcoe lenses with a 10-degree loop tilt].

    PubMed

    Gnad, H D; Skorpik, C; Paroussis, P

    1985-08-09

    Planned ECCE remains a valuable alternative to phacoemulsification due to its protection of the endothelial cells of the cornea. In contrast to the most commonly used infusion-aspiration systems, Kloeti's vitreous stripper provides, in addition, an excellent cutting mechanism enabling the removal of hard parts of the parenchyma or capsular remnants. The aspheric shaped UV light absorbing Simcoe lenses with a 10 grade loop angle used as lens replacement over the past 2 years in 300 cases did not cause any noteworthy complications. In 94% of cases a visual acuity of at least 0.5 was achieved; no case of cystoid macular edema has been observed so far.

  5. Homopolyrotaxanes and Homopolyrotaxane Networks of PEO

    NASA Technical Reports Server (NTRS)

    Pugh, Coleen; Mattice, Wayne

    2005-01-01

    In order to identify the optimum size of macrocrown ether for threading, we first investigated the size and shape of simple crown ethers in the melt at 373 K, and their extent of threading with PEO in the melt using coarse-grained Monte Carlo simulations on the 2nnd (second nearest neighbor diamond) lattice, which is a high coordination lattice whose coarse-grained chains can be reverse mapped into fully atomistic models in continuous space.

  6. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  7. Restoring Low Sidelobe Antenna Patterns with Failed Elements in a Phased Array Antenna

    DTIC Science & Technology

    2016-02-01

    optimum low sidelobes are demonstrated in several examples. Index Terms — Array signal processing, beams, linear algebra , phased arrays, shaped...represented by a linear combination of low sidelobe beamformers with no failed elements, ’s, in a neighborhood around under the constraint that the linear ...would expect that linear combinations of them in a neighborhood around would also have low sidelobes. The algorithms in this paper exploit this

  8. Design of a Torque Current Generator for Strapdown Gyroscopes. Ph.D. Thesis; [and performance prediction

    NASA Technical Reports Server (NTRS)

    Mcknight, R. D.; Blalock, T. V.; Kennedy, E. J.

    1974-01-01

    The design, analysis, and experimental evaluation of an optimum performance torque current generator for use with strapdown gyroscopes, is presented. Among the criteria used to evaluate the design were the following: (1) steady-state accuracy; (2) margins of stability against self-oscillation; (3) temperature variations; (4) aging; (5) static errors drift errors, and transient errors, (6) classical frequency and time domain characteristics; and (7) the equivalent noise at the input of the comparater operational amplifier. The DC feedback loop of the torque current generator was approximated as a second-order system. Stability calculations for gain margins are discussed. Circuit diagrams are shown and block diagrams showing the implementation of the torque current generator are discussed.

  9. Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes

    NASA Astrophysics Data System (ADS)

    Vieweg, N.; Krumbholz, N.; Hasek, T.; Wilk, R.; Bartels, V.; Keseberg, C.; Pethukhov, V.; Mikulics, M.; Wetenkamp, L.; Koch, M.

    2007-06-01

    We present a compact, robust, and transportable fiber-coupled THz system for inline monitoring of polymeric compounding processes in an industrial environment. The system is built on a 90cm x 90cm large shock absorbing optical bench. A sealed metal box protects the system against dust and mechanical disturbances. A closed loop controller unit is used to ensure optimum coupling of the laser beam into the fiber. In order to build efficient and stable fiber-coupled antennas we glue the fibers directly onto photoconductive switches. Thus, the antenna performance is very stable and it is secured from dust or misalignment by vibrations. We discuss fabrication details and antenna performance. First spectroscopic data obtained with this system is presented.

  10. Coordinated design of coding and modulation systems

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1976-01-01

    Work on partial unit memory codes continued; it was shown that for a given virtual state complexity, the maximum free distance over the class of all convolutional codes is achieved within the class of unit memory codes. The effect of phase-lock loop (PLL) tracking error on coding system performance was studied by using the channel cut-off rate as the measure of quality of a modulation system. Optimum modulation signal sets for a non-white Gaussian channel considered an heuristic selection rule based on a water-filling argument. The use of error correcting codes to perform data compression by the technique of syndrome source coding was researched and a weight-and-error-locations scheme was developed that is closely related to LDSC coding.

  11. Closed-ecology life support systems /CELSS/ for long-duration, manned missions

    NASA Technical Reports Server (NTRS)

    Modell, M.; Spurlock, J. M.

    1979-01-01

    Studies were conducted to scope the principal areas of technology that can contribute to the development of closed-ecology life support systems (CELSS). Such systems may be required for future space activities, such as space stations, manufacturing facilities, or colonies. A major feature of CELSS is the regeneration of food from carbon in waste materials. Several processes, using biological and/or physico-chemical components, have been postulated for closing the recycle loop. At the present time, limits of available technical information preclude the specification of an optimum scheme. Nevertheless, the most significant technical requirements can be determined by way of an iterative procedure of formulating, evaluating and comparing various closed-system scenario. The functions features and applications of this systems engineering procedure are discussed.

  12. Repeating firing fields of CA1 neurons shift forward in response to increasing angular velocity.

    PubMed

    Cowen, Stephen L; Nitz, Douglas A

    2014-01-01

    Self-motion information influences spatially-specific firing patterns exhibited by hippocampal neurons. Moreover, these firing patterns can repeat across similar subsegments of an environment, provided that there is similarity of path shape and head orientations across subsegments. The influence of self-motion variables on repeating fields remains to be determined. To investigate the role of path shape and angular rotation on hippocampal activity, we recorded the activity of CA1 neurons from rats trained to run on spiral-shaped tracks. During inbound traversals of circular-spiral tracks, angular velocity increases continuously. Under this condition, most neurons (74%) exhibited repeating fields across at least three adjacent loops. Of these neurons, 86% exhibited forward shifts in the angles of field centers relative to centers on preceding loops. Shifts were absent on squared-spiral tracks, minimal and less reliable on concentric-circle tracks, and absent on outward-bound runs on circular-spiral tracks. However, outward-bound runs on the circular-spiral track in the dark were associated with backward shifts. Together, the most parsimonious interpretation of the results is that continuous increases or decreases in angular velocity are particularly effective at shifting the center of mass of repeating fields, although it is also possible that a nonlinear integration of step counts contributes to the shift. Furthermore, the unexpected absence of field shifts during outward journeys in light (but not darkness) suggests visual cues around the goal location anchored the map of space to an allocentric reference frame.

  13. A Computer Simulation to Help in Teaching Induction Phenomena

    ERIC Educational Resources Information Center

    Mihas, Pavlos

    2003-01-01

    The motion of a magnet through a coil is analysed through a model of magnetic monopoles. The magnetic flux of a monopole passing through a loop is explained and also its rate of change. By a superposition of voltages produced by the monopoles on the coils the shape of the voltage versus time graph is explained. Also examined is the interaction of…

  14. Spectroscopic Observations of Magnetic Reconnection and Chromospheric Evaporation in an X-shaped Solar Flare

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kelly, M.; Ding, M. D.; Qiu, J.; Zhu, X. S.; Gan, W. Q.

    2017-10-01

    We present observations of distinct UV spectral properties at different locations during an atypical X-shaped flare (SOL2014-11-09T15:32) observed by the Interface Region Imaging Spectrograph (IRIS). In this flare, four chromospheric ribbons appear and converge at an X-point where a separator is anchored. Above the X-point, two sets of non-coplanar coronal loops approach laterally and reconnect at the separator. The IRIS slit was located close to the X-point, cutting across some of the flare ribbons and loops. Near the location of the separator, the Si IV 1402.77 Å line exhibits significantly broadened line wings extending to 200 km s-1 with an unshifted line core. These spectral features suggest the presence of bidirectional flows possibly related to the separator reconnection. While at the flare ribbons, the hot Fe xxi 1354.08 Å line shows blueshifts and the cool Si IV 1402.77 Å, C II 1335.71 Å, and Mg II 2803.52 Å lines show evident redshifts up to a velocity of 80 km s-1, which are consistent with the scenario of chromospheric evaporation/condensation.

  15. Spectroscopic Observations of Magnetic Reconnection and Chromospheric Evaporation in an X-shaped Solar Flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Gan, W. Q.; Kelly, M.

    We present observations of distinct UV spectral properties at different locations during an atypical X-shaped flare (SOL2014-11-09T15:32) observed by the Interface Region Imaging Spectrograph ( IRIS ). In this flare, four chromospheric ribbons appear and converge at an X-point where a separator is anchored. Above the X-point, two sets of non-coplanar coronal loops approach laterally and reconnect at the separator. The IRIS slit was located close to the X-point, cutting across some of the flare ribbons and loops. Near the location of the separator, the Si iv 1402.77 Å line exhibits significantly broadened line wings extending to 200 km s{supmore » −1} with an unshifted line core. These spectral features suggest the presence of bidirectional flows possibly related to the separator reconnection. While at the flare ribbons, the hot Fe xxi 1354.08 Å line shows blueshifts and the cool Si iv 1402.77 Å, C ii 1335.71 Å, and Mg ii 2803.52 Å lines show evident redshifts up to a velocity of 80 km s{sup −1}, which are consistent with the scenario of chromospheric evaporation/condensation.« less

  16. Characterization of Sr-substituted W-type hexagonal ferrites synthesized by sol-gel autocombustion method

    NASA Astrophysics Data System (ADS)

    Ahmad, Mukhtar; Grössinger, R.; Kriegisch, M.; Kubel, F.; Rana, M. U.

    2013-04-01

    The magnetic and microwave characterization of single phase hexaferrites of entirely new composition Ba1-xSrxCo2AlFe15O27 (x=0.2-1.0) for application in a microwave absorber, have been reported. The samples synthesized by sol-gel method were investigated by differential thermal analyzer, Fourier transform infrared spectroscope, X-ray diffractometer, field emission gun scanning electron microscope, vibrating sample magnetometer and vector network analyzer. Platelet grains exhibit well defined hexagonal shape which is a better shape for microwave absorption. M-H loops for a selected sample were measured for a temperature range of 4.2-400 K. Moreover M-H loops for all Sr-substituted samples were also measured at room temperature up to a maximum applied field of 9 T. Saturation magnetization values were calculated by the law of approach to saturation. The room temperature coercivity for all the samples is found to be a few hundred oersteds which is necessary for electromagnetic materials and makes these ferrites ideal for microwave devices, security, switching and sensing applications. The complex permittivity, permeability and reflection losses of a selected ferrite-epoxy composite were also investigated over a frequency range of 0.5-13 GHz.

  17. PsRobot: a web-based plant small RNA meta-analysis toolbox.

    PubMed

    Wu, Hua-Jun; Ma, Ying-Ke; Chen, Tong; Wang, Meng; Wang, Xiu-Jie

    2012-07-01

    Small RNAs (smRNAs) in plants, mainly microRNAs and small interfering RNAs, play important roles in both transcriptional and post-transcriptional gene regulation. The broad application of high-throughput sequencing technology has made routinely generation of bulk smRNA sequences in laboratories possible, thus has significantly increased the need for batch analysis tools. PsRobot is a web-based easy-to-use tool dedicated to the identification of smRNAs with stem-loop shaped precursors (such as microRNAs and short hairpin RNAs) and their target genes/transcripts. It performs fast analysis to identify smRNAs with stem-loop shaped precursors among batch input data and predicts their targets using a modified Smith-Waterman algorithm. PsRobot integrates the expression data of smRNAs in major plant smRNA biogenesis gene mutants and smRNA-associated protein complexes to give clues to the smRNA generation and functional processes. Besides improved specificity, the reliability of smRNA target prediction results can also be evaluated by mRNA cleavage (degradome) data. The cross species conservation statuses and the multiplicity of smRNA target sites are also provided. PsRobot is freely accessible at http://omicslab.genetics.ac.cn/psRobot/.

  18. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    PubMed

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  19. Eddy current heating in magnetic refrigerators

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1990-01-01

    Eddy current heating can be a significant source of parasitic heating in low temperature magnetic refrigerators. To study this problem a technique to approximate the heating due to eddy currents has been developed. A formula is presented for estimating the heating within a variety of shapes commonly found in magnetic refrigerators. These shapes include circular, square, and rectangular rods; cylindrical and split cylindrical shells; wire loops; and 'coil foil. One set of components evaluated are different types of thermal radiation shields. This comparison shows that a simple split shield is almost as effective (only 23 percent more heating) as using a shield, with the same axial thermal conductivity, made of 'coil foil'.

  20. Optimal firm growth under the threat of entry

    PubMed Central

    Kort, Peter M.; Wrzaczek, Stefan

    2015-01-01

    The paper studies the incumbent-entrant problem in a fully dynamic setting. We find that under an open-loop information structure the incumbent anticipates entry by overinvesting, whereas in the Markov perfect equilibrium the incumbent slightly underinvests in the period before the entry. The entry cost level where entry accommodation passes into entry deterrence is lower in the Markov perfect equilibrium. Further we find that the incumbent’s capital stock level needed to deter entry is hump shaped as a function of the entry time, whereas the corresponding entry cost, where the entrant is indifferent between entry and non-entry, is U-shaped. PMID:26435573

  1. All-fibre optical gating system for measuring a complex-shaped periodic broadband signal with picosecond resolution in a nanosecond time window

    NASA Astrophysics Data System (ADS)

    Andrianov, A. V.

    2018-04-01

    We have developed an optical gating system for continuously monitoring a complex-shaped periodic optical signal with picosecond resolution in a nanosecond time window using an all-fibre optical gate in the form of a nonlinear loop mirror and a passively mode-locked femtosecond laser. The distinctive features of the system are the possibility of characterizing signals with a very large spectral bandwidth, the possibility of using a gating pulse source with a wavelength falling in the band of the signal under study and its all-fibre design with the use of standard fibres and telecom components.

  2. Buoyancy of the ''Y2K'' Persistent Train and the Trajectory of the 04:00:29 UT Leonid Fireball

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Rairden, Rick L.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The atmospheric trajectory is calculated of a particularly well studied fireball and train during the 1999 Leonid Multi-Instrument Aircraft Campaign. Less than a minute after the meteor's first appearance, the train curves into a '2'-shape, which persisted until at least 13 minutes after the fireball. We conclude that the shape results because of horizontal winds from gravity waves with a scale height of 8.3 km at 79-91 km altitude, as well as a westerly wind gradient with altitude. In addition, there is downward drift that affects the formation of loops in the train early on.

  3. Buoyancy of the "Y2K" Persistent Train and the Trajectory of the 04:00:29 UT Leonid Fireball

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Rairden, Rick L.

    The atmospheric trajectory is calculated of a particularly well studied fireball and train during the 1999 Leonid Multi-Instrument Aircraft Campaign. Less than a minute after the meteor's first appearance, the train curves into a "2"-shape, which persisted until at least 13 minutes after the fireball. We conclude that the shape results because of horizontal winds from gravity waves with a scale height of 8.3 km at 79-91 km altitude, as well as a westerly wind gradient with altitude. In addition, there is downward drift that affects the formation of loops in the train early on.

  4. Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve.

    PubMed

    Ding, Jin; Fan, Li; Zhang, Shu-Yi; Zhang, Hui; Yu, Wei-Wei

    2018-01-24

    An acoustic metamaterial based on a fractal structure, the Koch curve, is designed to simultaneously realize slow and fast acoustic waves. Owing to the multiple transmitting paths in the structure resembling the Koch curve, the acoustic waves travelling along different paths interfere with each other. Therefore, slow waves are created on the basis of the resonance of a Koch-curve-shaped loop, and meanwhile, fast waves even with negative group velocities are obtained due to the destructive interference of two acoustic waves with opposite phases. Thus, the transmission of acoustic wave can be freely manipulated with the Koch-curve shaped structure.

  5. Computer simulation of the classical entanglement of U-shaped particles in three dimensions

    NASA Astrophysics Data System (ADS)

    Maddock, Brian; Lindner, John

    2014-03-01

    Classical entanglement is important in a wide range of phenomena, such as velcro hook-and-loop-fasteners, seed dispersal by animal fur, and bent liquid crystal molecules. We present a computer simulation of the entanglement of U-shaped particles in three dimensions. We represent the particles by phenomenological potentials and evolve them by integrating Newton's laws of motion. We drop them into a virtual cylinder, shake them, and ultimately release the cylinder. As the particle piles relax, we quantify their entanglement by the exponential decay times of their heights, which we correlate to the particles' height-to-length ratios.

  6. Tracking Control of Shape-Memory-Alloy Actuators Based on Self-Sensing Feedback and Inverse Hysteresis Compensation

    PubMed Central

    Liu, Shu-Hung; Huang, Tse-Shih; Yen, Jia-Yush

    2010-01-01

    Shape memory alloys (SMAs) offer a high power-to-weight ratio, large recovery strain, and low driving voltages, and have thus attracted considerable research attention. The difficulty of controlling SMA actuators arises from their highly nonlinear hysteresis and temperature dependence. This paper describes a combination of self-sensing and model-based control, where the model includes both the major and minor hysteresis loops as well as the thermodynamics effects. The self-sensing algorithm uses only the power width modulation (PWM) signal and requires no heavy equipment. The method can achieve high-accuracy servo control and is especially suitable for miniaturized applications. PMID:22315530

  7. Imaging the developing heart: synchronized time-lapse microscopy during developmental changes

    NASA Astrophysics Data System (ADS)

    Nelson, Carl J.; Buckley, Charlotte; Mullins, John J.; Denvir, Martin A.; Taylor, Jonathan

    2018-02-01

    How do you use imaging to analyse the development of the heart, which not only changes shape but also undergoes constant, high-speed, quasi-periodic changes? We have integrated ideas from prospective and retrospective optical gating to capture long-term, phase-locked developmental time-lapse videos. In this paper we demonstrate the success of this approach over a key developmental time period: heart looping, where large changes in heart shape prevent previous prospective gating approaches from capturing phase- locked videos. We use the comparison with other approaches to in vivo heart imaging to highlight the importance of collecting the most appropriate data for the biological question.

  8. Analytical correlation of centrifugal compressor design geometry for maximum efficiency with specific speed

    NASA Technical Reports Server (NTRS)

    Galvas, M. R.

    1972-01-01

    Centrifugal compressor performance was examined analytically to determine optimum geometry for various applications as characterized by specific speed. Seven specific losses were calculated for various combinations of inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, blade exit backsweep, and inlet-tip absolute tangential velocity for solid body prewhirl. The losses considered were inlet guide vane loss, blade loading loss, skin friction loss, recirculation loss, disk friction loss, vaneless diffuser loss, and vaned diffuser loss. Maximum total efficiencies ranged from 0.497 to 0.868 for a specific speed range of 0.257 to 1.346. Curves of rotor exit absolute flow angle, inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, head coefficient and blade exit backsweep are presented over a range of specific speeds for various inducer tip speeds to permit rapid selection of optimum compressor size and shape for a variety of applications.

  9. Verification of high efficient broad beam cold cathode ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel Reheem, A. M., E-mail: amreheem2009@yahoo.com; Radiation Physics Department, National Center for Radiation Research and Technology; Ahmed, M. M.

    2016-08-15

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperturemore » is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.« less

  10. Realizable feed-element patterns and optimum aperture efficiency in multibeam antenna systems

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. S.; Rahmat-Samii, Y.; Johansson, J. F.; Kim, Y. S.

    1988-01-01

    The results of an earlier paper by Rahmat-Samii et al. (1981), regarding realizable patterns from feed elements that are part of an array that feeds a reflector antenna, are extended. The earlier paper used a cos exp q theta model for the element radiation pattern, whereas here a parametric study is performed, using a model that assumes a central beam of cos exp q theta shape, with a constant sidelobe level outside the central beam. Realizable q-values are constrained by the maximum directivity based on feed element area. The optimum aperture efficiency (excluding array feed network losses) in an array-reflector system is evaluated as a function of element spacing using this model as well as the model of the earlier paper. Experimental data for tapered slot antenna (TSA) arrays are in agreement with the conclusions based on the model.

  11. Body shape convergence driven by small size optimum in marine angelfishes.

    PubMed

    Frédérich, Bruno; Santini, Francesco; Konow, Nicolai; Schnitzler, Joseph; Lecchini, David; Alfaro, Michael E

    2017-06-01

    Convergent evolution of small body size occurs across many vertebrate clades and may reflect an evolutionary response to shared selective pressures. However it remains unclear if other aspects of phenotype undergo convergent evolution in miniaturized lineages. Here we present a comparative analysis of body size and shape evolution in marine angelfishes (Pomacanthidae), a reef fish family characterized by repeated transitions to small body size. We ask if lineages that evolve small sizes show convergent evolution in body shape. Our results reveal that angelfish lineages evolved three different stable size optima with one corresponding to the group of pygmy angelfishes ( Centropyge ). Then, we test if the observed shifts in body size are associated with changes to new adaptive peaks in shape. Our data suggest that independent evolution to small size optima have induced repeated convergence upon deeper body and steeper head profile in Centropyge These traits may favour manoeuvrability and visual awareness in these cryptic species living among corals, illustrating that functional demands on small size may be related to habitat specialization and predator avoidance. The absence of shape convergence in large marine angelfishes also suggests that more severe requirements exist for small than for large size optima. © 2017 The Author(s).

  12. Shaping ultrafast laser inscribed optical waveguides using a deformable mirror.

    PubMed

    Thomson, R R; Bockelt, A S; Ramsay, E; Beecher, S; Greenaway, A H; Kar, A K; Reid, D T

    2008-08-18

    We use a two-dimensional deformable mirror to shape the spatial profile of an ultrafast laser beam that is then used to inscribe structures in a soda-lime silica glass slide. By doing so we demonstrate that it is possible to control the asymmetry of the cross section of ultrafast laser inscribed optical waveguides via the curvature of the deformable mirror. When tested using 1.55 mum light, the optimum waveguide exhibited coupling losses of approximately 0.2 dB/facet to Corning SMF-28 single mode fiber and propagation losses of approximately 1.5 dB.cm(-1). This technique promises the possibility of combining rapid processing speeds with the ability to vary the waveguide cross section along its length.

  13. Determination of optimal tool parameters for hot mandrel bending of pipe elbows

    NASA Astrophysics Data System (ADS)

    Tabakajew, Dmitri; Homberg, Werner

    2018-05-01

    Seamless pipe elbows are important components in mechanical, plant and apparatus engineering. Typically, they are produced by the so-called `Hamburg process'. In this hot forming process, the initial pipes are subsequently pushed over an ox-horn-shaped bending mandrel. The geometric shape of the mandrel influences the diameter, bending radius and wall thickness distribution of the pipe elbow. This paper presents the numerical simulation model of the hot mandrel bending process created to ensure that the optimum mandrel geometry can be determined at an early stage. A fundamental analysis was conducted to determine the influence of significant parameters on the pipe elbow quality. The chosen methods and approach as well as the corresponding results are described in this paper.

  14. Finite element analysis on deformation of stretchable electronic interconnect substrate using polydimethylsiloxanes (PDMS)

    NASA Astrophysics Data System (ADS)

    Roslan, M. F.; Shaffiar, N. M.; Khairusshima, M. K. N.; Sharifah, I. S. S.

    2018-01-01

    Over the years, the technology of electronic industry has growth tremendously. Open ended research on how to make a better concept of electronic circuit is ongoing especially on the stretchable electronic devices. There are many designs to achieve stretchability in electronic circuits. The problem occurs when deformation applied to the stretchable electronic circuit, it cannot maintain its functionality. Fracture may happen on the conductor. In this research, the study on deformation of stretchable electronic interconnects substrate using Polydimethlysiloxanes is carried out. The purpose of this research are to study the axial deformation occur, to determine the optimum shape of the conductor designs (horseshoe, rectangular and u-shape design) for the stretchable electronic interconnect and to compare the mechanical properties of Polydimethlysiloxanes (PDMS) with Polyurethane (PU) using Finite Element Analysis (FEA). The simulation was done on the FE model of the stretchable circuit with dimension of 2.4 X 2.4 X 0.5 mm. The stretching of the FE model was simulated with the range of elongation at 10, 20 and 30 percent from its original length in order to find the strain value for all three of the conductor designs. The best conductor design is used to simulate with different types of substrate (PDMS and PU). From the simulation result, Horseshoe design record the lowest strain value for each elongation, followed by rectangular and U-shape design. Thus, Horseshoe is considered as the optimum design for the conductor compared to the other two designs. From the result also, it shows that PDMS substrate will offer more maximum allowable stretchability compared to PU substrates. Thus PDMS is considered as a better substrate compare to PU. PDMS is a good material to replace PU since it can perform under tension much better mechanically.

  15. Isolation and Characterization of Acetate-Utilizing Anaerobes from a Freshwater Sediment.

    PubMed

    Scholten, J.C.M.; Stams, A.J.M.

    2000-12-01

    Acetate-degrading anaerobic microorganisms in freshwater sediment were quantified by the most probable number technique. From the highest dilutions a methanogenic, a sulfate-reducing, and a nitrate-reducing microorganism were isolated with acetate as substrate. The methanogen (culture AMPB-Zg) was non-motile and rod-shaped with blunted ends (0.5-1 mm x 3-4 mm long). Doubling times with acetate at 30-35 degrees C were 5.6-8.1 days. The methanogen grew only on acetate. Analysis of the 16S rRNA sequence showed that AMPB-Zg is closely related to Methanosaeta concilii. The isolated sulfate-reducing bacterium (strain ASRB-Zg) was rod-shaped with pointed ends (0.5-0.7 mm x 1.5-3.5 mm long), weakly motile, spore forming, and gram positive. At the optimum growth temperature of 30 degrees C the doubling times with acetate were 3.9-5.3 days. The bacterium grew on a range of organic acids, such as acetate, butyrate, fumarate, and benzoate, but did not grow autotrophically with H2, CO2, and sulfate. The closest relative of strain ASRB-Zg is Desulfotomaculum acetoxidans. The nitrate-reducing bacterium (strain ANRB-Zg) was rod-shaped (0.5-0.7 mm x 0.7-1 mm long), weakly motile, and gram negative. Optimum growth with acetate occurred at 20-25 degrees C. The bacterium grew on a range of organic substrates, such as acetate, butyrate, lactate, and glucose, and did grow autotrophically with H2, CO2, and oxygen but not with nitrate. In the presence of acetate and nitrate, thiosulfate was oxidized to sulfate. Phylogenetically, the closest relative of strain ANRB-Zg is Variovorax paradoxus.

  16. The Bosch Process-Performance of a Developmental Reactor and Experimental Evaluation of Alternative Catalysts

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Mansell, J. Matthew

    2010-01-01

    Bosch-based reactors have been in development at NASA since the 1960's. Traditional operation involves the reduction of carbon dioxide with hydrogen over a steel wool catalyst to produce water and solid carbon. While the system is capable of completely closing the loop on oxygen and hydrogen for Atmosphere Revitalization, steel wool requires a reaction temperature of 650C or higher for optimum performance. The single pass efficiency of the reaction over steel wool has been shown to be less than 10% resulting in a high recycle stream. Finally, the formation of solid carbon on steel wool ultimately fouls the catalyst necessitating catalyst resupply. These factors result in high mass, volume and power demands for a Bosch system. Interplanetary transportation and surface exploration missions of the moon, Mars, and near-earth objects will require higher levels of loop closure than current technology cannot provide. A Bosch system can provide the level of loop closure necessary for these long-term missions if mass, volume, and power can be kept low. The keys to improving the Bosch system lie in reactor and catalyst development. In 2009, the National Aeronautics and Space Administration refurbished a circa 1980's developmental Bosch reactor and built a sub-scale Bosch Catalyst Test Stand for the purpose of reactor and catalyst development. This paper describes the baseline performance of two commercially available steel wool catalysts as compared to performance reported in the 1960's and 80's. Additionally, the results of sub-scale testing of alternative Bosch catalysts, including nickel- and cobalt-based catalysts, are discussed.

  17. Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation.

    PubMed

    Villa, Elizabeth; Balaeff, Alexander; Schulten, Klaus

    2005-05-10

    A multiscale simulation of a complex between the lac repressor protein (LacI) and a 107-bp-long DNA segment is reported. The complex between the repressor and two operator DNA segments is described by all-atom molecular dynamics; the size of the simulated system comprises either 226,000 or 314,000 atoms. The DNA loop connecting the operators is modeled as a continuous elastic ribbon, described mathematically by the nonlinear Kirchhoff differential equations with boundary conditions obtained from the coordinates of the terminal base pairs of each operator. The forces stemming from the looped DNA are included in the molecular dynamics simulations; the loop structure and the forces are continuously recomputed because the protein motions during the simulations shift the operators and the presumed termini of the loop. The simulations reveal the structural dynamics of the LacI-DNA complex in unprecedented detail. The multiple domains of LacI exhibit remarkable structural stability during the simulation, moving much like rigid bodies. LacI is shown to absorb the strain from the looped DNA mainly through its mobile DNA-binding head groups. Even with large fluctuating forces applied, the head groups tilt strongly and keep their grip on the operator DNA, while the remainder of the protein retains its V-shaped structure. A simulated opening of the cleft of LacI by 500-pN forces revealed the interactions responsible for locking LacI in the V-conformation.

  18. Image segmentation with a novel regularized composite shape prior based on surrogate study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu

    Purpose: Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum. Methods: In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulatedmore » in a unified optimization setting and a variational block-descent algorithm is derived. Results: The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes. Conclusions: This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Qiaozhen; Krug, Robert M.; Tao, Yizhi Jane

    Influenza A viruses pose a serious threat to world public health, particularly the currently circulating avian H5N1 viruses. The influenza viral nucleoprotein forms the protein scaffold of the helical genomic ribonucleoprotein complexes, and has a critical role in viral RNA replication. Here we report a 3.2 Angstrom crystal structure of this nucleoprotein, the overall shape of which resembles a crescent with a head and a body domain, with a protein fold different compared with that of the rhabdovirus nucleoprotein. Oligomerization of the influenza virus nucleoprotein is mediated by a flexible tail loop that is inserted inside a neighboring molecule. Thismore » flexibility in the tail loop enables the nucleoprotein to form loose polymers as well as rigid helices, both of which are important for nucleoprotein functions. Single residue mutations in the tail loop result in the complete loss of nucleoprotein oligomerization. An RNA-binding groove, which is found between the head and body domains at the exterior of the nucleoprotein oligomer, is lined with highly conserved basic residues widely distributed in the primary sequence. The nucleoprotein structure shows that only one of two proposed nuclear localization signals are accessible, and suggests that the body domain of nucleoprotein contains the binding site for the viral polymerase. Our results identify the tail loop binding pocket as a potential target for antiviral development.« less

  20. Mini-filament Eruptions Triggering Confined Solar Flares Observed by ONSET and SDO

    NASA Astrophysics Data System (ADS)

    Yang, Shuhong; Zhang, Jun

    2018-06-01

    Using the observations from the Optical and Near-infrared Solar Eruption Tracer (ONSET) and the Solar Dynamics Observatory (SDO), we study an M5.7 flare in AR 11476 on 2012 May 10 and a micro-flare in the quiet Sun on 2017 March 23. Before the onset of each flare, there is a reverse S-shaped filament above the polarity inversion line, then the filaments become unstable and begin to rise. The rising filaments gain the upper hand over the tension force of the dome-like overlying loops and thus successfully erupt outward. The footpoints of the reconnecting overlying loops successively brighten and are observed as two flare ribbons, while the newly formed low-lying loops appear as post-flare loops. These eruptions are similar to the classical model of successful filament eruptions associated with coronal mass ejections (CMEs). However, the erupting filaments in this study move along large-scale lines and eventually reach the remote solar surface; i.e., no filament material is ejected into the interplanetary space. Thus, both the flares are confined. These results reveal that some successful filament eruptions can trigger confined flares. Our observations also imply that this kind of filament eruption may be ubiquitous on the Sun, from active regions (ARs) with large flares to the quiet Sun with micro-flares.

Top