Sample records for optimum operating range

  1. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this…

  2. Balancing Dynamic Strength of Spur Gears Operated at Extended Center Distance

    NASA Technical Reports Server (NTRS)

    Lin, Hsiang Hsi; Liou, Chuen-Huei; Oswald, Fred B.; Townsend, Dennis P.

    1996-01-01

    This paper presents an analytical study on using hob offset to balance the dynamic tooth strength of spur gears operated at a center distance greater than the standard value. This study is an extension of a static study by Mabie and others. The study was limited to the offset values that assure the pinion and gear teeth will neither be undercut nor become pointed. The analysis presented in this paper was performed using DANST-PC, a new version of the NASA gear dynamics code. The operating speed of the transmission influences the amount of hob offset required to equalize the dynamic stresses in the pinion and gear. The optimum hob offset for the pinion was found to vary within a small range as the speed changes. The optimum value is generally greater than the optimum value found by static procedures. For gears that must operate over a wide range of speeds, an average offset value may be used.

  3. Optimum Design of LLC Resonant Converter using Inductance Ratio (Lm/Lr)

    NASA Astrophysics Data System (ADS)

    Palle, Kowstubha; Krishnaveni, K.; Ramesh Reddy, Kolli

    2017-06-01

    The main benefits of LLC resonant dc/dc converter over conventional series and parallel resonant converters are its light load regulation, less circulating currents, larger bandwidth for zero voltage switching, and less tuning of switching frequency for controlled output. An unique analytical tool, called fundamental harmonic approximation with peak gain adjustment is used for designing the converter. In this paper, an optimum design of the converter is proposed by considering three different design criterions with different values of inductance ratio (Lm/Lr) to achieve good efficiency at high input voltage. The optimum design includes the analysis in operating range, switching frequency range, primary side losses of a switch and stability. The analysis is carried out with simulation using the software tools like MATLAB and PSIM. The performance of the optimized design is demonstrated for a design specification of 12 V, 5 A output operating with an input voltage range of 300-400 V using FSFR 2100 IC of Texas instruments.

  4. MT's algorithm: A new algorithm to search for the optimum set of modulation indices for simultaneous range, command, and telemetry

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien Manh

    1989-01-01

    MT's algorithm was developed as an aid in the design of space telecommunications systems when utilized with simultaneous range/command/telemetry operations. This algorithm provides selection of modulation indices for: (1) suppression of undesired signals to achieve desired link performance margins and/or to allow for a specified performance degradation in the data channel (command/telemetry) due to the presence of undesired signals (interferers); and (2) optimum power division between the carrier, the range, and the data channel. A software program using this algorithm was developed for use with MathCAD software. This software program, called the MT program, provides the computation of optimum modulation indices for all possible cases that are recommended by the Consultative Committee on Space Data System (CCSDS) (with emphasis on the squarewave, NASA/JPL ranging system).

  5. Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes.

    PubMed

    Farhadi, Sajjad; Aminzadeh, Behnoush; Torabian, Ali; Khatibikamal, Vahid; Alizadeh Fard, Mohammad

    2012-06-15

    This work makes a comparison between electrocoagulation (EC), photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes to investigate the removal of chemical oxygen demand (COD) from pharmaceutical wastewater. The effects of operational parameters such as initial pH, current density, applied voltage, amount of hydrogen peroxide and electrolysis time on COD removal efficiency were investigated and the optimum operating range for each of these operating variables was experimentally determined. In electrocoagulation process, the optimum values of pH and voltage were determined to be 7 and 40 V, respectively. Desired pH and hydrogen peroxide concentration in the Fenton-based processes were found to be 3 and 300 mg/L, respectively. The amounts of COD, pH, electrical conductivity, temperature and total dissolved solids (TDS) were on-line monitored. Results indicated that under the optimum operating range for each process, the COD removal efficiency was in order of peroxi-electrocoagulation > peroxi-photoelectrocoagulation > photoelectrocoagulation>electrocoagulation. Finally, a kinetic study was carried out using the linear pseudo-second-order model and results showed that the pseudo-second-order equation provided the best correlation for the COD removal rate. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Statistically Based Approach to Broadband Liner Design and Assessment

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Nark, Douglas M. (Inventor)

    2016-01-01

    A broadband liner design optimization includes utilizing in-duct attenuation predictions with a statistical fan source model to obtain optimum impedance spectra over a number of flow conditions for one or more liner locations in a bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners having impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increasing weighting to specific frequencies and/or operating conditions. One or more broadband design approaches are utilized to produce a broadband liner that targets a full range of frequencies and operating conditions.

  7. Fuel alcohol biosynthesis by Zymomonas anaerobia: optimization studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosaric, N.; Ong, S.L.; Davnjak, Z.

    1982-03-01

    The optimum operating conditions for growth and ethanol production of Zymomonas anaerobia ATCC 29501 were established. The optimum pH range and temperature were found to be 5.0-6.0 and 35/sup 0/C, respectively. Based on the results obtained from the temperature optimization study, an Arrhenius-type temperature relationship for the specific growth rate was developed. The growth and ethanol production of this microbe also have been optimized in terms of concentrations of glucose, essential nutrients, and minerals. With optimum medium and operating conditions, an ethanol concentration of 96 g/L was obtained in 23h. Both growth and ethanol yield coefficients in dependence on initialmore » glucose concentrations were determined.« less

  8. Fuel alcohol biosynthesis by Zymomonas anaerobia: optimization studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosaric, N.; Ong, S.L.; Duvnjak, Z.

    1982-03-01

    The optimum operating conditions for growth and ethanol production of Zymomonas anaerobia ATCC 29501 were established. The optimum pH range and temperature were found to be 5.0-6.0 and 35 degrees C, respectively. Based on the results obtained from the temperature optimization study, an Arrhenius-type temperature relationship for the specific growth rate was developed. The growth and ethanol production of this microbe also have been optimized in terms of concentrations of glucose, essential nutrients, and minerals. With optimum medium and operating conditions, an ethanol concentration of 96 g/L was obtained in 23 hours. Both growth and ethanol yield coefficients in dependencemore » on initial glucose concentrations were determined. (Refs. 16).« less

  9. Broadband Liner Optimization for the Source Diagnostic Test Fan

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.

    2012-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more appealing. This paper describes a broadband acoustic liner optimization study for the scale model Source Diagnostic Test fan. Specifically, in-duct attenuation predictions with a statistical fan source model are used to obtain optimum impedance spectra over a number of flow conditions for three liner locations in the bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Typical tonal liner designs targeting single frequencies at one operating condition are first produced to provide baseline performance information. These are followed by multiple broadband design approaches culminating in a broadband liner targeting the full range of frequencies and operating conditions. The broadband liner is found to satisfy the optimum impedance objectives much better than the tonal liner designs. In addition, the broadband liner is found to provide better attenuation than the tonal designs over the full range of frequencies and operating conditions considered. Thus, the current study successfully establishes a process for the initial design and evaluation of novel broadband liner concepts for complex engine configurations.

  10. Know how to maximize maintenance spending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrino, A.J.; Jones, R.B.; Platt, W.E.

    Solomon has developed a methodology to determine a large optimum point where availability meets maintenance spending for Powder River Basin (PRB) coal-fired units. Using a database of sufficient size and composition across various operating ranges, Solomon generated an algorithm that predicts the relationship between maintenance spending and availability. Coupling this generalized algorithm with a unit-specific market-loss curve determines the optimum spending for a facility. The article presents the results of the analysis, how this methodology can be applied to develop optimum operating and financial targets for specific units and markets and a process to achieve those targets. It also describesmore » how this methodology can be used for other types of fossil-fired technologies and future enhancements to the analysis. 5 figs.« less

  11. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates

    NASA Astrophysics Data System (ADS)

    Jarrett, Anthony; Kim, Il Yong

    2014-01-01

    The efficiency of cooling plates for electric vehicle batteries can be improved by optimizing the geometry of internal fluid channels. In practical operation, a cooling plate is exposed to a range of operating conditions dictated by the battery, environment, and driving behaviour. To formulate an efficient cooling plate design process, the optimum design sensitivity with respect to each boundary condition is desired. This determines which operating conditions must be represented in the design process, and therefore the complexity of designing for multiple operating conditions. The objective of this study is to determine the influence of different operating conditions on the optimum cooling plate design. Three important performance measures were considered: temperature uniformity, mean temperature, and pressure drop. It was found that of these three, temperature uniformity was most sensitive to the operating conditions, especially with respect to the distribution of the input heat flux, and also to the coolant flow rate. An additional focus of the study was the distribution of heat generated by the battery cell: while it is easier to assume that heat is generated uniformly, by using an accurate distribution for design optimization, this study found that cooling plate performance could be significantly improved.

  12. OPTIMAL AIRCRAFT TRAJECTORIES FOR SPECIFIED RANGE

    NASA Technical Reports Server (NTRS)

    Lee, H.

    1994-01-01

    For an aircraft operating over a fixed range, the operating costs are basically a sum of fuel cost and time cost. While minimum fuel and minimum time trajectories are relatively easy to calculate, the determination of a minimum cost trajectory can be a complex undertaking. This computer program was developed to optimize trajectories with respect to a cost function based on a weighted sum of fuel cost and time cost. As a research tool, the program could be used to study various characteristics of optimum trajectories and their comparison to standard trajectories. It might also be used to generate a model for the development of an airborne trajectory optimization system. The program could be incorporated into an airline flight planning system, with optimum flight plans determined at takeoff time for the prevailing flight conditions. The use of trajectory optimization could significantly reduce the cost for a given aircraft mission. The algorithm incorporated in the program assumes that a trajectory consists of climb, cruise, and descent segments. The optimization of each segment is not done independently, as in classical procedures, but is performed in a manner which accounts for interaction between the segments. This is accomplished by the application of optimal control theory. The climb and descent profiles are generated by integrating a set of kinematic and dynamic equations, where the total energy of the aircraft is the independent variable. At each energy level of the climb and descent profiles, the air speed and power setting necessary for an optimal trajectory are determined. The variational Hamiltonian of the problem consists of the rate of change of cost with respect to total energy and a term dependent on the adjoint variable, which is identical to the optimum cruise cost at a specified altitude. This variable uniquely specifies the optimal cruise energy, cruise altitude, cruise Mach number, and, indirectly, the climb and descent profiles. If the optimum cruise cost is specified, an optimum trajectory can easily be generated; however, the range obtained for a particular optimum cruise cost is not known a priori. For short range flights, the program iteratively varies the optimum cruise cost until the computed range converges to the specified range. For long-range flights, iteration is unnecessary since the specified range can be divided into a cruise segment distance and full climb and descent distances. The user must supply the program with engine fuel flow rate coefficients and an aircraft aerodynamic model. The program currently includes coefficients for the Pratt-Whitney JT8D-7 engine and an aerodynamic model for the Boeing 727. Input to the program consists of the flight range to be covered and the prevailing flight conditions including pressure, temperature, and wind profiles. Information output by the program includes: optimum cruise tables at selected weights, optimal cruise quantities as a function of cruise weight and cruise distance, climb and descent profiles, and a summary of the complete synthesized optimal trajectory. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 100K (octal) of 60 bit words. This aircraft trajectory optimization program was developed in 1979.

  13. Effect of double air injection on performance characteristics of centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Hirano, Toshiyuki; Takano, Mizuki; Tsujita, Hoshio

    2015-02-01

    In the operation of a centrifugal compressor of turbocharger, instability phenomena such as rotating stall and surge are induced at a lower flow rate close to the maximum pressure ratio. In this study, for the suppression of surge phenomenon resulting in the extension of the stable operating range of centrifugal compressor to lower flow rate, the compressed air at the compressor exit was re-circulated and injected into the impeller inlet by using the double injection nozzle system. The experiments were performed to find out the optimum circumferential position of the second nozzle relative to the fixed first one and the optimum inner diameter of the injection nozzles, which are able to most effectively reduce the flow rate of surge inception. Moreover, in order to examine the universality of these optimum values, the experiments were carried out for two types of compressors.

  14. Optimal design of wavy microchannel and comparison of heat transfer characteristics with zigzag and straight geometries

    NASA Astrophysics Data System (ADS)

    Parlak, Zekeriya

    2018-05-01

    Design concept of microchannel heat exchangers is going to plan with new flow microchannel configuration to reduce the pressure drop and improve heat transfer performance. The study aims to find optimum microchannel design providing the best performance of flow and heat transfer characterization in a heat sink. Therefore, three different types of microchannels in which water is used, straight, wavy and zigzag have been studied. The optimization operation has been performed to find optimum geometry with ANSYS's Response Surface Optimization Tool. Primarily, CFD analysis has been performed by parameterizing a wavy microchannel geometry. Optimum wavy microchannel design has been obtained by the response surface created for the range of velocity from 0.5 to 5, the range of amplitude from 0.06 to 0.3, the range of microchannel height from 0.1 to 0.2, the range of microchannel width from 0.1 to 0.2 and range of sinusoidal wave length from 0.25 to 2.0. All simulations have been performed in the laminar regime for Reynolds number ranging from 100 to 900. Results showed that the Reynolds number range corresponding to the industrial pressure drop limits is between 100 and 400. Nu values obtained in this range for optimum wavy geometry were found at a rate of 10% higher than those of the zigzag channel and 40% higher than those of the straight channels. In addition, when the pressure values of the straight channel did not exceed 10 kPa, the inlet pressure data calculated for zigzag and wavy channel data almost coincided with each other.

  15. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  16. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOEpatents

    Wanlass, Mark W.

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  17. Simulation of ethane steam cracking with severity evaluation

    NASA Astrophysics Data System (ADS)

    Rosli, M. N.; Aziz, N.

    2016-11-01

    Understanding the influence of operating parameters towards cracking severity is paramount in ensuring optimum operation of an ethylene plant. However, changing the parameters in an actual plant for data collection can be dangerous. Thus, a simulation model for ethane steam cracking furnace is developed using ASPEN Plus for the assessment. The process performance is evaluated with cracking severity factors and main product yields. Three severity factors are used for evaluation due to their ease of measurement, which are methane yield (Ymet), Ethylene-Ethane Ratio (EER) and Propylene-Ethylene Ratio (PER). The result shows that cracking severity is primarily influenced by reactor temperature. Operating the furnace with coil outlet temperature ranging between 850°C to 950°C and steam-to-hydrocarbon ratio of 0.3 to 0.5 has led to optimum main product yield.

  18. Earth orbital teleoperator visual system evaluation program

    NASA Technical Reports Server (NTRS)

    Frederick, P. N.; Shields, N. L., Jr.; Kirkpatrick, M., III

    1977-01-01

    Visual system parameters and stereoptic television component geometries were evaluated for optimum viewing. The accuracy of operator range estimation using a Fresnell stereo television system with a three dimensional cursor was examined. An operator's ability to align three dimensional targets using vidicon tube and solid state television cameras as part of a Fresnell stereoptic system was evaluated. An operator's ability to discriminate between varied color samples viewed with a color television system was determined.

  19. Prediction of operating parameters range for ammonia removal unit in coke making by-products

    NASA Astrophysics Data System (ADS)

    Tiwari, Hari Prakash; Kumar, Rajesh; Bhattacharjee, Arunabh; Lingam, Ravi Kumar; Roy, Abhijit; Tiwary, Shambhu

    2018-02-01

    Coke oven gas treatment plants are well equipped with distributed control systems (DCS) and therefore recording the vast amount of operational data efficiently. Analyzing the stored information manually from historians is practically impossible. In this study, data mining technique was examined for lowering the ammonia concentration in clean coke oven gas. Results confirm that concentration of ammonia in clean coke oven gas depends on the average PCDC temperature; gas scrubber temperatures stripped liquor flow, stripped liquor concentration and stripped liquor temperature. The optimum operating ranges of the above dependent parameters using data mining technique for lowering the concentration of ammonia is described in this paper.

  20. Experimental Investigation of Diffuser Pressure-ratio Control with Shock-positioning Limit on 28-inch Ram-jet Engine

    NASA Technical Reports Server (NTRS)

    Dunbar, William R; Wentworth, Carl B; Crowl, Robert J

    1957-01-01

    The performance of a control system designed for variable thrust applications was determined in an altitude free-jet facility at various Mach numbers, altitudes and angles of attack for a wide range of engine operation. The results are presented as transient response characteristics for step disturbances in fuel flow and stability characteristics as a function of control constants and engine operating conditions. The results indicate that the control is capable of successful operation over the range of conditions tested, although variations in engine gains preclude optimum response characteristics at all conditions with fixed control constants.

  1. [Experimental studies of micromotor headpieces].

    PubMed

    Kanaev, V F; Repin, V A

    1982-01-01

    Experimental studies of handpieces for micromotors have been performed to make more precise their operating parameters. The special stand has been used for the measurements of the following data: head temperature, power losses in handpieces at no-load, and operating power required for machining by means of spherical burrs. The experimental results made it possible to specify more exactly the range of handpiece rotational speeds and to select optimum loads under reliability testing.

  2. Cryogenic Eyesafer Laser Optimization for Use Without Liquid Nitrogen

    DTIC Science & Technology

    2014-02-01

    liquid cryogens. This calls for optimal performance around 125–150 K—high enough for reasonably efficient operation of a Stirling cooler. We...state laser system with an optimum operating temperature somewhat higher—ideally 125–150 K—can be identified, then a Stirling cooler can be used to...needed to optimize laser performance in the desired temperature range. This did not include actual use of Stirling coolers, but rather involved both

  3. Study of the Optimum Zone of the Independent Variables of an ORGEL Reactor Connected to a 250-MWeb Power Plant. Self Supporting Fuel Elements Made of UC, with Sap Cladding with Four Fuel Rods and Individual Pressure Tubes; STUDIE DER OPTIMALEN ZONE DER UNABHANGIGEN PARAMETER EINES ORGEL- REAKTORS IN EINEM 250-MWe-KRAFTWERK. SELBST-TRAGENDES BRENNELEMENT AUS UC, SAP-UMHUL-LUNG MIT 4 BRENNSTOFFSTABEN UND INDIVIDUELLEN DRUCKROHREN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFontaine, F.; Tauch, P.

    The optimum range of the independent variables of and ORGEL reactor connected to a 250-Mw power plant (4 fuel rods of UC with individual pressure tubes), as well as the geometry of the reactor core and the operation of the plant, is described. (auth)

  4. Treatment of slaughter wastewater by coagulation sedimentation-anaerobic biological filter and biological contact oxidation process

    NASA Astrophysics Data System (ADS)

    Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.

    2017-08-01

    The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.

  5. Conversion of microwave signals by superconducting films in the resistive state

    NASA Technical Reports Server (NTRS)

    Yeru, I. I.; Peskovatskiy, S. A.; Sulima, V. S.

    1984-01-01

    The main characteristics of a superconducting thin film microwave mixer, i.e., conversion efficiency and bandwidth are analyzed. The optimum operating regime of the nonlinear element is determined. Results of calculations are compared with the experimental ones. Experimental data on the noise in the superconducting films in a wide frequency range are presented.

  6. Dual-drive Mach-Zehnder modulator-based reconfigurable and transparent spectral conversion for dense wavelength division multiplexing transmissions

    NASA Astrophysics Data System (ADS)

    Mao, Mingzhi; Qian, Chen; Cao, Bingyao; Zhang, Qianwu; Song, Yingxiong; Wang, Min

    2017-09-01

    A digital signal process enabled dual-drive Mach-Zehnder modulator (DD-MZM)-based spectral converter is proposed and extensively investigated to realize dynamically reconfigurable and high transparent spectral conversion. As another important innovation point of the paper, to optimize the converter performance, the optimum operation conditions of the proposed converter are deduced, statistically simulated, and experimentally verified. The optimum conditions supported-converter performances are verified by detail numerical simulations and experiments in intensity-modulation and direct-detection-based network in terms of frequency detuning range-dependent conversion efficiency, strict operation transparency for user signal characteristics, impact of parasitic components on the conversion performance, as well as the converted component waveform are almost nondistortion. It is also found that the converter has the high robustness to the input signal power, optical signal-to-noise ratio variations, extinction ratio, and driving signal frequency.

  7. On the optimum polarizations of incoherently reflected waves

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob J.; Elachi, Charles; Papas, Charles H.

    1987-01-01

    The Stokes scattering operator is noted to be the most useful characterization of incoherent scattering in radar imaging; the polarization that would yield an optimum amount of power received from the scatterer is obtained by assuming a knowledge of the Stokes scattering operator instead of the 2x2 scattering matrix with complex elements. It is thereby possible to find the optimum polarizations for the case in which the scatterers can only be fully characterized by their Stokes scattering operator, and the case in which the scatterer can be fully characterized by the complex 2x2 scattering matrix. It is shown that the optimum polarizations reported in the literature form the solution for a subset of a more general class of problems, so that six optimum polarizations can exist for incoherent scattering.

  8. Investigation of self-excited induction generators for wind turbine applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, E.; Butterfield, C.P.; Sallan, J.

    2000-02-28

    The use of squirrel-cage induction machines in wind generation is widely accepted as a generator of choice. The squirrel-cage induction machine is simple, reliable, cheap, lightweight, and requires very little maintenance. Generally, the induction generator is connected to the utility at constant frequency. With a constant frequency operation, the induction generator operates at practically constant speed (small range of slip). The wind turbine operates in optimum efficiency only within a small range of wind speed variation. The variable-speed operation allows an increase in energy captured and reduces both the torque peaks in the drive train and the power fluctuations sentmore » to the utility. In variable-speed operation, an induction generator needs an interface to convert the variable frequency output of the generator to the fixed frequency at the utility. This interface can be simplified by using a self-excited generator because a simple diode bridge is required to perform the ac/dc conversion. The subsequent dc/ac conversion can be performed using different techniques. The use of a thyristor bridge is readily available for large power conversion and has a lower cost and higher reliability. The firing angle of the inverter bridge can be controlled to track the optimum power curve of the wind turbine. With only diodes and thyristors used in power conversion, the system can be scaled up to a very high voltage and high power applications. This paper analyzes the operation of such a system applied to a 1/3-hp self-excited induction generator. It includes the simulations and tests performed for the different excitation configurations.« less

  9. Parallel operation of NH3 screw compressors - the optimum way

    NASA Astrophysics Data System (ADS)

    Pijnenburg, B.; Ritmann, J.

    2015-08-01

    The use of more smaller industrial NH3 screw compressors operating in parallel seems to offer the optimum way when it comes to fulfilling maximum part load efficiency, increased redundancy and other highly requested features in the industrial refrigeration industry today. Parallel operation in an optimum way can be selected to secure continuous operation and can in most applications be configured to ensure lower overall operating economy. New compressors are developed to meet requirements for flexibility in operation and are controlled in an intelligent way. The intelligent control system keeps focus on all external demands, but yet striving to offer always the lowest possible absorbed power, including in future scenarios with connection to smart grid.

  10. Performance mapping of a 30 cm engineering model thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Vahrenkamp, R. P.

    1975-01-01

    A 30 cm thruster representative of the engineering model design has been tested over a wide range of operating parameters to document performance characteristics such as electrical and propellant efficiencies, double ion and beam divergence thrust loss, component equilibrium temperatures, operational stability, etc. Data obtained show that optimum power throttling, in terms of maximum thruster efficiency, is not highly sensitive to parameter selection. Consequently, considerations of stability, discharge chamber erosion, thrust losses, etc. can be made the determining factors for parameter selection in power throttling operations. Options in parameter selection based on these considerations are discussed.

  11. Vacuum pumps and systems: A review of current practice

    NASA Technical Reports Server (NTRS)

    Giles, Stuart

    1986-01-01

    A review of the fundamental characteristics of the many types of vacuum pumps and vacuum pumping systems is given. The optimum pumping range, relative cost, performance limitations, maintenance problems, system operating costs and similar subjects are discussed. Experiences from the thin film deposition, chemical processing, material handling, food processing and other industries, as well as space simulation are used to support conclusions and recommendations.

  12. Multi-objective thermodynamic optimisation of supercritical CO2 Brayton cycles integrated with solar central receivers

    NASA Astrophysics Data System (ADS)

    Vasquez Padilla, Ricardo; Soo Too, Yen Chean; Benito, Regano; McNaughton, Robbie; Stein, Wes

    2018-01-01

    In this paper, optimisation of the supercritical CO? Brayton cycles integrated with a solar receiver, which provides heat input to the cycle, was performed. Four S-CO? Brayton cycle configurations were analysed and optimum operating conditions were obtained by using a multi-objective thermodynamic optimisation. Four different sets, each including two objective parameters, were considered individually. The individual multi-objective optimisation was performed by using Non-dominated Sorting Genetic Algorithm. The effect of reheating, solar receiver pressure drop and cycle parameters on the overall exergy and cycle thermal efficiency was analysed. The results showed that, for all configurations, the overall exergy efficiency of the solarised systems achieved at maximum value between 700°C and 750°C and the optimum value is adversely affected by the solar receiver pressure drop. In addition, the optimum cycle high pressure was in the range of 24.2-25.9 MPa, depending on the configurations and reheat condition.

  13. Life cycle assessment for optimising the level of separated collection in integrated MSW management systems.

    PubMed

    Rigamonti, L; Grosso, M; Giugliano, M

    2009-02-01

    This life cycle assessment study analyses material and energy recovery within integrated municipal solid waste (MSW) management systems, and, in particular, the recovery of the source-separated materials (packaging and organic waste) and the energy recovery from the residual waste. The recovery of materials and energy are analysed together, with the final aim to evaluate possible optimum levels of source-separated collection that lead to the most favourable energetic and environmental results; this method allows identification of an optimum configuration of the MSW management system. The results show that the optimum level of source-separated collection is about 60%, when all the materials are recovered with high efficiency; it decreases to about 50%, when the 60% level is reached as a result of a very high recovery efficiency for organic fractions at the expense of the packaging materials, or when this implies an appreciable reduction of the quality of collected materials. The optimum MSW management system is thus characterized by source-separated collection levels as included in the above indicated range, with subsequent recycling of the separated materials and energy recovery of the residual waste in a large-scale incinerator operating in combined heat and power mode.

  14. First-Order Altitude Effects on the Cruise Efficiency of Subsonic Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.

    2011-01-01

    Aircraft fuel efficiency is a function of many different parameters, including characteristics of the engines, characteristics of the airframe, and the conditions under which the aircraft is operated. For a given vehicle, the airframe and engine characteristics are for the most part fixed quantities and efficiency is primarily a function of operational conditions. One important influence on cruise efficiency is cruise altitude. Various future scenarios have been postulated for cruise altitude, from the freedom to fly at optimum altitudes to altitude restrictions imposed for environmental reasons. This report provides background on the fundamental relationships determining aircraft cruise efficiency and examines the sensitivity of efficiency to cruise altitude. Analytical models of two current aircraft designs are used to derive quantitative results. Efficiency penalties are found to be generally less than 1% when within roughly 2000 ft of the optimum cruise altitude. Even the restrictive scenario of constant altitude cruise is found to result in a modest fuel consumption penalty if the fixed altitude is in an appropriate range.

  15. Feasibility Analysis of UAV Technology to Improve Tactical Surveillance in South Korea’s Rear Area Operations

    DTIC Science & Technology

    2017-03-01

    determine the optimum required operational capability of the unmanned aerial vehicles to support Korean rear area operations. We use Map Aware Non ...area operations. Through further experimentations and analyses, we were able to find the optimum characteristics of an improved unmanned aerial...operations. We use Map Aware Non -Uniform Automata, an agent-based simulation software platform for computational experiments. The study models a scenario

  16. Optimization of fixed-range trajectories for supersonic transport aircraft

    NASA Astrophysics Data System (ADS)

    Windhorst, Robert Dennis

    1999-11-01

    This thesis develops near-optimal guidance laws that generate minimum fuel, time, or direct operating cost fixed-range trajectories for supersonic transport aircraft. The approach uses singular perturbation techniques to time-scale de-couple the equations of motion into three sets of dynamics, two of which are analyzed in the main body of this thesis and one of which is analyzed in the Appendix. The two-point-boundary-value-problems obtained by application of the maximum principle to the dynamic systems are solved using the method of matched asymptotic expansions. Finally, the two solutions are combined using the matching principle and an additive composition rule to form a uniformly valid approximation of the full fixed-range trajectory. The approach is used on two different time-scale formulations. The first holds weight constant, and the second allows weight and range dynamics to propagate on the same time-scale. Solutions for the first formulation are only carried out to zero order in the small parameter, while solutions for the second formulation are carried out to first order. Calculations for a HSCT design were made to illustrate the method. Results show that the minimum fuel trajectory consists of three segments: a minimum fuel energy-climb, a cruise-climb, and a minimum drag glide. The minimum time trajectory also has three segments: a maximum dynamic pressure ascent, a constant altitude cruise, and a maximum dynamic pressure glide. The minimum direct operating cost trajectory is an optimal combination of the two. For realistic costs of fuel and flight time, the minimum direct operating cost trajectory is very similar to the minimum fuel trajectory. Moreover, the HSCT has three local optimum cruise speeds, with the globally optimum cruise point at the highest allowable speed, if range is sufficiently long. The final range of the trajectory determines which locally optimal speed is best. Ranges of 500 to 6,000 nautical miles, subsonic and supersonic mixed flight, and varying fuel efficiency cases are analyzed. Finally, the payload-range curve of the HSCT design is determined.

  17. Evaluation of optimum room entry times for radiation therapists after high energy whole pelvic photon treatments.

    PubMed

    Ho, Lavine; White, Peter; Chan, Edward; Chan, Kim; Ng, Janet; Tam, Timothy

    2012-01-01

    Linear accelerators operating at or above 10 MV produce neutrons by photonuclear reactions and induce activation in machine components, which are a source of potential exposure for radiation therapists. This study estimated gamma dose contributions to radiation therapists during high energy, whole pelvic, photon beam treatments and determined the optimum room entry times, in terms of safety of radiation therapists. Two types of technique (anterior-posterior opposing and 3-field technique) were studied. An Elekta Precise treatment system, operating up to 18 MV, was investigated. Measurements with an area monitoring device (a Mini 900R radiation monitor) were performed, to calculate gamma dose rates around the radiotherapy facility. Measurements inside the treatment room were performed when the linear accelerator was in use. The doses received by radiation therapists were estimated, and optimum room entry times were determined. The highest gamma dose rates were approximately 7 μSv/h inside the treatment room, while the doses in the control room were close to background (~0 μSv/h) for all techniques. The highest personal dose received by radiation therapists was estimated at 5 mSv/yr. To optimize protection, radiation therapists should wait for up to11 min after beam-off prior to room entry. The potential risks to radiation therapists with standard safety procedures were well below internationally recommended values, but risks could be further decreased by delaying room entry times. Dependent on the technique used, optimum entry times ranged between 7 to 11 min. A balance between moderate treatment times versus reduction in measured equivalent doses should be considered.

  18. Microcontroller-assisted compensation of adenosine triphosphate levels: instrument and method development.

    PubMed

    Hu, Jie-Bi; Chen, Ting-Ru; Chen, Yu-Chie; Urban, Pawel L

    2015-01-30

    In order to ascertain optimum conditions for biocatalytic processes carried out in vitro, we have designed a bio-opto-electronic system which ensures real-time compensation for depletion of adenosine triphosphate (ATP) in reactions involving transfer of phosphate groups. The system covers ATP concentration range of 2-48 μM. The report demonstrates feasibility of the device operation using apyrase as the ATP-depleting enzyme.

  19. Optimum Antenna Configuration for Maximizing Access Point Range of an IEEE 802.11 Wireless Mesh Network in Support of Multi-Mission Operations Relative to Hastily Formed Scalable Deployments

    DTIC Science & Technology

    2007-09-01

    Configuration Consideration ...........................54 C. MAE NGAT DAM, CHIANG MAI , THAILAND, FIELD EXPERIMENT...2006 802.11 Network Topology Mae Ngat Dam, Chiang Mai , Thailand.......................39 Figure 31. View of COASTS 2006 802.11 Topology...Requirements (Background From Google Earth).....62 Figure 44. Mae Ngat Dam, Chiang Mai , Thailand (From Google Earth

  20. Distributed porous throat stability bypass to increase the stable airflow range of a Mach 2.5 inlet with 60 percent internal contraction

    NASA Technical Reports Server (NTRS)

    Shaw, R. J.; Mitchell, G. A.; Sanders, B. W.

    1974-01-01

    The results of an experimental investigation to increase the stable airflow operating range of a supersonic, mixed-compression inlet with 60-percent internal contraction are presented. Various distributed-porous, throat stability-bypass entrance configurations were tested. In terms of diffuser-exit corrected airflow, a large inlet stable airflow range of about 25 percent was obtained with the optimum configuration if a constant pressure was maintained in the by-pass plenum. The location of the centerbody bleed region had a decided effect on the overall inlet performance. Limited unstart angle-of-attack data are presented.

  1. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1991-01-01

    The final report for work on the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution is presented. Papers and theses prepared during the research report period are included. Among all the research results reported, note should be made of the specific investigation of the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution. A methodology was developed to determine design and operation parameters for error minimization when deconvolution is included in data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all parameters of interest. Instrumental characteristics will determine a curve in this space. The SNR and parameter values which give the projection from the curve to the surface, corresponding to the smallest value for the error, are the optimum values. These values are constrained by the curve and so will not necessarily correspond to an absolute minimum in the error surface.

  2. Optimum routing of freight in urban environments under normal operations and disruptions : final report.

    DOT National Transportation Integrated Search

    2016-12-27

    The complexity and dynamics of multimodal freight transportation together with the unpredictability of incidents, disruptions and demand changes make the optimum routing of freight a challenging task. Optimum routing decisions in a multimodal transpo...

  3. Stability assessment and operating parameter optimization on experimental results in very small plasma focus, using sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Jafari, Hossein; Habibi, Morteza

    2018-04-01

    Regarding the importance of stability in small-scale plasma focus devices for producing the repeatable and strength pinching, a sensitivity analysis approach has been used for applicability in design parameters optimization of an actually very low energy device (84 nF, 48 nH, 8-9.5 kV, ∼2.7-3.7 J). To optimize the devices functional specification, four different coaxial electrode configurations have been studied, scanning an argon gas pressure range from 0.6 to 1.5 mbar via the charging voltage variation study from 8.3 to 9.3 kV. The strength and efficient pinching was observed for the tapered anode configuration, over an expanded operating pressure range of 0.6 to 1.5 mbar. The analysis results showed that the most sensitive of the pinch voltage was associated with 0.88 ± 0.8mbar argon gas pressure and 8.3-8.5 kV charging voltage, respectively, as the optimum operating parameters. From the viewpoint of stability assessment of the device, it was observed that the least variation in stable operation of the device was for a charging voltage range of 8.3 to 8.7 kV in an operating pressure range from 0.6 to 1.1 mbar.

  4. Optimum testing of multiple hypotheses in quantum detection theory

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Kennedy, R. S.; Lax, M.

    1975-01-01

    The problem of specifying the optimum quantum detector in multiple hypotheses testing is considered for application to optical communications. The quantum digital detection problem is formulated as a linear programming problem on an infinite-dimensional space. A necessary and sufficient condition is derived by the application of a general duality theorem specifying the optimum detector in terms of a set of linear operator equations and inequalities. Existence of the optimum quantum detector is also established. The optimality of commuting detection operators is discussed in some examples. The structure and performance of the optimal receiver are derived for the quantum detection of narrow-band coherent orthogonal and simplex signals. It is shown that modal photon counting is asymptotically optimum in the limit of a large signaling alphabet and that the capacity goes to infinity in the absence of a bandwidth limitation.

  5. [Relationship between fishing grounds temporal-spatial distribution of Thunnus obesus and thermocline characteristics in the Western and Central Pacific Ocean].

    PubMed

    Yang, Sheng Long; Wu, Yu Mei; Zhang, Bian Bian; Zhang, Yu; Fan, Wei; Jin, Shao Fei; Dai, Yang

    2017-01-01

    A thermocline characteristics contour on a spatial overlay map was plotted using data collected on a monthly basis from Argo buoys and data of monthly CPUE (catch per unit effort) bigeye tuna (Thunnus obesus) long-lines fishery from the Western and Central Pacific Fisheries Commission (WCPFC) to evaluate the relationship between fishing grounds temporal-spatial distribution of bigeye tuna and thermocline characteristics in the Western and Central Pacific Ocean (WCPO). In addition, Numerical methods were used to calculate the optimum ranges of thermocline characteristics of the central fishing grounds. The results showed that the central fishing grounds were mainly distributed between 10° N and 10° S. Seasonal fishing grounds in the south of equator were related to the seasonal variations in the upper boundary temperature, depth and thickness of thermocline. The fishing grounds were observed in areas where the upper boundary depth of thermocline was deep (70-100 m) and the thermocline thickness was more than 60 m. The CPUE tended to be low in area where the thermocline thickness was less than 40 m. The optimum upper boundary temperature range for distribution was 26-29 ℃, and the CPUE was mostly lower than the threshold value (Q3) of central fishing grounds when the temperature was higher than 29 ℃ or lower than 26 ℃. The temporal and spatial distribution of the fishing grounds was influenced by the seasonal variations in upper boundary depth and thermocline thickness. The central fishing grounds in the south of equator disappeared when the upper boundary depth of thermocline decreased and thermocline thickness became thinner. The lower boundary temperature and depth of thermocline and thermocline strength has little variation, but were strongly linked to the location of fishing grounds. The fishing grounds were mainly located between the two high-value zones of the lower boundary depth of thermocline, where the temperature was lower than 13 ℃ and the strength was high. When the depth was more than 300 m or less than 150 m, the lower boundary temperature was more than 17 ℃, or the strength was low, the CPUE tended to be low. The optimum range of thermocline characteristics was calculated using frequency analysis and empirical cumulative distribution function. The results showed that the optimum ranges for upper boundary thermocline temperature and depth were 26-29 ℃ and 70-110 m, the optimum lower boundary thermocline temperature and depth ranges were 11-13 ℃ and 200-280 m, the optimum ranges for thermocline thickness and thermocline strength were 50-90 m and 0.1-0.16 ℃·m -1 , respectively. The paper documented the distribution interval of thermocline characteristics for central fishing ground of the bigeye tuna in WCPO. The results provided a reference for improving the efficiency of pelagic bigeye tuna fishing operation and tuna resource management in WCPO.

  6. Determination of Optimum Operation Parameters for Low-Intensity Pulsed Ultrasound and Low-Level Laser Based Treatment to Induce Proliferation of Osteoblast and Fibroblast Cells.

    PubMed

    Coskun, Mehmet Emre; Coskun, Kubra Acikalin; Tutar, Yusuf

    2018-05-01

    The aim of this study was to determine the optimum operating parameters (pulse duration, energy levels, and application time) to promote induction of osteoblast and fibroblast cell proliferation and to maintain cell viability treated with low-intensity pulsed ultrasound (LIPUS) and low-level laser therapy (LLLT). The positive effects of LIPUS and LLLT on cellular activity have been reported in recent years. Comparisons between experimental parameters of previous studies are difficult because scientific studies reported frequencies and the duty cycles of LIPUS and wavelengths and doses of LLLT in a wide range of parameters. However, optimum amount of energy and optimum time exposure must be determined to induce bone and tissue cell proliferation for effective healing process and to avoid cell damage. Fibroblast and osteoblast cell cultures were irradiated with LIPUS (10-50% pulse and continuous mode at 1 and 3 MHz for 1, 3, and 5 min) and LLLT (4, 8, and 16 J at 50, 100, 200, 300, 400, and 500 mW). Cell cultures were analyzed using XTT assay. For both cell types, LIPUS treatment with 10% pulse (1:9 duty cycle), 3 MHz, and for 1 min and LLLT treatment over 100 mV for 4, 8, and 16 J modalities contributed to the growth, and may help bone repair and tissue healing process optimally. Bio-stimulating effects of LLLT irradiation promote proliferation and maintain cell viability better than LIPUS treatment without causing thermal response for both cell types, and the therapeutic modality above 200 mV has maximum effectiveness.

  7. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  8. Numerical Study of Pyrolysis of Biomass in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.

  9. Rise Time. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    The rise time test (along with the settleometer procedure) is used to monitor sludge behavior in the secondary clarifier of an activated sludge system. The test monitors the effect of the nitrification/denitrification process and aids the operator in determining optimum clarifier sludge detention time and, to some extent, optimum degree of…

  10. Optimum electric utility spot price determinations for small power producing facilities operating under PURPA provisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoudjehbaklou, H.; Puttgen, H.B.

    This paper outlines an optimum spot price determination procedure in the general context of the Public Utility Regulatory Policies Act, PURPA, provisions. PURPA stipulates that local utilities must offer to purchase all available excess electric energy from Qualifying Facilities, QF, at fair market prices. As a direct consequence of these PURPA regulations, a growing number of owners are installing power producing facilities and optimize their operational schedules to minimize their utility related costs or, in some cases, actually maximize their revenues from energy sales to the local utility. In turn, the utility strives to use spot prices which maximize itsmore » revenues from any given Small Power Producing Facility, SPPF, a schedule while respecting the general regulatory and contractual framework. the proposed optimum spot price determination procedure fully models the SPPF operation, it enforces the contractual and regulatory restrictions, and it ensures the uniqueness of the optimum SPPF schedule.« less

  11. Optimum electric utility spot price determinations for small power producing facilities operating under PURPA provisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoudjehbaklou, H.; Puttgen, H.B.

    The present paper outlines an optimum spot price determination procedure in the general context of the Public Utility Regulatory Policies Act, PURPA, provisions. PURPA stipulates that local utilities must offer to purchase all available excess electric energy from Qualifying Facilities, QF, at fair market prices. As a direct consequence of these PURPA regulations, a growing number of owners are installing power producing facilities and optimize their operational schedules to minimize their utility related costs or, in some cases, actually maximize their revenues from energy sales to the local utility. In turn, the utility will strive to use spot prices whichmore » maximize its revenues from any given Small Power Producing Facility, SPPF, schedule while respecting the general regulatory and contractual framework. The proposed optimum spot price determination procedure fully models the SPPF operation, it enforces the contractual and regulatory restrictions, and it ensures the uniqueness of the optimum SPPF schedule.« less

  12. Buried Object Detection Method Using Optimum Frequency Range in Extremely Shallow Underground

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Abe, Touma

    2011-07-01

    We propose a new detection method for buried objects using the optimum frequency response range of the corresponding vibration velocity. Flat speakers and a scanning laser Doppler vibrometer (SLDV) are used for noncontact acoustic imaging in the extremely shallow underground. The exploration depth depends on the sound pressure, but it is usually less than 10 cm. Styrofoam, wood (silver fir), and acrylic boards of the same size, different size styrofoam boards, a hollow toy duck, a hollow plastic container, a plastic container filled with sand, a hollow steel can and an unglazed pot are used as buried objects which are buried in sand to about 2 cm depth. The imaging procedure of buried objects using the optimum frequency range is given below. First, the standardized difference from the average vibration velocity is calculated for all scan points. Next, using this result, underground images are made using a constant frequency width to search for the frequency response range of the buried object. After choosing an approximate frequency response range, the difference between the average vibration velocity for all points and that for several points that showed a clear response is calculated for the final confirmation of the optimum frequency range. Using this optimum frequency range, we can obtain the clearest image of the buried object. From the experimental results, we confirmed the effectiveness of our proposed method. In particular, a clear image of the buried object was obtained when the SLDV image was unclear.

  13. Behaviour of fractional loop delay zero crossing digital phase locked loop (FR-ZCDPLL)

    NASA Astrophysics Data System (ADS)

    Nasir, Qassim

    2018-01-01

    This article analyses the performance of the first-order zero crossing digital phase locked loops (FR-ZCDPLL) when fractional loop delay is added to loop. The non-linear dynamics of the loop is presented, analysed and examined through bifurcation behaviour. Numerical simulation of the loop is conducted to proof the mathematical analysis of the loop operation. The results of the loop simulation show that the proposed FR-ZCDPLL has enhanced the performance compared to the conventional zero crossing DPLL in terms of wider lock range, captured range and stable operation region. In addition, extensive experimental simulation was conducted to find the optimum loop parameters for different loop environmental conditions. The addition of the fractional loop delay network in the conventional loop also reduces the phase jitter and its variance especially when the signal-to-noise ratio is low.

  14. A method to design blended rolled edges for compact range reflectors

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Burnside, Walter D.

    1989-01-01

    A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameter is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.

  15. A method to design blended rolled edges for compact range reflectors

    NASA Technical Reports Server (NTRS)

    Gupta, Inder J.; Ericksen, Kurt P.; Burnside, Walter D.

    1990-01-01

    A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameters is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.

  16. Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions

    DTIC Science & Technology

    2009-12-01

    diameter glass fiber media material. After gases passed through the CI, they entered four glass impingers, in series, that were chilled in an ice...Vanadium 0.05 0.05 0.01 (as V2O5 ) 0.00038 - Zinc 2 (as ZnO) 5 (as ZnO) 5 (as ZnO) 0.058 0.166 1...the impactor’s requirement for a specific optimum volumetric flow range. Filter media for each stage of the cascade impactor ( glass fiber filter

  17. Experimental study of cavity configurations for dye lasers pumped by a copper vapor laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Chaunshun; Sun Wei

    1988-04-01

    Four cavity configurations are considered for dye lasers pumped transversely by a CuBr laser at high pulse repetition frequencies. Their operating characteristics are compared. Optimum performance is found for a double-prism expander cavity equipped with a Littrow mounted grating. A single longitudinal mode lasing in the 598--640 nm range was achieved with a linewidth of 0.0012 nm and a conversion of efficiency of 7.5%, respectively. The amplified spontaneous emission was 1.5%.

  18. A modified sulfate process to lunar oxygen

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    1992-01-01

    A modified sulfate process which produces oxygen from iron oxide-bearing minerals in lunar soil is under development. Reaction rates of ilmenite in varying strength sulfuric acid have been determined. Quantitative conversion of ilmenite to ferrous sulfate was observed over a range of temperatures and concentrations. Data has also been developed on the calcination of by-product sulfates. System engineering for overall operability and simplicity has begun, suggesting that a process separating the digestion and sulfate dissolution steps may offer an optimum process.

  19. Optimized conditions for phytoremediation of diesel by Scirpus grossus in horizontal subsurface flow constructed wetlands (HSFCWs) using response surface methodology.

    PubMed

    Al-Baldawi, Israa Abdul Wahab; Sheikh Abdullah, Siti Rozaimah; Abu Hasan, Hassimi; Suja, Fatihah; Anuar, Nurina; Mushrifah, Idris

    2014-07-01

    This study investigated the optimum conditions for total petroleum hydrocarbon (TPH) removal from diesel-contaminated water using phytoremediation treatment with Scirpus grossus. In addition, TPH removal from sand was adopted as a second response. The optimum conditions for maximum TPH removal were determined through a Box-Behnken Design. Three operational variables, i.e. diesel concentration (0.1, 0.175, 0.25% Vdiesel/Vwater), aeration rate (0, 1 and 2 L/min) and retention time (14, 43 and 72 days), were investigated by setting TPH removal and diesel concentration as the maximum, retention time within the given range, and aeration rate as the minimum. The optimum conditions were found to be a diesel concentration of 0.25% (Vdiesel/Vwater), a retention time of 63 days and no aeration with an estimated maximum TPH removal from water and sand of 76.3 and 56.5%, respectively. From a validation test of the optimum conditions, it was found that the maximum TPH removal from contaminated water and sand was 72.5 and 59%, respectively, which was a 5 and 4.4% deviation from the values given by the Box-Behnken Design, providing evidence that S. grossus is a Malaysian native plant that can be used to remediate wastewater containing hydrocarbons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Optimization of space manufacturing systems

    NASA Technical Reports Server (NTRS)

    Akin, D. L.

    1979-01-01

    Four separate analyses are detailed: transportation to low earth orbit, orbit-to-orbit optimization, parametric analysis of SPS logistics based on earth and lunar source locations, and an overall program option optimization implemented with linear programming. It is found that smaller vehicles are favored for earth launch, with the current Space Shuttle being right at optimum payload size. Fully reusable launch vehicles represent a savings of 50% over the Space Shuttle; increased reliability with less maintenance could further double the savings. An optimization of orbit-to-orbit propulsion systems using lunar oxygen for propellants shows that ion propulsion is preferable by a 3:1 cost margin over a mass driver reaction engine at optimum values; however, ion engines cannot yet operate in the lower exhaust velocity range where the optimum lies, and total program costs between the two systems are ambiguous. Heavier payloads favor the use of a MDRE. A parametric model of a space manufacturing facility is proposed, and used to analyze recurring costs, total costs, and net present value discounted cash flows. Parameters studied include productivity, effects of discounting, materials source tradeoffs, economic viability of closed-cycle habitats, and effects of varying degrees of nonterrestrial SPS materials needed from earth. Finally, candidate optimal scenarios are chosen, and implemented in a linear program with external constraints in order to arrive at an optimum blend of SPS production strategies in order to maximize returns.

  1. Argon hollow cathode. M.S. Thesis; [propellants for ion bombardment thrusters

    NASA Technical Reports Server (NTRS)

    Rehn, L. A.

    1976-01-01

    An interest in alternate propellants for ion-bombardment thrusters, together with ground applications of this technology, has prompted consideration of argon. Several variations of conventional hollow cathode designs were tried, but the bulk of the testing used a hollow tube with an internal tungsten emitter and an orifice at one end. The optimum cathode tube diameter was found to be in the range of 1.0-2.5 cm, somewhat larger than those used for cesium and mercury. Optimum orifice diameter depended on operating conditions, and varied from 0.5 to 5 mm. Biasing the internal emitter negative relative to the cathode chamber reduced the external coupling voltage and should therefore improve orifice lifetime. The expected effect of this bias on emitter lifetime was less clear. Lifetime tests were not conducted as part of this investigation, but several designs show promise of long lifetime in specific applications.

  2. A Flight Examination of Operating Problems of V/STOL Aircraft in STOL-Type Landing and Approach

    NASA Technical Reports Server (NTRS)

    Innis, Robert C.; Quigley, Hervey C.

    1961-01-01

    A flight investigation has been conducted using a large twin-engine cargo aircraft to isolate the problems associated with operating propeller-driven aircraft in the STOL speed range where appreciable engine power is used to augment aerodynamic lift. The problems considered would also be representative of those of a large overloaded VTOL aircraft operating in an STOL manner with comparable thrust-to-weight ratios. The study showed that operation at low approach speeds was compromised by the necessity of maintaining high thrust to generate high lift and yet achieving the low lift-drag ratios needed for steep descents. The useable range of airspeed and flight path angle was limited by the pilot's demand for a positive climb margin at the approach speed, a suitable stall margin, and a control and/or performance margin for one engine inoperative. The optimum approach angle over an obstacle was found to be a compromise between obtaining the shortest air distance and the lowest touchdown velocity. In order to realize the greatest low-speed potential from STOL designs, the stability and control characteristics must be satisfactory.

  3. Characterization of water treatment sludge and its reuse as coagulant.

    PubMed

    Ahmad, Tarique; Ahmad, Kafeel; Ahad, Abdul; Alam, Mehtab

    2016-11-01

    Coagulation-flocculation process results in the generation of large volume of waste or residue, known as water treatment sludge (WTS), in the purification of surface water for potable supplies. Sustainable management of the inevitable waste requires careful attention from the plant operators and sludge managers. In this study, WTS produced with the optimum alum dose of 30 ml/L at the laboratory scale has been treated with sulphuric acid to bring forth a product known as sludge reagent product (SRP). The performance of SRP is evaluated for its efficiency in removing the colloidal suspensions from the Yamuna river water over wide pH range of 2-13. 1% sludge acidified with sulphuric acid of normality 2.5 at the rate of 0.05 ml/ml sludge has been observed as the optimum condition for preparing SRP from WTS. The percentage turbidity removal is greater at higher pH value and increases with increasing the dosage of SRP. The optimum SRP dosage of 8 ml/L in the pH range of 6-8 performed well in removing the colloidal suspension and other impurities from the Yamuna water. The quality of treated water met the prescribed standards for most of the quality parameters. Thus, SRP has the potential to substitute the conventional coagulants partially or completely in the water treatment process, depending on the quality needed at the users end. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A survey of the state of the art and focused research in range systems, task 2

    NASA Technical Reports Server (NTRS)

    Yao, K.

    1986-01-01

    Many communication, control, and information processing subsystems are modeled by linear systems incorporating tapped delay lines (TDL). Such optimized subsystems result in full precision multiplications in the TDL. In order to reduce complexity and cost in a microprocessor implementation, these multiplications can be replaced by single-shift instructions which are equivalent to powers of two multiplications. Since, in general, the obvious operation of rounding the infinite precision TDL coefficients to the nearest powers of two usually yield quite poor system performance, the optimum powers of two coefficient solution was considered. Detailed explanations on the use of branch-and-bound algorithms for finding the optimum powers of two solutions are given. Specific demonstration of this methodology to the design of a linear data equalizer and its implementation in assembly language on a 8080 microprocessor with a 12 bit A/D converter are reported. This simple microprocessor implementation with optimized TDL coefficients achieves a system performance comparable to the optimum linear equalization with full precision multiplications for an input data rate of 300 baud. The philosophy demonstrated in this implementation is dully applicable to many other microprocessor controlled information processing systems.

  5. Performance characterization of a Bosch CO sub 2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1980-01-01

    The performance of Bosch hardware at the subsystem level (up to five-person capacity) in terms of five operating parameters was investigated. The five parameters were: (1) reactor temperature, (2) recycle loop mass flow rate, (3) recycle loop gas composition (percent hydrogen), (4) recycle loop dew point and (5) catalyst density. Experiments were designed and conducted in which the five operating parameters were varied and Bosch performance recorded. A total of 12 carbon collection cartridges provided over approximately 250 hours of operating time. Generally, one cartridge was used for each parameter that was varied. The Bosch hardware was found to perform reliably and reproducibly. No startup, reaction initiation or carbon containment problems were observed. Optimum performance points/ranges were identified for the five parameters investigated. The performance curves agreed with theoretical projections.

  6. [The evaluation and prognosis of the psychophysiological status of a human operator].

    PubMed

    Sukhov, A E; Chaĭchenko, G M

    1989-01-01

    In experiments on 56 healthy subjects (18-20 years old) the quality of their activity was determined during compensatory watching the mark at complicating regimes of work. Depending on the difficulty of the task five groups of subjects were singled out with optimum working capacity in one of four working conditions: normal, ordinary and strenuous work, model of stress situation. It is established that the change of the number of significant correlative connections between main parameters of psychophysiological state of man-operator reflects the condition of his functional systems. On the basis of computation of total range of organization values of both R-R intervals of the ECG and duration of expiration, the success of the man-operator work in complex conditions of activity is predicted.

  7. Stable, low cost SAW microwave transmitter

    NASA Astrophysics Data System (ADS)

    Lau, K. F.; Yen, K. H.

    1986-06-01

    The design flexibility and application possibilities of surface acoustic wave (SAW) technology is discussed. When a highly stable, AM-modulated transmitter is required, a SAW resonator can provide an oscillator Q of up to 20,000 at 1 GHz. When FM modulation is required, the SAW delay line can provide a lower oscillator Q, which represents the optimum tradeoff between frequency stability and FM modulability. The capabilities of SAW oscillators are reviewed, and two example transmitters are presented. One transmitter operates at 1680 MHz and provides an AM-modulated signal. The second operates at the 400 to 406 MHz range and provides an FM-modulated output at one of six frequencies. SAW transmitters are suitable for applications where moderately high stability and low cost are key factors. With direct generation of signals at microwave frequencies and the flexibility of SAW oscillator design, a wide range of performance characteristics can be achieved.

  8. A conceptual study of the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The analytical comparison of the two candidate Rotor Systems Research Aircraft (RSRA) configurations selected by the Government at the completion of Part 1 of the RSRA Conceptual Predesign Study is presented. The purpose of the comparison was to determine the relative suitability of both vehicles for the RSRA missions described in the Government Statement of Work, and to assess their versatility in the testing of new rotor concepts. The analytical comparison was performed primarily with regard to performance and stability and control. A weights, center-of-gravity, and inertia computation was performed for each iteration in the analysis process. The dynamics investigation was not concerned so much with a comparison of the two vehicles, but explored the dynamic problems attending operation of any RSRA operating with large rotor RPM and diameter ranges over large forward speed ranges. Several means of isolating in- and out-of-plane rotor vibrations were analyzed. An optimum isolation scheme was selected.

  9. Benzophenone-3 ultrasound degradation in a multifrequency reactor: Response surface methodology approach.

    PubMed

    Vega-Garzon, Lina Patricia; Gomez-Miranda, Ingry Natalia; Peñuela, Gustavo A

    2018-05-01

    Response Surface Methodology was used for optimizing operating variables for a multi-frequency ultrasound reactor using BP-3 as a model compound. The response variable was the Triclosan degradation percent after 10 sonication min. Frequency at levels from 574, 856 and 1134 kHz were used. Power density, pulse time (PT), silent time (ST) and PT/ST ratio effects were also analyzed. 2 2 and 2 3 experimental designs were used for screening purposes and a central composite design was used for optimization. An optimum value of 79.2% was obtained for a frequency of 574 kHz, a power density of 200 W/L, and a PT/ST ratio of 10. Significant variables were frequency and power level, the first having an optimum value after which degradation decreases while power density level had a strong positive effect on the whole operational range. PT, ST, and PT/ST ratio were not significant variables although it was shown that pulsed mode ultrasound has better degradation rates than continuous mode ultrasound; the effect less significant at higher power levels. Copyright © 2017. Published by Elsevier B.V.

  10. Effect of filling ratio and orientation on the thermal performance of closed loop pulsating heat pipe using ethanol

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Lutfor; Chowdhury, Mehrin; Islam, Nawshad Arslan; Mufti, Sayed Muhammad; Ali, Mohammad

    2016-07-01

    Pulsating heat pipe (PHP) is a new, promising yet ambiguous technology for effective heat transfer of microelectronic devices where heat is carried by the vapor plugs and liquid slugs of the working fluid. The aim of this research paper is to better understand the operation of PHP through experimental investigations and obtain comparative results for different parameters. A series of experiments are conducted on a closed loop PHP (CLPHP) with 8 loops made of copper capillary tube of 2 mm inner diameter. Ethanol is taken as the working fluid. The operating characteristics are studied for the variation of heat input, filling ratio (FR) and orientation. The filling ratios are 40%, 50%, 60% and 70% based on its total volume. The orientations are 0° (vertical), 30°, 45° and 60°. The results clearly demonstrate the effect of filling ratio and inclination angle on the performance, operational stability and heat transfer capability of ethanol as working fluid of CLPHP. Important insight of the operational characteristics of CLPHP is obtained and optimum performance of CLPHP using ethanol is thus identified. Ethanol works best at 50-60%FR at wide range of heat inputs. At very low heat inputs, 40%FR can be used for attaining a good performance. Filling ratio below 40%FR is not suitable for using in CLPHP as it gives a low performance. The optimum performance of the device can be obtained at vertical position.

  11. Operational integration in primary health care: patient encounters and workflows.

    PubMed

    Sifaki-Pistolla, Dimitra; Chatzea, Vasiliki-Eirini; Markaki, Adelais; Kritikos, Kyriakos; Petelos, Elena; Lionis, Christos

    2017-11-29

    Despite several countrywide attempts to strengthen and standardise the primary healthcare (PHC) system, Greece is still lacking a sustainable, policy-based model of integrated services. The aim of our study was to identify operational integration levels through existing patient care pathways and to recommend an alternative PHC model for optimum integration. The study was part of a large state-funded project, which included 22 randomly selected PHC units located across two health regions of Greece. Dimensions of operational integration in PHC were selected based on the work of Kringos and colleagues. A five-point Likert-type scale, coupled with an algorithm, was used to capture and transform theoretical framework features into measurable attributes. PHC services were grouped under the main categories of chronic care, urgent/acute care, preventive care, and home care. A web-based platform was used to assess patient pathways, evaluate integration levels and propose improvement actions. Analysis relied on a comparison of actual pathways versus optimal, the latter ones having been identified through literature review. Overall integration varied among units. The majority (57%) of units corresponded to a basic level. Integration by type of PHC service ranged as follows: basic (86%) or poor (14%) for chronic care units, poor (78%) or basic (22%) for urgent/acute care units, basic (50%) for preventive care units, and partial or basic (50%) for home care units. The actual pathways across all four categories of PHC services differed from those captured in the optimum integration model. Certain similarities were observed in the operational flows between chronic care management and urgent/acute care management. Such similarities were present at the highest level of abstraction, but also in common steps along the operational flows. Existing patient care pathways were mapped and analysed, and recommendations for an optimum integration PHC model were made. The developed web platform, based on a strong theoretical framework, can serve as a robust integration evaluation tool. This could be a first step towards restructuring and improving PHC services within a financially restrained environment.

  12. Preliminary estimation of the realistic optimum temperature for vegetation growth in China.

    PubMed

    Cui, Yaoping

    2013-07-01

    The estimation of optimum temperature of vegetation growth is very useful for a wide range of applications such as agriculture and climate change studies. Thermal conditions substantially affect vegetation growth. In this study, the normalized difference vegetation index (NDVI) and daily temperature data set from 1982 to 2006 for China were used to examine optimum temperature of vegetation growth. Based on a simple analysis of ecological amplitude and Shelford's law of tolerance, a scientific framework for calculating the optimum temperature was constructed. The optimum temperature range and referenced optimum temperature (ROT) of terrestrial vegetation were obtained and explored over different eco-geographical regions of China. The results showed that the relationship between NDVI and air temperature was significant over almost all of China, indicating that terrestrial vegetation growth was closely related to thermal conditions. ROTs were different in various regions. The lowest ROT, about 7.0 °C, occurred in the Qinghai-Tibet Plateau, while the highest ROT, more than 22.0 °C, occurred in the middle and lower reaches of the Yangtze River and the Southern China region.

  13. Preliminary Estimation of the Realistic Optimum Temperature for Vegetation Growth in China

    NASA Astrophysics Data System (ADS)

    Cui, Yaoping

    2013-07-01

    The estimation of optimum temperature of vegetation growth is very useful for a wide range of applications such as agriculture and climate change studies. Thermal conditions substantially affect vegetation growth. In this study, the normalized difference vegetation index (NDVI) and daily temperature data set from 1982 to 2006 for China were used to examine optimum temperature of vegetation growth. Based on a simple analysis of ecological amplitude and Shelford's law of tolerance, a scientific framework for calculating the optimum temperature was constructed. The optimum temperature range and referenced optimum temperature (ROT) of terrestrial vegetation were obtained and explored over different eco-geographical regions of China. The results showed that the relationship between NDVI and air temperature was significant over almost all of China, indicating that terrestrial vegetation growth was closely related to thermal conditions. ROTs were different in various regions. The lowest ROT, about 7.0 °C, occurred in the Qinghai-Tibet Plateau, while the highest ROT, more than 22.0 °C, occurred in the middle and lower reaches of the Yangtze River and the Southern China region.

  14. Structure modeling and manufacturing PCFs for the range of 2-25 μm

    NASA Astrophysics Data System (ADS)

    Lvov, Alexandr; Salimgareev, Dmitrii; Korsakov, Michail; Korsakov, Alexandr; Zhukova, Liya

    2017-11-01

    Photostable and flexible materials transparent at the wide spectral range are necessary for the development of optical fiber units. Solid solutions of silver and monadic thallium halides are the most suitable crystal media for this purpose. The goal of our research was the search of optimum structure for the fibers with a single mode operation and a rather large core diameter. We modelled fiber structures (solid-core, hollow-core, active-core PCF) with various ratio of inserts diameters and increments between the inserts, basing on two crystal systems: AgCl-AgBr and AgBr-TlI. Then we chose the single mode fiber structure and manufactured it by means of extrusion.

  15. The Front-End System For MARE In Milano

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Claudio; Pessina, Gianluigi

    2009-12-01

    The first phase of MARE consists of 72 μ-bolometers composed each of a crystal of AgReO4 readout by Si thermistors. The spread in the thermistor characteristics and bolometer thermal coupling leads to different energy conversion gains and optimum operating points of the detectors. Detector biasing levels and voltage gains are completely remote-adjustable by the front end system developed, the subject of this paper, achieving the same signal range at the input of the DAQ system. The front end consists of a cold buffer stage, a second pseudo differential stage followed by a gain stage, an antialiasing filter, and a battery powered detector biasing set up. The DAQ system can be used to set all necessary parameters of the electronics remotely, by writing to a μ-controller located on each board. Fiber optics are used for the serial communication between the DAQ and the front end. To suppress interference noise during normal operation, the clocked devices of the front end are maintained in sleep-mode, except during the set-up phase of the experiment. An automatic DC detector characterization procedure is used to establish the optimum operating point of every detector of the array. A very low noise level has been achieved: about 3nV/□Hz at 1 Hz and 1 nV/□Hz for the white component, high frequencies.

  16. The first clinical application of planning software for laparoscopic microwave thermosphere ablation of malignant liver tumours.

    PubMed

    Berber, Eren

    2015-07-01

    Liver tumour ablation is an operator-dependent procedure. The determination of the optimum needle trajectory and correct ablation parameters could be challenging. The aim of this study was to report the utility of a new, procedure planning software for microwave ablation (MWA) of liver tumours. This was a feasibility study in a pilot group of five patients with nine metastatic liver tumours who underwent laparoscopic MWA. Pre-operatively, parameters predicting the desired ablation zones were calculated for each tumour. Intra-operatively, this planning strategy was followed for both antenna placement and energy application. Post-operative 2-week computed tomography (CT) scans were performed to evaluate complete tumour destruction. The patients had an average of two tumours (range 1-4), measuring 1.9 ± 0.4 cm (range 0.9-4.4 cm). The ablation time was 7.1 ± 1.3 min (range 2.5-10 min) at 100W. There were no complications or mortality. The patients were discharged home on post-operative day (POD) 1. At 2-week CT scans, there were no residual tumours, with a complete ablation demonstrated in all lesions. This study describes and validates pre-treatment planning software for MWA of liver tumours. This software was found useful to determine precisely the ablation parameters and needle placement to create a predicted zone of ablation. © 2015 International Hepato-Pancreato-Biliary Association.

  17. AGT100 turbomachinery. [for automobiles

    NASA Technical Reports Server (NTRS)

    Tipton, D. L.; Mckain, T. F.

    1982-01-01

    High-performance turbomachinery components have been designed and tested for the AGT100 automotive engine. The required wide range of operation coupled with the small component size, compact packaging, and low cost of production provide significant aerodynamic challenges. Aerodynamic design and development testing of the centrifugal compressor and two radial turbines are described. The compressor achieved design flow, pressure ratio, and surge margin on the initial build. Variable inlet guide vanes have proven effective in modulating flow capacity and in improving part-speed efficiency. With optimum use of the variable inlet guide vanes, the initial efficiency goals have been demonstrated in the critical idle-to-70% gasifier speed range. The gasifier turbine exceeded initial performance goals and demonstrated good performance over a wide range. The radial power turbine achieved 'developed' efficiency goals on the first build.

  18. Optimum reentry trajectories of a lifting vehicle

    NASA Technical Reports Server (NTRS)

    Chern, J. S.; Vinh, N. X.

    1980-01-01

    Research results are presented of an investigation of the optimum maneuvers of advanced shuttle type spacecraft during reentry. The equations are formulated by means of modified Chapman variables resulting in a general set of equations for flight analysis which are exact for reentry and for flight in a vacuum. Four planar flight typical optimum manuevers are investigated. For three-dimensional flight the optimum trajectory for maximum cross range is discussed in detail. Techniques for calculating reentry footprints are presented.

  19. Comparison of Efficacy and Tolerance of Automatic Continuous Positive Airway Pressure Devices With the Optimum Continuous Positive Airway Pressure.

    PubMed

    Tommi, George; Aronow, Wilbert S; Sheehan, John C; McCleay, Matthew T; Meyers, Patrick G

    Patients diagnosed with obstructive sleep apnea syndrome were randomly placed on automatic continuous positive airway pressure (ACPAP) for 2 hours followed by manual titration for the rest of the night. One hundred sixty-one patients entered the study, with at least 50 patients titrated with each of 3 ACPAP devices. The optimum continuous positive airway pressure (CPAP) was defined as the lowest pressure with an apnea-hypoxia index of ≤5/hr, which ranged from 4 cm to 18 cm. Success with ACPAP was approximately 60%-80% when the optimum CPAP was 4-6 cm but fell to below 30% if the optimum CPAP was ≥8 cm (P = 0.001). Average ACPAP ranged from 2 to 10 cm below the optimum level if the optimum CPAP was ≥8 cm. Patients who responded to a low CPAP but deteriorated on higher pressures failed to respond to any of the automatic devices. We recommend that CPAP titration be performed manually before initiation of ACPAP in patients with obstructive sleep apnea. The basal pressure for ACPAP should be the optimum pressure obtained by manual titration. Limits on the upper level of ACPAP may be necessary for patients who deteriorate on higher positive pressures.

  20. Two-phase anaerobic digestion of source sorted OFMSW (organic fraction of municipal solid waste): performance and kinetic study.

    PubMed

    Pavan, P; Battistoni, P; Cecchi, F; Mata-Alvarez, J

    2000-01-01

    The results of a two-phase system operated in different conditions, treating the source-sorted organic fraction of municipal solid waste (SS-OFMSW), coming mainly from fruit and vegetable markets, are presented. Hydraulic retention time (HRT) in the hydrolytic reactor and in the methanogenic reactor and also the temperature in the hydrolytic reactor (mesophilic and thermophilic conditions) are varied in order to evaluate the effect of these factors. The methanogenic reactor is always operated within the thermophilic range. Optimum operating conditions are found to be around 12 days (total system) using the mesophilic range of temperature in the first reactor. Specific gas production (SGP) in these conditions is around 0.6 m3/kg TVS. A kinetic study is also carried out, using the first and the step diffusional models. The latter gives much better results, with fitted constants comparable to other studies. Finally, a comparison with a one-phase system is carried out, showing that a two-phase system is much more appropriate for the digestion of this kind of highly biodegradable substrate in thermophilic conditions.

  1. OPTIM: Computer program to generate a vertical profile which minimizes aircraft fuel burn or direct operating cost. User's guide

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A profile of altitude, airspeed, and flight path angle as a function of range between a given set of origin and destination points for particular models of transport aircraft provided by NASA is generated. Inputs to the program include the vertical wind profile, the aircraft takeoff weight, the costs of time and fuel, certain constraint parameters and control flags. The profile can be near optimum in the sense of minimizing: (1) fuel, (2) time, or (3) a combination of fuel and time (direct operating cost (DOC)). The user can also, as an option, specify the length of time the flight is to span. The theory behind the technical details of this program is also presented.

  2. Instrumentation and control system architecture of ECRH SST1

    NASA Astrophysics Data System (ADS)

    Patel, Harshida; Patel, Jatin; purohit, Dharmesh; Shukla, B. K.; Babu, Rajan; Mistry, Hardik

    2017-07-01

    The Electron Cyclotron Resonance Heating (ECRH) system is an important heating system for the reliable start-up of tokamak. The 42GHz and 82.6GHz Gyrotron based ECRH systems are used in tokomaks SST-1 and Aditya to carry out ECRH related experiments. The Gyrotrons are high power microwave tubes used as a source for ECRH systems. The Gyrotrons need to be handled with optimum care right from the installation to its Full parameter control operation. The Gyrotrons are associated with the subsystems like: High voltage power supplies (Beam voltage and anode voltage), dedicated crowbar system, magnet, filament and ion pump power supplies and cooling system. The other subsystems are transmission line, launcher and dummy load. A dedicated VME based data acquisition & control (DAC) system is developed to operate and control the Gyrotron and its associated sub system. For the safe operation of Gyrotron, two level interlocks with fail-safe logic are developed. Slow signals that are operated in scale of millisecond range are programmed through software and hardware interlock in scale of microsecond range are designed and developed indigenously. Water-cooling and the associated interlock are monitored and control by data logger with independent human machine interface.

  3. [Effects of temperature on the embryonic development and larval growth of Sepia lycidas].

    PubMed

    Jiang, Xia-Min; Peng, Rui-Bing; Luo, Jiang; Tang, Feng

    2013-05-01

    A single-factor experiment was conducted to study the effects of different temperature (15, 18, 21, 24, 27, 30, and 33 degrees C) on the embryonic development and larval growth of Sepia lycidas, aimed to search for the optimum temperature for the development and growth of S. lycidas. The results showed that temperature had significant effects on the embryonic development and larval growth of S. lycidas (P < 0.05). The suitable temperature for hatching ranged from 21 degrees C to 30 degrees C, and the optimum temperature was 24 degrees C. At the optimum temperature, the hatching rate was (93.3 +/- 2.9)%, incubation period was (24.33 +/- 0.58) d, hatching period was (6.00 +/- 1.00) d, completely absorked rate of yolk sac was (96.4 +/- 3.1)%, and newly hatched larvae mass was (0.258 +/- 0.007) g. The effective accumulated temperature model was N = 284.42/(T-12.57). The suitable temperature for the larval survival and growth ranged from 21 degrees C to 30 degrees C, and the optimum temperature was from 24 degrees C to 27 degrees C. At the optimum temperature, the survival rate ranged from 70.0% to 73.3%, and the specific growth rate was from 2.4% to 3.8%.

  4. A meta-heuristic method for solving scheduling problem: crow search algorithm

    NASA Astrophysics Data System (ADS)

    Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi

    2018-04-01

    Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.

  5. Taguchi optimization of bismuth-telluride based thermoelectric cooler

    NASA Astrophysics Data System (ADS)

    Anant Kishore, Ravi; Kumar, Prashant; Sanghadasa, Mohan; Priya, Shashank

    2017-07-01

    In the last few decades, considerable effort has been made to enhance the figure-of-merit (ZT) of thermoelectric (TE) materials. However, the performance of commercial TE devices still remains low due to the fact that the module figure-of-merit not only depends on the material ZT, but also on the operating conditions and configuration of TE modules. This study takes into account comprehensive set of parameters to conduct the numerical performance analysis of the thermoelectric cooler (TEC) using a Taguchi optimization method. The Taguchi method is a statistical tool that predicts the optimal performance with a far less number of experimental runs than the conventional experimental techniques. Taguchi results are also compared with the optimized parameters obtained by a full factorial optimization method, which reveals that the Taguchi method provides optimum or near-optimum TEC configuration using only 25 experiments against 3125 experiments needed by the conventional optimization method. This study also shows that the environmental factors such as ambient temperature and cooling coefficient do not significantly affect the optimum geometry and optimum operating temperature of TECs. The optimum TEC configuration for simultaneous optimization of cooling capacity and coefficient of performance is also provided.

  6. Frequency Splitting Analysis and Compensation Method for Inductive Wireless Powering of Implantable Biosensors.

    PubMed

    Schormans, Matthew; Valente, Virgilio; Demosthenous, Andreas

    2016-08-04

    Inductive powering for implanted medical devices, such as implantable biosensors, is a safe and effective technique that allows power to be delivered to implants wirelessly, avoiding the use of transcutaneous wires or implanted batteries. Wireless powering is very sensitive to a number of link parameters, including coil distance, alignment, shape, and load conditions. The optimum drive frequency of an inductive link varies depending on the coil spacing and load. This paper presents an optimum frequency tracking (OFT) method, in which an inductive power link is driven at a frequency that is maintained at an optimum value to ensure that the link is working at resonance, and the output voltage is maximised. The method is shown to provide significant improvements in maintained secondary voltage and system efficiency for a range of loads when the link is overcoupled. The OFT method does not require the use of variable capacitors or inductors. When tested at frequencies around a nominal frequency of 5 MHz, the OFT method provides up to a twofold efficiency improvement compared to a fixed frequency drive. The system can be readily interfaced with passive implants or implantable biosensors, and lends itself to interfacing with designs such as distributed implanted sensor networks, where each implant is operating at a different frequency.

  7. Technical and Economic Assessment of Span-Distributed Loading Cargo Aircraft Concepts

    NASA Technical Reports Server (NTRS)

    Johnston, W. M.; Muehlbauer, J. C.; Eudaily, R. R.; Farmer, B. T.; Monrath, J. F.; Thompson, S. G.

    1976-01-01

    A 700,000 kg (1,540,000-lb) aircraft with a cruise Mach number of 0.75 was found to be optimum for the specified mission parameters of a 272 155-kg (600,000-lb) payload, a 5560-km (3000-n.mi.) range, and an annual productivity of 113 billion revenue-ton km (67 billion revenue-ton n. mi.). The optimum 1990 technology level spanloader aircraft exhibited the minimum 15-year life-cycle costs, direct operating costs, and fuel consumption of all candidate versions. Parametric variations of wing sweep angle, thickness ratio, rows of cargo, and cargo density were investigated. The optimum aircraft had two parallel rows of 2.44 x 2.44-m (8 x 8-ft) containerized cargo with a density of 160 kg/cu m (10 lb/ft 3) carried throughout the entire 101-m (331-ft) span of the constant chord, 22-percent thick, supercritical wing. Additional containers or outsized equipment were carried in the 24.4-m (80-ft) long fuselage compartment preceding the wing. Six 284,000-N (64,000-lb) thrust engines were mounted beneath the 0.7-rad (40-deg) swept wing. Flight control was provided by a 36.6-m (120-ft) span canard surface mounted atop the forward fuselage, by rudders on the wingtip verticals and by outboard wing flaperons.

  8. Systems and methods for autonomously controlling agricultural machinery

    DOEpatents

    Hoskinson, Reed L.; Bingham, Dennis N.; Svoboda, John M.; Hess, J. Richard

    2003-07-08

    Systems and methods for autonomously controlling agricultural machinery such as a grain combine. The operation components of a combine that function to harvest the grain have characteristics that are measured by sensors. For example, the combine speed, the fan speed, and the like can be measured. An important sensor is the grain loss sensor, which may be used to quantify the amount of grain expelled out of the combine. The grain loss sensor utilizes the fluorescence properties of the grain kernels and the plant residue to identify when the expelled plant material contains grain kernels. The sensor data, in combination with historical and current data stored in a database, is used to identify optimum operating conditions that will result in increased crop yield. After the optimum operating conditions are identified, an on-board computer can generate control signals that will adjust the operation of the components identified in the optimum operating conditions. The changes result in less grain loss and improved grain yield. Also, because new data is continually generated by the sensor, the system has the ability to continually learn such that the efficiency of the agricultural machinery is continually improved.

  9. High efficiency RF amplifier development over wide dynamic range for accelerator application

    NASA Astrophysics Data System (ADS)

    Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber

    2017-10-01

    Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.

  10. Computer-aided design of high-contact-ratio gears for minimum dynamic load and stress

    NASA Technical Reports Server (NTRS)

    Lin, Hsiang Hsi; Lee, Chinwai; Oswald, Fred B.; Townsend, Dennis P.

    1990-01-01

    A computer aided design procedure is presented for minimizing dynamic effects on high contact ratio gears by modification of the tooth profile. Both linear and parabolic tooth profile modifications of high contact ratio gears under various loading conditions are examined and compared. The effects of the total amount of modification and the length of the modification zone were systematically studied at various loads and speeds to find the optimum profile design for minimizing the dynamic load and the tooth bending stress. Parabolic profile modification is preferred over linear profile modification for high contact ratio gears because of its lower sensitivity to manufacturing errors. For parabolic modification, a greater amount of modification at the tooth tip and a longer modification zone are required. Design charts are presented for high contact ratio gears with various profile modifications operating under a range of loads. A procedure is illustrated for using the charts to find the optimum profile design.

  11. Design Study of Modular Nuclear Power Plant with Small Long Life Gas Cooled Fast Reactors Utilizing MOX Fuel

    NASA Astrophysics Data System (ADS)

    Ilham, Muhammad; Su'ud, Zaki

    2017-01-01

    Growing energy needed due to increasing of the world’s population encourages development of technology and science of nuclear power plant in its safety and security. In this research, it will be explained about design study of modular fast reactor with helium gas cooling (GCFR) small long life reactor, which can be operated over 20 years. It had been conducted about neutronic design GCFR with Mixed Oxide (UO2-PuO2) fuel in range of 100-200 MWth NPPs of power and 50-60% of fuel fraction variation with cylindrical pin cell and cylindrical balance of reactor core geometry. Calculation method used SRAC-CITATION code. The obtained results are the effective multiplication factor and density value of core reactor power (with geometry optimalization) to obtain optimum design core reactor power, whereas the obtained of optimum core reactor power is 200 MWth with 55% of fuel fraction and 9-13% of percentages.

  12. Determination of effect factor for effective parameter on saccharification of lignocellulosic material by concentrated acid

    NASA Astrophysics Data System (ADS)

    Aghili, Sina; Nodeh, Ali Arasteh

    2015-12-01

    Tamarisk usage as a new group of lignocelluloses material to produce fermentable sugars in bio ethanol process was studied. The overall aim of this work was to establish the optimum condition for acid hydrolysis of this new material and a mathematical model predicting glucose release as a function of operation variable. Sulfuric acid concentration in the range of 20 to 60%(w/w), process temperature between 60 to 95oC, hydrolysis time from 120 to 240 min and solid content 5,10,15%(w/w) were used as hydrolysis conditions. HPLC was used to analysis of the product. This analysis indicated that glucose was the main fermentable sugar and was increase with time, temperature and solid content and acid concentration was a parabola influence in glucose production. The process was modeled by a quadratic equation. Curve study and model were found that 42% acid concentration, 15 % solid content and 90oC were optimum condition.

  13. Variable mixer propulsion cycle

    NASA Technical Reports Server (NTRS)

    Rundell, D. J.; Mchugh, D. P.; Foster, T.; Brown, R. H. (Inventor)

    1978-01-01

    A design technique, method and apparatus are delineated for controlling the bypass gas stream pressure and varying the bypass ratio of a mixed flow gas turbine engine in order to achieve improved performance. The disclosed embodiments each include a mixing device for combining the core and bypass gas streams. The variable area mixing device permits the static pressures of the core and bypass streams to be balanced prior to mixing at widely varying bypass stream pressure levels. The mixed flow gas turbine engine therefore operates efficiently over a wide range of bypass ratios and the dynamic pressure of the bypass stream is maintained at a level which will keep the engine inlet airflow matched to an optimum design level throughout a wide range of engine thrust settings.

  14. A Comparison of Various magnetic thin films for the application of microscale magnetic components

    NASA Astrophysics Data System (ADS)

    Flynn, David; Desmulliez, Marc

    2006-04-01

    A novel method to manufacture and assemble a microinductor that is based on flipchip bonding is described in this paper. The fabricated inductors have an inductance ranging from 0.3 µH to 180 µH. An optimum Q-factor of 14 was attained at 1MHz. Cobalt-Copper-iron cores maintained a constant inductance across a 1 kHz-1MHz bandwidth. The thin film laminate minimizes the eddy current loss and the hysteresis loss was negligible. Impedance increases linearly with frequency indicating that parasitic capacitance effects in this frequency range are negligible. The microinductor operated at an efficiency of 92% at 1MHz achieving a power density of 3.75 W/mm3.

  15. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  16. Study of the application of advanced technologies to laminar flow control systems for subsonic transports. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.; Bennett, J. A.; Etchberger, F. R.; Ferrill, R. S.; Meade, L. E.

    1976-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control to the wings and empennage of long-range subsonic transport aircraft compatible with initial operation in 1985. For a design mission range of 10,186 km (5500 n mi), advanced technology laminar-flow-control (LFC) and turbulent-flow (TF) aircraft were developed for both 200 and 400-passenger payloads, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish the optimum geometry for LFC and TF aircraft, advanced LFC system concepts and arrangements were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. For the final LFC aircraft, analyses were conducted to define maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft. Compared to the corresponding advanced technology TF transports, the 200- and 400-passenger LFC aircraft realized reductions in fuel consumption up to 28.2%, reductions in direct operating costs up to 8.4%, and improvements in fuel efficiency, in ssm/lb of fuel, up to 39.4%. Compared to current commercial transports at the design range, the LFC study aircraft demonstrate improvements in fuel efficiency up to 131%. Research and technology requirements requisite to the development of LFC transport aircraft were identified.

  17. Mass resolution of linear quadrupole ion traps with round rods.

    PubMed

    Douglas, D J; Konenkov, N V

    2014-11-15

    Auxiliary dipole excitation is widely used to eject ions from linear radio-frequency quadrupole ion traps for mass analysis. Linear quadrupoles are often constructed with round rod electrodes. The higher multipoles introduced to the electric potential by round rods might be expected to change the ion ejection process. We have therefore investigated the optimum ratio of rod radius, r, to field radius, r0, for excitation and ejection of ions. Trajectory calculations are used to determine the excitation contour, S(q), the fraction of ions ejected when trapped at q values close to the ejection (or excitation) q. Initial conditions are randomly selected from Gaussian distributions of the x and y coordinates and a thermal distribution of velocities. The N = 6 (12 pole) and N = 10 (20 pole) multipoles are added to the quadrupole potential. Peak shapes and resolution were calculated for ratios r/r0 from 1.09 to 1.20 with an excitation time of 1000 cycles of the trapping radio-frequency. Ratios r/r0 in the range 1.140 to 1.160 give the highest resolution and peaks with little tailing. Ratios outside this range give lower resolution and peaks with tails on either the low-mass side or the high-mass side of the peaks. This contrasts with the optimum ratio of 1.126-1.130 for a quadrupole mass filter operated conventionally at the tip of the first stability region. With the optimum geometry the resolution is 2.7 times greater than with an ideal quadrupole field. Adding only a 2.0% hexapole field to a quadrupole field increases the resolution by a factor of 1.6 compared with an ideal quadrupole field. Addition of a 2.0% octopole lowers resolution and degrades peak shape. With the optimum value of r/r0 , the resolution increases with the ejection time (measured in cycles of the trapping rf, n) approximately as R0.5 = 6.64n, in contrast to a pure quadrupole field where R0.5 = 1.94n. Adding weak nonlinear fields to a quadrupole field can improve the resolution with mass-selective ejection of ions by up to a factor of 2.7. The optimum ratio r/r0 is 1.14 to 1.16, which differs from the optimum ratio for a mass filter of 1.128-1.130. Copyright © 2014 John Wiley & Sons, Ltd.

  18. The first clinical application of planning software for laparoscopic microwave thermosphere ablation of malignant liver tumours

    PubMed Central

    Berber, Eren

    2015-01-01

    Background Liver tumour ablation is an operator-dependent procedure. The determination of the optimum needle trajectory and correct ablation parameters could be challenging. The aim of this study was to report the utility of a new, procedure planning software for microwave ablation (MWA) of liver tumours. Methods This was a feasibility study in a pilot group of five patients with nine metastatic liver tumours who underwent laparoscopic MWA. Pre-operatively, parameters predicting the desired ablation zones were calculated for each tumour. Intra-operatively, this planning strategy was followed for both antenna placement and energy application. Post-operative 2-week computed tomography (CT) scans were performed to evaluate complete tumour destruction. Results The patients had an average of two tumours (range 1–4), measuring 1.9 ± 0.4 cm (range 0.9–4.4 cm). The ablation time was 7.1 ± 1.3 min (range 2.5–10 min) at 100W. There were no complications or mortality. The patients were discharged home on post-operative day (POD) 1. At 2-week CT scans, there were no residual tumours, with a complete ablation demonstrated in all lesions. Conclusions This study describes and validates pre-treatment planning software for MWA of liver tumours. This software was found useful to determine precisely the ablation parameters and needle placement to create a predicted zone of ablation. PMID:25980481

  19. Testing of Performance of a Scroll Pump in Support of Improved Vapor Phase Catalytic Ammonia Removal (VPCAR) Mass Reduction

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kraft, Thomas G.; Yee, Glenda F.; Jankovsky, Amy L.; Flynn, Michael

    2006-01-01

    This paper describes the results of ground testing of a scroll pump with a potential of being a substitute for the current vacuum pump of the Vapor Phase Catalytic Ammonia Reduction (VPCAR). Assessments of the pressure-time, pump-down time, pump power and the pump noise were made for three configurations of the pump the first of which was without the gas ballast, the second with the gas ballast installed but not operating and the third with the gas ballast operating. The tested scroll pump exhibited optimum characteristics given its mass and power requirements. The pump down time required to reach a pressure of 50 Torr ranged from 60 minutes without the ballast to about 120 minutes with the gas ballast operational. The noise emission and the pump power were assessed in this paper as well.

  20. Accurate reaction-diffusion operator splitting on tetrahedral meshes for parallel stochastic molecular simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepburn, I.; De Schutter, E., E-mail: erik@oist.jp; Theoretical Neurobiology & Neuroengineering, University of Antwerp, Antwerp 2610

    Spatial stochastic molecular simulations in biology are limited by the intense computation required to track molecules in space either in a discrete time or discrete space framework, which has led to the development of parallel methods that can take advantage of the power of modern supercomputers in recent years. We systematically test suggested components of stochastic reaction-diffusion operator splitting in the literature and discuss their effects on accuracy. We introduce an operator splitting implementation for irregular meshes that enhances accuracy with minimal performance cost. We test a range of models in small-scale MPI simulations from simple diffusion models to realisticmore » biological models and find that multi-dimensional geometry partitioning is an important consideration for optimum performance. We demonstrate performance gains of 1-3 orders of magnitude in the parallel implementation, with peak performance strongly dependent on model specification.« less

  1. The Role of Radial Clearance on the Performance of Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Howard, Samuel; Dykas, Brian

    2002-01-01

    Load capacity tests were conducted to determine how radial clearance variations affect the load capacity coefficient of foil air bearings. Two Generation III foil air bearings with the same design but possessing different initial radial clearances were tested at room temperature against an as-ground PS304 coated journal operating at 30,000 rpm. Increases in radial clearance were accomplished by reducing the journal's outside diameter via an in-place grinding system. From each load capacity test the bearing load capacity coefficient was calculated from the rule-of-thumb (ROT) model developed for foil air bearings. The test results indicate that, in terms of the load capacity coefficient, radial clearance has a direct impact on the performance of the foil air bearing. Each test bearing exhibited an optimum radial clearance that resulted in a maximum load capacity coefficient. Relative to this optimum value are two separate operating regimes that are governed by different modes of failure. Bearings operating with radial clearances less than the optimum exhibit load capacity coefficients that are a strong function of radial clearance and are prone to a thermal runaway failure mechanism and bearing seizure. Conversely, a bearing operating with a radial clearance twice the optimum suffered only a 20 percent decline in its maximum load capacity coefficient and did not experience any thermal management problems. However, it is unknown to what degree these changes in radial clearance had on other performance parameters, such as the stiffness and damping properties of the bearings.

  2. Optimization of hydrostatic pressure at varied sonication conditions--power density, intensity, very low frequency--for isothermal ultrasonic sludge treatment.

    PubMed

    Delmas, Henri; Le, Ngoc Tuan; Barthe, Laurie; Julcour-Lebigue, Carine

    2015-07-01

    This work aims at investigating for the first time the key sonication (US) parameters: power density (DUS), intensity (IUS), and frequency (FS) - down to audible range, under varied hydrostatic pressure (Ph) and low temperature isothermal conditions (to avoid any thermal effect). The selected application was activated sludge disintegration, a major industrial US process. For a rational approach all comparisons were made at same specific energy input (ES, US energy per solid weight) which is also the relevant economic criterion. The decoupling of power density and intensity was obtained by either changing the sludge volume or most often by changing probe diameter, all other characteristics being unchanged. Comprehensive results were obtained by varying the hydrostatic pressure at given power density and intensity. In all cases marked maxima of sludge disintegration appeared at optimum pressures, which values increased at increasing power intensity and density. Such optimum was expected due to opposite effects of increasing hydrostatic pressure: higher cavitation threshold then smaller and fewer bubbles, but higher temperature and pressure at the end of collapse. In addition the first attempt to lower US frequency down to audible range was very successful: at any operation condition (DUS, IUS, Ph, sludge concentration and type) higher sludge disintegration was obtained at 12 kHz than at 20 kHz. The same values of optimum pressure were observed at 12 and 20 kHz. At same energy consumption the best conditions - obtained at 12 kHz, maximum power density 720 W/L and 3.25 bar - provided about 100% improvement with respect to usual conditions (1 bar, 20 kHz). Important energy savings and equipment size reduction may then be expected. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Regenerative flywheel storage system, volume 2

    NASA Astrophysics Data System (ADS)

    1980-06-01

    A vehicle propulsion system was simulated on a digital computer in order to determine the optimum system operating strategies and to establish a calculated range improvement over a nonregenerative, all electric vehicle. Fabrication of the inductor motor, the flywheel, the power conditioner, and the system control are described. Test results of the system operating over the SAE J227a Schedule D driving cycle are given and are compared to the calculated value. The flywheel energy storage system consists of a solid rotor, synchronous, inductor type, flywheel drive machine electrically coupled to a dc battery electric propulsion system through a load commutated inverter. The motor/alternator unit is coupled mechanically to a small steel flywheel which provides a portion of the vehicle's accelerating energy and regenerates the vehicle's braking energy.

  4. The expression of the skeletal muscle force-length relationship in vivo: a simulation study.

    PubMed

    Winter, Samantha L; Challis, John H

    2010-02-21

    The force-length relationship is one of the most important mechanical characteristics of skeletal muscle in humans and animals. For a physiologically realistic joint range of motion and therefore range of muscle fibre lengths only part of the force-length curve may be used in vivo, i.e. only a section of the force-length curve is expressed. A generalised model of a mono-articular muscle-tendon complex was used to examine the effect of various muscle architecture parameters on the expressed section of the force-length relationship for a 90 degrees joint range of motion. The parameters investigated were: the ratio of tendon resting length to muscle fibre optimum length (L(TR):L(F.OPT)) (varied from 0.5 to 11.5), the ratio of muscle fibre optimum length to average moment arm (L(F.OPT):r) (varied from 0.5 to 5), the normalised tendon strain at maximum isometric force (c) (varied from 0 to 0.08), the muscle fibre pennation angle (theta) (varied from 0 degrees to 45 degrees) and the joint angle at which the optimum muscle fibre length occurred (phi). The range of values chosen for each parameter was based on values reported in the literature for five human mono-articular muscles with different functional roles. The ratios L(TR):L(F.OPT) and L(F.OPT):r were important in determining the amount of variability in the expressed section of the force-length relationship. The modelled muscle operated over only one limb at intermediate values of these two ratios (L(TR):L(F.OPT)=5; L(F.OPT):r=3), whether this was the ascending or descending limb was determined by the precise values of the other parameters. It was concluded that inter-individual variability in the expressed section of the force-length relationship is possible, particularly for muscles with intermediate values of L(TR):L(F.OPT) and L(F.OPT):r such as the brachialis and vastus lateralis. Understanding the potential for inter-individual variability in the expressed section is important when using muscle models to simulate movement. (c) 2009 Elsevier Ltd. All rights reserved.

  5. Internal combustion engine controls for reduced exhausts contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, D.R. Jr.

    1974-06-04

    An electrochemical control system for achieving optimum efficiency in the catalytic conversion of hydrocarbon and carbon monoxide emissions from internal combustion engines is described. The system automatically maintains catalyst temperature at a point for maximum pollutant conversion by adjusting ignition timing and fuel/air ratio during warm-up and subsequent operation. Ignition timing is retarded during engine warm-up to bring the catalytic converter to an efficient operating temperature within a minimum period of time. After the converter reaches a predetermined minimum temperature, the spark is advanced to within its normal operating range. A needle-valve adjustment during warm-up is employed to enrich themore » fuel/air mixture by approximately 10 percent. Following warm-up and attainment of a predetermined catalyst temperature, the needle valve is moved automatically to its normal position (e.g., a fuel/air ratio of 16:1). Although the normal lean mixture causes increased amounts of nitrogen oxide emissions, present NO/sub x/ converters appear capable of handling the increased emissions under normal operating conditions.« less

  6. Modeling and optimum time performance for concurrent processing

    NASA Technical Reports Server (NTRS)

    Mielke, Roland R.; Stoughton, John W.; Som, Sukhamoy

    1988-01-01

    The development of a new graph theoretic model for describing the relation between a decomposed algorithm and its execution in a data flow environment is presented. Called ATAMM, the model consists of a set of Petri net marked graphs useful for representing decision-free algorithms having large-grained, computationally complex primitive operations. Performance time measures which determine computing speed and throughput capacity are defined, and the ATAMM model is used to develop lower bounds for these times. A concurrent processing operating strategy for achieving optimum time performance is presented and illustrated by example.

  7. Optimization of EB plant by constraint control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummel, H.K.; de Wit, G.B.C.; Maarleveld, A.

    1991-03-01

    Optimum plant operation can often be achieved by means of constraint control instead of model- based on-line optimization. This is because optimum operation is seldom at the top of the hill but usually at the intersection of constraints. This article describes the development of a constraint control system for a plant producing ethylbenzene (EB) by the Mobil/Badger Ethylbenzene Process. Plant optimization can be defined as the maximization of a profit function describing the economics of the plant. This function contains terms with product values, feedstock prices and operational costs. Maximization of the profit function can be obtained by varying relevantmore » degrees of freedom in the plant, such as a column operating pressure or a reactor temperature. These degrees of freedom can be varied within the available operating margins of the plant.« less

  8. Experimental Comparison of Speed : Fuel-flow and Speed-area Controls on a Turbojet Engine for Small Step Disturbances

    NASA Technical Reports Server (NTRS)

    Wenzel, L M; Hart, C E; Craig, R T

    1957-01-01

    Optimum proportional-plus-integral control settings for speed - fuel-flow control, determined by minimization of integral criteria, correlated well with analytically predicted optimum settings. Engine response data are given for a range of control settings around the optimum. An inherent nonlinearity in the speed-area loop necessitated the use of nonlinear controls. Response data for two such nonlinear control schemes are presented.

  9. Optimum moisture levels for biodegradation of mortality composting envelope materials.

    PubMed

    Ahn, H K; Richard, T L; Glanville, T D

    2008-01-01

    Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.

  10. Acoustic Resonator Optimisation for Airborne Particle Manipulation

    NASA Astrophysics Data System (ADS)

    Devendran, Citsabehsan; Billson, Duncan R.; Hutchins, David A.; Alan, Tuncay; Neild, Adrian

    Advances in micro-electromechanical systems (MEMS) technology and biomedical research necessitate micro-machined manipulators to capture, handle and position delicate micron-sized particles. To this end, a parallel plate acoustic resonator system has been investigated for the purposes of manipulation and entrapment of micron sized particles in air. Numerical and finite element modelling was performed to optimise the design of the layered acoustic resonator. To obtain an optimised resonator design, careful considerations of the effect of thickness and material properties are required. Furthermore, the effect of acoustic attenuation which is dependent on frequency is also considered within this study, leading to an optimum operational frequency range. Finally, experimental results demonstrated good particle levitation and capture of various particle properties and sizes ranging to as small as 14.8 μm.

  11. Development and Characterization of High-Efficiency, High-Specific Impulse Xenon Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Jacobson, David (Technical Monitor)

    2004-01-01

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000 to 3000 s range. Motivated by previous industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. During the development phase, the laboratory-model NASA 173M Hall thrusters were designed and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens magnetic field design. Experiments with the NASA 173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens. During the characterization phase, additional plasma properties of the NASA 173Mv2 were measured and a performance model was derived. Results from the model and experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The electron Hall parameter was approximately constant with voltage, which confirmed efficient operation can be realized only over a limited range of Hall parameters.

  12. CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes

    2008-03-16

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transportmore » properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies.« less

  13. Threshold detection in an on-off binary communications channel with atmospheric scintillation

    NASA Technical Reports Server (NTRS)

    Webb, W. E.; Marino, J. T., Jr.

    1974-01-01

    The optimum detection threshold in an on-off binary optical communications system operating in the presence of atmospheric turbulence was investigated assuming a poisson detection process and log normal scintillation. The dependence of the probability of bit error on log amplitude variance and received signal strength was analyzed and semi-emperical relationships to predict the optimum detection threshold derived. On the basis of this analysis a piecewise linear model for an adaptive threshold detection system is presented. Bit error probabilities for non-optimum threshold detection system were also investigated.

  14. Programmed Controls for an All-Electric School.

    ERIC Educational Resources Information Center

    Novak, W.J.

    1965-01-01

    Heating and ventilating equipment used in the all-electric upper Elementary School in Bedford, New Hampshire, is controlled to insure optimum comfort while the school is occupied and optimum economy of standby operation while it is not in use. A master clock programs all control functions while its mechanism drives two types of tapes--(1) a 365…

  15. Influence of operating conditions on the air gasification of dry refinery sludge in updraft gasifier

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Sinnathambi, C. M.

    2013-06-01

    In the present work, details of the equilibrium modeling of dry refinery sludge (DRS) are presented using ASPEN PLUS Simulator in updraft gasifier. Due to lack of available information in the open journal on refinery sludge gasification using updraft gasifier, an evaluate for its optimum conditions on gasification is presented in this paper. For this purpose a Taguchi Orthogonal array design, statistical software is applied to find optimum conditions for DRS gasification. The goal is to identify the most significant process variable in DRS gasification conditions. The process variables include; oxidation zone temperature, equivalent ratio, operating pressure will be simulated and examined. Attention was focused on the effect of optimum operating conditions on the gas composition of H2 and CO (desirable) and CO2 (undesirable) in terms of mass fraction. From our results and finding it can be concluded that the syngas (H2 & CO) yield in term of mass fraction favors high oxidation zone temperature and at atmospheric pressure while CO2 acid gas favor at a high level of equivalent ratio as well as air flow rate favoring towards complete combustion.

  16. Gamma ray irradiated AgFeO{sub 2} nanoparticles with enhanced gas sensor properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiuhua, E-mail: xhwang@mail.ahnu.edu.cn; Shi, Zhijie; Yao, Shangwu

    2014-11-15

    AgFeO{sub 2} nanoparticles were synthesized via a facile hydrothermal method and irradiated by various doses of gamma ray. The products were characterized with X-ray powder diffraction, UV–vis absorption spectrum and transmission electron microscope. The results revealed that the crystal structure, morphology and size of the samples remained unchanged after irradiation, while the intensity of UV–Vis spectra increased with irradiation dose increasing. In addition, gamma ray irradiation improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including the optimum operating temperature and sensitivity, which might be ascribed to the generation of defects. - Graphical abstract: Gamma ray irradiationmore » improved the performance of gas sensor based on the AgFeO{sub 2} nanoparticles including sensitivity and optimum operating temperature, which might be ascribed to the generation of defects. - Highlights: • AgFeO{sub 2} nanoparticles were synthesized and irradiated with gamma ray. • AgFeO{sub 2} nanoparticles were employed to fabricate gas sensors to detect ethanol. • Gamma ray irradiation improved the sensitivity and optimum operating temperature.« less

  17. Operating characteristics of a new ion source for KSTAR neutral beam injection system.

    PubMed

    Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-01

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  18. Enhancing wind turbines efficiency with passive reconfiguration of flexible blades

    NASA Astrophysics Data System (ADS)

    Cognet, Vincent P. A.; Thiria, Benjamin; Courrech Du Pont, Sylvain; MSC Team; PMMH Team

    2015-11-01

    Nature provides excellent examples where flexible materials are advantageous in a fluid stream. By folding, leaves decrease the drag caused by air stream; and birds' flapping is much more efficient with flexible wings. Motivated by this, we investigate the effect of flexible blades on the performance of a wind turbine. The effect of chordwise flexible blades is studied both experimentally and theoretically on a small wind turbine in steady state. Four parameters are varied: the wind velocity, the resisting torque, the pitch angle, and the blade's bending modulus. We find an optimum efficiency with respect to the bending modulus. By tuning our four parameters, the wind turbine with flexible blades has a high-efficiency range significantly larger than rigid blades', and, furthermore enhances the operating range. These results are all the more important as one of the current issues concerning wind turbines is the enlargement of their operating range. To explain these results, we propose a simple two-dimensional model by discretising the blade along the radius. We take into account the variation of drag and lift coefficients with the bending ability. This model matches experimental observations and demonstrates the contribution of the reconfiguration of the blade. Matiere et Systemes Complexes.

  19. Tungsten-Doped TiO2 Nanolayers with Improved CO2 Gas Sensing Properties for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Saberi, Maliheh; Ashkarran, Ali Akbar

    Tungsten-doped TiO2 gas sensors were successfully synthesized using sol-gel process and spin coating technique. The fabricated sensor was characterized by field emission scanning electron microscopy (FE-SEM), ultraviolet visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Gas sensing properties of pristine and tungsten-doped TiO2 nanolayers (NLs) were probed by detection of CO2 gas. A series of experiments were conducted in order to find the optimum operating temperature of the prepared sensors and also the optimum value of tungsten concentration in TiO2 matrix. It was found that introducing tungsten into the TiO2 matrix enhanced the gas sensing performance. The maximum response was found to be (1.37) for 0.001g tungsten-doped TiO2 NLs at 200∘C as an optimum operating temperature.

  20. Optimization of control gain by operator adjustment

    NASA Technical Reports Server (NTRS)

    Kruse, W.; Rothbauer, G.

    1973-01-01

    An optimal gain was established by measuring errors at 5 discrete control gain settings in an experimental set-up consisting of a 2-dimensional, first-order pursuit tracking task performed by subjects (S's). No significant experience effect on optimum gain setting was found in the first experiment. During the second experiment, in which control gain was continuously adjustable, high experienced S's tended to reach the previously determined optimum gain quite accurately and quickly. Less experienced S's tended to select a marginally optimum gain either below or above the experimentally determined optimum depending on initial control gain setting, although mean settings of both groups were equal. This quick and simple method is recommended for selecting control gains for different control systems and forcing functions.

  1. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    NASA Astrophysics Data System (ADS)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  2. Radial Clearance Found To Play a Key Role in the Performance of Compliant Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.

    2003-01-01

    Compliant foil air bearings are at the forefront of the Oil-Free turbomachinery revolution, which supports gas turbine engines with hydrodynamic bearings that use air instead of oil as the working fluid. These types of bearings have been around for almost 50 years and have found a home in several commercial applications, such as in air cycle machines, turbocompressors, and microturbines, but are now being aggressively pursued for use in small and midrange aircraft gas turbine engines. Benefits include higher operating speeds and temperatures, lower maintenance costs, and greater reliability. The Oil-Free Turbomachinery team at the NASA Glenn Research Center is working to foster the transition of Oil-Free technology into gas turbine engines by performing in-house experiments on foil air bearings in order to gain a greater insight into their complex operating principles. A research program recently undertaken at Glenn focused on the concept of radial clearance and its influence on bearing performance. The tests were conducted on foil bearings with different radial clearances. As defined for a foil bearing, radial clearance is a measure of the small amount of shaft radial motion that is present from play that exists in the elastic support structure, such as between the top and bump foils and the bump foils and bearing shell (see the drawing). With an insufficient amount of radial clearance, the bearing imparts a high preload on the shaft, which when excessive, can reduce the loadcarrying capability of the bearing. On the other hand, systems using foil bearings with excessive radial clearance may experience rotordynamic instabilities because of low bearing preload. Therefore, without a more thorough understanding of radial clearance, it is difficult to accurately predict the performance of a given bearing design. The test program demonstrated that there is a direct correlation between radial clearance and the performance of foil air bearings. As shown in the graph, an optimum radial clearance exists that will maximize the amount of load that the bearing is capable of supporting. With respect to this optimum, two different performance regimes were observed that are a function of the amount of radial clearance. Tests showed that bearings with radial clearances below the optimum in regime I were susceptible to sudden seizure, a failure mode indicative of thermal runaway caused by high preload. The high preload is in response to an insufficient amount of radial clearance available to accommodate the thermal growth of the bearing and shaft. However, radial clearances greater than the optimum in regime II resulted in low bearing preloads that did not cause any heat-related problems, and the failure mode was due to fluid-film breakdown. In fact, bearings operating with radial clearances twice as much as the optimum suffered a decrease in the maximum load capacity of only about 20 percent. Therefore, special attention has to be given to the range of operating conditions expected in the bearing/shaft system since changes in temperature, centrifugal, and hydrodynamic effects can all affect radial clearance. This enhanced understanding of foil air bearing behavior will greatly aid our efforts to transition Oil-Free technology to future aircraft engines.

  3. A study of the parameters affecting the effectiveness of Moringa oleifera in drinking water purification

    NASA Astrophysics Data System (ADS)

    Pritchard, M.; Craven, T.; Mkandawire, T.; Edmondson, A. S.; O'Neill, J. G.

    The powder obtained from the seeds of the Moringa oleifera tree has been shown to be an effective primary coagulant for water treatment. When the seeds are dried, dehusked, crushed and added to water, the powder acts as a coagulant binding colloidal particles and bacteria to form agglomerated particles (flocs), which settle allowing the clarified supernatant to be poured off. Very little research has been undertaken on the parameters affecting the effectiveness of M. oleifera, especially in Malawi, for purification of drinking water and there is a great need for further testing in this area. Conclusive data needs to be compiled to demonstrate the effects of various water parameters have on the efficiency of the seeds. A parametric study was undertaken at Leeds Metropolitan University, UK, with the aim to establish the most appropriate dosing method; the optimum dosage for removal of turbidity; the influence of pH and temperature; together with the shelf life of the M. oleifera seeds. The study revealed that the most suitable dosing method was to mix the powder into a concentrated paste, hence forming a stock suspension. The optimum M. oleifera dose, for turbidity values between 40 and 200 NTU, ranged between 30 and 55 mg/l. With turbidity set at 130 NTU and a M. oleifera dose within the optimum range at 50 mg/l, pH levels were varied between 4 and 9. It was discovered that the coagulant performance was not too sensitive to pH fluctuations when conditions were within the optimum range. The most efficient coagulation, determined by the greatest reduction in turbidity, occurred at pH 6.5. Alkaline conditions were overall more favourable than acidic conditions; pH 9 had an efficiency of 65% of optimum, whilst at pH 5 the efficiency dropped to around 55%. The efficiency further dropped at pH 4, where the powder only produced results of around 10% of optimum conditions. A temperature range of 4-60 °C was studied in this research. Colder waters (<15 °C) were found to hinder the effectiveness of the coagulation process. The higher the temperature the more effective was the coagulation. It was also found that the age of the seeds, up to 18 months, did not have any noticeable effect on dose level and percentage reduction in turbidity, although at 18 months the seeds had a narrower dosing range to produce near-optimum reduction. Seeds aged 24 months showed a significant decline in coagulant efficiency.

  4. An operation support expert system based on on-line dynamics simulation and fuzzy reasoning for startup schedule optimization in fossil power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, H.; Eki, Y.; Kaji, A.

    1993-12-01

    An expert system which can support operators of fossil power plants in creating the optimum startup schedule and executing it accurately is described. The optimum turbine speed-up and load-up pattern is obtained through an iterative manner which is based on fuzzy resonating using quantitative calculations as plant dynamics models and qualitative knowledge as schedule optimization rules with fuzziness. The rules represent relationships between stress margins and modification rates of the schedule parameters. Simulations analysis proves that the system provides quick and accurate plant startups.

  5. Generation of optimum vertical profiles for an advanced flight management system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Waters, M. H.

    1981-01-01

    Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined.

  6. Investigation of remote sensing techniques as inputs to operational resource management. [Butte County, Black Hills, South Dakota, Blackhawk Quadrangle, and Belle Fouche Basin

    NASA Technical Reports Server (NTRS)

    Schmer, F. A. (Principal Investigator); Isakson, R. E.; Eidenshink, J. C.

    1977-01-01

    The author has identified the following significant results. Visual interpretation of 1:125,000 color LANDSAT prints produced timely level 1 maps of accuracies in excess of 80% for agricultural land identification. Accurate classification of agricultural land via digital analysis of LANDSAT CCT's required precise timing of the date of data collection with mid to late June optimum for western South Dakota. The LANDSAT repetitive nine day cycle over the state allowed the surface areas of stockdams and small reservoir systems to be monitored to provide a timely approximation of surface water conditions on the range. Combined use of DIRS, K-class, and LANDSAT CCT's demonstrated the ability to produce aspen maps of greater detail and timeliness than was available using US Forest Service maps. Visual temporal analyses of LANDSAT imagery improved highway map drainage information and were used to prepare a seven county drainage network. An optimum map of flood-prone areas was developed, utilizing high altitude aerial photography and USGS maps.

  7. Ultrasound assisted microextraction-nano material solid phase dispersion for extraction and determination of thymol and carvacrol in pharmaceutical samples: experimental design methodology.

    PubMed

    Roosta, Mostafa; Ghaedi, Mehrorang; Daneshfar, Ali; Sahraei, Reza

    2015-01-15

    In the present study, for the first time, a new extraction method based on "ultrasound assisted microextraction-nanomaterial solid phase dispersion (UAME-NMSPD)" was developed to preconcentrate the low quantity of thymol and carvacrol in pharmaceutical samples prior to their HPLC-UV separation/determination. The analytes were accumulated on nickel sulfide nanomaterial loaded on activated carbon (NiS-NP-AC) that with more detail identified by XRD, FESEM and UV-vis technique. Central composite design (CCD) combined with desirability function (DF) was used to search for optimum operational conditions. Working under optimum conditions specified as: 10 min ultrasonic time, pH 3, 0.011 g of adsorbent and 600 μL extraction solvent) permit achievement of high and reasonable linear range over 0.005-2.0 μg mL(-1) (r(2)>0.9993) with LOD of thymol and carvacrol as 0.23 and 0.21 μg L(-1), respectively. The relative standard deviations (RSDs) were less than 4.93% (n=3). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Ground-based deep-space LADAR for satellite detection: A parametric study

    NASA Astrophysics Data System (ADS)

    Davey, Kevin F.

    1989-12-01

    The minimum performance requirements are determined of a ground based infrared LADAR designed to detect deep space satellites, and a candidate sensor design is presented based on current technology. The research examines LADAR techniques and detection methods to determine the optimum LADAR configuration, and then assesses the effects of atmospheric transmission, background radiance, and turbulence across the infrared region to find the optimum laser wavelengths. Diffraction theory is then used in a parametric analysis of the transmitted laser beam and received signal, using a Cassegrainian telescope design and heterodyne detection. The effects of beam truncation and obscuration, heterodyne misalignment, off-boresight detection, and image-pixel geometry are also included in the analysis. The derived equations are then used to assess the feasibility of several candidate designs under a wide range of detection conditions including daylight operation through cirrus. The results show that successful detection is theoretically possible under most conditions by transmitting a high power frequency modulated pulse train from an isotopic 13CO2 laser radiating at 11.17 micrometers, and utilizing post-detection integration and pulse compression techniques.

  9. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    NASA Astrophysics Data System (ADS)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  10. Research on the treatment of oily wastewater by coalescence technology.

    PubMed

    Li, Chunbiao; Li, Meng; Zhang, Xiaoyan

    2015-01-01

    Recently, oily wastewater treatment has become a hot research topic across the world. Among the common methods for oily wastewater treatment, coalescence is one of the most promising technologies because of its high efficiency, easy operation, smaller land coverage, and lower investment and operational costs. In this research, a new type of ceramic filter material was chosen to investigate the effects of some key factors including particle size of coarse-grained materials, temperature, inflow direction and inflow velocity of the reactor. The aim was to explore the optimum operating conditions for coarse-graining. Results of a series of tests showed that the optimum operating conditions were a combination of grain size 1-3 mm, water temperature 35 °C and up-flow velocity 8 m/h, which promised a maximum oil removal efficiency of 93%.

  11. Optimization of radar imaging system parameters for geological analysis

    NASA Technical Reports Server (NTRS)

    Waite, W. P.; Macdonald, H. C.; Kaupp, V. H.

    1981-01-01

    The use of radar image simulation to model terrain variation and determine optimum sensor parameters for geological analysis is described. Optimum incidence angle is determined by the simulation, which evaluates separately the discrimination of surface features possible due to terrain geometry and that due to terrain scattering. Depending on the relative relief, slope, and scattering cross section, optimum incidence angle may vary from 20 to 80 degrees. Large incident angle imagery (more than 60 deg) is best for the widest range of geological applications, but in many cases these large angles cannot be achieved by satellite systems. Low relief regions require low incidence angles (less than 30 deg), so a satellite system serving a broad range of applications should have at least two selectable angles of incidence.

  12. Intelligent Processing Equipment Research Supported by the National Science Foundation

    NASA Technical Reports Server (NTRS)

    Rao, Suren B.

    1992-01-01

    The research in progress on processes, workstations, and systems has the goal of developing a high level of understanding of the issues involved. This will enable the incorporation of a level of intelligence that will allow the creation of autonomous manufacturing systems that operate in an optimum manner, under a wide range of conditions. The emphasis of the research has been on the development of highly productive and flexible techniques to address current and future problems in manufacturing and processing. Several of these projects have resulted in well-defined and established models that can now be implemented in the application arena in the next few years.

  13. The Langley turbo-prop commuter design: A complete project description

    NASA Technical Reports Server (NTRS)

    Buttram, Greg; Horton, Keith; Keeter, Tim; Millhouse, Paul; Newberry, Kelli; Obyrne, Brian

    1991-01-01

    The primary objective of this project was to propose and prove the possibility of a new, advanced technology commuter aircraft design. Among the specifications were short to medium range capabilities, low seat per mile cost, fuel efficiency, and passenger comfort. Based on market evaluation, we found that the optimum size for new regional aircraft is around 50 passengers; we have designed our aircraft for this capacity. Turboprop engines provide substantial reductions in operating costs due to lower fuel consumption. We have therefore chosen an advanced turboprop engine. Composite materials, while more expensive to purchase and manufacture, result in decreased costs later through weight savings and ease of replacement.

  14. Hand-held microwave search detector

    NASA Astrophysics Data System (ADS)

    Daniels, David J.; Philippakis, Mike

    2005-05-01

    This paper describes the further development of a patented, novel, low cost, microwave search detector using noise radar technology operating in the 27-40GHz range of frequencies, initially reported in SPIE 2004. Initial experiments have shown that plastic explosives, ceramics and plastic material hidden on the body can be detected with the system. This paper considers the basic physics of the technique and reports on the development of a initial prototype system for hand search of suspects and addresses the work carried out on optimisation of PD and FAR. The radar uses a novel lens system and the design and modelling of this for optimum depth of field of focus will be reported.

  15. Optimum-AIV: A planning and scheduling system for spacecraft AIV

    NASA Technical Reports Server (NTRS)

    Arentoft, M. M.; Fuchs, Jens J.; Parrod, Y.; Gasquet, Andre; Stader, J.; Stokes, I.; Vadon, H.

    1991-01-01

    A project undertaken for the European Space Agency (ESA) is presented. The project is developing a knowledge based software system for planning and scheduling of activities for spacecraft assembly, integration, and verification (AIV). The system extends into the monitoring of plan execution and the plan repair phase. The objectives are to develop an operational kernel of a planning, scheduling, and plan repair tool, called OPTIMUM-AIV, and to provide facilities which will allow individual projects to customize the kernel to suit its specific needs. The kernel shall consist of a set of software functionalities for assistance in initial specification of the AIV plan, in verification and generation of valid plans and schedules for the AIV activities, and in interactive monitoring and execution problem recovery for the detailed AIV plans. Embedded in OPTIMUM-AIV are external interfaces which allow integration with alternative scheduling systems and project databases. The current status of the OPTIMUM-AIV project, as of Jan. 1991, is that a further analysis of the AIV domain has taken place through interviews with satellite AIV experts, a software requirement document (SRD) for the full operational tool was approved, and an architectural design document (ADD) for the kernel excluding external interfaces is ready for review.

  16. A Numerical and Experimental Study of Ejector Internal Flow Structure and Geometry Modification for Maximized Performance

    NASA Astrophysics Data System (ADS)

    Falsafioon, Mehdi; Aidoun, Zine; Poirier, Michel

    2017-12-01

    A wide range of industrial refrigeration systems are good candidates to benefit from the cooling and refrigeration potential of supersonic ejectors. These are thermally activated and can use waste heat recovery from industrial processes where it is abundantly generated and rejected to the environment. In other circumstances low cost heat from biomass or solar energy may also be used in order to produce a cooling effect. Ejector performance is however typically modest and needs to be maximized in order to take full advantage of the simplicity and low cost of the technology. In the present work, the behavior of ejectors with different nozzle exit positions has been investigated using a prototype as well as a CFD model. The prototype was used in order to measure the performance advantages of refrigerant (R-134a) flowing inside the ejector. For the CFD model, it is assumed that the ejectors are axi-symmetric along x-axis, thus the generated model is in 2D. The preliminary CFD results are validated with experimental data over a wide range of conditions and are in good accordance in terms of entrainment and compression ratios. Next, the flow patterns of four different topologies are studied in order to discuss the optimum geometry in term of ejector entrainment improvement. Finally, The numerical simulations were used to find an optimum value corresponding to maximized entrainment ratio for fixed operating conditions.

  17. Fresh broad (Vicia faba) tissue homogenate-based biosensor for determination of phenolic compounds.

    PubMed

    Ozcan, Hakki Mevlut; Sagiroglu, Ayten

    2014-08-01

    In this study, a novel fresh broad (Vicia faba) tissue homogenate-based biosensor for determination of phenolic compounds was developed. The biosensor was constructed by immobilizing tissue homogenate of fresh broad (Vicia faba) on to glassy carbon electrode. For the stability of the biosensor, general immobilization techniques were used to secure the fresh broad tissue homogenate in gelatin-glutaraldehyde cross-linking matrix. In the optimization and characterization studies, the amount of fresh broad tissue homogenate and gelatin, glutaraldehyde percentage, optimum pH, optimum temperature and optimum buffer concentration, thermal stability, interference effects, linear range, storage stability, repeatability and sample applications (Wine, beer, fruit juices) were also investigated. Besides, the detection ranges of thirteen phenolic compounds were obtained with the help of the calibration graphs. A typical calibration curve for the sensor revealed a linear range of 5-60 μM catechol. In reproducibility studies, variation coefficient (CV) and standard deviation (SD) were calculated as 1.59%, 0.64×10(-3) μM, respectively.

  18. Hardware-Based Non-Optimum Factors for Launch Vehicle Structural Design

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Cerro, Jeffrey A.

    2010-01-01

    During aerospace vehicle conceptual and preliminary design, empirical non-optimum factors are typically applied to predicted structural component weights to account for undefined manufacturing and design details. Non-optimum factors are developed here for 32 aluminum-lithium 2195 orthogrid panels comprising the liquid hydrogen tank barrel of the Space Shuttle External Tank using measured panel weights and manufacturing drawings. Minimum values for skin thickness, axial and circumferential blade stiffener thickness and spacing, and overall panel thickness are used to estimate individual panel weights. Panel non-optimum factors computed using a coarse weights model range from 1.21 to 1.77, and a refined weights model (including weld lands and skin and stiffener transition details) yields non-optimum factors of between 1.02 and 1.54. Acreage panels have an average 1.24 non-optimum factor using the coarse model, and 1.03 with the refined version. The observed consistency of these acreage non-optimum factors suggests that relatively simple models can be used to accurately predict large structural component weights for future launch vehicles.

  19. Flexible Cryogenic Heat Pipe Development Program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A heat pipe was designed for operation in the 100 - 200 K temperature range with maximum heat transport as a primary design goal; another designed for operation in the 15 - 100 K temperature range with maximum flexibility as a design goal. Optimum geometry and materials for the container and wicking systems were determined. The high power (100 - 200 K) heat pipe was tested with methane at 100 - 140 K, and test data indicated only partial priming with a performance limit of less than 50 percent of theoretical. A series of tests were conducted with ammonia at approximately 280 K to determine the performance under varying fluid charge and test conditions. The low temperature heat pipe was tested with oxygen at 85 - 95 K and with methanol at 295 - 315 K. Performance of the low temperature heat pipe was below theoretical predictions. Results of the completed testing are presented and possible performance limitation mechanisms are discussed. The lower-than-expected performance was felt to be due to small traces of non-condensible gases which prevented the composite wick from priming.

  20. The Effect of Connecting-passage Diameter on the Performance of a Compression-ignition Engine with a Precombustion Chamber

    NASA Technical Reports Server (NTRS)

    Moore, C S; Collins, J H

    1932-01-01

    Results of motoring tests are presented showing the effect of passage diameter on chamber and cylinder compression pressures, maximum pressure differences, and f.m.e.p. over a speed range from 300 to 1,750 r.p.m. Results of engine performance tests are presented which show the effect of passage diameter on m.e.p., explosion pressures, specific fuel consumption, and rates of pressure rise for a range of engine speeds from 500 to 1,500 r.p.m. The cylinder compression pressure, the maximum pressure difference, and the f.m.e.p. decreased rapidly as the passage diameter increased to 29/64 inch, whereas further increase in passage diameter effected only a slight change. The most suitable passage diameter for good engine performance and operating characteristics was 29/64 inch. Passage diameter became less critical with a decrease in engine speed. Therefore, the design should be based on maximum operating speed. Optimum performance and satisfactory combustion control could not be obtained by means of any single diameter of the connecting passage.

  1. Analysis and Experimental Investigation of Optimum Design of Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)

    NASA Astrophysics Data System (ADS)

    Elarusi, Abdulmunaem; Attar, Alaa; Lee, HoSung

    2018-02-01

    The optimum design of a thermoelectric system for application in car seat climate control has been modeled and its performance evaluated experimentally. The optimum design of the thermoelectric device combining two heat exchangers was obtained by using a newly developed optimization method based on the dimensional technique. Based on the analytical optimum design results, commercial thermoelectric cooler and heat sinks were selected to design and construct the climate control heat pump. This work focuses on testing the system performance in both cooling and heating modes to ensure accurate analytical modeling. Although the analytical performance was calculated using the simple ideal thermoelectric equations with effective thermoelectric material properties, it showed very good agreement with experiment for most operating conditions.

  2. Electro-impulse de-icing of a turbofan engine inlet

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.

    1985-01-01

    The application of electromagnetic impulse deicing (EIDI) systems to turbofan engine inlets on business aircraft has been investigated experimentally. The tests were performed in the Icing Research Tunnel at NASA's Lewis Research Center. The deicing system testbed was a Falcon Fanjet 20 engine nacelle. The effectiveness of various deicing coil configurations and mount designs were compared, and design parameters were developed specifically for EIDI systems in turbofan engines. Flight tests were also carried out at altitudes in the range 3000-6000 ft corresponding to a temperature range of -3 to -8 C. It is shown that the ice particles removed from the engine inlet by the deicing system were small enough for the engine to ingest. Tentative design specifications are given with respect to the optimum coil configuration, and operating power of a EIDI production candidate.

  3. Gasification of empty fruit bunch with carbon dioxide in an entrained flow gasifier for syngas production

    NASA Astrophysics Data System (ADS)

    Rahmat, N. F. H.; Rasid, R. A.

    2017-06-01

    The main objectives of this work are to study the gasification of EFB in an atmospheric entrained flow gasifier, using carbon dioxide (CO2) as its gasifying agent and to determine the optimum gasification operating conditions, which includes temperature and the oxidant to fuel (OTF) ratio. These were evaluated in terms of important gasification parameters such as the concentration of hydrogen (H2) and carbon monoxide (CO) produced the syngas ratio H2/CO and carbon conversion. The gasification reactions take place in the presence of CO2 at very high reaction rate because of the high operating temperature (700°C - 900°C). The use of CO2 as the oxidant for gasification process can improve the composition of syngas produced as in the Boudouard reaction. Rise of reaction temperature which is 900°C will increase the concentration of both H2 & CO by up to 81 and 30 respectively, though their production were decreased after the OTF ratio of 0.6 for temperature 700°C & 800°C and OTF ratio 0.8 for temperature 750°C. The operating temperature must be higher than 850°C to ensure the Boudouard reaction become the more prominent reaction for the biomass gasification. The syngas ratio obtained was in the range of ≈ 0.6 - 2.4 which is sufficient for liquid fuel synthesis. For the carbon conversion, the highest fuel conversion recorded at temperature 850°C for all OTF ratios. As the OTF ratio increases, it was found that there was an increase in the formation of CO and H2. This suggests that to achieve higher carbon conversion, high operating temperature and OTF ratio are preferable. This study provides information on the optimum operating conditions for the gasification of biomass, especially the EFB, hence may upsurge the utilization of biomass waste as an energy source.

  4. Optimum performance and potential flow field of hovering rotors

    NASA Technical Reports Server (NTRS)

    Wu, J. C.; Sigman, R. K.

    1975-01-01

    Rotor and propeller performance and induced potential flowfields were studied on the basis of a rotating actuator disk concept, with special emphasis on rotors hovering out of ground effect. A new theory for the optimum performance of rotors hovering OGE is developed and presented. An extended theory for the optimum performance of rotors and propellers in axial motion is also presented. Numerical results are presented for the optimum distributions of blade-bound circulation together with axial inflow and ultimate wake velocities for the hovering rotor over the range of thrust coefficient of interest in rotorcraft applications. Shapes of the stream tubes and of the velocities in the slipstream are obtained, using available methods, for optimum and off-optimum circulation distributions for rotors hovering in and out of ground effect. A number of explicit formulae useful in computing rotor and propeller induced flows are presented for stream functions and velocities due to distributions of circular vortices over axi-symmetric surfaces.

  5. Cavitation Generation and Usage Without Ultrasound: Hydrodynamic Cavitation

    NASA Astrophysics Data System (ADS)

    Gogate, Parag R.; Pandit, Aniruddha B.

    Hydrodynamic Cavitation, which was and is still looked upon as an unavoidable nuisance in the flow systems, can be a serious contender as an alternative to acoustic cavitation for harnessing the spectacular effects of cavitation in physical and chemical processing. The present chapter covers the basics of hydrodynamic cavitation including the considerations for the bubble dynamics analysis, reactor designs and recommendations for optimum operating parameters. An overview of applications in different areas of physical, chemical and biological processing on scales ranging from few grams to several hundred kilograms has also been presented. Since hydrodynamic cavitation was initially proposed as an alternative to acoustic cavitation, it is necessary to compare the efficacy of both these modes of cavitations for a variety of applications and hence comparisons have been discussed either on the basis of energy efficiency or based on the scale of operation. Overall it appears that hydrodynamic cavitation results in conditions similar to those generated using acoustic cavitation but at comparatively much larger scale of operation and with better energy efficiencies.

  6. Compression-ignition engine tests of several fuels

    NASA Technical Reports Server (NTRS)

    Spanogle, J A

    1932-01-01

    The tests reported in this paper were made to devise simple engine tests which would rate fuels as to their comparative value and their suitability for the operating conditions of the individual engine on which the tests are made. Three commercial fuels were used in two test engines having combustion chambers with and without effective air flow. Strictly comparative performance tests gave almost identical results for the three fuels. Analysis of indicator cards allowed a differentiation between fuels on a basis of rates of combustion. The same comparative ratings were obtained by determining the consistent operating range of injection advance angle for the three fuels. The difference in fuels is more pronounced in a quiescent combustion chamber than in one with high-velocity air flow. A fuel is considered suitable for the operating conditions of an engine with a quiescent combustion chamber if it permits the injection of the fuel to be advanced beyond the optimum without exceeding allowable knock or allowable maximum cylinder pressures.

  7. Analysis of the Optimum Gain of a High-Pass L-Matching Network for Rectennas

    PubMed Central

    Jordana, Josep; Robert, Francesc-Josep; Berenguer, Jordi

    2017-01-01

    Rectennas, which mainly consist of an antenna, matching network, and rectifier, are used to harvest radiofrequency energy in order to power tiny sensor nodes, e.g., the nodes of the Internet of Things. This paper demonstrates for the first time, the existence of an optimum voltage gain for high-pass L-matching networks used in rectennas by deriving an analytical expression. The optimum gain is that which leads to maximum power efficiency of the rectenna. Here, apart from the L-matching network, a Schottky single-diode rectifier was used for the rectenna, which was optimized at 868 MHz for a power range from −30 dBm to −10 dBm. As the theoretical expression depends on parameters not very well-known a priori, an accurate search of the optimum gain for each power level was performed via simulations. Experimental results show remarkable power efficiencies ranging from 16% at −30 dBm to 55% at −10 dBm, which are for almost all the tested power levels the highest published in the literature for similar designs. PMID:28757592

  8. Analysis of the Optimum Gain of a High-Pass L-Matching Network for Rectennas.

    PubMed

    Gasulla, Manel; Jordana, Josep; Robert, Francesc-Josep; Berenguer, Jordi

    2017-07-25

    Rectennas, which mainly consist of an antenna, matching network, and rectifier, are used to harvest radiofrequency energy in order to power tiny sensor nodes, e.g., the nodes of the Internet of Things. This paper demonstrates for the first time, the existence of an optimum voltage gain for high-pass L-matching networks used in rectennas by deriving an analytical expression. The optimum gain is that which leads to maximum power efficiency of the rectenna. Here, apart from the L-matching network, a Schottky single-diode rectifier was used for the rectenna, which was optimized at 868 MHz for a power range from -30 dBm to -10 dBm. As the theoretical expression depends on parameters not very well-known a priori, an accurate search of the optimum gain for each power level was performed via simulations. Experimental results show remarkable power efficiencies ranging from 16% at -30 dBm to 55% at -10 dBm, which are for almost all the tested power levels the highest published in the literature for similar designs.

  9. A comparison of optimum JP and LH2 turbofan engines designed for two subsonic transport missions

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.

    1974-01-01

    The use of liquid hydrogen fuel instead of JP fuel for two subsonic commercial transports was examined. The following determinations which are important to meeting noise reduction requirements were calculated: (1) take off gross weight, (2) energy consumption, and (3) direct operating costs. The optimum engine cycles were found to be the same for both fuels.

  10. Inactivation disinfection property of Moringa Oleifera seed extract: optimization and kinetic studies

    NASA Astrophysics Data System (ADS)

    Idris, M. A.; Jami, M. S.; Hammed, A. M.

    2017-05-01

    This paper presents the statistical optimization study of disinfection inactivation parameters of defatted Moringa oleifera seed extract on Pseudomonas aeruginosa bacterial cells. Three level factorial design was used to estimate the optimum range and the kinetics of the inactivation process was also carried. The inactivation process involved comparing different disinfection models of Chicks-Watson, Collins-Selleck and Homs models. The results from analysis of variance (ANOVA) of the statistical optimization process revealed that only contact time was significant. The optimum disinfection range of the seed extract was 125 mg/L, 30 minutes and 120rpm agitation. At the optimum dose, the inactivation kinetics followed the Collin-Selleck model with coefficient of determination (R2) of 0.6320. This study is the first of its kind in determining the inactivation kinetics of pseudomonas aeruginosa using the defatted seed extract.

  11. Optimisation of flame parameters for simultaneous multi-element atomic absorption spectrometric determination of trace elements in rocks

    USGS Publications Warehouse

    Kane, J.S.

    1988-01-01

    A study is described that identifies the optimum operating conditions for the accurate determination of Co, Cu, Mn, Ni, Pb, Zn, Ag, Bi and Cd using simultaneous multi-element atomic absorption spectrometry. Accuracy was measured in terms of the percentage recoveries of the analytes based on certified values in nine standard reference materials. In addition to identifying optimum operating conditions for accurate analysis, conditions resulting in serious matrix interferences and the magnitude of the interferences were determined. The listed elements can be measured with acceptable accuracy in a lean to stoicheiometric flame at measurement heights ???5-10 mm above the burner.

  12. A Real Options Approach to Quantity and Cost Optimization for Lifetime and Bridge Buys of Parts

    DTIC Science & Technology

    2015-04-30

    fixed EOS of 40 years and a fixed WACC of 3%, decreases to a minimum and then increases. The minimum of this curve gives the optimum buy size for...considered in both analyses. For a 3% WACC , as illustrated in Figure 9(a), the DES method gives an optimum buy size range of 2,923–3,191 with an average...Hence, both methods are consistent in determining the optimum lifetime/bridge buy size. To further verify this consistency, other WACC values

  13. War-gaming application for future space systems acquisition

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien M.; Guillen, Andy T.

    2016-05-01

    Recently the U.S. Department of Defense (DOD) released the Defense Innovation Initiative (DII) [1] to focus DOD on five key aspects; Aspect #1: Recruit talented and innovative people, Aspect #2: Reinvigorate war-gaming, Aspect #3: Initiate long-range research and development programs, Aspect #4: Make DOD practices more innovative, and Aspect #5: Advance technology and new operational concepts. Per DII instruction, this paper concentrates on Aspect #2 and Aspect #4 by reinvigorating the war-gaming effort with a focus on an innovative approach for developing the optimum Program and Technical Baselines (PTBs) and their corresponding optimum acquisition strategies for acquiring future space systems. The paper describes a unified approach for applying the war-gaming concept for future DOD acquisition of space systems. The proposed approach includes a Unified Game-based Acquisition Framework (UGAF) and an Advanced Game-Based Mathematical Framework (AGMF) using Bayesian war-gaming engines to optimize PTB solutions and select the corresponding optimum acquisition strategies for acquiring a space system. The framework defines the action space for all players with a complete description of the elements associated with the games, including Department of Defense Acquisition Authority (DAA), stakeholders, warfighters, and potential contractors, War-Gaming Engines (WGEs) played by DAA, WGEs played by Contractor (KTR), and the players' Payoff and Cost functions (PCFs). The AGMF presented here addresses both complete and incomplete information cases. The proposed framework provides a recipe for the DAA and USAF-Space and Missile Systems Center (SMC) to acquire future space systems optimally.

  14. Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment.

    PubMed

    Naje, Ahmed Samir; Chelliapan, Shreeshivadasan; Zakaria, Zuriati; Abbas, Saad A

    2016-07-01

    This paper investigates the optimum operational conditions of a novel rotated bed electrocoagulation (EC) reactor for the treatment of textile wastewater. The effect of various operational parameters such as rotational speed, current density (CD), operational time (RT), pH, temperature, and inter-electrode distance (IED) on the pollutant removal efficiency were examined. In addition, the consumption of aluminum (Al) and electrical energy, as well as operating costs at optimum conditions were also calculated. The results indicated that the optimum conditions for the treatment of textile wastewater were achieved at CD = 4 mA/cm(2), RT = 10 min, rotational speed = 150 rpm, pH = 4.57, temperature = 25 °C, and IED = 1 cm. The electrode consumption, energy consumption, and operating costs were 0.038 kg/m(3), 4.66 kWh/m(3) and 0.44 US$/m(3), respectively. The removal efficiencies of chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solid (TSS), turbidity and color were 97.10%, 95.55%, 98%, 96% and 98.50%, respectively, at the first 10 min of reaction time, while the phenol compound of the wastewater was almost entirely removed (99.99%). The experimental results confirm that the new reactor design with rotated anode impellers and cathode rings provided high treatment efficiency at a reduced reaction time and with lower energy consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Hyperspectral venous image quality assessment for optimum illumination range selection based on skin tone characteristics

    PubMed Central

    2014-01-01

    Background Subcutaneous veins localization is usually performed manually by medical staff to find suitable vein to insert catheter for medication delivery or blood sample function. The rule of thumb is to find large and straight enough vein for the medication to flow inside of the selected blood vessel without any obstruction. The problem of peripheral difficult venous access arises when patient’s veins are not visible due to any reason like dark skin tone, presence of hair, high body fat or dehydrated condition, etc. Methods To enhance the visibility of veins, near infrared imaging systems is used to assist medical staff in veins localization process. Optimum illumination is crucial to obtain a better image contrast and quality, taking into consideration the limited power and space on portable imaging systems. In this work a hyperspectral image quality assessment is done to get the optimum range of illumination for venous imaging system. A database of hyperspectral images from 80 subjects has been created and subjects were divided in to four different classes on the basis of their skin tone. In this paper the results of hyper spectral image analyses are presented in function of the skin tone of patients. For each patient, four mean images were constructed by taking mean with a spectral span of 50 nm within near infrared range, i.e. 750–950 nm. Statistical quality measures were used to analyse these images. Conclusion It is concluded that the wavelength range of 800 to 850 nm serve as the optimum illumination range to get best near infrared venous image quality for each type of skin tone. PMID:25087016

  16. Current transport mechanisms in mercury cadmium telluride diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn; Li, Qing; He, Jiale

    This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation,more » flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.« less

  17. A review of acoustic dampers applied to combustion chambers in aerospace industry

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Li, X. Y.

    2015-04-01

    In engine combustion systems such as rockets, aero-engines and gas turbines, pressure fluctuations are always present, even during normal operation. One of design prerequisites for the engine combustors is stable operation, since large-amplitude self-sustained pressure fluctuations (also known as combustion instability) have the potential to cause serious structural damage and catastrophic engine failure. To dampen pressure fluctuations and to reduce noise, acoustic dampers are widely applied as a passive control means to stabilize combustion/engine systems. However, they cannot respond to the dynamic changes of operating conditions and tend to be effective over certain narrow range of frequencies. To maintain their optimum damping performance over a broad frequency range, extensive researches have been conducted during the past four decades. The present work is to summarize the status, challenges and progress of implementing such acoustic dampers on engine systems. The damping effect and mechanism of various acoustic dampers, such as Helmholtz resonators, perforated liners, baffles, half- and quarter-wave tube are introduced first. A summary of numerical, experimental and theoretical studies are then presented to review the progress made so far. Finally, as an alternative means, ';tunable acoustic dampers' are discussed. Potential, challenges and issues associated with the dampers practical implementation are highlighted.

  18. Combustion characteristics of hydrogen. Carbon monoxide based gaseous fuels

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; White, D. J.; Kubasco, A. J.; Lecren, R. T.

    1981-01-01

    An experimental rig program was conducted with the objective of evaluating the combuston performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Blue-water gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an 'optimum' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

  19. An analytical investigation of a conceptual design for the station transverse boom rotary joint structure

    NASA Technical Reports Server (NTRS)

    Lake, M. S.; Bush, H. G.

    1986-01-01

    A study was conducted to define an annular ring, discrete roller assembly concept for the space station transverse boom rotary joint. The concept was analyzed using closed-form and finite element techniques, to size structural members for a range of joint diameters and to determine necessary equivalent stiffnesses for the roller assemblies. Also, a mass study of the system was conducted to determine its practicality, and maximum loads in the joint were identified. To obtain the optimum balance between high stiffness and low structural mass in the design of the rotary joint, it is necessary to maximize the diameter of the annular ring within operational constraints (i.e., shuttle cargo bay size). Further, a rotary joint designed with the largest possible ring diameter will result in minimum operational loads in both the roller assemblies and the transition truss members while also allowing minimum design stiffnesses for the roller assemblies.

  20. Development of a solar-powered residential air conditioner: System optimization preliminary specification

    NASA Technical Reports Server (NTRS)

    Rousseau, J.; Hwang, K. C.

    1975-01-01

    Investigations aimed at the optimization of a baseline Rankine cycle solar powered air conditioner and the development of a preliminary system specification were conducted. Efforts encompassed the following: (1) investigations of the use of recuperators/regenerators to enhance the performance of the baseline system, (2) development of an off-design computer program for system performance prediction, (3) optimization of the turbocompressor design to cover a broad range of conditions and permit operation at low heat source water temperatures, (4) generation of parametric data describing system performance (COP and capacity), (5) development and evaluation of candidate system augmentation concepts and selection of the optimum approach, (6) generation of auxiliary power requirement data, (7) development of a complete solar collector-thermal storage-air conditioner computer program, (8) evaluation of the baseline Rankine air conditioner over a five day period simulating the NASA solar house operation, and (9) evaluation of the air conditioner as a heat pump.

  1. Process feasibility study in support of silicon material task 1

    NASA Technical Reports Server (NTRS)

    Fang, C. S.; Hansen, K. C.; Miller, J. W., Jr.; Yaws, C. L.

    1978-01-01

    Initial results for gas thermal conductivity of silicon tetrafluoride and trichlorosilane are reported in respective temperature ranges of 25 to 400 C and 50 to 400 C. For chemical engineering analyses, the preliminary process design for the original silane process of Union Carbide was completed for Cases A and B, Regular and Minimum Process Storage. Included are raw material usage, utility requirements, major process equipment lists, and production labor requirements. Because of the large differences in surge tankage between major unit operations the fixed capital investment varied from $19,094,000 to $11,138,000 for Cases A and B, respectively. For the silane process the original flowsheet was revised for a more optimum arrangement of major equipment, raw materials and operating conditions. The initial issue of the revised flowsheet (Case C) for the silane process indicated favorable cost benefits over the original scheme.

  2. Experimental optimum design and luminescence properties of NaY(Gd)(MoO4)2:Er3+ phosphors

    NASA Astrophysics Data System (ADS)

    Jia-Shi, Sun; Sai, Xu; Shu-Wei, Li; Lin-Lin, Shi; Zi-Hui, Zhai; Bao-Jiu, Chen

    2016-06-01

    Three-factor orthogonal design (OD) of Er3+/Gd3+/T (calcination temperature) is used to optimize the luminescent intensity of NaY(Gd)(MoO4)2:Er3+ phosphor. Firstly, the uniform design (UD) is introduced to explore the doping concentration range of Er3+/Gd3+. Then OD and range analysis are performed based on the results of UD to obtain the primary and secondary sequence and the best combination of Er3+, Gd3+, and T within the experimental range. The optimum sample is prepared by the high temperature solid state method. Photoluminescence excitation and emission spectra of the optimum sample are detected. The intense green emissions (530 nm and 550 nm) are observed which originate from Er3+ 2H11/2→ 4I15/2 and 4S3/2→4I15/2, respectively. Thermal effect is investigated in the optimum NaY(Gd3+)(MoO4)2:Er3+ phosphors, and the green emission intensity decreases as temperature increases. Project supported by Education Reform Fund of Dalian Maritime University, China (Grant No. 2015Y37), the Natural Science Foundation of Liaoning Province, China (Grant Nos. 2015020190 and 2014025010), the Open Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2015KF27), and the Fundamental Research Funds for the Central Universities, China (Grant No. 3132016121).

  3. Emittance measurements for optimum operation of the J-PARC RF-driven H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.

    2015-04-08

    In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) second stage requirements of an H{sup −} ion beam of 60mA within normalized emittances of 1.5πmm•mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of longer than 1month, the J-PARC cesiated RF-driven H{sup −} ion source was developed by using an internal-antenna developed at the Spallation Neutron Source (SNS). The transverse emittances of the source were measured with various conditions to find out the optimum operation conditions minimizing the horizontal and vertical rms normalized emittances. The transverse emittances were most effectivelymore » reduced by operating the source with the plasma electrode temperature lower than 70°C. The optimum value of the cesium (Cs) density around the beam hole of the plasma electrode seems to be proportional to the plasma electrode temperature. The fine control of the Cs density is indispensable, since the emittances seem to increase proportionally to the excessiveness of the Cs density. Furthermore, the source should be operated with the Cs density beyond a threshold value, since the plasma meniscus shape and the ellipse parameters of the transverse emittances seem to be changed step-function-likely on the threshold Cs value.« less

  4. European Science Notes Information Bulletin Reports on Current European/Middle Eastern Science

    DTIC Science & Technology

    1990-02-01

    Exploitation and Optimum Use of discussed the relationship of the Framework program to Biological Resources the 1992 single European market. This...operation: Shared-cost contracts]. hancement of food quality; (2) food hygiene, safety, and D. The Exploitation and optimum use or Biological toxicology...Table 9), and dis- bracing the biological sciences, agriculture, geologi- semination of research results (see Table 10). cal, and marine and deep sea

  5. Techniques for evaluating optimum data center operation

    DOEpatents

    Hamann, Hendrik F.; Rodriguez, Sergio Adolfo Bermudez; Wehle, Hans-Dieter

    2017-06-14

    Techniques for modeling a data center are provided. In one aspect, a method for determining data center efficiency is provided. The method includes the following steps. Target parameters for the data center are obtained. Technology pre-requisite parameters for the data center are obtained. An optimum data center efficiency is determined given the target parameters for the data center and the technology pre-requisite parameters for the data center.

  6. Optimization control of LNG regasification plant using Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Wahid, A.; Adicandra, F. F.

    2018-03-01

    Optimization of liquified natural gas (LNG) regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to choose optimum LNG regasification plant design and maintaining the optimum operating conditions through the implementation of model predictive control (MPC). Optimal tuning parameter for MPC such as P (prediction horizon), M (control of the horizon) and T (sampling time) are achieved by using fine-tuning method. The optimal criterion for design is the minimum amount of energy used and for control is integral of square error (ISE). As a result, the optimum design is scheme 2 which is developed by Devold with an energy savings of 40%. To maintain the optimum conditions, required MPC with P, M and T as follows: tank storage pressure: 90, 2, 1; product pressure: 95, 2, 1; temperature vaporizer: 65, 2, 2; and temperature heater: 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6%, 63.5%, 3.1% and 58.2% compared to PI controller performance. The energy savings that MPC controllers can make when there is a disturbance in temperature rise 1°C of sea water is 0.02 MW.

  7. Performance analysis and optimization of power plants with gas turbines

    NASA Astrophysics Data System (ADS)

    Besharati-Givi, Maryam

    The gas turbine is one of the most important applications for power generation. The purpose of this research is performance analysis and optimization of power plants by using different design systems at different operation conditions. In this research, accurate efficiency calculation and finding optimum values of efficiency for design of chiller inlet cooling and blade cooled gas turbine are investigated. This research shows how it is possible to find the optimum design for different operation conditions, like ambient temperature, relative humidity, turbine inlet temperature, and compressor pressure ratio. The simulated designs include the chiller, with varied COP and fogging cooling for a compressor. In addition, the overall thermal efficiency is improved by adding some design systems like reheat and regenerative heating. The other goal of this research focuses on the blade-cooled gas turbine for higher turbine inlet temperature, and consequently, higher efficiency. New film cooling equations, along with changing film cooling effectiveness for optimum cooling air requirement at the first-stage blades, and an internal and trailing edge cooling for the second stage, are innovated for optimal efficiency calculation. This research sets the groundwork for using the optimum value of efficiency calculation, while using inlet cooling and blade cooling designs. In the final step, the designed systems in the gas cycles are combined with a steam cycle for performance improvement.

  8. Use of computed tomography to define a sacral safe corridor for placement of 2.7 mm cortical screws in feline sacroiliac luxation.

    PubMed

    Philp, Helen; Durand, Alexane; De Vicente, Felipe

    2018-06-01

    Objectives This study aimed to define a safe corridor for 2.7 mm cortical sacroiliac screw insertion in the dorsal plane (craniocaudal direction) using radiography and CT, and in the transverse plane (dorsoventral direction) using CT in feline cadavers. A further aim was to compare the values obtained by CT with those previously reported by radiography in the transverse plane. Methods Thirteen pelvises were retrieved from feline cadavers and dissected to expose one of the articular surfaces of the sacrum. A 2.7 mm screw was placed in the sacrum to a depth of approximately 1 cm in each exposed articular surface. Dorsoventral radiography and CT scanning of each specimen were performed. Multiplanar reconstructions were performed to allow CT evaluation in both the dorsal and transverse planes. Calculations were made to find the maximum, minimum and optimum angles for screw placement in craniocaudal (radiography and CT) and dorsoventral (CT) directions when using a 2.7 mm cortical screw. Results Radiographic measurement showed a mean optimum craniocaudal angle of 106° (range 97-112°). The mean minimum angle was 95° (range 87-107°), whereas the mean maximum angle was 117° (108-124°). Measurement of the dorsal CT scan images showed a mean optimum craniocaudal angle of 101° (range 94-110°). The mean minimum angle was 90° (range 83-99°), whereas the mean maximum angle was 113° (104-125°). The transverse CT scan images showed a mean dorsoventral minimum angle of 103° (range 95-113°), mean maximum angle of 115° (104-125°) and mean optimum dorsoventral angle of 111° (102-119°). Conclusions and relevance An optimum craniocaudal angle of 101° is recommended for 2.7 mm cortical screw placement in the feline sacral body, with a safety margin between 99° and 104°. No single angle can be recommended in the dorsoventral direction and therefore preoperative measuring on individual cats using CT images is recommended to establish the ideal individual angle in the transverse plane.

  9. Optimization of Design Parameters and Operating Conditions of Electrochemical Capacitors for High Energy and Power Performance

    NASA Astrophysics Data System (ADS)

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.

    2017-03-01

    Theoretical expressions for performance parameters of different electrochemical capacitors (ECs) have been optimized by solving them using MATLAB scripts as well as via the MATLAB R2014a optimization toolbox. The performance of the different kinds of ECs under given conditions was compared using theoretical equations and simulations of various models based on the conditions of device components, using optimal values for the coefficient associated with the battery-kind material ( K BMopt) and the constant associated with the electrolyte material ( K Eopt), as well as our symmetric electric double-layer capacitor (EDLC) experimental data. Estimation of performance parameters was possible based on values for the mass ratio of electrodes, operating potential range ratio, and specific capacitance of electrolyte. The performance of asymmetric ECs with suitable electrode mass and operating potential range ratios using aqueous or organic electrolyte at appropriate operating potential range and specific capacitance was 2.2 and 5.56 times greater, respectively, than for the symmetric EDLC and asymmetric EC using the same aqueous electrolyte, respectively. This enhancement was accompanied by reduced cell mass and volume. Also, the storable and deliverable energies of the asymmetric EC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 12.9 times greater than those of the symmetric EDLC using aqueous electrolyte, again with reduced cell mass and volume. The storable energy, energy density, and power density of the asymmetric EDLC with suitable electrode mass and operating potential range ratios using the proper organic electrolyte were 5.56 times higher than for a similar symmetric EDLC using aqueous electrolyte, with cell mass and volume reduced by a factor of 1.77. Also, the asymmetric EDLC with the same type of electrode and suitable electrode mass ratio, working potential range ratio, and proper organic electrolyte showed enhanced performance compared with the conventional symmetric EDLC using aqueous electrolyte, with reduced cell mass and volume. These results can obviously reduce the number of experiments required to determine the optimum manufacturing design for ECs and also demonstrate that use of an asymmetric electrode and organic electrolyte was very successful for improving the performance of the EC, with reduced cell mass and volume. These results can also act as guidelines for design, fabrication, and operation of electrochemical capacitors with outstanding storable energy, energy density, and power density.

  10. Magnetoelectric coupling characteristics in multiferroic heterostructures with different thickness of nanocrystalline soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Wang, Yao

    2016-05-01

    Magnetoelectric(ME) coupling characteristics in multiferroic heterostructures with different thickness of nanocrystalline soft magnetic alloy has been investigated at low frequency. The ME response with obvious hysteresis, self-biased and dual-peak phenomenon is observed for multiferroic heterostructures, which results from strong magnetic interactions between two ferromagnetic materials with different magnetic properties, magnetostrictions and optimum bias magnetic fields Hdc,opti. The proposed multiferroic heterostructures not only enhance ME coupling significantly, but also broaden dc magnetic bias operating range and overcomes the limitations of narrow bias range. By optimizing the thickness of nanocrystalline soft magnetic alloy Tf, a significantly zero-biased ME voltage coefficient(MEVC) of 14.8mV/Oe (185 mV/cmṡ Oe) at Tf = 0.09 mm can be obtained, which is about 10.8 times as large as that of traditional PZT/Terfenol-D composite with a weak ME coupling at zero bias Hdc,zero. Furthermore, when Tf increases from 0.03 mm to 0.18 mm, the maximum MEVC increases nearly linearly with the increased Tf at Hdc,opti. Additionally, the experimental results demonstrate the ME response for multiferroic heterostructures spreads over a wide magnetic dc bias operating range. The excellent ME performance provides a promising and practicable application for both highly sensitive magnetic field sensors without bias and ME energy harvesters.

  11. Response surface optimization of the substance colour indigo production by amylase enzyme

    NASA Astrophysics Data System (ADS)

    Handayani, Prima Astuti; Megawati, Kusdianto, Nugraha, Deny Aditia; Novitasari, Lilis

    2017-03-01

    Indigofera leaf production in Indonesia reaches 30 tons of dry matter per hectare per year. Indigo which produce exclusive blue colour already used to dyeing textile, specially "Batik". Batik cloth using natural dyes has artistic value and distinctive colours, as well as ethnic and exclusive impression that have a high value. Indigofera leaves containing blue dye that can be obtained through hydrolysis and oxidation. The hydrolysis reaction using enzyme catalyst. The research objective is to obtain optimum operating conditions of the hydrolysis reaction in the extraction of blue dye with a cellulase enzyme catalyst. Indigofera used leaves 5 month old and tools used include reactors, stirrer, aerator, autoclaves, incubators and ovens. Optimization parameters are studied an α-amylase enzyme concentration of 2.5-10 wt%, pH 5-9 and a reaction time of 4-10 days. The concentration of blue dye was analyzed by gravimetric method. Experimental data were analyzed by the method of Response Surface Methodology and central composite design, the model corresponding linear model with a mathematical equation Y = 6.22763 - 0.02584X1 - 1.25889X2 - 0.42239X3+0.00694X12+ 0.08872X22+ 0.03747X32+ 0.01372X1X2 -0.00582X1X3 - 0.00208X2X3 The optimum operating conditions in the range of studied enzym concentration of 3.1 wt%, pH 7.4 and the hydrolysis reaction time of 5.6 days with a yield dye of 1,42 %.

  12. Comparison of phthalic acid removal from aqueous solution by electrochemical methods: Optimization, kinetic and sludge study.

    PubMed

    Sandhwar, Vishal Kumar; Prasad, Basheshwar

    2017-12-01

    In this work, comparative study between electrochemical processes such as electrocoagulation (EC), peroxi-coagulation (PC) and peroxi-electrocoagulation (PEC) was performed for the removal of phthalic acid (PA) and chemical oxygen demand (COD) from aqueous medium. Initially, acid treatment was studied at various pH (1-3) and temperature (10-55 °C). Subsequently, the supernatant was re-treated by electrochemical processes such as EC, PC and PEC separately. Independent parameters viz. pH, current density (CD), electrolyte concentration (m), electrode gap (g), H 2 O 2 concentration and electrolysis time (t) were optimized by Central Composite Design (CCD) for these electrochemical processes. All three processes were compared based on removal, energy consumption, kinetic analysis, operating cost and sludge characteristics. In this study, PEC process was found more efficient among EC, PC and PEC processes in order to get maximum removal, minimum energy consumption and minimum operating cost. Maximum removal of PA- 68.21%, 74.36%, 82.25% & COD- 64.79%, 68.15%, 75.21% with energy consumption - 120.95, 97.51, 65.68 (kWh/kg COD removed) were attained through EC, PC and PEC processes respectively at their corresponding optimum conditions. Results indicated that PA and COD removals are in order of PEC > PC > EC under optimum conditions. First order kinetic model was found able to describe the degradation kinetics and provided best correlation for the removal rate within the acceptable error range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Stably operating pulse combustor and method

    DOEpatents

    Zinn, Ben T.; Reiner, David

    1990-01-01

    A pulse combustor apparatus adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation.

  14. An examination of loads and responses of a wind turbine undergoing variable-speed operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.

    1996-11-01

    The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is tomore » show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.« less

  15. Optimum take-off angle in the long jump.

    PubMed

    Linthorne, Nicholas P; Guzman, Maurice S; Bridgett, Lisa A

    2005-07-01

    In this study, we found that the optimum take-off angle for a long jumper may be predicted by combining the equation for the range of a projectile in free flight with the measured relations between take-off speed, take-off height and take-off angle for the athlete. The prediction method was evaluated using video measurements of three experienced male long jumpers who performed maximum-effort jumps over a wide range of take-off angles. To produce low take-off angles the athletes used a long and fast run-up, whereas higher take-off angles were produced using a progressively shorter and slower run-up. For all three athletes, the take-off speed decreased and the take-off height increased as the athlete jumped with a higher take-off angle. The calculated optimum take-off angles were in good agreement with the athletes' competition take-off angles.

  16. Program manual for ASTOP, an Arbitrary space trajectory optimization program

    NASA Technical Reports Server (NTRS)

    Horsewood, J. L.

    1974-01-01

    The ASTOP program (an Arbitrary Space Trajectory Optimization Program) designed to generate optimum low-thrust trajectories in an N-body field while satisfying selected hardware and operational constraints is presented. The trajectory is divided into a number of segments or arcs over which the control is held constant. This constant control over each arc is optimized using a parameter optimization scheme based on gradient techniques. A modified Encke formulation of the equations of motion is employed. The program provides a wide range of constraint, end conditions, and performance index options. The basic approach is conducive to future expansion of features such as the incorporation of new constraints and the addition of new end conditions.

  17. JT8D high pressure compressor performance improvement

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1981-01-01

    An improved performance high pressure compressor with potential application to all models of the JT8D engine was designed. The concept consisted of a trenched abradable rubstrip which mates with the blade tips for each of the even rotor stages. This feature allows tip clearances to be set so blade tips run at or near the optimum radius relative to the flowpath wall, without the danger of damaging the blades during transients and maneuvers. The improved compressor demonstrated thrust specific fuel consumption and exhaust gas temperature improvements of 1.0 percent and at least 10 C over the takeoff and climb power range at sea level static conditions, compared to a bill-of-material high pressure compressor. Surge margin also improved 4 percentage points over the high power operating range. A thrust specific fuel consumption improvement of 0.7 percent at typical cruise conditions was calculated based on the sea level test results.

  18. Optimum viewing distance for target acquisition

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    2015-05-01

    Human visual system (HVS) "resolution" (a.k.a. visual acuity) varies with illumination level, target characteristics, and target contrast. For signage, computer displays, cell phones, and TVs a viewing distance and display size are selected. Then the number of display pixels is chosen such that each pixel subtends 1 min-1. Resolution of low contrast targets is quite different. It is best described by Barten's contrast sensitivity function. Target acquisition models predict maximum range when the display pixel subtends 3.3 min-1. The optimum viewing distance is nearly independent of magnification. Noise increases the optimum viewing distance.

  19. Development of flashlamp-pumped Q-switched Ho:Tm:Cr:YAG lasers for mid-infrared LIDAR application

    NASA Technical Reports Server (NTRS)

    Choi, Young S.; Kim, Kyong H.; Whitney, Donald A.; Hess, Robert V.; Barnes, Norman P.; Bair, Clayton H.; Brockman, Philip

    1989-01-01

    A flashlamp-pumped 2.1 micron Ho:Tm:Cr:YAG laser was studied for both normal mode and Q-switched operations under a wide variety of experimental conditions in order to optimize performance. Laser output energy, slope efficiency, threshold and pulselength were determined as a function of operating temperature, output mirror reflectivity, input electrical energy and Q-switch opening time. The measured normal-mode laser thresholds of a Ho(3+) (0.45 atomic percent):Tm(3+) (2.5 atomic percent):Cr(3+) (0.8 atomic percent):YAG crystal ranged form 26 to 50 J between 120 and 200 K with slope efficiencies up to 0.36 percent with a 60 percent reflective output mirror. Under Q-switched operation the slope efficiency was 90 percent of the normal-mode result. Development of solid state lasers with Ho(3+), Tm(3+) and/or Er(3+) doped crystals has been pursued by NASA for eye-dafe mid-infrared LIDAR (light detection and ranging) application. As a part of the project, the authors have been working on evaluating Ho(3+):Tm(3+):Cr(3+):YAG crystals for normal-mode and Q-switched 2.1 micron laser operations in order to determine an optimum Tm(3+) concentration under flashlamp pumping conditions. Lasing properties of the Ho(3+) in the mid-infrared region have been studied by many research groups since the early 1960's. However, the technology of those lasers is still premature for lidar application. In order to overcome the inefficiency related to narrow absorption bands of the Ho(3+), Tm(3+) and Er(3+), the erbium has been replaced by chromium. The improvement in flashlamp-pumped Ho(3+) laser efficiency has been demonstrated recently by several research groups by utilizing the broad absorption spectrum of Cr(3+) which covers the flashlamp's emission spectrum. Efficient energy transfer to the Tm(3+) and then the Ho(3+) occurs subsequently. It is known that high Tm(3+) concentration and low Ho(3+) concentration are preferred to achieve a quantum efficiency approaching two and to avoid large reabsorption losses. However, determination of the optimum Tm(3+) concentration required to ensure efficient energy transfer from Cr(3+) to Tm(3+) and from Tm(3+) to Ho(3+) has not been made in the Ho:Tm:CR:YAG crystal. The results obtained so far are given.

  20. A method searching for optimum fractional order and its application in self-phase modulation induced nonlinear phase noise estimation in coherent optical fiber transmission systems

    NASA Astrophysics Data System (ADS)

    Huang, Chuan; Guo, Peng; Yang, Aiying; Qiao, Yaojun

    2018-07-01

    In single channel systems, the nonlinear phase noise only comes from the channel itself through self-phase modulation (SPM). In this paper, a fast-nonlinear effect estimation method is proposed based on fractional Fourier transformation (FrFT). The nonlinear phase noise caused by Self-phase modulation effect is accurately estimated for single model 10Gbaud OOK and RZ-QPSK signals with the fiber length range of 0-200 km and the launch power range of 1-10 mW. The pulse windowing is adopted to search the optimum fractional order for the OOK and RZ-QPSK signals. Since the nonlinear phase shift caused by the SPM effect is very small, the accurate optimum fractional order of the signal cannot be found based on the traditional method. In this paper, a new method magnifying the phase shift is proposed to get the accurate optimum order and thus the nonlinear phase shift is calculated. The simulation results agree with the theoretical analysis and the method is applicable to signals whose pulse type has the similar characteristics with Gaussian pulse.

  1. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

    PubMed Central

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-01-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust’s coarse particle size and bulking effect. PMID:26954138

  2. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement.

    PubMed

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-05-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

  3. Investigate optimum way of adding wideband capability and recommend a design for modification of one government furnished AM baseband demultiplexer, phase 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The effort to analyze and test the Teledyne/Adcom model G-146 demultiplexer to determine the feasibility and optimum method(s) for modifying the unit for broadband operation is described. The desired bandwidths under consideration included 2, 4, and 8 kHz for double sideband and quadrature double sideband, and 4, 8, and 16 kHz for single sideband.

  4. New method to enhance the extraction yield of rutin from Sophora japonica using a novel ultrasonic extraction system by determining optimum ultrasonic frequency.

    PubMed

    Liao, Jianqing; Qu, Baida; Liu, Da; Zheng, Naiqin

    2015-11-01

    A new method has been proposed for enhancing extraction yield of rutin from Sophora japonica, in which a novel ultrasonic extraction system has been developed to perform the determination of optimum ultrasonic frequency by a two-step procedure. This study has systematically investigated the influence of a continuous frequency range of 20-92 kHz on rutin yields. The effects of different operating conditions on rutin yields have also been studied in detail such as solvent concentration, solvent to solid ratio, ultrasound power, temperature and particle size. A higher extraction yield was obtained at the ultrasonic frequency of 60-62 kHz which was little affected under other extraction conditions. Comparative studies between existing methods and the present method were done to verify the effectiveness of this method. Results indicated that the new extraction method gave a higher extraction yield compared with existing ultrasound-assisted extraction (UAE) and soxhlet extraction (SE). Thus, the potential use of this method may be promising for extraction of natural materials on an industrial scale in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Passive millimetre wave imaging for ballistic missile launch detection

    NASA Astrophysics Data System (ADS)

    Higgins, Christopher J.; Salmon, Neil A.

    2008-10-01

    QinetiQ has used a suite of modelling tools to predict the millimetric plume signatures from a range of ballistic missile types, based on the accepted theory that Bremsstrahlung emission, generated by the collision of free electrons with neutral species in a rocket motor plume, is the dominant signature mechanism. Plume signatures in terms of radiation temperatures varied from a few hundred Kelvin to over one thousand Kelvin, and were predicted to be dependent on emission frequency, propellant type and missile thrust. Two types of platform were considered for the passive mmw imager launch detection system; a High Altitude Platform Station (HAPS) and a satellite based platform in low, mid and geosynchronous earth orbits. It was concluded that the optimum operating frequency for a HAPS based imager would be 35GHz with a 4.5m aperture and a sensitivity of 20mK providing visibility through 500 vertical feet of cloud. For a satellite based platform with a nadir view, the optimum frequency is 220 GHz. With such a system, in a low earth orbit at an altitude of 320km, with a sensitivity of 20mK, a 29cm aperture would be desirable.

  6. Effect of surface modification on carbon nanotubes (CNTs) catalyzed nitrobenzene reduction by sulfide.

    PubMed

    Liu, Qi; Zhao, Han-Qing; Li, Lei; He, Pan-Pan; Wang, Yi-Xuan; Yang, Hou-Yun; Hu, Zhen-Hu; Mu, Yang

    2018-06-04

    Carbon nanotubes (CNTs) could be directly used as metal-free catalysts for the reduction of nitroaromatics by sulfide in water, but their catalytic ability need a further improvement. This study evaluated the feasibility of surface modification through thermal and radiation pretreatments to enhance catalytic activity of CNTs on nitrobenzene reduction by sulfide. The results show that thermal treatment could effectively improve the catalytic behaviors of CNTs for the reduction of nitrobenzene by sulfide, where the optimum annealing temperature was 400 °C. However, plasma radiation pretreatment didn't result in an obvious improvement of the CNTs catalytic activity. Moreover, the possible reasons have been explored and discussed in the study. Additionally, the impacts of various operational parameters on nitrobenzene reduction catalyzed by the CNTs after an optimized surface modification were also evaluated. It was found that the rate of nitrobenzene removal by sulfide was positively correlated with CNTs doses in a range of 0.3-300 mg L -1 ; the optimum pH was around 8.0; higher temperature and sulfide concentration facilitated the reaction; and the presence of humic acid exhibited a negative effect on nitrobenzene reduction. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. [Climatic factors influencing the performance of cattle and buffalos in Egypt].

    PubMed

    Legel, S

    1979-01-01

    Previous analogous investigations of climatic factors influencing the performance of cattle in Syria were continued for Egypt between August 1975 and July 1977. Temperature and humidity data were recorded and related to standard physiological compatibility ranges for cattle and buffalos, respectively. The values found for the two test years largely agreed. 23.3% of the average temperatures of the two years were above the 0 to 24 degrees C temperature range, which is physiologically compatible. Only 28.8% of the total hours were within the optimum temperature range for cattle and buffalos. The values of the relative humidity in the first year were up to 38.5% within the optimum compatibility range, whereas 11.0% were within the too dry and 50.5% within the too moist range. The percentage increased when the animals were in direct sunshine, which reduced their performance.

  8. MASTOS: Mammography Simulation Tool for design Optimization Studies.

    PubMed

    Spyrou, G; Panayiotakis, G; Tzanakos, G

    2000-01-01

    Mammography is a high quality imaging technique for the detection of breast lesions, which requires dedicated equipment and optimum operation. The design parameters of a mammography unit have to be decided and evaluated before the construction of such a high cost of apparatus. The optimum operational parameters also must be defined well before the real breast examination. MASTOS is a software package, based on Monte Carlo methods, that is designed to be used as a simulation tool in mammography. The input consists of the parameters that have to be specified when using a mammography unit, and also the parameters specifying the shape and composition of the breast phantom. In addition, the input may specify parameters needed in the design of a new mammographic apparatus. The main output of the simulation is a mammographic image and calculations of various factors that describe the image quality. The Monte Carlo simulation code is PC-based and is driven by an outer shell of a graphical user interface. The entire software package is a simulation tool for mammography and can be applied in basic research and/or in training in the fields of medical physics and biomedical engineering as well as in the performance evaluation of new designs of mammography units and in the determination of optimum standards for the operational parameters of a mammography unit.

  9. Multi-objective Optimization of Departure Procedures at Gimpo International Airport

    NASA Astrophysics Data System (ADS)

    Kim, Junghyun; Lim, Dongwook; Monteiro, Dylan Jonathan; Kirby, Michelle; Mavris, Dimitri

    2018-04-01

    Most aviation communities have increasing concerns about the environmental impacts, which are directly linked to health issues for local residents near the airport. In this study, the environmental impact of different departure procedures using the Aviation Environmental Design Tool (AEDT) was analyzed. First, actual operational data were compiled at Gimpo International Airport (March 20, 2017) from an open source. Two modifications were made in the AEDT to model the operational circumstances better and the preliminary AEDT simulations were performed according to the acquired operational procedures. Simulated noise results showed good agreements with noise measurement data at specific locations. Second, a multi-objective optimization of departure procedures was performed for the Boeing 737-800. Four design variables were selected and AEDT was linked to a variety of advanced design methods. The results showed that takeoff thrust had the greatest influence and it was found that fuel burn and noise had an inverse relationship. Two points representing each fuel burn and noise optimum on the Pareto front were parsed and run in AEDT to compare with the baseline. The results showed that the noise optimum case reduced Sound Exposure Level 80-dB noise exposure area by approximately 5% while the fuel burn optimum case reduced total fuel burn by 1% relative to the baseline for aircraft-level analysis.

  10. Disruption of Brewers' yeast by hydrodynamic cavitation: Process variables and their influence on selective release.

    PubMed

    Balasundaram, B; Harrison, S T L

    2006-06-05

    Intracellular products, not secreted from the microbial cell, are released by breaking the cell envelope consisting of cytoplasmic membrane and an outer cell wall. Hydrodynamic cavitation has been reported to cause microbial cell disruption. By manipulating the operating variables involved, a wide range of intensity of cavitation can be achieved resulting in a varying extent of disruption. The effect of the process variables including cavitation number, initial cell concentration of the suspension and the number of passes across the cavitation zone on the release of enzymes from various locations of the Brewers' yeast was studied. The release profile of the enzymes studied include alpha-glucosidase (periplasmic), invertase (cell wall bound), alcohol dehydrogenase (ADH; cytoplasmic) and glucose-6-phosphate dehydrogenase (G6PDH; cytoplasmic). An optimum cavitation number Cv of 0.13 for maximum disruption was observed across the range Cv 0.09-0.99. The optimum cell concentration was found to be 0.5% (w/v, wet wt) when varying over the range 0.1%-5%. The sustained effect of cavitation on the yeast cell wall when re-circulating the suspension across the cavitation zone was found to release the cell wall bound enzyme invertase (86%) to a greater extent than the enzymes from other locations of the cell (e.g. periplasmic alpha-glucosidase at 17%). Localised damage to the cell wall could be observed using transmission electron microscopy (TEM) of cells subjected to less intense cavitation conditions. Absence of the release of cytoplasmic enzymes to a significant extent, absence of micronisation as observed by TEM and presence of a lower number of proteins bands in the culture supernatant on SDS-PAGE analysis following hydrodynamic cavitation compared to disruption by high-pressure homogenisation confirmed the selective release offered by hydrodynamic cavitation. Copyright 2006 Wiley Periodicals, Inc.

  11. Solvent-assisted dispersive micro-SPE by using aminopropyl-functionalized magnetite nanoparticle followed by GC-PID for quantification of parabens in aqueous matrices.

    PubMed

    Abbasghorbani, Maryam; Attaran, Abdolmohammad; Payehghadr, Mahmood

    2013-01-01

    In this research, solvent-assisted dispersive micro-SPE was introduced as a simple modified technique for the determination of parabens in water and cosmetic samples. Aminopropyl-functionalized magnetite nanoparticles (MNPs) were successfully synthesized and applied. GC with photoionization detector was used for the separation and detection of parabens. In this method, hexylacetate (15 μL) as a solvent and aminopropyl-functionalized MNPs (5 μg) as a sorbent were added to an aqueous sample (10 mL) and then the sample was sonicated. Dispersed magnetite was collected in the bottom of the conical tube by using a strong magnet and then ACN was added as a desorption solvent. Forty microliters of this solvent was transferred into a microvial and then acetic anhydride and pyridine were added, thus derivatization was performed by acetic anhydride. After evaporation, 1 μL of derivatized sample was injected into a gas chromatograph for analysis. Several important parameters, such as kind of organic solvent, desorption solvent and volume, amount of aminopropyl-functionalized MNPs and effect of salt addition were investigated. Under optimum conditions, the limits of detection achieved were between 50 and 300 ng/L, with RSDs (n = 5) lower than 8%. Under the optimum conditions, the enrichment factors ranged from 217 to 1253 and the extraction recoveries ranged from 10 to 62%. The recoveries were obtained for the analytes in river water and mouthwash solution and hand cream in the range of 87-103%. The advantages of proposed method are simplicity of operation, rapidity, high extraction yields, and environmental friendly character. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An operational global-scale ocean thermal analysis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, R. M.; Pollak, K.D.; Phoebus, P.A.

    1990-04-01

    The Optimum Thermal Interpolation System (OTIS) is an ocean thermal analysis system designed for operational use at FNOC. It is based on the optimum interpolation of the assimilation technique and functions in an analysis-prediction-analysis data assimilation cycle with the TOPS mixed-layer model. OTIS provides a rigorous framework for combining real-time data, climatology, and predictions from numerical ocean prediction models to produce a large-scale synoptic representation of ocean thermal structure. The techniques and assumptions used in OTIS are documented and results of operational tests of global scale OTIS at FNOC are presented. The tests involved comparisons of OTIS against an existingmore » operational ocean thermal structure model and were conducted during February, March, and April 1988. Qualitative comparison of the two products suggests that OTIS gives a more realistic representation of subsurface anomalies and horizontal gradients and that it also gives a more accurate analysis of the thermal structure, with improvements largest below the mixed layer. 37 refs.« less

  13. Comparison between dispersive solid-phase and dispersive liquid-liquid microextraction combined with spectrophotometric determination of malachite green in water samples based on ultrasound-assisted and preconcentration under multi-variable experimental design optimization.

    PubMed

    Alipanahpour Dil, Ebrahim; Ghaedi, Mehrorang; Asfaram, Arash; Zare, Fahimeh; Mehrabi, Fatemeh; Sadeghfar, Fardin

    2017-11-01

    The ultrasound-assisted dispersive solid-phase microextraction (USA-DSPME) and the ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) developed for as an ultra preconcentration and/or technique for the determination of malachite green (MG) in water samples. Central composite design based on analysis of variance and desirability function guide finding best operational conditions and represent dependency of response to variables viz. volume of extraction, eluent and disperser solvent, pH, adsorbent mass and ultrasonication time has significant influence on methods efficiency. Optimum conditions was set for USA-DSPME as: 1mg CNTs/Zn:ZnO@Ni 2 P-NCs; 4min sonication time and 130μL eluent at pH 6.0. Meanwhile optimum point for USA-DLLME conditions were fixed at pH 6.0; 4min sonication time and 130, 650μL and 10mL of extraction solvent (CHCl 3 ), disperser solvent (ethanol) and sample volume, respectively. Under the above specified best operational conditions, the enrichment factors for the USA-DSPME and USA-DLLME were 88.89 and 147.30, respectively. The methods has linear response in the range of 20.0 to 4000.0ngmL -1 with the correlation coefficients (r) between 0.9980 to 0.9995, while its reasonable detection limits viz. 1.386 to 2.348ngmL -1 and good relative standard deviations varied from 1.1% to 2.8% (n=10) candidate this method for successful monitoring of analyte from various media. The relative recoveries of the MG dye from water samples at spiking level of 500ngmL -1 were in the range between 94.50% and 98.86%. The proposed methods has been successfully applied to the analysis of the MG dye in water samples, and a satisfactory result was obtained. Copyright © 2017. Published by Elsevier B.V.

  14. A useful strategy based on chromatographic data combined with quality-by-design approach for food analysis applications. The case study of furanic derivatives in sugarcane honey.

    PubMed

    Silva, Pedro; Silva, Catarina L; Perestrelo, Rosa; Nunes, Fernando M; Câmara, José S

    2017-10-20

    Sugarcane honey (SCH) is one of the Madeira Island products par excellence and it is now popular worldwide. Its sui generis and peculiar sensory properties, explained by a variety of volatile compounds including furanic derivatives (FDs), arise mainly from manufacturing and storage conditions. A simple high-throughput approach based on semi-automatic microextraction by packed sorbent (MEPS) combined with ultra-high performance liquid chromatography (UHPLC) was developed and validated for identification and quantification of target FDs in sugarcane honey. A Quality-by-Design (QbD) approach was used as a powerful strategy to optimize analytical conditions for high throughput analysis of FDs in complex sugar-rich food matrices. The optimum point into MEPS-Method Operable Design: Region (MODR) was obtained with R-CX sorbent, acetonitrile (ACN) as elution solvent, three loading cycles and 500μL of sample volume. The optimum point into UHPLC-MODR was obtained with a CORTECS column operating at a temperature of 50°C, ACN as eluent and a flow rate of 125μLmin -1 . The robustness was demonstrated by Monte Carlo simulation and capability analysis for estimation of residual errors. The concentration-response relationship for all FDs were described by polynomial function models, being confirmed by Fisher variance (F-test). The% recoveries were in a range of 91.9-112.1%. Good method precision was observed, yielding relative standard deviations (RSDs) less than 4.9% for repeatability and 8.8% for intermediate precision. The limits of quantitation for the analytes ranged from 30.6 to 737.7μgkg -1 . The MEPS R-CX /UHPLC CORTECS -PDA method revealed an effective and potential analytical tool for SCH authenticity control based on target analysis of FDs allowing a strict control and differentiation from other similar or adulterated products. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [Spatial-temporal distribution of bigeye tuna Thunnus obesus in the tropical Atlantic Ocean based on Argo data].

    PubMed

    Yang, Sheng-long; Jin, Shao-fei; Hua, Cheng-jun; Dai, Yang

    2015-02-01

    In order to analyze the correlation between spatial-temporal distribution of the bigeye tuna ( Thunnus obesus) and subsurface factors, the study explored the isothermal distribution of subsurface temperatures in the bigeye tuna fishing grounds in the tropical Atlantic Ocean, and built up the spatial overlay chart of the isothermal lines of 9, 12, 13 and 15 °C and monthly CPUE (catch per unit effort) from bigeye tuna long-lines. The results showed that the bigeye tuna mainly distributed in the water layer (150-450 m) below the lower boundary depth of thermocline. At the isothermal line of 12 °C, the bigeye tuna mainly lived in the water layer of 190-260 m, while few individuals were found at water depth more than 400 m. As to the 13 °C isothermal line, high CPUE often appeared at water depth less than 250 m, mainly between 150-230 m, while no CPUE appeared at water depth more than 300 m. The optimum range of subsurface factors calculated by frequency analysis and empirical cumulative distribution function (ECDF) exhibited that the optimum depth range of 12 °C isothermal depth was 190-260 m and the 13 °C isothermal depth was 160-240 m, while the optimum depth difference range of 12 °C isothermal depth was -10 to 100 m and the 13 °C isothermal depth was -40 to 60 m. The study explored the optimum range of subsurface factors (water temperature and depth) that drive horizontal and vertical distribution of bigeye tuna. The preliminary result would help to discover the central fishing ground, instruct fishing depth, and provide theoretical and practical references for the longline production and resource management of bigeye tuna in the Atlantic Ocean.

  16. Application of IDT Sensors for Structural Health Monitoring of Windmill Turbine Blades Made of Composite Material

    NASA Astrophysics Data System (ADS)

    Nalladega, V.; Na, J. K.; Druffner, C.

    2011-06-01

    Interdigital transducers (IDT) generate and receive ultrasonic surface waves without the complexity involved with secondary devices such as angled wedges or combs. The IDT sensors have been successfully applied for the NDE of homogeneous materials like metals in order to detect cracks and de-bond. However, these transducers have not been yet adapted for complex and anisotropic materials like fiber-reinforced composites. This work presents the possibility of using IDT sensors for monitoring structural damages in wind turbine blades, typically made of fiberglass composites. IDT sensors with a range of operating frequency between 250 kHz and 1 MHz are initially tested on representative composite test panels for ultrasonic surface wave properties including beam spread, propagation distance and effect of material's anisotropy. Based on these results, an optimum frequency range for the IDT sensor is found to be 250-500 kHz. Subsequently, IDT sensors with operating frequency 500 kHz are used to detect and quantify artificial defects created in the composite test samples. Discussions are made on the interaction of ultrasonic fields with these defects along with the effects of fiber directionality and composite layer stacking.

  17. Cyclically optimized electrochemical processes

    NASA Astrophysics Data System (ADS)

    Ruedisueli, Robert Louis

    It has been frequently observed in experiment and industry practice that electrochemical processes (deposition, dissolution, fuel cells) operated in an intermittent or cyclic (AC) mode show improvements in efficiency and/or quality and yield over their steady (DC) mode of operation. Whether rationally invoked by design or empirically tuned-in, the optimal operating frequency and duty cycle is dependent upon the dominant relaxation time constant for the process in question. The electrochemical relaxation time constant is a function of: double-layer and reaction intermediary pseudo-capacitances, ion (charge) transport via electrical migration (mobility), and diffusion across a concentration gradient to electrode surface reaction sites where charge transfer and species incorporation or elimination occurs. The rate determining step dominates the time constant for the reaction or process. Electrochemical impedance spectroscopy (EIS) and piezoelectric crystal electrode (PCE) response analysis have proven to be useful tools in the study and identification of reaction mechanisms. This work explains and demonstrates with the electro-deposition of copper the application of EIS and PCE measurement and analysis to the selection of an optimum cyclic operating schedule, an optimum driving frequency for efficient, sustained cyclic (pulsed) operation.

  18. Development of display design and command usage guidelines for Spacelab experiment computer applications

    NASA Technical Reports Server (NTRS)

    Dodson, D. W.; Shields, N. L., Jr.

    1979-01-01

    Individual Spacelab experiments are responsible for developing their CRT display formats and interactive command scenarios for payload crew monitoring and control of experiment operations via the Spacelab Data Display System (DDS). In order to enhance crew training and flight operations, it was important to establish some standardization of the crew/experiment interface among different experiments by providing standard methods and techniques for data presentation and experiment commanding via the DDS. In order to establish optimum usage guidelines for the Spacelab DDS, the capabilities and limitations of the hardware and Experiment Computer Operating System design had to be considered. Since the operating system software and hardware design had already been established, the Display and Command Usage Guidelines were constrained to the capabilities of the existing system design. Empirical evaluations were conducted on a DDS simulator to determine optimum operator/system interface utilization of the system capabilities. Display parameters such as information location, display density, data organization, status presentation and dynamic update effects were evaluated in terms of response times and error rates.

  19. Visualizing Current Flow at the Mesoscale in Disordered Assemblies of Touching Semiconductor Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qinyi; Guest, Jeffrey R.; Thimsen, Elijah

    2017-07-12

    The transport of electrons through assemblies of nanocrystals is important to performance in optoelectronic applications for these materials. Previous work has primarily focused on single nanocrystals or transitions between pairs of nanocrystals. There is a gap in knowledge of how large numbers of nanocrystals in an assembly behave collectively, and how this collective behavior manifests at the mesoscale. In this work, the variable range hopping (VRH) transport of electrons in disordered assemblies of touching, heavily doped ZnO nanocrystals was visualized at the mesoscale as a function of temperature both theoretically, using the model of Skinner, Chen and Shklovskii (SCS), andmore » experimentally, with conductive atomic force microscopy on ultrathin films only a few particle layers thick. Agreement was obtained between the model and experiments, with a few notable exceptions. The SCS model predicts that a single network within the nanocrystal assembly, comprised of sites connected by small resistances, dominates conduction - namely the optimum band from variable range hopping theory. However, our experiments revealed that in addition to the optimum band, there are subnetworks that appear as additional peaks in the resistance histogram of conductive atomic force microscopy (CAFM) maps. Furthermore, the connections of these subnetworks to the optimum band change in time, such that some subnetworks become connected to the optimum band while others become disconnected and isolated from the optimum band; this observation appears to be an experimental manifestation of the ‘blinking’ phenomenon in our images of mesoscale transport.« less

  20. Wood Combustion Behaviour in a Fixed Bed Combustor

    NASA Astrophysics Data System (ADS)

    Tokit, Ernie Mat; Aziz, Azhar Abdul; Ghazali, Normah Mohd

    2010-06-01

    Waste wood is used as feedstock for Universiti Teknologi Malaysia's newly-developed two-stage incinerator system. The research goals are to optimize the operation of the thermal system to the primary chamber, to improve its combustion efficiency and to minimize its pollutants formation. The combustion process is evaluated with the variation of fuel's moisture content. For optimum operating condition, where the gasification efficiency is 95.53%, the moisture content of the fuel is best set at 17%; giving outlet operating temperature of 550°C and exhaust gas concentrations with 1213 ppm of CO, 6% of CO2 and 14% of O2 respectively. In line to the experimental work, a computational fluid dynamics software, Fluent is used to simulate the performance of the primary chamber. Here the predicted optimum gasification efficiency stands at 95.49% with CO, CO2 and O2 concentrations as 1301 ppm, 6.5% and 13.5% respectively.

  1. Performance optimization of an MHD generator with physical constraints

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.; Seikel, G. R.; Smith, J. M.

    1979-01-01

    A technique has been described which optimizes the power out of a Faraday MHD generator operating under a prescribed set of electrical and magnetic constraints. The method does not rely on complicated numerical optimization techniques. Instead the magnetic field and the electrical loading are adjusted at each streamwise location such that the resultant generator design operates at the most limiting of the cited stress levels. The simplicity of the procedure makes it ideal for optimizing generator designs for system analysis studies of power plants. The resultant locally optimum channel designs are, however, not necessarily the global optimum designs. The results of generator performance calculations are presented for an approximately 2000 MWe size plant. The difference between the maximum power generator design and the optimal design which maximizes net MHD power are described. The sensitivity of the generator performance to the various operational parameters are also presented.

  2. A study of the selection of microcomputer architectures to automate planetary spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Nauda, A.

    1982-01-01

    Performance and reliability models of alternate microcomputer architectures as a methodology for optimizing system design were examined. A methodology for selecting an optimum microcomputer architecture for autonomous operation of planetary spacecraft power systems was developed. Various microcomputer system architectures are analyzed to determine their application to spacecraft power systems. It is suggested that no standardization formula or common set of guidelines exists which provides an optimum configuration for a given set of specifications.

  3. Evaluation of thermodynamically favourable operating conditions for production of hydrogen in three different reforming technologies

    NASA Astrophysics Data System (ADS)

    Seo, Y.-S.; Shirley, A.; Kolaczkowski, S. T.

    With the aid of thermodynamic analysis using AspenPlus™, the characteristics of three different types of reforming process are investigated. These include: steam-methane reforming (SMR), partial oxidation (POX) and autothermal reforming (ATR). Thereby, favourable operating conditions are identified for each process. The optimum steam-to-carbon (S:C) ratio of the SMR reactor is found to be 1.9. The optimum air ratio of the POX reactor is 0.3 at a preheat temperature of 312 °C. The optimum air ratio and S:C ratio of the ATR reactor are 0.29 and 0.35, respectively at a preheat temperature of 400 °C. Simulated material and energy balances show that the CH 4 flow rates required to generate 1 mol s -1 of hydrogen are 0.364 mol s -1 for POX, 0.367 mol s -1 for ATR and 0.385 mol s -1 for the SMR. These results demonstrate that the POX reforming system has the lowest energy cost to produce the same amount of hydrogen from CH 4.

  4. Scheduling multirobot operations in manufacturing by truncated Petri nets

    NASA Astrophysics Data System (ADS)

    Chen, Qin; Luh, J. Y.

    1995-08-01

    Scheduling of operational sequences in manufacturing processes is one of the important problems in automation. Methods of applying Petri nets to model and analyze the problem with constraints on precedence relations, multiple resources allocation, etc. have been available in literature. Searching for an optimum schedule can be implemented by combining the branch-and-bound technique with the execution of the timed Petri net. The process usually produces a large Petri net which is practically not manageable. This disadvantage, however, can be handled by a truncation technique which divides the original large Petri net into several smaller size subnets. The complexity involved in the analysis of each subnet individually is greatly reduced. However, when the locally optimum schedules of the resulting subnets are combined together, it may not yield an overall optimum schedule for the original Petri net. To circumvent this problem, algorithms are developed based on the concepts of Petri net execution and modified branch-and-bound process. The developed technique is applied to a multi-robot task scheduling problem of the manufacturing work cell.

  5. Stably operating pulse combustor and method

    DOEpatents

    Zinn, B.T.; Reiner, D.

    1990-05-29

    A pulse combustor apparatus is described which is adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation. 4 figs.

  6. Sequential nitrification and denitrification in a novel palm shell granular activated carbon twin-chamber upflow bio-electrochemical reactor for treating ammonium-rich wastewater.

    PubMed

    Mousavi, Seyyedalireza; Ibrahim, Shaliza; Aroua, Mohamed Kheireddine

    2012-12-01

    In this study, a twin-chamber upflow bio-electrochemical reactor packed with palm shell granular activated carbon as biocarrier and third electrode was used for sequential nitrification and denitrification of nitrogen-rich wastewater under different operating conditions. The experiments were performed at a constant pH value for the denitrification compartment. The effect of variables, namely, electric current (I) and hydraulic retention time (HRT), on the pH was considered in the nitrification chamber. The response surface methodology was used based on three levels to develop empirical models for the study on the effects of HRT and current values as independent operating variables on NH(4)(+)-N removal. The results showed that ammonium was reduced within the function of an extensive operational range of electric intensity (20-50 mA) and HRT (6-24h). The optimum condition for ammonium oxidation (90%) was determined with an I of 32 mA and HRT of 19.2h. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Performance of computer-designed small-size multistage depressed collectors for a high-perveance traveling wave tube

    NASA Technical Reports Server (NTRS)

    Ramins, P.

    1984-01-01

    Computer designed axisymmetric 2.4-cm-diameter three-, four-, and five-stage depressed collectors were evaluated in conjunction with an octave bandwidth, high-perveance, and high-electronic-efficiency, griddled-gun traveling wave tube (TWT). Spent-beam refocusing was used to condition the beam for optimum entry into the depressed collectors. Both the TWT and multistage depressed collector (MDC) efficiencies were measured, as well as the MDC current, dissipated thermal power, and DC input power distributions, for the TWT operating both at saturation over its bandwidth and over its full dynamic range. Relatively high collector efficiencies were obtained, leading to a very substantial improvement in the overall TWT efficiency. In spite of large fixed TWT body losses (due largely to the 6 to 8 percent beam interception), average overall efficiencies of 45 to 47 percent (for three to five collector stages) were obtained at saturation across the 2.5-, to 5.5-GHz operating band. For operation below saturation the collector efficiencies improved steadily, leading to reasonable ( 20 percent) overall efficiencies as far as 6 dB below saturation.

  8. OPDOT: A computer program for the optimum preliminary design of a transport airplane

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.; Arbuckle, P. D.

    1980-01-01

    A description of a computer program, OPDOT, for the optimal preliminary design of transport aircraft is given. OPDOT utilizes constrained parameter optimization to minimize a performance index (e.g., direct operating cost per block hour) while satisfying operating constraints. The approach in OPDOT uses geometric descriptors as independent design variables. The independent design variables are systematically iterated to find the optimum design. The technical development of the program is provided and a program listing with sample input and output are utilized to illustrate its use in preliminary design. It is not meant to be a user's guide, but rather a description of a useful design tool developed for studying the application of new technologies to transport airplanes.

  9. Studies of Operating Frequency Effects On Ejector-based Thrust Augmentation in a Pulse Detonation Engine

    NASA Technical Reports Server (NTRS)

    Landry, K.

    2005-01-01

    Studies were performed in order to characterize the thrust augmentation potential of an ejector in a Pulse Detonation Engine application. A 49-mm diameter tube of 0.914-m length was constructed with one open end and one closed end. Ethylene, oxygen, and nitrogen were introduced into the tube at the closed end through the implementation of a fast mixing injector. The tube was completely filled with a stoichiometric mixture containing a one to one molar ratio of nitrogen to oxygen. Ethylene was selected as the fuel due to its detonation sensitivity and the molar ratio of the oxidizer was chosen for heat transfer purposes. Detonations were initiated in the tube through the use of a spark ignition system. The PDE was operated in a multi-cycle mode at frequencies ranging from 20-Hz to 50-Hz. Baseline thrust measurements with no ejector present were performed while operating the engine at various frequencies and compared to theoretical estimates. The baseline values were observed to agree with the theoretical model at low operating frequencies and proved to be increasingly lower than the predicted values as the operating frequency was increased. The baseline thrust measurements were observed to agree within 15 percent of the model for all operating frequencies. A straight 152-mm diameter ejector was installed and thrust augmentation percentages were measured. The length of the ejector was varied while the overlap percentage (percent of the ejector length which overlapped the tube) was maintained at 25 percent for all tests. In addition, the effect of ejector inlet geometry was investigated by comparing results with a straight inlet to those of a 38-mm inlet diameter. The thrust augmentation of the straight inlet ejector proved to be independent of engine operating frequency, augmenting thrust by 40 percent for the 0.914-m length ejector. In contrast, the rounded lip ejector of the same length seemed to be highly dependent on the engine operating frequency. An optimum operating frequency observed with the rounded inlet occurred at an operating frequency of 30-Hz, resulting in thrust augmentation percentages greater than 100 percent. The effect that the engine operating frequency had on thrust augmentation levels attained with an ejector was characterized and optimum performance parameters were established. Insight into the frequency dependent nature of the ejector performance was pursued. Suggestions for future experiments which are needed to fully understand the means in which thrust augmentation is achieved in a PDE-ejector configuration were noted.

  10. The impact of flying qualities on helicopter operational agility

    NASA Technical Reports Server (NTRS)

    Padfield, Gareth D.; Lappos, Nick; Hodgkinson, John

    1993-01-01

    Flying qualities standards are formally set to ensure safe flight and therefore reflect minimum, rather than optimum, requirements. Agility is a flying quality but relates to operations at high, if not maximum, performance. While the quality metrics and test procedures for flying, as covered for example in ADS33C, may provide an adequate structure to encompass agility, they do not currently address flight at high performance. This is also true in the fixed-wing world and a current concern in both communities is the absence of substantiated agility criteria and possible conflicts between flying qualities and high performance. AGARD is sponsoring a working group (WG19) title 'Operational Agility' that deals with these and a range of related issues. This paper is condensed from contributions by the three authors to WG19, relating to flying qualities. Novel perspectives on the subject are presented including the agility factor, that quantifies performance margins in flying qualities terms; a new parameter, based on maneuver acceleration is introduced as a potential candidate for defining upper limits to flying qualities. Finally, a probabilistic analysis of pilot handling qualities ratings is presented that suggests a powerful relationship between inherent airframe flying qualities and operational agility.

  11. A network for continuous monitoring of water quality in the Sabine River basin, Texas and Louisiana

    USGS Publications Warehouse

    Blakey, J.F.; Skinner, P.W.

    1973-01-01

    Level I operations at a proposed site would monitor current and potential problems, water-quality changes in subreaches of streams, and water-quality trends in time and place. Level II operations would monitor current or potential problems only. An optimum system would require Level I operations at all nine stations. A minimum system would require Level II operations at most of the stations.

  12. Optimum operation of restoration techniques for eutrophic water bodies

    NASA Astrophysics Data System (ADS)

    Hagen, N. M.; Kleeberg, H.-B.

    1994-05-01

    Operating rules have been applied in water resources management for a long time in order to control and supply a required quantity (volume) of water. The operating rules have to guarantee the optimum management of the reservoir(s). The quality of the stored water has been satisfactory for the desired utilization up to the sixties. Due to the deterioration of reservoir water quality through human impacts, however, increased attention had to be paid since. Eutrophication of stagnant waters is still an unsolved problem. Through means of various restoration techniques, i.e., dilution/flushing or hypolimnetic withdrawal, the quality of the stored water can be improved. Continuous operation or appropriate time or depth variant operating rules are required to achieve this goal. The paper presents such rules for long-term operation. They have been established for the first time and can he represented in two or three-dimensional graphs depending on the number of included components (e.g., actual water storage and quality). The ‘quality operating rules’ take into account the dynamics of the processes in aquatic ecosystems. Simplifications with regard to application and acceptance (e.g., clarity) are developed and tested. The general validity and efficiency of the operating rules have been proved in a case study (a multi-purpose reservoir) and a fictitious lake.

  13. Physical constraints, fundamental limits, and optimal locus of operating points for an inverted pendulum based actuated dynamic walker.

    PubMed

    Patnaik, Lalit; Umanand, Loganathan

    2015-10-26

    The inverted pendulum is a popular model for describing bipedal dynamic walking. The operating point of the walker can be specified by the combination of initial mid-stance velocity (v0) and step angle (φm) chosen for a given walk. In this paper, using basic mechanics, a framework of physical constraints that limit the choice of operating points is proposed. The constraint lines thus obtained delimit the allowable region of operation of the walker in the v0-φm plane. A given average forward velocity vx,avg can be achieved by several combinations of v0 and φm. Only one of these combinations results in the minimum mechanical power consumption and can be considered the optimum operating point for the given vx,avg. This paper proposes a method for obtaining this optimal operating point based on tangency of the power and velocity contours. Putting together all such operating points for various vx,avg, a family of optimum operating points, called the optimal locus, is obtained. For the energy loss and internal energy models chosen, the optimal locus obtained has a largely constant step angle with increasing speed but tapers off at non-dimensional speeds close to unity.

  14. Proper Edging and Trimming Will Help Improve Lumber Value

    Treesearch

    Philip A. Araman

    1991-01-01

    Decisions on where to edge and trim waning edged boards, or to trim other boards, can have a major effect on the performance of a sawmill. Optimum decisions are difficult for a number of reasons, including: complexity of grading rules; operator skills; operator fatigue or lack of interest at times; and, the inability of operators to include lumber prices in decisions....

  15. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    NASA Astrophysics Data System (ADS)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  16. Comparative evaluation of distributed-collector solar thermal electric power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; El Gabalawi, N.; Herrera, G. G.; Caputo, R. S.

    1978-01-01

    Distributed-collector solar thermal-electric power plants are compared by projecting power plant economics of selected systems to the 1990-2000 timeframe. The approach taken is to evaluate the performance of the selected systems under the same weather conditions. Capital and operational costs are estimated for each system. Energy costs are calculated for different plant sizes based on the plant performance and the corresponding capital and maintenance costs. Optimum systems are then determined as the systems with the minimum energy costs for a given load factor. The optimum system is comprised of the best combination of subsystems which give the minimum energy cost for every plant size. Sensitivity analysis is done around the optimum point for various plant parameters.

  17. Practical application of economic well-performance criteria to the optimization of fracturing treatment design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.W.; Phillips, A.M.

    1988-02-01

    Low-permeability reservoirs are currently being propped with sand, resin-coated sand, intermediate-density proppants, and bauxite. This wide range of proppant cost and performance has resulted in a proliferation of proppant selection models. Initially, a rather vague relationship between well depth and proppant strength dictated the choice of proppant. More recently, computerized models of varying complexity have become available that use net-present-value (NPV) calculations. The input is based on the operator's performance goals for each well and on specific reservoir properties. Simpler, noncomputerized approaches also being used include cost/performance comparisons and nomographs. Each type of model, including several of the computerized models,more » will be examined. By use of these models and NPV calculations, optimum fracturing treatment designs have been developed for such low-permeability reservoirs as the Prue in Oklahoma. Typical well conditions are used in each of the selection models and the results are compared. The computerized models allow the operator to determine, before fracturing, how changes in proppant type, size, and quantity will affect postfracture production over time periods ranging from several months to many years. Thus, the operator can choose the fracturing treatment design that best satisfies the economic performance goals for a particular well, regardless of whether those goals are long or short term.« less

  18. Alternative communication network designs for an operational Plato 4 CAI system

    NASA Technical Reports Server (NTRS)

    Mobley, R. E., Jr.; Eastwood, L. F., Jr.

    1975-01-01

    The cost of alternative communications networks for the dissemination of PLATO IV computer-aided instruction (CAI) was studied. Four communication techniques are compared: leased telephone lines, satellite communication, UHF TV, and low-power microwave radio. For each network design, costs per student contact hour are computed. These costs are derived as functions of student population density, a parameter which can be calculated from census data for one potential market for CAI, the public primary and secondary schools. Calculating costs in this way allows one to determine which of the four communications alternatives can serve this market least expensively for any given area in the U.S. The analysis indicates that radio distribution techniques are cost optimum over a wide range of conditions.

  19. Guidelines for Perioperative Management of the Diabetic Patient

    PubMed Central

    Surani, Salim R.

    2015-01-01

    Management of glycemic levels in the perioperative setting is critical, especially in diabetic patients. The effects of surgical stress and anesthesia have unique effects on blood glucose levels, which should be taken into consideration to maintain optimum glycemic control. Each stage of surgery presents unique challenges in keeping glucose levels within target range. Additionally, there are special operative conditions that require distinctive glucose management protocols. Interestingly, the literature still does not report a consensus perioperative glucose management strategy for diabetic patients. We hope to outline the most important factors required in formulating a perioperative diabetic regimen, while still allowing for specific adjustments using prudent clinical judgment. Overall, through careful glycemic management in perioperative patients, we may reduce morbidity and mortality and improve surgical outcomes. PMID:26078998

  20. Optimization of the NIF ignition point design hohlraum

    NASA Astrophysics Data System (ADS)

    Callahan, D. A.; Hinkel, D. E.; Berger, R. L.; Divol, L.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Jones, O. S.; Lindl, J. D.; Meezan, N. B.; Michel, P. A.; Pollaine, S. M.; Suter, L. J.; Town, R. P. J.; Bradley, P. A.

    2008-05-01

    In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt.

  1. Estimated Performance of Radial-Flow Exit Nozzles for Air in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W.; Kochendorfer, Fred D.

    1959-01-01

    The thrust, boundary-layer, and heat-transfer characteristics were computed for nozzles having radial flow in the divergent part. The working medium was air in chemical equilibrium, and the boundary layer was assumed to be all turbulent. Stagnation pressure was varied from 1 to 32 atmospheres, stagnation temperature from 1000 to 6000 R, and wall temperature from 1000 to 3000 R. Design pressure ratio was varied from 5 to 320, and operating pressure ratio was varied from 0.25 to 8 times the design pressure ratio. Results were generalized independent of divergence angle and were also generalized independent of stagnation pressure in the temperature range of 1000 to 3000 R. A means of determining the aerodynamically optimum wall angle is provided.

  2. Test and evaluation of constant-flow devices for use in SSN AFFF proportioning systems. Interim report, January-May 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, F.W.; Back, G.G.; Burns, R.E.

    1986-11-04

    Constant flow devices, which deliver a constant flow of liquid over a range of upstream and downstream pressures, have been suggested as an alternative to orifice plates for proportioning AFFF in SSN 21 fire-suppression systems. Operational and performance characteristics of two lightweight, inexpensive, commercially available constant-flow devices have significant advantages over orifice plates. Both models tested, however, showed performance degradation when subjected to simulated service conditions. A constant flow device with improved resistance to wear and to AFFF exposure is desirable. Since the constant-flow control devices tested improves proportioning efficiency but do not have optimum characteristics, investigation of improved devicesmore » or methods is recommended.« less

  3. Development of microwave assisted spectrophotometric method for the determination of glucose

    NASA Astrophysics Data System (ADS)

    Ali, Asif; Hussain, Zahid; Arain, Muhammad Balal; Shah, Nasrullah; Khan, Khalid Mohammad; Gulab, Hussain; Zada, Amir

    2016-01-01

    A spectrophotometric method was developed based on the microwave assisted synthesis of Maillard product. Various conditions of the reaction were optimized by varying the relative concentration of the reagents, operating temperature and volume of solutions used in the reaction in the microwave synthesizer. The absorbance of the microwave synthesized Maillard product was measured in the range of 360-740 nm using UV-Visible spectrophotometer. Based on the maximum absorbance, 370 nm was selected as the optimum wave length for further studies. The LOD and LOQ of glucose was found 3.08 μg mL- 1 and 9.33 μg mL- 1 with standard deviation of ± 0.05. The developed method was also applicable to urine sample.

  4. Cable Economics.

    ERIC Educational Resources Information Center

    Cable Television Information Center, Washington, DC.

    A guide to the economic factors that influence cable television systems is presented. Designed for local officials who must have some familiarity with cable operations in order to make optimum decisions, the guide analyzes the financial framework of a cable system, not only from the operators viewpoint, but also from the perspective of the…

  5. Assessing pretreatment reactor scaling through empirical analysis

    DOE PAGES

    Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik; ...

    2016-10-10

    Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems, which may be used as starting points for further optimization. Additionally, using a severity-factor approach to optimization was found to be inadequate compared to a multivariate optimization method. As a result, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of incorporating mechanical disruption into pretreatment reactor designs to achieve high enzymatic digestibilities.« less

  6. Assessing pretreatment reactor scaling through empirical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik

    Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, thismore » is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems, which may be used as starting points for further optimization. Additionally, using a severity-factor approach to optimization was found to be inadequate compared to a multivariate optimization method. As a result, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of incorporating mechanical disruption into pretreatment reactor designs to achieve high enzymatic digestibilities.« less

  7. Frequency stability of maser oscillators operated with cavity Q. [hydrogen and rubidium masers

    NASA Technical Reports Server (NTRS)

    Tetu, M.; Tremblay, P.; Lesage, P.; Petit, P.; Audoin, C.

    1982-01-01

    The short term frequency stability of masers equipped with an external feedback loop to increase the cavity quality factor was studied. The frequency stability of a hydrogen and a rubidium maser were measured and compared with theoretical evaluation. It is shown that the frequency stability passes through an optimum when the cavity Q is varied. Long term fluctuations are discussed and the optimum mid term frequency stability achievably by small size active and passive H-masers is considered.

  8. The superiority of L3-CCDs in the high-flux and wide dynamic range regimes

    NASA Astrophysics Data System (ADS)

    Butler, Raymond F.; Sheehan, Brendan J.

    2008-02-01

    Low Light Level CCD (L3-CCD) cameras have received much attention for high cadence astronomical imaging applications. Efforts to date have concentrated on exploiting them for two scenarios: post-exposure image sharpening and ``lucky imaging'', and rapid variability in astrophysically interesting sources. We demonstrate their marked superiority in a third distinct scenario: observing in the high-flux and wide dynamic range regimes. We realized that the unique features of L3-CCDs would make them ideal for maximizing signal-to-noise in observations of bright objects (whether variable or not), and for high dynamic range scenarios such as faint targets embedded in a crowded field of bright objects. Conventional CCDs have drawbacks in such regimes, due to a poor duty cycle-the combination of short exposure times (for time-series sampling or to avoid saturation) and extended readout times (for minimizing readout noise). For different telescope sizes, we use detailed models to show that a range of conventional imaging systems are photometrically out-performed across a wide range of object brightness, once the operational parameters of the L3-CCD are carefully set. The cross-over fluxes, above which the L3-CCD is operationally superior, are surprisingly faint-even for modest telescope apertures. We also show that the use of L3-CCDs is the optimum strategy for minimizing atmospheric scintillation noise in photometric observations employing a given telescope aperture. This is particularly significant, since scintillation can be the largest source of error in timeseries photometry. These results should prompt a new direction in developing imaging instrumentation solutions for observatories.

  9. Simultaneous Optimization of Tooth Flank Form of Involute Helical Gears in Terms of Both Vibration and Load Carrying Capacity

    NASA Astrophysics Data System (ADS)

    Komori, Masaharu; Kubo, Aizoh; Suzuki, Yoshitomo

    The alignment condition of automotive gears changes considerably during operation due to the deformation of shafts, bearings, and gear box by transmission of load. Under such conditions, the gears are required to satisfy not only reliability in strength and durability under maximum loading conditions, but also low vibrational characteristics under light loading conditions during the cruising of a car. In this report, the characteristics of the optimum tooth flank form of gears in terms of both vibration and load carrying capacity are clarified. The local optimum tooth flank form appears in each excitation valley, where the vibrational excitation is low and the actual contact ratio takes a specific value. The influence of the choice of different local optimum solutions on the vibrational performance of the optimized gears is investigated. The practical design algorithm for the optimum tooth flank form of a gear set in terms of both vibration and load carrying capacity is then proposed and its result is evaluated by field experience.

  10. Optimization of solid content, carbon/nitrogen ratio and food/inoculum ratio for biogas production from food waste.

    PubMed

    Dadaser-Celik, Filiz; Azgin, Sukru Taner; Yildiz, Yalcin Sevki

    2016-12-01

    Biogas production from food waste has been used as an efficient waste treatment option for years. The methane yields from decomposition of waste are, however, highly variable under different operating conditions. In this study, a statistical experimental design method (Taguchi OA 9 ) was implemented to investigate the effects of simultaneous variations of three parameters on methane production. The parameters investigated were solid content (SC), carbon/nitrogen ratio (C/N) and food/inoculum ratio (F/I). Two sets of experiments were conducted with nine anaerobic reactors operating under different conditions. Optimum conditions were determined using statistical analysis, such as analysis of variance (ANOVA). A confirmation experiment was carried out at optimum conditions to investigate the validity of the results. Statistical analysis showed that SC was the most important parameter for methane production with a 45% contribution, followed by F/I ratio with a 35% contribution. The optimum methane yield of 151 l kg -1 volatile solids (VS) was achieved after 24 days of digestion when SC was 4%, C/N was 28 and F/I were 0.3. The confirmation experiment provided a methane yield of 167 l kg -1 VS after 24 days. The analysis showed biogas production from food waste may be increased by optimization of operating conditions. © The Author(s) 2016.

  11. Evaluating photo-degradation of COD and TOC in petroleum refinery wastewater by using TiO2/ZnO photo-catalyst.

    PubMed

    Aljuboury, Dheeaa Al Deen Atallah; Palaniandy, Puganeshwary; Abdul Aziz, Hamidi Bin; Feroz, Shaik; Abu Amr, Salem S

    2016-09-01

    The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO 2 /ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO 2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (<0.0001). The obtained optimum conditions included a reaction time of 170 min, TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), and pH 6.8 COD and TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.

  12. Optimum design using VICONOPT, a buckling and strength constraint program for prismatic assemblies of anisotropic plates

    NASA Technical Reports Server (NTRS)

    Butler, R.; Williams, F. W.

    1992-01-01

    A computer program for obtaining the optimum (least mass) dimensions of the kind of prismatic assemblies of laminated, composite plates which occur in advanced aerospace construction is described. Rigorous buckling analysis (derived from exact member theory) and a tailored design procedure are used to produce designs which satisfy buckling and material strength constraints and configurational requirements. Analysis is two to three orders of magnitude quicker than FEM, keeps track of all the governing modes of failure and is efficiently adapted to give sensitivities and to maintain feasibility. Tailoring encourages convergence in fewer sizing cycles than competing programs and permits start designs which are a long way from feasible and/or optimum. Comparisons with its predecessor, PASCO, show that the program is more likely to produce an optimum, will do so more quickly in some cases, and remains accurate for a wider range of problems.

  13. The combined theoretical and experimental approach to arrive at optimum parameters in friction stir welding

    NASA Astrophysics Data System (ADS)

    Jagadeesha, C. B.

    2017-12-01

    Even though friction stir welding was invented long back (1991) by TWI England, till now there has no method or procedure or approach developed, which helps to obtain quickly optimum or exact parameters yielding good or sound weld. An approach has developed in which an equation has been derived, by which approximate rpm can be obtained and by setting range of rpm ±100 or 50 rpm over approximate rpm and by setting welding speed equal to 60 mm/min or 50 mm/min one can conduct FSW experiment to reach optimum parameters; one can reach quickly to optimum parameters, i.e. desired rpm, and welding speed, which yield sound weld by the approach. This approach can be effectively used to obtain sound welds for all similar and dissimilar combinations of materials such as Steel, Al, Mg, Ti, etc.

  14. Performance characteristics of high-conductivity channel electron multipliers. [as UV and x ray detector

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1978-01-01

    The paper describes a new type of continuous channel multiplier (CEM) fabricated from a low-resistance glass to produce a high-conductivity channel section and thereby obtain a high count-rate capability. The flat-cone cathode configuration of the CEM is specifically designed for the detection of astigmatic exit images from grazing-incidence spectrometers at the optimum angle of illumination for high detection efficiencies at XUV wavelengths. Typical operating voltages are in the range of 2500-2900 V with stable counting plateau slopes in the range 3-6% per 100-V increment. The modal gain at 2800 V was typically in the range (50-80) million. The modal gain falls off at count rates in excess of about 20,000 per sec. The detection efficiency remains essentially constant to count rates in excess of 2 million per sec. Higher detection efficiencies (better than 20%) are obtained by coating the CEM with MgF2. In life tests of coated CEMs, no measurable change in detection efficiency was measured to a total accumulated signal of 2 times 10 to the 11th power counts.

  15. Guidelines for application of fluorescent lamps in high-performance avionic backlight systems

    NASA Astrophysics Data System (ADS)

    Syroid, Daniel D.

    1997-07-01

    Fluorescent lamps have proven to be well suited for use in high performance avionic backlight systems as demonstrated by numerous production applications for both commercial and military cockpit displays. Cockpit display applications include: Boeing 777, new 737s, F-15, F-16, F-18, F-22, C- 130, Navy P3, NASA Space Shuttle and many others. Fluorescent lamp based backlights provide high luminance, high lumen efficiency, precision chromaticity and long life for avionic active matrix liquid crystal display applications. Lamps have been produced in many sizes and shapes. Lamp diameters range from 2.6 mm to over 20 mm and lengths for the larger diameter lamps range to over one meter. Highly convoluted serpentine lamp configurations are common as are both hot and cold cathode electrode designs. This paper will review fluorescent lamp operating principles, discuss typical requirements for avionic grade lamps, compare avionic and laptop backlight designs and provide guidelines for the proper application of lamps and performance choices that must be made to attain optimum system performance considering high luminance output, system efficiency, dimming range and cost.

  16. Gas phase bio-filter for the removal of triethylamine (TEA) from air: microbial diversity analysis with reference to design parameters.

    PubMed

    Gandu, Bharath; Sandhya, K; Gangagni Rao, A; Swamy, Y V

    2013-07-01

    Biotic (packed bio-filter; PBF) and abiotic (packed filter; PF) studies were carried out on two similar 2L gas phase filters for the removal of triethylamine (TEA) at inlet concentration in the range of 250-280 ppmV. Removal efficiency (RE) of PBF remained in the range of 90-99% during the stable period of operation (170 days) whereas RE of PF dropped gradually to 10% in a span of 90 days. Five different bacterial species viz; Aeromonas sp., Alcaligenes sp., Arthrobacter sp., Klebsiella sp., and Pseudomonas sp., were identified in PBF. It was observed that diethyl amine, ethylamine and nitrate were formed as metabolites during the degradation pathway. Empty bed residence time of 20s, mass loading rate of 202.26 g/m(3)/h, space velocity of 178.82 m(3)/m(3)/h and elimination capacity of 201.52 g/m(3)/h were found to be optimum design parameters for PBF to get RE in the range of 90-99%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Biomethanation of poultry litter leachate in UASB reactor coupled with ammonia stripper for enhancement of overall performance.

    PubMed

    Gangagni Rao, A; Sasi Kanth Reddy, T; Surya Prakash, S; Vanajakshi, J; Joseph, Johny; Jetty, Annapurna; Rajashekhara Reddy, A; Sarma, P N

    2008-12-01

    In the present study possibility of coupling stripper to remove ammonia to the UASB reactor treating poultry litter leachate was studied to enhance the overall performance of the reactor. UASB reactor with stripper as ammonia inhibition control mechanism exhibited better performance in terms of COD reduction (96%), methane yield (0.26m(3)CH(4)/kg COD reduced), organic loading rate (OLR) (18.5kg COD m(-3)day(-1)) and Hydraulic residence time (HRT) (12h) compared to the UASB reactor without stripper (COD reduction: 92%; methane yield: 0.21m(3)CH(4)/kg COD reduced; OLR: 13.6kg CODm(-3)day(-1); HRT: 16h). The improved performance was due to the reduction of total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN) in the range of 75-95% and 80-95%, respectively by the use of stripper. G/L (air flow rate/poultry leachate flow rate) in the range of 60-70 and HRT in the range of 7-9min are found to be optimum parameters for the operation of the stripper.

  18. Size effects on miniature Stirling cycle cryocoolers

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqin; Chung, J. N.

    2005-08-01

    Size effects on the performance of Stirling cycle cryocoolers were investigated by examining each individual loss associated with the regenerator and combining these effects. For the fixed cycle parameters and given regenerator length scale, it was found that only for a specific range of the hydrodynamic diameter the system can produce net refrigeration and there is an optimum hydraulic diameter at which the maximum net refrigeration is achieved. When the hydraulic diameter is less than the optimum value, the regenerator performance is controlled by the pressure drop loss; when the hydraulic diameter is greater than the optimum value, the system performance is controlled by the thermal losses. It was also found that there exists an optimum ratio between the hydraulic diameter and the length of the regenerator that offers the maximum net refrigeration. As the regenerator length is decreased, the optimum hydraulic diameter-to-length ratio increases; and the system performance is increased that is controlled by the pressure drop loss and heat conduction loss. Choosing appropriate regenerator characteristic sizes in small-scale systems are more critical than in large-scale ones.

  19. Implementation of an optimum profile guidance system on STOLAND

    NASA Technical Reports Server (NTRS)

    Flanagan, P. F.

    1978-01-01

    The implementation on the STOLAND airborne digital computer of an optimum profile guidance system for the augmentor wing jet STOL research aircraft is described. Major tasks were to implement the guidance and control logic to airborne computer software and to integrate the module with the existing STOLAND navigation, display, and autopilot routines. The optimum profile guidance system comprises an algorithm for synthesizing mimimum fuel trajectories for a wide range of starting positions in the terminal area and a control law for flying the aircraft automatically along the trajectory. The avionics software developed is described along with a FORTRAN program that was constructed to reflect the modular nature and algorthms implemented in the avionics software.

  20. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A study was conducted to evaluate alternatives in the design of laminar flow control (LFC) subsonic commercial transport aircraft for operation in the 1980's period. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12,038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatives were evaluated in the areas of aerodynamics structures, materials, LFC systems, leading-edge region cleaning and integration of auxiliary systems. Based on these evaluations, concept in each area were selected for further development and testing and ultimate incorporation in the final study aircraft. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in direct operating cost but provides decreases of 8.2% in gross weight and 21.7% in fuel consumption.

  1. Multi-objective optimization of an industrial penicillin V bioreactor train using non-dominated sorting genetic algorithm.

    PubMed

    Lee, Fook Choon; Rangaiah, Gade Pandu; Ray, Ajay Kumar

    2007-10-15

    Bulk of the penicillin produced is used as raw material for semi-synthetic penicillin (such as amoxicillin and ampicillin) and semi-synthetic cephalosporins (such as cephalexin and cefadroxil). In the present paper, an industrial penicillin V bioreactor train is optimized for multiple objectives simultaneously. An industrial train, comprising a bank of identical bioreactors, is run semi-continuously in a synchronous fashion. The fermentation taking place in a bioreactor is modeled using a morphologically structured mechanism. For multi-objective optimization for two and three objectives, the elitist non-dominated sorting genetic algorithm (NSGA-II) is chosen. Instead of a single optimum as in the traditional optimization, a wide range of optimal design and operating conditions depicting trade-offs of key performance indicators such as batch cycle time, yield, profit and penicillin concentration, is successfully obtained. The effects of design and operating variables on the optimal solutions are discussed in detail. Copyright 2007 Wiley Periodicals, Inc.

  2. The use of optical pyrometers in axial flow turbines

    NASA Astrophysics Data System (ADS)

    Sellers, R. R.; Przirembel, H. R.; Clevenger, D. H.; Lang, J. L.

    1989-07-01

    An optical pyrometer system that can be used to measure metal temperatures over an extended range of temperature has been developed. Real-time flame discrimination permits accurate operation in the gas turbine environment with high flame content. This versatile capability has been used in a number of ways. In experimental engines, a fixed angle pyrometer has been used for turbine health monitoring for the automatic test stand abort system. Turbine blade creep capability has been improved by tailoring the burner profile based on measured blade temperatures. Fixed and traversing pyrometers were used extensively during engine development to map blade surface temperatures in order to assess cooling effectiveness and identify optimum configurations. Portable units have been used in turbine field inspections. A new low temperature pyrometer is being used as a diagnostic tool in the alternate turbopump design for the Space Shuttle main engine. Advanced engine designs will incorporate pyrometers in the engine control system to limit operation to safe temperatures.

  3. Joint Command and Control of Cyber Operations: The Joint Force Cyber Component Command (JFCCC)

    DTIC Science & Technology

    2012-05-04

    relies so heavily on complex command and control systems and interconnectivity in general, cyber warfare has become a serious topic of interest at the...defensive cyber warfare into current and future operations and plans. In particular, Joint Task Force (JTF) Commanders must develop an optimum method to

  4. 40 CFR 63.775 - Reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... documentation stating why the TEG dehydration unit must operate using the alternate glycol circulation rate. (iv... facility will always operate the glycol dehydration unit using the optimum circulation rate determined in... dehydration unit located at an area source that meets the criteria in § 63.764(e)(1)(i) or § 63.764(e)(1)(ii...

  5. Set up and Operation of Video Cassette Recorders or "...How Do I Work This Thing???"

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    Designed to assist Alaskans in making optimum use of the LearnAlaska TV transmitter network, this booklet provides instructions for the operation and maintenance of videocassette recorders (VCRs). After a brief introduction, which lists state film library addresses for ordering an accompanying videocassette entitled "Set Up & Operation…

  6. Measurements of the cesium flow from a surface-plasma H/sup -/ ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, H.V.; Allison, P.W.

    1979-01-01

    A surface ionization gauge (SIG) was constructed and used to measure the Cs/sup 0/ flow rate through the emission slit of a surface-plasma source (SPS) of H/sup -/ ions with Penning geometry. The equivalent cesium density in the SPS discharge is deduced from these flow measurements. For dc operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 7 x 10/sup 12/ cm/sup -3/ (corresponding to an average cesium consumption rate of 0.5 mg/h). For pulsed operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 2 x 10/sup 13/ cm/sup -3/more » (1-mg/h average cesium consumption rate). Cesium trapping by the SPS discharge was observed for both dc and pulsed operation. A cesium energy of approx. 0.1 eV is deduced from the observed time of flight to the SIG. In addition to providing information on the physics of the source, the SIG is a useful diagnostic tool for source startup and operation.« less

  7. Applications of Optimal Building Energy System Selection and Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marnay, Chris; Stadler, Michael; Siddiqui, Afzal

    2011-04-01

    Berkeley Lab has been developing the Distributed Energy Resources Customer Adoption Model (DER-CAM) for several years. Given load curves for energy services requirements in a building microgrid (u grid), fuel costs and other economic inputs, and a menu of available technologies, DER-CAM finds the optimum equipment fleet and its optimum operating schedule using a mixed integer linear programming approach. This capability is being applied using a software as a service (SaaS) model. Optimisation problems are set up on a Berkeley Lab server and clients can execute their jobs as needed, typically daily. The evolution of this approach is demonstrated bymore » description of three ongoing projects. The first is a public access web site focused on solar photovoltaic generation and battery viability at large commercial and industrial customer sites. The second is a building CO2 emissions reduction operations problem for a University of California, Davis student dining hall for which potential investments are also considered. And the third, is both a battery selection problem and a rolling operating schedule problem for a large County Jail. Together these examples show that optimization of building u grid design and operation can be effectively achieved using SaaS.« less

  8. Treatment of high salt oxidized modified starch waste water using micro-electrolysis, two-phase anaerobic aerobic and electrolysis for reuse

    NASA Astrophysics Data System (ADS)

    Yi, Xuenong; Wang, Yulin

    2017-06-01

    A combined process of micro-electrolysis, two-phase anaerobic, aerobic and electrolysis was investigated for the treatment of oxidized modified starch wastewater (OMSW). Optimum ranges for important operating variables were experimentally determined and the treated water was tested for reuse in the production process of corn starch. The optimum hydraulic retention time (HRT) of micro-electrolysis, methanation reactor, aerobic process and electrolysis process were 5, 24, 12 and 3 h, respectively. The addition of iron-carbon fillers to the acidification reactor was 200 mg/L while the best current density of electrolysis was 300 A/m2. The biodegradability was improved from 0.12 to 0.34 by micro-electrolysis. The whole treatment was found to be effective with removal of 96 % of the chemical oxygen demand (COD), 0.71 L/day of methane energy recovery. In addition, active chlorine production (15,720 mg/L) was obtained by electrolysis. The advantage of this hybrid process is that, through appropriate control of reaction conditions, effect from high concentration of salt on the treatment was avoided. Moreover, the process also produced the material needed in the production of oxidized starch while remaining emission-free and solved the problem of high process cost.

  9. OFF-DESIGN PERFORMANCE OF RADIAL INFLOW TURBINES

    NASA Technical Reports Server (NTRS)

    Wasserbauer, C. A.

    1994-01-01

    This program calculates off design performance of radial inflow turbines. The program uses a one dimensional solution of flow conditions through the turbine along the main streamline. The loss model accounts for stator, rotor, incidence, and exit losses. Program features include consideration of stator and rotor trailing edge blockage and computation of performance to limiting load. Stator loss (loss in kinetic energy across the stator) is proportional to the average kinetic energy in the blade row and is represented in the program by an equation which includes a stator loss coefficient determined from design point performance and then assumed to be constant for the off design calculations. Minimum incidence loss does not occur at zero incidence angle with respect to the rotor blade, but at some optimum flow angle. At high pressure ratios the level of rotor inlet velocity seemed to have an excessive influence on the loss. Using the component of velocity in the direction of the optimum flow angle gave better correlations with experimental results. Overall turbine geometry and design point values of efficiency, pressure ratio, and mass flow are needed as input information. The output includes performance and velocity diagram parameters for any number of given speeds over a range of turbine pressure ratio. The program has been implemented on the IBM 7094 and operates in batch mode.

  10. An evolutionary algorithm for large traveling salesman problems.

    PubMed

    Tsai, Huai-Kuang; Yang, Jinn-Moon; Tsai, Yuan-Fang; Kao, Cheng-Yan

    2004-08-01

    This work proposes an evolutionary algorithm, called the heterogeneous selection evolutionary algorithm (HeSEA), for solving large traveling salesman problems (TSP). The strengths and limitations of numerous well-known genetic operators are first analyzed, along with local search methods for TSPs from their solution qualities and mechanisms for preserving and adding edges. Based on this analysis, a new approach, HeSEA is proposed which integrates edge assembly crossover (EAX) and Lin-Kernighan (LK) local search, through family competition and heterogeneous pairing selection. This study demonstrates experimentally that EAX and LK can compensate for each other's disadvantages. Family competition and heterogeneous pairing selections are used to maintain the diversity of the population, which is especially useful for evolutionary algorithms in solving large TSPs. The proposed method was evaluated on 16 well-known TSPs in which the numbers of cities range from 318 to 13509. Experimental results indicate that HeSEA performs well and is very competitive with other approaches. The proposed method can determine the optimum path when the number of cities is under 10,000 and the mean solution quality is within 0.0074% above the optimum for each test problem. These findings imply that the proposed method can find tours robustly with a fixed small population and a limited family competition length in reasonable time, when used to solve large TSPs.

  11. Continuous bind-and-elute protein A capture chromatography: Optimization under process scale column constraints and comparison to batch operation.

    PubMed

    Kaltenbrunner, Oliver; Diaz, Luis; Hu, Xiaochun; Shearer, Michael

    2016-07-08

    Recently, continuous downstream processing has become a topic of discussion and analysis at conferences while no industrial applications of continuous downstream processing for biopharmaceutical manufacturing have been reported. There is significant potential to increase the productivity of a Protein A capture step by converting the operation to simulated moving bed (SMB) mode. In this mode, shorter columns are operated at higher process flow and corresponding short residence times. The ability to significantly shorten the product residence time during loading without appreciable capacity loss can dramatically increase productivity of the capture step and consequently reduce the amount of Protein A resin required in the process. Previous studies have not considered the physical limitations of how short columns can be packed and the flow rate limitations due to pressure drop of stacked columns. In this study, we are evaluating the process behavior of a continuous Protein A capture column cycling operation under the known pressure drop constraints of a compressible media. The results are compared to the same resin operated under traditional batch operating conditions. We analyze the optimum system design point for a range of feed concentrations, bed heights, and load residence times and determine achievable productivity for any feed concentration and any column bed height. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:938-948, 2016. © 2016 American Institute of Chemical Engineers.

  12. Anodic oxidation of coke oven wastewater: Multiparameter optimization for simultaneous removal of cyanide, COD and phenol.

    PubMed

    Sasidharan Pillai, Indu M; Gupta, Ashok K

    2016-07-01

    Anodic oxidation of industrial wastewater from a coke oven plant having cyanide including thiocyanate (280 mg L(-1)), chemical oxygen demand (COD - 1520 mg L(-1)) and phenol (900 mg L(-1)) was carried out using a novel PbO2 anode. From univariate optimization study, low NaCl concentration, acidic pH, high current density and temperature were found beneficial for the oxidation. Multivariate optimization was performed with cyanide including thiocyanate, COD and phenol removal efficiencies as a function of changes in initial pH, NaCl concentration and current density using Box-Behnken experimental design. Optimization was performed for maximizing the removal efficiencies of these three parameters simultaneously. The optimum condition was obtained as initial pH 3.95, NaCl as 1 g L(-1) and current density of 6.7 mA cm(-2), for which the predicted removal efficiencies were 99.6%, 86.7% and 99.7% for cyanide including thiocyanate, COD and phenol respectively. It was in agreement with the values obtained experimentally as 99.1%, 85.2% and 99.7% respectively for these parameters. The optimum conditions with initial pH constrained to a range of 6-8 was initial pH 6, NaCl as 1.31 g L(-1) and current density as 6.7 mA cm(-2). The predicted removal efficiencies were 99%, 86.7% and 99.6% for the three parameters. The efficiencies obtained experimentally were in agreement at 99%, 87.8% and 99.6% respectively. The cost of operation for degradation at optimum conditions was calculated as 21.4 USD m(-3). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. An extension of the receiver operating characteristic curve and AUC-optimal classification.

    PubMed

    Takenouchi, Takashi; Komori, Osamu; Eguchi, Shinto

    2012-10-01

    While most proposed methods for solving classification problems focus on minimization of the classification error rate, we are interested in the receiver operating characteristic (ROC) curve, which provides more information about classification performance than the error rate does. The area under the ROC curve (AUC) is a natural measure for overall assessment of a classifier based on the ROC curve. We discuss a class of concave functions for AUC maximization in which a boosting-type algorithm including RankBoost is considered, and the Bayesian risk consistency and the lower bound of the optimum function are discussed. A procedure derived by maximizing a specific optimum function has high robustness, based on gross error sensitivity. Additionally, we focus on the partial AUC, which is the partial area under the ROC curve. For example, in medical screening, a high true-positive rate to the fixed lower false-positive rate is preferable and thus the partial AUC corresponding to lower false-positive rates is much more important than the remaining AUC. We extend the class of concave optimum functions for partial AUC optimality with the boosting algorithm. We investigated the validity of the proposed method through several experiments with data sets in the UCI repository.

  14. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In Heon

    1990-01-01

    The optimum conditions of a solar pumped iodine laser are found in this research for the case of a continuous wave operation and a pulsed operation. The optimum product of the pressure(p) inside the laser tube and the tube diameter(d) was pd=40 approx. 50 torr-cm on the contrary to the case of a high intensity flashlamp pumped iodine laser where the optimum value of the product is known to be pd=150 torr-cm. The pressure-diameter product is less than 1/3 of that of the high power iodine laser. During the research period, various laser materials were also studied for solar pumping. Among the laser materials, Nd:YAG is found to have the lowest laser threshold pumping intensity of about 200 solar constant. The Rhodamine 6G was also tested as the solar pumped laser material. The threshold pumping power was measured to be about 20,000 solar constant. The amplification experiment for a continuously pumped iodine laser amplifier was performed using Vortek solar simulator and the amplification factors were measured for single pass amplification and triple pass amplification of the 15 cm long amplifier tube. The amplification of 5 was obtained for the triple pass amplification.

  15. Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O8(2-) oxidation systems.

    PubMed

    Sharma, Jyoti; Mishra, I M; Kumar, Vineet

    2015-06-01

    This work reports on the removal and mineralization of an endocrine disrupting chemical, Bisphenol A (BPA) at a concentration of 0.22 mM in aqueous solution using inorganic oxidants (hydrogen peroxide, H2O2 and sodium persulfate, Na2S2O8;S2O8(2-)) under UV irradiation at a wavelength of 254 nm and 40 W power (Io = 1.26 × 10(-6) E s(-1)) at its natural pH and a temperature of 29 ± 3 °C. With an optimum persulfate concentration of 1.26 mM, the UV/S2O8(2-) process resulted in ∼95% BPA removal after 240 min of irradiation. The optimum BPA removal was found to be ∼85% with a H2O2 concentration of 11.76 mM. At higher concentrations, either of the oxidants showed an adverse effect because of the quenching of the hydroxyl or sulfate radicals in the BPA solution. The sulfate-based oxidation process could be used over a wider initial pH range of 3-12, but the hydroxyl radical-based oxidation of BPA should be carried out in the acidic pH range only. The water matrix components (bicarbonate, chloride and humic acid) showed higher scavenging effect in hydroxyl radical-based oxidation than that in the sulfate radical-based oxidation of BPA. UV/S2O8(2-) oxidation system utilized less energy (307 kWh/m(3)) EE/O in comparison to UV/H2O2 system (509 kWh/m(3)) under optimum operating conditions. The cost of UV irradiation far outweighed the cost of the oxidants in the process. However, the total cost of treatment of persulfate-based system was much lower than that of H2O2-based oxidation system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Development of Non-Optimum Factors for Launch Vehicle Propellant Tank Bulkhead Weight Estimation

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Wallace, Matthew L.; Cerro, Jeffrey A.

    2012-01-01

    Non-optimum factors are used during aerospace conceptual and preliminary design to account for the increased weights of as-built structures due to future manufacturing and design details. Use of higher-fidelity non-optimum factors in these early stages of vehicle design can result in more accurate predictions of a concept s actual weights and performance. To help achieve this objective, non-optimum factors are calculated for the aluminum-alloy gores that compose the ogive and ellipsoidal bulkheads of the Space Shuttle Super-Lightweight Tank propellant tanks. Minimum values for actual gore skin thicknesses and weld land dimensions are extracted from selected production drawings, and are used to predict reference gore weights. These actual skin thicknesses are also compared to skin thicknesses predicted using classical structural mechanics and tank proof-test pressures. Both coarse and refined weights models are developed for the gores. The coarse model is based on the proof pressure-sized skin thicknesses, and the refined model uses the actual gore skin thicknesses and design detail dimensions. To determine the gore non-optimum factors, these reference weights are then compared to flight hardware weights reported in a mass properties database. When manufacturing tolerance weight estimates are taken into account, the gore non-optimum factors computed using the coarse weights model range from 1.28 to 2.76, with an average non-optimum factor of 1.90. Application of the refined weights model yields non-optimum factors between 1.00 and 1.50, with an average non-optimum factor of 1.14. To demonstrate their use, these calculated non-optimum factors are used to predict heavier, more realistic gore weights for a proposed heavy-lift launch vehicle s propellant tank bulkheads. These results indicate that relatively simple models can be developed to better estimate the actual weights of large structures for future launch vehicles.

  17. Immediate post-operative pain in anterior cruciate ligament reconstruction surgery with bone patellar tendon bone graft versus hamstring graft.

    PubMed

    Gupta, Ravi; Kapoor, Dheeraj; Kapoor, Love; Malhotra, Anubhav; Masih, Gladson David; Kapoor, Anil; Joshi, Shweta

    2016-06-08

    Pain in the immediate post-operative period after anterior cruciate ligament (ACL) surgery, apart from an unpleasant experience for the patient, can act as a barrier for static quadriceps contractions and optimum execution of the initial rehabilitation protocol resulting in slow recovery and a later return to full function for a sportsperson. There is no report in the literature comparing pain in the immediate post-operative period after using the two most widely used autografts, bone patellar tendon bone (BPTB) graft and hamstring graft. The present study compared the visual analogue scale (VAS) pain score in the immediate post-operative period after arthroscopic ACL reconstruction with the BPTB and hamstring autografts. Both groups consisted of 50 patients each. The mean age of the BPTB and hamstring cohorts was 26.9 ± 7.3 years (age range 18-59 years) and 26.7 ± 9.0 years (age range 17-52 years), respectively. Unpaired t test was applied to compare pain scores between the BPTB and hamstring cohorts. In the present study, patients in the BPTB cohort showed higher mean pain scores across all the post-operative time intervals except at 6 h. However, the difference in the mean VAS pain score at post-operative 6, 12,18, 24, 36 and 48 h in the two groups was statistically not significant (p value of 1, 0.665, 0.798, 0.377, 0.651 and 0.215 at 6, 12, 18, 24, 36 and 48 h, respectively). Our study concludes that the arthroscopic ACL reconstruction with BPTB autograft and hamstring autograft is associated with similar pain in the immediate post-operative period. As a result, aggressive physiotherapy regime is not affected by the type of graft being used for ACL reconstruction, as the pain scores in the immediate post-operative period are similar for both techniques. Clinical Trials Registry-India, CTRI/2016/01/006502.

  18. Tank Investigation of a Powered Dynamic Model of a Large Long-Range Flying Boat

    NASA Technical Reports Server (NTRS)

    Parkinson, John B; Olson, Roland E; Harr, Marvin I

    1947-01-01

    Principles for designing the optimum hull for a large long-range flying boat to meet the requirements of seaworthiness, minimum drag, and ability to take off and land at all operational gross loads were incorporated in a 1/12-size powered dynamic model of a four-engine transport flying boat having a design gross load of 165,000 pounds. These design principles included the selection of a moderate beam loading, ample forebody length, sufficient depth of step, and close adherence to the form of a streamline body. The aerodynamic and hydrodynamic characteristics of the model were investigated in Langley tank no. 1. Tests were made to determine the minimum allowable depth of step for adequate landing stability, the suitability of the fore-and-aft location of the step, the take-off performance, the spray characteristics, and the effects of simple spray-control devices. The application of the design criterions used and test results should be useful in the preliminary design of similar large flying boats.

  19. Status of nickel-hydrogen cell technology

    NASA Technical Reports Server (NTRS)

    Warnock, D. R.

    1980-01-01

    Nickel hydrogen cell technology has been developed which solves the problems of thermal management, oxygen management, electrolyte management, and electrical and mechanical design peculiar to this new type of battery. This technology was weight optimized for low orbit operation using computer modeling programs but is near optimum for other orbits. Cells ranging in capacity up to about 70 ampere-hours can be made from components of a single standard size and are available from two manufacturers. The knowledge gained is now being applied to the development of two extensions to the basic design: a second set of larger standard components that will cover the capacity range up to 150 ampere-hours; and the development of multicell common pressure vessel modules to reduce volume, cost and weight. A manufacturing technology program is planned to optimize the producibility of the cell design and reduce cost. The most important areas for further improvement are life and reliability which are governed by electrode and separator technology.

  20. Prospects for charge sensitive amplifiers in scaled CMOS

    NASA Astrophysics Data System (ADS)

    O'Connor, Paul; De Geronimo, Gianluigi

    2002-03-01

    Due to its low cost and flexibility for custom design, monolithic CMOS technology is being increasingly employed in charge preamplifiers across a broad range of applications, including both scientific research and commercial products. The associated detectors have capacitances ranging from a few tens of fF to several hundred pF. Applications call for pulse shaping from tens of ns to tens of μs, and constrain the available power per channel from tens of μW to tens of mW. At the same time a new technology generation, with changed device parameters, appears every 2 years or so. The optimum design of the front-end circuitry is examined taking into account submicron device characteristics, weak inversion operation, the reset system, and power supply scaling. Experimental results from recent prototypes will be presented. We will also discuss the evolution of preamplifier topologies and anticipated performance limits as CMOS technology scales down to the 0.1 μm/1.0 V generation in 2006.

  1. The feasibility study of crude palm oil transesterification at 30 °C operation.

    PubMed

    Sim, Jia Huey; Kamaruddin, Azlina Harun; Bhatia, Subhash

    2010-12-01

    The objective of this research is to investigate the potential of transesterification of crude palm oil (CPO) to biodiesel at 30 degrees C. The mass transfer limitations problem crucial at 30 degrees C due to the viscosity of CPO has been addressed. The process parameters that are closely related to mass transfer effects like enzyme loading, agitation speed and reaction time were optimized. An optimum methanol to oil substrate molar ratio at 6.5:1 was observed and maintained throughout the experiments. The optimum operating condition for the transesterification process was found at 6.67 wt% of enzyme loading and at 150 rpm of agitation speed. The corresponding initial reaction and FAME yield obtained at 6 h were 89.29% FAME yield/hr and 85.01%, respectively. The 85% FAME yield obtained at 30 degrees C operation of CPO transesterification shows that the process is potentially feasible for the biodiesel synthesis. 2010 Elsevier Ltd. All rights reserved.

  2. Spirochaeta americana sp. nov.: A New Haloalkaliphilic, Obligately Anaerobic Spirochete Isolated from Soda Mono Lake, California

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel obligately anaerobic, mesophilic, haloalkaliphilic spirochete, strain ASpG1, was isolated from sediments of the alkaline, hypersaline Mono Lake in California, U.S.A. The gram-negative cells are motile and spirochete-shaped with sizes of 0.22 x 10-15 micron. Growth was observed over the temperature range of 10 C to 44 C (optimum 37 C), NaCl concentration range of greater than 1 - 12 % (wt/vol) (optimum 3%), and pH range 7.5 - 10.5 (optimum pH 9.5). The novel isolate is strictly alkaliphilic, requires high concentrations of carbonate in the medium, and is capable of utilizing D-glucose, fructose, maltose, sucrose, starch, and D-mannitol. Main end products of glucose fermentation are: H2, acetate, ethanol, and formate. Strain AspG1 is resistant to kanamycin, but sensitive to chloramphenicol, gentamycin and tetracycline. The G+C content of its DNA is 58.5 mol%. On the basis of its physiological and molecular properties, the isolate appears to be a novel species among the genus Spirochaeta; and the name Spirochaeta americana sp. nov., is proposed for the taxon (type strain ASpG1(sup T) = ATCC BAA_392(sup T) = DSMZ 14872(sup T)).

  3. Evaluation and application of static headspace-multicapillary column-gas chromatography-ion mobility spectrometry for complex sample analysis.

    PubMed

    Denawaka, Chamila J; Fowlis, Ian A; Dean, John R

    2014-04-18

    An evaluation of static headspace-multicapillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS) has been undertaken to assess its applicability for the determination of 32 volatile compounds (VCs). The key experimental variables of sample incubation time and temperature have been evaluated alongside the MCC-GC variables of column polarity, syringe temperature, injection temperature, injection volume, column temperature and carrier gas flow rate coupled with the IMS variables of temperature and drift gas flow rate. This evaluation resulted in six sets of experimental variables being required to separate the 32 VCs. The optimum experimental variables for SHS-MCC-GC-IMS, the retention time and drift time operating parameters were determined; to normalise the operating parameters, the relative drift time and normalised reduced ion mobility for each VC were determined. In addition, a full theoretical explanation is provided on the formation of the monomer, dimer and trimer of a VC. The optimum operating condition for each VC calibration data was obtained alongside limit of detection (LOD) and limit of quantitation (LOQ) values. Typical detection limits ranged from 0.1ng bis(methylthio)methane, ethylbutanoate and (E)-2-nonenal to 472ng isovaleric acid with correlation coefficient (R(2)) data ranging from 0.9793 (for the dimer of octanal) through to 0.9990 (for isobutyric acid). Finally, the developed protocols were applied to the analysis of malodour in sock samples. Initial work involved spiking an inert matrix and sock samples with appropriate concentrations of eight VCs. The average recovery from the inert matrix was 101±18% (n=8), while recoveries from the sock samples were lower, that is, 54±30% (n=8) for sock type 1 and 78±24% (n=6) for sock type 2. Finally, SHS-MCC-GC-IMS was applied to sock malodour in a field trial based on 11 volunteers (mixed gender) over a 3-week period. By applying the SHS-MCC-GC-IMS database, four VCs were identified and quantified: ammonia, dimethyl disulphide, dimethyl trisulphide and butyric acid. A link was identified between the presence of high ammonia and dimethyl disulphide concentrations and a high malodour odour grading, that is, ≥ 6. Statistical analysis did not find any correlation between the occurrence of dimethyl disulphide and participant gender. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Analytical study of electrical disconnect system for use on manned and unmanned missions

    NASA Technical Reports Server (NTRS)

    Rosener, A. A.; Lenda, J. A.; Trummer, R. O.; Jonkoniec, T. G.

    1977-01-01

    The program to survey existing electrical connector availability, and establish an optimum connector design for maintainable spacecraft substation interfaces is reported. Functional and operational requirements are given along with the results of the documentation survey, which disclosed that the MSFC series connectors have the preferred features of current connector technology. Optimum design concepts for EVA tasks, modules serviced by manipulators, and for manipulators independent of other servicing units are presented. It is concluded that separate connector designs are required for spacecraft replaceable modules, and for crewman EVA.

  5. Threshold detection in an on-off binary communications channel with atmospheric scintillation

    NASA Technical Reports Server (NTRS)

    Webb, W. E.

    1975-01-01

    The optimum detection threshold in an on-off binary optical communications system operating in the presence of atmospheric turbulence was investigated assuming a poisson detection process and log normal scintillation. The dependence of the probability of bit error on log amplitude variance and received signal strength was analyzed and semi-empirical relationships to predict the optimum detection threshold derived. On the basis of this analysis a piecewise linear model for an adaptive threshold detection system is presented. The bit error probabilities for nonoptimum threshold detection systems were also investigated.

  6. The Development of a Portable Modular Component Building System for the Armed Forces

    DTIC Science & Technology

    1985-11-08

    environment and provide optimum thermal comfort and energy performance throughout a wide climatic range. Finally, such a system would provide optimum user...I I I I I l i 56. ind thermal comfort . The low humidity of the atmosphere allows temperatures to fal. deeply at night so buildings constructed of hig...site topographies. Extensive support equipment is also required for their transport, erection and sustained thermal comfort for the occupants. Off the

  7. The effect of noise constraints on engine cycle optimization for long-haul transports

    NASA Technical Reports Server (NTRS)

    Antl, R. J.

    1973-01-01

    Optimum engine cycles were determined for noise levels of 10, 15, and 20 EPNdB below current FAA regulations, using 200-passenger trijet aircraft flying over ranges from 5555 to 10,200 km at cruise speeds of Mach 0.90 and 0.98. The tests showed that the noise constraints imposed compromises on the optimum cycle with resulting economic penalties. The economic penalties, however, could be effectively offset by applying advanced engine technologies.

  8. Cooled variable-area radial turbine technology program

    NASA Technical Reports Server (NTRS)

    Large, G. D.; Meyer, L. J.

    1982-01-01

    The objective of this study was a conceptual evaluation and design analyses of a cooled variable-area radial turbine capable of maintaining nearly constant high efficiency when operated at a constant speed and pressure ratio over a range of flows corresponding to 50- to 100-percent maximum engine power. The results showed that a 1589K (2400 F) turbine was feasible that would satisfy a 4000-hour duty cycle life goal. The final design feasibility is based on 1988 material technology goals. A peak aerodynamic stage total efficiency of 0.88 was predicted at 100 percent power. Two candidate stators were identified: an articulated trailing-edge and a locally movable sidewall. Both concepts must be experimentally evaluated to determine the optimum configuration. A follow-on test program is proposed for this evaluation.

  9. Single-stage-to-orbit performance enhancement from take-off thrust augmentation

    NASA Astrophysics Data System (ADS)

    Galati, Terence; Elkins, Travis

    1997-01-01

    Thrust augmentation offers the Single Stage to Orbit (SSTO) space launch vehicle improved payload capability while reducing vehicle weight and cost. Optimization of vehicle configuration and flight profile are studied. Using a 612,000 kg Gross Lift Off Weight (GLOW) SSTO with three Castor® strap-on motors, payloads in excess of 18,000 kg to Low Earth Orbit (LEO) are achievable. Emphasis is placed on finding vehicle optimums in the 9,000 kg payload range to capture over 80% of commercial payloads. Strap-on boosters allow a small SSTO vehicle to fly with a mass fraction of only 0.88 and LOX/H2 engines operating at 445 sec vacuum specific impulse. Payload sensitivity due to variations of mass fraction, Isp and pitch rate are quantified.

  10. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32.

    PubMed

    Kummer, K; Fondacaro, A; Jimenez, E; Velez-Fort, E; Amorese, A; Aspbury, M; Yakhou-Harris, F; van der Linden, P; Brookes, N B

    2016-03-01

    A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014.

  11. Turbulence influence on optimum tip speed ratio for a 200 kW vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Möllerström, E.; Eriksson, S.; Goude, A.; Ottermo, F.; Hylander, J.

    2016-09-01

    The influence of turbulence intensity (TI) on the tip speed ratio for maximum power coefficient, here called λCp_max, is studied for a 200 kW VAWT H-rotor using logged data from a 14 month period with the H-rotor operating in wind speeds up to 9 m/s. The TI - λCp_max relation is examined by dividing 10 min mean values in different turbulence intensity ranges and producing multiple CP(λ) curves. A clear positive relation between TI and λCp_max is shown and is further strengthened as possible secondary effects are examined and deemed non-essential. The established relation makes it possible to tune the control strategy to enhance the total efficiency of the turbine.

  12. Preliminary results of steady state characterization of near term electric vehicle breadboard propulsion system

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.

    1980-01-01

    The steady state test results on a breadboard version of the General Electric Near Term Electric Vehicle (ETV-1) are discussed. The breadboard was built using exact duplicate vehicle propulsion system components with few exceptions. Full instrumentation was provided to measure individual component efficiencies. Tests were conducted on a 50 hp dynamometer in a road load simulator facility. Characterization of the propulsion system over the lower half of the speed-torque operating range has shown the system efficiency to be composed of a predominant motor loss plus a speed dependent transaxle loss. At the lower speeds with normal road loads the armature chopper loss is also a significant factor. At the conditions corresponding to a cycle for which the vehicle system was specifically designed, the efficiencies are near optimum.

  13. RADIOSENSITIVITY OF SEEDS. III. EFFECTS OF PRE-IRRADIATION HUMIDITY AND GAMMA-RAY DOSE ON SEEDS FROM FIVE BOTANICAL FAMILIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne, T.S.; Lunden, A.O.; Constantin, M.J.

    1963-01-01

    Seeds of Brassica napus L. (Cruciferae), Festuca elatior L. (Gramineae), Lactuca sativa L. (Compositae), Lycopersicon escuientum Mill. (Solanaceae), and Trifolium incarnatum L. var. elatius Gibelli & Belli (Leguminosae) were equilibrated at relative humidities of 10, 35, 60, and 85 per cent then exposed to gamma-ray doses of 0, 10, 20, for 14 to 16 days in a controlled environment and assayed for dry weight. Data were analyzed by a full-quadratic regression model. Except for Festuca, growth from irradiated and control seeds was drastically affected by preirradiation humidity, with higher humidities generally more damaging than iower but with growth decreasing bothmore » above and below an optimum humidity. Optimum humidity varied with species, ranging from 9 to 38 per cent R. H. in the controls, and with radiation treatment, ranging from 42 to 53 per cent R. H. at the highest doses tolerated. The hypothesis of persisting radiation-induced radicals at lower humidities does not explain the similar increase in radiosensitivity at humidities above the optimum. (auth)« less

  14. Thermoelectric properties of non-stoichiometric lanthanum sulfides

    NASA Technical Reports Server (NTRS)

    Shapiro, E.; Danielson, L. R.

    1983-01-01

    The lanthanum sulfides are promising candidate materials for high-efficiency thermoelectric applications at temperatures up to 1300 C. The non-stoichiometric lanthanum sulfides (LaS(x), where x is in the range 1.33-1.50) appear to possess the most favorable thermoelectric properties. The Seebeck coefficient and resistivity vary significantly with composition, so that an optimum value of alpha sq/rho (where alpha is the Seebeck coefficient and rho is the resistivity) can be chosen. The thermal conductivity remains approximately constant with stoichiometry, so a material with an optimum value of alpha sq/rho should possess the optimum figure-of-merit. Data for the Seebeck coefficient and electrical resistivity of non-stoichiometric lanthanum sulfides will be pressed, together with structural properties of these materials.

  15. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    PubMed

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  16. Modeling cooperative driving behavior in freeway merges.

    DOT National Transportation Integrated Search

    2011-11-01

    Merging locations are major sources of freeway bottlenecks and are therefore important for freeway operations analysis. Microscopic simulation tools have been successfully used to analyze merging bottlenecks and to design optimum geometric configurat...

  17. Optimum Operating Conditions for PZT Actuators for Vibrotactile Wearables

    NASA Astrophysics Data System (ADS)

    Logothetis, Irini; Matsouka, Dimitra; Vassiliadis, Savvas; Vossou, Clio; Siores, Elias

    2018-04-01

    Recently, vibrotactile wearables have received much attention in fields such as medicine, psychology, athletics and video gaming. The electrical components presently used to generate vibration are rigid; hence, the design and creation of ergonomical wearables are limited. Significant advances in piezoelectric components have led to the production of flexible actuators such as piezoceramic lead zirconate titanate (PZT) film. To verify the functionality of PZT actuators for use in vibrotactile wearables, the factors influencing the electromechanical conversion were analysed and tested. This was achieved through theoretical and experimental analyses of a monomorph clamped-free structure for the PZT actuator. The research performed for this article is a three-step process. First, a theoretical analysis presents the equations governing the actuator. In addition, the eigenfrequency of the film was analysed preceding the experimental section. For this stage, by applying an electric voltage and varying the stimulating electrical characteristics (i.e., voltage, electrical waveform and frequency), the optimum operating conditions for a PZT film were determined. The tip displacement was measured referring to the mechanical energy converted from electrical energy. From the results obtained, an equation for the mechanical behaviour of PZT films as actuators was deduced. It was observed that the square waveform generated larger tip displacements. In conjunction with large voltage inputs at the predetermined eigenfrequency, the optimum operating conditions for the actuator were achieved. To conclude, PZT films can be adapted to assist designers in creating comfortable vibrotactile wearables.

  18. Optimum Operating Conditions for PZT Actuators for Vibrotactile Wearables

    NASA Astrophysics Data System (ADS)

    Logothetis, Irini; Matsouka, Dimitra; Vassiliadis, Savvas; Vossou, Clio; Siores, Elias

    2018-07-01

    Recently, vibrotactile wearables have received much attention in fields such as medicine, psychology, athletics and video gaming. The electrical components presently used to generate vibration are rigid; hence, the design and creation of ergonomical wearables are limited. Significant advances in piezoelectric components have led to the production of flexible actuators such as piezoceramic lead zirconate titanate (PZT) film. To verify the functionality of PZT actuators for use in vibrotactile wearables, the factors influencing the electromechanical conversion were analysed and tested. This was achieved through theoretical and experimental analyses of a monomorph clamped-free structure for the PZT actuator. The research performed for this article is a three-step process. First, a theoretical analysis presents the equations governing the actuator. In addition, the eigenfrequency of the film was analysed preceding the experimental section. For this stage, by applying an electric voltage and varying the stimulating electrical characteristics (i.e., voltage, electrical waveform and frequency), the optimum operating conditions for a PZT film were determined. The tip displacement was measured referring to the mechanical energy converted from electrical energy. From the results obtained, an equation for the mechanical behaviour of PZT films as actuators was deduced. It was observed that the square waveform generated larger tip displacements. In conjunction with large voltage inputs at the predetermined eigenfrequency, the optimum operating conditions for the actuator were achieved. To conclude, PZT films can be adapted to assist designers in creating comfortable vibrotactile wearables.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84%more » in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.« less

  20. Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid

    NASA Astrophysics Data System (ADS)

    Zhao, Yingru; Sadhukhan, Jhuma; Lanzini, Andrea; Brandon, Nigel; Shah, Nilay

    This article aims to develop a thermodynamic modelling and optimization framework for a thorough understanding of the optimal integration of fuel cell, gas turbine and other components in an ambient pressure SOFC-GT hybrid power plant. This method is based on the coupling of a syngas-fed SOFC model and an associated irreversible GT model, with an optimization algorithm developed using MATLAB to efficiently explore the range of possible operating conditions. Energy and entropy balance analysis has been carried out for the entire system to observe the irreversibility distribution within the plant and the contribution of different components. Based on the methodology developed, a comprehensive parametric analysis has been performed to explore the optimum system behavior, and predict the sensitivity of system performance to the variations in major design and operating parameters. The current density, operating temperature, fuel utilization and temperature gradient of the fuel cell, as well as the isentropic efficiencies and temperature ratio of the gas turbine cycle, together with three parameters related to the heat transfer between subsystems are all set to be controllable variables. Other factors affecting the hybrid efficiency have been further simulated and analysed. The model developed is able to predict the performance characteristics of a wide range of hybrid systems potentially sizing from 2000 to 2500 W m -2 with efficiencies varying between 50% and 60%. The analysis enables us to identify the system design tradeoffs, and therefore to determine better integration strategies for advanced SOFC-GT systems.

  1. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units.

    PubMed

    Qiao, Lei; Tang, Weijie; Chu, Tao

    2017-02-09

    To construct large-scale silicon electro-optical switches for optical interconnections, we developed a method using a limited number of power monitors inserted at certain positions to detect and determine the optimum operating points of all switch units to eliminate non-uniform effects arising from fabrication errors. We also introduced an optical phase bias to one phase-shifter arm of a Mach-Zehnder interferometer (MZI)-type switch unit to balance the two operation statuses of a silicon electro-optical switch during push-pull operation. With these methods, a 32 × 32 MZI-based silicon electro-optical switch was successfully fabricated with 180-nm complementary metal-oxide-semiconductor (CMOS) process technology, which is the largest scale silicon electro-optical switch to the best of our knowledge. At a wavelength of 1520 nm, the on-chip insertion losses were 12.9 to 16.5 dB, and the crosstalk ranged from -17.9 to -24.8 dB when all units were set to the 'Cross' status. The losses were 14.4 to 18.5 dB, and the crosstalk ranged from -15.1 to -19.0 dB when all units were in the 'Bar' status. The total power consumptions of the 32 × 32 switch were 247.4 and 542.3 mW when all units were set to the 'Cross' and 'Bar' statuses, respectively.

  2. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units

    PubMed Central

    Qiao, Lei; Tang, Weijie; Chu, Tao

    2017-01-01

    To construct large-scale silicon electro-optical switches for optical interconnections, we developed a method using a limited number of power monitors inserted at certain positions to detect and determine the optimum operating points of all switch units to eliminate non-uniform effects arising from fabrication errors. We also introduced an optical phase bias to one phase-shifter arm of a Mach–Zehnder interferometer (MZI)-type switch unit to balance the two operation statuses of a silicon electro-optical switch during push–pull operation. With these methods, a 32 × 32 MZI-based silicon electro-optical switch was successfully fabricated with 180-nm complementary metal–oxide–semiconductor (CMOS) process technology, which is the largest scale silicon electro-optical switch to the best of our knowledge. At a wavelength of 1520 nm, the on-chip insertion losses were 12.9 to 16.5 dB, and the crosstalk ranged from −17.9 to −24.8 dB when all units were set to the ‘Cross’ status. The losses were 14.4 to 18.5 dB, and the crosstalk ranged from −15.1 to −19.0 dB when all units were in the ‘Bar’ status. The total power consumptions of the 32 × 32 switch were 247.4 and 542.3 mW when all units were set to the ‘Cross’ and ‘Bar’ statuses, respectively. PMID:28181557

  3. Analytical correlation of centrifugal compressor design geometry for maximum efficiency with specific speed

    NASA Technical Reports Server (NTRS)

    Galvas, M. R.

    1972-01-01

    Centrifugal compressor performance was examined analytically to determine optimum geometry for various applications as characterized by specific speed. Seven specific losses were calculated for various combinations of inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, blade exit backsweep, and inlet-tip absolute tangential velocity for solid body prewhirl. The losses considered were inlet guide vane loss, blade loading loss, skin friction loss, recirculation loss, disk friction loss, vaneless diffuser loss, and vaned diffuser loss. Maximum total efficiencies ranged from 0.497 to 0.868 for a specific speed range of 0.257 to 1.346. Curves of rotor exit absolute flow angle, inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, head coefficient and blade exit backsweep are presented over a range of specific speeds for various inducer tip speeds to permit rapid selection of optimum compressor size and shape for a variety of applications.

  4. Prospects for Advanced Tokamak Operation of ITER

    NASA Astrophysics Data System (ADS)

    Neilson, George H.

    1996-11-01

    Previous studies have identified steady-state (or "advanced") modes for ITER, based on reverse-shear profiles and significant bootstrap current. A typical example has 12 MA of plasma current, 1,500 MW of fusion power, and 100 MW of heating and current-drive power. The implementation of these and other steady-state operating scenarios in the ITER device is examined in order to identify key design modifications that can enhance the prospects for successfully achieving advanced tokamak operating modes in ITER compatible with a single null divertor design. In particular, we examine plasma configurations that can be achieved by the ITER poloidal field system with either a monolithic central solenoid (as in the ITER Interim Design), or an alternate "hybrid" central solenoid design which provides for greater flexibility in the plasma shape. The increased control capability and expanded operating space provided by the hybrid central solenoid allows operation at high triangularity (beneficial for improving divertor performance through control of edge-localized modes and for increasing beta limits), and will make it much easier for ITER operators to establish an optimum startup trajectory leading to a high-performance, steady-state scenario. Vertical position control is examined because plasmas made accessible by the hybrid central solenoid can be more elongated and/or less well coupled to the conducting structure. Control of vertical-displacements using the external PF coils remains feasible over much of the expanded operating space. Further work is required to define the full spectrum of axisymmetric plasma disturbances requiring active control In addition to active axisymmetric control, advanced tokamak modes in ITER may require active control of kink modes on the resistive time scale of the conducting structure. This might be accomplished in ITER through the use of active control coils external to the vacuum vessel which are actuated by magnetic sensors near the first wall. The enhanced shaping and positioning flexibility provides a range of options for reducing the ripple-induced losses of fast alpha particles--a major limitation on ITER steady-state modes. An alternate approach that we are pursuing in parallel is the inclusion of ferromagnetic inserts to reduce the toroidal field ripple within the plasma chamber. The inclusion of modest design changes such as the hybrid central solenoid, active control coils for kink modes, and ferromagnetic inserts for TF ripple reduction show can greatly increase the flexibility to accommodate advance tokamak operation in ITER. Increased flexibility is important because the optimum operating scenario for ITER cannot be predicted with certainty. While low-inductance, reverse shear modes appear attractive for steady-state operation, high-inductance, high-beta modes are also viable candidates, and it is important that ITER have the flexibility to explore both these, and other, operating regimes.

  5. Optimum design of structures subject to general periodic loads

    NASA Technical Reports Server (NTRS)

    Reiss, Robert; Qian, B.

    1989-01-01

    A simplified version of Icerman's problem regarding the design of structures subject to a single harmonic load is discussed. The nature of the restrictive conditions that must be placed on the design space in order to ensure an analytic optimum are discussed in detail. Icerman's problem is then extended to include multiple forcing functions with different driving frequencies. And the conditions that now must be placed upon the design space to ensure an analytic optimum are again discussed. An important finding is that all solutions to the optimality condition (analytic stationary design) are local optima, but the global optimum may well be non-analytic. The more general problem of distributing the fixed mass of a linear elastic structure subject to general periodic loads in order to minimize some measure of the steady state deflection is also considered. This response is explicitly expressed in terms of Green's functional and the abstract operators defining the structure. The optimality criterion is derived by differentiating the response with respect to the design parameters. The theory is applicable to finite element as well as distributed parameter models.

  6. High spectral selectivity for solar absorbers using a monolayer transparent conductive oxide coated on a metal substrate

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Suzuki, Mari; Iguchi, Fumitada; Yugami, Hiroo

    2017-05-01

    A spectrally selective absorber composed of a monolayer transparent conductive oxide (TCO) coated on a metal substrate is investigated for use in solar systems operating at temperatures higher (>973 K) than the operation temperature of conventional systems ( ˜ 673 K). This method is different from the currently used solar-selective coating technologies, such as those using multilayered and cermet materials. The spectral selective absorption property can be attributed to the inherent optical property of TCO owing to the plasma frequency and interferences between the substrates. Since spectral selectivity can be achieved using monolayered materials, the effect of atomic diffusion occurring at each layer boundary in a multilayer or cermet coatings under high-temperature conditions can be reduced. In addition, since this property is attributed to the inherent property of TCO, the precise control of the layer thickness can be omitted if the layer is sufficiently thick (>0.5 μm). The optimum TCO properties, namely, carrier density and mobility, required for solar-selective absorbers are analyzed to determine the cutoff wavelength and emittance in the infrared range. A solar absorptance of 0.95 and hemispherical emittance of 0.10 at 973 K are needed for achieving the optimum TCO properties, i.e., a carrier density of 5.5 × 1020 cm-3 and mobility of 90 cm2 V-1 s-1 are required. Optical simulations indicate that the spectrally selective absorption weakly depends on the incident angle and film thickness. The thermal stability of the fabricated absorber treated at temperatures up to 973 K for 10 h is verified in vacuum by introducing a SiO2 interlayer, which plays an important role as a diffusion barrier.

  7. Design of experiments for zeroth and first-order reaction rates.

    PubMed

    Amo-Salas, Mariano; Martín-Martín, Raúl; Rodríguez-Aragón, Licesio J

    2014-09-01

    This work presents optimum designs for reaction rates experiments. In these experiments, time at which observations are to be made and temperatures at which reactions are to be run need to be designed. Observations are performed along time under isothermal conditions. Each experiment needs a fixed temperature and so the reaction can be measured at the designed times. For these observations under isothermal conditions over the same reaction a correlation structure has been considered. D-optimum designs are the aim of our work for zeroth and first-order reaction rates. Temperatures for the isothermal experiments and observation times, to obtain the most accurate estimates of the unknown parameters, are provided in these designs. D-optimum designs for a single observation in each isothermal experiment or for several correlated observations have been obtained. Robustness of the optimum designs for ranges of the correlation parameter and comparisons of the information gathered by different designs are also shown. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Studies with sample conductivity, insertion rates, and particle deflection in a continuous flow electrophoresis system

    NASA Technical Reports Server (NTRS)

    Williams, G., Jr.

    1982-01-01

    The continuous flow electrophoresis system makes electrophoresis possible in a free-flowing film of aqueous electrolyte medium. The sample continuously enters the electrolyte at the top of the chamber and is subjected to the action of a lateral dc field. This divides the sample into fractions since each component has a distinctive electrophoretic mobility. Tests were made using monodisperse polystyrene latex microspheres to determine optimum sample conductivity, insertion rates and optimum electric field applications as baseline data for future STS flight experiments. Optimum sample flow rates for the selected samples were determined to be approximately 26 micro-liters/min. Experiments with samples in deionized water yielded best results and voltages in the 20 V/cm to 30 V/cm range were optimum. Deflections of formaldehyde fixed turkey and bovine erythrocytes were determined using the continuous flow electrophoresis system. The effects of particle interactions on sample resolution and migration in the chamber was also evaluated.

  9. Design of slurry bubble column reactors: novel technique for optimum catalyst size selection contractual origin of the invention

    DOEpatents

    Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL

    2009-11-17

    A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.

  10. The Improvement of Particle Swarm Optimization: a Case Study of Optimal Operation in Goupitan Reservoir

    NASA Astrophysics Data System (ADS)

    Li, Haichen; Qin, Tao; Wang, Weiping; Lei, Xiaohui; Wu, Wenhui

    2018-02-01

    Due to the weakness in holding diversity and reaching global optimum, the standard particle swarm optimization has not performed well in reservoir optimal operation. To solve this problem, this paper introduces downhill simplex method to work together with the standard particle swarm optimization. The application of this approach in Goupitan reservoir optimal operation proves that the improved method had better accuracy and higher reliability with small investment.

  11. Advanced composites in sailplane structures: Application and mechanical properties

    NASA Technical Reports Server (NTRS)

    Muser, D.

    1979-01-01

    Advanced Composites in sailplanes mean the use of carbon and aramid fibers in an epoxy matrix. Weight savings were in the range of 8 to 18% in comparison with glass fiber structures. The laminates will be produced by hand-layup techniques and all material tests were done with these materials. These values may be used for calculation of strength and stiffness, as well as for comparison of the materials to get a weight-optimum construction. Proposals for material-optimum construction are mentioned.

  12. Fiberglass supports for cryogenic tanks

    NASA Technical Reports Server (NTRS)

    Keller, C. W.

    1972-01-01

    Analysis, design, fabrication, and test activities were conducted to develop additional technology needed for application of filament-wound fiberglass struts to cryogenic flight tankage. It was conclusively verified that monocoque cylinder or ogive struts are optimum or near-optimum for the range of lengths and loads studied, that a higher strength-to-weight ratio can be achieved for fiberglass struts than for any metallic struts, and that integrally-wrapped metallic end fittings can be used to achieve axial load transfer without reliance on bond strength or mechanical fasteners.

  13. Avalanche diodes for the generation of coherent radiation

    NASA Technical Reports Server (NTRS)

    Penfield, P., Jr.

    1973-01-01

    Solid state devices and characterization, and optimum imbedding networks for realizing best performance were investigated along with a barrier injection transit time diode. These diodes were investigated for possible application as microwave amplifiers and oscillators. Measurements were made of diode noise figures in the frequency ranges of 4 - 6 GHz. Initial results indicate that a noise figure of 6 - 8 db may be possible. Optimum device structure and fabrication techniques necessary for low noise performance were investigated. Previously published documents on electrodynamics are included.

  14. Free-Ranging Cow Behavior Pre and Post-Weaning

    USDA-ARS?s Scientific Manuscript database

    The optimum husbandry of free-ranging cattle requires not only nutritional knowledge but also an understanding of how to manage and use behavioral information. With the advent of global positioning technology (GPS) it is now possible to monitor animal travel with relative ease over extended periods...

  15. PREDICTION OF PERFORMANCE CHARACTERISTICS OF HICKMAN-BADGER CENTRIFUGAL BOILER COMPRESSION STILL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, L.A.

    1958-02-01

    Equations are derived to predict the operating characteristics of the Hickman-Badger still and the optimum conditions of opertion. Included are tables of values for use in performance calculations. (J.R.D.)

  16. Baseline Receiver Concept for a Next Generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Srikanth, Sivasankaran; Wes Grammer, Silver Sturgis, Rob Selina

    2018-01-01

    The Next Generation Very Large Array (ngVLA) is envisioned to be an interferometric array with 10 times the effective collecting area and spatial resolution as the current VLA, operating over a frequency range of 1.2-116 GHz. Achieving these goals will require 214 antennas of nominal 18m diameter, on baselines of 300km. Maximizing sensitivity for each receiver band, while also minimizing the overall operating cost are the primary design goals. Therefore, receivers and feeds will be cryogenically cooled, with multiple bands integrated into a common cryostat to the greatest extent possible. Using feed designs that yield broad bandwidths and high aperture efficiencies are key to meeting these goals.The proposed receiver configuration will be implemented as six independent bands, each with its own feed. The upper five bands will be integrated into a single compact cryostat, while the lowest-frequency band occupies a second cryostat of similar volume and mass. The lowest-band feed is cooled to 80K, while all other feeds are cooled to 20K.For optimum performance at the higher frequencies, waveguide-bandwidth (~1.66:1) receivers are proposed to cover 12.6 – 50.5 GHz and 70 – 116 GHz in four separate bands, integrated into a single cryostat. Excellent LNA noise performance is readily achievable, and using waveguide throughout the signal chain reduces losses and their associated noise contributions, without adding undue size or weight. An axially-corrugated conical feed horn with wide flare angle (~50degree half-angle), based on a design by G. Cortes and L. Baker, is being considered for these receivers.For continuous coverage between 1.2 – 12.6 GHz, waveguide or even octave-bandwidth receivers are not cost-effective, given the > 10:1 frequency range. For these bands, wideband (3.25:1) receivers mated to a Caltech-designed quad-ridge feed horn (QRFH) are proposed. These feeds are highly compact, and cryogenically cooled to reduce losses ahead of the LNAs. Aperture efficiency and LNA noise temperature may be somewhat less than optimum: however, there would be significant cost savings by effectively halving the number of receivers and cryostats required per antenna.

  17. Investigation of roughing machining simulation by using visual basic programming in NX CAM system

    NASA Astrophysics Data System (ADS)

    Hafiz Mohamad, Mohamad; Nafis Osman Zahid, Muhammed

    2018-03-01

    This paper outlines a simulation study to investigate the characteristic of roughing machining simulation in 4th axis milling processes by utilizing visual basic programming in NX CAM systems. The selection and optimization of cutting orientation in rough milling operation is critical in 4th axis machining. The main purpose of roughing operation is to approximately shape the machined parts into finished form by removing the bulk of material from workpieces. In this paper, the simulations are executed by manipulating a set of different cutting orientation to generate estimated volume removed from the machine parts. The cutting orientation with high volume removal is denoted as an optimum value and chosen to execute a roughing operation. In order to run the simulation, customized software is developed to assist the routines. Operations build-up instructions in NX CAM interface are translated into programming codes via advanced tool available in the Visual Basic Studio. The codes is customized and equipped with decision making tools to run and control the simulations. It permits the integration with any independent program files to execute specific operations. This paper aims to discuss about the simulation program and identifies optimum cutting orientations for roughing processes. The output of this study will broaden up the simulation routines performed in NX CAM systems.

  18. Optimum process design of packed bed type thermal storage systems and other applications

    DOEpatents

    Bindra, Hitesh; Bueno, Pablo

    2016-10-25

    Methods and systems for optimizing the process of heat and/or mass transfer operations in packed beds and embodiments of applications of the methods are disclosed herein below. In one instance, the method results in the profile of the quantity representative of the heat and/or mass transfer operation having a propagating substantially sharp front.

  19. Commercial Impact and Optimum Capacity Determination of Pumped Storage Hydro Plant for a Practical Power System

    NASA Astrophysics Data System (ADS)

    Latha, P. G.; Anand, S. R.; Imthias, Ahamed T. P.; Sreejith, P. S., Dr.

    2013-06-01

    This paper attempts to study the commercial impact of pumped storage hydro plant on the operation of a stressed power system. The paper further attempts to compute the optimum capacity of the pumped storage scheme that can be provided on commercial basis for a practical power system. Unlike the analysis of commercial aspects of pumped storage scheme attempted in several papers, this paper is presented from the point of view of power system management of a practical system considering the impact of the scheme on the economic operation of the system. A realistic case study is presented as the many factors that influence the pumped storage operation vary widely from one system to another. The suitability of pumped storage for the particular generation mix of a system is well explored in the paper. To substantiate the economic impact of pumped storage on the system, the problem is formulated as a short-term hydrothermal scheduling problem involving power purchase which optimizes the quantum of power to be scheduled and the duration of operation. The optimization model is formulated using an algebraic modeling language, AMPL, which is then solved using the advanced MILP solver CPLEX.

  20. An experimental investigation of the combustion performance of human faeces.

    PubMed

    Onabanjo, Tosin; Kolios, Athanasios J; Patchigolla, Kumar; Wagland, Stuart T; Fidalgo, Beatriz; Jurado, Nelia; Hanak, Dawid P; Manovic, Vasilije; Parker, Alison; McAdam, Ewan; Williams, Leon; Tyrrel, Sean; Cartmell, Elise

    2016-11-15

    Poor sanitation is one of the major hindrances to the global sustainable development goals. The Reinvent the Toilet Challenge of the Bill and Melinda Gates Foundation is set to develop affordable, next-generation sanitary systems that can ensure safe treatment and wide accessibility without compromise on sustainable use of natural resources and the environment. Energy recovery from human excreta is likely to be a cornerstone of future sustainable sanitary systems. Faeces combustion was investigated using a bench-scale downdraft combustor test rig, alongside with wood biomass and simulant faeces. Parameters such as air flow rate, fuel pellet size, bed height, and fuel ignition mode were varied to establish the combustion operating range of the test rig and the optimum conditions for converting the faecal biomass to energy. The experimental results show that the dry human faeces had a higher energy content (∼25 MJ/kg) than wood biomass. At equivalence ratio between 0.86 and 1.12, the combustion temperature and fuel burn rate ranged from 431 to 558 °C and 1.53 to 2.30 g/min respectively. Preliminary results for the simulant faeces show that a minimum combustion bed temperature of 600 ± 10 °C can handle faeces up to 60 wt.% moisture at optimum air-to-fuel ratio. Further investigation is required to establish the appropriate trade-off limits for drying and energy recovery, considering different stool types, moisture content and drying characteristics. This is important for the design and further development of a self-sustained energy conversion and recovery systems for the NMT and similar sanitary solutions.

  1. Optimum Temperature for Storage of Fruit and Vegetables with Reference to Chilling Injury

    NASA Astrophysics Data System (ADS)

    Murata, Takao

    Cold storage is an important technique for preserving fresh fruit and vegetables. Deterioration due to ripening, senescence and microbiological disease can be retarded by storage at optimum temperature being slightly above the freezing point of tissues of fruit and vegetables. However, some fruit and vegetables having their origins in tropical or subtropical regions of the world are subject to chilling injury during transportation, storage and wholesale distribution at low temperature above freezing point, because they are usually sensitive to low temperature in the range of 15&digC to 0°C. This review will focus on the recent informations regarding chilling injury of fruit and vegetables, and summarize the optimum temperature for transportation and storage of fruit and vegetables in relation to chilling injury.

  2. Process optimization via response surface methodology in the treatment of metal working industry wastewater with electrocoagulation.

    PubMed

    Guvenc, Senem Yazici; Okut, Yusuf; Ozak, Mert; Haktanir, Birsu; Bilgili, Mehmet Sinan

    2017-02-01

    In this study, process parameters in chemical oxygen demand (COD) and turbidity removal from metal working industry (MWI) wastewater were optimized by electrocoagulation (EC) using aluminum, iron and steel electrodes. The effects of process variables on COD and turbidity were investigated by developing a mathematical model using central composite design method, which is one of the response surface methodologies. Variance analysis was conducted to identify the interaction between process variables and model responses and the optimum conditions for the COD and turbidity removal. Second-order regression models were developed via the Statgraphics Centurion XVI.I software program to predict COD and turbidity removal efficiencies. Under the optimum conditions, removal efficiencies obtained from aluminum electrodes were found to be 76.72% for COD and 99.97% for turbidity, while the removal efficiencies obtained from iron electrodes were found to be 76.55% for COD and 99.9% for turbidity and the removal efficiencies obtained from steel electrodes were found to be 65.75% for COD and 99.25% for turbidity. Operational costs at optimum conditions were found to be 4.83, 1.91 and 2.91 €/m 3 for aluminum, iron and steel electrodes, respectively. Iron electrode was found to be more suitable for MWI wastewater treatment in terms of operational cost and treatment efficiency.

  3. Towards The Operational Oceanographic Model System In Estonian Coastal Sea, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kõuts, T.; Elken, J.; Raudsepp, U.

    An integrated system of nested 2D and 3D hydrodynamic models together with real time forcing data asquisition is designed and set up in pre-operational mode in the Gulf of Finland and Gulf of Riga, the Baltic Sea. Along the Estonian coast, implicit time-stepping 3D models are used in the deep bays and 2D models in the shallow bays with ca 200 m horizontal grid step. Specific model setups have been verified by in situ current measurements. Optimum configuration of initial parameters has been found for certain critical locations, usually ports, oil terminals, etc. Operational system in- tegrates also section of historical database of most important hydrologic parameters in the region, allowing use of certain statistical analysis and proper setup of initial conditions for oceanographic models. There is large variety of applications for such model system, ranging from environmental impact assessment at local coastal sea pol- lution problems to forecast of offshore blue algal blooms. Most probable risk factor in the coastal sea engineering is oil pollution, therefore current operational model sys- tem has direct custom oriented output the oil spill forecast for critical locations. Oil spill module of the operational system consist the automatic weather and hydromet- ric station (distributed in real time to internet) and prognostic model of sea surface currents. System is run using last 48 hour wind data and wind forecast and estimates probable oil deposition areas on the shoreline under certain weather conditions. Cal- culated evolution of oil pollution has been compared with some real accidents in the past and there was found good agreement between model and measurements. Graphi- cal user interface of oil spill model is currently installed at location of port authorities (eg. Muuga port), so in case of accidents it could be used in real time supporting the rescue operations. In 2000 current pre-operational oceanographic model system has been sucessfully used to evaluate environmental impacts of three different deep-port construction options in Saaremaa, NW the Baltic Sea. Intensive campaign of field measurements, consisting the high-resolution surveys of thermohaline properties of water masses (CTD) and timeseries as well horisontal structure of currents were in good agreement with model calculations. Model system well simulated the transport of pollution by surface currents originating from potential port locations at NW coast of the Saaremaa. It allowed to choose the optimum location for port and give also some hindcasts for port construction and exploitation.

  4. [Calculating the optimum size of a hemodialysis unit based on infrastructure potential].

    PubMed

    Avila-Palomares, Paula; López-Cervantes, Malaquías; Durán-Arenas, Luis

    2010-01-01

    To estimate the optimum size for hemodialysis units to maximize production given capital constraints. A national study in Mexico was conducted in 2009. Three possible methods for estimating a units optimum size were analyzed: hemodialysis services production under monopolistic market, under a perfect competitive market and production maximization given capital constraints. The third method was considered best based on the assumptions made in this paper; an optimal size unit should have 16 dialyzers (15 active and one back up dialyzer) and a purifier system able to supply all. It also requires one nephrologist, five nurses per shift, considering four shifts per day. Empirical evidence shows serious inefficiencies in the operation of units throughout the country. Most units fail to maximize production due to not fully utilizing equipment and personnel, particularly their water purifier potential which happens to be the most expensive asset for these units.

  5. Analysis of geologic terrain models for determination of optimum SAR sensor configuration and optimum information extraction for exploration of global non-renewable resources. Pilot study: Arkansas Remote Sensing Laboratory, part 1, part 2, and part 3

    NASA Technical Reports Server (NTRS)

    Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.; Stiles, J. A.; Frost, F. S.; Shanmugam, K. S.; Smith, S. A.; Narayanan, V.; Holtzman, J. C. (Principal Investigator)

    1982-01-01

    Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence.

  6. Design synthesis and optimization of joined-wing transports

    NASA Technical Reports Server (NTRS)

    Gallman, John W.; Smith, Stephen C.; Kroo, Ilan M.

    1990-01-01

    A computer program for aircraft synthesis using a numerical optimizer was developed to study the application of the joined-wing configuration to transport aircraft. The structural design algorithm included the effects of secondary bending moments to investigate the possibility of tail buckling and to design joined wings resistant to buckling. The structural weight computed using this method was combined with a statistically-based method to obtain realistic estimates of total lifting surface weight and aircraft empty weight. A variety of 'optimum' joined-wing and conventional aircraft designs were compared on the basis of direct operating cost, gross weight, and cruise drag. The most promising joined-wing designs were found to have a joint location at about 70 percent of the wing semispan. The optimum joined-wing transport is shown to save 1.7 percent in direct operating cost and 11 percent in drag for a 2000 nautical mile transport mission.

  7. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 1

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 1 of the four major tasks included in the study. Task 1 compares flight plans based on forecasts with plans based on the verifying analysis from 33 days during the summer and fall of 1979. The comparisons show that: (1) potential fuel savings conservatively estimated to be between 1.2 and 2.5 percent could result from using more timely and accurate weather data in flight planning and route selection; (2) the Suitland forecast generally underestimates wind speeds; and (3) the track selection methodology of many airlines operating on the North Atlantic may not be optimum resulting in their selecting other than the optimum North Atlantic Organized Track about 50 percent of the time.

  8. Optical dynamic range maximization for humidity sensing by controlling growth of zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Yusof, Haziezol Helmi Mohd; Harun, Sulaiman Wadi; Dimyati, Kaharudin; Bora, Tanujjal; Mohammed, Waleed S.; Dutta, Joydeep

    2018-07-01

    An experimental study of the dynamic range maximization with Zinc Oxide (ZnO) nanorods coated glass substrates for humidity and vapor sensing is reported. Growth time of the nanorods and the length of the coated segments were controlled to study the differences between a reference environmental condition (normal humidity or dry condition) and water vapor concentrations. In order to achieve long dynamic range of detection with respect to nanorods coverage, several substrates with triangular patterns of ZnO nanostructures were fabricated by selective hydrothermal growth over different durations of time (5 h, 10 h and 15 h). It was found that maximum dynamic range for the humidity sensing occurs for the combination parameters of normalized length (Z) of 0.23 and normalized scattering coefficient (ζ) of 0.3. A reduction in transmittance by 38% at humidity levels of 80% with reference point as 50% humidity was observed. The results could be correlated to a first order approximation model that assumes uniform growth and the optimum operating conditions for humidity sensing device. This study provides an option to correlate ZnO growth conditions for different vapor sensing applications which can set a platform for compact sensors where modulation of light intensity is followed.

  9. Metal-supported solid oxide fuel cells operated in direct-flame configuration

    DOE PAGES

    Tucker, Michael C.; Ying, Andrew S.

    2017-08-19

    Metal-supported solid oxide fuel cells (MS-SOFC) with infiltrated catalysts on both anode and cathode side are operated in direct-flame configuration, with a propane flame impinging on the anode. Placing thermal insulation on the cathode dramatically increases cell temperature and performance. The optimum burner-to-cell gap height is a strong function of flame conditions. Cell performance at the optimum gap is determined within the region of stable non-coking conditions, with equivalence ratio from 1 to 1.9 and flow velocity from 100 to 300 cm s -1. In this region, performance is most strongly correlated to flow velocity and open circuit voltage. Themore » highest peak power density achieved is 633 mW cm -2 at 833°C, for equivalence ratio of 1.8 and flow velocity of 300 cm s -1. The cell starts to produce power within 10 s of being placed in the flame, and displays stable performance over 10 extremely rapid thermal cycles. The cell provides stable performance for >20 h of semi-continuous operation.« less

  10. A significant upward shift in plant species optimum elevation during the 20th century.

    PubMed

    Lenoir, J; Gégout, J C; Marquet, P A; de Ruffray, P; Brisse, H

    2008-06-27

    Spatial fingerprints of climate change on biotic communities are usually associated with changes in the distribution of species at their latitudinal or altitudinal extremes. By comparing the altitudinal distribution of 171 forest plant species between 1905 and 1985 and 1986 and 2005 along the entire elevation range (0 to 2600 meters above sea level) in west Europe, we show that climate warming has resulted in a significant upward shift in species optimum elevation averaging 29 meters per decade. The shift is larger for species restricted to mountain habitats and for grassy species, which are characterized by faster population turnover. Our study shows that climate change affects the spatial core of the distributional range of plant species, in addition to their distributional margins, as previously reported.

  11. Diagnoses and Factors Associated With Medical Evacuation and Return to Duty for Service Members Participating in Operation Iraqi Freedom or Operation Enduring Freedom: A Prospective Cohort Study

    DTIC Science & Technology

    2010-01-23

    effect of non-battle-related injuries and disease on military readiness. Funding John P Murtha Neuroscience and Pain Institute, and US Army Regional...doctor visits and medical evacuation.5,6 To achieve optimum use of medical resources and effectively plan military operations, medical and...Operation Iraqi Freedom who returned to duty increased substantially from a low of 8% in 2004 to 37% in 2007, an effect partly attributable to the

  12. Buckling and weight optimization for non-coupled antisymmetric laminates

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Aditi

    This research work describes the application of genetic algorithms to weight minimization and buckling load maximization of the non-coupled antisymmetric composite laminated plates. Previous studies of composite tailoring were limited to symmetric and balanced laminates. With the availability of many methodologies for composite tailoring, genetic algorithm is preferably used because of its ability to handle discrete design variable and attain multiple near optimum design solutions. A comparative study is made between optimum symmetric-balanced laminate designs and optimum non-coupled antisymmetric laminate designs, both of which are subjected to biaxial in-plane compressive loads. With the implementation of various genetic algorithm operators such as selection, crossover and mutation, critical buckling load factors are obtained for the optimum stacking sequence for both types of laminates. The mechanical properties for non-coupled antisymmetric laminates is independent of all types of coupling effects such as bending-twisting coupling, bending-extension coupling, and shear-extension coupling, thus giving the laminate a non-coupling behavior. This is in contrast to that of symmetric-balanced laminates where finite bending-twisting coupling terms are present. Optimized laminate layups satisfying the constraints of balance, buckling and adjoining were obtained for two types of graphite epoxy rectangular composite laminated plates. The current research augments the laminate thickness minimization designs with both odd and even number of layers, and the optimum buckling load maximization designs by the introduction of non-coupled antisymmetric laminates.

  13. Development of a cloud point extraction and spectrophotometry-based microplate method for the determination of nitrite in human urine and blood.

    PubMed

    Zhao, Jiao; Lu, Yunhui; Fan, Chongyang; Wang, Jun; Yang, Yaling

    2015-02-05

    A novel and simple method for the sensitive determination of trace amounts of nitrite in human urine and blood has been developed by combination of cloud point extraction (CPE) and microplate assay. The method is based on the Griess reaction and the reaction product is extracted into nonionic surfactant Triton-X114 using CPE technique. In this study, decolorization treatment of urine and blood was applied to overcome the interference of matrix and enhance the sensitivity of nitrite detection. Multi-sample can be simultaneously detected thanks to a 96-well microplate technique. The effects of different operating parameters such as type of decolorizing agent, concentration of surfactant (Triton X-114), addition of (NH4)2SO4, extraction temperature and time, interfering elements were studied and optimum conditions were obtained. Under the optimum conditions, a linear calibration graph was obtained in the range of 10-400 ng mL(-1) of nitrite with limit of detection (LOD) of 2.5 ng mL(-1). The relative standard deviation (RSD) for determination of 100 ng mL(-1) of nitrite was 2.80%. The proposed method was successfully applied for the determination of nitrite in the urine and blood samples with recoveries of 92.6-101.2%. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Impedance matching wireless power transmission system for biomedical devices.

    PubMed

    Lum, Kin Yun; Lindén, Maria; Tan, Tian Swee

    2015-01-01

    For medical application, the efficiency and transmission distance of the wireless power transfer (WPT) are always the main concern. Research has been showing that the impedance matching is one of the critical factors for dealing with the problem. However, there is not much work performed taking both the source and load sides into consideration. Both sides matching is crucial in achieving an optimum overall performance, and the present work proposes a circuit model analysis for design and implementation. The proposed technique was validated against experiment and software simulation. Result was showing an improvement in transmission distance up to 6 times, and efficiency at this transmission distance had been improved up to 7 times as compared to the impedance mismatch system. The system had demonstrated a near-constant transfer efficiency for an operating range of 2cm-12cm.

  15. Microbial inactivation of paprika by a high-temperature short-X time treatment. Influence on color properties.

    PubMed

    Almela, Luis; Nieto-Sandoval, José M; Fernández López, José A

    2002-03-13

    High-temperature short-time (HTST) treatments have been used to destroy the bioburden of paprika. With this in mind, we have designed a device to treat samples of paprika with a gas whose temperature, pressure, and composition can be selected. Temperatures and treatment times ranged from 130 to 170 degrees C and 4 to 6 s, respectively. The survival of the most commonly found microorganisms in paprika and any alteration in extractable and superficial color were examined. Data showed that the optimum HTST conditions were 145 degrees C, 1.5 kg/cm2 of overpressure, 6 s operation time, and a thermal fluid of saturated steam. No microbial growth was detected during storage after thermal treatment. To minimize the color losses, treated (HTST) paprika samples should be kept under refrigeration.

  16. Calculated performance of a mercury-compressor-jet powered airplane using a nuclear reactor as an energy source

    NASA Technical Reports Server (NTRS)

    Doyle, R B

    1951-01-01

    An analysis was made at a flight Mach number of 1.5, an altitude of 45,000 feet, a turbine-inlet temperature of 1460 degrees R, of a mercury compressor-jet powered airplane using a nuclear reactor as an energy source. The calculations covered a range of turbine-exhaust and turbine-inlet pressures and condenser-inlet Mach numbers. For a turbine--inlet pressure of 40 pounds per square inch absolute, a turbine-exhaust pressure of 14 pounds per square inch absolute, and a condenser-inlet Mach number of 0.23 the calculated airplane gross weight required to carry a 20,000 pound payload was 322000 pounds and the reactor heat release per unit volume was 8.9 kilowatts per cubic inch. These do not represent optimum operating conditions.

  17. Kinetic approach to the study of froth flotation applied to a lepidolite ore

    NASA Astrophysics Data System (ADS)

    Vieceli, Nathália; Durão, Fernando O.; Guimarães, Carlos; Nogueira, Carlos A.; Pereira, Manuel F. C.; Margarido, Fernanda

    2016-07-01

    The number of published studies related to the optimization of lithium extraction from low-grade ores has increased as the demand for lithium has grown. However, no study related to the kinetics of the concentration stage of lithium-containing minerals by froth flotation has yet been reported. To establish a factorial design of batch flotation experiments, we conducted a set of kinetic tests to determine the most selective alternative collector, define a range of pulp pH values, and estimate a near-optimum flotation time. Both collectors (Aeromine 3000C and Armeen 12D) provided the required flotation selectivity, although this selectivity was lost in the case of pulp pH values outside the range between 2 and 4. Cumulative mineral recovery curves were used to adjust a classical kinetic model that was modified with a non-negative parameter representing a delay time. The computation of the near-optimum flotation time as the maximizer of a separation efficiency (SE) function must be performed with caution. We instead propose to define the near-optimum flotation time as the time interval required to achieve 95%-99% of the maximum value of the SE function.

  18. Further Development and Assessment of a Broadband Liner Optimization Process

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2016-01-01

    The utilization of advanced fan designs (including higher bypass ratios) and shorter engine nacelles has highlighted a need for increased fan noise reduction over a broader frequency range. Thus, improved broadband liner designs must account for these constraints and, where applicable, take advantage of advanced manufacturing techniques that have opened new possibilities for novel configurations. This work focuses on the use of an established broadband acoustic liner optimization process to design a variable-depth, multi-degree of freedom liner for a high speed fan. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design a liner aimed at producing impedance spectra that most closely match the predicted optimum values. The multi-degree of freedom design is carried through design, fabrication, and testing. In-duct attenuation predictions compare well with measured data and the multi-degree of freedom liner is shown to outperform a more conventional liner over a range of flow conditions. These promising results provide further confidence in the design tool, as well as the enhancements made to the overall design process.

  19. The Total-Pressure Recovery and Drag Characteristics of Several Auxiliary Inlets at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Dennard, John S.

    1959-01-01

    Several flush and scoop-type auxiliary inlets have been tested for a range of Mach numbers from 0.55 to 1.3 to determine their transonic total-pressure recovery and drag characteristics. The inlet dimensions were comparable with the thickness of the boundary layer in which they were tested. Results indicate that flush inlets should be inclined at very shallow angles with respect to the surface for optimum total-pressure recovery and drag characteristics. Deep, narrow inlets have lower drag than wide shallow ones at Mach numbers greater than 0.9 but at lower Mach numbers the wider inlets proved superior. Inlets with a shallow approach ramp, 7 deg, and diverging ramp walls which incorporated boundary-layer bypass had lower drag than any other inlet tested for Mach numbers up to 1.2 and had the highest pressure recovery of all of the flush inlets. The scoop inlets, which operated in a higher velocity flow than the flush inlets, had higher drag coefficients. Several of these auxiliary inlets projected multiple, periodic shock waves into the stream when they were operated at low mass-flow ratios.

  20. Emission spectroscopy and laser-induced fluorescence measurements on the plume from a 1-kW arcjet operated on simulated ammonia

    NASA Technical Reports Server (NTRS)

    Ruyten, Wilhelmus M.; Burtner, D.; Keefer, Dennis

    1993-01-01

    Spectroscopic and laser-induced fluorescence measurements were performed on the exhaust plume from a 1 kW NASA Lewis arcjet, operated on simulated ammonia. In particular, emissions were analyzed from the Balmer lines of atomic hydrogen and from one of the rotational bands of the NH radical. The laser-induced fluorescence measurements were performed on the Balmer-alpha line of atomic hydrogen. We find that exit plane temperatures are in the range 1500 to 3500 K and that the electron density upstream of the exit plane is on the order of 1.5 x 10(exp 14)/cu cm as determined by the Stark width of the Balmer-alpha line. Both emission spectroscopy and laser-induced fluorescence were used to measure the plume velocities of atomic hydrogen. Using either technique, velocities on the order of 4 km/sec were found at the exit plane and significant acceleration of the flow was observed in the first 2 mm beyond the exit plane. This result indicates that the design of the arcjet nozzle may not be optimum.

  1. Design of a C- Band Circular Polarization Microstrip Antenna

    NASA Astrophysics Data System (ADS)

    Yohandri; Jumiah, Yusna; Tetuko Sri Sumantyo, Josaphat

    2018-04-01

    The development of circularly polarized microstrip antenna is an interesting topic in current research, due to its superiority in various applications. In this work, the design of a circular polarization antenna that will be operated in the C-band range will be described. The developed antenna is intended to be used for Synthetic Aperture Radar (SAR) applications. Through this application, various targets or areas on the surface of the earth, such as buildings, soil and land can be observed. To get the ideal antenna characteristic, in this research the various parameters in antenna design will be simulated. A software CST Studio will be operated in this simulation. Based on the simulation results, the optimum parameters are obtained in term of reflection coefficient, VSWR, axial ratio, and gain. The reflection coefficient of the antenna (S11) is obtained at -19.75 dB and VSWR of 1.23. Meanwhile, the axial ratio and gain of the antenna were obtained at 2.66 dB and 2.1 dBi, respectively. Based on this simulated results, antenna design is potential to be developed and fabricated for SAR sensor applications.

  2. Development of a miniature Stirling cryocooler for LWIR small satellite applications

    NASA Astrophysics Data System (ADS)

    Kirkconnell, C. S.; Hon, R. C.; Perella, M. D.; Crittenden, T. M.; Ghiaasiaan, S. M.

    2017-05-01

    The optimum small satellite (SmallSat) cryocooler system must be extremely compact and lightweight, achieved in this paper by operating a linear cryocooler at a frequency of approximately 300 Hz. Operation at this frequency, which is well in excess of the 100-150 Hz reported in recent papers on related efforts, requires an evolution beyond the traditional Oxford-class, flexure-based methods of setting the mechanical resonance. A novel approach that optimizes the electromagnetic design and the mechanical design together to simultaneously achieve the required dynamic and thermodynamic performances is described. Since highly miniaturized pulse tube coolers are fundamentally ill-suited for the sub-80K temperature range of interest because the boundary layer losses inside the pulse tube become dominant at the associated very small pulse tube size, a moving displacer Stirling cryocooler architecture is used. Compact compressor mechanisms developed on a previous program are reused for this design, and they have been adapted to yield an extremely compact Stirling warm end motor mechanism. Supporting thermodynamic and electromagnetic analysis results are reported.

  3. The effect of ultraviolet irradiation on the ultra-thin HfO{sub 2} based CO gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaduman, Irmak; Barin, Özlem; Acar, Selim

    2015-11-07

    In this work, an effort has been made to fabricate ultrathin HfO{sub 2}/Al{sub 2}O{sub 3} sample by atomic layer deposition method for the fast detection of CO gas at room temperature. The effect of the operating temperature and the UV light on the gas sensing characteristics has been studied. We investigated the optimum operating temperature for the sample by sensing 25 ppm CO and CO{sub 2} gases from room temperature to 150 °C for 10 °C steps. The maximum response was obtained at 150 °C for both gases in the measurement temperature range. Also, the photoresponse measurements clearly show the effect of UV lightmore » on the sample. At room temperature, sensor showed superior response (14%) for 5 ppm CO gas. The response time of sensor is 6 s to 5 ppm CO gas concentration. The ultrathin HfO{sub 2} based sample shows acceptable gas sensitivity for 5 ppm CO gas at room temperature under UV light irradiation.« less

  4. Thermal resistance model for CSP central receivers

    NASA Astrophysics Data System (ADS)

    de Meyer, O. A. J.; Dinter, F.; Govender, S.

    2016-05-01

    The receiver design and heliostat field aiming strategy play a vital role in the heat transfer efficiency of the receiver. In molten salt external receivers, the common operating temperature of the heat transfer fluid or molten salt ranges between 285°C to 565°C. The optimum output temperature of 565°C is achieved by adjusting the mass flow rate of the molten salt through the receiver. The reflected solar radiation onto the receiver contributes to the temperature rise in the molten salt by means of heat transfer. By investigating published work on molten salt external receiver operating temperatures, corresponding receiver tube surface temperatures and heat losses, a model has been developed to obtain a detailed thermographic representation of the receiver. The steady state model uses a receiver flux map as input to determine: i) heat transfer fluid mass flow rate through the receiver to obtain the desired molten salt output temperature of 565°C, ii) receiver surface temperatures iii) receiver tube temperatures iv) receiver efficiency v) pressure drop across the receiver and vi) corresponding tube strain per panel.

  5. Active Control of Engine Dynamics (Le controle actif pour la dynamique des moteurs)

    DTIC Science & Technology

    2002-11-01

    optimum operating conditions, avoiding, for example, inadvertent operation when the pulsations can cause unacceptable rates of surface heat transfer or...such as shipboard incineration, and power and heat generation in the field. Because the practical problem of suppressing combustion instabilities has...aforementioned physical processes are essentially completed prior to entering the combustor. One consequence of fuel-air premixing is that the heat

  6. Determining the Optimum Power Load in Jump Squat Using the Mean Propulsive Velocity

    PubMed Central

    Loturco, Irineu; Nakamura, Fabio Yuzo; Tricoli, Valmor; Kobal, Ronaldo; Cal Abad, Cesar Cavinato; Kitamura, Katia; Ugrinowitsch, Carlos; Gil, Saulo; Pereira, Lucas Adriano; González-Badillo, Juan José

    2015-01-01

    The jump squat is one of the exercises most frequently used to improve lower body power production, which influences sports performance. However, the traditional determination of the specific workload at which power production is maximized (i.e., optimum power load) is time-consuming and requires one-repetition maximum tests. Therefore, the aim of this study was to verify whether elite athletes from different sports would produce maximum mean propulsive power values at a narrow range of mean propulsive velocities, resulting in similar jump heights. One hundred and nine elite athletes from several individual/team sport disciplines underwent repetitions at maximal velocity with progressive loads, starting at 40% of their body mass with increments of 10% to determine the individual optimum power zone. Results indicated that regardless of sport discipline, the athletes’ optimum mean propulsive power was achieved at a mean propulsive velocity close to 1.0 m.s−1 (1.01 ± 0.07 m.s−1) and at a jump height close to 20 cm (20.47 ± 1.42 cm). Data were narrowly scattered around these values. Therefore, jump squat optimum power load can be determined simply by means of mean propulsive velocity or jump height determination in training/testing settings, allowing it to be implemented quickly in strength/power training. PMID:26444293

  7. Optimum illumination for nighttime flagger operations : final report.

    DOT National Transportation Integrated Search

    2005-08-01

    Highway maintenance and construction undertaken by the Oregon Department of Transportation (ODOT) can involve the use of flaggers to control the work zone. When the work is undertaken at night, illumination of flaggers is needed to ensure the safety ...

  8. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor

    PubMed Central

    2012-01-01

    Background A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. Results The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. Conclusions The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production. Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production. PMID:23167984

  9. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor.

    PubMed

    España-Gamboa, Elda I; Mijangos-Cortés, Javier O; Hernández-Zárate, Galdy; Maldonado, Jorge A Domínguez; Alzate-Gaviria, Liliana M

    2012-11-21

    A modified laboratory-scale upflow anaerobic sludge blanket (UASB) reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. The study showed that chemical oxygen demand (COD) removal efficiency was 69% at an optimum organic loading rate (OLR) of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production.Methanogen groups (Methanobacteriales and Methanosarcinales) detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production.

  10. AFETR Instrumentation Handbook

    DTIC Science & Technology

    1971-09-01

    of time. From this, vehicle velocity and acceleration can be computed. LOCATION Three Askanias are mobile and may be located at selected universal...Being mobile , these cinetheodolites may be placed for optimum launch coverage. Preprogrammed focusing is provided for automatic focus from 2000 and 8000...console trailer. IR (lead sulfide sensor ) Automatic Tracking System with 1 to 20 miles range. Elevation range: -10 deg to +90 deg Azimuth range: 350

  11. Intrinsic kinetic parameters of Thermococcus onnurineus NA1 strains and prediction of optimum carbon monoxide level for ideal bioreactor operation.

    PubMed

    Jeong, Yeseul; Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Chang, In Seop

    2016-02-01

    This study determines and compares the intrinsic kinetic parameters (Ks and Ki) of selected Thermococcus onnurineus NA1 strains (wild-type (WT), and mutants MC01, MC02, and WTC156T) using the substrate inhibition model. Ks and Ki values were used to find the optimum dissolved CO (CL) conditions inside the reactor. The results showed that in terms of the maximum specific CO consumption rates (qCO(max)) of WT, MC01, MC02, and WTC156T the optimum activities can be achieved by maintaining the CL levels at 0.56mM, 0.52mM, 0.58mM, and 0.75mM, respectively. The qCO(max) value of WTC156T at 0.75mM was found to be 1.5-fold higher than for the WT strain, confirming its superiority. Kinetic modeling was then used to predict the conditions required to maintain the optimum CL levels and high cell concentrations in the reactor, based on the kinetic parameters of the WTC156T strain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A class of optimum digital phase locked loops for the DSN advanced receiver

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Kumar, R.

    1985-01-01

    A class of optimum digital filters for digital phase locked loop of the deep space network advanced receiver is discussed. The filter minimizes a weighted combination of the variance of the random component of the phase error and the sum square of the deterministic dynamic component of phase error at the output of the numerically controlled oscillator (NCO). By varying the weighting coefficient over a suitable range of values, a wide set of filters are obtained such that, for any specified value of the equivalent loop-noise bandwidth, there corresponds a unique filter in this class. This filter thus has the property of having the best transient response over all possible filters of the same bandwidth and type. The optimum filters are also evaluated in terms of their gain margin for stability and their steady-state error performance.

  13. Generation Process of Large-Amplitude Upper-Band Chorus Emissions Observed by Van Allen Probes

    DOE PAGES

    Kubota, Yuko; Omura, Yoshiharu; Kletzing, Craig; ...

    2018-04-19

    In this paper, we analyze large-amplitude upper-band chorus emissions measured near the magnetic equator by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument package on board the Van Allen Probes. In setting up the parameters of source electrons exciting the emissions based on theoretical analyses and observational results measured by the Helium Oxygen Proton Electron instrument, we calculate threshold and optimum amplitudes with the nonlinear wave growth theory. We find that the optimum amplitude is larger than the threshold amplitude obtained in the frequency range of the chorus emissions and that the wave amplitudes grow between themore » threshold and optimum amplitudes. Finally, in the frame of the wave growth process, the nonlinear growth rates are much greater than the linear growth rates.« less

  14. Generation Process of Large-Amplitude Upper-Band Chorus Emissions Observed by Van Allen Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, Yuko; Omura, Yoshiharu; Kletzing, Craig

    In this paper, we analyze large-amplitude upper-band chorus emissions measured near the magnetic equator by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument package on board the Van Allen Probes. In setting up the parameters of source electrons exciting the emissions based on theoretical analyses and observational results measured by the Helium Oxygen Proton Electron instrument, we calculate threshold and optimum amplitudes with the nonlinear wave growth theory. We find that the optimum amplitude is larger than the threshold amplitude obtained in the frequency range of the chorus emissions and that the wave amplitudes grow between themore » threshold and optimum amplitudes. Finally, in the frame of the wave growth process, the nonlinear growth rates are much greater than the linear growth rates.« less

  15. Haladaptatus pallidirubidus sp. nov., a halophilic archaeon isolated from saline soil samples in Yunnan and Xinjiang, China.

    PubMed

    Liu, Bing-Bing; Zhao, Wan-Yu; Chu, Xiao; Hozzein, Wael N; Prabhu, Deene Manik; Wadaan, Mohammed A M; Tang, Shu-Kun; Zhang, Li-Li; Li, Wen-Jun

    2014-11-01

    Two extremely halophilic archaea, designated YIM 90917 and YIM 93656(T), were isolated from saline soils in Yunnan province and Lup nur region in Xinjiang province, western China, respectively. Colonies of the two strains were observed to be pink-pigmented. The cells were found to be Gram-stain negative, coccoid and non-motile. The organisms were found to be aerobic and could grow in an NaCl range of 6-35 % (optimum 18 %), temperatures ranging from 25 to 50 °C (optimum 37-42 °C), pH range from 6.0-8.5 (optimum pH 7.0-7.5) and Mg(2+) range from 0 to 1.5 M (optimum 0.5-1.0 M); Mg(2+) was not necessary for growth. Cells were not observed to lyse in distilled water. Strains YIM 90917 and YIM 93656(T) showed the highest 16S rRNA gene sequence similarities to Haladaptatus cibarius JCM 15962(T) (97.6 and 97.9 %, respectively). In addition, the DNA-DNA hybridizations of strains YIM 90917 and YIM 93656(T) with type strains H. cibarius JCM 15962(T), Haladaptatus litoreus JCM 15771(T) and Haladaptatus paucihalophilus JCM 13897(T) were 37.2 and 38.2 %, 36.6 and 39.0 % and 27.9 and 27.7 %, respectively. The DNA G+C contents of strains YIM 90917 and YIM 93656(T) were determined to be 56.0 and 57.4 mol%. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, sulfated mannosyl glucosyl diether and other four unidentified glycolipids. On the basis of physiological, chemotaxonomic data and phylogenetic analysis, the strains YIM 90917 and YIM 93656(T) can be classified as a novel species of the genus Haladaptatus, for which the name Haladaptatus pallidirubidus sp. nov. is proposed. The type strain is YIM 93656(T) (=JCM 17504(T) = CCTCC AB2010454(T)).

  16. Synthesis of Fe3O4@CuS@Ni2P-CNTs magnetic nanocomposite for sonochemical-assisted sorption and pre-concentration of trace Allura Red from aqueous samples prior to HPLC-UV detection: CCD-RSM design.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Abidi, Hassan; Javadian, Hamedreza; Zoladl, Mohammad; Sadeghfar, Fardin

    2018-06-01

    A simple procedure based on ultrasound-assisted (UA) dispersive micro solid phase extraction (D-μ-SPE) was applied for sorption of trace amount Allura Red (AR) in fruit juice and water samples. After loading process by UA-D-μ-SPE, the concentrated AR was eluted and monitored using high-performance liquid chromatography-ultraviolet -visible detector (HPLC-UV). The best operational conditions were obtained as follows: pH = 3.0, 8 mg of the sorbent, sonication time of 4.5 min and 0.16 mL of THF as elution solvent. Under the optimum operational conditions, the present method was acceptable for AR quantification in the range of 1.0-5000 ng mL -1 . The repeatability based on RSD with the amount of 1.67-3.18%, low LOD (0.198 ng mL -1 ) and LOQ (0.659 ng mL -1 ) were obtained. The UA-D-μ-SPE-HPLC-UV method was successfully applied for trace quantification of AR from water and commercial fruit juice samples supplied from local supermarkets, and acceptable relative recoveries over the range of 97.7-105.4% with RSDs ≤5.50% were obtained. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Decolorization and biodegradation of remazol brilliant blue R by bilirubin oxidase.

    PubMed

    Liu, Youxun; Huang, Juan; Zhang, Xiaoyu

    2009-12-01

    The dye-decolorizing potential of bilirubin oxidase (BOX) was demonstrated for an anthraquinone dye, remazol brilliant blue R (RBBR). The dye was decolorized 40% within 4 h by the BOX alone, whereas it was more efficient in the presence of 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), showing 91.5% decolorization within 25 min. The effects of operational parameters on decolorization were examined. The results showed that the decolorization efficiency decreased with increasing RBBR concentration, and a marked inhibition effect was exhibited when the dye concentrations were above 100 mg l(-1). The optimum temperature for enzymatic decolorization was 40 degrees C. BOX showed efficient decolorization of the dye with a wide pH range of 5-8.5. The maximum decolorization activity occurred at pH 8 with ABTS and at pH 5 without ABTS. Analysis of RBBR ultraviolet and visible (UV-VIS) spectra after BOX treatment indicated that the decolorization of RBBR was due to biodegradation. Our results suggested that ABTS can serve as an electron mediator to facilitate the oxidation of RBBR, and the BOX-ABTS mediator-involved dye decolorization mechanism was similar to that of laccase. Operation over a wide range of pH and efficient decolorization suggested that the BOX can be used to decolorize synthetic dyes from effluents, especially for anthraquinonic dyes.

  18. Impact of speech presentation level on cognitive task performance: implications for auditory display design.

    PubMed

    Baldwin, Carryl L; Struckman-Johnson, David

    2002-01-15

    Speech displays and verbal response technologies are increasingly being used in complex, high workload environments that require the simultaneous performance of visual and manual tasks. Examples of such environments include the flight decks of modern aircraft, advanced transport telematics systems providing invehicle route guidance and navigational information and mobile communication equipment in emergency and public safety vehicles. Previous research has established an optimum range for speech intelligibility. However, the potential for variations in presentation levels within this range to affect attentional resources and cognitive processing of speech material has not been examined previously. Results of the current experimental investigation demonstrate that as presentation level increases within this 'optimum' range, participants in high workload situations make fewer sentence-processing errors and generally respond faster. Processing errors were more sensitive to changes in presentation level than were measures of reaction time. Implications of these findings are discussed in terms of their application for the design of speech communications displays in complex multi-task environments.

  19. Thermal and Cycle-Life Behavior of Commercial Li-ion and Li-Polymer Cells

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.; Quinzio, M. V.

    2001-01-01

    Accelerated and real-time LEO cycle-life test data will be presented for a range of commercial Li-ion and Li-polymer (gel type) cells indicating the ranges of performance that can be obtained, and the performance screening tests that must be done to assure long life. The data show large performance variability between cells, as well as a highly variable degradation signature during non-cycling periods within the life tests. High-resolution Dynamic Calorimetry data will be presented showing the complex series of reactions occurring within these Li cells as they are cycled. Data will also be presented for cells being tested using an Adaptive Charge Control Algorithm (ACCA) that continuously adapts itself to changes in cell performance, operation, or environment to both find and maintain the optimum recharge over life. The ACCA has been used to prevent all unneeded overcharge for Li cells, NiCd cells and NiH2 cells. While this is important for all these cell types, it is most critical for Li-ion cells, which are not designed with electrochemical tolerance for overcharge.

  20. Determination of trace triclosan in environmental water by microporous bamboo-activated charcoal solid-phase extraction combined with HPLC-ESI-MS.

    PubMed

    Sun, Jing; Yi, Chun-Liang; Zhao, Ru-Song; Wang, Xia; Jiang, Wen-Qiang; Wang, Xi-Kui

    2012-10-01

    A sensitive and efficient analytical method for triclosan (TCS) determination in water, which involves enrichment with bamboo-activated charcoal and detection with HPLC-ESI-MS, was developed. The influence of several operational parameters, including the eluant and its volume, the flow rate, the volume andacidity of the sample, and the amount of bamboo-activated charcoal, were investigated and optimized. Under the optimum conditions, linearity of the method was observed in the range of 0.02-20 μg/L, with correlation coefficients (r(2) ) >0.9990. The limit of detection was 0.002 μg/L based on the ratio of chromatographic signal to baseline noise (S/N = 3). The spiked recoveries of TCS in real water samples were achieved in the range of 97.6-112.5%. The proposed method was applied to analyze TCS in real aqueous samples. All the surface water samples collected in Xiaoqing River had detectable levels of TCS with concentrations of 42-197 ng/L. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparing the efficiency of supersonic oxygen-iodine laser with different mixing designs

    NASA Astrophysics Data System (ADS)

    Vyskubenko, Boris A.; Adamenkov, A. A.; Bakshin, V. V.; Efremov, V. I.; Ilyin, S. P.; Kolobyanin, Yu. V.; Krukovsky, I. M.; Kudryashov, E. A.; Moiseyev, V. B.

    2003-11-01

    The paper presents experimental studies of supersonic oxygen-iodine laser (OIL) using twisted-flow singlet oxygen generator (SOG) over a wide range of the singlet oxygen pressures and the buffer gas flow rates. The experiments used different designs of the nozzle unit and mixing system for singlet oxygen and iodine gas with the carrier gas (such as nitrogen or helium). For a wide range of the key parameters, the study looked at the efficiency of supersonic OIL with variation of the singlet oxygen pressure. The measurements were made for different positions of the iodine injection plane with respect to the critical cross-section (both in the subsonic part of the nozzle and in the supersonic flow). The gas pressure at the nozzle unit entry was varied from 50 to 250 Torr. The total pressure loss have been found for different mixing designs. Experimental curves are given for energy performance and chemical efficiency of the supersonic OIL as a function of the key parameters. Comparison is made between the calculated and experimental data. For the optimum conditions of OIL operation, chemical efficiency of 25-30% has been achieved.

  2. Discovery and characterization of ionic liquid-tolerant thermophilic cellulases from a switchgrass-adapted microbial community.

    PubMed

    Gladden, John M; Park, Joshua I; Bergmann, Jessica; Reyes-Ortiz, Vimalier; D'haeseleer, Patrik; Quirino, Betania F; Sale, Kenneth L; Simmons, Blake A; Singer, Steven W

    2014-01-29

    The development of advanced biofuels from lignocellulosic biomass will require the use of both efficient pretreatment methods and new biomass-deconstructing enzyme cocktails to generate sugars from lignocellulosic substrates. Certain ionic liquids (ILs) have emerged as a promising class of compounds for biomass pretreatment and have been demonstrated to reduce the recalcitrance of biomass for enzymatic hydrolysis. However, current commercial cellulase cocktails are strongly inhibited by most of the ILs that are effective biomass pretreatment solvents. Fortunately, recent research has shown that IL-tolerant cocktails can be formulated and are functional on lignocellulosic biomass. This study sought to expand the list of known IL-tolerant cellulases to further enable IL-tolerant cocktail development by developing a combined in vitro/in vivo screening pipeline for metagenome-derived genes. Thirty-seven predicted cellulases derived from a thermophilic switchgrass-adapted microbial community were screened in this study. Eighteen of the twenty-one enzymes that expressed well in E. coli were active in the presence of the IL 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) concentrations of at least 10% (v/v), with several retaining activity in the presence of 40% (v/v), which is currently the highest reported tolerance to [C2mim][OAc] for any cellulase. In addition, the optimum temperatures of the enzymes ranged from 45 to 95°C and the pH optimum ranged from 5.5 to 7.5, indicating these enzymes can be used to construct cellulase cocktails that function under a broad range of temperature, pH and IL concentrations. This study characterized in detail twenty-one cellulose-degrading enzymes derived from a thermophilic microbial community and found that 70% of them were [C2mim][OAc]-tolerant. A comparison of optimum temperature and [C2mim][OAc]-tolerance demonstrates that a positive correlation exists between these properties for those enzymes with a optimum temperature >70°C, further strengthening the link between thermotolerance and IL-tolerance for lignocelluolytic glycoside hydrolases.

  3. Use of wind data in global modelling

    NASA Technical Reports Server (NTRS)

    Pailleux, J.

    1985-01-01

    The European Centre for Medium Range Weather Forecasts (ECMWF) is producing operational global analyses every 6 hours and operational global forecasts every day from the 12Z analysis. How the wind data are used in the ECMWF golbal analysis is described. For each current wind observing system, its ability to provide initial conditions for the forecast model is discussed as well as its weaknesses. An assessment of the impact of each individual system on the quality of the analysis and the forecast is given each time it is possible. Sometimes the deficiencies which are pointed out are related not only to the observing system itself but also to the optimum interpolation (OI) analysis scheme; then some improvements are generally possible through ad hoc modifications of the analysis scheme and especially tunings of the structure functions. Examples are given. The future observing network over the North Atlantic is examined. Several countries, coordinated by WMO, are working to set up an 'Operational WWW System Evaluation' (OWSE), in order to evaluate the operational aspects of the deployment of new systems (ASDAR, ASAP). Most of the new systems are expected to be deployed before January 1987, and in order to make the best use of the available resources during the deployment phase, some network studies are carried out at the present time, by using simulated data for ASDAR and ASAP systems. They are summarized.

  4. A study of the feasibility of directly applying gas generator systems to space shuttle mechanical functions

    NASA Technical Reports Server (NTRS)

    Lake, E. R.

    1974-01-01

    This study examined the current status and potential application of pyrotechnic gas generators and energy convertors for the space shuttle program. While most pyrotechnic devices utilize some form of linear actuation, only limited use of rotary actuators has been observed. This latter form of energy conversion, using a vane-type actuator as optimum, offers considerable potential in the area of servo, as well as non-servo systems, and capitalizes on a means of providing prolonged operating times. Pyrotechnic devices can often be shown to provide the optimum means of attaining a truly redundant back-up to a primary, non-pyrotechnic system.

  5. Preliminary compressor design study for an advanced multistage axial flow compressor

    NASA Technical Reports Server (NTRS)

    Marman, H. V.; Marchant, R. D.

    1976-01-01

    An optimum, axial flow, high pressure ratio compressor for a turbofan engine was defined for commercial subsonic transport service starting in the late 1980's. Projected 1985 technologies were used and applied to compressors with an 18:1 pressure ratio having 6 to 12 stages. A matrix of 49 compressors was developed by statistical techniques. The compressors were evaluated by means of computer programs in terms of various airline economic figures of merit such as return on investment and direct-operating cost. The optimum configuration was determined to be a high speed, 8-stage compressor with an average blading aspect ratio of 1.15.

  6. Evaluation of mechanical losses in a linear motor pressure wave generator

    NASA Astrophysics Data System (ADS)

    Jacob, Subhash; Rangasamy, Karunanithi; Jonnalagadda, Kranthi Kumar; Chakkala, Damu; Achanur, Mallappa; Govindswamy, Jagadish; Gour, Abhay Singh

    2012-06-01

    A moving magnet linear motor compressor or pressure wave generator (PWG) of 2 cc swept volume with dual opposed piston configuration has been developed to operate miniature pulse tube coolers. Prelimnary experiments yielded only a no-load cold end temperature of 180 K. Auxiliary tests and the interpretation of detailed modeling of a PWG suggest that much of the PV power has been lost in the form of blow-by at piston seals due to large and non-optimum clearance seal gap between piston and cylinder. The results of experimental parameters simulated using Sage provide the optimum seal gap value for maximizing the delivered PV power.

  7. User manual for VICONOPT: An exact analysis and optimum design program covering the buckling and vibration of prismatic assemblies of flat in-plane loaded, anisotropic plates, with approximations for discrete supports, and transverse stiffeners

    NASA Technical Reports Server (NTRS)

    Williams, F. W.; Anderson, M. S.; Kennedy, D.; Butler, R.; Aston, G.

    1990-01-01

    A computer program which is designed for efficient, accurate buckling and vibration analysis and optimum design of composite panels is described. The capabilities of the program are given along with detailed user instructions. It is written in FORTRAN 77 and is operational on VAX, IBM, and CDC computers and should be readily adapted to others. Several illustrations of the various aspects of the input are given along the example problems illustrating the use and application of the program.

  8. Investigation of an ejector heat pump by analytical methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, C.T.

    1984-07-01

    Using existing theories of ejector design, the optimum geometry of a high-efficiency ejector - including mixing section cross-sectional area, mass flow entrainment rate, ejector efficiency, and overall COP - for a heat pump cycle was determined. A parametric study was performed to evaluate the COP values for different operating conditions. A sensitivity study determined th effects of nozzle efficiency and diffuser efficiency on the overall ejector heat pump COP. The off-design study estimated the COP for an ejector heat pump operating at off-design conditions. Refrigerants 11, 113, and 114 are three of the halocarbons which best satisfy the criteria formore » an ejector heat pump system. The estimated COPs were 0.3 for the cooling mode and 1.3 for the heating mode at standard operating conditions: a boiler temperature of 93.3/sup 0/C (200/sup 0/F), a condenser temperature of 43.3/sup 0/C (110/sup 0/F), and an evaporator temperature of 10/sup 0/C (50/sup 0/F). Based on the same operating conditions, an optimum ejector geometry was estimated for each of the refrigerants R-11 and R-113. Since the COP values for heating obtained in this analysis are greater than unity, the performance of an ejector heat pump operating in the heating mode should be competitive with that of oil- or gas-fired furnaces or electrical resistance heaters.« less

  9. CFD-Based Design Optimization Tool Developed for Subsonic Inlet

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The traditional approach to the design of engine inlets for commercial transport aircraft is a tedious process that ends with a less-than-optimum design. With the advent of high-speed computers and the availability of more accurate and reliable computational fluid dynamics (CFD) solvers, numerical optimization processes can effectively be used to design an aerodynamic inlet lip that enhances engine performance. The designers' experience at Boeing Corporation showed that for a peak Mach number on the inlet surface beyond some upper limit, the performance of the engine degrades excessively. Thus, our objective was to optimize efficiency (minimize the peak Mach number) at maximum cruise without compromising performance at other operating conditions. Using a CFD code NPARC, the NASA Lewis Research Center, in collaboration with Boeing, developed an integrated procedure at Lewis to find the optimum shape of a subsonic inlet lip and a numerical optimization code, ADS. We used a GRAPE-based three-dimensional grid generator to help automate the optimization procedure. The inlet lip shape at the crown and the keel was described as a superellipse, and the superellipse exponents and radii ratios were considered as design variables. Three operating conditions: cruise, takeoff, and rolling takeoff, were considered in this study. Three-dimensional Euler computations were carried out to obtain the flow field. At the initial design, the peak Mach numbers for maximum cruise, takeoff, and rolling takeoff conditions were 0.88, 1.772, and 1.61, respectively. The acceptable upper limits on the takeoff and rolling takeoff Mach numbers were 1.55 and 1.45. Since the initial design provided by Boeing was found to be optimum with respect to the maximum cruise condition, the sum of the peak Mach numbers at takeoff and rolling takeoff were minimized in the current study while the maximum cruise Mach number was constrained to be close to that at the existing design. With this objective, the optimum design satisfied the upper limits at takeoff and rolling takeoff while retaining the desirable cruise performance. Further studies are being conducted to include static and cross-wind operating conditions in the design optimization procedure. This work was carried out in collaboration with Dr. E.S. Reddy of NYMA, Inc.

  10. Optimization of Orifice Geometry for Cross-Flow Mixing in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Sowa, W. A.; Kroll, J. T.; Samuelsen, G. S.; Holdeman, J. D.

    1994-01-01

    Mixing of gaseous jets in a cross-flow has significant applications in engineering, one example of which is the dilution zone of a gas turbine combustor. Despite years of study, the design of jet injection in combustors is largely based on practical experience. A series of experiments was undertaken to delineate the optimal mixer orifice geometry. A cross-flow to core-flow momentum-flux ratio of 40 and a mass flow ratio of 2.5 were selected as representative of an advanced design. An experimental test matrix was designed around three variables: the number of orifices, the orifice aspect ratio (long-to-short dimension), and the orifice angle. A regression analysis was performed on the data to arrive at an interpolating equation that predicted the mixing performance of orifice geometry combinations within the range of the test matrix parameters. Results indicate that mixture uniformity is a non-linear function of the number of orifices, the orifice aspect ratio, and the orifice angle. Optimum mixing occurs when the asymptotic mean jet trajectories are in the range of 0.35 less than r/R less than 0.5 (where r = 0 is at the mixer wall) at z/R = 1.0. At the optimum number of orifices, the difference between shallow-angled slots with large aspect ratios and round holes is minimal and either approach will lead to good mixing performance. At the optimum number of orifices, it appears possible to have two local optimums where one corresponds to an aspect ratio of 1.0 and the other to a high aspect ratio.

  11. A semiempirical error estimation technique for PWV derived from atmospheric radiosonde data

    NASA Astrophysics Data System (ADS)

    Castro-Almazán, Julio A.; Pérez-Jordán, Gabriel; Muñoz-Tuñón, Casiana

    2016-09-01

    A semiempirical method for estimating the error and optimum number of sampled levels in precipitable water vapour (PWV) determinations from atmospheric radiosoundings is proposed. Two terms have been considered: the uncertainties in the measurements and the sampling error. Also, the uncertainty has been separated in the variance and covariance components. The sampling and covariance components have been modelled from an empirical dataset of 205 high-vertical-resolution radiosounding profiles, equipped with Vaisala RS80 and RS92 sondes at four different locations: Güímar (GUI) in Tenerife, at sea level, and the astronomical observatory at Roque de los Muchachos (ORM, 2300 m a.s.l.) on La Palma (both on the Canary Islands, Spain), Lindenberg (LIN) in continental Germany, and Ny-Ålesund (NYA) in the Svalbard Islands, within the Arctic Circle. The balloons at the ORM were launched during intensive and unique site-testing runs carried out in 1990 and 1995, while the data for the other sites were obtained from radiosounding stations operating for a period of 1 year (2013-2014). The PWV values ranged between ˜ 0.9 and ˜ 41 mm. The method sub-samples the profile for error minimization. The result is the minimum error and the optimum number of levels. The results obtained in the four sites studied showed that the ORM is the driest of the four locations and the one with the fastest vertical decay of PWV. The exponential autocorrelation pressure lags ranged from 175 hPa (ORM) to 500 hPa (LIN). The results show a coherent behaviour with no biases as a function of the profile. The final error is roughly proportional to PWV whereas the optimum number of levels (N0) is the reverse. The value of N0 is less than 400 for 77 % of the profiles and the absolute errors are always < 0.6 mm. The median relative error is 2.0 ± 0.7 % and the 90th percentile P90 = 4.6 %. Therefore, whereas a radiosounding samples at least N0 uniform vertical levels, depending on the water vapour content and distribution of the atmosphere, the error in the PWV estimate is likely to stay below ≈ 3 %, even for dry conditions.

  12. The practical operational-amplifier gyrator circuit for inductorless filter synthesis

    NASA Technical Reports Server (NTRS)

    Sutherland, W. C.

    1976-01-01

    A literature is reported for gyrator circuits utilizing operational amplifiers as the active device. A gyrator is a two port nonreciprocal device with the property that the input impedance is proportional to the reciprocal of the load impedance. Following an experimental study, the gyrator circuit with optimum properties was selected for additional testing. A theoretical analysis was performed and compared to the experimental results for excellent agreement.

  13. Critical induction a key quantity for the optimisation of transformer core operation

    NASA Astrophysics Data System (ADS)

    Ilo, A.; Pfützner, H.; Nakata, T.

    2000-06-01

    No-load losses P of transformers core have been considerably decreased through introduction of the so-called multi-step-lap designs. However, profound guidelines for the optimum step-number N do not exist. This study shows that the combination of both N and working induction B characterises the flux distribution. Transformer cores can operate in an over or an under-critical way depending on N and B.

  14. Display formats manual

    NASA Technical Reports Server (NTRS)

    Runnels, R. L.

    1973-01-01

    The standards and procedures for the generation of operational display formats to be used in the Mission Control Center (MCC) display control system are presented. The required effort, forms, and fundamentals for the design, specifications, and production of display formats are identified. The principles of display design and system constraints controlling the creation of optimum operational displays for mission control are explained. The basic two types of MCC display systems for presenting information are described.

  15. Skylab astronaut life support assembly

    NASA Technical Reports Server (NTRS)

    Brown, J. T.

    1972-01-01

    A comparative study was performed to define an optimum portable life support system for suited operations inside and outside the Skylab Program. Emphasis was placed on utilization of qualified equipment, modified versions of qualified equipment, and new systems made up to state-of-the-art components. Outlined are the mission constraints, operational modes, and evaluation ground rules by which the Skylab portable life support system was selected and the resulting design.

  16. Optimization and design of pigments for heat-insulating coatings

    NASA Astrophysics Data System (ADS)

    Wang, Guang-Hai; Zhang, Yue

    2010-12-01

    This paper reports that heat insulating property of infrared reflective coatings is obtained through the use of pigments which diffuse near-infrared thermal radiation. Suitable structure and size distribution of pigments would attain maximum diffuse infrared radiation and reduce the pigment volume concentration required. The optimum structure and size range of pigments for reflective infrared coatings are studied by using Kubelka—Munk theory, Mie model and independent scattering approximation. Taking titania particle as the pigment embedded in an inorganic coating, the computational results show that core-shell particles present excellent scattering ability, more so than solid and hollow spherical particles. The optimum radius range of core-shell particles is around 0.3 ~ 1.6 μm. Furthermore, the influence of shell thickness on optical parameters of the coating is also obvious and the optimal thickness of shell is 100-300 nm.

  17. Desulfonatronum paiuteum sp. nov.: A New Alkaliphilic, Sulfate-Reducing Bacterium, Isolated from Soda Mono Lake, California

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena; Hoover, Richard B.; Marsic, Damien; Whitman, William; Cleland, David; Krader, Paul; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel alkaliphilic, sulfate reducing bacterium strain MLF1(sup T) was isolated from sediments of soda Mono Lake, California. Gram-negative vibrion cells, motile by singular polar flagellum, with sizes 0.5 - 0.6x 1.2 - 2.0 micron occurred singly, in pairs or short spirilla. Growth was observed over the temperature range of +15 C to +48 C (optimum +37 C), NaCl concentration range is greater than 1 - 7 %, wt/vol (optimum 3 %, wt/vol) and pH range 7.8 - 10.5 (optimum pH 9.0 - 9.4). The novel isolate is strictly alkaliphilic, requires high carbonate concentration in medium, obligately anaerobic and catalase negative. As electron donors strain MLF1(sup T) uses hydrogen, formate, ethanol. Sulfate, sulfite, and thiosulfate (but not sulfur or nitrate) can be used as electron acceptors. The sole end product of growth on formate was H2S. Strain MLF1(sup T) is resistant to kanamycin and gentamycin, but sensitive to chloramphenicol and tetracycline. Na2MoO4 inhibits growth of strain MLF1(sup T). The sum of G+C in DNA is 63.1 mol% (by HPLC method). On the basis of physiological and molecular properties, the isolate was considered as novel species of genus Desulfonatronum; and the name Desulfonatronum paiuteum sp. nov., is proposed (type strain MLF1(sup T) = ATCC BAA-395(sup T) = DSMZ 14708(sup T).

  18. TiO₂ beads and TiO₂-chitosan beads for urease immobilization.

    PubMed

    Ispirli Doğaç, Yasemin; Deveci, Ilyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-09-01

    The aim of the present study is to synthesize TiO2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO2 beads. In the first method (A), urease enzyme was immobilized onto TiO2 beads by adsorption and then crosslinking. In the second method (B), TiO2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5mg/ml for A and 1.0mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60°C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70°C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30°C (A), 40°C (B) and 35°C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65°C. However, at this temperature free urease protected only 15% activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Gold nanoparticle chemiresistors operating in biological fluids.

    PubMed

    Hubble, Lee J; Chow, Edith; Cooper, James S; Webster, Melissa; Müller, Karl-Heinz; Wieczorek, Lech; Raguse, Burkhard

    2012-09-07

    Functionalised gold nanoparticle (Au(NP)) chemiresistors are investigated for direct sensing of small organic molecules in biological fluids. The principle reason that Au(NP) chemiresistors, and many other sensing devices, have limited operation in biological fluids is due to protein and lipid fouling deactivating the sensing mechanism. In order to extend the capability of such chemiresistor sensors to operate directly in biofluids, it is essential to minimise undesirable matrix effects due to protein and lipidic components. Ultrafiltration membranes were investigated as semi-permeable size-selective barriers to prevent large biomolecule interactions with Au(NP) chemiresistors operating in protein-loaded biofluids. All of the ultrafiltration membranes protected the Au(NP) chemiresistors from fouling by the globular biomolecules, with the 10 kDa molecular weight cut-off size being optimum for operation in biofluids. Titrations of toluene in different protein-loaded fluids indicated that small molecule detection was possible. A sensor array consisting of six different thiolate-functionalised Au(NP) chemiresistors protected with a size-selective ultrafiltration membrane successfully identified, and discriminated the spoilage of pasteurised bovine milk. This proof-of-principle study demonstrates the on-chip protein separation and small metabolite detection capability, illustrating the potential for this technology in the field of microbial metabolomics. Overall, these results demonstrate that a sensor array can be protected from protein fouling with the use of a membrane, significantly increasing the possible application areas of Au(NP) chemiresistors ranging from the food industry to health services.

  20. ISRO's dual frequency airborne SAR pre-cursor to NISAR

    NASA Astrophysics Data System (ADS)

    Ramanujam, V. Manavala; Suneela, T. J. V. D.; Bhan, Rakesh

    2016-05-01

    The Indian Space Research Organisation (ISRO) and the National Aeronautics and Space Administration (NASA) have jointly embarked on NASA-ISRO Synthetic Aperture Radar (NISAR) operating in L-band and S-band, which will map Earth's surface every 12 days. As a pre-cursor to the NISAR mission, ISRO is planning an airborne SAR (L&S band) which will deliver NISAR analogue data products to the science community. ISRO will develop all the hardware with the aim of adhering to system design aspects of NISAR to the maximum extent possible. It is a fully polarimetric stripmap SAR and can be operated in single, dual, compact, quasi-quad and full polarimetry modes. It has wide incidence angle coverage from 24°-77° with swath coverage from 5.5km to 15 km. Apart from simultaneous imaging operations, this system can also operate in standalone L/S SAR modes. This system is planned to operate from an aircraft platform with nominal altitude of 8000meters. Antenna for this SAR will be rigidly mounted to the aircraft, whereas, motion compensation will be implemented in the software processor to generate data products. Data products for this airborne SAR will be generated in slant & ground range azimuth dimension and geocoded in HDF5/Geotiff formats. This airborne SAR will help to prepare the Indian scientific community for optimum utilization of NISAR data. In-order to collect useful science data, airborne campaigns are planned from end of 2016 onwards.

  1. Approaches in controllable generation of artificial pinning center in REBa2Cu3O y -coated conductor for high-flux pinning

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Miura, S.; Tsuchiya, Y.; Ichino, Y.; Awaji, S.; Matsumoto, K.; Ichinose, A.

    2017-10-01

    This paper reviews the progress of studies to determine optimum shapes of the artificial pinning center (APC) of REBa2Cu3O y thin films and coated conductors towards superconducting magnets operating at temperatures of 77 K or less. Superconducting properties vary depending on the kind and quantity of BaMO3 materials. Therefore, we study changes in the shapes of nanorods that are due to the difference in the quality of additives and growth temperature. In addition, we aim to control the APC using an optimum shape that matches the operating temperature. In particular, we describe the shape control of nanorods in SmBCO thin films and coated conductors by employing lower temperature growth (LTG) technology using seed layers. From the cross-sectional transmission electron microscopy observations, we confirmed that using the LTG method, the BaHfO3 (BHO) nanorods, which were comparatively thin and short in length, formed a firework structure in the case of SmBCO films with coated conductors. The superconducting properties in the magnetic field of the SmBCO-coated conductor with the optimum amount of BHO showed that {F}{{p}}\\max = 1.6 TN m-3 on a single crystalline substrate and 1.5 TN m-3 on metallic substrate with a biaxially textured MgO layer fabricated by ion-beam assisted deposition method tape 4.2 K.

  2. Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production.

    PubMed

    Arbib, Zouhayr; de Godos, Ignacio; Ruiz, Jesús; Perales, José A

    2017-07-01

    Special attention is required to the removal of nitrogen and phosphorous in treated wastewaters. Although, there are a wide range of techniques commercially available for nutrient up-take, these processes entail high investment and operational costs. In the other hand, microalgae growth can simultaneously remove inorganic constituents of wastewater and produce energy rich biomass. Among all the cultivation technologies, High Rate Algae Ponds (HRAPs), are accepted as the most appropriate system. However, the optimization of the operation that maximizes the productivity, nutrient removal and lipid content in the biomass generated has not been established. In this study, the effect of two levels of depth and the addition of CO 2 were evaluated. Batch essays were used for the calculation of the kinetic parameters of microbial growth that determine the optimum conditions for continuous operation. Nutrient removal and lipid content of the biomass generated were analyzed. The best conditions were found at depth of 0.3m with CO 2 addition (biomass productivity of 26.2gTSSm -2 d -1 and a lipid productivity of 6.0glipidsm -2 d -1 ) in continuous mode. The concentration of nutrients was in all cases below discharge limits established by the most restrictive regulation for wastewater discharge. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Autoclave heat treatment for prealloyed powder products

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ashbrook, R. L.

    1973-01-01

    Technique could be applied directly to loose powders as part of hot pressing process of forming them to any required shapes. This would eliminate initial extrusion step commonly applied to prealloyed powders, substantially reduce cost of forming operation, and result in optimum properties.

  4. Improving the operating effectiveness of the shaft kilns of magnesite combine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utenkov, A.F.; Sinitsyn, E.A.; Gor'kova, T.V.

    1986-11-01

    The authors analyze the combustion efficiency of a natural gas-fired tunnel kiln and propose design and performance modifications to the burner and fuel systems to provide for optimum combustion and utilization of the calorific value of the fuel.

  5. Interest focuses on exploratory areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stremel, K.

    1984-10-01

    Speculative geophysical programs are underway in sparsely drilled areas throughout the southern Rocky Mountain region. Responding to significant operator interest generated by new production in Nevada, a few contractors are designing programs to establish optimum recording parameters. Geophysical exploration activities in Colorado and Utah are discussed.

  6. Space Operations Center orbit altitude selection strategy

    NASA Technical Reports Server (NTRS)

    Indrikis, J.; Myers, H. L.

    1982-01-01

    The strategy for the operational altitude selection has to respond to the Space Operation Center's (SOC) maintenance requirements and the logistics demands of the missions to be supported by the SOC. Three orbit strategies are developed: two are constant altitude, and one variable altitude. In order to minimize the effect of atmospheric uncertainty the dynamic altitude method is recommended. In this approach the SOC will operate at the optimum altitude for the prevailing atmospheric conditions and logistics model, provided that mission safety constraints are not violated. Over a typical solar activity cycle this method produces significant savings in the overall logistics cost.

  7. Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  8. Characterization of In-Flight Processing of Alumina Powder Using a DC-RF Hybrid Plasma Flow System at Constant Low Operating Power

    NASA Astrophysics Data System (ADS)

    Nishiyama, H.; Onodera, M.; Igawa, J.; Nakajima, T.

    2009-12-01

    The aim of this study is to provide the optimum operating conditions for enhancing in-flight alumina particle heating as much as possible for particle spheroidization and aggregation of melted particles using a DC-RF hybrid plasma flow system even at constant low operating power based on the thermofluid considerations. It is clarified that the swirl flow and higher operating pressure enhance the particle melting and aggregation of melted particles coupled with increasing gas temperature downstream of a plasma uniformly in the radial direction at constant electrical discharge conditions.

  9. Use of RSM for the multivariate, simultaneous multiobjective optimization of the operating conditions of aliphatic carboxylic acids ion-exclusion chromatography column: Quantitative study of hydrodynamic, isotherm, and thermodynamic behavior.

    PubMed

    Shojaeimehr, Tahereh; Rahimpour, Farshad; Schwarze, Michael; Repke, Jens-Uwe; Godini, Hamid Reza; Wozny, Günter

    2018-04-15

    The present study evaluates the capability of ion exclusion chromatography (IEC) of short chain aliphatic carboxylic acids using a cation exchange column (8% sulfonated cross-linked styrene-divinylbenzene copolymer) in different experimental conditions. Since one of the prerequisites to the development of an efficient carboxylic acid separation process is to obtain the optimum operational conditions, response surface methodology (RSM) was used to develop an approach to evaluate carboxylic acids separation process in IEC columns. The effect of the operating conditions such as column temperature, sulfuric acid concentration as the mobile phase, and the flow rate was studied using Central Composite Face (CCF) design. The optimum operating conditions for the separate injection of lactic acid and acetic acid is temperature of 75 °C, sulfuric acid concentration of 0.003 N for both acids and flow rate of 0.916 (0.886) mL/min for acetic acid (lactic acid). Likewise, the optimum conditions for the simultaneous injection of acetic and lactic acid mixture are the column temperature of 68 °C, sulfuric acid concentration of 0.0003 N, and flow rate of 0.777 mL/min. In the next step, the adsorption equilibria of acetic acid and lactic acid on the stationary phase were investigated through a series of Frontal Analysis (FA), Frontal Analysis by Characteristic Points (FACP), and using Langmuir isotherm model. The results showed an excellent agreement between the model and experimental data. Finally, the results of thermodynamic studies proved that the IEC process for separation of acetic and lactic acid is a spontaneous, feasible, exothermic, and random process with a physical adsorption mechanism. The results of the current paper can be a valuable information in the stages of designing IEC columns for separation of aliphatic carboxylic acids. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. An ergonomic study of the optimum operating table height for laparoscopic surgery.

    PubMed

    Berquer, R; Smith, W D; Davis, S

    2002-03-01

    Laparoscopic surgery requires the use of longer instruments than open surgery, thus changing the relation between the height of the surgeon's hands and the desirable height of the operating room table. The optimum height of the operating room table for laparoscopic surgery is investigated in this study. Twenty-one surgeons performed a two-handed, one-fourth circle cutting task using a laparoscopic video system and laparoscopic instruments positioned at five instrument handle heights relative to subjects' elbow height (-20, -10, 0, +10, and +20 cm) by adjusting the height of the trainer box. Subjects rated the difficulty and discomfort experienced during each task on a visual analog scale. Skin conductance (SC) was measured in Micromhos via paired surface electrodes placed near the ulnar edge of the palm of the right (cutting) hand. The mean electromyographic (EMG) signal from the right deltoid and trapezius muscles was measured. Arm orientation was measured in three dimensions using a magnetometer/accelerometer. Signals were acquired using analog circuitry and digitally sampled using a National Instruments DAQCard 700 connected to a Macintosh PowerBook 5300c running LabVIEW software. Statistical analysis was carried out by analysis of variance and post hoc testing. Statistically significant changes were found in the subjective rating of discomfort (p <0.002), deltoid EMG (p <0.0006), trapezius EMG (p <0.0001), and arm elevation (p <0.0001) between instrument handle heights. SC values and task times did not change significantly. Discomfort and difficulty ratings were lowest when instrument handles were positioned at elbow height. EMG values and arm elevation all decreased with lower instrument height. This study suggests that the optimum table height for laparoscopic surgery should position the laparoscopic instrument handles close to surgeons' elbow level to minimize discomfort and upper arm and shoulder muscle work. This corresponds to an approximate table height of 64 to 77 cm above floor level. A redesign of current operating room tables may be required to meet these ergonomic guidelines.

  11. Heat shock response and metabolic stress in the tropical estuarine copepod Pseudodiaptomus annandalei converge at its upper thermal optimum.

    PubMed

    Low, Joyce S Y; Chew, Li Lee; Ng, Ching Ching; Goh, Hao Chin; Lehette, Pascal; Chong, Ving Ching

    2018-05-01

    Heat shock response (HSR), in terms of transcription regulation of two heat shock proteins genes hsp70 and hsp90), was analysed in a widespread tropical copepod Pseudodiaptomus annandalei. The mRNA transcripts of both genes were quantified after copepods at a salinity of 20 underwent an acclimation process involving an initial acclimation temperature of 29 °C, followed by gradual thermal ramping to the target exposure temperature range of 24-36 °C. The respective cellular HSR and organismal metabolism, measured by respiratory activity at exposure temperatures, were compared. The fold change in mRNA expression for both hsp70 and hsp90 (8-9 fold) peaks at 32 °C, which is very close to 32.4 °C, the upper thermal optimum for respiration in the species. Unexpectedly, the modelled HSR curves peak at only 3 °C (hsp90) and 3.5 °C (hsp70) above the mean water temperature (29.32 °C) of the copepod in the field. We propose that copepods in tropical waters adopt a preparative HSR strategy, early at the upper limit of its thermal optimum, due to the narrow thermal range of its habitat thus precluding substantial energy demand at higher temperatures. However, the model suggests that the species could survive to at least 36 °C with short acclimation time. Nevertheless, the significant overlap between its thermal range of hsp synthesis and the narrow temperature range of its habitat also suggests that any unprecedented rise in sea temperature would have a detrimental effect on the species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Control Design Strategies to Enhance Long-Term Aircraft Structural Integrity

    NASA Technical Reports Server (NTRS)

    Newman, Brett A.

    1999-01-01

    Over the operational lifetime of both military and civil aircraft, structural components are exposed to hundreds of thousands of low-stress repetitive load cycles and less frequent but higher-stress transient loads originating from maneuvering flight and atmospheric gusts. Micro-material imperfections in the structure, such as cracks and debonded laminates, expand and grow in this environment, reducing the structural integrity and shortening the life of the airframe. Extreme costs associated with refurbishment of critical load-bearing structural components in a large fleet, or altogether reinventoring the fleet with newer models, indicate alternative solutions for life extension of the airframe structure are highly desirable. Increased levels of operational safety and reliability are also important factors influencing the desirability of such solutions. One area having significant potential for impacting crack growth/fatigue damage reduction and structural life extension is flight control. To modify the airframe response dynamics arising from command inputs and gust disturbances, feedback loops are routinely applied to vehicles. A dexterous flight control system architecture senses key vehicle motions and generates critical forces/moments at multiple points distributed throughout the airframe to elicit the desired motion characteristics. In principle, these same control loops can be utilized to influence the level of exposure to harmful loads during flight on structural components. Project objectives are to investigate and/or assess the leverage control has on reducing fatigue damage and enhancing long-term structural integrity, without degrading attitude control and trajectory guidance performance levels. In particular, efforts have focused on the effects inner loop control parameters and architectures have on fatigue damage rate. To complete this research, an actively controlled flexible aircraft model and a new state space modeling procedure for crack growth have been utilized. Analysis of the analytical state space model for crack growth revealed the critical mathematical factors, and hence the physical mechanism they represent, that influenced high rates of airframe crack growth. The crack model was then exercised with simple load inputs to uncover and expose key crack growth behavior. To characterize crack growth behavior, both "short-term" laboratory specimen test type inputs and "long-term" operational flight type inputs were considered. Harmonic loading with a single overload revealed typical exponential crack growth behavior until the overload application, after which time the crack growth was retarded for a period of time depending on the overload strength. An optimum overload strength was identified which leads to maximum retardation of crack growth. Harmonic loading with a repeated overload of varying strength and frequency again revealed an optimum overload trait for maximizing growth retardation. The optimum overload strength ratio lies near the range of 2 to 3 with dependency on frequency. Experimental data was found to correlate well with the analytical predictions.

  13. Platinum particle size and support effects in NO(x) mediated carbon oxidation over platinum catalysts.

    PubMed

    Villani, Kenneth; Vermandel, Walter; Smets, Koen; Liang, Duoduo; van Tendeloo, Gustaaf; Martens, Johan A

    2006-04-15

    Platinum metal was dispersed on microporous, mesoporous, and nonporous support materials including the zeolites Na-Y, Ba-Y, Ferrierite, ZSM-22, ETS-10, and AIPO-11, alumina, and titania. The oxidation of carbon black loosely mixed with catalyst powder was monitored gravimetrically in a gas stream containing nitric oxide, oxygen, and water. The carbon oxidation activity of the catalysts was found to be uniquely related to the Pt dispersion and little influenced by support type. The optimum dispersion is around 3-4% corresponding to relatively large Pt particle sizes of 20-40 nm. The carbon oxidation activity reflects the NO oxidation activity of the platinum catalyst, which reaches an optimum in the 20-40 nm Pt particle size range. The lowest carbon oxidation temperatures were achieved with platinum loaded ZSM-22 and AIPO-11 zeolite crystallites bearing platinum of optimum dispersion on their external surfaces.

  14. Large inert-gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    Using present technology as a starting point, performance predictions were made for large thrusters. The optimum beam diameter for maximum thruster efficiency was determined for a range of specific impulse. This optimum beam diameter varied greatly with specific impulse, from about 0.6 m at 3000 seconds (and below) to about 4 m at 10,000 seconds with argon, and from about 0.6 m at 2,000 seconds (and below) to about 12 m at 10,000 seconds with Xe. These beams sizes would require much larger thrusters than those presently available, but would offer substantial complexity and cost reductions for large electric propulsion systems.

  15. Research on the Treatment of Aluminum Alloy Chemical Milling Wastewater with Fenton Process

    NASA Astrophysics Data System (ADS)

    Zong-liang, Huang; Ru, Li; Peng, Luo; Jun-li, Gu

    2018-03-01

    The aluminum alloy chemical milling wastewater was treated by Fenton method. The effect of pH value, reaction time, rotational speed, H2O2 dosage, Fe2+ dosage and the molar ratio between H2O2 and Fe2+ on the COD removal rate of aluminum alloy chemical milling wastewater were investigated by single factor experiment and orthogonal experiment. The results showed that the optimum operating conditions for Fenton oxidation were as follows: the initial pH value was 3, the rotational speed was 250r/min, the molar ratio of H2O2 and Fe2+ was 8, the reaction time was 90 min. Under the optimum conditions, the removal rate of the wastewater’s COD is about 72.36%. In the reaction kinetics that aluminum alloy chemical milling wastewater was oxidized and degraded by Fenton method under the optimum conditions, the reaction sequence of the initial COD was 0.8204.

  16. Potassium Rankine cycle vapor chamber (heat pipe) radiator study

    NASA Technical Reports Server (NTRS)

    Gerrels, E. E.; Killen, R. E.

    1971-01-01

    A structurally integrated vapor chamber fin (heat pipe) radiator is defined and evaluated as a potential candidate for rejecting waste heat from the potassium Rankine cycle powerplant. Several vapor chamber fin geometries, using stainless steel construction, are evaluated and an optimum is selected. A comparison is made with an operationally equivalent conduction fin radiator. Both radiators employ NaK-78 in the primary coolant loop. In addition, the Vapor Chamber Fin (VCF) radiator utilizes sodium in the vapor chambers. Preliminary designs are developed for the conduction fin and VCF concepts. Performance tests on a single vapor chamber were conducted to verify the VCF design. A comparison shows the conduction fin radiator easier to fabricate, but heavier in weight, particularly as meteoroid protection requirements become more stringent. While the analysis was performed assuming the potassium Rankine cycle powerplant, the results are equally applicable to any system radiating heat to space in the 900 to 1400 F temperature range.

  17. Testing Evaluation of the Electrochemical Organic Content Analyzer

    NASA Technical Reports Server (NTRS)

    Davenport, R. J.

    1979-01-01

    The breadboard electrochemical organic content analyzer was evalauted for aerospace applications. An awareness of the disadvantages of expendables in some systems resulted in an effort to investigate ways of reducing the consumption of the analyzer's electrolyte from the rate of 5.17 kg/30 days. It was found that the electrochemical organic content analyzer can result in an organic monitor in the water quality monitor having a range of 0.1 to 100 mg/1 total organic carbon for a large number of common organic solutes. In a flight version it is anticipated the analyzer would occupy .0002 cu m, weigh 1.4 kg, and require 10 W or less of power. With the optimum method of injecting electrolyte into the sample (saturation of the sample with a salt) it would expend only 0.04 kg of electrolyte during 30 days of continuous operation.

  18. A Microwave Pressure Sounder

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.

    1978-01-01

    An instrument to measure atmospheric pressure at the earth's surface from an orbiting satellite would be a valuable addition to the expanding inventory of remote sensors. The subject of this report is such an instrument - the Microwave Pressure Sounder (MPS). It is shown that global-ocean coverage is attainable with sufficient accuracy, resolution and observational frequency for meteorological, oceanographic and climate research applications. Surface pressure can be deduced from a measurement of the absorption by an atmospheric column at a frequency in the wing of the oxygen band centered on 60 GHz. An active multifrequency instrument is needed to make this measurement with sufficient accuracy. The selection of optimum operating frequencies is based upon accepted models of surface reflection, oxygen, water vapor and cloud absorption. Numerical simulation using a range of real atmospheres defined by radiosonde observations were used to validate the frequency selection procedure. Analyses are presented of alternative system configurations that define the balance between accuracy and achievable resolution.

  19. Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser.

    PubMed

    Sonnenfroh, D M; Allen, M G

    1997-10-20

    We describe the development of a room-temperature diode sensor for in situ monitoring of combustion-generated NO. The sensor is based on a near-IR diode laser operating near 1.8 mum, which probes isolated transitions in the second overtone (3, 0) absorption band of NO. Based on absorption cell data, the sensitivity for ambient atmospheric pressure conditions is of the order of 30 parts in 10(6) by volume for a meter path (ppmv-m), assuming a minimum measurable absorbance of 10(-5). Initial H(2) -air flame measurements are complicated by strong water vapor absorption features that constrain the available gain and dynamic range of the present detection system. Preliminary results suggest that detection limits in this environment of the order of 140 ppmv-m could be achieved with optimum baseline correction.

  20. Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8- m room-temperature diode laser

    NASA Astrophysics Data System (ADS)

    Sonnenfroh, David M.; Allen, Mark G.

    1997-10-01

    We describe the development of a room-temperature diode sensor for in situ monitoring of combustion-generated NO. The sensor is based on a near-IR diode laser operating near 1.8 m, which probes isolated transitions in the second overtone (3,0) absorption band of NO. Based on absorption cell data, the sensitivity for ambient atmospheric pressure conditions is of the order of 30 parts in 10 6 by volume for a meter path (ppmv m), assuming a minimum measurable absorbance of 10 5 . Initial H 2 air flame measurements are complicated by strong water vapor absorption features that constrain the available gain and dynamic range of the present detection system. Preliminary results suggest that detection limits in this environment of the order of 140 ppmv m could be achieved with optimum baseline correction.

  1. High Temperature Modification of SNCR Technology and its Impact on NOx Removal Process

    NASA Astrophysics Data System (ADS)

    Blejchař, Tomáš; Konvička, Jaroslav; von der Heide, Bernd; Malý, Rostislav; Maier, Miloš

    2018-06-01

    SNCR (Selective non-catalytic reduction) Technology is currently being used to reach the emission limit for nitrogen oxides at fossil fuel fired power plant and/or heating plant and optimum temperature for SNCR process is in range 850 - 1050°C. Modified SNCR technology is able to reach reduction 60% of nitrogen oxides at temperature up to 1250°C. So the technology can also be installed where the flue gas temperature is too high in combustion chamber. Modified SNCR was tested using generally known SNCR chemistry implemented in CFD (Computation fluid dynamics) code. CFD model was focused on detail simulation of reagent injection and influence of flue gas temperature. Than CFD simulation was compared with operating data of boiler where the modified SNCR technology is installed. By comparing the experiment results with the model, the effect on nitrous oxides removal process and temperature of flue gas at the injection region.

  2. LP01 to LP11 mode convertor based on side-polished small-core single-mode fiber

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Yang; Li, Wei-dong

    2018-03-01

    An all-fiber LP01-LP11 mode convertor based on side-polished small-core single-mode fibers (SMFs) is numerically demonstrated. The linearly polarized incident beam in one arm experiences π shift through a fiber half waveplate, and the side-polished parts merge into an equivalent twin-core fiber (TCF) which spatially shapes the incident LP01 modes to the LP11 mode supported by the step-index few-mode fiber (FMF). Optimum conditions for the highest conversion efficiency are investigated using the beam propagation method (BPM) with an approximate efficiency as high as 96.7%. The proposed scheme can operate within a wide wavelength range from 1.3 μm to1.7 μm with overall conversion efficiency greater than 95%. The effective mode area and coupling loss are also characterized in detail by finite element method (FEM).

  3. Double-differential recording and AGC using microcontrolled variable gain ASIC.

    PubMed

    Rieger, Robert; Deng, Shin-Liang

    2013-01-01

    Low-power wearable recording of biopotentials requires acquisition front-ends with high common-mode rejection for interference suppression and adjustable gain to provide an optimum signal range to a cascading analogue-to-digital stage. A microcontroller operated double-differential (DD) recording setup and automatic gain control circuit (AGC) are discussed which reject common-mode interference and provide tunable gain, thus compensating for imbalance and variation in electrode interface impedance. Custom-designed variable gain amplifiers (ASIC) are used as part of the recording setup. The circuit gain and balance is set by the timing of microcontroller generated clock signals. Measured results are presented which confirm that improved common-mode rejection is achieved compared to a single differential amplifier in the presence of input network imbalance. Practical measured examples further validate gain control suitable for biopotential recording and power-line rejection for wearable ECG and EMG recording. The prototype front-end consumes 318 μW including amplifiers and microcontroller.

  4. Configuration design studies and wind tunnel tests of an energy efficient transport with a high-aspect-ratio supercritical wing

    NASA Technical Reports Server (NTRS)

    Henne, P. A.; Dahlin, J. A.; Peavey, C. C.; Gerren, D. S.

    1982-01-01

    The results of design studies and wind tunnel tests of high aspect ratio supercritical wings suitable for a medium range, narrow body transport aircraft flying near M=0.80 were presented. The basic characteristics of the wing design were derived from system studies of advanced transport aircraft where detailed structural and aerodynamic tradeoffs were used to determine the most optimum design from the standpoint of fuel usage and direct operating cost. These basic characteristics included wing area, aspect ratio, average thickness, and sweep. The detailed wing design was accomplished through application of previous test results and advanced computational transonic flow procedures. In addition to the basic wing/body development, considerable attention was directed to nacelle/plyon location effects, horizontal tail effects, and boundary layer transition effects. Results of these tests showed that the basic cruise performance objectives were met or exceeded.

  5. Automating multistep flow synthesis: approach and challenges in integrating chemistry, machines and logic

    PubMed Central

    Shukla, Chinmay A

    2017-01-01

    The implementation of automation in the multistep flow synthesis is essential for transforming laboratory-scale chemistry into a reliable industrial process. In this review, we briefly introduce the role of automation based on its application in synthesis viz. auto sampling and inline monitoring, optimization and process control. Subsequently, we have critically reviewed a few multistep flow synthesis and suggested a possible control strategy to be implemented so that it helps to reliably transfer the laboratory-scale synthesis strategy to a pilot scale at its optimum conditions. Due to the vast literature in multistep synthesis, we have classified the literature and have identified the case studies based on few criteria viz. type of reaction, heating methods, processes involving in-line separation units, telescopic synthesis, processes involving in-line quenching and process with the smallest time scale of operation. This classification will cover the broader range in the multistep synthesis literature. PMID:28684977

  6. Utilization of the UV laser with picosecond pulses for the formation of surface microstructures on elastomeric plastics

    NASA Astrophysics Data System (ADS)

    Antoszewski, B.; Tofil, S.; Scendo, M.; Tarelnik, W.

    2017-08-01

    Elastomeric plastics belong to a wide range of polymeric materials with special properties. They are used as construction material for seals and other components in many branches of industry and, in particular, in the biomedical industry, mechatronics, electronics and chemical equipment. The micromachining of surfaces of these materials can be used to build micro-flow, insulating, dispensing systems and chemical and biological reactors. The paper presents results of research on the effects of micro-machining of selected elastomeric plastics using a UV laser emitting picosecond pulses. The authors see the prospective application of the developed technology in the sealing technique in particular to shaping the sealing pieces co-operating with the surface of the element. The result of the study is meant to show parameters of the UV laser’s performance when producing typical components such as grooves, recesses for optimum ablation in terms of quality and productivity.

  7. Life analysis of multiroller planetary traction drive

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Rohn, D. A.; Loewenthal, S. H.

    1981-01-01

    A contact fatigue life analysis was performed for a constant ratio, Nasvytis Multiroller Traction Drive. The analysis was based on the Lundberg-Palmgren method for rolling element bearing life prediction. Life adjustment factors for materials, processing, lubrication and traction were included. The 14.7 to 1 ratio drive consisted of a single stage planetary configuration with two rows of stepped planet rollers of five rollers per row, having a roller cluster diameter of approximately 0.21 m, a width of 0.06 m and a weight of 9 kg. Drive system 10 percent life ranged from 18,800 hours at 16.6 kW (22.2 hp) and 25,000 rpm sun roller speed, to 305 hours at maximum operating conditions of 149 kw (200 hp) and 75,000 rpm sun roller speed. The effect of roller diameter and roller center location on life were determined. It was found that an optimum life geometry exists.

  8. Use of single-well simulators and economic performance criteria to optimize fracturing treatment design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.W.; Phillips, A.M.

    1990-02-01

    Low-permeability reservoirs are currently being propped with sand, resin-coated sand, intermediate-density proppants, and bauxite. This wide range of proppant cost and performance has resulted in the proliferation of proppant selection models. Initially, a rather vague relationship between well depth and proppant strength dictated the choice of proppant. More recently, computerized models of varying complexity that use net-present-value (NPV) calculations have become available. The input is based on the operator's performance goals for each well and specific reservoir properties. Simpler, noncomputerized approaches include cost/performance comparisons and nomographs. Each type of model, including several of the computerized models, is examined here. Bymore » use of these models and NPV calculations, optimum fracturing treatment designs have been developed for such low-permeability reservoirs as the Prue in Oklahoma. Typical well conditions are used in each of the selection models, and the results are compared.« less

  9. Compact optical duplicate system for satellite-ground laser communications: application of averaging effects

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomoko; Takayama, Yoshihisa; Fujikawa, Chiemi; Watanabe, Eriko; Kodate, Kashiko

    2014-09-01

    In recent years, there has been considerable interest in satellite-ground laser communication due to an increase in the quantity of data exchanged between satellites and the ground. However, improving the quality of this data communication is necessary as laser communication is vulnerable to air fluctuation. We first verify the spatial and temporal averaging effects using light beam intensity images acquired from middle-range transmission experiments between two ground positions and the superposition of these images using simulations. Based on these results, we propose a compact and lightweight optical duplicate system as a multi-beam generation device with which it is easy to apply the spatial averaging effect. Although an optical duplicate system is already used for optical correlation operations, we present optimum design solutions, design a compact optical duplicate system for satellite-ground laser communications, and demonstrate the efficacy of this system using simulations.

  10. Synthesis and properties of immobilized pectinase onto the macroporous polyacrylamide microspheres.

    PubMed

    Lei, Zhongli; Jiang, Qin

    2011-03-23

    Pectinase was covalently immobilized onto the macroporous polyacrylamide (PAM) microspheres synthesized via an inverse suspension polymerization approach, resulting in 81.7% immobilization yield. The stability of the macroporous PAM support, which has a large surface area, is not impeded by the adsorbed proteins despite the fact that up to 296.3 mg of enzyme is immobilized per gram of the carrier particles. The immobilized enzyme retained more than 75% of its initial activity over 30 days, and the optimum temperature/pH also increased to the range of 50-60 °C/3.0-5.0. The immobilized enzyme also exhibited great operational stability, and more than 75% residual activity was observed after 10 batch reactions. The kinetics of a model reaction catalyzed by the immobilized pectinase was finally investigated. Moreover, the immobilized pectinase could be recovered by centrifuging and showed durable activity at the process of recycle.

  11. IEEE 1988 International Symposium on Electromagnetic Compatibility, Seattle, WA, Aug. 2-4, 1988, Record

    NASA Astrophysics Data System (ADS)

    Various papers on electromagnetic compatibility are presented. Some of the optics considered include: field-to-wire coupling 1 to 18 GHz, SHF/EHF field-to-wire coupling model, numerical method for the analysis of coupling to thin wire structures, spread-spectrum system with an adaptive array for combating interference, technique to select the optimum modulation indices for suppression of undesired signals for simultaneous range and data operations, development of a MHz RF leak detector technique for aircraft harness surveillance, and performance of standard aperture shielding techniques at microwave frequncies. Also discussed are: spectrum efficiency of spread-spectrum systems, control of power supply ripple produced sidebands in microwave transistor amplifiers, an intership SATCOM versus radar electromagnetic interference prediction model, considerations in the design of a broadband E-field sensing system, unique bonding methods for spacecraft, and review of EMC practice for launch vehicle systems.

  12. A comprehensive study of sampling-based optimum signal detection in concentration-encoded molecular communication.

    PubMed

    Mahfuz, Mohammad U; Makrakis, Dimitrios; Mouftah, Hussein T

    2014-09-01

    In this paper, a comprehensive analysis of the sampling-based optimum signal detection in ideal (i.e., free) diffusion-based concentration-encoded molecular communication (CEMC) system has been presented. A generalized amplitude-shift keying (ASK)-based CEMC system has been considered in diffusion-based noise and intersymbol interference (ISI) conditions. Information is encoded by modulating the amplitude of the transmission rate of information molecules at the TN. The critical issues involved in the sampling-based receiver thus developed are addressed in detail, and its performance in terms of the number of samples per symbol, communication range, and transmission data rate is evaluated. ISI produced by the residual molecules deteriorates the performance of the CEMC system significantly, which further deteriorates when the communication range and/or the transmission data rate increase(s). In addition, the performance of the optimum receiver depends on the receiver's ability to compute the ISI accurately, thus providing a trade-off between receiver complexity and achievable bit error rate (BER). Exact and approximate detection performances have been derived. Finally, it is found that the sampling-based signal detection scheme thus developed can be applied to both binary and multilevel (M-ary) ASK-based CEMC systems, although M-ary systems suffer more from higher BER.

  13. Production of Biodiesel from Acid Oil via a Two-Step Enzymatic Transesterification.

    PubMed

    Choi, Nakyung; Lee, Jeom-Sig; Kwak, Jieun; Lee, Junsoo; Kim, In-Hwan

    2016-11-01

    A two-step enzymatic transesterification process in a solvent-free system has been developed as a novel approach to the production of biodiesel using acid oil from rice bran oil soapstock. The acid oil consisted of 53.7 wt% fatty acids, 2.4 wt% monoacylglycerols, 9.1 wt% diacylglycerols, 28.8 wt% triacylglycerols, and 6.0 wt% others. Three immobilized lipases were evaluated as potential biocatalysts, including Novozym 435 from Candida antarctica, Lipozyme RM IM from Rhizomucor miehei, and Lipozyme TL IM from Thermomyces lanuginosus. The effects of molar ratio of acid oil to ethanol, temperature, and enzyme loading were investigated to determine the optimum conditions for the transesterification with the three immobilized lipases. The optimum conditions of the three immobilized lipases were a molar ratio of 1:5 (acid oil to ethanol), the temperature range of 30-40°C, and the enzyme loading range of 5-10%. The two-step transesterification was then conducted under the optimum conditions of each lipase. The stepwise use of Novozym 435 and Lipozyme TL IM or Lipozyme RM IM and Lipozyme TL IM resulted in similar or higher levels of yield to the individual lipases. The maximum yields obtained in both stepwise uses were ca. 92%.

  14. Development of a fixed bed gasifier model and optimal operating conditions determination

    NASA Astrophysics Data System (ADS)

    Dahmani, Manel; Périlhon, Christelle; Marvillet, Christophe; Hajjaji, Noureddine; Houas, Ammar; Khila, Zouhour

    2017-02-01

    The main objective of this study was to develop a fixed bed gasifier model of palm waste and to identify the optimal operating conditions to produce electricity from synthesis gas. First, the gasifier was simulated using Aspen PlusTM software. Gasification is a thermo-chemical process that has long been used, but it remains a perfectible technology. It means incomplete combustion of biomass solid fuel into synthesis gas through partial oxidation. The operating parameters (temperature and equivalence ratio (ER)) were thereafter varied to investigate their effect on the synthesis gas composition and to provide guidance for future research and development efforts in process design. The equivalence ratio is defined as the ratio of the amount of air actually supplied to the gasifier and the stoichiometric amount of air. Increasing ER decreases the production of CO and H2 and increases the production of CO2 and H2O while an increase in temperature increases the fraction of CO and H2. The results show that the optimum temperature to have a syngas able to be effectively used for power generation is 900°C and the optimum equivalence ratio is 0.1.

  15. Removal of unburned carbon from coal fly ash using a pneumatic triboelectrostatic separator.

    PubMed

    Kim, J K; Cho, H C; Kim, S C

    2001-01-01

    A pneumatic triboelectrostatic beneficiation system of fly ash was studied using a continuous, bench-scale electroseparator composed of two vertical electrode plates and an ejector-tribocharger. Tests were conducted to evaluate the charge density and the separation efficiency at various operating conditions. It was found that the higher charge densities were obtained at (1) the air flow rate of 1.75 m3/min. (2) the feed rate of less than 50 kg/h. and (3) the relative humidity of less than 30% with use of a stainless ejector tribocharger. With these optimum conditions, the clean ash of less than LOI 3% was recovered with a yield over 75% when operated at the diffuser slit gap of 4mm, the diffuser outlet velocity of 16.1-18.6 m/s, and the distance of 15 cm between diffuser slit and splitter. The optimum feed rate was found to be 740 kg/h per m2 of electrode surface area, which can be used as a scale-up factor of electroseparator.

  16. Development of the Optimum Operation Scheduling Model of Domestic Electric Appliances for the Supply-Demand Adjustment in a Power System

    NASA Astrophysics Data System (ADS)

    Ikegami, Takashi; Iwafune, Yumiko; Ogimoto, Kazuhiko

    The high penetration of variable renewable generation such as Photovoltaic (PV) systems will cause the issue of supply-demand imbalance in a whole power system. The activation of the residential power usage, storage and generation by sophisticated scheduling and control using the Home Energy Management System (HEMS) will be needed to balance power supply and demand in the near future. In order to evaluate the applicability of the HEMS as a distributed controller for local and system-wide supply-demand balances, we developed an optimum operation scheduling model of domestic electric appliances using the mixed integer linear programming. Applying this model to several houses with dynamic electricity prices reflecting the power balance of the total power system, it was found that the adequate changes in electricity prices bring about the shift of residential power usages to control the amount of the reverse power flow due to excess PV generation.

  17. The Case Mix of Patients Presenting with Full-Thickness Macular Holes and Progression before Surgery: Implications for Optimum Management.

    PubMed

    Madi, Haifa A; Dinah, Christiana; Rees, Jon; Steel, David H W

    2015-01-01

    Analysis of pre-operative spectral domain optical coherence tomography (SD-OCT) characteristics of full-thickness macular holes (FTMH) and effect on optimum management. We retrospectively reviewed SD-OCT characteristics of a consecutive cohort of patients waitlisted for FTMH surgery and categorized them by current evidence-based treatments. Out of the 106 holes analysed, 36 were small, 40 medium and 30 large. Initially, 33 holes had vitreomacular adhesion (VMA). 41 holes were analysed for change in characteristics with a median duration of 8 weeks between the scans. The number of small or medium holes decreased from 20 to 6 and that of large holes doubled. The number of holes with VMA halved. Smaller hole size (p = 0.014) and being phakic (p = 0.048) were associated with a larger increase in size. The strongest predictor of hole progression into a different surgical management category was the presence of VMA. FTMH characteristics can change significantly pre-operatively and affect optimal treatment choice.

  18. Optimum quantum receiver for detecting weak signals in PAM communication systems

    NASA Astrophysics Data System (ADS)

    Sharma, Navneet; Rawat, Tarun Kumar; Parthasarathy, Harish; Gautam, Kumar

    2017-09-01

    This paper deals with the modeling of an optimum quantum receiver for pulse amplitude modulator (PAM) communication systems. The information bearing sequence {I_k}_{k=0}^{N-1} is estimated using the maximum likelihood (ML) method. The ML method is based on quantum mechanical measurements of an observable X in the Hilbert space of the quantum system at discrete times, when the Hamiltonian of the system is perturbed by an operator obtained by modulating a potential V with a PAM signal derived from the information bearing sequence {I_k}_{k=0}^{N-1}. The measurement process at each time instant causes collapse of the system state to an observable eigenstate. All probabilities of getting different outcomes from an observable are calculated using the perturbed evolution operator combined with the collapse postulate. For given probability densities, calculation of the mean square error evaluates the performance of the receiver. Finally, we present an example involving estimating an information bearing sequence that modulates a quantum electromagnetic field incident on a quantum harmonic oscillator.

  19. Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation

    DOEpatents

    Geisbrecht, Rodney A; Williams, Mark C

    2003-10-21

    A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.

  20. Optimization of Biomass Gasification Process for F-T Bio-Diesel Synthesys

    NASA Astrophysics Data System (ADS)

    Song, Jae Hun; Sung, Yeon Kyung; Yu, Tae U.; Choi, Young Tae; Lee, Uen Do

    The characteristics of biomass steam gasification were investigated to make an optimum syngas for Fischer Tropsch (F-T) synthesis of bio-diesel. Korean pine wood chip was used as a fuel and the experiment was conducted in a lab scale bubbling fluidized bed (0.1m LD. x 3.Omheight). Gas composition was evaluated by changing operating parameters such as gasifier temperature, and steam to fuel ratio. Major syngas was monitored by on-line gas analyzer (ND-IR spectroscopy) and gas chromatography (GC). As the temperature of gasifier increases hydrogen in the syngas increases while CO in the product gas decreases. The low concentration of sulfur compound and nitrogen in the product gas shows the potential advantages in the purification process of the syngas for F-T process. Optimum operating condition of the gasifier was found concerning the following gas cleaning and F-T process; H2-CO ratio and total gas yield increase while decreasing methane and CO2 concentrations in the syngas.

  1. SPECT System Optimization Against A Discrete Parameter Space

    PubMed Central

    Meng, L. J.; Li, N.

    2013-01-01

    In this paper, we present an analytical approach for optimizing the design of a static SPECT system or optimizing the sampling strategy with a variable/adaptive SPECT imaging hardware against an arbitrarily given set of system parameters. This approach has three key aspects. First, it is designed to operate over a discretized system parameter space. Second, we have introduced an artificial concept of virtual detector as the basic building block of an imaging system. With a SPECT system described as a collection of the virtual detectors, one can convert the task of system optimization into a process of finding the optimum imaging time distribution (ITD) across all virtual detectors. Thirdly, the optimization problem (finding the optimum ITD) could be solved with a block-iterative approach or other non-linear optimization algorithms. In essence, the resultant optimum ITD could provide a quantitative measure of the relative importance (or effectiveness) of the virtual detectors and help to identify the system configuration or sampling strategy that leads to an optimum imaging performance. Although we are using SPECT imaging as a platform to demonstrate the system optimization strategy, this development also provides a useful framework for system optimization problems in other modalities, such as positron emission tomography (PET) and X-ray computed tomography (CT) [1, 2]. PMID:23587609

  2. Permeability recovery of damaged water sensitive core using ultrasonic waves.

    PubMed

    Khan, Nasir; Pu, Chunsheng; Li, Xu; He, Yanlong; Zhang, Lei; Jing, Cheng

    2017-09-01

    It is imperative to recover the well productivity lose due to formation damage nearby wellbore during variant well operations. Some indispensable issues in conventional techniques make ultrasonic technology more attractive due to simple, reliable, favorable, cost-effective, and environment friendly nature. This study proposes the independent and combined use of ultrasonic waves and chemical agents for the treatment of already damaged core samples caused by exposure to distilled water. Results elucidate that ultrasonic waves with optimum (20kHz, 1000W) instead of maximum frequency and power worked well in the recovery owing to peristaltic transport caused by matching of natural frequency with acoustic waves frequency. In addition, hundred minutes was investigated as optimum irradiation time which provided ample time span to detach fine loosely suspended particles. However, further irradiation adversely affected the damaged permeability recovery. Moreover, permeability improvement attributes to cavitation due to ultrasonic waves propagation through fluid contained in porous medium and thermal energy generated by three different ways. Eventually, experimental outcomes indicated that maximum (25.3%) damaged permeability recovery was witnessed by applying ultrasonic waves with transducer #2 (20kHz and 1000W) and optimum irradiation timeframe (100min). This recovery was further increased to 45.8% by applying chemical agent and optimum ultrasonic waves simultaneously. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Penning plasma based simultaneous light emission source of visible and VUV lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, G. L., E-mail: glvyas27@gmail.com; Prakash, R.; Pal, U. N.

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure heliummore » in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20–106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.« less

  4. A method to optimize the processing algorithm of a computed radiography system for chest radiography.

    PubMed

    Moore, C S; Liney, G P; Beavis, A W; Saunderson, J R

    2007-09-01

    A test methodology using an anthropomorphic-equivalent chest phantom is described for the optimization of the Agfa computed radiography "MUSICA" processing algorithm for chest radiography. The contrast-to-noise ratio (CNR) in the lung, heart and diaphragm regions of the phantom, and the "system modulation transfer function" (sMTF) in the lung region, were measured using test tools embedded in the phantom. Using these parameters the MUSICA processing algorithm was optimized with respect to low-contrast detectability and spatial resolution. Two optimum "MUSICA parameter sets" were derived respectively for maximizing the CNR and sMTF in each region of the phantom. Further work is required to find the relative importance of low-contrast detectability and spatial resolution in chest images, from which the definitive optimum MUSICA parameter set can then be derived. Prior to this further work, a compromised optimum MUSICA parameter set was applied to a range of clinical images. A group of experienced image evaluators scored these images alongside images produced from the same radiographs using the MUSICA parameter set in clinical use at the time. The compromised optimum MUSICA parameter set was shown to produce measurably better images.

  5. Effect of air-entry angle on performance of a 2-stroke-cycle compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Earle, Sherod L; Dutee, Francis J

    1937-01-01

    An investigation was made to determine the effect of variations in the horizontal and vertical air-entry angles on the performance characteristics of a single-cylinder 2-stroke-cycle compression-ignition test engine. Performance data were obtained over a wide range of engine speed, scavenging pressure, fuel quantity, and injection advance angle with the optimum guide vanes. Friction and blower-power curves are included for calculating the indicated and net performances. The optimum horizontal air-entry angle was found to be 60 degrees from the radial and the optimum vertical angle to be zero, under which conditions a maximum power output of 77 gross brake horsepower for a specific fuel consumption of 0.52 pound per brake horsepower-hour was obtained at 1,800 r.p.m. and 16-1/2 inches of Hg scavenging pressure. The corresponding specific output was 0.65 gross brake horsepower per cubic inch of piston displacement. Tests revealed that the optimum scavenging pressure increased linearly with engine speed. The brake mean effective pressure increased uniformly with air quantity per cycle for any given vane angle and was independent of engine speed and scavenging pressure.

  6. A wave dynamics criterion for optimization of mammalian cardiovascular system.

    PubMed

    Pahlevan, Niema M; Gharib, Morteza

    2014-05-07

    The cardiovascular system in mammals follows various optimization criteria covering the heart, the vascular network, and the coupling of the two. Through a simple dimensional analysis we arrived at a non-dimensional number (wave condition number) that can predict the optimum wave state in which the left ventricular (LV) pulsatile power (LV workload) is minimized in a mammalian cardiovascular system. This number is also universal among all mammals independent of animal size maintaining a value of around 0.1. By utilizing a unique in vitro model of human aorta, we tested our hypothesis against a wide range of aortic compliance (pulse wave velocity). We concluded that the optimum value of the wave condition number remains to be around 0.1 for a wide range of aorta compliance that we could simulate in our in-vitro system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Chronically Increased G[subscript s][alpha] Signaling Disrupts Associative and Spatial Learning

    ERIC Educational Resources Information Center

    Bourtchouladze, Rusiko; Patterson, Susan L.; Kelly, Michele P.; Kreibich, Arati; Kandel, Eric R.; Abel, Ted

    2006-01-01

    The cAMP/PKA pathway plays a critical role in learning and memory systems in animals ranging from mice to "Drosophila" to "Aplysia." Studies of olfactory learning in "Drosophila" suggest that altered expression of either positive or negative regulators of the cAMP/PKA signaling pathway beyond a certain optimum range may be deleterious. Here we…

  8. Conflict-free trajectory planning for air traffic control automation

    NASA Technical Reports Server (NTRS)

    Slattery, Rhonda; Green, Steve

    1994-01-01

    As the traffic demand continues to grow within the National Airspace System (NAS), the need for long-range planning (30 minutes plus) of arrival traffic increases greatly. Research into air traffic control (ATC) automation at ARC has led to the development of the Center-TRACON Automation System (CTAS). CTAS determines optimum landing schedules for arrival traffic and assists controllers in meeting those schedules safely and efficiently. One crucial element in the development of CTAS is the capability to perform long-range (20 minutes) and short-range (5 minutes) conflict prediction and resolution once landing schedules are determined. The determination of conflict-free trajectories within the Center airspace is particularly difficult because of large variations in speed and altitude. The paper describes the current design and implementation of the conflict prediction and resolution tools used to generate CTAS advisories in Center airspace. Conflict criteria (separation requirements) are defined and the process of separation prediction is described. The major portion of the paper will describe the current implementation of CTAS conflict resolution algorithms in terms of the degrees of freedom for resolutions as well as resolution search techniques. The tools described in this paper have been implemented in a research system designed to rapidly develop and evaluate prototype concepts and will form the basis for an operational ATC automation system.

  9. Single electron counting using a dual MCP assembly

    NASA Astrophysics Data System (ADS)

    Yang, Yuzhen; Liu, Shulin; Zhao, Tianchi; Yan, Baojun; Wang, Peiliang; Yu, Yang; Lei, Xiangcui; Yang, Luping; Wen, Kaile; Qi, Ming; Heng, Yuekun

    2016-09-01

    The gain, pulse height resolution and peak-to-valley ratio of single electrons detected by using a Chevron configured Microchannel Plate (MCP) assembly are studied. The two MCPs are separated by a 280 μm gap and are biased by four electrodes. The purpose of the study is to determine the optimum bias voltage arrangements for single electron counting. By comparing the results of various bias voltage combinations, we conclude that good performance for the electron counting can be achieved by operating the MCP assembly in saturation mode. In addition, by applying a small reverse bias voltage across the gap while adjusting the bias voltages of the MCPs, optimum performance of electron counting can be obtained.

  10. Manufacturing and operational issues with lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Rand, D. A. J.; Boden, D. P.; Lakshmi, C. S.; Nelson, R. F.; Prengaman, R. D.

    An expert panel replies to questions on lead-acid technology and performance asked by delegates to the Ninth Asian Battery Conference. The subjects are as follows. Grid alloys: effects of calcium and tin levels on microstructure, corrosion, mechanical and electrochemical properties; effect of alloy-fabrication process on mechanical strength and corrosion resistance; low dross-make during casting of lead-calcium-tin alloys; future of book-mould casting; effect of increasing levels of silver; stability of continuously processed grids at high temperature. Negative-plate expanders: function of lignosulfonates and barium sulfate; benefits of pre-blended expanders; optimum expander formulations. Valve-regulated batteries: effect of oxygen cycle; optimum methods for float charging; charging and deep-cycle lifetimes; reliability testing.

  11. PDE Nozzle Optimization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Billings, Dana; Turner, James E. (Technical Monitor)

    2000-01-01

    Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.

  12. Application of Taguchi optimization on the cassava starch wastewater electrocoagulation using batch recycle method

    NASA Astrophysics Data System (ADS)

    Sudibyo, Hermida, L.; Suwardi

    2017-11-01

    Tapioca waste water is very difficult to treat; hence many tapioca factories could not treat it well. One of method which able to overcome this problem is electrodeposition. This process has high performance when it conducted using batch recycle process and use aluminum bipolar electrode. However, the optimum operation conditions are having a significant effect in the tapioca wastewater treatment using bath recycle process. In this research, The Taguchi method was successfully applied to know the optimum condition and the interaction between parameters in electrocoagulation process. The results show that current density, conductivity, electrode distance, and pH have a significant effect on the turbidity removal of cassava starch waste water.

  13. Photocatalytic degradation of humic acid in saline waters. Part 1. Artificial seawater: influence of TiO2, temperature, pH, and air-flow.

    PubMed

    Al-Rasheed, Radwan; Cardin, David J

    2003-06-01

    We report the first systematic study on the photocatalytic oxidation of humic acid (HA) in artificial seawater (ASW). TiO(2) (Degussa P25) dispersions were used as the catalyst with irradiation from a medium-pressure mercury lamp. The optimum quantity of catalyst was found to be between 2 and 2.5 gl(-1); while the decomposition was fastest at low pH values (pH 4.5 in the range examined), and the optimum air-flow, using an immersion well reactor with a capacity of 400 ml, was 850 ml min(-1). Reactivity increased with air-flow up to this figure, above which foaming prevented operation of the reactor. Using pure oxygen, an optimal flow rate was observed at 300 ml min(-1), above which reactivity remains essentially constant. Following treatment for 1 h, low-salinity water (2700 mg l(-1)) was completely mineralised, whereas ASW (46000 mg l(-1)) had traces of HA remaining. These effects are interpreted and kinetic data presented. To avoid problems of precipitation due to change of ionic strength humic substances were prepared directly in ASW, and the effects of ASW on catalyst suspension and precipitation have been taken into account. The Langmuir-Hinshelwood kinetic model has been shown to be followed only approximately for the catalytic oxidation of HA in ASW. The activation energy for the reaction derived from an Arrhenius treatment was 17 (+/-0.6) kJ mol(-1).

  14. Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough.

    PubMed

    Toffin, Laurent; Zink, Klaus; Kato, Chiaki; Pignet, Patricia; Bidault, Adeline; Bienvenu, Nadège; Birrien, Jean-Louis; Prieur, Daniel

    2005-01-01

    A piezotolerant, mesophilic, marine lactic acid bacterium (strain LT20T) was isolated from a deep sub-seafloor sediment core collected at Nankai Trough, off the coast of Japan. Cells were Gram-positive, rod-shaped, non-sporulating and non-motile. The NaCl concentration range for growth was 0-120 g l(-1), with the optimum at 10-20 g l(-1). The temperature range for growth at pH 7.0 was 4-50 degrees C, with the optimum at 37-40 degrees C. The optimum pH for growth was 7.0-8.0. The optimum pressure for growth was 0.1 MPa with tolerance up to 30 MPa. The main cellular phospholipids were phosphatidylglycerols (25 %), diphosphatidylglycerols (34 %) and a group of compounds tentatively identified as ammonium-containing phosphatidylserines (32 %); phosphatidylethanolamines (9 %) were minor components. The fatty acid composition was dominated by side chains of 16 : 0, 14 : 0 and 16 : 1. The G+C content of the genomic DNA was 42 mol%. On the basis of 16S rRNA gene sequence analysis and the secondary structure of the V6 region, this organism was found to belong to the genus Marinilactibacillus and was closely related to Marinilactibacillus psychrotolerans M13-2(T) (99 %), Marinilactibacillus sp. strain MJYP.25.24 (99 %) and Alkalibacterium olivapovliticus strain ww2-SN4C (97 %). Despite the high similarity between their 16S rRNA gene sequences (99 %), the DNA-DNA hybridization levels were less than 20 %. On the basis of physiological and genetic characteristics, it is proposed that this organism be classified as a novel species, Marinilactibacillus piezotolerans sp. nov. The type strain is LT20T (=DSM 16108T=JCM 12337T).

  15. 18 CFR 1304.404 - Commercial marina harbor limits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... facilities at the dock, navigation and flood control requirements, optimum use of lands and land rights owned... to, changes in the ownership of the land base supporting the marina. ... harbor areas are determined by the extent of land rights held by the dock operator. The lakeward limits...

  16. Optimum Timing for Surgery After Pre-operative Radiotherapy 6 vs 12 Weeks

    ClinicalTrials.gov

    2015-06-22

    Adenocarcinoma of the Rectum; Adenocarcinoma; Adenocarcinoma, Mucinous; Carcinoma; Neoplasms, Glandular and Epithelial; Neoplasms by Histologic Type; Neoplasms; Neoplasms, Cystic, Mucinous, and Serous; Colorectal Neoplasms; Intestinal Neoplasms; Gastrointestinal Neoplasms; Digestive System Neoplasms; Neoplasms by Site; Digestive System Diseases; Gastrointestinal Diseases; Intestinal Diseases; Rectal Diseases

  17. Optical-Fiber-Welding Machine

    NASA Technical Reports Server (NTRS)

    Goss, W. C.; Mann, W. A.; Goldstein, R.

    1985-01-01

    Technique yields joints with average transmissivity of 91.6 percent. Electric arc passed over butted fiber ends to melt them together. Maximum optical transmissivity of joint achieved with optimum choice of discharge current, translation speed, and axial compression of fibers. Practical welding machine enables delicate and tedious joining operation performed routinely.

  18. Thermococcus Thioreducens sp. nov., A Novel Hyperthermophilic, Obligately Sulfur-Reducing Archaeon from a Deep-Sea Hydrothermal Vent

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Bej, Asim K.; Garriott, Owen

    2003-01-01

    A novel hyperthermophilic organo-heterotrophic archaeon, strain OGL-20P(sup T), was isolated from 'black smoker' chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2 N; 33.9 W). The cells of strain OGL-20P(sup T) have an irregular coccoid shape and are motile with a single flagellum. Growth was observed to occur within the pH range 5.0-8.5 (optimum pH 7.0), NaCl concentration range 1-5 % (w/v) (optimum 3 %), and temperature range 55-94 C (optimum 83-85 C). Novel isolate is strictly anaerobic and obligately dependent from elemental sulfur as electron acceptor, but it cannot reduce sulfate, sulfite, thiosulfate, iron (III) or nitrate. Proteolysis products that can be utilized as substrates during sulfur-reduction are: peptone, bactotryptone, casamino-acids, and yeast extract. Strain OGL-20P(sup T) is resistant to ampicillin, chloramphenicol, kanamycin, and gentamycin, but sensitive to tetracycline and rifampicin. The G+C content of DNA is 57.1 mol% . Comparative 16S rRNA gene sequence analysis revealed that strain OGL-20P(sup T) is most closely related to Thermococcus celer and 'T. barossii', but no significant homology by DNA-DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, the name Thermococcus thioreducens sp. nov., is proposed. The type strain is OGL-20P(sup T) (= ATCC BAA-394(sup T) = DSM 1498(sup T)).

  19. Tindallia Californiensis sp. nov.: A New Halo-Alkaliphilic Primary Anaerobe, Isolated from Meromictic soda Mono Lake in California and the Correction of Diagnosis for Genus Tindallia

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena; Marsic, Damien; Hoover, Richard B.; Kevbrin, Vadim; Whitman, William B.; Krader, Paul; Cleland, Dave; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel extremely halo-alkaliphilic, bacterium strain APO (sup T) was isolated from sediments of the athalassic, meromictic, soda Mono Lake in California. Gram positive, spore-forming, slightly curved rods with sizes 0.6-0.7x 2.5-4.0 micrometers which occur singly, in pairs or short curved chains. Cells, are motile by singular subcentral flagellum. Strain APO (sup T) is mesophilic: growth was observed over the temperature range of +10 C to +48 C (optimum +37 C), NaCl concentration range 1-20 %, wt/vol (optimum 3-5%, wt/vol) and pH range 8.0-11.0 (optimum pH 9.5). The novel isolate is strictly halo-alkaliphilic, requires sodium chloride in medium, obligately anaerobic and catalase-negative. Strain APO (sup T) is organo-heterotroph with fermentative type of metabolism, and uses as substrates: peptone, badotryptone, casamino acids, yeast extract, L-serine, L-lysine, L-histidine, L-arginine, and pyruvate. The main end products of growth on peptone medium were: lactate, acetate, propionate, and ethanol. Strain APO (sup T) is resistant to kanamycin, but sensitive to chloramphenicol, tetracycline, and gentamycin. The sum of G+C in DNA is 44.4 mol% (by HPLC method). On the bait of physiological and molecular properties, the isolate was considered as novel species of genus Tindallia; and the name Tindallia californiensis sp. nov., is proposed for new isolate (type strain APO (sup T) - ATCC BAA_393(sup T) = DSMZ 14871 (sup T)).

  20. A scientific operations plan for the NASA space telescope. [ground support systems, project planning

    NASA Technical Reports Server (NTRS)

    West, D. K.; Costa, S. R.

    1975-01-01

    A ground system is described which is compatible with the operational requirements of the space telescope. The goal of the ground system is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of space telescope science, or jeopardizing the safety of the space telescope in orbit. The resulting system is able to accomplish this goal through optimum use of existing and planned resources and institutional facilities. Cost is also reduced and efficiency in operation increased by drawing on existing experience in interfacing guest astronomers with spacecraft as well as mission control experience obtained in the operation of present astronomical spacecraft.

  1. Cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system. Volume 1: Technical analysis

    NASA Technical Reports Server (NTRS)

    Kraus, E. F.

    1976-01-01

    The effectiveness and associated costs of operational and technical options for reduced fuel consumption by Douglas aircraft in the domestic airline fleet are assessed. Areas explored include alternative procedures for airline and flight operations, advanced and state of the art technology, modification and derivative configurations, new near-term aircraft, turboprop configuration studies, and optimum aircraft geometry. Data for each aircraft studied is presented in tables and graphs.

  2. Optimum working fluids for solar powered Rankine cycle cooling of buildings

    NASA Astrophysics Data System (ADS)

    Wali, E.

    1980-01-01

    A number of fluids were screened for their operational reliability and thermal stability as working fluids for domestic solar Rankine cycle cooling. The results indicate that the halogenated compound R-113, followed by the fluorinated compound FC-88, is best suited for safe Rankine cycle operation. Further dynamic investigations are, however, needed to study the thermal stability of these fluids in the presence and absence of lubricants in copper, steel, and alloy conduits

  3. Effect of Inductive Coil Geometry on the Operating Characteristics of a Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with coils of different cone angles are explored through thrust stand measurements and time-integrated, un- filtered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass ow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass ow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  4. Effect of Inductive Coil Geometry on the Operating Characteristics of an Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.; Perdue, Kevin A.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with conical theta pinch coils of different cone angles are explored through thrust stand measurements and time- integrated, unfiltered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass flow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass flow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  5. An infrared high rate video imager for various space applications

    NASA Astrophysics Data System (ADS)

    Svedhem, Hâkan; Koschny, Detlef

    2010-05-01

    Modern spacecraft with high data transmission capabilities have opened up the possibility to fly video rate imagers in space. Several fields concerned with observations of transient phenomena can benefit significantly from imaging at video frame rate. Some applications are observations and characterization of bolides/meteors, sprites, lightning, volcanic eruptions, and impacts on airless bodies. Applications can be found both on low and high Earth orbiting spacecraft as well as on planetary and lunar orbiters. The optimum wavelength range varies depending on the application but we will focus here on the near infrared, partly since it allows exploration of a new field and partly because it, in many cases, allows operation both during day and night. Such an instrument has to our knowledge never flown in space so far. The only sensors of a similar kind fly on US defense satellites for monitoring launches of ballistic missiles. The data from these sensors, however, is largely inaccessible to scientists. We have developed a bread-board version of such an instrument, the SPOSH-IR. The instrument is based on an earlier technology development - SPOSH - a Smart Panoramic Optical Sensor Head, for operation in the visible range, but with the sensor replace by a cooled IR detector and new optics. The instrument is using a Sofradir 320x256 pixel HgCdTe detector array with 30µm pixel size, mounted directly on top of a four stage thermoelectric Peltier cooler. The detector-cooler combination is integrated into an evacuated closed package with a glass window on its front side. The detector has a sensitive range between 0.8 and 2.5 µm. The optical part is a seven lens design with a focal length of 6 mm and a FOV 90deg by 72 deg optimized for use at SWIR. The detector operates at 200K while the optics operates at ambient temperature. The optics and electronics for the bread-board has been designed and built by Jena-Optronik, Jena, Germany. This talk will present the design and the strong and the weak points as found through testing will be identified. Possible alternatives for improvements will be discussed and two flight applications will be outlined.

  6. ConfocalCheck - A Software Tool for the Automated Monitoring of Confocal Microscope Performance

    PubMed Central

    Hng, Keng Imm; Dormann, Dirk

    2013-01-01

    Laser scanning confocal microscopy has become an invaluable tool in biomedical research but regular quality testing is vital to maintain the system’s performance for diagnostic and research purposes. Although many methods have been devised over the years to characterise specific aspects of a confocal microscope like measuring the optical point spread function or the field illumination, only very few analysis tools are available. Our aim was to develop a comprehensive quality assurance framework ranging from image acquisition to automated analysis and documentation. We created standardised test data to assess the performance of the lasers, the objective lenses and other key components required for optimum confocal operation. The ConfocalCheck software presented here analyses the data fully automatically. It creates numerous visual outputs indicating potential issues requiring further investigation. By storing results in a web browser compatible file format the software greatly simplifies record keeping allowing the operator to quickly compare old and new data and to spot developing trends. We demonstrate that the systematic monitoring of confocal performance is essential in a core facility environment and how the quantitative measurements obtained can be used for the detailed characterisation of system components as well as for comparisons across multiple instruments. PMID:24224017

  7. Treatment of real wastewater produced from Mobil car wash station using electrocoagulation technique.

    PubMed

    El-Ashtoukhy, E-S Z; Amin, N K; Fouad, Y O

    2015-10-01

    This paper deals with the electrocoagulation of real wastewater produced from a car wash station using a new cell design featuring a horizontal spiral anode placed above a horizontal disc cathode. The study dealt with the chemical oxygen demand (COD) reduction and turbidity removal using electrodes in a batch mode. Various operating parameters such as current density, initial pH, NaCl concentration, temperature, and electrode material were examined to optimize the performance of the process. Also, characterization of sludge formed during electrocoagulation was carried out. The results indicated that the COD reduction and turbidity removal increase with increasing the current density and NaCl concentration; pH from 7 to 8 was found to be optimum for treating the wastewater. Temperature was found to have an insignificant effect on the process. Aluminum was superior to iron as a sacrificial electrode material in treating car wash wastewater. Energy consumption based on COD reduction ranged from 2.32 to 15.1 kWh/kg COD removed depending on the operating conditions. Finally, the sludge produced during electrocoagulation using aluminum electrodes was characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analysis.

  8. Optimized Lateral Flow Immunoassay Reader for the Detection of Infectious Diseases in Developing Countries.

    PubMed

    Pilavaki, Evdokia; Demosthenous, Andreas

    2017-11-20

    Detection and control of infectious diseases is a major problem, especially in developing countries. Lateral flow immunoassays can be used with great success for the detection of infectious diseases. However, for the quantification of their results an electronic reader is required. This paper presents an optimized handheld electronic reader for developing countries. It features a potentially low-cost, low-power, battery-operated device with no added optical accessories. The operation of this proof of concept device is based on measuring the reflected light from the lateral flow immunoassay and translating it into the concentration of the specific analyte of interest. Characterization of the surface of the lateral flow immunoassay has been performed in order to accurately model its response to the incident light. Ray trace simulations have been performed to optimize the system and achieve maximum sensitivity by placing all the components in optimum positions. A microcontroller enables all the signal processing to be performed on the device and a Bluetooth module allows transmission of the results wirelessly to a mobile phone app. Its performance has been validated using lateral flow immunoassays with influenza A nucleoprotein in the concentration range of 0.5 ng/mL to 200 ng/mL.

  9. Theoretical study of the characteristics of a continuous wave iron-doped ZnSe laser

    NASA Astrophysics Data System (ADS)

    Pan, Qikun; Chen, Fei; Xie, Jijiang; Wang, Chunrui; He, Yang; Yu, Deyang; Zhang, Kuo

    2018-03-01

    A theoretical model describing the dynamic process of a continuous-wave Fe2+:ZnSe laser is presented. The influence of some of the operating parameters on the output characteristics of an Fe2+:ZnSe laser is studied in detail. The results indicate that the temperature rise of the Fe2+:ZnSe crystal is significant with the use of a high power pump laser, especially for a high doped concentration of crystal. The optimal crystal length increases with decreasing the doped concentration of crystal, so an Fe2+:ZnSe crystal with simultaneous doping during growth is an attractive choice, which usually has a low doped concentration and long length. The laser pumping threshold is almost stable at low temperatures, but increases exponentially with a working temperature in the range of 180 K to room temperature. The main reason for this phenomenon is the short upper level lifetime and serious thermal temperature rise when the working temperature is higher than 180 K. The calculated optimum output mirror transmittance is about 35% and the performance of a continuous-wave Fe2+:ZnSe laser is more efficient at a lower operating temperature.

  10. Optimization of pectinase immobilization on grafted alginate-agar gel beads by 24 full factorial CCD and thermodynamic profiling for evaluating of operational covalent immobilization.

    PubMed

    Abdel Wahab, Walaa A; Karam, Eman A; Hassan, Mohamed E; Kansoh, Amany L; Esawy, Mona A; Awad, Ghada E A

    2018-07-01

    Pectinase produced by a honey derived from the fungus Aspergillus awamori KX943614 was covalently immobilized onto gel beads made of alginate and agar. Polyethyleneimine, glutaraldehyde, loading time and enzyme's units were optimized by 2 4 full factorial central composite design (CCD). The immobilization process increased the optimal working pH for the free pectinase from 5 to a broader range of pH4.5-5.5 and the optimum operational temperature from 55°C to a higher temperature, of 60°C, which is favored to reduce the enzyme's microbial contamination. The thermodynamics studies showed a thermal stability enhancement against high temperature for the immobilized formula. Moreover, an increase in half-lives and D-values was achieved. The thermodynamic studies proved that immobilization of pectinase made a remarkable increase in enthalpy and free energy because of enzyme stability enhancement. The reusability test revealed that 60% of pectinase's original activity was retained after 8 successive cycles. This gel formula may be convenient for immobilization of other industrial enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. An investigation of electrohydrodynamic heat pipes

    NASA Technical Reports Server (NTRS)

    Loehrke, R. I.

    1977-01-01

    The principles of electrohydrodynamic heat pip operation are first discussed. Evaporator conductance experiments are then described. A heat pipe was designed in which grooved and ungrooved evaporator surfaces could be interchanged to evaluate the necessity of capillary grooves. Optimum electrode spacing was also studied. Finally, heat convection in evaporating thin films is considered.

  12. The application of elastohydrodynamic lubrication in gear tooth contacts

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1972-01-01

    An analytical method is presented for determining elastohydrodynamic film thickness in gears from theory and how the film affects gear failure and life. The practical aspects of gear lubrication are presented, including mechanical and service variables which must be considered to obtain optimum gear performance under severe operating conditions.

  13. A phaseonium magnetometer: A new optical magnetometer based on index enhanced media

    NASA Technical Reports Server (NTRS)

    Scully, Marlan O.; Fleischauer, Michael; Graf, Martin

    1993-01-01

    An optical magnetometer based on quantum coherence and interference effects in atoms is proposed. The sensitivity of this device is potentially superior to the present state-of-the-art devices. Optimum operating conditions are derived, and a comparison to standard optical pumping magnetometers is made.

  14. Survey of Munitions Response Technologies

    DTIC Science & Technology

    2006-06-01

    3-34 3.3.4 Digital Data Processing .......................................................................... 3-36 4.0 SOURCE DATA AND METHODS...6-4 6.1.6 DGM versus Mag and Flag Processes ..................................................... 6-5 6.1.7 Translation to...signatures, surface clutter, variances in operator technique, target selection, and data processing all degrade from and affect optimum performance

  15. The effect of noise constraints on engine cycle optimization for long-haul transports

    NASA Technical Reports Server (NTRS)

    Antl, R. J.

    1973-01-01

    Results are presented of NASA studies to determine optimum engine cycles for noise levels of 10, 15, and 20 EPNdb below current FAA regulations. The study aircraft were 200-passenger trijets flying over ranges of 5,556 and 10,200 km at cruise speeds of Mach 0.90 to 0.98. The economic impact of reducing noise, the identification of needed advanced technology and the effect of these advances are presented. The studies showed that the noise constraints imposed compromises on the optimum cycle with resulting economic penalties. The application of advanced engine technologies, however, could effectively offset these economic penalties.

  16. Effect of flow-pressure phase on performance of regenerators in the range of 4 K to 20 K

    NASA Astrophysics Data System (ADS)

    Lewis, M. A.; Taylor, R. P.; Bradley, P. E.; Radebaugh, R.

    2014-01-01

    Modeling with REGEN3.3 has shown that the phase between flow and pressure at the cold end of 4 K regenerators has a large effect on their second-law efficiency. The use of inertance tubes in small 4 K pulse tube cryocoolers has limited phase-shifting ability, and their phase shift cannot be varied unless their dimensions are varied. We report here on the use of a miniature linear compressor, operating at the pulse tube warm end of about 30 K, as a controllable expander that can be used to vary the phase over 360°. We also use the back EMF of the linear motor to measure the acoustic power, flow rate amplitude, and phase between flow and pressure at the piston face. We discuss the measurements of the linear motor parameters that are required to determine the piston velocity from the back EMF as well as the measurement procedures to determine the back EMF when the expander is operating at a temperature around 30 K. Our experimental results on the performance of a regenerator/pulse tube stage operating below 30 K show an optimum performance when the flow at the phase shifter lags the pressure by about 65° to 80°, which is close to the model results of about 60°. Temperatures below 10 K were achieved at the cold end in these measurements. The efficiency of the compressor operating as an expander is also discussed.

  17. Fluxgate magnetometers for outer planets exploration

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1974-01-01

    The exploration of the interplanetary medium and the magnetospheres of the outer planets requires the implementation of magnetic field measuring instrumentation with wide dynamic range, high stability, and reliability. The fluxgate magnetometers developed for the Pioneer 11 and Mariner-Jupiter-Saturn missions are presented. These instruments cover the range of .01 nT to 2 million nT with optimum performance characteristics and low power consumption.

  18. Use of Supplemental Feeding Locations to Manage Cattle Use on Riparian Areas of Hardwood Rangelands

    Treesearch

    Neil K. McDougald; William E. Frost; Dennis E. Jones

    1989-01-01

    Typical cattle use on two range units of hardwood rangeland (annual rangeland) at the San Joaquin Experimental Range, Madera County, California, left 50 percent of riparian area with less than optimum amounts of residual dry matter (RDM) for promoting seedling growth and soil protection. By relocating supplemental feeding sites away from water sources and into areas of...

  19. Intensified synthesis of medium chain triglycerides using ultrasonic reactors at a capacity of 4L.

    PubMed

    Mohod, Ashish V; Gogate, Parag R

    2018-04-01

    Lipids are considered as one of the most crucial nutrients for humans and among the various classes, medium chain triglycerides (MCTs) are considered as the most important functional foods and nutraceuticals. The present work deals with the intensification of synthesis of MCTs at a large capacity of 4L based on the use of ultrasonic bath and ultrasonic longitudinal horn. The effect of operating parameters like molar ratio of the reactants, type of catalyst and catalyst loading as well as the temperature on the extent of conversion has been investigated. The effect of molar ratio of lauric acid and glycerol was investigated over the range of 1:2 to 1:8 whereas the effect of loading of sulfuric acid was studied over the range of 4 ml/L-10 ml/L and zinc chloride loading over the range of 1 g/L-4 g/L. The effect of temperature was also studied using the conventional approach where it has been observed that 90 °C is an optimum temperature giving the extent of conversion as 72%. Also, the use of homogeneous catalyst as sulphuric acid was found to be more effective as compared to the solid catalyst as zinc chloride. It was observed that the maximum extent of conversion as 77.5% was obtained at 8 ml/L of sulfuric acid and molar ratio of 1:6 using ultrasonic longitudinal horn with US bath giving lower conversion as compared to US longitudinal horn but higher than the conventional approach under same operating conditions. The present work clearly established the intensification benefits in terms of reduction in time and higher conversion using cavitational reactors. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine Y.

    1994-01-01

    The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.

  1. Emerging conservation challenges and prospects in an era of offshore hydrocarbon exploration and exploitation.

    PubMed

    Kark, Salit; Brokovich, Eran; Mazor, Tessa; Levin, Noam

    2015-12-01

    Globally, extensive marine areas important for biodiversity conservation and ecosystem functioning are undergoing exploration and extraction of oil and natural gas resources. Such operations are expanding to previously inaccessible deep waters and other frontier regions, while conservation-related legislation and planning is often lacking. Conservation challenges arising from offshore hydrocarbon development are wide-ranging. These challenges include threats to ecosystems and marine species from oil spills, negative impacts on native biodiversity from invasive species colonizing drilling infrastructure, and increased political conflicts that can delay conservation actions. With mounting offshore operations, conservationists need to urgently consider some possible opportunities that could be leveraged for conservation. Leveraging options, as part of multi-billion dollar marine hydrocarbon operations, include the use of facilities and costly equipment of the deep and ultra-deep hydrocarbon industry for deep-sea conservation research and monitoring and establishing new conservation research, practice, and monitoring funds and environmental offsetting schemes. The conservation community, including conservation scientists, should become more involved in the earliest planning and exploration phases and remain involved throughout the operations so as to influence decision making and promote continuous monitoring of biodiversity and ecosystems. A prompt response by conservation professionals to offshore oil and gas developments can mitigate impacts of future decisions and actions of the industry and governments. New environmental decision support tools can be used to explicitly incorporate the impacts of hydrocarbon operations on biodiversity into marine spatial and conservation plans and thus allow for optimum trade-offs among multiple objectives, costs, and risks. © 2015 Society for Conservation Biology.

  2. Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes

    NASA Astrophysics Data System (ADS)

    Widanarto, W.; Ramdhan, A. M.; Ghoshal, S. K.; Effendi, M.; Cahyanto, W. T.; Warsito

    An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-x)TeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC) frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6), monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10-7 S cm-1 at the frequency of 54 Hz and in the temperature range of 323-473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures.

  3. Light sensitometry of mammography films at varying development temperatures and times

    PubMed Central

    Sharma, Reena; Sharma, Sunil Dutt; Mayya, Y. S.

    2012-01-01

    Kodak MinR-2000 mammography film is widely used for mammography imaging. The sensitometric indices like base plus fog level (B + F), maximum optical density (ODmax), average gradient (AG) and speed of this film at varying development temperatures and times were evaluated using a light sensitometer. Totally 33 film strips were cut from a single Kodak MinR-2000 mammography film box and exposed in a light sensitometer operated in the green light spectrum to produce a 21-step sensitometric strip. These exposed film strips were processed at temperatures in the range of 32°C–37°C in the step of 1°C and at processing times in the range of 1–6 minutes in the step of 1 minute. The results of the present study show that the measured base plus fog level of the mammography film was not affected much, whereas significant changes were seen in the ODmax, AG and speed with varying development temperatures and times. The ODmax values of the film were found in the range of 3.67–3.76, AG values were in the range of 2.48–3.4 and speed values were in the range of 0.015–0.0236 when the processing temperature was varied from 32°C to 37°C. With processing time variation from 1 to 6 minutes, the observed changes in ODmax values were in the range of 3.54-3.71, changes in AG were in the range of 2.66–3.27 and changes in speed were in the range of 0.011–0.025. Based on these observations, recommendations for optimum processing parameters to be used for this film are made. PMID:22363111

  4. Development of an iron nitrate resistant injector valve for the Space Shuttle orbiter primary thruster

    NASA Technical Reports Server (NTRS)

    Wichmann, Horst; Marquardt, Kaiser; Goforth, Alyssa

    1993-01-01

    Design of a direct-acting valve (DAV) for a primary thruster which is fully interchangeable with a thruster equipped with pilot-operated valves is described. The DAV is based on a bellows to isolate propellants form the actuator for maximum resistance to iron nitrate and other contamination and to select optimum materials for the actuator. It provides improved seal performance under all operating conditions and insensitivity to pressure transients. As compared with the existing pilot-operated valve, the DAV design is much simpler, consists of fewer parts, and will be lower in cost.

  5. Improving Lifetime of Quasi-CW Laser Diode Arrays for Pumping 2-Micron Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data on the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  6. (Per)chlorate Reduction by the Thermophilic Bacterium Moorella perchloratireducens sp. nov., Isolated from Underground Gas Storage▿

    PubMed Central

    Balk, Melike; van Gelder, Ton; Weelink, Sander A.; Stams, Alfons J. M.

    2008-01-01

    A thermophilic bacterium, strain An10, was isolated from underground gas storage with methanol as a substrate and perchlorate as an electron acceptor. Cells were gram-positive straight rods, 0.4 to 0.6 μm in diameter and 2 to 8 μm in length, growing as single cells or in pairs. Spores were terminal with a bulged sporangium. The temperature range for growth was 40 to 70°C, with an optimum at 55 to 60°C. The pH optimum was around 7. The salinity range for growth was between 0 and 40 g NaCl liter−1 with an optimum at 10 g liter−1. Strain An10 was able to grow on CO, methanol, pyruvate, glucose, fructose, cellobiose, mannose, xylose, and pectin. The isolate was able to respire with (per)chlorate, nitrate, thiosulfate, neutralized Fe(III) complexes, and anthraquinone-2,6-disulfonate. The G+C content of the DNA was 57.6 mol%. On the basis of 16S rRNA analysis, strain An10 was most closely related to Moorella thermoacetica and Moorella thermoautotrophica. The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell extracts. Strain An10 is the first thermophilic and gram-positive bacterium with the ability to use (per)chlorate as a terminal electron acceptor. PMID:17981952

  7. Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Marsic, Damien; Bej, Asim; Tang, Jane; Krader, Paul; Hoover, Richard B.

    2005-01-01

    A novel, psychrotolerant, facultative anaerobe, strain FTR1T, was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells were observed with sizes 0.6-0.7 x 0.9-1.5 microm. Growth occurred within the pH range 6.5-9.5 with optimum growth at pH 7.3-7.5. The temperature range for growth of the novel isolate was 0-28 degrees C and optimum growth occurred at 24 degrees C. The novel isolate does not require NaCl; growth was observed between 0 and 5 % NaCl with optimum growth at 0.5 % (w/v). The novel isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were acetate, ethanol and CO2. Strain FTR1T was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. 16S rRNA gene sequence analysis showed 99.8 % similarity between strain FTR1T and Carnobacterium alterfunditum, but DNA-DNA hybridization between them demonstrated 39+/-1.5 % relatedness. On the basis of genotypic and phenotypic characteristics, it is proposed that strain FTR1T (=ATCC BAA-754T=JCM 12174T=CIP 108033T) be assigned to the novel species Carnobacterium pleistocenium sp. nov.

  8. Carnobacterium Pleistocaenium sp. nov.: A Novel Psychrotolerant, Facultative Anaerobe Isolated from Permafrost of the Fox Tunnel in Alaska

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Marsic, Damien; Bej, Asim; Tang, Jane; Krader, Paul; Hoover, Richard B.

    2004-01-01

    A novel, psychrotolerant, facultative anaerobe, strain FTRIT1(sup T), was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells with sizes 0.6-0.7 x 0.9-1.5 micrometers were observed. Growth occurred within the pH range 6.5-9.5 and optimum at pH 7.3-7.5. The temperature range of the new isolate was 0-28 C and optimum growth occurred at 24 C. The novel isolate requires NaCl (growth absent at 0 %) and growth was observed between 0 and 5% NaCl with optimum at 0.5% (w/v). The new isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were: acetate, ethanol and CO2. Strain FTRl was sensitive to ampicillin, tetracycline, chloramphenicol, rifampin, kanamycin, and gentamycin. The 16S rDNA sequence analysis showed 99.8% similarity of strain FTR1 with Carnobacterium alterfunditum, but the DNA-DNA hybridization between them demonstrated 39 plus or minus 5% homology. On the basis of genotypic and phenotypic characteristics, it is proposed that the strain FTR1(sup T) (= ATCC BAA-754(sup T) = JSM 12174(sup T) is assigned to the new species of the genus Carnobacterium with proposed name Carnobacterium pleistocaenium sp. nov.

  9. Gelidivirgula Patagoniensis Gen. Nov., Sp. Nov., A Novel Psychrotolerant, Sporeforming Anaerobe Isolated from Magellanic Penguin Guano in Patagonia, Chile

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul

    2003-01-01

    A novel obligately anaerobic, psychrotrophic bacterium, strain PPP2(sup T), was isolated from guano of the Magellanic penguin (Spheniscus magellanicus) in Patagonia, Chile. The Gram-positive, sporeforming, straight rods with sizes 0.6-0.9 x 3.0-5.0 microns, are motile by peritrichous flagella. Growth was observed to occur within the pH range 6.0-9.5 (optimum pH x), and temperature range 2-28 C (optimum 20 C). The novel isolate does not require NaCl for growth, but is halotolerant and growth was observed between 0 and 7 % NaCl (w/v) with optimum at 0.5 % (w/v). The new isolate is a catalase negative chemoorganohetherotroph with fermentative metabolism and uses as substrates: peptone, Bacto-tryptone, Casamino acids, and yeast extract. The major metabolic products are: acetate, butyrate, ethanol, and hydrogen is a minor gas product.. Strain PPP2 was sensitive to ampicillin, tetracycline, chloramphenicol, rifampin, kanamycin, and gentamycin. The G+C content of the DNA is 43.6 mol%. On the basis of 16S rDNA gene sequences and phenotypic characteristics, it is proposed that the strain PPP2(sup T) (= ATCC BAA-755(sup T) = JSM ...(sup T)) is assigned to the new genus Gelidivirgula gen. nov., as a representative of the new species, Gelidivirgula patagonensis sp. nov.

  10. Quasi-optical design for systems to diagnose the electron temperature and density fluctuations on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Qifo; Liu, Yong; Zhao, Hailin, E-mail: zhaohailin@ipp.ac.cn

    A system to simultaneously diagnose the electron temperature and density fluctuations is proposed for Experimental Advanced Superconducting Tokamak device. This system includes a common quasi-optical antenna, a correlation electron cyclotron emission (CECE) system that is used to measure the electron temperature fluctuations and a Doppler backscattering (DBS) system that is used to measure the electron density fluctuations. The frequency range of the proposed CECE system is 108-120 GHz, and this corresponds to a radial coverage of normalized radius ((R − R{sub 0})/a, R{sub 0} = 1850 mm, a = 450 mm) from 0.2 to 0.67 for the plasma operation withmore » a toroidal magnetic field of 2.26 T. This paper focuses on the design of the quasi-optical antenna and aims at optimizing the poloidal resolution for different frequency bands. An optimum result gives the beam radius for the CECE system of 13-15 mm and this corresponds to a wave number range of k{sub θ} < 2.4 cm{sup −1}. The beam radius is 20-30 mm for V band (50-75 GHz) and 15-20 mm for W band (75-110 GHz).« less

  11. Determination of cyanide in bamboo shoots by microdiffusion combined with ion chromatography–pulsed amperometric detection

    PubMed Central

    Ding, Ming

    2018-01-01

    A practical method for the determination of cyanide in bamboo shoots has been developed using microdiffusion preparation integrated with ion chromatography–pulsed amperometric detection (IC-PAD). Cyanide was released from bamboo shoots after Conway cell microdiffusion, and then analysed by IC-PAD. In comparison with the previously reported methods, derivatization and ion-pairing agent addition were not required in this proposed microdiffusion combined with IC-PAD method. The microdiffusion parameters were optimized including hydrolysis systems, temperature, time, and so on. Under the optimum conditions, the linear range of the calibration curve for cyanide was 0.2–200.0 µg kg−1 with satisfactory correlation coefficients of 0.9996 and the limit of detection was 0.2 µg kg−1 (S/N = 3). The spiked recovery range was from 92.8 to 98.6%. The intra-day and inter-day relative standard deviations of cyanide were 2.7–14.9% and 3.0–18.3%, respectively. This method was proved to be convenient in operation with high sensitivity, precision and accuracy, and was successfully applied in the determination of cyanide in bamboo shoot samples. PMID:29765664

  12. A novel inter-fibre light coupling sensor probe using plastic optical fibre for ethanol concentration monitoring at initial production rate

    NASA Astrophysics Data System (ADS)

    Memon, Sanober F.; Lewis, Elfed; Pembroke, J. Tony; Chowdhry, Bhawani S.

    2017-04-01

    A novel, low cost and highly sensitive optical fibre probe sensor for concentration measurement of ethanol solvent (C2H5OH) corresponding to bio-ethanol production rate by an algae is reported. The principle of operation of the sensor is based on inter-fibre light coupling through an evanescent field interaction to couple the light between two multimode fibres mounted parallel to each other at a minimum possible separation i.e. < 1mm. The sensor was fabricated using a low cost 1000um plastic optical fibre (POF) and was characterized for real time measurement in the broadband spectrum including visible and near infra-red. The wavelength dependency of this sensor design was also investigated by post processing analysis of real time data and hence the optimum wavelength range determined. The proposed sensor has shown significant response in the range of 0.005 - 0.1 %v/v (%volume/volume or volume concentration) which depicts the high sensitivity for monitoring very minute changes in concentration corresponding refractive index changes of the solution. Numerically, sensor has shown the sensitivity of 21945 intensity counts/%v/v or 109.7 counts per every 0.0050 %v/v.

  13. Selecting algorithms, sensors, and linear bases for optimum spectral recovery of skylight.

    PubMed

    López-Alvarez, Miguel A; Hernández-Andrés, Javier; Valero, Eva M; Romero, Javier

    2007-04-01

    In a previous work [Appl. Opt.44, 5688 (2005)] we found the optimum sensors for a planned multispectral system for measuring skylight in the presence of noise by adapting a linear spectral recovery algorithm proposed by Maloney and Wandell [J. Opt. Soc. Am. A3, 29 (1986)]. Here we continue along these lines by simulating the responses of three to five Gaussian sensors and recovering spectral information from noise-affected sensor data by trying out four different estimation algorithms, three different sizes for the training set of spectra, and various linear bases. We attempt to find the optimum combination of sensors, recovery method, linear basis, and matrix size to recover the best skylight spectral power distributions from colorimetric and spectral (in the visible range) points of view. We show how all these parameters play an important role in the practical design of a real multispectral system and how to obtain several relevant conclusions from simulating the behavior of sensors in the presence of noise.

  14. Integrated orbital servicing study follow-on. Volume 2: Technical analysis and system design

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In-orbit service functional and physical requirements to support both low and high Earth orbit servicing/maintenance operations were defined, an optimum servicing system configuration was developed and mockups and early prototype hardware were fabricated to demonstrate and validate the concepts selected. Significant issues addressed include criteria for concept selection; representative mission equipment and approaches to their design for serviceability; significant serviceable spacecraft design aspects; servicer mechanism operation in one-g; approaches for the demonstration/simulation; and service mechanism structure design approach.

  15. A computer program for the localization of small areas in roentgenological images

    NASA Technical Reports Server (NTRS)

    Keller, R. A.; Baily, N. A.

    1976-01-01

    A method and associated algorithm are presented which allow a simple and accurate determination to be made of the location of small symmetric areas presented in roentgenological images. The method utilizes an operator to visually spot object positions but eliminates the need for critical positioning accuracy on the operator's part. The rapidity of measurement allows results to be evaluated on-line. Parameters associated with the algorithm have been analyzed, and methods to facilitate an optimum choice for any particular experimental setup are presented.

  16. Multi-cluster processor operating only select number of clusters during each phase based on program statistic monitored at predetermined intervals

    DOEpatents

    Balasubramonian, Rajeev [Sandy, UT; Dwarkadas, Sandhya [Rochester, NY; Albonesi, David [Ithaca, NY

    2009-02-10

    In a processor having multiple clusters which operate in parallel, the number of clusters in use can be varied dynamically. At the start of each program phase, the configuration option for an interval is run to determine the optimal configuration, which is used until the next phase change is detected. The optimum instruction interval is determined by starting with a minimum interval and doubling it until a low stability factor is reached.

  17. Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX)

    NASA Technical Reports Server (NTRS)

    Nelson, D.L.; Garay, M.J.; Kahn, Ralph A.; Dunst, Ben A.

    2013-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the Terra satellite acquires imagery at 275-m resolution at nine angles ranging from 0deg (nadir) to 70deg off-nadir. This multi-angle capability facilitates the stereoscopic retrieval of heights and motion vectors for clouds and aerosol plumes. MISR's operational stereo product uses this capability to retrieve cloud heights and winds for every satellite orbit, yielding global coverage every nine days. The MISR INteractive eXplorer (MINX) visualization and analysis tool complements the operational stereo product by providing users the ability to retrieve heights and winds locally for detailed studies of smoke, dust and volcanic ash plumes, as well as clouds, at higher spatial resolution and with greater precision than is possible with the operational product or with other space-based, passive, remote sensing instruments. This ability to investigate plume geometry and dynamics is becoming increasingly important as climate and air quality studies require greater knowledge about the injection of aerosols and the location of clouds within the atmosphere. MINX incorporates features that allow users to customize their stereo retrievals for optimum results under varying aerosol and underlying surface conditions. This paper discusses the stereo retrieval algorithms and retrieval options in MINX, and provides appropriate examples to explain how the program can be used to achieve the best results.

  18. Theoretical modeling of diode-laser-pumped 3-μm Er3+ crystal lasers

    NASA Astrophysics Data System (ADS)

    Tikerpae, Mark; Jackson, Stuart D.; King, Terence A.

    1997-05-01

    We present results from a theoretical model that has been developed to simulate the 3-micrometer laser transition in Er3+ doped Y3Al5O12 (YAG), Y2Sc2Ga3O12 (YSGG), LiYF4 (YLF) and BaY2F8 (BaYF) host crystals. The rate equations for the lowest seven energy levels of Er3+ were solved numerically and laser action was simulated under cw, gain-switched (pulse pumped) and Q-switched operation with optical pumping at wavelengths of 975 nm and 795 nm. The relative performance of each laser crystal was compared under identical pumping and cavity conditions to establish the optimum crystal host, doping concentration and pump wavelength for each mode of operation. Some unexpected saturation effects were investigated that could limit the maximum practical pump fluence used for high energy Q-switched systems. We investigate possible additional multi-ion energy transfer processes that may cause the decrease in efficiency that is observed experimentally at high Er3+ ion concentrations. In addition, lower laser level deactivation by co-doping with Pr3+ in BaYF was simulated and compared with singly doped Er:BaYF for a range of Er3+ and Pr3+ concentrations. It was found that co-doping was not as effective as the cooperative upconversion process present in singly doped Er3+ crystals for efficient laser operation.

  19. Method for reducing nitrogen oxides in combustion effluents

    DOEpatents

    Zauderer, Bert

    2000-01-01

    Method for reducing nitrogen oxides (NO.sub.x) in the gas stream from the combustion of fossil fuels is disclosed. In a narrow gas temperature zone, NO.sub.x is converted to nitrogen by reaction with urea or ammonia with negligible remaining ammonia and other reaction pollutants. Specially designed injectors are used to introduce air atomized water droplets containing dissolved urea or ammonia into the gaseous combustion products in a manner that widely disperses the droplets exclusively in the optimum reaction temperature zone. The injector operates in a manner that forms droplet of a size that results in their vaporization exclusively in this optimum NO.sub.x -urea/ammonia reaction temperature zone. Also disclosed is a design of a system to effectively accomplish this injection.

  20. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    NASA Astrophysics Data System (ADS)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  1. Design of compact long-period gratings imprinted in optimized photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Seraji, F. E.; Chehreghani Anzabi, L.; Farsinezhad, S.

    2009-10-01

    To imprint a long-period grating (LPG) in a photonic crystal fiber (PCF) with an optimum response, first the parameters of the PCF should be optimized. In this paper, by using a semi-analytical enhanced improved vectorial effective index method, the optimized PCF parameters are determined by dividing the single-mode operation of the PCF into two regions in terms of air-hole spacing Λ ( Λ>3 μm and Λ≤3 μm). For each region appropriate expressions are suggested to evaluate the PCF parameters. By calculating the effective refractive index difference between the optimized core and cladding of the PCF under a phase-matching condition, the optimum grating period in terms of the PCF parameters is obtained.

  2. Technical support package: Large, easily deployable structures. NASA Tech Briefs, Fall 1982, volume 7, no. 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Design and test data for packaging, deploying, and assembling structures for near term space platform systems, were provided by testing light type hardware in the Neutral Buoyancy Simulator. An optimum or near optimum structural configuration for varying degrees of deployment utilizing different levels of EVA and RMS was achieved. The design of joints and connectors and their lock/release mechanisms were refined to improve performance and operational convenience. The incorporation of utilities into structural modules to determine their effects on packaging and deployment was evaluated. By simulation tests, data was obtained for stowage, deployment, and assembly of the final structural system design to determine construction timelines, and evaluate system functioning and techniques.

  3. Compact Low-Loss Planar Magic-T

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.; Doiron, Terence; Moseley, Sameul H.

    2008-01-01

    This design allows broadband power combining with high isolation between the H port and E port, and achieves a lower insertion loss than any other broadband planar magic-T. Passive micro wave/millimeter-wave signal power is combined both in-phase and out-of-phase at the ports, with the phase error being less than 1 , which is limited by port impedance. The in-phase signal combiner consists of two quarter-wavelength-long transmission lines combined at the microstrip line junction. The out-of-phase signal combiner consists of two half-wavelength-long transmission lines combined in series. Structural symmetry creates a virtual ground plane at the combining junction, and the combined signal is converted from microstrip line to slotline. Optimum realizable characteristic impedances are used so that the magic-T provides broadband response with low return loss. The magic-T is used in microwave and millimeter-wave frequencies, with the operating bandwidth being approximately 100 percent. The minimum isolation obtainable is 32 dB from port E to port H. The magic-T VSWR is less than 1.1 in the operating band. Operating temperature is mainly dependent on the variation in the dielectric constant of the substrate. Using crystallized substrate, the invention can operate in an extremely broad range of temperatures (from 0 to 400 K). It has a very high reliability because it has no moving parts and requires no maintenance, though it is desirable that the magic-T operate in a low-humidity environment. Fabrication of this design is very simple, using only two metallized layers. No bond wires, via holes, or air bridges are required. Additionally, this magic-T can operate as an individual component without auxiliary components.

  4. Development and characterization of high-efficiency, high-specific impulse xenon Hall thrusters

    NASA Astrophysics Data System (ADS)

    Hofer, Richard Robert

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000--3000 s range. While recent studies of commercially developed Hall thrusters demonstrated greater than 4000 s specific impulse, maximum efficiency occurred at less than 3000 s. It was hypothesized that the efficiency maximum resulted as a consequence of modern magnetic field designs, optimized for 1600 s, which were unsuitable at high-specific impulse. Motivated by the industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. The research divided into development and characterization phases. During the development phase, the laboratory-model NASA-173M Hall thrusters were designed with plasma lens magnetic field topographies and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens design by showing how changing the magnetic field topography at high-specific impulse improved efficiency. Experiments with the NASA-173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Between 300--1000 V, total specific impulse and total efficiency of the NASA-173Mv2 operating at 10 mg/s ranged from 1600--3400 s and 51--61%, respectively. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens design. During the characterization phase, additional plasma properties of the NASA-173Mv2 were measured and a performance model was derived accounting for a multiply-charged, partially-ionized plasma. Results from the model based on experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The decrease of efficiency due to multiply-charged ions was minor. Efficiency was largely determined by the current utilization, which suggested maximum Hall thruster efficiency has yet to be reached. The electron Hall parameter was approximately constant with voltage, decreasing from an average of 210 at 300 V to an average of 160 between 400--900 V, which confirmed efficient operation can be realized only over a limited range of Hall parameters.

  5. Remote sensing of soils, land forms, and land use in the northern Great Plains in preparation for ERTS applications

    NASA Technical Reports Server (NTRS)

    Frazee, C. J.; Westin, F. C.; Gropper, J.; Myers, V. I.

    1972-01-01

    Research to determine the optimum time or season for obtaining imagery to identify and map soil limitations was conducted in the proposed Oahe irrigation project area in South Dakota. The optimum time for securing photographs or imagery is when the soil surface patterns are most apparent. For cultivated areas similar to the study area, May is the optimum time. The density slicing analysis of the May image provided additional and more accurate information than did the existing soil map. The soil boundaries were more accurately located. The use of a density analysis system for an operational soil survey has not been tested, but is obviously dependent upon securing excellent photographs for interpretation. The colors or densities of photographs will have to be corrected for sun angle effects, vignetting effects, and processing to have maximum effectiveness for mapping soil limitations. Rangeland sites were established in Bennett County, South Dakota to determine the usefulness of ERTS imagery. Imagery from these areas was interpreted for land use and drainage patterns.

  6. Biogas by semi-continuous anaerobic digestion of food waste.

    PubMed

    Zhang, Cunsheng; Su, Haijia; Wang, Zhenbin; Tan, Tianwei; Qin, Peiyong

    2015-04-01

    The semi-continuous anaerobic digestion of food waste was investigated in 1-L and 20-L continuously stirred tank reactors (CSTRs), to identify the optimum operation condition and the methane production of the semi-continuous anaerobic process. Results from a 1-L digester indicated that the optimum organic loading rate (OLR) for semi-continuous digestion is 8 g VS/L/day. The corresponding methane yield and chemical oxygen demand (COD) reduction were 385 mL/g VS and 80.2 %, respectively. Anaerobic digestion was inhibited at high OLRs (12 and 16 g VS/L/day), due to volatile fatty acid (VFA) accumulation. Results from a 20-L digester indicated that a higher methane yield of 423 mL/g VS was obtained at this larger scale. The analysis showed that the methane production at the optimum OLR fitted well with the determined kinetics equation. An obvious decrease on the methane content was observed at the initial of digestion. The increased metabolization of microbes and the activity decrease of methanogen caused by VFA accumulation explained the lower methane content at the initial of digestion.

  7. Prognostic value of preoperative serum CA 242 in Esophageal squamous cell carcinoma cases.

    PubMed

    Feng, Ji-Feng; Huang, Ying; Chen, Qi-Xun

    2013-01-01

    Carbohydrate antigen (CA) 242 is inversely related to prognosis in many cancers. However, few data regarding CA 242 in esophageal cancer (EC) are available. The aim of this study was to determine the prognostic value of CA 242 and propose an optimum cut-off point in predicting survival difference in patients with esophageal squamous cell carcinoma (ESCC). A retrospective analysis was conducted of 192 cases. A receiver operating characteristic (ROC) curve for survival prediction was plotted to verify the optimum cuf- off point. Univariate and multivariate analyses were performed to evaluate prognostic parameters for survival. The positive rate for CA 242 was 7.3% (14/192). The ROC curve for survival prediction gave an optimum cut-off of 2.15 (U/ml). Patients with CA 242 ≤ 2.15 U/ml had significantly better 5-year survival than patients with CA 242 >2.15 U/ml (45.4% versus 22.6%; P=0.003). Multivariate analysis showed that differentiation (P=0.033), CA 242 (P=0.017), T grade (P=0.004) and N staging (P<0.001) were independent prognostic factors. Preoperative CA 242 is a predictive factor for long-term survival in ESCC, especially in nodal-negative patients. We conclude that 2.15 U/ml may be the optimum cuf-off point for CA 242 in predicting survival in ESCC.

  8. Treatment of pulp and paper industry bleaching effluent by electrocoagulant process.

    PubMed

    Sridhar, R; Sivakumar, V; Prince Immanuel, V; Prakash Maran, J

    2011-02-28

    The experiments were carried out in an electrocoagulation reactor with aluminum as sacrificial electrodes. The influence of electrolysis time, current density, pH, NaCl concentration, rotational speed of the stirrer and electrode distance on reduction of color, COD and BOD were studied in detail. From the experimental results, 15 mA/cm(2) current density, pH of 7, 1 g/l NaCl, 100 rpm, 28°C temperature and 3 cm electrode distance were found to be optimum for maximum reduction of color, COD and BOD. The reduction of color, COD and BOD under the optimum condition were found to be 94%, 90% and 87% respectively. The electrode energy consumption was calculated and found to be varied from 10.1 to 12.9 kWh/m(3) depending on the operating conditions. Under optimal operating condition such as 15 mA/cm(2) current density, pH of 7, 1 g/l NaCl, 100 rpm, 28°C temperature and 3 cm electrode distance, the operating cost was found to be 1.56 US $/m(3). The experimental results proved that the electrocoagulation is a suitable method for treating bleaching plant effluents for reuse. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Sorption of water alkalinity and hardness from high-strength wastewater on bifunctional activated carbon: process optimization, kinetics and equilibrium studies.

    PubMed

    Amosa, Mutiu K

    2016-08-01

    Sorption optimization and mechanism of hardness and alkalinity on bifunctional empty fruit bunch-based powdered activation carbon (PAC) were studied. The PAC possessed both high surface area and ion-exchange properties, and it was utilized in the treatment of biotreated palm oil mill effluent. Batch adsorption experiments designed with Design Expert(®) were conducted in correlating the singular and interactive effects of the three adsorption parameters: PAC dosage, agitation speed and contact time. The sorption trends of the two contaminants were sequentially assessed through a full factorial design with three factor interaction models and a central composite design with polynomial models of quadratic order. Analysis of variance revealed the significant factors on each design response with very high R(2) values indicating good agreement between model and experimental values. The optimum operating conditions of the two contaminants differed due to their different regions of operating interests, thus necessitating the utility of desirability factor to get consolidated optimum operation conditions. The equilibrium data for alkalinity and hardness sorption were better represented by the Langmuir isotherm, while the pseudo-second-order kinetic model described the adsorption rates and behavior better. It was concluded that chemisorption contributed majorly to the adsorption process.

  10. Optimal design method to minimize users' thinking mapping load in human-machine interactions.

    PubMed

    Huang, Yanqun; Li, Xu; Zhang, Jie

    2015-01-01

    The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.

  11. Effect of Mach number, valve angle and length to diameter ratio on thermal performance in flow of air through Ranque Hilsch vortex tube

    NASA Astrophysics Data System (ADS)

    Devade, Kiran D.; Pise, Ashok T.

    2017-01-01

    Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 < Ma < 1), sonic (Ma = 1) and supersonic (1 < Ma < 2) Mach number, and its effect on thermal performance is analysed. As a result it is observed that, higher COP and low cold end temperature is obtained at subsonic Ma. As CMF increases, COP rises and cold and temperature drops. Optimum performance of the tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.

  12. Gas sensing behaviour of Cr{sub 2}O{sub 3} and W{sup 6+}: Cr{sub 2}O{sub 3} nanoparticles towards acetone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohli, Nipin, E-mail: nipinkohli82@yahoo.com; Hastir, Anita; Singh, Ravi Chand

    2016-05-23

    This paper reports the acetone gas sensing properties of Cr{sub 2}O{sub 3} and 2% W{sup 6+} doped Cr{sub 2}O{sub 3} nanoparticles. The simple cost-effective hydrolysis assisted co-precipitation method was adopted. Synthesized samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. XRD revealed that synthesized nanoparticles have corundum structure. The lattice parameters have been calculated by Rietveld refinement; and strain and crystallite size have been calculated by using the Williamson-Hall plots. For acetone gas sensing properties, the nanoparticles were applied as thick film onto alumina substrate and tested at different operating temperatures. The results showedmore » that the optimum operating temperature of both the gas sensors is 250°C. At optimum operating temperature, the response of Cr{sub 2}O{sub 3} and 2% W{sup 6+} doped Cr{sub 2}O{sub 3} gas sensor towards 100 ppm acetone was found to be 25.5 and 35.6 respectively. The investigations revealed that the addition of W{sup 6+} as a dopant enhanced the sensing response of Cr{sub 2}O{sub 3} nanoparticles appreciably.« less

  13. Designing water supplies: Optimizing drinking water composition for maximum economic benefit.

    PubMed

    Rygaard, M; Arvin, E; Bath, A; Binning, P J

    2011-06-01

    It is possible to optimize drinking water composition based on a valuation of the impacts of changed water quality. This paper introduces a method for assessing the potential for designing an optimum drinking water composition by the use of membrane desalination and remineralization. The method includes modeling of possible water quality blends and an evaluation of corrosion indices. Based on concentration-response relationships a range of impacts on public health, material lifetimes and consumption of soap have been valued for Perth, Western Australia and Copenhagen, Denmark. In addition to water quality aspects, costs of water production, fresh water abstraction and CO(2)-emissions are integrated into a holistic economic assessment of the optimum share of desalinated water in water supplies. Results show that carefully designed desalination post-treatment can have net benefits up to €0.3 ± 0.2 per delivered m(3) for Perth and €0.4(±0.2) for Copenhagen. Costs of remineralization and green house gas emission mitigation are minor when compared to the potential benefits of an optimum water composition. Finally, a set of optimum water quality criteria is proposed for the guidance of water supply planning and management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Requirement definition of passenger motor transport enterprises for spare parts by method of short-term combined forecasting

    NASA Astrophysics Data System (ADS)

    Bulatov, S. V.

    2018-05-01

    The article considers the method of short-term combined forecasting, which includes theoretical and experimental estimates of the need for details of units and assemblies, which allows obtaining the optimum number of spare parts necessary for rolling stock operation without downtime in repair areas.

  15. Purchasing for Food Service: Self-Instruction.

    ERIC Educational Resources Information Center

    Ross, Lynne Nannen

    This book is designed to teach accounting procedures and product specifications that are needed by the competent purchaser in order to make optimum purchasing decisions basic to a successful food service operation. It may be used by any level of food service personnel that is involved with any phase of the purchasing process. Preferably, the book…

  16. Officer Education and Training in Oceanography for ASW and Other Naval Applications.

    ERIC Educational Resources Information Center

    Waterman, Larry Wayne

    The study into the knowledge and experience required for optimum performance by officers assigned to operational, R & D, and managerial duties in Anti-submarine Warfare concludes that oceanography should receive the major emphasis on an interdisciplinary graduate level program of the contributing disciplines in ASW. In planning education and…

  17. Modeling and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanham, R.; Vogt, W.G.; Mickle, M.H.

    1986-01-01

    This book presents the papers given at a conference on computerized simulation. Topics considered at the conference included expert systems, modeling in electric power systems, power systems operating strategies, energy analysis, a linear programming approach to optimum load shedding in transmission systems, econometrics, simulation in natural gas engineering, solar energy studies, artificial intelligence, vision systems, hydrology, multiprocessors, and flow models.

  18. Engineering and Design: Fire Protection for Helicopter Hangars

    DTIC Science & Technology

    1997-10-15

    B-5 4.5 ESFR Sprinkler Systems Design Requirements...Early Suppression Fast Response ( ESFR ) sprinklers operating at a minimum discharge pressure of 345 kPa (50 psi). 3.13.2 Conventional automatic sprinkler...using ESFR sprinklers. 4.1.3 Although foam-water sprinkler systems using AFFF generally provide optimum effectiveness in combating a combustible or

  19. 2010 Staff Organization for Optimum C2: A Private Sector Analysis

    DTIC Science & Technology

    1998-02-13

    control over business operations. Warfighting CINCs can benefit from the lessons learned in the private sector by adapting those lessons to future military... private sector analysis. Through the use of a networked command and control system and a "matrix" staff structure, the model consolidates the JFC staff

  20. Creating Standards for Student Organizations at Public Institutions in Colorado

    ERIC Educational Resources Information Center

    Damania, Nicky Pessi

    2012-01-01

    At institutions of higher education, the environment for developing student organizations has been less than optimum due to a lack of development of effective and efficient standards for these organizations. Even though there are tools for improving organizations, there are no set standards for their operation and governance to ignite leadership…

  1. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite.

    PubMed

    Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad

    2016-05-01

    An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box-Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process.

  2. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite

    PubMed Central

    Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad

    2016-01-01

    An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box–Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process. PMID:27222748

  3. Inductive flux usage and its optimization in tokamak operation

    DOE PAGES

    Luce, Timothy C.; Humphreys, David A.; Jackson, Gary L.; ...

    2014-07-30

    The energy flow from the poloidal field coils of a tokamak to the electromagnetic and kinetic stored energy of the plasma are considered in the context of optimizing the operation of ITER. The goal is to optimize the flux usage in order to allow the longest possible burn in ITER at the desired conditions to meet the physics objectives (500 MW fusion power with energy gain of 10). A mathematical formulation of the energy flow is derived and applied to experiments in the DIII-D tokamak that simulate the ITER design shape and relevant normalized current and pressure. The rate ofmore » rise of the plasma current was varied, and the fastest stable current rise is found to be the optimum for flux usage in DIII-D. A method to project the results to ITER is formulated. The constraints of the ITER poloidal field coil set yield an optimum at ramp rates slower than the maximum stable rate for plasmas similar to the DIII-D plasmas. Finally, experiments in present-day tokamaks for further optimization of the current rise and validation of the projections are suggested.« less

  4. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design.

    PubMed

    Patil, Ajit A; Sachin, Bhusari S; Wakte, Pravin S; Shinde, Devanand B

    2014-11-01

    The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method.

  5. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design

    PubMed Central

    Patil, Ajit A.; Sachin, Bhusari S.; Wakte, Pravin S.; Shinde, Devanand B.

    2013-01-01

    The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method. PMID:25687584

  6. Production of biogas from municipal solid waste with domestic sewage.

    PubMed

    Elango, D; Pulikesi, M; Baskaralingam, P; Ramamurthi, V; Sivanesan, S

    2007-03-06

    In this study, experiments were conducted to investigate the production of biogas from municipal solid waste (MSW) and domestic sewage by using anaerobic digestion process. The batch type of reactor was operated at room temperature varying from 26 to 36 degrees C with a fixed hydraulic retention time (HRT) of 25 days. The digester was operated at different organic feeding rates of 0.5, 1.0, 2.3, 2.9, 3.5 and 4.3kg of volatile solids (VS)/m(3) of digester slurry per day. Biogas generation was enhanced by the addition of domestic sewage to MSW. The maximum biogas production of 0.36m(3)/kg of VS added per day occurred at the optimum organic feeding rate of 2.9kg of VS/m(3)/day. The maximum reduction of total solids (TS) (87.6%), VS (88.1%) and chemical oxygen demand (COD) (89.3%) occurred at the optimum organic loading rate of 2.9kg of VS/m(3)/day. The quality of biogas produced during anaerobic digestion process was 68-72%.

  7. Taguchi approach for co-gasification optimization of torrefied biomass and coal.

    PubMed

    Chen, Wei-Hsin; Chen, Chih-Jung; Hung, Chen-I

    2013-09-01

    This study employs the Taguchi method to approach the optimum co-gasification operation of torrefied biomass (eucalyptus) and coal in an entrained flow gasifier. The cold gas efficiency is adopted as the performance index of co-gasification. The influences of six parameters, namely, the biomass blending ratio, oxygen-to-fuel mass ratio (O/F ratio), biomass torrefaction temperature, gasification pressure, steam-to-fuel mass ratio (S/F ratio), and inlet temperature of the carrier gas, on the performance of co-gasification are considered. The analysis of the signal-to-noise ratio suggests that the O/F ratio is the most important factor in determining the performance and the appropriate O/F ratio is 0.7. The performance is also significantly affected by biomass along with torrefaction, where a torrefaction temperature of 300°C is sufficient to upgrade eucalyptus. According to the recommended operating conditions, the values of cold gas efficiency and carbon conversion at the optimum co-gasification are 80.99% and 94.51%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Separation of tartronic and glyceric acids by simulated moving bed chromatography.

    PubMed

    Coelho, Lucas C D; Filho, Nelson M L; Faria, Rui P V; Ferreira, Alexandre F P; Ribeiro, Ana M; Rodrigues, Alírio E

    2018-08-17

    The SMB unit developed by the Laboratory of Separation and Reaction Engineering (FlexSMB-LSRE ® ) was used to perform tartronic acid (TTA) and glyceric acid (GCA) separation and to validate the mathematical model in order to determine the optimum operating parameters of an industrial unit. The purity of the raffinate and extract streams in the experiments performed were 80% and 100%, respectively. The TTA and GCA productivities were 79 and 115 kg per liter of adsorbent per day, respectively and only 0.50 cubic meters of desorbent were required per kilogram of products. Under the optimum operating conditions, which were determined through an extensive simulation study based on the mathematical model developed to predict the performance of a real SMB unit, it was possible to achieve a productivity of 86 kg of TTA and 176 kg of GCA per cubic meter of adsorbent per day (considering the typical commercial purity value of 97% for both compounds) with an eluent consumption of 0.30 cubic meters per kilogram of products. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Adapting TESLA technology for future cw light sources using HoBiCaT

    NASA Astrophysics Data System (ADS)

    Kugeler, O.; Neumann, A.; Anders, W.; Knobloch, J.

    2010-07-01

    The HoBiCaT facility has been set up and operated at the Helmholtz-Zentrum-Berlin and BESSY since 2005. Its purpose is testing superconducting cavities in cw mode of operation and it was successfully demonstrated that TESLA pulsed technology can be used for cw mode of operation with only minor changes. Issues that were addressed comprise of elevated dynamic thermal losses in the cavity walls, necessary modifications in the cryogenics and the cavity processing, the optimum choice of operational parameters such as cavity temperature or bandwidth, the characterization of higher order modes in the cavity, and the usability of existing tuners and couplers for cw.

  10. Sulfurirhabdus autotrophica gen. nov., sp. nov., isolated from a freshwater lake.

    PubMed

    Watanabe, Tomohiro; Kojima, Hisaya; Shinohara, Arisa; Fukui, Manabu

    2016-01-01

    A novel sulfur-oxidizing bacterium, designated strain BiS0T, was isolated from a sediment sample collected from a freshwater lake in Japan. The cells were rod-shaped, 1.4-4.6 × 0.4-0.7 μm and Gram-stain-negative. The G+C content of the genomic DNA was around 44 mol%. The isolate possessed summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C10 : 0 3-OH as major cellular fatty acids. Strain BiS0T grew by carbon dioxide fixation and oxidation of inorganic sulfur compounds with oxygen as the electron acceptor. Growth was observed over a temperature range of 0-32 °C (optimum, 15-22 °C), an NaCl concentration range of 0-546.4 mM (optimum 0-66.7 mM) and a pH range of 5.2-8.1 (optimum 6.1-6.3). Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain BiS0T belongs to the family Sulfuricellaceae in the class Betaproteobacteria. The closest cultured relatives were Sulfuricella denitrificans skB26T and Sulfuricella sp. T08, with 16S rRNA gene sequence similarities of 96.3 %. On the basis of the data obtained in this study, strain BiS0T represents a novel species of a novel genus, for which the name Sulfurirhabdus autotrophica gen. nov., sp. nov. is proposed. The type strain is BiS0T ( = NBRC 110941T = DSM 100309T).

  11. Thermococcus Thioreducens sp. Nov., a Novel Hyperthermophilic, Obligately Sulfur-reducing Archaeon from a Deep-sea Hydrothermal Vent

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Marsic, Damien; Itoh, Takashi; Bej, Asim K.; Tang, Jane; Whitman, William B.; Ng, Joseph D.; Garriott, Owen K.; Hoover, Richard B.

    2007-01-01

    A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P was isolated from black smoker chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2 N, 33.9 W). The cells of strain OGL-20P(sup T) have an irregular coccoid shape and are motile with a single flagellum. Growth was observed within the pH range 5.0-8.5 (optimum pH 7.0), NaCl concentration range 1-5 % (w/v) (optimum 3%), and temperature range 55-94 C (optimum 83-85 C). The novel isolate is strictly anaerobic and obligately dependent upon elemental sulfur as an electron acceptor, but it does not reduce sulfate, sulfite, thiosulfate, iron (III) or nitrate. Proteolysis products (peptone, bacto-tryptone, casamino-acids, and yeast extract) are utilized as substrates during sulfur-reduction. Strain OGL-20P(sup T) is resistant to ampicillin, chloramphenicol, kanamycin, and gentamycin, but sensitive to tetracycline and rifampicin. The G+C content of DNA is 52.9 mol%. The 16S rRNA gene sequence analysis revealed that strain OGL-20P(sup T) is closely related to Thermococcus coalescens and related species, but no significant homology by DNA-DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, we conclude that strain OGL-20P(sup T) represents a new separate species within the genus Thermococcus, and propose the name Thermococcus thioreducens sp. nov. The type strain is OGL-20P(sup T) (= ATCC BAA-394(sup T) = JCM 12859(sup T) = DSM 14981(sup T)).

  12. Alkaline Anaerobic Respiration: Isolation and Characterization of a Novel Alkaliphilic and Metal-Reducing Bacterium

    PubMed Central

    Ye, Qi; Roh, Yul; Carroll, Susan L.; Blair, Benjamin; Zhou, Jizhong; Zhang, Chuanlun L.; Fields, Matthew W.

    2004-01-01

    Iron-reducing enrichments were obtained from leachate ponds at the U.S. Borax Company in Boron, Calif. Based on partial small-subunit (SSU) rRNA gene sequences (approximately 500 nucleotides), six isolates shared 98.9% nucleotide identity. As a representative, the isolate QYMF was selected for further analysis. QYMF could be grown with Fe(III)-citrate, Fe(III)-EDTA, Co(III)-EDTA, or Cr(VI) as electron acceptors, and yeast extract and lactate could serve as electron donors. Growth during iron reduction occurred over the pH range of 7.5 to 11.0 (optimum, pH 9.5), a sodium chloride range of 0 to 80 g/liter (optimum, 20 g/liter), and a temperature range of 4 to 45°C (optimum, approximately 35°C), and iron precipitates were formed. QYMF was a strict anaerobe that could be grown in the presence of borax, and the cells were straight rods that produced endospores. Sodium chloride and yeast extract stimulated growth. Phylogenetic analysis of the SSU rRNA gene indicated that the bacterium was a low-G+C gram-positive microorganism and had 96 and 92% nucleotide identity with Alkaliphilus transvaalensis and Alkaliphilus crotonatoxidans, respectively. The major phospholipid fatty acids were 14:1, 16:1ω7c, and 16:0, which were different from those of other alkaliphiles but similar to those of reported iron-reducing bacteria. The results demonstrated that the isolate might represent a novel metal-reducing alkaliphilic species. The name Alkaliphilus metalliredigens sp. nov. is proposed. The isolation and activity of metal-reducing bacteria from borax-contaminated leachate ponds suggest that bioremediation of metal-contaminated alkaline environments may be feasible and have implications for alkaline anaerobic respiration. PMID:15345448

  13. Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Pikuta, E. V.; Hoover, R. B.; Bej, A. K.; Marsic, D.; Detkova, E. N.; Whitman, W. B.; Krader, P.

    2003-01-01

    A novel extremely haloalkaliphilic, strictly anaerobic, acetogenic bacterium strain APO was isolated from sediments of the athalassic, meromictic, alkaline Mono Lake in California. The Gram-positive, spore-forming, slightly curved rods with sizes 0.55- 0.7x1.7-3.0 microns were motile by a single laterally attached flagellum. Strain APO was mesophilic (range 10-48 C, optimum of 37 C); halophilic (NaCl range 1-20% (w/v) with optimum of 3-5% (w/v), and alkaliphilic (pH range 8.0-10.5, optimum 9.5). The novel isolate required sodium ions in the medium. Strain APO was an organotroph with a fermentative type of metabolism and used the substrates peptone, bacto-tryptone, casamino acid, yeast extract, L-serine, L-lysine, L-histidine, L-arginine, and pyruvate. The new isolate performed the Stickland reaction with the following amino acid pairs: proline + alanine, glycine + alanine, and tryptophan + valine. The main end product of growth was acetate. High activity of CO dehydrogenase and hydrogenase indicated the presence of a homoacetogenic, non-cycling acetyl-coA pathway. Strain APO was resistant to kanamycin but sensitive to chloramphenicol, tetracycline, and gentamycin. The G+C content of the genomic DNA was 44.4 mol% (by HPLC method). The sequence of the 16s rRNA gene of strain APO possessed 98.2% similarity with the sequence from Tindullia magadiensis Z-7934, but the DNA-DNA hybridization value between these organisms was only 55%. On the basis of these physiological and molecular properties, strain APO is proposed to be a novel species of the genus Tindallia with the name Tindallia californiensis sp. nov., (type strain APO = ATCC BAA-393 - DSM 14871).

  14. Thermococcus thioreducens sp. nov., a Novel Hyperthermophilic, Obligately Sulfur-Reducing Archaeon from a Deep-Sea Hydrothermal Vent

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Marsic, Damien; Itoh, Takashi; Bej, Asim K.; Tang, Jane; Whitman, William B.; Ng, Joseph D.; Garriott, Owen K.; Hoover, Richard B.

    2007-01-01

    A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P(sup T), was isolated from 'black smoker' chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2degN, 33.9degW). The cells of strain OGL-20P(T) have an irregular coccoid shape and are motile with a single flagellum. Growth was observed within a pH range of 5.0-8.5 (optimum pH 7.0), an NaCl concentration range of 1-5%(w/v) (optimum 3%)and a temperature range of 55-94 C (optimum 83-85 C). The novel isolate is strictly anaerobic and obligately dependent upon elemental sulfur as an electron acceptor, but it does not reduce sulfate, sulfite, thiosulfate, Fe(III) or nitrate. Proteolysis products (peptone, bacto-tryptone, Casamino acids and yeast extract) are utilized as substrates during sulfur reduction. Strain OGL-20P(sup T) is resistant to ampicillin, chloram phenicol, kanamycin and gentamicin, but sensitive to tetracycline and rifampicin. The G + C content of the DNA is 52.9 mol% The 16S rRNA gene sequence analysis revealed that strain OGL-20P(sup T) is closely related to Thermococcus coalescens and related species, but no significant homology by DNA-DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, we conclude that strain OGL-20P(sup T) represents a new separate species within the genus Thermococcus, for which we propose the name Thermococcus thioreducens sp. nov. The type strain is OGL-20P(sup T) (=JCM 12859(exp T) = DSM 14981(exp T)=ATCC BAA-394(exp T)).

  15. Decomposition of Alternative Chirality Amino Acids by Alkaliphilic Anaerobe from Owens Lake, California

    NASA Technical Reports Server (NTRS)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Hoover, Richard B.

    2009-01-01

    The study of alkaliphilic microbial communities from anaerobic sediments of Owens and Mono Lakes in California led to the isolation of a bacterial strain capable of metabolizing amino acids with alternative chirality. According to the phylogenetic analysis, the anaerobic strain BK1 belongs to the genus Tindallia; however, despite the characteristics of other described species of this genus, the strain BK1 was able to grow on D-arginine and Dlysine. Cell morphology of this strain showed straight, motile, non-spore-forming rods with sizes 0.45 x 1.2-3 microns. Physiological characteristics of the strain showed that it is catalase negative, obligately anaerobic, mesophilic, and obligately alkaliphilic. This isolate is unable to grow at pH 7 and requires CO3 (2-) ions for growth. The strain has chemo-heterotrophic metabolism and is able to ferment various proteolysis products and some sugars. It plays the role of a primary anaerobe within the trophic chain of an anaerobic microbial community by the degradation of complex protein molecules to smaller and less energetic molecules. The new isolate requires NaCl for growth, and can grow within the range of 0.5-13 %, with the optimum at 1 % NaCl (w/v). The temperature range for the growth of the new isolate is 12-40 C with optimum at 35 C. The pH range for the growth of strain BK1 occurs between 7.8 and 11.0 with optimum at 9.5. This paper presents detailed physiological characteristics of the novel isolate from Owens Lake, a unique relic ecosystem of Astrobiological significance, and makes an accent on the ability of this strain to utilize L-amino acids.

  16. [Isolation and characterization of Thermopirellula anaerolimosa gen. nov., sp. nov., an obligate anaerobic hydrogen-producing bacterium of the phylum Planctomycetes].

    PubMed

    Liu, Dongying; Liu, Yi; Men, Xuehui; Guo, Qunqun; Guo, Rongbo; Qiu, Yanling

    2012-08-04

    To cultivate various yet-to-be cultured heterotrophs from anaerobic granule sludge, we used a selective culture medium with low concentrations of substrates supplemented a variety of antibiotics. An obligate anaerobic, thermophilic, hydrogen-producing bacterium, strain VM20-7(T), was isolated from an upflow anaerobic sludge blanket (UASB) reactor treating high-strength organic wastewater from isomerized sugar production processes. Cells of strain VM20-7(T) are non-motile, spherical, pear or teardrop shaped, occurring singly(o)r as aggregates (0.7 - 2.0 microm x 0.7 - 2.0 microm). Spore formation was not observed. Growth temperature ranges from 35 - 50 degrees C (optimum 45 degrees C), pH ranges from 6.0 - 8.3 (optimum 7.0 - 7.5) , NaCl tolerant concentration ranges from 0% - 0.5% (w/v, optimum 0% ). Nitrate, sulfate, thiosulfate, sulfite, elemental sulfur and Fe (III)-NTA were not used as terminal electron acceptors. Strain VM20-7(T) utilizes a wide range of carbohydrates, including glucose, maltose, ribose, xylose, sucrose, galactose, mannose, raffinose, pectin, yeast extract and xylan. Acetate and H2 are the main end products of glucose fermentation. The G + C content of the genomic DNA was 60.9 mol%. 16S rRNA gene sequence analysis revealed that it is related to the Pirellula-Rhodopirellula-Blastopirellula (PRB) clade within the order Planctomycetales (82.7 - 84.3% similarity with 16S rRNA genes of other known related species). The first obligate anaerobic bacterium within the phylum Planctomycetes was isolated with low concentration of carbohydrates and antibiotics. On the basis of the physiological and phylogenetic data, the name Thermopirellula anaerolimosa gen. nov. , sp. nov. is proposed for strain VM20-7(T) (= CGMCC 1.5169(T) = JCM 17478(T) = DSM 24165(T)).

  17. Germination response of Hylocereus setaceus (Salm-Dyck ex DC: ) Ralf Bauer (Cactaceae) seeds to temperature and reduced water potentials.

    PubMed

    Simão, E; Takaki, M; Cardoso, V J M

    2010-02-01

    The germination response of Hylocereus setaceus seeds to isothermic incubation at different water potentials was analysed by using the thermal time and hydrotime models, aiming to describe some germination parameters of the population and to test the validity of the models to describe the response of the seeds to temperature and water potential. Hylocereus setaceus seeds germinated relatively well in a wide range of temperatures and the germination was rate limited from 11 to 20 degrees C interval and beyond 30 degrees C until 40 degrees C, in which the germination rate respectively shifts positively and negatively with temperature. The minimum or base temperature (T(b)) for the germination of H. setaceus was 7 degrees C, and the ceiling temperature varied nearly from 43.5 to 59 degrees C depending on the percent fraction, with median set on 49.8 degrees C. The number of degrees day necessary for 50% of the seeds to germinate in the infra-optimum temperature range was 39.3 degrees C day, whereas at the supra-optimum interval the value of theta = 77 was assumed to be constant throughout. Germination was sensitive to decreasing values of psi in the medium, and both the germinability and the germination rate shift negatively with the reduction of psi, but the rate of reduction changed with temperature. The values of base water potential (psi(b)) shift to zero with increasing temperatures and such variation reflects in the relatively greater effect of low psi on germination in supra optimum range of T. In general, the model described better the germination time courses at lower than at higher water potentials. The analysis also suggest that Tb may not be independent of psi and that psi(b(g)) may change as a function of temperature at the infra-otimum temperature range.

  18. Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamrick, Todd

    2011-01-01

    Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to computemore » the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.« less

  19. Knowledge-Based Systems Approach to Wilderness Fire Management.

    NASA Astrophysics Data System (ADS)

    Saveland, James M.

    The 1988 and 1989 forest fire seasons in the Intermountain West highlight the shortcomings of current fire policy. To fully implement an optimization policy that minimizes the costs and net value change of resources affected by fire, long-range fire severity information is essential, yet lacking. This information is necessary for total mobility of suppression forces, implementing contain and confine suppression strategies, effectively dealing with multiple fire situations, scheduling summer prescribed burning, and wilderness fire management. A knowledge-based system, Delphi, was developed to help provide long-range information. Delphi provides: (1) a narrative of advice on where a fire might spread, if allowed to burn, (2) a summary of recent weather and fire danger information, and (3) a Bayesian analysis of long-range fire danger potential. Uncertainty is inherent in long-range information. Decision theory and judgment research can be used to help understand the heuristics experts use to make decisions under uncertainty, heuristics responsible both for expert performance and bias. Judgment heuristics and resulting bias are examined from a fire management perspective. Signal detection theory and receiver operating curve (ROC) analysis can be used to develop a long-range forecast to improve decisions. ROC analysis mimics some of the heuristics and compensates for some of the bias. Most importantly, ROC analysis displays a continuum of bias from which an optimum operating point can be selected. ROC analysis is especially appropriate for long-range forecasting since (1) the occurrence of possible future events is stated in terms of probability, (2) skill prediction is displayed, (3) inherent trade-offs are displayed, and (4) fire danger is explicitly defined. Statements on the probability of the energy release component of the National Fire Danger Rating System exceeding a critical value later in the fire season can be made early July in the Intermountain West. Delphi was evaluated formally and informally. Continual evaluation and feedback to update knowledge-based systems results in a repository for current knowledge, and a means to devise policy that will augment existing knowledge. Thus, knowledge-based systems can help implement adaptive resource management.

  20. Development of a Photon Counting System for Differential Lidar Signal Detection

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1997-01-01

    Photon counting has been chosen as a means to extend the detection range of current airborne DIAL ozone measurements. Lidar backscattered return signals from the on and off-line lasers experience a significant exponential decay. To extract further data from the decaying ozone return signals, photon counting will be used to measure the low light levels, thus extending the detection range. In this application, photon counting will extend signal measurement where the analog return signal is too weak. The current analog measurement range is limited to approximately 25 kilometers from an aircraft flying at 12 kilometers. Photon counting will be able to exceed the current measurement range so as to follow the mid-latitude model of ozone density as a function of height. This report describes the development of a photon counting system. The initial development phase begins with detailed evaluation of individual photomultiplier tubes. The PMT qualities investigated are noise count rates, single electron response peaks, voltage versus gain values, saturation effects, and output signal linearity. These evaluations are followed by analysis of two distinctive tube base gating schemes. The next phase is to construct and operate a photon counting system in a laboratory environment. The laboratory counting simulations are used to determine optimum discriminator setpoints and to continue further evaluations of PMT properties. The final step in the photon counting system evaluation process is the compiling of photon counting measurements on the existing ozone DIAL laser system.

Top