Sample records for optimum ph values

  1. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    PubMed

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  2. Screening and Characterization of Polygalacturonase as Potential Enzyme for Keprok Garut Orange (Citrus nobilis var. chrysocarpa) Juice Clarification

    NASA Astrophysics Data System (ADS)

    Widowati, E.; Utami, R.; Kalistyatika, K.

    2017-11-01

    Use of thermostable enzyme from bacilli for industrial application is significant. This research aimed to isolate thermophilic pectinolytic bacteria from orange peel and vegetable waste which produced thermostable polygalacturonase, to investigate the polygalacturonase ability in clarifying keprok Garut orange juice, and to characterize polygalacturonase based on pH optimum, temperature optimum, enzyme stability, enzyme kinetics KM, and Vmax. Obtained, 14 isolates that further selected to 4 best isolates based on highest polygalacturonase activity and keprok Garut orange juice clarification ability. Four selected enzyme isolates were AR 2, AR 4, KK 4, and KK 5 had ability to increase juice transmittance, decrease juice viscosity and also reduce total soluble solid. Furthermore 4 selected isolates were partially purified by ammonium sulphate precipitation and dialysis method. Four partially purified enzymes were known that enzyme character of AR 2 optimum at pH 6; AR 4 optimum at pH 5.5; KK 4 optimum at pH 6; and KK 5 optimum at pH 4.5. Four enzymes were optimum at temperature 60°C thus stable at temperature 50-60°C, this characteristic indicate that enzymes were thermostable. AR 2 showed active activity stable at pH 4-7; AR 4 showed active activity stable at pH 6-7; KK 4 showed active activity stable at pH 4-6; however KK 5 stable at pH 4-5. Enzyme AR 2 and KK 4 was getting inactive at pH 11, thus AR 4 and KK 5 inactive at pH 12. KM value of AR 2, AR 4, KK 4, and KK 5 was 0.0959; 0.0974; 0.0966; and 0.178 mg/ml respectively. Vmax of AR 2, AR 4, KK 4, and KK 5 was 0.0203; 0.0202; 0.0185; and 0.0229 U/ml respectively. Enzyme AR 2 was the most compatible enzyme to be applied in keprok Garut orange juice clarification for it had the lowest KM value.

  3. How gastric lipase, an interfacial enzyme with a Ser-His-Asp catalytic triad, acts optimally at acidic pH.

    PubMed

    Chahinian, Henri; Snabe, Torben; Attias, Coralie; Fojan, Peter; Petersen, Steffen B; Carrière, Frédéric

    2006-01-24

    Gastric lipase is active under acidic conditions and shows optimum activity on insoluble triglycerides at pH 4. The present results show that gastric lipase also acts in solution on vinyl butyrate, with an optimum activity above pH 7, which suggests that gastric lipase is able to hydrolyze ester bonds via the classical mechanism of serine hydrolases. These results support previous structural studies in which the catalytic triad of gastric lipase was reported to show no specific features. The optimum activity of gastric lipase shifted toward lower pH values, however, when the vinyl butyrate concentration was greater than the solubility limit. Experiments performed with long-chain triglycerides showed that gastric lipase binds optimally to the oil-water interface at low pH values. To study the effects of the pH on the adsorption step independently from substrate hydrolysis, gastric lipase adsorption on solid hydrophobic surfaces was monitored by total internal reflection fluorescence (TIRF), as well as using a quartz crystal microbalance. Both techniques showed a pH-dependent reversible gastric lipase adsorption process, which was optimum at pH 5 (Kd = 6.5 nM). Lipase adsorption and desorption constants (ka = 147,860 M(-1) s(-1) and kd = 139 x 10(-4) s(-1) at pH 6) were estimated from TIRF experiments. These results indicate that the optimum activity of gastric lipase at acidic pH is only "apparent" and results from the fact that lipase adsorption at lipid-water interfaces is the pH-dependent limiting step in the overall process of insoluble substrate hydrolysis. This specific kinetic feature of interfacial enzymology should be taken into account when studying any soluble enzyme acting on an insoluble substrate.

  4. Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content.

    PubMed

    Kahraman, Kevser; Koksel, Hamit; Ng, Perry K W

    2015-05-01

    The optimum reaction conditions (temperature and pH) for the preparation of cross-linked (CL) corn and wheat starches with maximum resistant starch (RS) content were investigated by using response surface methodology (RSM). According to the preliminary results, five levels were selected for reaction temperature (38-70 °C) and pH (10-12) in the main study. RS contents of the CL corn and wheat starch samples increased with increasing temperature and pH, and pH had a greater influence on RS content than had temperature. The maximum RS content (with a maximum p value of 0.4%) was obtained in wheat starch cross-linked at 38 °C and pH 12. In the case of CL corn starch, the optimum condition was 70 °C and pH 12. CL corn and wheat starch samples were also produced separately under the optimum conditions and their RS contents were 80.4% and 83.9%, respectively. These results were also in agreement with the values predicted by RSM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The Influence of pH on Prokaryotic Cell Size and Temperature

    NASA Astrophysics Data System (ADS)

    Sundararajan, D.; Gutierrez, F.; Heim, N. A.; Payne, J.

    2015-12-01

    The pH of a habitat is essential to an organism's growth and success in its environment. Although most organisms maintain a neutral internal pH, their environmental pH can vary greatly. However, little research has been done concerning an organism's environmental pH across a wide range of taxa. We studied pH tolerance in prokaryotes and its relationship with biovolume, taxonomic classification, and ideal temperature. We had three hypotheses: pH and temperature are not correlated; pH tolerance is similar within taxonomic groups; and extremophiles have small cell sizes. To test these hypotheses, we used pH, size, and taxonomic data from The Prokaryotes. We found that the mean optimum external pH was neutral for prokaryotes as a whole and when divided by domain, phylum, and class. Using ANOVA to test for pH within and among group variances, we found that variation of pH in domains, phyla, classes, and families was greater than between them. pH and size did not show much of a correlation, except that the largest and smallest sized prokaryotes had nearly neutral pH. This seems significant because extremophiles need to divert more of their energy from growth to maintain a neutral internal pH. Acidophiles showed a larger range of optimum pH values than alkaliphiles. A similar result was seen with the minimum and maximum pH values of acidophiles and alkaliphiles. While acidophiles were spread out and had some alkaline maximum values, alkaliphiles had smaller ranges, and unlike some acidophiles that had pH minimums close to zero, alkaliphile pH maximums did not go beyond a pH of 12. No statistically significant differences were found between sizes of acidophiles and alkaliphiles. However, optimum temperatures of acidophiles and alkaliphiles did have a statistically significant difference. pH and temperature had a negative correlation. Therefore, pH seems to have a correlation with cell size, temperature, and taxonomy to some extent.

  6. Musa paradisiaca stem juice as a source of peroxidase and ligninperoxidase.

    PubMed

    Vernwal, S K; Yadav, R S; Yadav, K D

    2000-10-01

    Musa paradisiaca stem juice has been shown to contain peroxidase activity of the order of 0.1 enzyme unit/ml. The Km values of this peroxidase for the substrates guaiacol and hydrogen peroxide are 2.4 and 0.28 mM respectively. The pH and temperature optima are 4.5 and 62.5 degrees C respectively. Like other peroxidases, it follows double displacement type mechanism. At low pH, Musa paradisiaca stem juice exhibits ligninperoxidase type activity. The pH optimum for ligninperoxidase type activity is 2.0 and the temperature optimum is 24 degrees C. The Km values for veratryl alcohol and n-propanol are 66 and 78 microM respectively.

  7. Mechanism-based site-directed mutagenesis to shift the optimum pH of the phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1.

    PubMed

    Zhu, Longbao; Zhou, Li; Cui, Wenjing; Liu, Zhongmei; Zhou, Zhemin

    2014-09-01

    Phenylalanine ammonia-lyase ( Rg PAL) from Rhodotorula glutinis JN-1 stereoselectively catalyzes the conversion of the l-phenylalanine into trans -cinnamic acid and ammonia, and was used in chiral resolution of dl-phenylalanine to produce the d-phenylalanine under acidic condition. However, the optimum pH of Rg PAL is 9 and the Rg PAL exhibits low catalytic efficiency at acidic side. Therefore, a mutant Rg PAL with a lower optimum pH is expected. Based on catalytic mechanism and structure analysis, we constructed a mutant Rg PAL-Q137E by site-directed mutagenesis, and found that this mutant had an extended optimum pH 7-9 with activity of 1.8-fold higher than that of the wild type at pH 7. As revealed by Friedel-Crafts-type mechanism of Rg PAL, the improvement of the Rg PAL-Q137E might be due to the negative charge of Glu137 which could stabilize the intermediate transition states through electrostatic interaction. The Rg PAL-Q137E mutant was used to resolve the racemic dl-phenylalanine, and the conversion rate and the ee D value of d-phenylalanine using Rg PAL-Q137E at pH 7 were increased by 29% and 48%, and achieved 93% and 86%, respectively. This work provides an effective strategy to shift the optimum pH which is favorable to further applications of Rg PAL.

  8. Transient kinetic studies of pH-dependent hydrolyses by exo-type carboxypeptidase P on a 27-MHz quartz crystal microbalance.

    PubMed

    Furusawa, Hiroyuki; Takano, Hiroki; Okahata, Yoshio

    2008-02-15

    pH-Dependent kinetic parameters (k(on), k(off), and k(cat)) of protein (myoglobin) hydrolyses catalyzed by exo-enzyme (carboxypeptidase P, CPP) were obtained by using a protein-immobilized quartz crystal microbalance (QCM) in acidic aqueous solutions. The formation of the enzyme-substrate (ES) complex (k(on)), the decay of the ES complex (k(off)), and the formation of the product (k(cat)) could be analyzed by transient kinetics as mass changes on the QCM plate. The Kd (k(off)/k(on)) value was different from the Michaelis constant Km calculated from (k(off) + k(cat))/k(on) due to k(cat) > k(off). The rate-determining step was the binding step (k(on), and the catalytic rate k(cat) was faster than other k(on) and k(off) values. In the range of pH 2.5-5.0, values of k(on) gradually increased with decreasing pH showing a maximum at pH 3.7, values of k(off) were independent of pH, and k(cat) increased gradually with decreasing pH. As a result, the apparent rate constant (k(cat)/Km) showed a maximum at pH 3.7 and gradually increased with decreasing pH. The optimum pH at 3.7 of k(on) is explained by the optimum binding ability of CPP to the COOH terminus of the substrate with hydrogen bonds. The increase of k(cat) at the lower pH correlated with the decrease of alpha-helix contents of the myoglobin substrate on the QCM.

  9. Biosorption of heavy metal copper (Cu2+) by Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Ririhena, S. A. J.; Astuti, A. D.; Fachrul, M. F.; Silalahi, M. D. S.; Hadisoebroto, R.; Rinanti, A.

    2018-01-01

    This research aims to study the optimum effect of contact time and pH adsorption of copper (Cu2+) from electroplating industry waste by dried beer waste S.cerevisiae. This research conducted using batch culture with pH variation 2,3,4,5, and 6, contact time variation 60, 90, 120, 150, 180 minutes, 150 rpm at room temperature (± 28°C), initial Cu2+ concentration 33,746 mg/l, and biosorbent mass 200 mg & 500 mg. The adsorption of heavy metal ions Cu2+ occurs in all variations of pH and contact time at optimum pH. The optimum adsorption occurs at pH 4 with contact time 120 minutes for both 200 mg (41.60%) and 500 mg (61.04%) beer waste biosorbent. Cell morphology seen with Scanning Electron Microscope (SEM) analysis shows the change of cell wall that gets damaged from Cu2+ adsorption. It also proved by the decreased concentration of initial high concentration carboxyl groups. The adsorption process of this research complies to Freundlich Isotherm with R2 value closest to 1 and followed first order kinetic.

  10. Preparation of Curcumin Loaded Egg Albumin Nanoparticles Using Acetone and Optimization of Desolvation Process.

    PubMed

    Aniesrani Delfiya, D S; Thangavel, K; Amirtham, D

    2016-04-01

    In this study, acetone was used as a desolvating agent to prepare the curcumin-loaded egg albumin nanoparticles. Response surface methodology was employed to analyze the influence of process parameters namely concentration (5-15%w/v) and pH (5-7) of egg albumin solution on solubility, curcumin loading and entrapment efficiency, nanoparticles yield and particle size. Optimum processing conditions obtained from response surface analysis were found to be the egg albumin solution concentration of 8.85%w/v and pH of 5. At this optimum condition, the solubility of 33.57%, curcumin loading of 4.125%, curcumin entrapment efficiency of 55.23%, yield of 72.85% and particles size of 232.6 nm were obtained and these values were related to the values which are predicted using polynomial model equations. Thus, the model equations generated for each response was validated and it can be used to predict the response values at any concentration and pH.

  11. Determination of optimum process parameters for peroxidase-catalysed treatment of bisphenol A and application to the removal of bisphenol derivatives.

    PubMed

    Yamada, Kazunori; Ikeda, Naoya; Takano, Yoko; Kashiwada, Ayumi; Matsuda, Kiyomi; Hirata, Mitsuo

    2010-03-01

    Systematic investigations were carried out to determine the optimum process parameters such as the hydrogen peroxide (H2O2) concentration, concentration and molar mass of poly(ethylene glycol) (PEG) as an additive, pH value, temperature and enzyme dose for treatment of bisphenol A (BPA) with horseradish peroxidase (HRP). The HRP-catalysed treatment of BPA was effectively enhanced by adding PEG, and BPA was completely converted into phenoxy radicals by HRP dose of 0.10 U/cm3. The optimum conditions for HRP-catalysed treatment of BPA at 0.3 mM was determined to be 0.3 mM for H2O2 and 0.10 mg/cm3 for PEG with a molar mass of 1.0 x 10(4) in a pH 6.0 buffer at 30 degrees C. Different kinds of bisphenol derivatives were completely or effectively treated by HRP under the optimum conditions determined for treatment of BPA, although the HRP dose was further increased as necessary for some of them. The aggregation of water-insoluble oligomers generated by the enzymatic radicalization and radical coupling reaction was enhanced by decreasing the pH values to 4.0 with HCl after the enzymatic treatment, and BPA and bisphenol derivatives were removed from aqueous solutions by filtering out the oligomer precipitates.

  12. Optimization and performance evaluation for nutrient removal from palm oil mill effluent wastewater using microalgae

    NASA Astrophysics Data System (ADS)

    Ibrahim, Raheek I.; Wong, Z. H.; Mohammad, A. W.

    2015-04-01

    Palm oil mill effluent (POME) wastewater was produced in huge amounts in Malaysia, and if it discharged into the environment, it causes a serious problem regarding its high content of nutrients. This study was devoted to POME wastewater treatment with microalgae. The main objective was to find the optimum conditions (retention time, and pH) in the microalgae treatment of POME wastewater considering retention time as a most important parameter in algae treatment, since after the optimum conditions there is a diverse effect of time and pH and so, the process becomes costly. According to our knowledge, there is no existing study optimized the retention time and pH with % removal of nutrients (ammonia nitrogen NH3-N, and orthophosphorous PO43-) for microalgae treatment of POME wastewater. In order to achieve with optimization, a central composite rotatable design with a second order polynomial model was used, regression coefficients and goodness of fit results in removal percentages of nutrients (NH3-N, and PO43-) were estimated.WinQSB technique was used to optimize the surface response objective functionfor the developed model. Also experiments were done to validate the model results.The optimum conditions were found to be 18 day retention time for ammonia nitrogen, and pH of 9.22, while for orthophosphorous, 15 days were indicated as the optimum retention time with a pH value of 9.2.

  13. Research on the Treatment of Aluminum Alloy Chemical Milling Wastewater with Fenton Process

    NASA Astrophysics Data System (ADS)

    Zong-liang, Huang; Ru, Li; Peng, Luo; Jun-li, Gu

    2018-03-01

    The aluminum alloy chemical milling wastewater was treated by Fenton method. The effect of pH value, reaction time, rotational speed, H2O2 dosage, Fe2+ dosage and the molar ratio between H2O2 and Fe2+ on the COD removal rate of aluminum alloy chemical milling wastewater were investigated by single factor experiment and orthogonal experiment. The results showed that the optimum operating conditions for Fenton oxidation were as follows: the initial pH value was 3, the rotational speed was 250r/min, the molar ratio of H2O2 and Fe2+ was 8, the reaction time was 90 min. Under the optimum conditions, the removal rate of the wastewater’s COD is about 72.36%. In the reaction kinetics that aluminum alloy chemical milling wastewater was oxidized and degraded by Fenton method under the optimum conditions, the reaction sequence of the initial COD was 0.8204.

  14. Removal Efficiency of the Heavy Metals Zn(II), Pb(II) and Cd(II) by Saprolegnia delica and Trichoderma viride at Different pH Values and Temperature Degrees

    PubMed Central

    Hashem, Mohamed

    2007-01-01

    The removal efficiency of the heavy metals Zn, Pb and Cd by the zoosporic fungal species Saprolegnia delica and the terrestrial fungus Trichoderma viride, isolated from polluted water drainages in the Delta of Nile in Egypt, as affected by various ranges of pH values and different temperature degrees,was extensively investigated. The maximum removal efficiency of S. delica for Zn(II) and Cd(II) was obtained at pH 8 and for Pb(II) was at pH 6 whilst the removal efficiency of T. viride was found to be optimum at pH 6 for the three applied heavy metals. Regardless the median lethal doses of the three heavy metals, Zn recorded the highest bioaccumulation potency by S. delica at all pH values except at pH 4, followed by Pb whereas Cd showed the lowest removal potency by the fungal species and vice versa in case of T. viride. The optimum biomass dry weight production by S. delica was found when the fungus was grown in the medium treated with the heavy metal Pb at pH 6, followed by Zn at pH 8 and Cd at pH 8. The optimum biomass dry weight yield by T. viride amended with Zn,Pb and Cd was obtained at pH 6 for the three heavy metals with the maximum value at Zn. The highest yield of biomass dry weight was found when T. viride treated with Cd at all different pH values followed by Pb whilst Zn output was the lowest and this result was reversed in case of S. delica. The maximum removal efficiency and the biomass dry weight production for the three tested heavy metals was obtained at the incubation temperature 20℃ in case of S. delica while it was 25℃ for T. viride. Incubation of T. viride at higher temperatures (30℃ and 35℃) enhanced the removal efficiency of Pb and Cd than low temperatures (15℃ and 20℃) and vice versa in case of Zn removal. At all tested incubation temperatures, the maximum yield of biomass dry weight was attained at Zn treatment by the two tested fungal species. The bioaccumulation potency of S. delica for Zn was higher than that for Pb at all temperature degrees of incubation and Cd bioaccumulation was the lowest whereas T. viride showed the highest removal efficiency for Pb followed by Cd and Zn was the minor of the heavy metals. PMID:24015084

  15. Novel inexpensive fungi proteases: Production by solid state fermentation and characterization.

    PubMed

    Novelli, Paula Kern; Barros, Margarida Maria; Fleuri, Luciana Francisco

    2016-05-01

    A comparative study was carried out for proteases production using agroindustrial residues as substrate for solid state fermentation (SSF) of several fungal strains. High protease production was observed for most of the microorganisms studied, as well as very different biochemical characteristics, including activities at specific temperatures and a wide range of pH values. The enzymes produced were very different regarding optimum pH and they showed stability at 50 °C. Aspergillus oryzae showed stability at all pH values studied. Penicillium roquefortii and Aspergillus flavipes presented optimum activity at temperatures of 50 °C and 90 °C, respectively. Lyophilized protease from A. oryzae reached 1251.60 U/g and yield of 155010.66 U/kg of substrate. Therefore, the substrate as well as the microorganism strain can modify the biochemical character of the enzyme produced. The high protease activity and stability established plus the low cost of substrates, make these fungal proteases potential alternatives for the biotechnological industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. [Extraction and purification technologies of total flavonoids from Aconitum tanguticum].

    PubMed

    Li, Yan-Rong; Yan, Li-Xin; Feng, Wei-Hong; Li, Chun; Wang, Zhi-Min

    2014-04-01

    To optimize the extraction and purification technologies of total flavonoids from Aconitum tanguticum whole plant. With the content of total flavonoids as index, the optimum extraction conditions for the concentration, volume of alcohol, extracting time and times were selected by orthogonal optimized; Comparing the adsorption quantity (mg/g) and resolution (%), four kinds of macroporous adsorption resins including D101, AB-8, X-5 and XAD-16 were investigated for the enrichment ability of total flavonoids from Aconitum tanguticum; Concentration and pH value of sample, sampling amount, elution solvent and loading and elution velocity for the optimum adsorption resin were determined. The content of total flavonoids in Aconitum tanguticum was about 4.39%; The optimum extraction technique was 70% alcohol reflux extraction for three times,each time for one hour, the ratio of material and liquid was 1:10 (w/v); The optimum purification technology was: using XAD-16 macroporous resin, the initial concentration of total flavonoids of Aconitum tanguticum was 8 mg/mL, the sampling amount was 112 mg/g dry resin, the pH value was 5, the loading velocity was 3 mL/min, the elution solvent was 70% ethanol and the elution velocity was 5 mL/min. Under the optimum conditions, the average content of total flavonoids was raised from 4.39% to 46.19%. The optimum extraction and purification technologies for total flavonoids of Aconitum tanguticum were suitable for industrial production for its simplicity and responsibility.

  17. Purification and properties of adenosine kinase from rat brain.

    PubMed

    Yamada, Y; Goto, H; Ogasawara, N

    1980-12-04

    Adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) has been purified to apparent homogeneity from rat brain by (NH4)2SO4 fractionation, affinity chromatography on AMP-Sepharose 4B, gel filtration with Sephadex G-100, and DE-52 cellulose column chromatography. The yield was 56% of the initial activity with a final specific activity of 7.8 mumol/min per mg protein. The molecular weight was estimated as 38 000 by gel filtration with Sephadex G-100 and 41 000 by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). The enzyme catalyzed the phosphorylation of adenosine, deoxyadenosine, arabinoadenosine, inosine and ribavirin. The activity of deoxyadenosine phosphorylation was 20% that of adenosine phosphorylation. The pH optimum profile was biphasic; a sharp pH optimum at pH 5.5 and a broad pH optimum at pH 7.5-8.5. The Km value for adenosine was 0.2 microM and the maximum activity was observed at 0.5 microM. At higher concentrations of adenosine, the activity was strongly inhibited. The Km value for ATP was 0.02 mM and that for Mg2+ was 0.1 mM. GTP, dGTP, dATP and UTP were also proved to be effective phosphate donors. Co2+ was as effective as Mg2+, and Ca2+, Mn2+ or Ni2+ showed about 50% of the activity for Mg2+. The kinase is quite unstable, but stable in the presence of a high concentration of salt; e.g., 0.15 M KCl.

  18. Kinetic approach to the study of froth flotation applied to a lepidolite ore

    NASA Astrophysics Data System (ADS)

    Vieceli, Nathália; Durão, Fernando O.; Guimarães, Carlos; Nogueira, Carlos A.; Pereira, Manuel F. C.; Margarido, Fernanda

    2016-07-01

    The number of published studies related to the optimization of lithium extraction from low-grade ores has increased as the demand for lithium has grown. However, no study related to the kinetics of the concentration stage of lithium-containing minerals by froth flotation has yet been reported. To establish a factorial design of batch flotation experiments, we conducted a set of kinetic tests to determine the most selective alternative collector, define a range of pulp pH values, and estimate a near-optimum flotation time. Both collectors (Aeromine 3000C and Armeen 12D) provided the required flotation selectivity, although this selectivity was lost in the case of pulp pH values outside the range between 2 and 4. Cumulative mineral recovery curves were used to adjust a classical kinetic model that was modified with a non-negative parameter representing a delay time. The computation of the near-optimum flotation time as the maximizer of a separation efficiency (SE) function must be performed with caution. We instead propose to define the near-optimum flotation time as the time interval required to achieve 95%-99% of the maximum value of the SE function.

  19. Studies on Batch Production of Bacterial Concentrates from Mixed Species Lactic Starters

    PubMed Central

    Pettersson, H. E.

    1975-01-01

    Optimum growth conditions for mixed species starter FDs 0172 at constant pH in skim milk, whey, and tryptone medium were investigated. Growth rate and maximum population were optimal at 30 C. pH values between 5.5 and 7.0 did not influence the growth rate and maximum population obtainable. Lactic acid-producing activity declined rapidly after reaching the end of the exponential growth phase. The bacterial balance was found to be influenced by the growth parameters: media, pH, temperature, and neutralizer. Skim milk or whey medium at 25 C, pH 6.5, and neutralized with 20% (vol/vol) NH4OH kept the bacterial balance almost constant throughout the cultivation. Grown in tryptone medium at constant pH, the changes in bacterial balance and other metabolic activities were striking compared to the other two media tested. The effect of lactate as an inhibitor was found to be complex, changing with the growth conditions. Concentrates made from mixed species starters FDs 0172, FD 0570, CH 0170, CHs 0170, and T 27 were comparable to controls when cultivated at the optimum conditions found and thereafter centrifuged. Aroma production, proteolytic activity, and CO2 production did not change significantly compared to controls when cultivated at optimum conditions in skim milk or whey medium. PMID:16350009

  20. Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes.

    PubMed

    Farhadi, Sajjad; Aminzadeh, Behnoush; Torabian, Ali; Khatibikamal, Vahid; Alizadeh Fard, Mohammad

    2012-06-15

    This work makes a comparison between electrocoagulation (EC), photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes to investigate the removal of chemical oxygen demand (COD) from pharmaceutical wastewater. The effects of operational parameters such as initial pH, current density, applied voltage, amount of hydrogen peroxide and electrolysis time on COD removal efficiency were investigated and the optimum operating range for each of these operating variables was experimentally determined. In electrocoagulation process, the optimum values of pH and voltage were determined to be 7 and 40 V, respectively. Desired pH and hydrogen peroxide concentration in the Fenton-based processes were found to be 3 and 300 mg/L, respectively. The amounts of COD, pH, electrical conductivity, temperature and total dissolved solids (TDS) were on-line monitored. Results indicated that under the optimum operating range for each process, the COD removal efficiency was in order of peroxi-electrocoagulation > peroxi-photoelectrocoagulation > photoelectrocoagulation>electrocoagulation. Finally, a kinetic study was carried out using the linear pseudo-second-order model and results showed that the pseudo-second-order equation provided the best correlation for the COD removal rate. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Purification and biochemical characterization of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glutathione reductase from rat lung and inhibition effects of some antibiotics.

    PubMed

    Adem, Sevki; Ciftci, Mehmet

    2016-12-01

    G6PD, 6PGD and GR have been purified separately in the single step from rat lung using 2', 5'-ADP Sepharose 4B affinity chromatography. The purified enzymes showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of the enzymes were estimated to be 134 kDa for G6PD, 107 kDa for 6PGD and 121 kDa for GR by Sephadex G-150 gel filtration chromatography, and the subunit molecular weights was respectively found to be 66, 52 and 63 kDa by SDS-PAGE. Optimum pH, stable pH, optimum ionic strength, optimum temperature, KM and Vmax values for substrates were determined. Product inhibition studies were also performed. The enzymes were inhibited by levofloxacin, furosemide, ceftazidime, cefuroxime and gentamicin as in vitro with IC50 values in the range of 0.07-30.13 mM. In vivo studies demonstrated that lung GR was inhibited by furosemide and lung 6PGD was inhibited by levofloxacin.

  2. Statistical Optimization of 1,3-Propanediol (1,3-PD) Production from Crude Glycerol by Considering Four Objectives: 1,3-PD Concentration, Yield, Selectivity, and Productivity.

    PubMed

    Supaporn, Pansuwan; Yeom, Sung Ho

    2018-04-30

    This study investigated the biological conversion of crude glycerol generated from a commercial biodiesel production plant as a by-product to 1,3-propanediol (1,3-PD). Statistical analysis was employed to derive a statistical model for the individual and interactive effects of glycerol, (NH 4 ) 2 SO 4 , trace elements, pH, and cultivation time on the four objectives: 1,3-PD concentration, yield, selectivity, and productivity. Optimum conditions for each objective with its maximum value were predicted by statistical optimization, and experiments under the optimum conditions verified the predictions. In addition, by systematic analysis of the values of four objectives, optimum conditions for 1,3-PD concentration (49.8 g/L initial glycerol, 4.0 g/L of (NH 4 ) 2 SO 4 , 2.0 mL/L of trace element, pH 7.5, and 11.2 h of cultivation time) were determined to be the global optimum culture conditions for 1,3-PD production. Under these conditions, we could achieve high 1,3-PD yield (47.4%), 1,3-PD selectivity (88.8%), and 1,3-PD productivity (2.1/g/L/h) as well as high 1,3-PD concentration (23.6 g/L).

  3. Influence of bath PH value on microstructure and corrosion resistance of phosphate chemical conversion coating on sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Xue, Long-fei; Wang, Xiu-chun; Ding, Kai-hong; Cui, Sheng-li; Sun, Yong-cong; Li, Mu-sen

    2016-10-01

    The effect of bath PH value on formation, microstructure and corrosion resistance of the phosphate chemical conversion (PCC) coatings as well as the effect on the magnetic property of the magnets is investigated in this paper. The results show that the coating mass and thickness increase with the decrease of the bath PH value. Scanning electron microscopy observation demonstrates that the PCC coatings are in a blocky structure with different grain size. Transmission electron microscope and X-ray diffractometer tests reveal the coatings are polycomponent and are mainly composed of neodymium phosphate hydrate and praseodymium phosphate hydrate. The electrochemical analysis and static immersion corrosion test show the corrosion resistance of the PCC coatings prepared at bath PH value of 0.52 is worst. Afterwards the corrosion resistance increases first and then decreases with the increasing of the bath PH values. The magnetic properties of all the samples with PCC treatment are decreased. The biggest loss is occurred when the bath PH value is 0.52. Taken together, the optimum PH range of 1.00-1.50 for the phosphate solution has been determined.

  4. Optimizing the synthesis conditions of silver nanoparticles using corn starch and their catalytic reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Salaheldin, Hosam I.

    2018-06-01

    In this study, silver nanoparticles (SNPs) were synthesised in an aqueous solution of corn starch. To fabricate the SNPs, reaction conditions, such as varying silver nitrate () concentration, time, temperature and solution pH of the reaction, were optimized. Since, the optimum reaction conditions were found 1 mmo l‑1, 15 min and , respectively. Then, to study the role of pH on SNP synthesis, varying pH values of the solution (3, 5, 7, 9 and 11) were investigated. Subsequently, the obtained silver/starch nanocomposites were characterised using different techniques. The x-ray diffraction (XRD) results revealed that the particles were face-centred cubic (FCC), and had an average particle size of 7.5 nm. This was confirmed by high-resolution transmission electron microscopy (HR-TEM) images. Moreover, the synthesised SNPs, at different pH values, were used as nanocatalyst for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. Under optimum reaction conditions, the higher catalytic activity was obtained with SNPs synthesised at pH 11 compared to lower pH of 7 or 9. Therefore, the rapid, reproducible, cost-effective silver/starch nanocomposite can be widely used for various applications such as drug manufacturing (e.g. analgesics and antipyretics) and the removal of pollutants from wastewater.

  5. A study of the parameters affecting the effectiveness of Moringa oleifera in drinking water purification

    NASA Astrophysics Data System (ADS)

    Pritchard, M.; Craven, T.; Mkandawire, T.; Edmondson, A. S.; O'Neill, J. G.

    The powder obtained from the seeds of the Moringa oleifera tree has been shown to be an effective primary coagulant for water treatment. When the seeds are dried, dehusked, crushed and added to water, the powder acts as a coagulant binding colloidal particles and bacteria to form agglomerated particles (flocs), which settle allowing the clarified supernatant to be poured off. Very little research has been undertaken on the parameters affecting the effectiveness of M. oleifera, especially in Malawi, for purification of drinking water and there is a great need for further testing in this area. Conclusive data needs to be compiled to demonstrate the effects of various water parameters have on the efficiency of the seeds. A parametric study was undertaken at Leeds Metropolitan University, UK, with the aim to establish the most appropriate dosing method; the optimum dosage for removal of turbidity; the influence of pH and temperature; together with the shelf life of the M. oleifera seeds. The study revealed that the most suitable dosing method was to mix the powder into a concentrated paste, hence forming a stock suspension. The optimum M. oleifera dose, for turbidity values between 40 and 200 NTU, ranged between 30 and 55 mg/l. With turbidity set at 130 NTU and a M. oleifera dose within the optimum range at 50 mg/l, pH levels were varied between 4 and 9. It was discovered that the coagulant performance was not too sensitive to pH fluctuations when conditions were within the optimum range. The most efficient coagulation, determined by the greatest reduction in turbidity, occurred at pH 6.5. Alkaline conditions were overall more favourable than acidic conditions; pH 9 had an efficiency of 65% of optimum, whilst at pH 5 the efficiency dropped to around 55%. The efficiency further dropped at pH 4, where the powder only produced results of around 10% of optimum conditions. A temperature range of 4-60 °C was studied in this research. Colder waters (<15 °C) were found to hinder the effectiveness of the coagulation process. The higher the temperature the more effective was the coagulation. It was also found that the age of the seeds, up to 18 months, did not have any noticeable effect on dose level and percentage reduction in turbidity, although at 18 months the seeds had a narrower dosing range to produce near-optimum reduction. Seeds aged 24 months showed a significant decline in coagulant efficiency.

  6. Research on dispose of wastewater from printing and dyeing by CWF combined with Iron-carbon Microelectrolysis

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ye, Tingjin; Xu, Zizhen; Chen, Xiaogang; Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    The carboxymethylchitosan cladding coal ash (CWF) was oxidized by the high temperature using coal ash and sodium carboxymethyl chitosan as raw and processed material for treatment of simulated and actual printing and dyeing wastewater over iron-carbon micro-electrolysis. The results on pH and CWF dosage for effluent dispose were evaluated by the decolorization rate, COD removal efficiency and turbidity removal rate. The experimental results indicated that the decolorization rate was first augmented and then declined with the increase of pH, and attained a peak value when pH was at 5-6. The COD removal efficiency augmented with the augmented of pH, and attained a peak value when pH was 6-7. The turbidity removal rate was first increases and afterwards decreases with the augment of pH, and attained a peak value when pH was at 5-6. Furthermore, the optimum pH for the treatment of simulated dyeing wastewater was 6 over iron-carbon micro-electrolysis, which indicated that the appropriate pH can promote the degradation of wastewater.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qasim, Mohammad A., E-mail: qasimm@ipfw.edu; Song, Jikui; Markley, John L.

    Research highlights: {yields} Large pK shifts in ionizable groups when buried in the protein interior. {yields} Substrate dependent shifts in pH optimum for serine proteases. {yields} Lys side chain is a stronger acid in serine protease S{sub 1} pocket than Asp side chain. -- Abstract: Enzymatic hydrolysis of the synthetic substrate succinyl-Ala-Ala-Pro-Xxx-pNA (where Xxx = Leu, Asp or Lys) catalyzed by bovine chymotrypsin (CHYM) or Streptomyces griseus protease B (SGPB) has been studied at different pH values in the pH range 3-11. The pH optima for substrates having Leu, Asp, and Lys have been found to be 7.5-8.0, 5.5-6.0, andmore » {approx}10, respectively. At the normally reported pH optimum (pH 7-8) of CHYM and SGPB, the substrate with Leu at the reactive site is more than 25,000-fold more reactive than that with Asp. However, when fully protonated, Asp is nearly as good a substrate as Leu. The pK values of the side chains of Asp and Lys in the hydrophobic S{sub 1} pocket of CHYM and SGPB have been calculated from pH-dependent hydrolysis data and have been found to be about 9 for Asp and 7.4 and 9.7 for Lys for CHYM and SGPB, respectively. The results presented in this communication suggest a possible application of CHYM like enzymes in cleaving peptide bonds contributed by acidic amino acids between pH 5 and 6.« less

  8. Experimental Study on Treatment of Dyeing Wastewater by Activated Carbon Adsorption, Coagulation and Fenton Oxidation

    NASA Astrophysics Data System (ADS)

    Xiaoxu, SUN; Jin, XU; Xingyu, LI

    2017-12-01

    In this paper dyeing waste water was simulated by reactive brilliant blue XBR, activated carbon adsorption process, coagulation process and chemical oxidation process were used to treat dyeing waste water. In activated carbon adsorption process and coagulation process, the water absorbance values were measured. The CODcr value of water was determined in Fenton chemical oxidation process. Then, the decolorization rate and COD removal rate were calculated respectively. The results showed that the optimum conditions of activated carbon adsorption process were as follows: pH=2, the dosage of activated carbon was 1.2g/L, the adsorption reaction time was 60 min, and the average decolorization rate of the three parallel experiments was 85.30%. The optimum conditions of coagulation experiment were as follows: pH=8~9, PAC dosage was 70mg/L, stirring time was 20min, standing time was 45min, the average decolorization rate of the three parallel experiments was 74.48%. The optimum conditions for Fenton oxidation were Fe2+ 0.05g/L, H2O2 (30%) 14mL/L, pH=3, reaction time 40min. The average CODcr removal rate was 69.35% in three parallel experiments. It can be seen that in the three methods the activated carbon adsorption treatment of dyeing wastewater was the best one.

  9. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology

    PubMed Central

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-01-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter’s L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R2) for their absorbance, Hunter’s L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter’s b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter’s b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine. PMID:28401086

  10. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology.

    PubMed

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-03-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R 2 ) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

  11. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB

    PubMed Central

    He, Guo-qing; Kong, Qing; Chen, Qi-he; Ruan, Hui

    2005-01-01

    The production of butyric acid by Clostridium butyricum ZJUCB at various pH values was investigated. In order to study the effect of pH on cell growth, butyric acid biosynthesis and reducing sugar consumption, different cultivation pH values ranging from 6.0 to 7.5 were evaluated in 5-L bioreactor. In controlled pH batch fermentation, the optimum pH for cell growth and butyric acid production was 6.5 with a cell yield of 3.65 g/L and butyric acid yield of 12.25 g/L. Based on these results, this study then compared batch and fed-batch fermentation of butyric acid production at pH 6.5. Maximum value (16.74 g/L) of butyric acid concentration was obtained in fed-batch fermentation compared to 12.25 g/L in batch fermentation. It was concluded that cultivation under fed-batch fermentation mode could enhance butyric acid production significantly (P<0.01) by C. butyricum ZJUCB. PMID:16252341

  12. Determination of Chlorinity of Water without the Use of Chromate Indicator

    PubMed Central

    Hong, Tae-Kee; Kim, Myung-Hoon; Czae, Myung-Zoon

    2010-01-01

    A new method for determining chlorinity of water was developed in order to improve the old method by alleviating the environmental problems associated with the toxic chromate. The method utilizes a mediator, a weak acid that can form an insoluble salt with the titrant. The mediator triggers a sudden change in pH at an equivalence point in a titration. Thus, the equivalence point can be determined either potentiometrically (using a pH meter) or simply with an acid-base indicator. Three nontoxic mediators (phosphate, EDTA, and sulfite) were tested, and optimal conditions for the sharpest pH changes were sought. A combination of phosphate (a mediator) and phenolphthalein (an indicator) was found to be the most successful. The choices of the initial pH and the concentration of the mediator are critical in this approach. The optimum concentration of the mediator is ca. 1~2 mM, and the optimum value of the initial pH is ca. 9 for phosphate/phenolphthalein system. The method was applied to a sample of sea water, and the results are compared with those from the conventional Mohr-Knudsen method. The new method yielded chlorinity of a sample of sea water of (17.58 ± 0.22) g/kg, which is about 2.5% higher than the value (17.12 ± 0.22) g/kg from the old method. PMID:21461358

  13. Factors affecting degradation of dimethyl sulfoxide (DMSO) by fluidized-bed Fenton process.

    PubMed

    Bellotindos, Luzvisminda M; Lu, Meng-Hsuan; Methatham, Thanakorn; Lu, Ming-Chun

    2014-12-01

    In this study, the target compound is dimethyl sulfoxide (DMSO), which is used as a photoresist stripping solvent in the semiconductor and thin-film transistor liquid crystal display (TFT-LCD) manufacturing processes. The effects of the operating parameters (pH, Fe(2+) and H2O2 concentrations) on the degradation of DMSO in the fluidized-bed Fenton process were examined. This study used the Box-Behnken design (BBD) to investigate the optimum conditions of DMSO degradation. The highest DMSO removal was 98 % for pH 3, when the H2O2 to Fe(2+) molar ratio was 12. At pH 2 and 4, the highest DMSO removal was 82 %, when the H2O2 to Fe(2+) molar ratio was 6.5. The correlation of DMSO removal showed that the effect of the parameters on DMSO removal followed the order Fe(2+) > H2O2 > pH. From the BBD prediction, the optimum conditions were pH 3, 5 mM of Fe(2+), and 60 mM of H2O2. The difference between the experimental value (98 %) and the predicted value (96 %) was not significant. The removal efficiencies of DMSO, chemical oxygen demand (COD), total organic carbon (TOC), and iron in the fluidized-bed Fenton process were higher than those in the traditional Fenton process.

  14. Effect of pH and leucine concentration on aerosolization properties of carrier-free formulations of levofloxacin.

    PubMed

    Barazesh, Ahmadreza; Gilani, Kambiz; Rouini, Mohammadreza; Barghi, Mohammad Ali

    2018-06-15

    The aim of this study was to evaluate the effect of leucine at different pH values preferred for inhalation on particle characteristics and aerosolization performance of spray dried carrier-free formulations of levofloxacin. A full factorial design was applied to optimize the formulation containing levofloxacin with or without leucine in different pH values and the optimum condition was determined. Particle size and morphology, crystallinity state, electrostatic charge and surface composition of the particles were determined. Aerodynamic properties of the powders were also assessed by an Andersen cascade impactor after aerosolization through an Aerolizer® at an air flow rate of 60 L/min. The pH of initial solution affected various physical properties of the drug containing particles and hence their in vitro deposition. The profound effect of pH was on water content, electrostatic charge and surface composition of the particles. The negative effect of water content on in vitro deposition of the drug was covered by preferred surface accumulation of leucine at pH 6. Optimum formulation which obtained by co-spray drying of the drug with 21.79% leucine at pH 5.98 presented a fine particle fraction equal to 54.38. In conclusion, changing pH of the initial solution influenced the effect of leucine on aerosolization of levofloxacine spray dried particles by modification of their physical properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Control of enzymatic browning in apple slices by using ascorbic acid under different conditions.

    PubMed

    el-Shimi, N M

    1993-01-01

    Control of phenol oxidase activity in apple slices by the use of ascorbic acid at different pH values, temperature and time of incubation was investigated. The enzyme was almost inactivated at 1% and 1.5% ascorbic acid. Ascorbic acid solution (1%) caused a remarkable inhibition with the increasing acidity up to pH = 1. Heating treatments for apple slices dipped in 1% ascorbic acid caused a reduction of enzymatic browning, optimum temperature for inactivation of the enzyme was between 60-70 degrees C for 15 minutes. Increasing the time of dipping apple slices in 1% ascorbic acid solutions and at different pH values reduce phenolase activity.

  16. Highly efficient method towards in situ immobilization of invertase using cryogelation.

    PubMed

    Olcer, Zehra; Ozmen, Mehmet Murat; Sahin, Zeynep M; Yilmaz, Faruk; Tanriseven, Aziz

    2013-12-01

    A novel method was developed for the immobilization of Saccharomyces cerevisiae invertase within supermacroporous polyacrylamide cryogel and was used to produce invert sugar. First, the cross-linking of invertase with soluble polyglutaraldehyde (PGA) was carried out prior to immobilization in order to increase the bulkiness of invertase and thus preventing the leakage of the cross-linked enzyme after immobilization by entrapment. And then, in situ immobilization of PGA cross-linked invertase within cryogel synthesis was achieved by free radical polymerization in semi-frozen state. The method resulted in 100 % immobilization and 74 % activity yields. The immobilized invertase retained all the initial activity for 30 days and 30 batch reactions. Immobilization had no effect on optimum temperature and it was 60 °C for both free and immobilized enzyme. However, optimum pH was affected upon immobilization. Optimum pH values for free and immobilized enzyme were 4.5 and 5.0, respectively. The immobilized enzyme was more stable than the free enzyme at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes and microorganisms.

  17. Partial characterisation of digestive proteases of the Mayan cichlid Cichlasoma urophthalmus.

    PubMed

    Cuenca-Soria, C A; Álvarez-González, C A; Ortiz-Galindo, J L; Nolasco-Soria, H; Tovar-Ramírez, D; Guerrero-Zárate, R; Castillo-Domínguez, A; Perera-García, M A; Hernández-Gómez, R; Gisbert, E

    2014-06-01

    The characterisation of digestive proteases in native freshwater fish such as the Mayan cichlid Cichlasoma urophthalmus provides scientific elements that may be used to design balanced feed that matches with the digestive capacity of the fish. The purpose of this study was to characterise the digestive proteases, including the effect of the pH and the temperature on enzyme activity and stability, as well as the effect of inhibitors using multienzymatic extracts of the stomach and intestine of C. urophthalmus juveniles. Results showed that the optimum activities of the acid and alkaline proteases occurred at pH values of 3 and 9, respectively, whereas their optimum temperatures were 55 and 65 °C, respectively. The acid proteases were most stable at pH values of 2–3 and at temperatures of 35–45 °C, whereas the alkaline proteases were most stable at pH values of 6–9 and at 25–55 °C. The inhibition assays recorded a residual activity of 4% with pepstatin A for the acid proteases. The inhibition of the alkaline proteases was greater than 80% with TPCK, TLCK, EDTA and ovalbumin, and of 60 and 43.8% with PMSF and SBT1, respectively. The results obtained in this study make it possible to state that C. urophthalmus has a sufficiently complete digestive enzyme machinery to degrade food items characteristic of an omnivorous fish species, although specimens showed a tendency to carnivory.

  18. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems.

    PubMed

    Solak, Murat; Kiliç, Mehmet; Hüseyin, Yazici; Sencan, Aziz

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m(2), and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m(2), respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  19. Effect of pH on particles size and gas sensing properties of In2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Anand, Kanica; Thangaraj, Rengasamy; Singh, Ravi Chand

    2016-05-01

    In this work, indium oxide (In2O3) nanoparticles have been synthesized by co-precipitation method and the effect of pH on the structural and sensor response values of In2O3 nanoparticles has been reported. X-ray diffraction pattern (XRD) revealed the formation of cubic phase In2O3 nanoparticles. FESEM results indicate the formation of nearly spherical shape In2O3 nanoparticles. The band gap energy value changed with change in pH value and found to have highest value at pH 9. Indium oxide nanoparticles thus prepared were deposited as thick films on alumina substrates to act as gas sensors and their sensing response to ethanol vapors and LPG at 50 ppm was investigated at different operating temperatures. It has been observed that all sensors exhibited optimum response at 300°C towards ethanol and at 400°C towards LPG. In2O3 nanoparticles prepared at pH 9, being smallest in size as compared to other, exhibit highest sensor response (SR).

  20. Preparation of microcapsules by complex coacervation of gum Arabic and chitosan.

    PubMed

    Butstraen, Chloé; Salaün, Fabien

    2014-01-01

    Gum Arabic-chitosan microcapsules containing a commercially available blend of triglycerides (Miglyol 812 N) as core phase were synthesized by complex coacervation. This study was conducted to clarify the influence of different parameters on the encapsulation process, i.e. during the emulsion formation steps and during the shell formation, using conductometry, zeta potential, surface and interface tension measurement and Fourier-transform infrared spectroscopy. By carefully analyzing the influencing factors including phase volume ratio, stirring rate and time, pH, reaction time, biopolymer ratio and crosslinking effect, the optimum synthetic conditions were found out. For the emulsion step, the optimum phase volume ratio chosen was 0.10 and an emulsion time of 15 min at 11,000 rpm was selected. The results also indicated that the optimum formation of these complexes appears at a pH value of 3.6 and a weight ratio of chitosan to gum Arabic mixtures of 0.25. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Removal of Acid Yellow 17 Dye by Fenton Oxidation Process

    NASA Astrophysics Data System (ADS)

    Khan, Jehangeer; Sayed, Murtaza; Ali, Fayaz; Khan, Hasan Mahmood

    2018-05-01

    In the present research work the degradation of acid yellow 17 (AY 17) by H2O2/Fe2+ was investigated. The effect of various conditions such as pH value, temperature, conc. of H2O2, Fe2+, conc. of AY 17 were studied. Additionally the scavenging effects of various anions such as Cl-, SO42-, CO32- and HCO3-, on percent degradation of AY 17 were examined. It was found that these anions decrease percent degradation as well as rate of degradation reaction. The optimum conditions were determined as [AY 17]=[Fe2+]=0.06 mM [H2O2]=0.9 mM, and pH 3.0 for 60 min of reaction time. It was found that at optimum conditions 89% degradation of AY17 was achieved. The degradation kinetics of AY17 followed pseudo-first-order reaction kinetics. Thermodynamic studies under natural conditions showed positive value of ΔH (enthalpy) which indicates the degradation process is endothermic.

  2. TiO₂ beads and TiO₂-chitosan beads for urease immobilization.

    PubMed

    Ispirli Doğaç, Yasemin; Deveci, Ilyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-09-01

    The aim of the present study is to synthesize TiO2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO2 beads. In the first method (A), urease enzyme was immobilized onto TiO2 beads by adsorption and then crosslinking. In the second method (B), TiO2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5mg/ml for A and 1.0mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60°C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4-70°C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30°C (A), 40°C (B) and 35°C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65°C. However, at this temperature free urease protected only 15% activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Characterization of an Invertase with pH Tolerance and Truncation of Its N-Terminal to Shift Optimum Activity toward Neutral pH

    PubMed Central

    Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme. PMID:23638032

  4. Characterization of an invertase with pH tolerance and truncation of its N-terminal to shift optimum activity toward neutral pH.

    PubMed

    Du, Liqin; Pang, Hao; Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme.

  5. Removal Efficiency of Electrocoagulation Treatment Using Aluminium Electrode for Stabilized Leachate

    NASA Astrophysics Data System (ADS)

    Mohamad Zailani, L. W.; Amdan, N. S. Mohd; Zin, N. S. M.

    2018-04-01

    This research was conducted to investigate the performance of aluminium electrode in electrocoagulation process removing chemical oxygen demand (COD), ammonia, turbidity, colour and suspended solid (SS) from Simpang Renggam landfill leachate. Effects of current density, electrolysis duration and pH were observed in this study. From the data obtained, optimum condition at current density was recorded at 200 A/m2with the electrolysis duration of 20-minutes and optimum pH value at 4. The removal recorded at this condition for COD, ammonia, colour, turbidity and suspended solid were 60%, 37%, 94%, 88% and 89% respectively. Electrocoagulation treatment give a better result and can be applied for leachate treatment in future. Thus, electrocoagulation treatment has the potential to be used in treatment of leachate.

  6. Optimization of composite coagulant made from polyferric chloride and tapioca starch in landfill leachate treatment

    NASA Astrophysics Data System (ADS)

    Shaylinda, M. Z. N.; Hamidi, A. A.; Mohd, N. A.; Ariffin, A.; Irvan, D.; Hazreek, Z. A. M.; Nizam, Z. M.

    2018-04-01

    In this research, the performance of polyferric chloride and tapioca flour as composite coagulants for partially stabilized leachate was investigated. Response surface methodology (RSM) was used to optimize the coagulation and flocculation process of partially stabilized leachate. Central composite design a standard design tool in RSM was applied to evaluate the interactions and effects of dose and pH. Dose 0.2 g/L Fe and pH 4.71 were the optimum value suggested by RSM. Experimental test based on the optimum condition, resulted in 95.9%, 94.6% and 50.4% of SS, color and COD removals, respectively. The percentage difference recorded between experimental and model responses was <5%. Therefore, it can be concluded that RSM was an appropriate optimization tool for coagulation and flocculation process.

  7. Combination of novel coalescing oil water separator and electrocoagulation technique for treatment of petroleum compound contaminated groundwater.

    PubMed

    Oladzad, Sepideh; Fallah, Narges; Nasernejad, Bahram

    2017-07-01

    In the present study a combination of a novel coalescing oil water separator (COWS) and electrocoagulation (EC) technique was used for treatment of petroleum product contaminated groundwater. In the first phase, COWS was used as the primary treatment. Two different types of coalescing media and two levels of flow rates were examined in order to find the optimum conditions. The effluent of COWS was collected in optimum conditions and was treated using an EC process in the second phase of the research. In this phase, preliminary experiments were conducted in order to investigate the effect of EC reaction time and sedimentation time on chemical oxygen demand (COD) removal efficiency. Best conditions for EC reaction time and sedimentation time were obtained to be 5 min and 30 min, respectively. Response surface methodology was applied to evaluate the effect of initial pH, current density and aeration rate on settling velocity (V s ) and effluent COD. The optimum conditions, for achieving maximum values of V s as well as the values of effluent COD, in the range of results were obtained at conditions of 7, 34 mA·cm -2 and 1.5 L·min -1 for initial pH, current density and aeration rate, respectively.

  8. Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature.

    PubMed

    Farinas, Cristiane S; Loyo, Marcel Moitas; Baraldo, Anderson; Tardioli, Paulo W; Neto, Victor Bertucci; Couri, Sonia

    2010-12-31

    Ethanol from lignocellulosic biomass has been recognized as one of the most promising alternatives for the production of renewable and sustainable energy. However, one of the major bottlenecks holding back its commercialization is the high costs of the enzymes needed for biomass conversion. In this work, we studied the enzymes produced from a selected strain of Aspergillus niger under solid state fermentation. The cellulase and xylanase enzymatic cocktail was characterized in terms of pH and temperature by using response surface methodology. Thermostability and kinetic parameters were also determined. The statistical analysis of pH and temperature effects on enzymatic activity showed a synergistic interaction of these two variables, thus enabling to find a pH and temperature range in which the enzymes have a higher activity. The results obtained allowed the construction of mathematical models used to predict endoglucanase, β-glucosidase and xylanase activities under different pH and temperature conditions. Optimum temperature values for all three enzymes were found to be in the range between 35°C and 60°C, and the optimum pH range was found between 4 and 5.5. The methodology employed here was very effective in estimating enzyme behavior under different process conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. The use of artificial neural network for modeling the decolourization of acid orange 7 solution of industrial by ozonation process

    NASA Astrophysics Data System (ADS)

    Fatimah, S.; Wiharto, W.

    2017-02-01

    Acid Orange 7 (AO7) is one of the synthetic dye in the dyeing process in the textile industry. The use of this dye can produce wastewater which will be endangered if not treated well. Ozonation method is one technique to solve this problem. Ozonation is a waste processing techniques using ozone as an oxidizing agent. Variables used in this research is the ozone concentration, the initial concentration of AO7, temperature, and pH. Based on the experimental result that the optimum value decolourization percentage is 80% when the ozone concentration is 560 mg/L, the initial concentration AO7 is 14 mg/L, the temperature is 390 °C, and pH is 7,6. Decolourization efficiency of experimental results and predictions successfully modelled by the neural network architecture. The data used to construct a neural network architecture quasi newton one step secant as many as 31 data. A comparison between the predicted results of the designed ANN models and experiment was conducted. From the modeling results obtained MAPE value of 0.7763%. From the results of this artificial neural network architecture obtained the optimum value decolourization percentage in 80,64% when the concentration of ozone is 550 mg/L, the initial concentration AO7 is 11 mg/L, the temperature is 41 °C, and the pH is 7.9.

  10. Adsorption of Ni(II) onto Chemically Modified Spent Grated Coconut (Cocos Nucifera)

    NASA Astrophysics Data System (ADS)

    Hamzah, F. I.; Khalid, K.; Hanafiah, M. A. K. M.

    2017-06-01

    A new adsorbent of plant waste origin from coconut processing food factory was explored for removing Ni(II) from aqueous solutions. Several parameters such as pH, dosage, concentration and contact time were studied to obtain optimum conditions for treatment of Ni(II) contaminated wastewater. Spent grated coconut (Cocos nucifera) treated with sulfuric acid (SSGC) showed good adsorption capacity for Ni(II) ion. The amount adsorbed was affected by solution pH with the highest value achieved at pH 5. Other optimum conditions found were; dosage of 0.02 g, and 60 min of equilibrium time. Ni(II) adsorption obeyed the pseudo-second order kinetic model which suggested that chemisorption mechanism occurred in the adsorption process. The equilibrium data presented a better fitting to the Langmuir isotherm model, an indication that monolayer adsorption occurred onto a homogeneous surface. The maximum adsorption capacity, qmax was 97.09 mg g-1, thus SSGC can be classified as good and comparable with other plant waste adsorbents.

  11. Extraction of rare earth elements from low-grade Bauxite via precipitation reaction

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Nurani, Y.; Bahari, ZJ

    2018-03-01

    The aim of this research was to determine the optimum hydrometallurgical parameters to extract the rare earth elements (REE) from low-grade bauxite through acid leaching and precipitation reaction. REE or lanthanide recovery by a precipitation method with sodium sulphate and sodium phosphate as precipitation agents is reported where the effect of pH and recovery of REE are described. The metal composition of REE in low-grade bauxite after treatment were analyzed by ICP-OES. The total recovery values of REE elements at the first precipitation reaction using sodium sulphate as the precipitation agent at pH 3.5 showed ~68.2% of lanthanum, ~18.9% cerium, and ~7.8% yttrium. Lanthanum was the rare-earth element present at the highest concentration in the low-grade bauxite after the series treatments. An optimum pH of 3.5 for precipitation of rare-earth elements using sodium sulphate was demonstrated where this method is recommended for the extraction of REE elements from low-grade bauxite.

  12. Identification and characterization of yeasts causing chalk mould defects on par-baked bread.

    PubMed

    Deschuyffeleer, N; Audenaert, K; Samapundo, S; Ameye, S; Eeckhout, M; Devlieghere, F

    2011-08-01

    Pichia anomala, Hyphopichia burtonii and Saccharomycopsis fibuligera are spoilage yeasts causing chalk mould defects on par-baked breads packaged under modified atmosphere. The first objective of this study was to identify yeasts isolated from spoiled par-baked breads by means of a RAPD protocol and to determine the dominant spoilers amongst identified strains. The second objective was to determine the effects of water activity (a(w)) and pH value on the growth rates and lag phase durations of P. anomala, H. burtonii and S. fibuligera. 95% of the yeasts tested were identified as P. anomala and 5% as S. fibuligera, H. burtonii was not detected. In order to investigate the effect of a(w) and pH the growth of the three yeasts was tested within an a(w) range of 0.88-0.98 and a pH range of 2.8-8.0. P. anomala was able to grow from pH 2.8 to 8 without a clear optimum. S. fibuligera and H. burtonii showed a pH optimum for growth of 5. The optimum water activity for growth was different for the three strains and varied between 0.96 and 0.98. These growth data were further used to develop secondary models that describe the relationship between a(w) and the radial or colony growth rate (g, mm/d) or the lag phase duration (λ, d). The identification of the spoilage organisms and a good understanding of the effects of a(w) and pH on the growth behavior is essential for future development of adequate conservation strategies against chalk mould defects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Effect of pH on particles size and gas sensing properties of In{sub 2}O{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, Kanica, E-mail: kanica.anand@yahoo.com; Thangaraj, Rengasamy; Singh, Ravi Chand

    In this work, indium oxide (In{sub 2}O{sub 3}) nanoparticles have been synthesized by co-precipitation method and the effect of pH on the structural and sensor response values of In{sub 2}O{sub 3} nanoparticles has been reported. X-ray diffraction pattern (XRD) revealed the formation of cubic phase In{sub 2}O{sub 3} nanoparticles. FESEM results indicate the formation of nearly spherical shape In{sub 2}O{sub 3} nanoparticles. The band gap energy value changed with change in pH value and found to have highest value at pH 9. Indium oxide nanoparticles thus prepared were deposited as thick films on alumina substrates to act as gas sensorsmore » and their sensing response to ethanol vapors and LPG at 50 ppm was investigated at different operating temperatures. It has been observed that all sensors exhibited optimum response at 300°C towards ethanol and at 400°C towards LPG. In{sub 2}O{sub 3} nanoparticles prepared at pH 9, being smallest in size as compared to other, exhibit highest sensor response (SR).« less

  14. Enhancement of 2,3-Butanediol Production by Klebsiella oxytoca PTCC 1402

    PubMed Central

    Anvari, Maesomeh; Safari Motlagh, Mohammad Reza

    2011-01-01

    Optimal operating parameters of 2,3-Butanediol production using Klebsiella oxytoca under submerged culture conditions are determined by using Taguchi method. The effect of different factors including medium composition, pH, temperature, mixing intensity, and inoculum size on 2,3-butanediol production was analyzed using the Taguchi method in three levels. Based on these analyses the optimum concentrations of glucose, acetic acid, and succinic acid were found to be 6, 0.5, and 1.0 (% w/v), respectively. Furthermore, optimum values for temperature, inoculum size, pH, and the shaking speed were determined as 37°C, 8 (g/L), 6.1, and 150 rpm, respectively. The optimal combinations of factors obtained from the proposed DOE methodology was further validated by conducting fermentation experiments and the obtained results revealed an enhanced 2,3-Butanediol yield of 44%. PMID:21318172

  15. Isolation, Fractionation and Characterization of Catalase from Neurospora crassa (InaCC F226)

    NASA Astrophysics Data System (ADS)

    Suryani; Ambarsari, L.; Lindawati, E.

    2017-03-01

    Catalase from Indigenous isolate Neurospora crassa InaCC F226 has been isolated, fractionated and characterized. Production of catalase by Neurospora crassa was done by using PDA medium (Potato Dextrosa Agar) and fractionated with ammonium sulphate with 20-80% saturation. Fraction 60% was optimum saturation of ammonium sulphate and had highest specific activity 3339.82 U/mg with purity 6.09 times, total protein 0.920 mg and yield 88.57%. The optimum pH and temperature for catalase activity were at 40°C and pH 7.0, respectively. The metal ions that stimulated catalase activity acted were Ca2+, Mn2+ and Zn2+, and inhibitors were EDTA, Mg2+ and Cu2+. Based on Km and Vmax values were 0.2384 mM and 13.3156 s/mM.

  16. Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology.

    PubMed

    Hong, Chen; Haiyun, Wu

    2010-07-01

    Central-composite design (CCD) and response surface methodology (RSM) were used to optimize the parameters of volatile fatty acid (VFA) production from food wastes and dewatered excess sludge in a semi-continuous process. The effects of four variables (food wastes composition in the co-substrate of food wastes and excess sludge, hydraulic retention time (HRT), organic loading rate (OLR), and pH) on acidogenesis were evaluated individually and interactively. The optimum condition derived via RSM was food wastes composition, 88.03%; HRT, 8.92 days; OLR, 8.31 g VSS/ld; and pH 6.99. The experimental VFA concentration was 29,099 mg/l under this optimum condition, which was well in agreement with the predicted value of 28,000 mg/l. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Characterization and optimization of carboxylesterase-catalyzed esterification between capric acid and glycerol for the production of 1-monocaprin in reversed micellar system.

    PubMed

    Park, Kyung Min; Kwon, Oh Taek; Ahn, Seon Min; Lee, JaeHwan; Chang, Pahn-Shick

    2010-02-28

    Calotropis procera R. Br. carboxylesterase (EC 3.1.1.1) solubilized in reversed micellar glycerol droplets containing a very small amount of water (less than 5ppm) and stabilized by a surfactant effectively catalyzed the esterification between glycerol and capric acid to produce 1-monocaprin. Reaction variables including surfactant types, organic solvent media, reaction time, G-value ([glycerol]/[capric acid]), R-value ([water]/[surfactant]), pH, temperature, and types of metal ion inhibitors on the carboxylesterase-catalyzed esterification were characterized and optimized to efficiently produce 1-monocaprin. Bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and isooctane were the most effective surfactant and organic solvent medium, respectively, for 1-monocaprin formation in reversed micelles. The optimum G- and R-values were 3.0 and 0.05, respectively, and the optimum pH and temperature were determined to be 10.0 and 60 degrees C, respectively. K(m,app.) and V(max,app.) were calculated from a Hanes-Woolf plot, and the values were 9.64 mM and 2.45 microM/min mg protein, respectively. Among various metal ions, Cu(2+) and Fe(2+) severely inhibited carboxylesterase-catalyzed esterification activity (less than 6.0% of relative activity). Copyright 2009 Elsevier B.V. All rights reserved.

  18. Rheology of Dead Sea shampoo containing the antidandruff climbazole.

    PubMed

    Abu-Jdayil, B; Mohameed, H A

    2004-12-01

    In this study, the effect of the antidandruff climbazole on the rheology of hair shampoo containing Dead Sea (DS) salt was investigated. The presence of either DS salt or the climbazole led to increase in the shampoo viscosity. An optimum concentration was found where the viscosity of shampoo was maximum. In the absence of DS salt, the viscosity of hair shampoo increased with increasing the climbazole concentration to reach a maximum value at 1.0 wt%. Further addition of climbazole decreased the viscosity of shampoo. Adjusting the pH of the shampoo at 5.5 and 5.0 shifted the optimum climbazole concentration (corresponds to maximum viscosity) to 0.8 wt% and led to increase in the viscosity of shampoo. On the other hand, the addition of climbazole to the shampoo containing DS salt resulted in a decrease in shampoo viscosity. This decrease of shampoo viscosity became more pronounced with increasing the climbazole and/or DS salt concentrations. By controlling the pH of shampoo, an optimum formula of shampoo comprising both climbazole and DS salt and having maximum viscosity was obtained.

  19. Alkaline Fe(III) reduction by a novel alkali-tolerant Serratia sp. isolated from surface sediments close to Sellafield nuclear facility, UK.

    PubMed

    Thorpe, Clare L; Morris, Katherine; Boothman, Christopher; Lloyd, Jonathan R

    2012-02-01

    Extensive denitrification resulted in a dramatic increase in pH (from 6.8 to 9.5) in nitrate-impacted, acetate-amended sediment microcosms containing sediment representative of the Sellafield nuclear facility, UK. Denitrification was followed by Fe(III) reduction, indicating the presence of alkali-tolerant, metal-reducing bacteria. A close relative (99% 16S rRNA gene sequence homology) to Serratia liquefaciens dominated progressive enrichment cultures containing Fe(III)-citrate as the sole electron acceptor at pH 9 and was isolated aerobically using solid media. The optimum growth conditions for this facultatively anaerobic Serratia species were investigated, and it was capable of metabolizing a wide range of electron acceptors including oxygen, nitrate, FeGel, Fe-NTA and Fe-citrate and electron donors including acetate, lactate, formate, ethanol, glucose, glycerol and yeast extract at an optimum pH of c. 6.5 at 20 °C. The alkali tolerance of this strain extends the pH range of highly adaptable Fe(III)-reducing Serratia species from mildly acidic pH values associated with acid mine drainage conditions to alkali conditions representative of subsurface sediments stimulated for extensive denitrification and metal reduction. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. GMR-based PhC biosensor: FOM analysis and experimental studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syamprasad, Jagadeesh; Narayanan, Roshni; Joseph, Joby

    2014-02-20

    Guided Mode Resonance based Photonic crystal biosensor has a lot of potential applications. In our work, we are trying to improve their figure of merit values in order to achieve an optimum level through design and fabrication techniques. A robust and low-cost alternative for current biosensors is also explored through this research.

  1. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology.

    PubMed

    Muhammad Auwal, Shehu; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid

    2017-03-31

    The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4-7), temperature (40-70 °C), enzyme/substrate (E/S) ratio (0.5%-2%) and time (30-360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries.

  2. Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology

    PubMed Central

    2012-01-01

    This paper utilizes a statistical approach, the response surface optimization methodology, to determine the optimum conditions for the Acid Black 172 dye removal efficiency from aqueous solution by electrocoagulation. The experimental parameters investigated were initial pH: 4–10; initial dye concentration: 0–600 mg/L; applied current: 0.5-3.5 A and reaction time: 3–15 min. These parameters were changed at five levels according to the central composite design to evaluate their effects on decolorization through analysis of variance. High R2 value of 94.48% shows a high correlation between the experimental and predicted values and expresses that the second-order regression model is acceptable for Acid Black 172 dye removal efficiency. It was also found that some interactions and squares influenced the electrocoagulation performance as well as the selected parameters. Optimum dye removal efficiency of 90.4% was observed experimentally at initial pH of 7, initial dye concentration of 300 mg/L, applied current of 2 A and reaction time of 9.16 min, which is close to model predicted (90%) result. PMID:23369574

  3. Unique properties of arginase purified from camel liver cytosol.

    PubMed

    Maharem, Tahany M; Zahran, Walid E; Hassan, Rasha E; Abdel Fattah, Mohamed M

    2018-03-01

    Arginase (ARG) is an enzyme involved in urea cycle, where it catalyzes the hydrolysis of L-arginine into L-ornithine and urea. Since there is no information about the isolation and purification of ARG from camel liver, this investigation was designed to purify and characterize ARG from camel liver and compare its molecular and kinetic properties with that reported from other species. Camel liver arginase (CL-ARG) was purified to homogeneity using heat denaturation followed by ammonium sulphate precipitation with a combination of DEAE-cellulose, SP-Sepharose and Sephadex G 100-120 chromatography columns. The specific activity of CL-ARG was increased to 18,485 units/mg proteins with 23.5-fold purification over crude homogenate. It was observed that CL-ARG showed a similarity with other species such as behaviour on DEAE-cellulose column, kinetics of inhibition, necessity for metal ions as cofactor, and alkaline optimum pH. On the contrary, CL-ARG differed in its molecular weight (180kDa), oligomeric protein structure, slightly neutral-alkaline pI value (7.7), K m value (7.1mM), optimum pH (9, 10.7), and higher optimum temperature (70°C). In conclusion, this study investigated the properties of CL-ARG via a simple and reproducible purification procedure and provided valuable information for its production from available source in Egypt for medical and industrial purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.

    PubMed

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  5. Thermococcus prieurii sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent.

    PubMed

    Gorlas, Aurore; Alain, Karine; Bienvenu, Nadège; Geslin, Claire

    2013-08-01

    A novel hyperthermophilic, anaerobic archaeon, strain Bio-pl-0405IT2(T), was isolated from a hydrothermal chimney sample collected from the East Pacific Rise at 2700 m depth in the 'Sarah Spring' area (7° 25' 24" S 107° 47' 66" W). Cells were irregular, motile cocci (0.8-1.5 µm in diameter) and divided by constriction. Growth was observed at temperatures between 60 °C and 95 °C with an optimum at 80 °C. The pH range for growth was between pH 4.0 and pH 8.0 with an optimum around pH 7.0. Strain Bio-pl-0405IT2(T) grew at salt concentrations of 1-5 % (w/v) NaCl with an optimum at 2 %. The novel isolate grew by fermentation or sulphur respiration on a variety of organic compounds. It was a chemoorganoheterotrophic archaeon growing preferentially with yeast extract, peptone and tryptone as carbon and energy sources and sulphur and organic compounds as electron acceptors; it also grew on maltose and starch. Sulphur or l-cystine were required for growth and were reduced to hydrogen sulfide. The strain was resistant to rifampicin, chloramphenicol, vancomycin and kanamycin (all at 100 µg ml(-1)) but was sensitive to tetracycline. The G+C content of its genomic DNA was 53.6 mol%. Phylogenetic analysis of the almost complete 16S rRNA gene sequence (1450 bp) of strain Bio-pl-0405IT2(T) showed that the novel isolate belonged to the genus Thermococcus. DNA-DNA hybridization values with the two closest relatives Thermococcus hydrothermalis AL662(T) and Thermococcus celer JCM 8558(T) were below the threshold value of 70 %. On the basis of the physiological and genotypic distinctness, we propose a novel species, Thermococcus prieurii sp. nov. The type strain is Bio-pl-0405IT2(T) ( = CSUR P577(T)= JCM 16307(T)).

  6. Anodic oxidation of coke oven wastewater: Multiparameter optimization for simultaneous removal of cyanide, COD and phenol.

    PubMed

    Sasidharan Pillai, Indu M; Gupta, Ashok K

    2016-07-01

    Anodic oxidation of industrial wastewater from a coke oven plant having cyanide including thiocyanate (280 mg L(-1)), chemical oxygen demand (COD - 1520 mg L(-1)) and phenol (900 mg L(-1)) was carried out using a novel PbO2 anode. From univariate optimization study, low NaCl concentration, acidic pH, high current density and temperature were found beneficial for the oxidation. Multivariate optimization was performed with cyanide including thiocyanate, COD and phenol removal efficiencies as a function of changes in initial pH, NaCl concentration and current density using Box-Behnken experimental design. Optimization was performed for maximizing the removal efficiencies of these three parameters simultaneously. The optimum condition was obtained as initial pH 3.95, NaCl as 1 g L(-1) and current density of 6.7 mA cm(-2), for which the predicted removal efficiencies were 99.6%, 86.7% and 99.7% for cyanide including thiocyanate, COD and phenol respectively. It was in agreement with the values obtained experimentally as 99.1%, 85.2% and 99.7% respectively for these parameters. The optimum conditions with initial pH constrained to a range of 6-8 was initial pH 6, NaCl as 1.31 g L(-1) and current density as 6.7 mA cm(-2). The predicted removal efficiencies were 99%, 86.7% and 99.6% for the three parameters. The efficiencies obtained experimentally were in agreement at 99%, 87.8% and 99.6% respectively. The cost of operation for degradation at optimum conditions was calculated as 21.4 USD m(-3). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation.

    PubMed

    Zagrodnik, R; Laniecki, M

    2015-10-01

    The role of pH control on biohydrogen production by co-culture of dark-fermentative Clostridium acetobutylicum and photofermentative Rhodobacter sphaeroides was studied. Single stage dark fermentation, photofermentation and hybrid co-culture systems were studied at different values of controlled and uncontrolled pH. Increasing pH during dark fermentation resulted in lower hydrogen production rate (HPR) and longer lag time for both controlled and uncontrolled conditions. However, it only slightly affected cumulative H2 volume. Results have shown that pH control at pH 7.5 increased photofermentative hydrogen production from 0.966 to 2.502 L H2/L(medium) when compared to uncontrolled process. Fixed pH value has proven to be an important control strategy also for the hybrid process and resulted in obtaining balanced co-culture of dark and photofermentative bacteria. Control of pH at 7.0 was found optimum for bacteria cooperation in the co-culture what resulted in obtaining 2.533 L H2/L(medium) and H2 yield of 6.22 mol H2/mol glucose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant.

    PubMed Central

    Becker, D; Braet, C; Brumer , H; Claeyssens, M; Divne, C; Fagerström, B R; Harris, M; Jones, T A; Kleywegt, G J; Koivula, A; Mahdi, S; Piens, K; Sinnott, M L; Ståhlberg, J; Teeri, T T; Underwood, M; Wohlfahrt, G

    2001-01-01

    The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala(224)) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves. The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 A (=0.1 nm) closer to the acid/base Glu(217) residue, with a 3.1 A contact between N(epsilon2) and O(epsilon1). The pH variation of k(cat)/K(m) for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wild-type and mutant, with pK(1) shifting from 2.22+/-0.03 in the wild-type to 3.19+/-0.03 in the mutant, and pK(2) shifting from 5.99+/-0.02 to 6.78+/-0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative k(cat) for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower k(cat)/K(m) values for both lactosides and cellobiosides, and a marginally lower stability. However, k(cat) values for cellobiosides are higher for the mutant. This we attribute to reduced non-productive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds. PMID:11336632

  9. Phase angle assessment by bioelectrical impedance analysis and its predictive value for malnutrition risk in hospitalized geriatric patients.

    PubMed

    Varan, Hacer Dogan; Bolayir, Basak; Kara, Ozgur; Arik, Gunes; Kizilarslanoglu, Muhammet Cemal; Kilic, Mustafa Kemal; Sumer, Fatih; Kuyumcu, Mehmet Emin; Yesil, Yusuf; Yavuz, Burcu Balam; Halil, Meltem; Cankurtaran, Mustafa

    2016-12-01

    Phase angle (PhA) value determined by bioelectrical impedance analysis (BIA) is an indicator of cell membrane damage and body cell mass. Recent studies have shown that low PhA value is associated with increased nutritional risk in various group of patients. However, there have been only a few studies performed globally assessing the relationship between nutritional risk and PhA in hospitalized geriatric patients. The aim of the study is to evaluate the predictive value of the PhA for malnutrition risk in hospitalized geriatric patients. One hundred and twenty-two hospitalized geriatric patients were included in this cross-sectional study. Comprehensive geriatric assessment tests and BIA measurements were performed within the first 48 h after admission. Nutritional risk state of the patients was determined with NRS-2002. Phase angle values of the patients with malnutrition risk were compared with the patients that did not have the same risk. The independent variables for predicting malnutrition risk were determined. SPSS version 15 was utilized for the statistical analyzes. The patients with malnutrition risk had significantly lower phase angle values than the patients without malnutrition risk (p = 0.003). ROC curve analysis suggested that the optimum PhA cut-off point for malnutrition risk was 4.7° with 79.6 % sensitivity, 64.6 % specificity, 73.9 % positive predictive value, and 73.9 % negative predictive value. BMI, prealbumin, PhA, and Mini Mental State Examination Test scores were the independent variables for predicting malnutrition risk. PhA can be a useful, independent indicator for predicting malnutrition risk in hospitalized geriatric patients.

  10. Synthesis and formation mechanism of pinnoite by the phase transition process

    NASA Astrophysics Data System (ADS)

    Lin, Feng; Dong, Yaping; Peng, Jiaoyu; Wang, Liping; Li, Wu

    2016-06-01

    Pinnoite (MgB2O(OH)6) for the first time was synthesized using the solid-liquid-solid conversion method. The effects of reaction time, pH value and concentrations of magnesium and borate were investigated. Pinnoite was synthesized under the optimum condition of 8 mmol hungtsaoite and 1% boric acid solution at 80 °C. The products were determined using X-ray diffraction, Fourier-transform infrared spectroscopy, TG-DSC and a UV-vis spectrometer. The change processes of the surface morphology of pinnoite were investigated using scanning electron microscopy. In addition, the formation mechanism of pinnoite was discussed according to the changes in the content of precipitation and pH value.

  11. Nickel adsorption onto polyurethane ethylene and vinyl acetate sorbents.

    PubMed

    Iqbal, Munawar; Ali, Zahid; Qamar, M Afzal; Ali, Abid; Hussain, Fida; Abbas, Mazhar; Nisar, Jan

    2017-07-01

    The present study was conducted to appraise the efficiencies of polyurethane ethylene sorbent (PES) and vinyl acetate sorbent (VAS) for nickel (Ni) adsorption. Process variables, i.e. Ni(II) ions initial concentration, pH, contact time and adsorbent dosage were optimized by response surface methodology (RSM) approach. The Ni(II) adsorption was fitted to the kinetic models (pseudo-first-order and pseudo-second-order) and adsorption isotherms (Freundlich and Langmuir). At optimum conditions of process variables, 171.99 mg/g (64.7%) and 388.08 mg/g (92.7%) Ni(II) was adsorbed onto PES and VAS, respectively. The RSM analysis revealed that maximum Ni(II) adsorption can be achieved at 299 mg/L Ni(II) ions initial concentration, 4.5 pH, 934 min contact time and 1.3 g adsorbent dosage levels for PES, whereas the optimum values for VAS were found to be 402 mg/L Ni(II) ions initial concentration, 4.6 pH, 881 min contact time and 1.2 g adsorbent dosage, respectively. The -OH and -C = O- were involved in the Ni(II) adsorption onto PES and VAS adsorbents. At optimum levels, up to 53.67% and 80.0% Ni(II) was removed from chemical industry wastewater using PES and VAS, respectively, which suggest that PES and VAS could possibly be used for Ni(II) adsorption from industrial wastewater.

  12. Influence of Polyvinyl Alcohol (PVA) Addition on Silica Membrane Performance Prepared from Rice Straw

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Wardoyo, D. T.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The utilization and modification of silica from rice straw as the main ingredient of adsorbent has been studied. The aim of this study was to determine the optimum composition of PVA (polyvinyl alcohol): silica to produce adsorbents with excellent pore characteristics, optimum adsorption efficiency and optimum pH for methyl yellow adsorptions. X-Ray Fluorescence (XRF) analysis results showed that straw ash contains 82.12 % of silica (SiO2). SAA (Surface Area Analyzer) analysis showed optimum composition ratio 5:5 of PVA: silica with surface area of 1.503 m2/g. Besides, based on the pore size distribution of PVA: silica (5:5) showed the narrow pore size distribution with the largest pore cumulative volume of 2.8 x 10-3 cc/g. The optimum pH for Methanyl Yellow adsorption is pH 2 with adsorption capacity = 72.1346%.

  13. pH-dependent hydrolysis of acetylcholine: Consequences for non-neuronal acetylcholine.

    PubMed

    Wessler, Ignaz; Michel-Schmidt, Rosmarie; Kirkpatrick, Charles James

    2015-11-01

    Acetylcholine is inactivated by acetylcholinesterase and butyrylcholinesterase and thereby its cellular signalling is stopped. One distinguishing difference between the neuronal and non-neuronal cholinergic system is the high expression level of the esterase activity within the former and a considerably lower level within the latter system. Thus, any situation which limits the activity of both esterases will affect the non-neuronal cholinergic system to a much greater extent than the neuronal one. Both esterases are pH-dependent with an optimum at pH above 7, whereas at pH values below 6 particularly the specific acetylcholinesterase is more or less inactive. Thus, acetylcholine is prevented from hydrolysis at such low pH values. The pH of the surface of the human skin is around 5 and therefore non-neuronal acetylcholine released from keratinocytes can be detected in a non-invasive manner. Several clinical conditions like metabolic acidosis, inflammation, fracture-related haematomas, cardiac ischemia and malignant tumours are associated with local or systemic pH values below 7. Thus, the present article describes some consequences of an impaired inactivation of extracellular non-neuronal acetylcholine. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs.

    PubMed

    Gerlach, Thomas; Hensen, Luca; Matrosovich, Tatyana; Bergmann, Janina; Winkler, Michael; Peteranderl, Christin; Klenk, Hans-Dieter; Weber, Friedemann; Herold, Susanne; Pöhlmann, Stefan; Matrosovich, Mikhail

    2017-06-01

    The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins. IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN-induced cellular proteins. The IFN-induced proteins of the IFITM family block IAV entry into target cells and can restrict viral spread and pathogenicity. Here we show for the first time that the sensitivity of IAVs to the IFN-induced antiviral state and IFITM2 and IFITM3 proteins depends on the pH value at which the viral HA undergoes a conformational transition and mediates membrane fusion. Our data imply that the high pH optimum of membrane fusion typical of zoonotic IAVs of gallinaceous poultry, such as H5N1 and H7N9, may contribute to their enhanced virulence in humans. Copyright © 2017 American Society for Microbiology.

  15. pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs

    PubMed Central

    Gerlach, Thomas; Hensen, Luca; Matrosovich, Tatyana; Bergmann, Janina; Winkler, Michael; Peteranderl, Christin; Klenk, Hans-Dieter; Herold, Susanne

    2017-01-01

    ABSTRACT The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins. IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN-induced cellular proteins. The IFN-induced proteins of the IFITM family block IAV entry into target cells and can restrict viral spread and pathogenicity. Here we show for the first time that the sensitivity of IAVs to the IFN-induced antiviral state and IFITM2 and IFITM3 proteins depends on the pH value at which the viral HA undergoes a conformational transition and mediates membrane fusion. Our data imply that the high pH optimum of membrane fusion typical of zoonotic IAVs of gallinaceous poultry, such as H5N1 and H7N9, may contribute to their enhanced virulence in humans. PMID:28356532

  16. Cellulase and cell differentiation in Acer pseudoplatanus.

    PubMed

    Sheldrake, A R

    1970-06-01

    Homogenates of differentiating xylem and phloem tissue have higher cellulase activities than cambial samples; the highest activity is always found in phloem. Callus tissue, in which no vascular differentiation occurs, contains only low cellulase activity. The results suggest that cellulase is involved in vascular differentiation. Different pH optima of cellulase activity were found: in cambium, xylem and phloem tissue, cellulase activity with an optimum at about pH 5.9 is predominantly membrane-bound; it is sedimentable at 100,000 g and releasable by Triton X-100. The same may be true of activity with an optimum at pH 5.3. Phloem tissue also contains a soluble, cytoplasmic cellulase of high activity at pH 7.1, and xylem tissue contains cytoplasmic cellulase with an optimum at pH 6.5. Low cellulase activity with a pH optimum similar to that of xylem homogenates was found in xylem sap. Cellulase activity in abscission zones increases greatly just before leaf abscission. Abscission zone cellulase has two pH optima, et 5.3 and 5.9; both activities are increased by Triton treatment of homogenates. The possible existence of several different cellulases forming part of a cellulase complex, and the rôle of the enzymes in hydrolysing wall material during cell differentiation are discussed.

  17. A parametric comparative study of electrocoagulation and coagulation using ultrafine quartz suspensions.

    PubMed

    Kiliç, Mehtap Gülsün; Hoşten, Cetin; Demirci, Sahinde

    2009-11-15

    This paper attempts to compare electrocoagulation using aluminum anodes and stainless steel cathodes with conventional coagulation by aluminum sulfate dosing on aqueous suspensions of ultrafine quartz. Several key parameters affecting the efficiency of electrocoagulation and coagulation were investigated with laboratory scale experiments in search of optimal parameter values. Optimal values of the parameters were determined on the basis of the efficiency of turbidity removal from ultrafine quartz suspensions. The parameters investigated in the study were suspension pH, electrical potential, current density, electrocoagulation time, and aluminum dosage. A comparison between electrocoagulation and coagulation was made on the basis of total dissolved aluminum, revealing that electrocoagulation and coagulation were equally effective at the same aluminum dosage for the removal of quartz particles from suspensions. Coagulation, however, was more effective in a wider pH range (pH 6-9) than electrocoagulation which yielded optimum effectiveness in a relatively narrower pH range around 9, where, in both methods, these pH values corresponded to near-zero zeta potentials of quartz particles. Furthermore, experimental results confirmed that electrocoagulation could display some pH buffering capacity. The kinetics of electrocoagulation was very fast (<10 min) in approaching a residual turbidity, which could be modeled with a second-order rate equation.

  18. Immobilization and kinetics of catalase on calcium carbonate nanoparticles attached epoxy support.

    PubMed

    Preety; Hooda, Vinita

    2014-01-01

    A novel hybrid epoxy/nano CaCO3 composite matrix for catalase immobilization was prepared by polymerizing epoxy resin in the presence of CaCO3 nanoparticles. The hybrid support was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. Catalase was successfully immobilized onto epoxy/nano CaCO3 support with a conjugation yield of 0.67 ± 0.01 mg/cm(2) and 92.63 ± 0.80 % retention of activity. Optimum pH and optimum temperature of free and immobilized catalases were found to be 7.0 and 35 °C. The value of Km for H2O2 was higher for immobilized enzyme (31.42 mM) than native enzyme (27.73 mM). A decrease in Vmax value from 1,500 to 421.10 μmol (min mg protein)(-1) was observed after immobilization. Thermal and storage stabilities of catalase improved immensely after immobilization. Immobilized enzyme retained three times than the activity of free enzyme when kept at 75 °C for 1 h and the half-life of enzyme increased five times when stored in phosphate buffer (0.01 M, pH 7.0) at 5 °C. The enzyme could be reused 30 times without any significant loss of its initial activity. Desorption of catalase from the hybrid support was minimum at pH 7.0.

  19. Adsorption Effectivity Test of Andisols Clay-Zeolite (ACZ) Composite as Chromium Hexavalent (Cr(VI)) Ion Adsorbent

    NASA Astrophysics Data System (ADS)

    Pranoto; Masykur, A.; Nugroho, Y. A.

    2018-03-01

    Adsorption of chromium hexavalent (Cr(VI)) ion in aqueous solution was investigated. This research was purposed to study the influence of the composition of ACZ, temperature activation, and contact time against adsorption capacity of Cr(VI) ion in aqueous solution. Determination of adsorption effectivity using several parameter such as composition variation of ACZ, contact time, pH, activation temperature, and concentration. In this research, andisol clay and zeolite has been activated with NaOH 3 M and 1 M, respectively. Temperature variation used 100, 200, and 400°C. While composition variation ACZ used 0:100, 25:75, 50:50, 75:25, 100:0. The pH variation was used 2 – 6 and concentration variation using 2, 4, 6, 8, 10, and 12 ppm. Characterization in this research used such as UV-Vis, Surface Area Analyzer (SAA) and Acidity Analysis. Result of this research is known that optimum composition of ACZ was 50:50 with calcination temperature 100°C. Optimum adsorption of Cr(VI) at pH 4 with removal percentage 76.10 % with initial concentration 2 ppm and adsorption capacity is 0.16 mg/g. Adsorption isotherm following freundlich isotherm with value Kf = 0.17 mg/g and value n is 0.963. Based on results, ACZ composite can be used as Cr(VI) ion adsorbents in aqueous solutions.

  20. Effects of pH and Magnetic Material on Immunomagnetic Separation of Cryptosporidium Oocysts from Concentrated Water Samples

    PubMed Central

    Kuhn, Ryan C.; Rock, Channah M.; Oshima, Kevin H.

    2002-01-01

    In this study, we examined the effect that magnetic materials and pH have on the recoveries of Cryptosporidium oocysts by immunomagnetic separation (IMS). We determined that particles that were concentrated on a magnet during bead separation have no influence on oocyst recovery; however, removal of these particles did influence pH values. The optimal pH of the IMS was determined to be 7.0. The numbers of oocysts recovered from deionized water at pH 7.0 were 26.3% higher than those recovered from samples that were not at optimal pH. The results indicate that the buffers in the IMS kit did not adequately maintain an optimum pH in some water samples. By adjusting the pH of concentrated environmental water samples to 7.0, recoveries of oocysts increased by 26.4% compared to recoveries from samples where the pH was not adjusted. PMID:11916735

  1. Physico-chemical and microbiological characteristics of water for fish production using small ponds

    NASA Astrophysics Data System (ADS)

    Ntengwe, Felix W.; Edema, Mojisola O.

    The physical-chemical and biological characteristics of water in fish ponds were investigated with a view to optimise the conditions for fish productivity using small ponds. Five fish ponds were used in the study. The water samples were collected in each pond at a depth of 10-15 cm from the surface over a period of six months and analysed for pH, temperature, DO, alkalinity. The fish activity and growth rates were also assessed. The results showed that the ponds were slightly acidic to neutral (pH 6.69-7.66). The mean lowest and highest values of DO were 9.05 and 9.93 mg/L while the values for alkalinity were 67.86 and 90.57 mg/L respectively. The bacterial counts were in the order of 10 6 and the populations comprised Pseudomonas, Enterobacter, Salmonella, Staphylococcus, Bacillus, Azotobacter, Arthrobacter species and Escherichia coli. It was also observed that the fish activity increased as the temperature of the water varied from April to September as given by the activity ranges of 55-95, 40-80, 55-80, 70-95 and 55-95/m 2 for ponds P1, P2, P3, P4 and P5, respectively. The lowest values were in the months of April, May and June and highest values were in the months of July, August and September. The optimum conditions for increased fish productivity were found to be the warm temperatures (20 < t < 30 °C), adequate DO level (>4 mg/L) and appropriate pH (6 < pH < 9) and alkalinity (Alk) (80 < Alk < 200 mg/L). The correlations between characteristics were significant at 0.01 and 0.05 levels (2 tailed). Therefore, the fish productivity can be enhanced if the conditions in the ponds were maintained at optimum levels.

  2. Purification and characterization of peroxidase from cauliflower (Brassica oleracea L. var. botrytis) buds.

    PubMed

    Köksal, Ekrem; Gülçin, Ilhami

    2008-01-01

    Peroxidases (EC 1.11.1.7; donor: hydrogen peroxide oxidoreductase) are part of a large group of enzymes. In this study, peroxidase, a primer antioxidant enzyme, was purified with 19.3 fold and 0.2% efficiency from cauliflower (Brassica oleracea L.) by ammonium sulphate precipitation, dialysis, CM-Sephadex ion-exchange chromatography and Sephadex G-25 purification steps. The substrate specificity of peroxidase was investigated using 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulphonic acid) (ABTS), 2-methoxyphenol (guaiacol), 1,2-dihydroxybenzene (catechol), 1,2,3-trihyidroxybenzene (pyrogallol) and 4-methylcatechol. Also, optimum pH, optimum temperature, optimum ionic strength, stable pH, stable temperature, thermal inactivation conditions were determined for guaiacol/H(2)O(2), pyrogallol/H(2)O(2), ABTS/H(2)O(2), catechol/H(2)O(2) and 4-methyl catechol/H(2)O(2) substrate patterns. The molecular weight (M(w)) of this enzyme was found to be 44 kDa by gel filtration chromatography method. Native polyacrylamide gel electrophoresis (PAGE) was performed for isoenzyme determination and a single band was observed. K(m) and V(max) values were calculated from Lineweaver-Burk graph for each substrate patterns.

  3. Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process.

    PubMed

    Chou, Wei-Lung; Wang, Chih-Ta; Yang, Kai-Chiang; Huang, Yen-Hsiang

    2008-12-15

    Supercritical carbon dioxide extraction, which is a feasible "green" alternative, was applied in this study as a sample pretreatment step for the removal of gallium (III) ions from acidic aqueous solution. The effect of various process parameters, including various chelating agents, extraction pressure and temperature, dimensionless CO(2) volume, the concentration of the chelating agent, and the pH of the solution, governing the efficiency and throughput of the procedure were systematically investigated. The performance of the various chelating agents from different studies indicated that the extraction efficiency of supercritical CO(2) was in the order: thiopyridine (PySH)>thenoyltrifluoroacetone (TTAH)>acetylacetone (AcAcH). The optimal extraction pressure and temperature for the supercritical CO(2) extraction of gallium (III) with chelating agent PySH were found to be 70 degrees C and 3000psi, respectively. The optimum concentration of the chelating agent was found to be 50ppm. A value of 7.5 was selected as the optimum dimensionless CO(2) volume. The optimum pH of the solution for supercritical CO(2) extraction should fall in the range of 2.0-3.0.

  4. Different treatment strategies for highly polluted landfill leachate in developing countries.

    PubMed

    Mahmud, Kashif; Hossain, Md Delwar; Shams, Shahriar

    2012-11-01

    The aim of this research was to determine appropriate treatment technique for effective treatment of heavily polluted landfill leachate. We accomplished several treatment experiments: (i) aerobic biological treatment, (ii) chemical coagulation, (iii) advanced oxidation process (AOP) and (iv) several combined treatment strategies. Efficiency of these treatment procedures were monitored by analysing COD and colour removal. Leachate used for this study was taken from Matuail landfill site at Dhaka city. With extended aeration process which is currently used in Matuail landfill site for leachate treatment, maximum COD and colour removal of 36% and 20%, respectively could be achieved with optimum retention period of 7 days. With optimum aluminium sulphate dose of 15,000 mg/L and pH value of 7.0, maximum COD and colour removals of 34% and 66%, respectively were observed by using chemical coagulation. With optimum pH of 5.0 and optimum dosages of reagents having H(2)O(2)/Fe(2+) molar ratio of 1.3 the highest removal of COD and colour were found 68% and 87%, respectively with sludge production of 55%. Fenton treatment which is an advanced oxidation process was the most successful between these three separate treatment procedures. Among the combined treatment options performed, extended aeration followed by Fenton method was the most suitable one. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Exploring the Limits of Cell Adhesion under Shear Stress within Physiological Conditions and beyond on a Chip.

    PubMed

    Stamp, Melanie E M; Jötten, Anna M; Kudella, Patrick W; Breyer, Dominik; Strobl, Florian G; Geislinger, Thomas M; Wixforth, Achim; Westerhausen, Christoph

    2016-10-21

    Cell adhesion processes are of ubiquitous importance for biomedical applications such as optimization of implant materials. Here, not only physiological conditions such as temperature or pH, but also topographical structures play crucial roles, as inflammatory reactions after surgery can diminish osseointegration. In this study, we systematically investigate cell adhesion under static, dynamic and physiologically relevant conditions employing a lab-on-a-chip system. We screen adhesion of the bone osteosarcoma cell line SaOs-2 on a titanium implant material for pH and temperature values in the physiological range and beyond, to explore the limits of cell adhesion, e.g., for feverish and acidic conditions. A detailed study of different surface roughness R q gives insight into the correlation between the cells' abilities to adhere and withstand shear flow and the topography of the substrates, finding a local optimum at R q = 22 nm. We use shear stress induced by acoustic streaming to determine a measure for the ability of cell adhesion under an external force for various conditions. We find an optimum of cell adhesion for T = 37 °C and pH = 7.4 with decreasing cell adhesion outside the physiological range, especially for high T and low pH. We find constant detachment rates in the physiological regime, but this behavior tends to collapse at the limits of 41 °C and pH 4.

  6. Application of rhamnolipid and surfactin for enhanced diesel biodegradation--effects of pH and ammonium addition.

    PubMed

    Whang, Liang-Ming; Liu, Pao-Wen G; Ma, Chih-Chung; Cheng, Sheng-Shung

    2009-05-30

    This study investigated the effects of pH and ammonium concentrations on the potential application of two biosurfactants, surfactin (SF) and rhamnolipid (RL), for enhanced diesel biodegradation with a series of bench-scale experiments. In general, compared to the experiments without biosurfactant addition, adding RL or SF to diesel-water systems at concentrations above their critical micelle concentration (CMC) values benefited diesel emulsification, and therefore enhanced diesel biodegradation. The effects of pH on RL or SF-enhanced biodegradation of diesel were in good agreement with the trends of emulsion index values for RL or SF addition, respectively, under different pH conditions, suggesting that enhanced diesel emulsification by RL or SF addition promoted biodegradation of diesel. In diesel-water systems with 50mg/L of RL addition, an optimum pH condition for microbial growth and diesel biodegradation was found to be at a pH 7.2, while decreasing pH to 5.2 or increasing it to 8.4 reduced those parameters considerably. For the cases where 40 mg/L of SF was added, the enhancing ability shared a general trend with that observed for adding 50mg/L of RL as the pH increased from 5.2 to 7.2. Further increase of pH to 8.4, however, did not seem to negatively influence biodegradation and biomass growth. With respect to the effects of ammonium concentration on diesel biodegradation in diesel-water systems with 50mg/L of RL addition, an optimum ammonium addition for microbial growth and diesel biodegradation was found between 200 and 300 mg-N/L, but a dramatic decrease in growth and biodegradation occurred at ammonium addition up to 450 mg-N/L. For the cases where 40 mg/L of SF was added, an increase of ammonium addition from 50 to 200mg-N/L substantially increased microbial growth and biodegradation of diesel. Further increase of ammonium concentration to 450 mg-N/L, however, did not further improve diesel biodegradation.

  7. Boron removal by electrocoagulation and recovery.

    PubMed

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Optimization of pectin extraction from banana peels with citric acid by using response surface methodology.

    PubMed

    Oliveira, Túlio Ítalo S; Rosa, Morsyleide F; Cavalcante, Fabio Lima; Pereira, Paulo Henrique F; Moates, Graham K; Wellner, Nikolaus; Mazzetto, Selma E; Waldron, Keith W; Azeredo, Henriette M C

    2016-05-01

    A central composite design was used to determine effects of pH (2.0-4.5), extraction temperature (70-90 °C) and time (120-240 min) on the yield, degree of methoxylation (DM) and galacturonic acid content (GA) of pectins extracted from banana peels with citric acid. Changes in composition during the main steps of pectin extraction were followed by Fourier transform infrared (FTIR) spectroscopy. FTIR was also used to determine DM and GA of pectins. Harsh temperature and pH conditions enhanced the extraction yield, but decreased DM. GA presented a maximum value at 83 °C, 190 min, and pH 2.7. The yield of galacturonic acid (YGA), which took into account both the extraction yield and the pectin purity, was improved by higher temperature and lower pH values. The optimum extraction conditions, defined as those resulting in a maximum YGA while keeping DM at a minimum of 51%, were: 87 °C, 160 min, pH 2.0. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Multidrug resistance protein MdtM adds to the repertoire of antiporters involved in alkaline pH homeostasis in Escherichia coli

    PubMed Central

    2013-01-01

    Background In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. Results Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. Conclusions Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli. PMID:23701827

  10. Multidrug resistance protein MdtM adds to the repertoire of antiporters involved in alkaline pH homeostasis in Escherichia coli.

    PubMed

    Holdsworth, Scarlett R; Law, Christopher J

    2013-05-23

    In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli.

  11. Characterisation of medical-waste sterilisation-plant wastewater and a preliminary study of coagulation-flocculation treatment options.

    PubMed

    Ozkan, O; Mihçiokur, H; Azgin, S T; Ozdemir, O

    2010-01-01

    Wastewater from a medical-waste sterilisation plant (MWSP) contains unique pollutants and requires on-site treatment to prevent contamination of the municipal sewage system and receiving water bodies. Therefore, to meet the prescribed discharge standards and comply with the legal regulations, pre-treatment must be applied to MWSP wastewater. In this study, the capabilities of coagulation-flocculation processes were investigated for MWSP wastewater treatment. Processes using ferric chloride, ferrous sulfate and aluminium sulfate as coagulants were characterised. During the coagulation experiments, seven different coagulant dosages and four different pH values were evaluated to determine the optimum coagulant dosage and pH value. The highest removal efficiency of chemical oxygen demand (COD) was obtained using 300 mg/L of ferric chloride at pH 10. A COD removal of about 60% as well as considerable reductions in the amounts of suspended solids, nitrogen and phosphorus were realised.

  12. Characterization of callase (β-1,3-D-glucanase) activity during microsporogenesis in the sterile anthers of Allium sativum L. and the fertile anthers of A. atropurpureum.

    PubMed

    Winiarczyk, Krystyna; Jaroszuk-Ściseł, Jolanta; Kupisz, Kamila

    2012-06-01

    We examined callase activity in anthers of sterile Allium sativum (garlic) and fertile Allium atropurpureum. In A. sativum, a species that produces sterile pollen and propagates only vegetatively, callase was extracted from the thick walls of A. sativum microspore tetrads exhibited maximum activity at pH 4.8, and the corresponding in vivo values ranged from 4.5 to 5.0. Once microspores were released, in vitro callase activity peaked at three distinct pH values, reflecting the presence of three callase isoforms. One isoform, which was previously identified in the tetrad stage, displayed maximum activity at pH 4.8, and the remaining two isoforms, which were novel, were most active at pH 6.0 and 7.3. The corresponding in vivo values ranged from pH 4.75 to 6.0. In contrast, in A. atropurpureum, a sexually propagating species, three callase isoforms, active at pH 4.8-5.2, 6.1, and 7.3, were identified in samples of microsporangia that had released their microspores. The corresponding in vivo value for this plant was 5.9. The callose wall persists around A. sativum meiotic cells, whereas only one callase isoform, with an optimum activity of pH 4.8, is active in the acidic environment of the microsporangium. However, this isoform is degraded when the pH rises to 6.0 and two other callase isoforms, maximally active at pH 6.0 and 7.3, appear. Thus, factors that alter the pH of the microsporangium may indirectly affect the male gametophyte development by modulating the activity of callase and thereby regulating the degradation of the callose wall.

  13. Complexation of sodium caseinate with gum tragacanth: Effect of various species and rheology of coacervates.

    PubMed

    Ghorbani Gorji, Sara; Ghorbani Gorji, Elham; Mohammadifar, Mohammad Amin; Zargaraan, Azizollaah

    2014-06-01

    We investigated complex coacervation of sodium caseinate/Astragalus rahensis (A.r) as a function of pH with light scattering, spectrophotometry, and viscosity measurements. Interestingly, sodium caseinate/A.r displayed five structural transitions; pH 7.00 to pH ∼5.40: no interaction occurred, pH ∼5.40 to pH ∼4.80: initiation of the formation of primary soluble complexes, pH ∼4.80 to ∼4.30: formation of interpolymer complexes, pH ∼4.30 to ∼4.02: optimum coacervation and pH ∼4.02 to ∼2.50: suppression of coacervation. In addition, rheological properties of sodium caseinate/A.r coacervates were studied at various pH values. A much higher storage modulus (G') than loss modulus (G″) for all sodium caseinate/A.r coacervates suggests the formation of highly interconnected gel-like network structures with mainly elastic behaviour. Moreover, sodium caseinate/A.r coacervates at all pH values exhibited a shear thinning behaviour across the entire shear rate range investigated. Effects of different species of gum tragacanth on the interactions with sodium caseinate have been scarcely studied. Our study showed that systems containing various species (A.r, soluble fraction of A.r and Astragalus gossypinus (A.g)) had different critical pH values and particle sizes during complex coacervation, which could be due to different ratio of soluble to insoluble fractions and uronic acid content of various species. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cyanide and Copper Recovery from Barren Solution of the Merrill Crowe Process

    NASA Astrophysics Data System (ADS)

    Parga, José R.; Valenzuela, Jesús L.; Díaz, J. A.

    This paper is a brief overview of the role of inducing the nucleated precipitation of copper and cyanide in a flashtube serpentine reactor, using sodium sulfide as the precipitate and sulfuric acid as pH control. The results showed that pH had a great effect on copper cyanide removal efficiency and the optimum pH was about 3 to 3.5. At this pH value copper cyanide removal efficiency could be achieved above 97 and 99 %, when influent copper concentration ions were 650 and 900 ppm respectively. In this process the cyanide associated with the copper, zinc, iron cyanide complexes are released as HCN gas under strong acidic conditions, allowing it to be recycled back to the cyanidation process as free cyanide.

  15. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology

    PubMed Central

    Auwal, Shehu Muhammad; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid

    2017-01-01

    The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4–7), temperature (40–70 °C), enzyme/substrate (E/S) ratio (0.5%–2%) and time (30–360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries. PMID:28362352

  16. A comparative study of zinc protoporphyrin IX-forming properties of animal by-products as sources for improving the color of meat products.

    PubMed

    Wakamatsu, Jun-ichi; Murakami, Naoko; Nishimura, Takanori

    2015-05-01

    The objective of this study was to obtain fundamental data for improving the color of meat products by using animal by-products. We investigated zinc protoporphyrin IX (ZnPP)-forming properties of various internal organs from pigs and chickens. ZnPP was formed in the liver, heart and kidney, whereas the porcine spleen and bile, which are involved in the metabolism of heme, did not have ZnPP-forming properties. The optimum pH values were different among the internal organs and the ZnPP-forming properties of porcine organs were better than those of chicken organs. The porcine liver showed the greatest ZnPP-forming properties among all of the internal organs investigated in this study. The optimum pH value for ZnPP formation in the liver was lower than that of skeletal muscle. Oxygen did not inhibit the formation of ZnPP in the liver, unlike in skeletal muscle. Animal by-products such as the liver have good ability for the formation of ZnPP and might be useful for improving the color of meat products. © 2014 Japanese Society of Animal Science.

  17. Microwave-Hydrothermal Treated Grape Peel as an Efficient Biosorbent for Methylene Blue Removal

    PubMed Central

    Ma, Lin; Jiang, Chunhai; Lin, Zhenyu; Zou, Zhimin

    2018-01-01

    Biosorption using agricultural wastes has been proven as a low cost and efficient way for wastewater treatment. Herein, grape peel treated by microwave- and conventional-hydrothermal processes was used as low cost biosorbent to remove methylene blue (MB) from aqueous solutions. The adsorption parameters including the initial pH value, dosage of biosorbents, contact time, and initial MB concentration were investigated to find the optimum adsorption conditions. The biosorbent obtained by microwave-hydrothermal treatment only for 3 min at 180 °C (microwave-hydrothermal treated grape peel, MGP) showed faster kinetics and higher adsorption capability than that produced by a conventional-hydrothermal process (hydrothermal treated grape peel, HGP) with a duration time of 16 h. The maximum adsorption capability of MGP under the optimum conditions (pH = 11, a dosage of 2.50 g/L) as determined with the Langmuir model reached 215.7 mg/g, which was among the best values achieved so far on biosorbents. These results demonstrated that the grape peel treated by a quick microwave-hydrothermal process can be a very promising low cost and efficient biosorbent for organic dye removal from aqueous solutions. PMID:29385041

  18. Response surface methodology modeling to improve degradation of Chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor.

    PubMed

    Amiri, Hoda; Nabizadeh, Ramin; Silva Martinez, Susana; Jamaleddin Shahtaheri, Seyed; Yaghmaeian, Kamyar; Badiei, Alireza; Nazmara, Shahrokh; Naddafi, Kazem

    2018-01-01

    This paper deals with the use of a raceway pond reactor (RPR) as an alternative photoreactor for solar photocatalytic applications. Raceway pond reactors are common low-cost reactors which can treat large volumes of water. The experiments were carried out with TiO 2 in the agriculture effluent spiked with Chlorpyrifos (CPF) at circumneutral pH. The Response Surface Methodology (RSM) was used to find the optimum process parameters to maximize CPF oxidation from the mathematical model equations developed in this study using R software. By ANOVA, p-value of lack of fit > 0.05 indicated that, the equation was well-fitted. The theoretical efficiency of CPF removal, under the optimum oxidation conditions with UV solar energy of around 697 ± 5.33 lux, was 84.01%, which is in close agreement with the mean experimental value (80 ± 1.42%) confirming that the response model was suitable for the optimization. As far as the authors know, this is the first study of CPF removal using RPR in agriculture runoff at circumneutral pH. Copyright © 2017. Published by Elsevier Inc.

  19. A model for the effect of pH on the growth of chalk yeasts.

    PubMed

    Dantigny, Philippe; Burgain, Anaïs; Deniel, Franck; Bensoussan, Maurice

    2014-09-01

    Hyphopichia burtonii, Pichia anomala, and Saccharomycopsis fibuligera were isolated from spoiled packaged sliced bread. These chalk yeasts were characterized by a wide range of pH for which growth was almost optimum. Thus, the curve growth vs pH exhibited plateau and sharp profiles close to the minimum and the maximum pH. This study described a chalk yeast model (CYM) for the effect of pH derived from a new germination model for fungi (Dantigny, P., Nanguy, S., P.-M., Judet-Correia, D., and Bensoussan, M. 2011, International Journal of Food Microbiology, 146, 176-181). The CYM is asymmetric, versatile, based on parameters with biological significance, and compatible with the gamma concept. The CYM was compared to the cardinal pH model (CPM) which is widely used to describe the effect of pH on microbial growth. The CYM exhibited RMSE values two fold less than those obtained with the CPM for H. burtonii, and S. fibuligera for which plateaus were clearly observed. For P. anomala, the plateau was less obvious, but the RMSE value obtained with the CYM was similar to that found with the CPM. The CYM could extend its use to represent the effect of pH on mold growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Characterization of water treatment sludge and its reuse as coagulant.

    PubMed

    Ahmad, Tarique; Ahmad, Kafeel; Ahad, Abdul; Alam, Mehtab

    2016-11-01

    Coagulation-flocculation process results in the generation of large volume of waste or residue, known as water treatment sludge (WTS), in the purification of surface water for potable supplies. Sustainable management of the inevitable waste requires careful attention from the plant operators and sludge managers. In this study, WTS produced with the optimum alum dose of 30 ml/L at the laboratory scale has been treated with sulphuric acid to bring forth a product known as sludge reagent product (SRP). The performance of SRP is evaluated for its efficiency in removing the colloidal suspensions from the Yamuna river water over wide pH range of 2-13. 1% sludge acidified with sulphuric acid of normality 2.5 at the rate of 0.05 ml/ml sludge has been observed as the optimum condition for preparing SRP from WTS. The percentage turbidity removal is greater at higher pH value and increases with increasing the dosage of SRP. The optimum SRP dosage of 8 ml/L in the pH range of 6-8 performed well in removing the colloidal suspension and other impurities from the Yamuna water. The quality of treated water met the prescribed standards for most of the quality parameters. Thus, SRP has the potential to substitute the conventional coagulants partially or completely in the water treatment process, depending on the quality needed at the users end. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Purification and biochemical characterization of insoluble acid invertase (INAC-INV) from pea seedlings.

    PubMed

    Kim, Donggiun; Lee, Gunsup; Chang, Man; Park, Jongbum; Chung, Youngjae; Lee, Sukchan; Lee, Taek-Kyun

    2011-10-26

    Invertase (EC 3.2.1.26) catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Insoluble acid invertase (INAC-INV) was purified from pea (Pisum sativum L.) by sequential procedures entailing ammonium sulfate precipitation, ion exchange chromatography, absorption chromatography, reactive green-19 affinity chromatography, and gel filtration. The purified INAC-INV had a pH optimum of 4.0 and a temperature optimum of 45 °C. The effects of various concentrations of Tris-HCl, HgCl(2), and CuSO(4) on the activities of the purified invertase were examined. INAC-INV was not affected by Tris-HCl and HgCl(2). INAC-INV activity was inhibited by 6.2 mM CuSO(4) up to 50%. The enzymes display typical hyperbolic saturation kinetics for sucrose hydrolysis. The K(m) and V(max) values of INAC-INV were determined to be 4.41 mM and 8.41 U (mg protein)(-1) min(-1), respectively. INAC-INV is a true member of the β-fructofuranosidases, which can react with sucrose and raffinose as substrates. SDS-PAGE and immunoblotting were used to determine the molecular mass of INAC-INV to be 69 kDa. The isoelectric point of INAC-INV was estimated to be about pH 8.0. Taken together, INAC-INV is a pea seedling invertase with a stable and optimum activity at lower acid pH and at higher temperature than other invertases.

  2. The decolorization and mineralization of acid orange 6 azo dye in aqueous solution by advanced oxidation processes: a comparative study.

    PubMed

    Hsing, Hao-Jan; Chiang, Pen-Chi; Chang, E-E; Chen, Mei-Yin

    2007-03-06

    The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO(2), O(3), O(3)/UV, O(3)/UV/TiO(2), Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O(3)/UV and O(3)/UV/TiO(2) processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O(3) dose=45mg/L; (2) the optimum pH and ratio of [H(2)O(2)]/[Fe(2+)] found for the Fenton process, are pH 4 and [H(2)O(2)]/[Fe(2+)]=6.58. The optimum [H(2)O(2)] and [Fe(2+)] under the same HF value are 58.82 and 8.93mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O(3)

  3. An amperometric biosensor for glucose detection from glucose oxidase immobilized in polyaniline-polyvinylsulfonate-potassium ferricyanide film.

    PubMed

    Arslan, Fatma; Beskan, Umut

    2014-08-01

    In this study, a novel amperometric glucose biosensor with immobilization of glucose oxidase on electrochemically polymerized polyaniline-polyvinylsulphonate-potassium ferricyanide (Pani-Pvs-Fc) films has been accomplished via the entrapment technique. Potassium ferricyanide was used as the mediator. Determination of glucose was carried out by the oxidation of potassium ferrocyanide at 0.3 V vs. Ag/AgCl. The effects of pH and temperature were investigated, and the optimum pH value was found to be 7.5. The storage stability and the operational stability of the enzyme electrode were also studied.

  4. Removal of chromium (VI) using poly(methylacrylate) functionalized guar gum.

    PubMed

    Singh, Vandana; Kumari, Premlata; Pandey, Sadanand; Narayan, Tripti

    2009-03-01

    Using persulfate/ascorbic acid redox pair, poly(methylacrylate) was grafted on to guar gum and the conditions for the grafting were optimized. The copolymer sample having maximum %G was evaluated for the removal of Cr(VI) and the sorption conditions were optimized. The sorption was found pH dependent, pH 1.0 being the optimum value. Sorption data at pH 1.0 were modeled using both the Langmuir and Freundlich isotherms where the data fitted better to Freundlich isotherm. The equilibrium sorption capacity of 29.67mg/g was determined from the Langmuir isotherm. The sorption followed a pseudo-second-order kinetics with a rate constant 2.5x10(-4)gmg(-1) min(-1). The grafted product was also evaluated for Cr(VI) removal from local electroplating industrial waste water. The regeneration experiments revealed that the guar-graft-poly(methylacrylate) could be successfully reused for five cycles. In the present study conductivity measurements were used instead of conventional photometric method for determining Cr(VI) concentration in the equilibrium solutions and the results obtained have been compared with photometric method. Optimum Cr(VI) binding under highly acidic conditions indicated significant contribution of non electrostatic forces in the adsorption process.

  5. Effect of sewage sludge hydrochar on soil properties and Cd immobilization in a contaminated soil.

    PubMed

    Ren, Jie; Wang, Fenghua; Zhai, Yunbo; Zhu, Yun; Peng, Chuan; Wang, Tengfei; Li, Caiting; Zeng, Guangming

    2017-12-01

    To investigate hydrochar as a soil amendment for the immobilization of Cd, the characteristics of hydrochars (HCs) under three temperatures and residence times, were studied, with a particular interest in soil properties, as well as the speciation, availability and plant uptake of Cd. HCs were obtained by a hydrothermal carbonization (HTC) reaction of sewage sludge (SS). Based on the study of HC properties, we found that HCs present weak acidity with relatively high ash content and low electrical conductivity (EC) values. The addition of HCs to soil decreased soil pH and EC values but increased the abundance of soil microorganism. HCs also promoted the transformation of Cd from unstable to stable speciation and can decrease the content of phyto-available Cd (optimum condition and efficiency: A13, 2 15.38%), which restrained cabbage from assimilating Cd from soil both the aboveground (optimum condition and efficiency: A35, 52.29%) and underground (optimum condition and efficiency: C15, 57.53%) parts of it. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bacopa monniera recombinant mevalonate diphosphate decarboxylase: Biochemical characterization.

    PubMed

    Abbassi, Shakeel J; Vishwakarma, Rishi K; Patel, Parth; Kumari, Uma; Khan, Bashir M

    2015-08-01

    Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) is an important enzyme in the mevalonic acid pathway catalyzing the Mg(2+)-ATP dependant decarboxylation of mevalonate 5-diphosphate (MVAPP) to isopentenyl diphosphate (IPP). Bacopa monniera recombinant MDD (BmMDD) protein was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Km and Vmax for MVAPP were 144 μM and 52 U mg(-1) respectively. The values of turnover (kcat) and kcat/Km for mevalonate 5-diphosphate were determined to be 40s(-1) and 2.77×10(5) M(-1) s(-1) and kcat and kcat/Km values for ATP were found to be 30 s(-1) and 2.20×10(4) M(-1) s(-1), respectively. pH activity profile indicated the involvement of carboxylate ion, lysine and arginine for the activity of enzyme. The apparent activation energy for the BmMDD catalyzed reaction was 12.7 kJ mol(-1). Optimum pH and temperature for the forward reaction was found to be 8.0 and 45 °C. The enzyme was most stable at pH 7 at 20 °C with the deactivation rate constant (Kd(*)) of 1.69×10(-4) and half life (t1/2) of 68 h. The cation studies suggested that BmMDD is a cation dependant enzyme and optimum activity was achieved in the presence of Mg(2+). Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Investigation of yeast invertase immobilization onto cupric ion-chelated, porous, and biocompatible poly(hydroxyethyl methacrylate-n-vinyl imidazole) microspheres.

    PubMed

    Sari, Müfrettin Murat

    2011-04-01

    Cupric ion-chelated poly(hydroxyethyl methacrylate-n-vinyl imidazole) (poly(HEMA-VIM)) microspheres prepared by suspension polymerization were investigated as a specific adsorbent for immobilization of yeast invertase in a batch system. They were characterized by scanning electron microscopy, surface area, and pore size measurements. They have spherical shape and porous structure. The specific surface area of the p(HEMA-VIM) spheres was found to be 81.2 m²/g with a size range of 70-120 μm in diameter, and the swelling ratio was 86.9%. Then, Cu(II) ion chelated on the microspheres (546 μmol Cu(II)/g), and they were used in the invertase adsorption. Maximum invertase adsorption was 51.2 mg/g at pH 4.5. Cu(II) chelation increases the tendency from Freundlich-type to Langmuir-type adsorption model. The optimum activity for both free and adsorbed invertase was observed at pH 4.5. The optimum temperature for the poly(HEMA-VIM)/Cu(II)-invertase system was found to be at 55 °C, 10 °C higher than that of the free enzyme at 45 °C. V(max) values were determined as 342 and 304 U/mg enzyme, for free and adsorbed invertase, respectively. K(m) values were found to be same for free and adsorbed invertase (20 mM). Thermal and pH stability and reusability of invertase increased with immobilization.

  8. [Difference in ionic specificity of ATP synthesis in extremely alkalophilic sulfate-reducing and acetogenic bacteria].

    PubMed

    Pitriuk, A V; Pusheva, M A

    2001-01-01

    Ionic specificity of oxidative phosphorylation was studied in Natroniella acetigena and Desulfonatronum lacustre, which are new alkaliphilic anaerobes that were isolated from soda lakes and have a pH growth optimum of 9.5-9.7. The ability of their cells to synthesize ATP in response to the imposition of artificial delta pH+ and delta pNa+ gradients was studied. As distinct from other marine and freshwater sulfate reducers and extremely alkaliphilic anaerobes, D. lacustre uses a Na(+)-translocating ATPase for ATP synthesis. The alkaliphilic acetogen N. acetigena, which develops at a much higher Na+ concentration in the medium, generated primary delta pH+ for ATP synthesis. Thus, the high Na+ concentrations and alkaline pH values typical of soda lakes do not predetermine the type of bioenergetics of their inhabitants.

  9. Rheological behavior and Ibuprofen delivery applications of pH responsive composite alginate hydrogels.

    PubMed

    Jabeen, Suraya; Maswal, Masrat; Chat, Oyais Ahmad; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad

    2016-03-01

    Synthesis and structural characterization of hydrogels composed of sodium alginate, polyethylene oxide and acrylic acid with cyclodextrin as the hydrocolloid prepared at different pH values is presented. The hydrogels synthesized show significant variations in rheological properties, drug encapsulation capability and release kinetics. The hydrogels prepared at lower pH (pH 1) are more elastic, have high tensile strength and remain almost unaffected by varying temperature or frequency. Further, their Ibuprofen encapsulation capacity is low and releases it slowly. The hydrogel prepared at neutral pH (pH 7) is viscoelastic, thermo-reversible and also exhibits sol-gel transition on applying frequency and changing temperature. It shows highest Ibuprofen encapsulation capacity and also optimum drug release kinetics. The hydrogel prepared at higher pH (pH 12) is more viscous, has low tensile strength, is unstable to change in temperature and has fast drug release rate. The study highlights the pH responsiveness of three composite alginate hydrogels prepared under different conditions to be employed in drug delivery applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Biochemical characterization of a new nicotinamidase from an unclassified bacterium thriving in a geothermal water stream microbial mat community

    PubMed Central

    Zapata-Pérez, Rubén; Martínez-Moñino, Ana-Belén; García-Saura, Antonio-Ginés; Cabanes, Juana; Takami, Hideto

    2017-01-01

    Nicotinamidases are amidohydrolases that convert nicotinamide into nicotinic acid, contributing to NAD+ homeostasis in most organisms. In order to increase the number of nicotinamidases described to date, this manuscript characterizes a nicotinamidase obtained from a metagenomic library fosmid clone (JFF054_F02) obtained from a geothermal water stream microbial mat community in a Japanese epithermal mine. The enzyme showed an optimum temperature of 90°C, making it the first hyperthermophilic bacterial nicotinamidase to be characterized, since the phylogenetic analysis of this fosmid clone placed it in a clade of uncultured geothermal bacteria. The enzyme, named as UbNic, not only showed an alkaline optimum pH, but also a biphasic pH dependence of its kcat, with a maximum at pH 9.5–10.0. The two pKa values obtained were 4.2 and 8.6 for pKes1 and pKes2, respectively. These results suggest a possible flexible catalytic mechanism for nicotinamidases, which reconciles the two previously proposed mechanisms. In addition, the enzyme showed a high catalytic efficiency, not only toward nicotinamide, but also toward other nicotinamide analogs. Its mutational analysis showed that a tryptophan (W83) is needed in one of the faces of the active site to maintain low Km values toward all the substrates tested. Furthermore, UbNic proved to contain a Fe2+ ion in its metal binding site, and was revealed to belong to a new nicotinamidase subgroup. All these characteristics, together with its high pH- and thermal stability, distinguish UbNic from previously described nicotinamidases, and suggest that a wide diversity of enzymes remains to be discovered in extreme environments. PMID:28750065

  11. Enzymatic synthesis of dithiolopyrrolone antibiotics using cell-free extract of Saccharothrix algeriensis NRRL B-24137 and biochemical characterization of two pyrrothine N-acyltransferases in this extract.

    PubMed

    Saker, Safwan; Almousa Almaksour, Ziade; Chorin, Anne-Claire; Lebrihi, Ahmed; Mathieu, Florence

    2014-01-01

    Saccharothrix algeriensis NRRL B-24137 produces naturally different dithiolopyrrolone derivatives. The enzymatic activity of pyrrothine N-acyltransferase was determined to be responsible for the transfer of an acyl group from acyl-CoA to pyrrothine core. This activity was also reported to be responsible for the diversity of the dithiolopyrrolone derivatives. Based on this fact, nine dithiolopyrrolone derivatives were produced in vitro via the crude extract of Sa. algeriensis. Three of them have never been obtained before by natural fermentation: acetoacetyl-pyrrothine, hydroxybutyryl-pyrrothine, and dimethyl thiolutin (holomycin). Two acyltransferase activities, acetyltransferase and benzoyltransferase catalyzing the incorporation of linear and cyclic acyl groups to the pyrrothine core, respectively, were biochemically characterized in this crude extract. The first one is responsible for formation of acetyl-pyrrothine and the second for benzoyl-pyrrothine. Both enzymes were sensitive to temperature changes: For example, the loss of acetyltransferase and benzoyltransferase activity was 53% and 80% respectively after pre-incubation of crude extract for 60 min at 20°C. The two enzymes were more active in neutral and basal media (pH 7-10) than in the acidic one (pH 3-6). The optimum temperature and pH of acetyltransferase were 40°C and 7, with a Km value of 7.9 μM and a Vmax of 0.63 μM/min when acetyl-CoA was used as limited substrate. Benzoyltransferase had a temperature and a pH optimum at 55°C and 9, a Km value of 14.7 μM, and a Vmax of 0.67 μM/min when benzoyl- CoA was used as limited substrate.

  12. Biochemical characterization of a new nicotinamidase from an unclassified bacterium thriving in a geothermal water stream microbial mat community.

    PubMed

    Zapata-Pérez, Rubén; Martínez-Moñino, Ana-Belén; García-Saura, Antonio-Ginés; Cabanes, Juana; Takami, Hideto; Sánchez-Ferrer, Álvaro

    2017-01-01

    Nicotinamidases are amidohydrolases that convert nicotinamide into nicotinic acid, contributing to NAD+ homeostasis in most organisms. In order to increase the number of nicotinamidases described to date, this manuscript characterizes a nicotinamidase obtained from a metagenomic library fosmid clone (JFF054_F02) obtained from a geothermal water stream microbial mat community in a Japanese epithermal mine. The enzyme showed an optimum temperature of 90°C, making it the first hyperthermophilic bacterial nicotinamidase to be characterized, since the phylogenetic analysis of this fosmid clone placed it in a clade of uncultured geothermal bacteria. The enzyme, named as UbNic, not only showed an alkaline optimum pH, but also a biphasic pH dependence of its kcat, with a maximum at pH 9.5-10.0. The two pKa values obtained were 4.2 and 8.6 for pKes1 and pKes2, respectively. These results suggest a possible flexible catalytic mechanism for nicotinamidases, which reconciles the two previously proposed mechanisms. In addition, the enzyme showed a high catalytic efficiency, not only toward nicotinamide, but also toward other nicotinamide analogs. Its mutational analysis showed that a tryptophan (W83) is needed in one of the faces of the active site to maintain low Km values toward all the substrates tested. Furthermore, UbNic proved to contain a Fe2+ ion in its metal binding site, and was revealed to belong to a new nicotinamidase subgroup. All these characteristics, together with its high pH- and thermal stability, distinguish UbNic from previously described nicotinamidases, and suggest that a wide diversity of enzymes remains to be discovered in extreme environments.

  13. Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds.

    PubMed Central

    Garcia-Sastre, A; Villar, E; Manuguerra, J C; Hannoun, C; Cabezas, J A

    1991-01-01

    Influenza C virus (strain C/Johannesburg/1/66) was grown, harvested, purified and used as source for the enzyme O-acetylesterase (N-acyl-O-acetylneuraminate O-acetylhydrolase; EC 3.1.1.53). This activity was studied and characterized with regard to some new substrates. The pH optimum of the enzyme is around 7.6, its stability at different pH values shows a result similar to that of the pH optimum, and its activity is well maintained in the pH range from 7.0 to 8.5 (all these tests were performed with 4-nitrophenyl acetate as substrate). Remarkable differences were found in the values of both Km and Vmax, with the synthetic substrates 4-nitrophenyl acetate, 2-nitrophenyl acetate, 4-methylumbelliferyl acetate, 1-naphthyl acetate and fluorescein diacetate. The use of 4-nitrophenyl acetate, 4-methylumbelliferyl acetate or 1-naphthyl acetate as substrate seems to be convenient for routine work, but it is better to carry out the measurements in parallel with those on bovine submandibular gland mucin (the latter is a natural and commercially available substrate). It was found that 4-acetoxybenzoic acid, as well as the methyl ester of 2-acetoxybenzoic acid, but not 2-acetoxybenzoic acid itself, are cleaved by this enzyme. Triacetin, di-O-acetyladenosine, tri-O-acetyladenosine, and di-O-acetyl-N-acetyladenosine phosphate, hitherto unreported as substrates for this viral esterase, are hydrolysed at different rates by this enzyme. We conclude that the O-acetylesterase from influenza C virus has a broad specificity towards both synthetic and natural non-sialic acid-containing substrates. Zn2+, Mn2+ and Pb2+ (as their chloride salts), N-acetylneuraminic acid, 4-methyl-umbelliferone and 2-acetoxybenzoic acid (acetylsalicylic acid) did not act as inhibitors. Images Fig. 1. PMID:1991039

  14. Partial purification and kinetic characterization of acid phosphatase from garlic seedling.

    PubMed

    Yenigün, Begüm; Güvenilir, Yüksel

    2003-01-01

    The objective of this study was to obtain purer acid phosphatases than produced by prior art by operating under conditions that improve the final product. The study features are the use of a mild nonionic detergent, 40-80% saturation with (NH4)2SOm4, maintained at low temperature to remove impurity, and the use of chromatografic columns to concentrate the acid phosphatase and remove non-acid phosphatase proteins with lower or higher molecular weights. Acid phosphatase was isolated and purified from garlic seedlings by a streamline method without the use of proteolytic and lipolytic enzymes, butanol, or other organic solvents. Grown garlic seedlings of 10- 15 cm height were homogenized with 0.1 M acetate buffer containing 0.1 M NaCl and 0.1% Triton X-100. After homogenization, the supernatant was filtered with paper filters. Filtrated supernatant was cooled to 4 degrees C, followed by a threestep fractionation of the proteins with ammonium sulfate. The crude enzyme was isolated as a green precipitate that was dissolved in a small amount of 0.1 M acetate buffer containing 0.1 M NaCl and 0.1% Triton X-100. Garlic seedling acid phosphatase was purified with ion-exchange chromatography (DEAE cellulose). The column was equilibrated with 0.1 M acetate buffer. Acid phosphatase was purified 40-fold from the starting material. The specific activity of the pure enzyme was 168 U/mg. A variety of stability and activity profiles were determined for the purified garlic seedling acid phosphatase: optimum pH, optimum temperature, pH stability, temperature stability, thermal inactivation, substrate specificity, effect of enzyme concentration, effect of substrate concentration, activation energy, and effect of inhibitor and activator. The molecular mass of acid phosphatase was estimated to be 58 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The optimum pH was 5.7 and the optimum temperature was 50 degrees C. The enzyme was stable at pH 4.0-10.0 and 40-60 degrees C. Activation energy was between 10 and 20 kcal, and as Michaelis Menten coefficients, Vm values were 100 and 20 mM/s and Km values were 21.27 and 8.33 mM for paranitrophenylphosphate and paranitrophenyl, respectively. Studies of the effect of metal ions on enzyme activity showed both an activating and a deactivating effect. While Cu, Mo, and Mn showed strong inhibitory effects, Na, Ca, and K were the significant activators of acid phosphatase.

  15. Preparation of new nano magnetic material Fe3O4@g-C3N4 and good adsorption performance on uranium ion

    NASA Astrophysics Data System (ADS)

    Long, Wei; Liu, Huijun; Yan, Xueming; Fu, Li

    2018-03-01

    A new nano magnetic material Fe3O4@g-C3N4 was prepared by deposition reduction method, which performed good adsorption performance to uranium ion. Characterization results showed that the g-C3N4 particles were wrapped around the nano magnetic Fe3O4 particles, and the textural properties of this material was improved, so the adsorption performance to uranium ion was good. Adsorption experiments of this material demonstrated that the optimum pH value was 10, the optimum mass of adsorbent was 6.5 mg and the optimum adsorption time was 150 min in the initial concentration of 140 mg/L uranium ion solution system, and the maximum adsorption capacity was up to 352.1 mg/g and the maximum adsorption rate was more than 90%.

  16. Experimental research on the poly-aluminum chloride for treating the Pi River water in winter and summer

    NASA Astrophysics Data System (ADS)

    Jia, Rusheng; Bai, Yulin; Yang, Jie

    2018-02-01

    In the beaker experiments that the disposal of low turbidity water, we observed the influence of some factors, such as the dosage of poly-aluminum chloride coagulant, the pH value of raw water, in disposing the high natural organic matters of low turbidity water in winter and summer. we discussed the removal of residual aluminum and UV254 in summer. The experimental results show that when the turbidity is less than 10 NTU, the optimum dosage are 14.4 mg.L-1 and 8.2 mg.L-1 respectively in winter and summer. No matter in winter or summer, the effect of pH value on coagulation treatment is very significant, the best pH value is about 8.1. In summer, with the increase of dosage of poly-aluminum chloride, residual aluminum increased slowly after decrease, turbidity and UV254 after precipitation is similar removal trend. Finally, according to the current market price of poly-aluminum chloride economic analysis, daily differences in pharmaceutical costs about 1600 yuan in summer and winter in the second water plant in Lu’an.

  17. Effect of pH on simultaneous saccharification and isomerization by glucoamylase and glucose isomerase.

    PubMed

    Mishra, Abha; Debnath Das, Meera

    2002-01-01

    pH and temperature play critical roles in multistep enzymatic conversions. In such conversions, the optimal pH for individual steps differs greatly. In this article, we describe the production of glucoamylase (from Aspergillus oryzae MTCC152 in solid-state fermentation) and glucose isomerase (from Streptomyces griseus NCIM2020 in submerged fermentation), used in industries for producing high-fructose syrup. Optimum pH for glucoamylase was found to be 5.0. For glucose isomerase, the optimum pH ranged between 7.0 and 8.5, depending on the type of buffer used. Optimum temperature for glucoamylase and glucose isomerase was 50 and 60 degrees C, respectively. When both the enzymatic conversions were performed simultaneously at a compromised pH of 6.5, both the enzymes showed lowered activity. We also studied the kinetics at different pHs, which allows the two-step reaction to take place simultaneously. This was done by separating two steps by a thin layer of urease. Ammonia generated by the hydrolysis of urea consumed the hydrogen ions, thereby allowing optimal activity of glucose isomerase at an acidic pH of 5.0.

  18. Design of an optically stable pH sensor based on immobilization of Giemsa on triacetylcellulose membrane.

    PubMed

    Khodadoust, Saeid; Kouri, Narges Cham; Talebiyanpoor, Mohammad Sharif; Deris, Jamile; Pebdani, Arezou Amiri

    2015-12-01

    In this work a simple, inexpensive, and sensitive optical sensor based on triacetylcellulose membrane as solid support was developed by using immobilization of Giemsa indicator for pH measurement. In this method, the influence variables on the membrane performance including pH concentration of indicator, response time, ionic strength, and reversibility were investigated. At optimum values of all variables the response of optical pH sensor is linear in the pH range of 3.0-12.0. This optical sensor was produced through simultaneous binding of the Giemsa on the activated triacetylcellulose membrane which responded to the pH changes in a broader linear range within less than 2.0 min and suitable reproducibility (RSD<5%). Stability results showed that this sensor was stable after 6 months of storage in the water/ethanol (50:50, v/v) solution without any measurable divergence in response properties (less than 5% RSD). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Polishing of treated palm oil mill effluent (POME) from ponding system by electrocoagulation process.

    PubMed

    Bashir, Mohammed J K; Mau Han, Tham; Jun Wei, Lim; Choon Aun, Ng; Abu Amr, Salem S

    2016-01-01

    As the ponding system used to treat palm oil mill effluent (POME) frequently fails to satisfy the discharge standard in Malaysia, the present study aimed to resolve this problem using an optimized electrocoagulation process. Thus, a central composite design (CCD) module in response surface methodology was employed to optimize the interactions of process variables, namely current density, contact time and initial pH targeted on maximum removal of chemical oxygen demand (COD), colour and turbidity with satisfactory pH of discharge POME. The batch study was initially designed by CCD and statistical models of responses were subsequently derived to indicate the significant terms of interactive process variables. All models were verified by analysis of variance showing model significances with Prob > F < 0.01. The optimum performance was obtained at the current density of 56 mA/cm(2), contact time of 65 min and initial pH of 4.5, rendering complete removal of colour and turbidity with COD removal of 75.4%. The pH of post-treated POME of 7.6 was achieved, which is suitable for direct discharge. These predicted outputs were subsequently confirmed by insignificant standard deviation readings between predicted and actual values. This optimum condition also permitted the simultaneous removal of NH3-N, and various metal ions, signifying the superiority of the electrocoagulation process optimized by CCD.

  20. Methotrexate loading in chitosan nanoparticles at a novel pH: Response surface modeling, optimization and characterization.

    PubMed

    Hashad, Rania A; Ishak, Rania A H; Geneidi, Ahmed S; Mansour, Samar

    2016-10-01

    The aim of this study was to assess the feasibility of employing a novel but critical formulation pH (6.2) to encapsulate an anionic model drug (methotrexate, MTX) into chitosan(Cs)-tripolyphosphate nanoparticles(NPs). A response surface methodology using a three-level full factorial design was applied studying the effects of two independent variables namely; Cs concentration and MTX concentration. The responses investigated were the entrapment efficiency (EE%), mean hydrodynamic particle size (PS), polydispersity index (PDI) and zeta potential (ZP). In order to simultaneously optimize the series of models obtained, the desirability function approach was applied with a goal to produce high percent of MTX encapsulated into highly charged Cs-TPP NPs of homogenous optimum PS. MTX-loaded CsNPs were successfully prepared at the novel pH applied. The suggested significant models were found quadratic for EE, PS and ZP responses, while 2-factor interaction model for PDI. The optimization overlay graph showed that the maximum global desirability, D=0.856, was reached when the conditions were set at high Cs and MTX concentration. Thus, the use of such optimized conditions, at this novel pH, achieved a maximum drug EE% (73.38%) into NPs characterized by optimum PS (232.6nm), small PDI value (0.195) and highly surface charged (+18.4mV). Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH.

    PubMed

    Liu, Fenwu; Zhou, Lixiang; Zhou, Jun; Song, Xingwei; Wang, Dianzhan

    2012-06-30

    Bio-acidification caused by bio-oxidation of energy substances during bioleaching is widely known to play an important role in improving sludge-borne metals removal. Here we report that bioleaching also drastically enhances sludge dewaterability in a suitable pH level. To obtain the optimum initial concentrations of energy substances and pH values for sludge dewaterability during bioleaching, bio-oxidation of Fe(2+) and S(0) under co-inoculation with Acidithiobacillus thiooxidans TS6 and Acidothiobacillus ferrooxidans LX5 and their effects on sludge dewaterability and metals removal during sludge bioleaching were investigated. Results indicated that the dosage of energy substances with 2g/L S(0) and 2g/L Fe(2+) could obtain bio-oxidation efficiencies of up to 100% for Fe(2+) and 50% for S(0) and were the optimal dosages for sludge bioleaching. The removal efficiencies of sludge-borne Cu and Cr could reach above 85% and 40%, respectively, and capillary suction time (CST) of bioleached sludge decreased to as low as ∼10s from initial 48.9s for fresh sludge when sludge pH declined to ∼2.4 through bioleaching. These results confirm the potential of bioleaching as a novel method for improving sludge dewaterability as well as removal of metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.

    1992-01-01

    Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.

  3. Cloning and sequencing of the gene coding for alcohol dehydrogenase of Bacillus stearothermophilus and rational shift of the optimum pH.

    PubMed

    Sakoda, H; Imanaka, T

    1992-02-01

    Using Bacillus subtilis as a host and pTB524 as a vector plasmid, we cloned the thermostable alcohol dehydrogenase (ADH-T) gene (adhT) from Bacillus stearothermophilus NCA1503 and determined its nucleotide sequence. The deduced amino acid sequence (337 amino acids) was compared with the sequences of ADHs from four different origins. The amino acid residues responsible for the catalytic activity of horse liver ADH had been clarified on the basis of three-dimensional structure. Since those catalytic amino acid residues were fairly conserved in ADH-T and other ADHs, ADH-T was inferred to have basically the same proton release system as horse liver ADH. The putative proton release system of ADH-T was elucidated by introducing point mutations at the catalytic amino acid residues, Cys-38 (cysteine at position 38), Thr-40, and His-43, with site-directed mutagenesis. The mutant enzyme Thr-40-Ser (Thr-40 was replaced by serine) showed a little lower level of activity than wild-type ADH-T did. The result indicates that the OH group of serine instead of threonine can also be used for the catalytic activity. To change the pKa value of the putative system, His-43 was replaced by the more basic amino acid arginine. As a result, the optimum pH of the mutant enzyme His-43-Arg was shifted from 7.8 (wild-type enzyme) to 9.0. His-43-Arg exhibited a higher level of activity than wild-type enzyme at the optimum pH.

  4. Cloning and sequencing of the gene coding for alcohol dehydrogenase of Bacillus stearothermophilus and rational shift of the optimum pH.

    PubMed Central

    Sakoda, H; Imanaka, T

    1992-01-01

    Using Bacillus subtilis as a host and pTB524 as a vector plasmid, we cloned the thermostable alcohol dehydrogenase (ADH-T) gene (adhT) from Bacillus stearothermophilus NCA1503 and determined its nucleotide sequence. The deduced amino acid sequence (337 amino acids) was compared with the sequences of ADHs from four different origins. The amino acid residues responsible for the catalytic activity of horse liver ADH had been clarified on the basis of three-dimensional structure. Since those catalytic amino acid residues were fairly conserved in ADH-T and other ADHs, ADH-T was inferred to have basically the same proton release system as horse liver ADH. The putative proton release system of ADH-T was elucidated by introducing point mutations at the catalytic amino acid residues, Cys-38 (cysteine at position 38), Thr-40, and His-43, with site-directed mutagenesis. The mutant enzyme Thr-40-Ser (Thr-40 was replaced by serine) showed a little lower level of activity than wild-type ADH-T did. The result indicates that the OH group of serine instead of threonine can also be used for the catalytic activity. To change the pKa value of the putative system, His-43 was replaced by the more basic amino acid arginine. As a result, the optimum pH of the mutant enzyme His-43-Arg was shifted from 7.8 (wild-type enzyme) to 9.0. His-43-Arg exhibited a higher level of activity than wild-type enzyme at the optimum pH. Images PMID:1735726

  5. Purification of 6-phosphogluconate dehydrogenase from parsley (Petroselinum hortense) leaves and investigation of some kinetic properties.

    PubMed

    Demir, Hülya; Ciftçi, Mehmet; Küfrevioğlu, O Irfan

    2003-02-01

    In this study, 6-phosphogluconate dehydrogenase (E.C.1.1.44; 6PGD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps that are preparation of homogenate ammonium sulfate fractionation and on DEAE-Sephadex A50 ion exchange. The enzyme was obtained with a yield of 49% and had a specific activity of 18.3 U (mg proteins)(-1) (Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Principles of Biochemistry, 2nd Ed.; Worth Publishers Inc.: N.Y., 2000, 558-560). The overall purification was about 339-fold. A temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method at 340 mn. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 97.5 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a subunit molecular weight of 24.1 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found as 8.0, 8.0, and 50 degrees C, respectively. In addition, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk plots.

  6. Determination of Urease Biochemical Properties of Asparagus Bean (Vigna unguiculata ssp sesquipedalis L.)

    NASA Astrophysics Data System (ADS)

    Zusfahair; Ningsih, D. R.; Fatoni, A.; Pertiwi, D. S.

    2018-04-01

    Urease is enzyme that plays a role in nitrogen metabolism during plant germination. Plants that produce a lot of urease are grains. This study used asparagus bean as source of urease. The purpose of this research is to learn the effect of germination time on the activity of urease enzyme from asparagus bean and its biochemical properties. The research was started by germination of asparagus bean on day 2, 4, 6, 8, 10 and 12. Asparagus bean sprouts were extracted using acetone and separated by centrifugation to obtain the crude extract of urease. The biochemical properties of the crude extract of urease was further determined including: the effect of temperature, pH, substrate concentration, and metal addition to urease activity. The urease activity is determined by the Nessler method. The germination time of asparagus bean in yielding urease enzyme reached the optimum activity on the 8th day with activity value of 593.7 U/mL. The biochemical properties of urease from asparagus bean have optimum activity at 35 °C, pH 7.0 and substrate concentration 0.125% with activity value of 600 U/mL. Addition of CaCl2, SnCl2 and ZnCl2 metals decrease the activity of urease.

  7. Simultaneous Optimization of Multiple Response Variables for the Gelatin-chitosan Microcapsules Containing Angelica Essential Oil.

    PubMed

    Li, Qiang; Sun, Li-Jian; Gong, Xian-Feng; Wang, Yang; Zhao, Xue-Ling

    2017-01-01

    Angelica essential oil (AO), a major pharmacologically active component of Angelica sinensis (Oliv.) Diels, possesses hemogenesis, analgesic activities, and sedative effect. The application of AO in pharmaceutical systems had been limited because of its low oxidative stability. The AO-loaded gelatin-chitosan microcapsules with prevention from oxidation were developed and optimized using response surface methodology. The effects of formulation variables (pH at complex coacervation, gelatin concentration, and core/wall ratio) on multiple response variables (yield, encapsulation efficiency, antioxidation rate, percent of drug released in 1 h, and time to 85% drug release) were systemically investigated. A desirability function that combined these five response variables was constructed. All response variables investigated were found to be highly dependent on the formulation variables, with strong interactions observed between the formulation variables. It was found that optimum overall desirability of AO microcapsules could be obtained at pH 6.20, gelatin concentration 25.00%, and core/wall ratio 40.40%. The experimental values of the response variables highly agreed with the predicted values. The antioxidation rate of optimum formulation was approximately 8 times higher than that of AO. The in-vitro drug release from microcapsules was followed Higuchi model with super case-II transport mechanism.

  8. Orthogonal test design for optimization of synthesis of MTX/LDHs hybrids by ion-exchange method

    NASA Astrophysics Data System (ADS)

    Liu, Su-Qing; Dai, Chao-Fan; Wang, Lin; Li, Shu-Ping; Li, Xiao-Dong

    2015-04-01

    Based on orthogonal test design, the factors influencing the synthesis of methotrexate intercalated magnesium-aluminum layered double hydroxides (MTX/LDHs for short) by ion-exchange method, such as weight ratio of pristine LDHs to MTX (R for short), exchange temperature, time and pH value were investigated. Of the four controllable independent variables, R had the strongest effect on the crystallinity and the drug-loading capacity and the optimum synthesis conditions considered from the crystallinity and the drug-loading capacity both pointed to the same values, i.e., R=2:1, pH=9.5, temperature of 80 °C and exchange time of 3 day. The XRD diffractions indicated that high MTX content was in favor of the formation of intercalated hybrids, while low content lead to the failure of it. TEM photos indicated that the intercalated hybrids all exhibited aggregated hexagonal plates. In order to improve the morphology, two different states of pristine LDHs, i.e., powder and colloid, were chosen to prepare MTX/LDHs hybrids and the results indicated that colloid state of pristine was advantageous to obtain regular particles. The study also revealed that the properties of hybrids obtained at optimum conditions by ion-exchange were superior to that obtained from standard methods, such as co-precipitation method.

  9. Lentil and chickpea protein-stabilized emulsions: optimization of emulsion formulation.

    PubMed

    Can Karaca, Asli; Nickerson, Michael T; Low, Nicholas H

    2011-12-28

    Chickpea and lentil protein-stabilized emulsions were optimized with regard to pH (3.0-8.0), protein concentration (1.1-4.1% w/w), and oil content (20-40%) for their ability to form and stabilize oil-in-water emulsions using response surface methodology. Specifically, creaming stability, droplet size, and droplet charge were assessed. Optimum conditions for minimal creaming (no serum separation after 24 h), small droplet size (<2 μm), and high net droplet charge (absolute value of ZP > 40 mV) were identified as 4.1% protein, 40% oil, and pH 3.0 or 8.0, regardless of the plant protein used for emulsion preparation.

  10. Isolation, Purification, and Some Properties of Penicillium chrysogenum Tannase

    PubMed Central

    Rajakumar, G. Suseela; Nandy, S. C.

    1983-01-01

    Tannase isolated from Penicillium chrysogenum was purified 24-fold with 18.5% recovery after ammonium sulfate precipitation, DEAE-cellulose column chromatography, and Sephadex G-200 gel filtration. Optimum enzyme activity was recorded at pH 5.0 to 6.0 and at 30 to 40°C. The enzyme was stable up to 30°C and within the pH range of 4.0 to 6.5. The Km value was found to be 0.48 × 10−4 M when tannic acid was used as the substrate. Metal salts at 20 mM inhibited the enzyme to different levels. PMID:16346377

  11. Optimization of free radical scavenging capacity and pH of Hylocereus polyrhizus peel by Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Putranto, A. W.; Dewi, S. R.; Puspitasari, Y.; Nuriah, F. A.

    2018-03-01

    Red dragon fruit (Hylocereus polyrhizus) peel, a by-product of juice processing, contains a high antioxidant that can be used for nutraceuticals. Hence, it is important to extract and investigate its antioxidant stability. The aim of this study was to optimize the free radical scavenging capacity and pH of H. polyrhizus peel extract using Central Composite Design (CCD) under Response Surface Methodology (RSM). The extraction of H. polyrhizus peel was done by using green-Pulsed Electric Field (PEF)-assisted extraction method. Factors optimized were electric field strength (kV/cm) and extraction time (seconds). The result showed that the correlation between responses (free radical-scavenging capacity and pH) and two factors was quadratic model. The optimum conditions was obtained at the electric field strength of 3.96 kV/cm, and treatment time of 31.9 seconds. Under these conditions, the actual free radical-scavenging capacity and pH were 75.86 ± 0.2 % and 4.8, respectively. The verification model showed that the actual values are in accordance with the predicted values, and have error rate values of free radical-scavenging capacity and pH responses were 0.1% and 3.98%, respectively. We suggest to extract the H. polyrhizus peel using a green and non-thermal extraction technology, PEF-assisted extraction, for research, food applications and nutraceuticals industry.

  12. Preliminary study on optimization of pH, oxidant and catalyst dose for high COD content: solar parabolic trough collector

    PubMed Central

    2013-01-01

    In the present study, solar photocatalytic oxidation has been investigated through laboratory experiments as an alternative to conventional secondary treatment for the organic content reduction of high COD wastewater. Experiments have been performed on synthetic high COD wastewater for solar photocatalytic oxidation using a parabolic trough reactor. Parameters affecting the oxidation of organics have been investigated. The experimental design followed the sequence of dark adsorption studies of organics, followed by photolytic studies (in absence of catalyst) and finally photocatalytic studies in presence and absence of additional oxidant (H2O2). All the experimental studies have been performed at pH values of 2, 4, 6,8,10 and the initial pH value of the wastewater (normal pH). For photocatalytic studies, TiO2 has been used as a photocatalyst. Optimization of catalyst dose, pH and H2O2 concentration has been done. Maximum reduction of organic content was observed at the normal pH value of the wastewater (pH = 6.8). The reaction rate was significantly enhanced in presence of hydrogen peroxide. The optimum pH other than the Normal was in the alkaline range. Acidic pH was not found to be favourable for organic content reduction. pH was found to be a dominant factor affecting reaction rate even in presence of H2O2 as an additional oxidant. Also, the solar detoxification process was effective in treating a waste with a COD level of more than 7500 mg/L, which is a otherwise a difficult waste to treat. It can therefore be used as a treatment step in the high organic wastewater treatment during the primary stage also as it effectively reduces the COD content by 86%. PMID:23369352

  13. Evaluation of Sorption Mechanism of Pb (II) and Ni (II) onto Pea (Pisum sativum) Peels.

    PubMed

    Haq, Atta Ul; Saeed, Muhammad; Anjum, Salma; Bokhari, Tanveer Hussain; Usman, Muhammad; Tubbsum, Saiqa

    2017-07-01

    The present study was carried out to know the sorption mechanism of Pb (II) and Ni (II) in aqueous solution using pea peels under the influence of sorbent dose, pH, temperature, initial metal ion concentration and contact time. SEM and FTIR were used for characterization of pea peels. The study showed that solution pH affects sorption process and the optimum pH for Pb (II) was 6.0 while for that of Ni (II) was 7.0. Pseudo-second order kinetic model was found to be the most suitable one to explain the kinetic data not only due to high value of R 2 (>0.99) but also due to the closeness of the experimental sorption capacity values to that of calculated sorption capacity values of pseudo second order kinetic model. It can be seen from the results that Freundlich isotherm explains well the equilibrium data (R 2 >0.99). Sorption capacity of pea peels was 140.84 and 32.36 for Pb (II) and Ni (II) mg g -1 respectively. The positive value of ΔH° and negative values of ΔG° suggest that sorption of Pb (II) and Ni (II) onto pea peels is an endothermic and spontaneous process respectively.

  14. Activation of a chloroplast type of fructose bisphosphatase from Chlamydomonas reinhardtii by light-mediated agents

    NASA Technical Reports Server (NTRS)

    Huppe, H. C.; Buchanan, B. B.

    1989-01-01

    A chloroplast type of fructose-1,6-bisphosphatase, a central regulatory enzyme of photosynthetic carbon metabolism, has been partially purified from Chlamydomonas reinhardtii. Unlike its counterpart from spinach chloroplasts, the algal FBPase showed a strict requirement for a dithiol reductant irrespective of Mg2+ concentration. The enzymes from the two sources resembled each other immunologically, in subunit molecular mass and response to pH. In the presence of dithiothreitol, the pH optimum for both the algal and spinach enzymes shifted from 8.5 to a more physiologic value of 8.0 as the Mg2+ concentration was increased from 1 to 16 mM. At 1 mM Mg2+, a concentration estimated to be close to physiological, the Chlamydomonas FBPase was active only in the presence of reduced thioredoxin and was most active with Chlamydomonas thioredoxin f. Under these conditions, the enzyme showed a pH optimum of 8.0. The data suggest that the Chlamydomonas enzyme resembles its spinach counterpart in most respects, but it has a stricter requirement for reduction and less strict reductant specificity. A comparison of the properties of the FBPases from Chlamydomonas and spinach will be helpful for elucidating the mechanism of the reductive activation of this enzyme.

  15. Effect of fermentation parameters on bio-alcohols production from glycerol using immobilized Clostridium pasteurianum: an optimization study.

    PubMed

    Khanna, Swati; Goyal, Arun; Moholkar, Vijayanand S

    2013-01-01

    This article addresses the issue of effect of fermentation parameters for conversion of glycerol (in both pure and crude form) into three value-added products, namely, ethanol, butanol, and 1,3-propanediol (1,3-PDO), by immobilized Clostridium pasteurianum and thereby addresses the statistical optimization of this process. The analysis of effect of different process parameters such as agitation rate, fermentation temperature, medium pH, and initial glycerol concentration indicated that medium pH was the most critical factor for total alcohols production in case of pure glycerol as fermentation substrate. On the other hand, initial glycerol concentration was the most significant factor for fermentation with crude glycerol. An interesting observation was that the optimized set of fermentation parameters was found to be independent of the type of glycerol (either pure or crude) used. At optimum conditions of agitation rate (200 rpm), initial glycerol concentration (25 g/L), fermentation temperature (30°C), and medium pH (7.0), the total alcohols production was almost equal in anaerobic shake flasks and 2-L bioreactor. This essentially means that at optimum process parameters, the scale of operation does not affect the output of the process. The immobilized cells could be reused for multiple cycles for both pure and crude glycerol fermentation.

  16. Purification and some kinetic properties of catalase from parsley (Petroselinum hortense Hoffm., Apiaceae) leaves.

    PubMed

    Oztürk, Lokman; Bülbül, Metin; Elmastas, Mahfuz; Ciftçi, Mehmet

    2007-01-01

    In this study, catalase (CAT: EC 1.11.1.6) was purified from parsley (Petroselinum hortense) leaves; analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps, including preparation of homogenate, ammonium sulfate fractionation, and fractionation by DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 9.5% and had a specific activity of 1126 U (mg proteins)(-1). The overall purification was about 5.83-fold. A temperature of 4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured at 240 nm. In order to control the purification of the enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acryl amide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for the enzyme. The molecular weight was found to be 183.29 kDa by Sephadex G-200 gel filtration chromatography. The stable pH, optimum pH, and ionic strength were determined for phosphate and Tris-HCl buffer systems. In addition, K(M) and V(max) values for H(2)O(2), at optimum pH and 25 degrees C, were determined by means of Lineweaver-Burk plots.

  17. Removal efficiency of Cr6+ by indigenous Pichia sp. isolated from textile factory effluent.

    PubMed

    Fernández, Pablo M; Martorell, María M; Fariña, Julia I; Figueroa, Lucia I C

    2012-01-01

    Resistance of the indigenous strains P. jadinii M9 and P. anomala M10, to high Cr(6+) concentrations and their ability to reduce chromium in culture medium was studied. The isolates were able to tolerate chromium concentrations up to 104 μg mL(-1). Growth and reduction of Cr(6+) were dependent on incubation temperature, agitation, Cr(6+) concentration, and pH. Thus, in both studied strains the chromium removal was increased at 30 °C with agitation. The optimum pH was different, with values of pH 3.0 and pH 7.0 in the case of P. anomala M10 and pH 7.0 using P. jadinii M9. Chromate reduction occurred both in intact cells (grown in culture medium) as well as in cell-free extracts. Chromate reductase activity could be related to cytosolic or membrane-associated proteins. The presence of a chromate reductase activity points out a possible role of an enzyme in Cr(6+) reduction.

  18. Removal Efficiency of Cr6+ by Indigenous Pichia sp. Isolated from Textile Factory Effluent

    PubMed Central

    Fernández, Pablo M.; Martorell, María M.; Fariña, Julia I.; Figueroa, Lucia I. C.

    2012-01-01

    Resistance of the indigenous strains P. jadinii M9 and P. anomala M10, to high Cr6+ concentrations and their ability to reduce chromium in culture medium was studied. The isolates were able to tolerate chromium concentrations up to 104 μg mL−1. Growth and reduction of Cr6+ were dependent on incubation temperature, agitation, Cr6+ concentration, and pH. Thus, in both studied strains the chromium removal was increased at 30°C with agitation. The optimum pH was different, with values of pH 3.0 and pH 7.0 in the case of P. anomala M10 and pH 7.0 using P. jadinii M9. Chromate reduction occurred both in intact cells (grown in culture medium) as well as in cell-free extracts. Chromate reductase activity could be related to cytosolic or membrane-associated proteins. The presence of a chromate reductase activity points out a possible role of an enzyme in Cr6+ reduction. PMID:22629188

  19. Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk.

    PubMed

    Zhang, Tong; Mao, Chunlan; Zhai, Ningning; Wang, Xiaojiao; Yang, Gaihe

    2015-01-01

    The contradictions between the increasing energy demand and decreasing fossil fuels are making the use of renewable energy the key to the sustainable development of energy in the future. Biogas, a renewable clean energy, can be obtained by the anaerobic fermentation of manure waste and agricultural straw. This study examined the initial pH value had obvious effect on methane production and the process in the thermophilic anaerobic co-digestion. Five different initial pH levels with three different manure ratios were tested. All digesters in different initial pH showed a diverse methane production after 35 days. The VFA/alkalinity ratio of the optimum reaction condition for methanogens activity was in the range of 0.1-0.3 and the optimal condition that at the 70% dung ratio and initial pH 6.81, was expected to achieve maximum total biogas production (146.32 mL/g VS). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Purification and partial characterization of an exo-polygalacturonase from Paecilomyces variotii liquid cultures.

    PubMed

    de Lima Damásio, Andre Ricardo; da Silva, Tony Márcio; Maller, Alexandre; Jorge, João Atílio; Terenzi, Hector Francisco; Polizeli, Maria de Lourdes Teixeira de Moraes

    2010-03-01

    An extracellular polygalacturonase (PG) produced from Paecilomyces variotii was purified to homogeneity through two chromatography steps using DEAE-Fractogel and Sephadex G-100. The molecular weight of P. variotii PG was 77,300 Da by gel filtration and SDS-PAGE. PG had isoelectric point of 4.37 and optimum pH 4.0. PG was very stable from pH 3.0 to 6.0. The extent of hydrolysis of different pectins by the purified enzyme was decreased with an increase in the degree of esterification. PG had no activity toward non-pectic polysaccharides. The apparent K(m) and V(max) values for hydrolyzing sodium polypectate were 1.84 mg/mL and 432 micromol/min/mg, respectively. PG was found to have temperature optimum at 65 degrees Celsius and was totally stable at 45 degrees Celsius for 90 min. Half-life at 55 degrees Celsius was 50.6 min. Almost all the examined metal cations showed partial inhibitory effects under enzymatic activity, except for Na(+1), K(+1), and Co(+2) (1 mM) and Cu(+2) (1 and 10 mM).

  1. Treatment of oilfield produced water using Fe/C micro-electrolysis assisted by zero-valent copper and zero-valent aluminium.

    PubMed

    Zhang, Qi

    2015-01-01

    In this study, the Fe/Cu/C and Fe/Al/C inner micro-electrolysis systems were used to treat actual oilfield produced water to evaluate the feasibility of the technology. Effects of reaction time, pH value, the dosage of metals and activated carbon, and Fe:C mass ratio on the treatment efficiency of wastewater were studied. The results showed that the optimum conditions were reaction time 120 min, initial solution pH 4.0, Fe dosage 13.3 g/L, activated carbon dosage 6.7 g/L, Cu dosage 2.0 g/L or Al dosage 1.0 g/L. Under the optimum conditions, the removal efficiencies of chemical oxygen demand (COD) were 39.3%, 49.7% and 52.6% in the Fe/C, Fe/Cu/C and Fe/Al/C processes, respectively. Meanwhile, the ratio of five-day biochemical oxygen demand to COD was raised from 0.18 to above 0.35, which created favourable conditions for the subsequent biological treatment. All these led to an easy maintenance and low operational cost.

  2. Influence of cultivating conditions on the alpha-galactosidase biosynthesis from a novel strain of Penicillium sp. in solid-state fermentation.

    PubMed

    Wang, C L; Li, D F; Lu, W Q; Wang, Y H; Lai, C H

    2004-01-01

    The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Penicillium sp. in solid-state fermentation (SSF). Certain fermentation parameters involving incubation temperature, moisture content, initial pH value, inoculum and load size of medium, and incubation time were investigated separately. The optimal temperature and moisture level for alpha-galactosidase biosynthesis was found to be 30 degrees C and 50%, respectively. The range of pH 5.5-6.5 was favourable. About 40-50 g of medium in 250-ml flask and inoculum over 1.0 x 10(6) spores were suitable for enzyme production. Seventy-five hours of incubation was enough for maximum alpha-galactosidase production. Substrate as wheat bran supplemented with soyabean meal and beet pulp markedly improved the enzyme yield in trays. Under optimum culture conditions, the alpha-galactosidase activity from Penicillium sp. MAFIC-6 indicated 185.2 U g(-1) in tray of SSF. The process on alpha-galactosidase production in laboratory scale may have a potentiality of scaling-up.

  3. Purification and characterization of polyphenol oxidase from banana (Musa sapientum L.) pulp.

    PubMed

    Yang, C P; Fujita, S; Ashrafuzzaman, M; Nakamura, N; Hayashi, N

    2000-07-01

    Polyphenol oxidase (EC 1.10.3.1, PPO) in the pulp of banana (Musa sapientum L.) was purified to 636-fold with a recovery of 3.0%, using dopamine as substrate. The purified enzyme exhibited a clear single band on polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS)-PAGE. The molecular weight of the enzyme was estimated to be about 41000 and 42000 by gel filtration and SDS-PAGE, respectively. The enzyme quickly oxidized dopamine, and its K(m) value for dopamine was 2.8 mM. The optimum pH was at 6.5, and the enzyme activity was stable in the range of pH 5-11 at 5 degrees C for 48 h. The enzyme had an optimum temperature of 30 degrees C and was stable even after a heat treatment at 70 degrees C for 30 min. The enzyme activity was completely inhibited by L-ascorbic acid, cysteine, sodium diethyldithiocarbamate, and potassium cyanide. Under a low buffer capacity, the enzyme was also strongly inhibited by citric acid and acetic acid at 10 mM.

  4. Engineering 7β-Hydroxysteroid Dehydrogenase for Enhanced Ursodeoxycholic Acid Production by Multiobjective Directed Evolution.

    PubMed

    Zheng, Ming-Min; Chen, Ke-Cai; Wang, Ru-Feng; Li, Hao; Li, Chun-Xiu; Xu, Jian-He

    2017-02-15

    Ursodeoxycholic acid (UDCA) is the main active ingredient of natural bear bile powder with multiple pharmacological functions. 7β-Hydroxysteroid dehydrogenase (HSDH) is a key biocatalyst for the synthesis of UDCA. However, all the 7β-HSDHs reported commonly suffer from poor activity and thermostability, resulting in limited productivity of UDCA. In this study, a multiobjective directed evolution (MODE) strategy was proposed and applied to improve the activity, thermostability, and pH optimum of a 7β-HSDH. The best variant (V 3-1 ) showed a specific activity 5.5-fold higher than and a half-life 3-fold longer than those of the wild type. In addition, the pH optimum of the variant was shifted to a weakly alkaline value. In the cascade reaction, the productivity of UDCA with V 3-1 increased to 942 g L -1 day -1 , in contrast to 141 g L -1 day -1 with the wild type. Therefore, this study provides a useful strategy for improving the catalytic efficiency of a key enzyme that significantly facilitated the bioproduction of UDCA.

  5. Trichococcus patagoniensis sp. nov., a facultative anaerobe that grows at -5 degrees C, isolated from penguin guano in Chilean Patagonia.

    PubMed

    Pikuta, Elena V; Hoover, Richard B; Bej, Asim K; Marsic, Damien; Whitman, William B; Krader, Paul E; Tang, Jane

    2006-09-01

    A novel, extremely psychrotolerant, facultative anaerobe, strain PmagG1(T), was isolated from guano of Magellanic penguins (Spheniscus magellanicus) collected in Chilean Patagonia. Gram-variable, motile cocci with a diameter of 1.3-2.0 mum were observed singularly or in pairs, short chains and irregular conglomerates. Growth occurred within the pH range 6.0-10.0, with optimum growth at pH 8.5. The temperature range for growth of the novel isolate was from -5 to 35 degrees C, with optimum growth at 28-30 degrees C. Strain PmagG1(T) did not require NaCl, as growth was observed in the presence of 0-6.5 % NaCl with optimum growth at 0.5 % (w/v). Strain PmagG1(T) was a catalase-negative chemo-organoheterotroph that used sugars and some organic acids as substrates. The metabolic end products were lactate, formate, acetate, ethanol and CO(2). Strain PmagG1(T) was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. The G+C content of its genomic DNA was 45.8 mol%. 16S rRNA gene sequence analysis showed 100 % similarity of strain PmagG1(T) with Trichococcus collinsii ATCC BAA-296(T), but DNA-DNA hybridization between them demonstrated relatedness values of <45+/-1 %. Another phylogenetically closely related species, Trichococcus pasteurii, showed 99.85 % similarity by 16S rRNA sequencing and DNA-DNA hybridization showed relatedness values of 47+/-1.5 %. Based on genotypic and phenotypic characteristics, the novel species Trichococcus patagoniensis sp. nov. is proposed, with strain PmagG1(T) (=ATCC BAA-756(T)=JCM 12176(T)=CIP 108035(T)) as the type strain.

  6. Optimization of hydrostatic pressure at varied sonication conditions--power density, intensity, very low frequency--for isothermal ultrasonic sludge treatment.

    PubMed

    Delmas, Henri; Le, Ngoc Tuan; Barthe, Laurie; Julcour-Lebigue, Carine

    2015-07-01

    This work aims at investigating for the first time the key sonication (US) parameters: power density (DUS), intensity (IUS), and frequency (FS) - down to audible range, under varied hydrostatic pressure (Ph) and low temperature isothermal conditions (to avoid any thermal effect). The selected application was activated sludge disintegration, a major industrial US process. For a rational approach all comparisons were made at same specific energy input (ES, US energy per solid weight) which is also the relevant economic criterion. The decoupling of power density and intensity was obtained by either changing the sludge volume or most often by changing probe diameter, all other characteristics being unchanged. Comprehensive results were obtained by varying the hydrostatic pressure at given power density and intensity. In all cases marked maxima of sludge disintegration appeared at optimum pressures, which values increased at increasing power intensity and density. Such optimum was expected due to opposite effects of increasing hydrostatic pressure: higher cavitation threshold then smaller and fewer bubbles, but higher temperature and pressure at the end of collapse. In addition the first attempt to lower US frequency down to audible range was very successful: at any operation condition (DUS, IUS, Ph, sludge concentration and type) higher sludge disintegration was obtained at 12 kHz than at 20 kHz. The same values of optimum pressure were observed at 12 and 20 kHz. At same energy consumption the best conditions - obtained at 12 kHz, maximum power density 720 W/L and 3.25 bar - provided about 100% improvement with respect to usual conditions (1 bar, 20 kHz). Important energy savings and equipment size reduction may then be expected. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Trichococcus Patagoniensis sp. nov., a Facultative Anaerobe that grows at -5 C, Isolated from Penguin Guano in Chilean Patagonia

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Krader, Paul E.; Tang, Jane

    2006-01-01

    A novel, extremely psychrotolerant, facultative anaerobe, strain PmagGl(sup T), was isolated from guano of Magellanic penguins (Spheniscus magellanicus) collected in Chilean Patagonia. Gram-variable, motile cocci with a diameter of 1.3-2.0 micrometers were observed singularly or in pairs, short chains and irregular conglomerates. Growth occurred within the pH range 6.0-10.0, with optimum growth at pH 8.5. The temperature range for growth of the novel isolate was from -5 to 35 C, with optimum growth at 28-30 C. Strain PmagG1(sup T) did not require NaCl, as growth was observed in the presence of 0-6.5% NaCl with optimum growth at 0.5% (w/v). Strain PmagGl(sup T) was a catalase-negative chemo-organoheterotroph that used sugars and some organic acids as substrates. The metabolic end products were lactate, formate, acetate, ethanol and Con. Strain PmagG1(sup T) was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. The G+C content of its genomic DNA was 45.8 mol%. 16S rRNA gene sequence analysis showed 100 % similarity of strain PmagG1(sup T) with Trichococcus collinsii ATCC BAA-296(sup T), but DNA-DNA hybridization between them demonstrated relatedness values of less than 45 plus or minus 1%. Another phylogenetically closely related species, Trichococcus pasteurii, showed 99.85 % similarity by 16s rRNA sequencing and DNA-DNA hybridization showed relatedness values of 47 plus or minus 1.5%. Based on genotypic and phenotypic characteristics, the novel species Trichococcus patagoniensis sp. nov. is proposed, with strain PmagG1(sup T) (=ATCC BAA-756(sup T)=JCM 12176(sup T)=CIP 108035(sup T)) as the type strain.

  8. Venenivibrio stagnispumantis gen. nov., sp. nov., a thermophilic hydrogen-oxidizing bacterium isolated from Champagne Pool, Waiotapu, New Zealand.

    PubMed

    Hetzer, Adrian; McDonald, Ian R; Morgan, Hugh W

    2008-02-01

    A novel thermophilic, hydrogen-oxidizing bacterium, designated strain CP.B2(T), was isolated from a terrestrial hot spring in Waiotapu, New Zealand. Cells were motile, slightly rod-shaped, non-spore-forming and Gram-negative. Isolate CP.B2(T) was an obligate chemolithotroph, growing by utilizing H(2) as electron donor and O(2) as corresponding electron acceptor. Elemental sulfur (S(0)) or thiosulfate ( ) was essential for growth. Microbial growth occurred under microaerophilic conditions in 1.0-10.0 % (v/v) O(2) [optimum 4-8 % (v/v) O(2)], between 45 and 75 degrees C (optimum 70 degrees C) and at pH values of 4.8-5.8 (optimum pH 5.4). The DNA G+C content was 29.3 mol%. 16S rRNA gene sequence analysis demonstrated that strain CP.B2(T) belonged to the order Aquificales, with a close phylogenetic relationship to Sulfurihydrogenibium azorense (94 % sequence similarity to the type strain). However, genotypic and metabolic characteristics differentiated the novel isolate from previously described genera of the Aquificales. Therefore, CP.B2(T) represents a novel species in a new genus, for which the name Venenivibrio stagnispumantis gen. nov., sp. nov. is proposed. The type strain of Venenivibrio stagnispumantis is CP.B2(T) (=JCM 14244(T) =DSM 18763(T)).

  9. Spirochaeta americana sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul

    2003-01-01

    A novel, obligately anaerobic, mesophilic, haloalkaliphilic spirochaete, strain ASpG1(T), was isolated from sediments of the alkaline, hypersaline Mono Lake in California, USA. Cells of the Gram-negative strain were motile and spirochaete-shaped with sizes of 0.2-0.22 x 8-18 microm. Growth of the strain was observed between 10 and 44 degrees C (optimum 37 degrees C), in 2-12% (w/v) NaCl (optimum 3% NaCl) and between pH 8 and 10.5 (optimum pH 9.5). The novel strain was strictly alkaliphilic, required high concentrations of carbonates in the medium and was capable of utilizing D-glucose, fructose, maltose, sucrose, starch and D-mannitol. End products of glucose fermentation were H2, acetate, ethanol and formate. Strain ASpG(T) was resistant to kanamycin and rifampicin, but sensitive to gentamicin, tetracycline and chloramphenicol. The G + C content of its DNA was 58.5 mol%. DNA-DNA hybridization analysis of strain ASpG1(T) with its most closely related species, Spirochaeta alkalica Z-7491(T), revealed a hybridization value of only 48.7%. On the basis of its physiological and molecular properties, strain ASpG1(T) appears to represent a novel species of the genus Spirochaeta, for which the name Spirochaeta americana is proposed (type strain ASpG1(T) =ATCC BAA-392(T) = DSM 14872(T)).

  10. Bioremediation of coractive blue dye by using Pseudomonas spp. isolated from the textile dye wastewater

    NASA Astrophysics Data System (ADS)

    Sunar, N. M.; Mon, Z. K.; Rahim, N. A.; Leman, A. M.; Airish, N. A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.

    2018-04-01

    Wastewater released from the textile industry contains variety substances, mainly dyes that contains a high concentration of color and organic. In this study the potential for bacterial decolorization of coractive blue dye was examined that isolated from textile wastewater. The optimum conditions were determined for pH, temperature and initial concentration of the dye. The bacteria isolated was Pseudomonas spp. The selected bacterium shows high decolorization in static condition at an optimum of pH 7.0. The Pseudomonas spp. could decolorize coractive blue dye by 70% within 24 h under static condition, with the optimum of pH 7.0. Decolorization was confirmed by using UV-VIS spectrophotometer. This present study suggests the potential of Pseudomonas spp. as an approach in sustainable bioremediation that provide an efficient method for decolorizing coractive blue dye.

  11. Exploring the process-structure-function relationship of horseradish peroxidase through investigation of pH- and heat induced conformational changes

    NASA Astrophysics Data System (ADS)

    Stănciuc, Nicoleta; Aprodu, Iuliana; Ioniță, Elena; Bahrim, Gabriela; Râpeanu, Gabriela

    2015-08-01

    Given the importance of peroxidase as an indicator for the preservation of vegetables by heat treatment, the present study is focused on enzyme behavior under different pH and temperature conditions, in terms of process-structure-function relationships. Thus, the process-structure-function relationship of peroxidase was investigated by combining fluorescence spectroscopy, in silico prediction methods and inactivation kinetic studies. The fluorescence spectra indicated that at optimum pH value, the Trp117 residue is not located in the hydrophobic core of the protein. Significant blue- and red-shifts were obtained at different pH values, whereas the heat-treatment did not cause significant changes in Trp and Tyr environment. The ANS and quenching experiments demonstrated a more flexible conformation at lower pH and respectively at higher temperature. On the other hand molecular dynamics simulations at different temperatures highlighted that the secondary structure appeared better preserved against temperature, whereas the tertiary structure around the heme was more affected. Temperature dependent changes in the hydrogen bonding and ion paring involving amino acids from the heme-binding region (His170 and Asp247) might trigger miss-coordination of the heme iron atom by His170 residue and further enzyme activity loss.

  12. Yogurt made from milk heated at different pH values.

    PubMed

    Ozcan, Tulay; Horne, David S; Lucey, John A

    2015-10-01

    Milk for yogurt manufacture is subjected to high heat treatment to denature whey proteins. Low milk pH values (≤ 6.5) at heating result in most denatured whey proteins becoming associated with casein micelles, whereas high milk pH values (≥ 7.0) at heating result in the formation of mostly soluble (nonmicellar) denatured whey protein complexes. There are conflicting reports on the relative importance of soluble and casein-bound whey protein aggregates on the properties of acid gels. Prior studies investigating the effect of pH of milk at heating used model gels in which milk was acidified by glucono-δ-lactone; in this study, we prepared yogurt gels using commercial starter cultures. Model acid gels can have very different texture and physical properties from those made by fermentation with starter cultures. In this study, we investigated the effects of different pH values of milk at heating on the rheological, light backscatter, and microstructural properties of yogurt gels. Reconstituted skim milk was adjusted to pH values 6.2, 6.7, and 7.2 and heated at 85°C for 30 min. A portion of the heated milk samples was readjusted back to pH 6.7 after heating. Milks were inoculated with 3% (wt/wt) yogurt starter culture and incubated at 40°C until pH 4.6. Gel formation was monitored using dynamic oscillatory rheology, and parameters measured included the storage modulus (G') and loss tangent (LT) values. Light-backscattering properties, such as the backscatter ratio (R) and the first derivative of light backscatter ratio (R'), were also monitored during fermentation. Fluorescence microscopy was used to observe gel microstructure. The G' values at pH 4.6 were highest in gels made from milk heated at pH 6.7 and lowest in milk heated at pH 6.2, with or without pH adjustment after heating. The G' values at pH 4.6 were lower in samples after adjustment back to pH 6.7 after heating. No maximum in the LT parameter was observed during gelation for yogurts made from milk heated at pH 6.2; a maximum in LT was observed at pH ~4.8 for samples heated at pH 6.7 or 7.2, with or without pH adjustment after heating. Higher R-values were observed with an increase in pH of heating, with or without pH adjustment after heating. The sample heated at pH 6.2 had only one major peak in its R' profile during acidification, whereas samples heated at pH 6.7 and 7.2 had 2 large peaks. The lack of a maximum in LT parameter and the presence of a single peak in the R' profile for the samples heated at pH 6.2 were likely due to the partial solubilization of insoluble calcium phosphate when milk was acidified to this lower pH value. No clear differences were observed in the microstructures of gels between the different treatments. This study indicates that heating milk at the natural pH (~6.7) created an optimum balance of casein-bound and soluble denatured whey proteins, which resulted in yogurt with the highest gel stiffness. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Distinct moieties underlie biphasic H+ gating of connexin43 channels, producing a pH optimum for intercellular communication

    PubMed Central

    Garciarena, Carolina D.; Malik, Akif; Swietach, Pawel; Moreno, Alonso P.; Vaughan-Jones, Richard D.

    2018-01-01

    Most mammalian cells can intercommunicate via connexin-assembled, gap-junctional channels. To regulate signal transmission, connexin (Cx) channel permeability must respond dynamically to physiological and pathophysiological stimuli. One key stimulus is intracellular pH (pHi), which is modulated by a tissue’s metabolic and perfusion status. Our understanding of the molecular mechanism of H+ gating of Cx43 channels—the major isoform in the heart and brain—is incomplete. To interrogate the effects of acidic and alkaline pHi on Cx43 channels, we combined voltage-clamp electrophysiology with pHi imaging and photolytic H+ uncaging, performed over a range of pHi values. We demonstrate that Cx43 channels expressed in HeLa or N2a cell pairs are gated biphasically by pHi via a process that consists of activation by H+ ions at alkaline pHi and inhibition at more acidic pHi. For Cx43 channel–mediated solute/ion transmission, the ensemble of these effects produces a pHi optimum, near resting pHi. By using Cx43 mutants, we demonstrate that alkaline gating involves cysteine residues of the C terminus and is independent of motifs previously implicated in acidic gating. Thus, we present a molecular mechanism by which cytoplasmic acid–base chemistry fine tunes intercellular communication and establishes conditions for the optimal transmission of solutes and signals in tissues, such as the heart and brain.—Garciarena, C. D., Malik, A., Swietach, P., Moreno, A. P., Vaughan-Jones, R. D. Distinct moieties underlie biphasic H+ gating of connexin43 channels, producing a pH optimum for intercellular communication. PMID:29183963

  14. Purification and investigation of some kinetic properties of glucose-6-phosphate dehydrogenase from parsley (Petroselinum hortense) leaves.

    PubMed

    Coban, T Abdül Kadir; Ciftçi, Mehmet; Küfrevioğlu, O Irfan

    2002-05-01

    In this study, glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from parsley (Petroselinum hortense) leaves, and analysis of the kinetic behavior and some properties of the enzyme were investigated. The purification consisted of three steps: preparation of homogenate, ammonium sulfate fractionation, and DEAE-Sephadex A50 ion exchange chromatography. The enzyme was obtained with a yield of 8.79% and had a specific activity of 2.146 U (mg protein)(-1). The overall purification was about 58-fold. Temperature of +4 degrees C was maintained during the purification process. Enzyme activity was spectrophotometrically measured according to the Beutler method, at 340 nm. In order to control the purification of enzyme, SDS-polyacrylamide gel electrophoresis was carried out in 4% and 10% acrylamide for stacking and running gel, respectively. SDS-polyacrylamide gel electrophoresis showed a single band for enzyme. The molecular weight was found to be 77.6 kDa by Sephadex G-150 gel filtration chromatography. A protein band corresponding to a molecular weight of 79.3 kDa was obtained on SDS-polyacrylamide gel electrophoresis. For the enzymes, the stable pH, optimum pH, and optimum temperature were found to be 6.0, 8.0, and 60 degrees C, respectively. Moreover, KM and Vmax values for NADP+ and G6-P at optimum pH and 25 degrees C were determined by means of Lineweaver-Burk graphs. Additionally, effects of streptomycin sulfate and tetracycline antibiotics were investigated for the enzyme activity of glucose-6-phosphate dehydrogenase in vitro.

  15. Ligninases production by Basidiomycetes strains on lignocellulosic agricultural residues and their application in the decolorization of synthetic dyes

    PubMed Central

    Gomes, Eleni; Aguiar, Ana Paula; Carvalho, Caio César; Bonfá, Maricy Raquel B.; da Silva, Roberto; Boscolo, Mauricio

    2009-01-01

    Wood rotting Basidiomycetes collected in the “Estação Ecológica do Noroeste Paulista”, São José do Rio Preto, São Paulo State, Brazil, concerning Aphyllophorales order and identified as Coriolopsis byrsina SXS16, Lentinus strigellus SXS355, Lentinus sp SXS48, Picnoporus sanguineus SXS 43 and Phellinus rimosus SXS47 were tested for ligninases production by solid state fermentation (SSF) using wheat bran or rice straw as culture media. C. byrsina produced the highest laccase (200 U mL-1) and Lentinus sp produced the highest activities of manganese peroxidase (MnP) and lignin peroxidase (LiP) (7 and 8 U mL-1, respectively), when cultivated on wheat bran. The effect of N addition on enzyme production was studied in medium containing rice straw and the data showed an increase of 3 up to 4-fold in the laccase production compared to that obtained in SSF on wheat bran. The laccases presented optimum pH at 3.0-3.5 and were stable at neutral pH values. Optimum pH for MnP and LiP activities was at 3.5 and between 4.5 and 6.0, respectively. All the strains produced laccase with optimum activities between 55-60ºC while the peroxidases presented maximum activity at temperatures of 30 to 55ºC. The crude enzymes promoted decolorization of chemically different dyes with around 70% of decolorization of RBBR and cybacron blue 3GA in 6h of treatment. The data indicated that enzymes from these basidiomycetes strains are able to decolorize synthetic dyes. PMID:24031314

  16. Preliminary study : optimization of pH and salinity for biosurfactant production from Pseudomonas aeruginosa in diesel fuel and crude oil medium

    NASA Astrophysics Data System (ADS)

    Ikhwani, A. Z. N.; Nurlaila, H. S.; Ferdinand, F. D. K.; Fachria, R.; Hasan, A. E. Z.; Yani, M.; Setyawati, I.; Suryani

    2017-03-01

    Biosurfactant is secondary metabolite surface active compound produced by microorganisms which is nontoxic and eco-friendly. Microorganism producing biosurfactant that is quite potential to use in many applications is from Pseudomonas aeruginosa strains. Good quality of biosurfactant production from microbes is supported by the suitable nutrients and environmental factors. The aim of this research was to obtain preliminary o data upon the optimum pH and salinity for the production of biosurfactant from Pseudomonas aeruginosa ATCC 15442 in diesel fuel and crude oil medium. P. aeruginosa ATCC 15442 cultured in diesel fuel and crude oil as carbon source showed biosurfactant activity. P.aeruginosa-derived biosurfactant was capable to form stable emulsion for 24 hours (EI24) in hydrocarbons n-hexane solutions. The particular biosurfactant showed EI24 highest value at pH 7 (31.02%) and 1% NaCl (24.00%) when P. aeruginosa was grown in 10% diesel fuel medium in mineral salt solution. As for the media crude oil, the highest EI24 value was at pH 6 (52.16%) and 1% NaCl (33.30%).

  17. Response surface optimization of pH and ionic strength for emulsion characteristics of egg yolk.

    PubMed

    Kurt, S; Zorba, O

    2009-11-01

    Effects of pH (3.5, 4.5, 6.0, 7.5, and 8.5) and ionic strength (0.05, 0.15, 0.30, 0.45, and 0.55 M NaCl) on emulsion capacity, emulsion stability (ES), apparent yield stress of emulsion (AYS), and emulsion density (ED) of egg yolk were studied by using a model system. Ionic strength and pH had significant (P < 0.01) effects on the emulsion characteristics of egg yolk. Their interaction effects also have been found significant on ES, AYS, and ED. Predicted solutions of ES, emulsion capacity, and ED were minimum. The critical point of ES was determined to be at pH 6.08 and an ionic strength of 0.49 (M NaCl). Predicted solution for AYS was a maximum, which was determined to be at pH 6.04 and an ionic strength of 0.29 (M NaCl). Optimum values of pH and ionic strenght were 4.61 to 7.43 and 0.10 to 0.47, respectively.

  18. Purification and Characterization of Glucose 6-Phosphate Dehydrogenase, 6-Phosphogluconate Dehydrogenase, and Glutathione Reductase from Rat Heart and Inhibition Effects of Furosemide, Digoxin, and Dopamine on the Enzymes Activities.

    PubMed

    Adem, Sevki; Ciftci, Mehmet

    2016-06-01

    The present study was aimed to investigate characterization and purification of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase from rat heart and the inhibitory effect of three drugs. The purification of the enzymes was performed using 2',5'-ADP sepharose 4B affinity material. The subunit and the natural molecular weights were analyzed by SDS-PAGE and gel filtration. Biochemical characteristics such as the optimum temperature, pH, stable pH, and salt concentration were examined for each enzyme. Types of product inhibition and Ki values with Km and Vmax values of the substrates and coenzymes were determined. According to the obtained Ki and IC50 values, furosemide, digoxin, and dopamine showed inhibitory effect on the enzyme activities at low millimolar concentrations in vitro conditions. Dopamine inhibited the activity of these enzymes as competitive, whereas furosemide and digoxin inhibited the activity of the enzyme as noncompetitive. © 2016 Wiley Periodicals, Inc.

  19. Fractal analysis of polyferric chloride-humic acid (PFC-HA) flocs in different topological spaces.

    PubMed

    Wang, Yili; Lu, Jia; Baiyu, Du; Shi, Baoyou; Wang, Dongsheng

    2009-01-01

    The fractal dimensions in different topological spaces of polyferric chloride-humic acid (PFC-HA) flocs, formed in flocculating different kinds of humic acids (HA) water at different initial pH (9.0, 7.0, 5.0) and PFC dosages, were calculated by effective density-maximum diameter, image analysis, and N2 absorption-desorption methods, respectively. The mass fractal dimensions (Df) of PFC-HA flocs were calculated by bi-logarithm relation of effective density with maximum diameter and Logan empirical equation. The Df value was more than 2.0 at initial pH of 7.0, which was 11% and 13% higher than those at pH 9.0 and 5.0, respectively, indicating the most compact flocs formed in flocculated HA water at initial pH of 7.0. The image analysis for those flocs indicates that after flocculating the HA water at initial pH greater than 7.0 with PFC flocculant, the fractal dimensions of D2 (logA vs. logdL) and D3 (logVsphere VS. logdL) of PFC-HA flocs decreased with the increase of PFC dosages, and PFC-HA flocs showed a gradually looser structure. At the optimum dosage of PFC, the D2 (logA vs. logdL) values of the flocs show 14%-43% difference with their corresponding Df, and they even had different tendency with the change of initial pH values. However, the D2 values of the flocs formed at three different initial pH in HA solution had a same tendency with the corresponding Dr. Based on fractal Frenkel-Halsey-Hill (FHH) adsorption and desorption equations, the pore surface fractal dimensions (Ds) for dried powders of PFC-HA flocs formed in HA water with initial pH 9.0 and 7.0 were all close to 2.9421, and the Ds values of flocs formed at initial pH 5.0 were less than 2.3746. It indicated that the pore surface fractal dimensions of PFC-HA flocs dried powder mainly show the irregularity from the mesopore-size distribution and marcopore-size distribution.

  20. Heavy metal removal from waste waters by ion flotation.

    PubMed

    Polat, H; Erdogan, D

    2007-09-05

    Flotation studies were carried out to investigate the removal of heavy metals such as copper (II), zinc (II), chromium (III) and silver (I) from waste waters. Various parameters such as pH, collector and frother concentrations and airflow rate were tested to determine the optimum flotation conditions. Sodium dodecyl sulfate and hexadecyltrimethyl ammonium bromide were used as collectors. Ethanol and methyl isobutyl carbinol (MIBC) were used as frothers. Metal removal reached about 74% under optimum conditions at low pH. At basic pH it became as high as 90%, probably due to the contribution from the flotation of metal precipitates.

  1. Improvement of the optimum pH of Aspergillus niger xylanase towards an alkaline pH by site-directed mutagenesis.

    PubMed

    Li, Fei; Xie, Jingcong; Zhang, Xuesong; Zhao, Linguo

    2015-01-01

    In an attempt to shift the optimal pH of the xylanase B (XynB) from Aspergillus niger towards alkalinity, target mutation sites were selected by alignment between Aspergillus niger xylanase B and other xylanases that have alkalophilic pH optima that highlight charged residues in the eight-residues-longer loop in the alkalophilic xylanase. Multiple engineered XynB mutants were created by site-directed mutagenesis with substitutions Q164K and Q164K+D117N. The variant XynB-117 had the highest optimum pH (at 5.5), which corresponded to a basic 0.5 pH unit shift when compared with the wild-type enzyme. However, the optimal pH of the XynB- 164 mutation was not changed, similar to the wild type. These results suggest that the residues at positions 164 and 117 in the eight-residues-longer loop and the cleft's edge are important in determining the pH optima of XynB from Aspergillus niger.

  2. Isolation, purification and characterisation of low molecular weight xylanase from Bacillus pumilus SSP-34.

    PubMed

    Subramaniyan, S

    2012-04-01

    Low molecular weight endo-xylanase from Bacillus pumilus SSP-34 was purified to homogeneity using ion exchange and size exclusion chromatographies. Xylanases were isolated by novel purification protocol which includes the use of anion exchange matrix such as DEAE Sepharose CL 6B with less affinity towards enzyme protein. The purified B. pumilus SSP-34 have a molecular weight of 20 kDa, with optimum pH and temperature at 6.0 and 50 °C, respectively. The enzyme was stable at 50 °C for 30 min. It showed remarkable stability at pH values ranging from 4.5 to 9 when the reaction was carried out at 50 °C. K (m) and V (max) values, determined with oats spelts xylan were 6.5 mg ml⁻¹ and 1,233 μmol min⁻¹ mg⁻¹ protein, respectively, and the specific activity was 1,723 U mg⁻¹.

  3. Mode of de-esterification of alkaline and acidic pectin methyl esterases at different pH conditions.

    PubMed

    Duvetter, Thomas; Fraeye, Ilse; Sila, Daniel N; Verlent, Isabel; Smout, Chantal; Hendrickx, Marc; Van Loey, Ann

    2006-10-04

    Highly esterified citrus pectin was de-esterified at pH 4.5 and 8.0 by a fungal pectin methyl esterase (PME) that was shown to have an acidic isoelectric pH (pI) and an acidic pH optimum and by a plant PME that was characterized by an alkaline pI and an alkaline pH optimum. Interchain and intrachain de-esterification patterns were studied by digestion of the pectin products with endo-polygalacturonase and subsequent analysis using size exclusion and anion-exchange chromatography. No effect of pH was observed on the de-esterification mode of either of the two enzymes. Acidic, fungal PME converted pectin according to a multiple-chain mechanism, with a limited degree of multiple attack at the intrachain level, both at pH 4.5 and at pH 8.0. A multiple-attack mechanism, with a high degree of multiple attack, was more appropriate to describe the action mode of alkaline, plant PME, both at pH 4.5 and at pH 8.0.

  4. Process optimization and analysis of product inhibition kinetics of crude glycerol fermentation for 1,3-Dihydroxyacetone production.

    PubMed

    Dikshit, Pritam Kumar; Padhi, Susant Kumar; Moholkar, Vijayanand S

    2017-11-01

    In present study, statistical optimization of biodiesel-derived crude glycerol fermentation to DHA by immobilized G. oxydans cells over polyurethane foam is reported. Effect of DHA (product) inhibition on crude glycerol fermentation was analyzed using conventional biokinetic models and new model that accounts for both substrate and product inhibition. Optimum values of fermentation parameters were: pH=4.7, temperature=31°C, initial substrate concentration=20g/L. At optimum conditions, DHA yield was 89% (17.83g/L). Effect of product inhibition on fermentation was trivial for DHA concentrations ≤30g/L. At higher concentrations (≥50g/L), kinetics and yield of fermentation showed marked reduction with sharp drop in V max and K S values. Inhibition effect was more pronounced for immobilized cells due to restricted transport of fermentation mixture across polyurethane foam. Retention of fermentation mixture in immobilized matrix resulted in higher localized DHA concentration that possibly enhanced inhibition effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Carbonic anhydrase from Camelia sinensis (tea) leaves.

    PubMed

    Demir, Y; Demir, N; Ağar, G

    1997-11-01

    Carbonic anhydrase (CA) (carbonate hydrolyase; E,C,4.2.1.1) from leaves of mature Camelia sinensis was purified and characterized. The purification level was 53 fold. The optimum temperature for maximal enzyme activity is 50 degrees C. The optimum pH was 6.8 and this pH varied between 6.5 and 7.5. Each enzyme molecule is a hexamer with an M(r) of 169,000 with subunits of M(r) = 28,000.

  6. Purification and properties of beta-galactosidase from Aspergillus nidulans.

    PubMed

    Díaz, M; Pedregosa, A M; de Lucas, J R; Torralba, S; Monistrol, I F; Laborda, F

    1996-12-01

    Beta-Galactosidase from mycelial extract of Aspergillus nidulans has been purified by substrate affinity chromatography and used to obtain anti-beta-galactosidase polyclonal antibodies. A. nidulans growing in lactose as carbon source synthesizes one active form of beta-galactosidase which seems to be a multimeric enzyme of 450 kDa composed of monomers with 120 and 97 kDa. Although the enzyme was not released to the culture medium, some enzymatic activity was detected in a cell-wall extract, thus suggesting that it can be an extracellular enzyme. Beta-Galactosidase of A. nidulans is a very unstable enzyme with an optimum pH value of 7.5 and an optimum temperature of 30 degrees C. It was only active against beta-galactoside substrates like lactose and p-nitrophenyl-beta-D-galactoside (PNPG).

  7. Treatment of dye wastewater with permanganate oxidation and in situ formed manganese dioxides adsorption: cation blue as model pollutant.

    PubMed

    Liu, Ruiping; Liu, Huijuan; Zhao, Xu; Qu, Jiuhui; Zhang, Ran

    2010-04-15

    This study investigated the process of potassium permanganate (KMnO(4)) oxidation and in situ formed hydrous manganese dioxides (deltaMnO(2)) (i.e., KMnO(4) oxidation and deltaMnO(2) adsorption) for the treatment of dye wastewater. The effectiveness of decolorization, removing dissolved organic carbon (DOC), and increasing biodegradable oxygen demand (BOD) were compared among these processes of KMnO(4) oxidation, deltaMnO(2) adsorption, and KMnO(4) oxidation and deltaMnO(2) adsorption. DeltaMnO(2) adsorption contributed to the maximum DOC removal of 65.0%, but exhibited limited capabilities of decolorizing and increasing biodegradability. KMnO(4) oxidation alone at pH 0.5 showed satisfactory decrease of UV-vis absorption peaks, and the maximum BOD(5)/DOC value of 1.67 was achieved. Unfortunately, the DOC removal was as low as 27.4%. Additionally, the great amount of acid for pH adjustment and the much too low pH levels limited its application in practice. KMnO(4) oxidation and deltaMnO(2) adsorption at pH 2.0 was the best strategy prior to biological process, in balancing the objectives of decolorization, DOC removal, and BOD increase. The optimum ratio of KMnO(4) dosage to X-GRL concentration (R(KMnO(4)/X-GRL)) was determined to be 2.5, at which KMnO(4) oxidation and deltaMnO(2) adsorption contributed to the maximal DOC removal of 53.4%. Additionally, the optimum pH for X-GRL treatment was observed to be near 3.0. 2009 Elsevier B.V. All rights reserved.

  8. Maribacter thermophilus sp. nov., isolated from an algal bloom in an intertidal zone, and emended description of the genus Maribacter.

    PubMed

    Hu, Jing; Yang, Qi-Qi; Ren, Yi; Zhang, Wen-Wu; Zheng, Gang; Sun, Cong; Pan, Jie; Zhu, Xu-Fen; Zhang, Xin-Qi; Wu, Min

    2015-01-01

    A novel facultatively anaerobic, Gram-stain-negative bacterium, designated strain HT7-2(T), was isolated from Ulva prolifera collected from the intertidal zone of Qingdao sea area, China, during its bloom. Cells were rod-shaped (1.9-3.5×0.4-0.6 µm), non-sporulating and motile by gliding. Strain HT7-2(T) was able to grow at 4-50 °C (optimum 40-42 °C), pH 5.5-8.5 (optimum pH 7.0), 0-8 % (w/v) NaCl (optimum 2-3 %) and 0.5-10 % (w/v) sea salts (optimum 2.5 %). The genomic DNA G+C content was 38.8 mol%. The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain HT7-2(T) belonged to the genus Maribacter with sequence similarity values of 94.5-96.6 %, and was most closely related to Maribacter aestuarii GY20(T) (96.6%). Chemotaxonomic analysis showed that the main isoprenoid quinone was MK-6 and the major fatty acids were iso-C15:0 and unknown equivalent chain-length 13.565. The polar lipids of strain HT7-2(T) consisted of one phosphatidylethanolamine, four unidentified lipids and one unidentified aminolipid. On the basis of the phenotypic, phylogenetic and chemotaxonomic characteristics, strain HT7-2(T) ( =CGMCC 1.12207(T) =JCM 18466(T)) is concluded to represent a novel species of the genus Maribacter, for which the name Maribacter thermophilus sp. nov. is proposed. An emended description of the genus Maribacter is also proposed. © 2015 IUMS.

  9. Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass.

    PubMed

    Baysal, Zübeyde; Cinar, Ercan; Bulut, Yasemin; Alkan, Hüseyin; Dogru, Mehmet

    2009-01-15

    Biosorption of Pb(II) ions from aqueous solutions was studied in a batch system by using Candida albicans. The optimum conditions of biosorption were determined by investigating the initial metal ion concentration, contact time, temperature, biosorbent dose and pH. The extent of metal ion removed increased with increasing contact time, initial metal ion concentration and temperature. Biosorption equilibrium time was observed in 30min. The Freundlich and Langmuir adsorption models were used for the mathematical description of biosorption equilibrium and isotherm constants were also evaluated. The maximum biosorption capacity of Pb(II) on C. albicans was determined as 828.50+/-1.05, 831.26+/-1.30 and 833.33+/-1.12mgg(-1), respectively, at different temperatures (25, 35 and 45 degrees C). Biosorption showed pseudo second-order rate kinetics at different initial concentration of Pb(II) and different temperatures. The activation energy of the biosorption (Ea) was estimated as 59.04kJmol(-1) from Arrhenius equation. Using the equilibrium constant value obtained at different temperatures, the thermodynamic properties of the biosorption (DeltaG degrees , DeltaH degrees and DeltaS degrees ) were also determined. The results showed that biosorption of Pb(II) ions on C. albicans were endothermic and spontaneous. The optimum initial pH for Pb(II) was determined as pH 5.0. FTIR spectral analysis of Pb(II) adsorbed and unadsorbed C. albicans biomass was also discussed.

  10. Kinetic study of hydroxytyrosol oxidation and its related compounds by Red Globe grape polyphenol oxidase.

    PubMed

    García-García, María Inmaculada; Hernández-García, Samanta; Sánchez-Ferrer, Álvaro; García-Carmona, Francisco

    2013-06-26

    Red Globe grape polyphenol oxidase, partially purified using phase partitioning with Triton-X114, was used to study the oxidation of hydroxytytosol (HT) and its related compounds tyrosol (TS), tyrosol acetate (TSA), and hydroxytyrosol acetate (HTA). The enzyme showed activity toward both monophenols (monophenolase activity) and o-diphenols (diphenolase activity) with a pH optimum (pH 6.5) that was independent of the phenol used. However, the optimal temperature for diphenolase activity was substrate-dependent, with a broad optimum of 25-65 °C for HT, compared with the maximum obtained for HTA (40 °C). Monophenolase activity showed the typical lag period, which was modulated by pH, substrate and enzyme concentrations, and the presence of catalytic amounts of o-diphenols. When the catalytic power (Vmax/K(M)) was determined for both activities, higher values were observed for o-diphenols than for monophenols: 9-fold higher for the HT/TS pair and 4-fold higher for HTA/TSA pair. Surprisingly, this ratio was equally higher for TSA (2.2-fold) compared with that of TS, whereas no such effect was observed for o-diphenols. This higher efficiency of TSA could be related to its greater hydrophobicity. Acetyl modification of these phenols not only changes the kinetic parameters of the enzyme but also affects their antioxidant activity (ORAC-FL assays), which is lower in HTA than in HT.

  11. Hydrolysis of penicillins and related compounds by the cell-bound penicillin acylase of Escherichia coli

    PubMed Central

    Cole, M.

    1969-01-01

    1. A method is given for the preparation of penicillin acylase by using Escherichia coli N.C.I.B. 8743 and a strain selected for higher yield. The enzyme is associated with the bacterial cells and removes the side chains of penicillins to give 6-amino-penicillanic acid and a carboxylic acid. 2. The rates of penicillin deacylation indicated that p-hydroxybenzylpenicillin was the best substrate, followed in diminishing order by benzyl-, dl-α-hydroxybenzyl-, 2-furylmethyl-, 2-thienylmethyl-, d-α-aminobenzyl-, n-propoxymethyl- and isobutoxymethyl-penicillin. Phenylpenicillin and dl-α-carboxybenzylpenicillin were not substrates and phenoxymethyl-penicillin was very poor. 3. Amides and esters of the above penicillins were also substrates for the deacylation reaction, as were cephalosporins with a thienylmethyl side chain. 4. For the deacylation of 2-furylmethylpenicillin at 21° the optimum pH was 8·2. The optimum temperature was 60° at pH7. 5. By using selection A of N.C.I.B. 8743 and determining reaction velocities by assaying yields of 6-amino-penicillanic acid in a 10min. reaction at 50° and pH8·2, the Km for benzylpenicillin was found to be about 30mm and the Km for 2-furylmethylpenicillin, about 10mm. The Vmax. values were 0·6 and 0·24μmole/min./mg. of bacterial cells respectively. PMID:4982417

  12. Properties of lactate dehydrogenase from the isopod, Saduria entomon.

    PubMed

    Mulkiewicz, E; Zietara, M S; Stachowiak, K; Skorkowski, E F

    2000-07-01

    Saduria entomon lactate dehydrogenase (LDH-A4*) from thorax muscle was purified about 89 fold to specific activity 510 micromol NADH/min/mg using Cibacron Blue 3GA Agarose and Oxamate-Agarose chromatographies. The enzyme is a tetramer, with molecular weight of 140 kDa for the native enzyme and 36 kDa for the subunit. The isoelectric point was at pH 5.7. The enzyme possesses high heat stability (T50 = 71.5 degrees C). The optimum pH for pyruvate reduction reaction was 6.5, while for lactate oxidation one, the maximum activity was at pH 9.1. The Km for pyruvate was minimal at 5 degrees C, the average environmental temperature of the isopod. The Km values determined at 30 degrees C and optimal pH for pyruvate reduction and lactate oxidation were 0.18 and 90.04 mM, respectively. Amino acid compositional analyses showed the strongest resemblance of the isopod isoenzyme to cod (Gadus morhua) LDH-C4.

  13. Removal of methyl orange and methylene blue dyes from aqueous solution using lala clam (Orbicularia orbiculata) shell

    NASA Astrophysics Data System (ADS)

    Eljiedi, Arwa Alseddig Ahmed; Kamari, Azlan

    2017-05-01

    Textile effluents are considered as potential sources of water pollution because they contain toxic dyes. In the present study, lala clam shell was used as an alternative low-cost adsorbent for the removal of two harmful dyes, namely methyl orange (MO) and methylene blue (MB) from aqueous solution. Batch adsorption studies were carried out by varying experimental parameters such as solution pH, initial concentration and adsorbent dosage. The optimum pH values for MO and MB removal were pH 2.0 and pH 8.0, respectively. At an initial MO and MB concentration of 20 mg/L, the maximum removal percentage of MO and MB were 18.9 % and 81.3 %, respectively. The adsorption equilibrium data were correlated with both Langmuir and Freundlich isotherm models. The biomass adsorbent was characterised using Field Emission Scanning Electron Microscope (FESEM) and Fourier Transform Infrared Spectrometer (FTIR). Results from this study suggest that lala clam shell, a fishery waste, can be beneficial for water treatment.

  14. 21 CFR 114.90 - Methodology.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... buffer. First standardize the electrodes using a pH 4.0 buffer at or near 25 °C. Standardization control..., the optimum being 25 °C. Any temperature determinations made without meter compensation may affect pH... approximately ±0.01 pH unit and a reproducibility of ±0.005 pH units. (4) General procedure for determining pH...

  15. 21 CFR 114.90 - Methodology.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... buffer. First standardize the electrodes using a pH 4.0 buffer at or near 25 °C. Standardization control..., the optimum being 25 °C. Any temperature determinations made without meter compensation may affect pH... approximately ±0.01 pH unit and a reproducibility of ±0.005 pH units. (4) General procedure for determining pH...

  16. Synthesis and adsorption of silica gel modified 3-aminopropyltriethoxysilane (APTS) from corn cobs against Cu(II) in water

    NASA Astrophysics Data System (ADS)

    Purwanto, Agung; Yusmaniar, Ferdiani, Fatmawati; Damayanti, Rachma

    2017-03-01

    Silica gel modified APTS was synthesized from silica gel which was obtained from corn cobs via sol-gel process. Silica gel was synthesized from corn cobs and then chemically modified with silane coupling agent which has an amine group (NH2). This process resulting modified silica gel 3-aminopropyltriethoxysilane (APTS). Characterization of silica gel modified APTS by SEM-EDX showed that the size of the particles of silica gel modified APTS was 20µm with mass percentage of individual elements were nitrogen (N) 15.56%, silicon (Si) 50.69% and oxygen (O) 33.75%. In addition, silica gel modified APTS also showed absorption bands of functional groups silanol (Si-OH), siloxane (Si-O-Si), and an aliphatic chain (-CH2-), as well as amine (NH2) from FTIR spectra. Based on the characterization of XRD, silica gel 2θ of 21.094° and 21.32° respectively. It indicated that both material were amorphous. Determination of optimum pH and contact time on adsorption of silica gel 3-aminopropyltriethoxysilane (APTS) against Cu(II). The optimum pH and contact time was measured by using AAS. Optimum pH of adsorption silica gel modified APTS against metal Cu(II) could be obtained at pH 6 while optimum contact time was at 30 minutes, with the process of adsorption metal Cu(II) occured based on the model Freundlich isotherm.

  17. Increasing surface enhanced Raman spectroscopy effect of RNA and DNA components by changing the pH of silver colloidal suspensions.

    PubMed

    Primera-Pedrozo, Oliva M; Rodríguez, Gabriela Del Mar; Castellanos, Jorge; Felix-Rivera, Hilsamar; Resto, Oscar; Hernández-Rivera, Samuel P

    2012-02-15

    This work focused on establishing the parameters for enhancing the Raman signals of DNA and RNA constituents: nitrogenous bases, nucleosides and nucleotides, using metallic nanoparticles as surface enhanced Raman scattering substrates. Silver nanospheres were synthesized using sodium borohydride as a reducing agent and sodium citrate as a capping agent. The prepared nanoparticles had a surface plasmon band at ∼384nm and an average size of 12±3nm. The nanoparticles' surface charge was manipulated by changing the pH of the Ag colloidal suspensions in the range of 1-13. Low concentrations as 0.7μM were detected under the experimental conditions. The optimum pH values were: 7 for adenine, 9 for AMP, 5 for adenosine, 7 for dAMP and 11 for deoxyadenosine. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Fabrication of hydroxyapatite ceramics with controlled pore characteristics by slip casting.

    PubMed

    Yao, Xiumin; Tan, Shouhong; Jiang, Dongliang

    2005-02-01

    Porous hydroxyapatite (HAp) ceramics with controlled pore characteristics were fabricated using slip casting method by mixing PMMA with HAp powder. The optimum conditions of HAp slip for slip casting was achieved by employing various experimental techniques, zeta potential and sedimentation, as a function of pH of the slips in the pH range of 4-12. HAp suspensions displayed an absolute maximum in zeta potential values and a minimum in sedimentation height at pH 11.5. The optimal amount of dispersant for the HAp suspensions was found at 1.0 wt% according to the viscosity of 25 vol% HAp slurry. The rheological behaviour of HAp slurry displays a shear-thinning behavior without thixotropy, which is needed in slip casting processing. The pore characteristics of sintered porous hydroxyapatite bioceramics can be controlled by added PMMA particle size and volume. The obtained ceramics exhibit higher strength than those obtained by dry pressing.

  19. Preliminary study on biosynthesis and characterization of bacteria cellulose films from coconut water

    NASA Astrophysics Data System (ADS)

    Indrianingsih, A. W.; Rosyida, V. T.; Jatmiko, T. H.; Prasetyo, D. J.; Poeloengasih, C. D.; Apriyana, W.; Nisa, K.; Nurhayati, S.; Hernawan; Darsih, C.; Pratiwi, D.; Suwanto, A.; Ratih, D.

    2017-12-01

    Bacterial cellulose produced by Acetobacter xylinum is a unique type of bacterial cellulose. It contains more than 90% of water. A preliminary study had shown that bacterial cellulose films has remarkable mechanical properties. The aim of this study was to investigate the optimum condition such as percentage of carbon source, time of cultivation, and pH to produce bacterial cellulose films from local coconut water, and its characterization on morphology, swelling ability and tensile strength of dried bacterial cellulose. A. xylinum was grown on coconut water culture medium with addition of 3%, 5%, and 7% of sugar, while the cultivation time was vary from 3 days, 5 days and 7 days. pH condition was conducted in pH 3, pH 5 and pH 7. Bacterial cellulose samples were dried using oven with temperature of 100°C until the moisture content reached 4-5%. This study showed that several parameters for optimum condition to produce bacterial cellulose films from local waste of coconut water had been obtained (5% of carbon source; pH 5; and 7 day of incubation period). The electron microscopy also showed that dried bacterial cellulose films had pores covered by fibrils on the surface. Therefore, the present work proposes the optimum formula and condition that can be used based on properties of end product needed.

  20. Spirochaeta Americana sp. Nov., A New Haloalkaliphilic, Obligately Anaerobic Spirochaete Isolated from Soda Mona Lake in California

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul

    2003-01-01

    A novel, obligately anaerobic, mesophilic, haloalkaliphilic spirochaete, strain ASpG1(sup T), was isolated from sediments of the alkaline, hypersaline Mono Lake in California, USA. Cells of the Gram-negative strain were motile and spirochaete-shaped with sizes of 0.2-0.22 x 8-18 microns. Growth of the strain was observed between 10 and 44 C (optimum 37 C), in 2-12% (w/v) NaCl (optimum 3 % NaCl) and between pH 8 and 10.5 (optimum pH 9.5). The novel strain was strictly alkaliphilic, required high concentrations of carbonates in the medium and was capable of utilizing D-glucose, fructose, maltose, sucrose, starch and D-mannitol. End products of glucose fermentation were H2, acetate, ethanol and formate. Strain ASpG1(sup T) was resistant to kanamycin and rifampicin, but sensitive to gentamicin, tetracycline and chloramphenicol. The G + C content of its DNA was 58.5 mol%. DNA-DNA hybridization analysis of strain ASpG1(sup T) with its most closely related species, Spirochaeta alkalica Z-7491(sup T) revealed a hybridization value of only 48.7 %. On the basis of its physiological and molecular properties, strain ASpG1(sup T) appears to represent a novel species of the genus Spirochaeta, for which the name Spirochaeta americana is proposed (type strain ASpG1(sup T) = ATCC 13AA-392(sup T) = DSM 14872(sup T)).

  1. Comparison between the univariate and multivariate analysis on the partial characterization of the endoglucanase produced in the solid state fermentation by Aspergillus oryzae ATCC 10124.

    PubMed

    de Brito, Aila Riany; Santos Reis, Nadabe Dos; Silva, Tatielle Pereira; Ferreira Bonomo, Renata Cristina; Trovatti Uetanabaro, Ana Paula; de Assis, Sandra Aparecida; da Silva, Erik Galvão Paranhos; Aguiar-Oliveira, Elizama; Oliveira, Julieta Rangel; Franco, Marcelo

    2017-11-26

    Endoglucanase production by Aspergillus oryzae ATCC 10124 cultivated in rice husks or peanut shells was optimized by experimental design as a function of humidity, time, and temperature. The optimum temperature for the endoglucanase activity was estimated by a univariate analysis (one factor at the time) as 50°C (rice husks) and 60°C (peanut shells), however, by a multivariate analysis (synergism of factors), it was determined a different temperature (56°C) for endoglucanase from peanut shells. For the optimum pH, values determined by univariate and multivariate analysis were 5 and 5.2 (rice husk) and 5 and 7.6 (peanut shells). In addition, the best half-lives were observed at 50°C as 22.8 hr (rice husks) and 7.3 hr (peanut shells), also, 80% of residual activities was obtained between 30 and 50°C for both substrates, and the pH stability was improved at 5-7 (rice hulls) and 6-9 (peanut shells). Both endoglucanases obtained presented different characteristics as a result of the versatility of fungi in different substrates.

  2. Partial purification and characterization of polyphenol oxidase from banana (Musa sapientum L.) peel.

    PubMed

    Yang, C P; Fujita, S; Kohno, K; Kusubayashi, A; Ashrafuzzaman, M; Hayashi, N

    2001-03-01

    Polyphenol oxidase (EC 1.10.3.1, o-diphenol: oxygen oxidoreductase, PPO) of banana (Musa sapientum L.) peel was partially purified about 460-fold with a recovery of 2.2% using dopamine as substrate. The enzyme showed a single peak on Toyopearl HW55-S chromatography. However, two bands were detected by staining with Coomassie brilliant blue on PAGE: one was very clear, and the other was faint. Molecular weight for purified PPO was estimated to be about 41 000 by gel filtration. The enzyme quickly oxidized dopamine, and its Km value (Michaelis constant) for dopamine was 3.9 mM. Optimum pH was 6.5 and the PPO activity was quite stable in the range of pH 5-11 for 48 h. The enzyme had an optimum temperature at 30 degrees C and was stable up to 60 degrees C after heat treatment for 30 min. The enzyme activity was strongly inhibited by sodium diethyldithiocarbamate, potassium cyanide, L-ascorbic acid, and cysteine at 1 mM. Under a low buffer capacity, the enzyme was also strongly inhibited by citric acid and acetic acid at 10 mM.

  3. Enhanced mannan-derived fermentable sugars of palm kernel cake by mannanase-catalyzed hydrolysis for production of biobutanol.

    PubMed

    Shukor, Hafiza; Abdeshahian, Peyman; Al-Shorgani, Najeeb Kaid Nasser; Hamid, Aidil Abdul; Rahman, Norliza A; Kalil, Mohd Sahaid

    2016-10-01

    Catalytic depolymerization of mannan composition of palm kernel cake (PKC) by mannanase was optimized to enhance the release of mannan-derived monomeric sugars for further application in acetone-butanol-ethanol (ABE) fermentation. Efficiency of enzymatic hydrolysis of PKC was studied by evaluating effects of PKC concentration, mannanase loading, hydrolysis pH value, reaction temperature and hydrolysis time on production of fermentable sugars using one-way analysis of variance (ANOVA). The ANOVA results revealed that all factors studied had highly significant effects on total sugar liberated (P<0.01). The optimum conditions for PKC hydrolysis were 20% (w/v) PKC concentration, 5% (w/w) mannanase loading, hydrolysis pH 4.5, 45°C temperature and 72h hydrolysis time. Enzymatic experiments in optimum conditions revealed total fermentable sugars of 71.54±2.54g/L were produced including 67.47±2.51g/L mannose and 2.94±0.03g/L glucose. ABE fermentation of sugar hydrolysate by Clostridium saccharoperbutylacetonicum N1-4 resulted in 3.27±1.003g/L biobutanol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Proteolytic Activity at Alkaline pH in Oat Leaves, Isolation of an Aminopeptidase 1

    PubMed Central

    Casano, Leonardo M.; Desimone, Marcelo; Trippi, Victorio S.

    1989-01-01

    Proteolytic activity in oat leaf extracts was measured with both azocasein and ribulose bisphosphate carboxylase (Rubisco) as substrates over a wide range of pH (3.0-9.2). With either azocasein or Rubisco activity peaks appeared at pH 4.8, 6.6, and 8.4. An aminopeptidase (AP) which hydrolyzes leucine-nitroanilide was partially purified. Purification consisted of a series of six steps which included ammonium sulfate precipitation, gel filtration, and two ionic exchange chromatographies. The enzyme was purified more than 100-fold. The apparent Km for leucine-nitroanilide is 0.08 millimolar at its pH optimum of 8.4. AP may be a cystein protease since it is inhibited by heavy metals and activated by 2-mercaptoethanol. Isolated chloroplasts were also able to hydrolyze leucine-nitroanilide at a pH optimum of 8.4, indicating that AP could be localized inside the photosynthetic organelles. PMID:16667194

  5. Electrocoagulation and nanofiltration integrated process application in purification of bilge water using response surface methodology.

    PubMed

    Akarsu, Ceyhun; Ozay, Yasin; Dizge, Nadir; Elif Gulsen, H; Ates, Hasan; Gozmen, Belgin; Turabik, Meral

    Marine pollution has been considered an increasing problem because of the increase in sea transportation day by day. Therefore, a large volume of bilge water which contains petroleum, oil and hydrocarbons in high concentrations is generated from all types of ships. In this study, treatment of bilge water by electrocoagulation/electroflotation and nanofiltration integrated process is investigated as a function of voltage, time, and initial pH with aluminum electrode as both anode and cathode. Moreover, a commercial NF270 flat-sheet membrane was also used for further purification. Box-Behnken design combined with response surface methodology was used to study the response pattern and determine the optimum conditions for maximum chemical oxygen demand (COD) removal and minimum metal ion contents of bilge water. Three independent variables, namely voltage (5-15 V), initial pH (4.5-8.0) and time (30-90 min) were transformed to coded values. The COD removal percent, UV absorbance at 254 nm, pH value (after treatment), and concentration of metal ions (Ti, As, Cu, Cr, Zn, Sr, Mo) were obtained as responses. Analysis of variance results showed that all the models were significant except for Zn (P > 0.05), because the calculated F values for these models were less than the critical F value for the considered probability (P = 0.05). The obtained R(2) and Radj(2) values signified the correlation between the experimental data and predicted responses: except for the model of Zn concentration after treatment, the high R(2) values showed the goodness of fit of the model. While the increase in the applied voltage showed negative effects, the increases in time and pH showed a positive effect on COD removal efficiency; also the most effective linear term was found as time. A positive sign of the interactive coefficients of the voltage-time and pH-time systems indicated synergistic effect on COD removal efficiency, whereas interaction between voltage and pH showed an antagonistic effect.

  6. Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey

    PubMed Central

    Yalcin, Seda Karasu; Yesim Ozbas, Z.

    2008-01-01

    The study was performed in a batch system in order to determine the effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine yeast strains Saccharomyces cerevisiae Kalecik 1 and Narince 3. The highest values of dry mass and specific growth rate were obtained at pH 4.00 for both of the strains. Maximum specific glycerol production rates were obtained at pH 5.92 and 6.27 for the strains Kalecik 1 and Narince 3, respectively. Kalecik 1 strain produced maximum 8.8 gL−1 of glycerol at pH 6.46. Maximum glycerol concentration obtained by the strain Narince 3 was 9.1 gL−1 at pH 6.48. Both yeasts reached maximum specific growth rate at 30°C. Optimum temperature range for glycerol production was determined as 25-30°C for the strain Kalecik 1. The strain Narince 3 reached maximum specific glycerol production rate at 30°C. Maximum glycerol concentrations at 30°C were obtained as 8.5 and 7.6 gL−1 for Kalecik 1 and Narince 3, respectively. PMID:24031225

  7. Semi-empirical study of ortho-cresol photo degradation in manganese-doped zinc oxide nanoparticles suspensions

    PubMed Central

    2012-01-01

    The optimization processes of photo degradation are complicated and expensive when it is performed with traditional methods such as one variable at a time. In this research, the condition of ortho-cresol (o-cresol) photo degradation was optimized by using a semi empirical method. First of all, the experiments were designed with four effective factors including irradiation time, pH, photo catalyst’s amount, o-cresol concentration and photo degradation % as response by response surface methodology (RSM). The RSM used central composite design (CCD) method consists of 30 runs to obtain the actual responses. The actual responses were fitted with the second order algebraic polynomial equation to select a model (suggested model). The suggested model was validated by a few numbers of excellent statistical evidences in analysis of variance (ANOVA). The used evidences include high F-value (143.12), very low P-value (<0.0001), non-significant lack of fit, the determination coefficient (R2 = 0.99) and the adequate precision (47.067). To visualize the optimum, the validated model simulated the condition of variables and response (photo degradation %) be using a few number of three dimensional plots (3D). To confirm the model, the optimums were performed in laboratory. The results of performed experiments were quite close to the predicted values. In conclusion, the study indicated that the model is successful to simulate the optimum condition of o-cresol photo degradation under visible-light irradiation by manganese doped ZnO nanoparticles. PMID:22909072

  8. Treatment of olefin plant spent caustic by combination of neutralization and Fenton reaction.

    PubMed

    Sheu, S H; Weng, H S

    2001-06-01

    Spent caustic from olefin plants contains much H2S and some mercaptans, phenols and oil. A new treatment process of spent caustic by neutralization followed by oxidation with Fenton's reagent (Fe2+/H2O2) was successfully developed. Over 90% of dissolved H2S were converted to gas phase by neutralization at pH = 5 and T = 70 degrees, and the vent gas stream could be introduced to sulfur recovery plant. The neutralized liquid was oxidized with OH. free radical, which was provided by a Fenton's reagent. The residual sulfides in the neutralized spent caustic were oxidized to less than 0.1 mg/L. The total COD removal of spent caustic is over 99.5% and the final COD value of the effluent can be lower than 100 mg/L under the following oxidation conditions: reaction time = 50 min, T = 90 degrees, Fe2+ = 100 mg/L, and a stoichiometric H2O2/COD = 1.1. The value is better than the 800 mg/L value obtained by common WAO process. The optimum pH of the Fenton reaction is around 2 for this process, and the oxidation step can maintain a pH value in the range of 1.8-2.4. Moreover, the iron catalyst can be recycled without affecting process effectiveness thus preventing secondary pollution.

  9. Formation of glycosidases in batch and continuous culture of Bacteroides fragilis.

    PubMed Central

    Berg, J O; Nord, C E; Wadström, T

    1978-01-01

    Nine strains of bacteroides fragilis were cultivated in stirred fermentors and tested for their ability to produce glycosidases. B. fragilis subsp. vulgatus B70 was used for optimizing the production of glycosidases. The highest bacterial yield was obtained in proteose peptone-yeast extract medium. The optimum pH for maximal bacterial yield was 7.0, and the optimum temperature for growth was 37 degrees C. The formation of glycosidases was optimal between pH 6.5 and 7.5, and the optimum temperature for synthesis of glycosidases was between 33 and 37 degrees C. Culture under controlled conditions in fermentors gave more reproducible production of glycosidases than static cultures in bottles. The strain was also grown in continuous culture at a dilution rate of 0.1 liter/h at pH 7.0 and 37 degrees C with a yield of 2.0 mg of dry weight per ml in the complex medium. The formation of glycosidases remained constant during the entire continuous process. PMID:25044

  10. Relevant pH and lipase for in vitro models of gastric digestion.

    PubMed

    Sams, Laura; Paume, Julie; Giallo, Jacqueline; Carrière, Frédéric

    2016-01-01

    The development of in vitro digestion models relies on the availability of in vivo data such as digestive enzyme levels and pH values recorded in the course of meal digestion. The variations of these parameters along the GI tract are important for designing dynamic digestion models but also static models for which the choice of representative conditions of the gastric and intestinal conditions is critical. Simulating gastric digestion with a static model and a single set of parameters is particularly challenging because the variations in pH and enzyme concentration occurring in the stomach are much broader than those occurring in the small intestine. A review of the literature on this topic reveals that most models of gastric digestion use very low pH values that are not representative of the fed conditions. This is illustrated here by showing the variations in gastric pH as a function of meal gastric emptying instead of time. This representation highlights those pH values that are the most relevant for testing meal digestion in the stomach. Gastric lipolysis is still largely ignored or is performed with microbial lipases. In vivo data on gastric lipase and lipolysis have however been collected in humans and dogs during test meals. The biochemical characterization of gastric lipase has shown that this enzyme is rather unique among lipases: (i) stability and activity in the pH range 2 to 7 with an optimum at pH 4-5.4; (ii) high tensioactivity that allows resistance to bile salts and penetration into phospholipid layers covering TAG droplets; (iii) sn-3 stereospecificity for TAG hydrolysis; and (iv) resistance to pepsin. Most of these properties have been known for more than two decades and should provide a rational basis for the replacement of gastric lipase by other lipases when gastric lipase is not available.

  11. Preparation and properties of immobilized pectinase onto the amphiphilic PS-b-PAA diblock copolymers.

    PubMed

    Lei, Zhongli; Bi, Shuxian

    2007-01-30

    Well-defined amphiphilic block copolymers poly(styrene-b-acrylic acid) (PS-b-PAA) with controlled block length were synthesized using atom transfer radical polymerization (ATRP). Pectinase enzyme was immobilized on the well-defined amphiphilic block copolymers PS-b-PAA. The carboxyl groups on the amphiphilic PS-b-PAA diblock copolymers present a very simple, mild, and time-saving process for enzyme immobilization. Various characteristics of immobilized pectinase such as the pH and temperature stability, thermal stability, and storage stability were valuated. Among them the pH optimum and temperature optimum of free and immobilized pectinase were found to be pH 6.0 and 65 degrees C.

  12. Response surface optimization of the substance colour indigo production by amylase enzyme

    NASA Astrophysics Data System (ADS)

    Handayani, Prima Astuti; Megawati, Kusdianto, Nugraha, Deny Aditia; Novitasari, Lilis

    2017-03-01

    Indigofera leaf production in Indonesia reaches 30 tons of dry matter per hectare per year. Indigo which produce exclusive blue colour already used to dyeing textile, specially "Batik". Batik cloth using natural dyes has artistic value and distinctive colours, as well as ethnic and exclusive impression that have a high value. Indigofera leaves containing blue dye that can be obtained through hydrolysis and oxidation. The hydrolysis reaction using enzyme catalyst. The research objective is to obtain optimum operating conditions of the hydrolysis reaction in the extraction of blue dye with a cellulase enzyme catalyst. Indigofera used leaves 5 month old and tools used include reactors, stirrer, aerator, autoclaves, incubators and ovens. Optimization parameters are studied an α-amylase enzyme concentration of 2.5-10 wt%, pH 5-9 and a reaction time of 4-10 days. The concentration of blue dye was analyzed by gravimetric method. Experimental data were analyzed by the method of Response Surface Methodology and central composite design, the model corresponding linear model with a mathematical equation Y = 6.22763 - 0.02584X1 - 1.25889X2 - 0.42239X3+0.00694X12+ 0.08872X22+ 0.03747X32+ 0.01372X1X2 -0.00582X1X3 - 0.00208X2X3 The optimum operating conditions in the range of studied enzym concentration of 3.1 wt%, pH 7.4 and the hydrolysis reaction time of 5.6 days with a yield dye of 1,42 %.

  13. Characterization of Halanaerobaculum tunisiense gen. nov., sp. nov., a new halophilic fermentative, strictly anaerobic bacterium isolated from a hypersaline lake in Tunisia.

    PubMed

    Hedi, Abdeljabbar; Fardeau, Marie-Laure; Sadfi, Najla; Boudabous, Abdellatif; Ollivier, Bernard; Cayol, Jean-Luc

    2009-03-01

    A new halophilic anaerobe was isolated from the hypersaline surface sediments of El-Djerid Chott, Tunisia. The isolate, designated as strain 6SANG, grew at NaCl concentrations ranging from 14 to 30%, with an optimum at 20-22%. Strain 6SANG was a non-spore-forming, non-motile, rod-shaped bacterium, appearing singly, in pairs, or occasionally as long chains (0.7-1 x 4-13 microm) and showed a Gram-negative-like cell wall pattern. It grew optimally at pH values between 7.2 and 7.4, but had a very broad pH range for growth (5.9-8.4). Optimum temperature for growth was 42 degrees C (range 30-50 degrees C). Strain 6SANG required yeast extract for growth on sugars. Glucose, sucrose, galactose, mannose, maltose, cellobiose, pyruvate, and starch were fermented. The end products from glucose fermentation were acetate, butyrate, lactate, H(2), and CO(2). The G + C ratio of the DNA was 34.3 mol%. Strain 6SANG exhibited 16S rRNA gene sequence similarity values of 91-92% with members of the genus Halobacteroides, H. halobius being its closest phylogenetic relative. Based on phenotypic and phylogenetic characteristics, we propose that this bacterium be classified as a novel species of a novel genus, Halanaerobaculum tunisiense gen. nov., sp. nov. The type strain is 6SANG(T) (=DSM 19997(T)=JCM 15060(T)).

  14. Localization and Characterization of α-Glucosidase Activity in Brettanomyces lambicus

    PubMed Central

    Kumara, H. M. C. Shantha; De Cort, S.; Verachtert, H.

    1993-01-01

    Brettanomyces lambicus was isolated and identified from a typical overattenuating Belgian lambic beer and exhibited extracellular and intracellular α-glucosidase activities. Production of the intracellular enzyme was higher than production of the extracellular enzyme, and localization studies showed that the intracellular α-glucosidase is mostly soluble and partially cell wall bound. Both intracellular and extracellular enzymes were purified by ammonium sulfate precipitation, gel filtration (Sephadex G-150, Sephadex G-200, Ultrogel AcA-44), and ion-exchange chromatography (sulfopropyl-Sephadex C-50, (carboxymethyl-Sephadex C-50). The intracellular α-glucosidase exhibited optimum activity at 39°C and pH 6.2. The extracellular enzyme exhibited optimum catalytic activity at 40°C and pH 6.0. The molecular masses of purified intracellular and extracellular α-glucosidases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 72,500 and 77,250, respectively. For both enzymes there was a decrease in the rate of hydrolysis with an increase in the degree of polymerization, and both enzymes hydrolyzed dextrins isolated from lambic wort (degrees of polymerization, 3 to 9 and more than 9). The Km values for p-nitrophenyl-α-d-glucopyranoside, maltose, and maltotriose for the intracellular enzyme were 0.9, 3.4, and 3.7 mM, respectively. The Ki values for both enzymes were between 28.5 and 57 μM for acarbose and between 7.45 and 15.7 mM for Tris. These enzymes are probably involved in the overattenuation of spontaneously fermented lambic beer. Images PMID:16349005

  15. Localization and Characterization of alpha-Glucosidase Activity in Brettanomyces lambicus.

    PubMed

    Kumara, H M; De Cort, S; Verachtert, H

    1993-08-01

    Brettanomyces lambicus was isolated and identified from a typical overattenuating Belgian lambic beer and exhibited extracellular and intracellular alpha-glucosidase activities. Production of the intracellular enzyme was higher than production of the extracellular enzyme, and localization studies showed that the intracellular alpha-glucosidase is mostly soluble and partially cell wall bound. Both intracellular and extracellular enzymes were purified by ammonium sulfate precipitation, gel filtration (Sephadex G-150, Sephadex G-200, Ultrogel AcA-44), and ion-exchange chromatography (sulfopropyl-Sephadex C-50, (carboxymethyl-Sephadex C-50). The intracellular alpha-glucosidase exhibited optimum activity at 39 degrees C and pH 6.2. The extracellular enzyme exhibited optimum catalytic activity at 40 degrees C and pH 6.0. The molecular masses of purified intracellular and extracellular alpha-glucosidases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were 72,500 and 77,250, respectively. For both enzymes there was a decrease in the rate of hydrolysis with an increase in the degree of polymerization, and both enzymes hydrolyzed dextrins isolated from lambic wort (degrees of polymerization, 3 to 9 and more than 9). The K(m) values for p-nitrophenyl-alpha-d-glucopyranoside, maltose, and maltotriose for the intracellular enzyme were 0.9, 3.4, and 3.7 mM, respectively. The K(i) values for both enzymes were between 28.5 and 57 muM for acarbose and between 7.45 and 15.7 mM for Tris. These enzymes are probably involved in the overattenuation of spontaneously fermented lambic beer.

  16. Effect of water activity and pH on growth and toxin production by Clostridium botulinum type G.

    PubMed Central

    Briozzo, J; de Lagarde, E A; Chirife, J; Parada, J L

    1986-01-01

    The combined effect of water activity (aw) and pH on growth and toxin production by Clostridium botulinum type G strain 89 was investigated. The minimum aw at which growth and toxin formation occurred was 0.965, for media in which the pH was adjusted with either sodium chloride or sucrose. The minimum pH (at the optimum aw) for growth and toxin production of C. botulinum type G was found to be 5.6. Optimum conditions for toxin activation were a trypsin concentration of 0.1%, a pH of the medium of 6.5, and an incubation for 45 min at 37 degrees C. These data did not show evidence of heat-labile spores, since a heat shock of 75 degrees C for 10 min did not significantly decrease the spore count of strain 89G in media at pH 7.0 or 5.6. It was frequently observed that cells grown at reduced aw or pH experienced severe morphological changes. PMID:3518631

  17. Concentrating phenolic acids from Lonicera japonica by nanofiltration technology

    NASA Astrophysics Data System (ADS)

    Li, Cunyu; Ma, Yun; Li, Hongyang; Peng, Guoping

    2017-03-01

    Response surface analysis methodology was used to optimize the concentrate process of phenolic acids from Lonicera japonica by nanofiltration technique. On the basis of the influences of pressure, temperature and circulating volume, the retention rate of neochlorogenic acid, chlorogenic acid and 4-dicaffeoylquinic acid were selected as index, molecular weight cut-off of nanofiltration membrane, concentration and pH were selected as influencing factors during concentrate process. The experiment mathematical model was arranged according to Box-Behnken central composite experiment design. The optimal concentrate conditions were as following: nanofiltration molecular weight cut-off, 150 Da; solutes concentration, 18.34 µg/mL; pH, 4.26. The predicted value of retention rate was 97.99% under the optimum conditions, and the experimental value was 98.03±0.24%, which was in accordance with the predicted value. These results demonstrate that the combination of Box-Behnken design and response surface analysis can well optimize the concentrate process of Lonicera japonica water-extraction by nanofiltration, and the results provide the basis for nanofiltration concentrate for heat-sensitive traditional Chinese medicine.

  18. Morphology-controllable growth of GdVO4:Eu3+ nano/microstructures for an optimum red luminescence

    NASA Astrophysics Data System (ADS)

    Yang, Liusai; Li, Guangshe; Zhao, Minglei; Zheng, Jing; Guan, Xiangfeng; Li, Liping

    2012-06-01

    Chemically tailoring microstructures for an optimum red luminescence is a subject at the forefront of many disciplines, which still remains a challenge due to a poor knowledge about the roles of defects in structures. In this work, GdVO4 :Eu3+ nano/microstructures of different morphologies, including tomato-like, cookie-circle-like, and ellipsoidal-like nanoparticles, and microspheroids were synthesized via a simple hydrothermal route using trisodium citrate as a capping agent. During the growth processes, the types of vanadyl ions were adjusted by varying pH value to control the morphologies and nano/microstructures with the help of trisodium citrate. The possible mechanisms for the growth processes into diverse morphologies are presented. Further, a systematic study on defect characteristics pertinent to these diverse morphologies has been explored to achieve an optimum red luminescence. The ability is clearly shown to generate different nano/microstructures of diverse morphologies and varied defect concentrations, which provides a great opportunity for morphological control in tailoring the red luminescence property for many technological applications.

  19. Morphology-controllable growth of GdVO4:Eu3+ nano/microstructures for an optimum red luminescence.

    PubMed

    Yang, Liusai; Li, Guangshe; Zhao, Minglei; Zheng, Jing; Guan, Xiangfeng; Li, Liping

    2012-06-22

    Chemically tailoring microstructures for an optimum red luminescence is a subject at the forefront of many disciplines, which still remains a challenge due to a poor knowledge about the roles of defects in structures. In this work, GdVO(4) :Eu(3+) nano/microstructures of different morphologies, including tomato-like, cookie-circle-like, and ellipsoidal-like nanoparticles, and microspheroids were synthesized via a simple hydrothermal route using trisodium citrate as a capping agent. During the growth processes, the types of vanadyl ions were adjusted by varying pH value to control the morphologies and nano/microstructures with the help of trisodium citrate. The possible mechanisms for the growth processes into diverse morphologies are presented. Further, a systematic study on defect characteristics pertinent to these diverse morphologies has been explored to achieve an optimum red luminescence. The ability is clearly shown to generate different nano/microstructures of diverse morphologies and varied defect concentrations, which provides a great opportunity for morphological control in tailoring the red luminescence property for many technological applications.

  20. Use of Tectonagrandis Leaf Extract in Colouring Silk Cloth Material Based on pH and Mordant Variations

    NASA Astrophysics Data System (ADS)

    Rosyida, A.; Suranto

    2018-03-01

    One of the very potential use of plant natural colour in the industrial activities was Anthocyanin. This substance contains in a number on plant organs such as Tectona Grandis (Fabaceae) particularly in their leaf materials. In order to get this secondary metabolism, the aim of this research was to find out the optimum condition of mordant and the pH combination in producing natural colour of Tectonagrandis leaf extract. To get this chemical substance, 1 kilogram of young leaves were cut into smaller size and soaked in 7 litre of H2O for 12 hour9. The solution was then boiled for 15 minutes. To get the best colour, variations of pH (5, 7 and 9) respectivelly were applied. The results showed that purple to redness were resulted when pH 5 and no additional mordant was added. Conversly the greyness to black, were produced when ferrosulphate were added. When the addition of alum was made the redies purple will appear. These colours were considered quite good quality under examination of grey and staining scales (4-5) after treated by both wet and dry rubbing methods. The test for wash fastness resulted in sufficiently good value of color change (value of 3 on Grey Scale standard), while test for staining demonstrated good staining (value of 4 on Staining Scale standard). This early finding was quite promosing to be applied in the near future in providing natural colours for industrial purposes.

  1. Cloning, Overexpression, and Characterization of a Metagenome-Derived Phytase with Optimal Activity at Low pH.

    PubMed

    Tan, Hao; Wu, Xiang; Xie, Liyuan; Huang, Zhongqian; Gan, Bingcheng; Peng, Weihong

    2015-06-01

    A phytase gene was identified in a publicly available metagenome derived from subsurface groundwater, which was deduced to encode for a protein of the histidine acid phosphatase (HAP) family. The nucleotide sequence of the phytase gene was chemically synthesized and cloned, in order to further overexpress the phytase in Escherichia coli. Purified protein of the recombinant phytase demonstrated an activity for phytic acid of 298 ± 17 μmol P/min/mg, at the pH optimum of 2.0 with the temperature of 37 °C. Interestingly, the pH optimum of this phytase is much lower in comparison with most HAP phytases known to date. It suggests that the phytase could possess improved adaptability to the low pH condition caused by the gastric acid in livestock and poultry stomachs.

  2. Mathematical model for internal pH control in immobilized enzyme particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liou, J.K.; Rousseau, I.

    A mathematical model has been developed for the internal pH control in immobilized enzyme particles. This model describes the kinetics of a coupled system of two enzymes, immobilized in particles of either planar, cylindrical, or spherical shape. The enzyme kinetics are assumed to be of a mixed type, including Michaelis-Menten kinetics, uncompetitive substrate inhibition, and competitive and noncompetitive product inhibition. In a case study we have considered the enzyme combination urease and penicillin acylase, whose kinetics are coupled through the pH dependence of the kinetic parameters. The hydrolysis of urea by urease yields ammonia and carbon dioxide, whereas benzylpenicillin (Pen-G)more » is converted to 6-animo penicillanic acid and phenyl acetic acid by penicillin acylase. The production of acids by the latter enzyme will cause a decrease in pH. Because of the presence of the ammonia-carbon dioxide system, however, the pH may be kept under control. In order to obtain information about the optimum performance of this enzymatic pH controller, we have computed the effectiveness factor and the conversion in a CSTR at different enzyme loadings. The results of the computer simulations indicate that a high conversion of Pen-G may be achieved (80-90%) at bulk pH values of about 7.5 - 8. 27 references.« less

  3. Total nitrogen and total phosphorus removal from brackish aquaculture wastewater using effective microorganism

    NASA Astrophysics Data System (ADS)

    Mohamad, K. A.; Mohd, S. Y.; Sarah, R. S.; Mohd, H. Z.; Rasyidah, A.

    2017-09-01

    Aquaculture is one of dominant food based industry in the world with 8.3% annual growth rate and its development had led to adverse effect on the environment. High nutrient production in form of nitrogenous compound and phosphorus contributed to environmental deterioration such as eutrophication and toxicity to the industry. Usage of Effective Microorganism (EM), one of the biological approaches to remove Total Nitrogen (TN) and Total Phosphorus (TP) in aquaculture pond was proposed. Samples were obtained from the Sea Bass intensive brackish aquaculture wastewater (AW) from fish farm at Juru, Penang and the parameters used to measure the removal of nitrogenous compounds include, pH, EM dosage, shaking, contact time and optimum variable conditions. From the study, for effective contact time, day 6 is the optimum contact time for both TN and TP with 99.74% and 62.78% removal respectively while in terms of optimum pH, the highest TN removal was at pH 7 with 66.89 %. The optimum dosage of EM is 1.5 ml with ratio 1:166 for 81.5 % TN removal was also found appropriate during the experiment. At varied optimum conditions of EM, the removal efficiency of TN and TP were 81.53% and 38.94% respectively while the removal mechanism of TN was highly dependent on the decomposition rate of specific bacteria such as Nitrobacter bacteria, Yeast and Bacillus Subtilis sp. The study has established the efficacy of EM's ability to treat excessive nutrient of TN and TP from AW.

  4. Purification and DNA-binding properties of RNA polymerase from Bacillus subtilis.

    PubMed

    Giacomoni, P U

    1980-05-01

    Four RNA-polymerizing activities having different subunit composition can be purified from uninfected and from SPO1-infected Bacillus subtilis. Lysozyme and sodium deoxycholate are used for lysing the cells. Polymin P is used for precipitating nucleic acids and DEAE-cellulose chromatography allows separation of enzymatic activity from the residual Polymin P. After these common steps, one can purify core + sigma + delta by chromatography on single-stranded DNA-agarose followed by gel filtration while pure core + sigma can be obtained by chromatography on double-stranded DNA cellulose. Core + delta is obtained by high-salt sucrose/glycerol gradient centrifugation. The host enzyme modified by the product of gene 28 of phage SPO1 can be purified from SPO1 infected cells by chromatography on DNA cellulose (or CNA agarose) followed by chromatography on phosphocellulose. The pH and salt dependance of the initial rate of RNA synthesis of core + sigma has been investigated using SPO1 and SPP1 DNA as templates. The optimum pH for the initial rate of transcription is 8.2 at 30 degrees C in 50 mM N,N-bis(2-hydroxyethyl)glycine buffer, and the optimum Na+ concentration is between 0.1 and 0.15 M. The kinetics of formation and of dissociation of non-filterable complexes between SPP1 DNA and core + sigma have been analyzed at different cationic concentrations. The value of the rate constant of dissociation in 0.1 M NaCl at 30 degrees C is kd = 2.16 x 10(-4) S-1. The value of the rate constant of association, under the same conditions, is ka = 5.5 x 10(8) M-1 S-1; this value is compatible with a diffusion-controlled reaction for promoter selection.

  5. Photocatalytic degradation of humic acid in saline waters. Part 1. Artificial seawater: influence of TiO2, temperature, pH, and air-flow.

    PubMed

    Al-Rasheed, Radwan; Cardin, David J

    2003-06-01

    We report the first systematic study on the photocatalytic oxidation of humic acid (HA) in artificial seawater (ASW). TiO(2) (Degussa P25) dispersions were used as the catalyst with irradiation from a medium-pressure mercury lamp. The optimum quantity of catalyst was found to be between 2 and 2.5 gl(-1); while the decomposition was fastest at low pH values (pH 4.5 in the range examined), and the optimum air-flow, using an immersion well reactor with a capacity of 400 ml, was 850 ml min(-1). Reactivity increased with air-flow up to this figure, above which foaming prevented operation of the reactor. Using pure oxygen, an optimal flow rate was observed at 300 ml min(-1), above which reactivity remains essentially constant. Following treatment for 1 h, low-salinity water (2700 mg l(-1)) was completely mineralised, whereas ASW (46000 mg l(-1)) had traces of HA remaining. These effects are interpreted and kinetic data presented. To avoid problems of precipitation due to change of ionic strength humic substances were prepared directly in ASW, and the effects of ASW on catalyst suspension and precipitation have been taken into account. The Langmuir-Hinshelwood kinetic model has been shown to be followed only approximately for the catalytic oxidation of HA in ASW. The activation energy for the reaction derived from an Arrhenius treatment was 17 (+/-0.6) kJ mol(-1).

  6. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls.

    PubMed

    Rao, M Madhava; Ramana, D K; Seshaiah, K; Wang, M C; Chien, S W Chang

    2009-07-30

    Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g(-1) for Pb(II), 21.2 mg g(-1) for Zn(II), 19.5 mg g(-1) for Cu(II), and 15.7 mg g(-1) for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  7. Preparation of chitosan/amine modified diatomite composites and adsorption properties of Hg(II) ions.

    PubMed

    Fu, Yong; Huang, Yue; Hu, Jianshe; Zhang, Zhengjie

    2018-03-01

    A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG 0 and ΔH 0 suggested that the adsorption was a spontaneous exothermic process.

  8. Porous silicon powder as an adsorbent of heavy metal (nickel)

    NASA Astrophysics Data System (ADS)

    Nabil, Marwa; Motaweh, Hussien A.

    2018-04-01

    New and inexpensive nanoporous silicon (NPS) powder was prepared by alkali chemical etching using sonication technique and was subsequently investigated as an adsorbent in batch systems for the adsorption Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the NPS powder were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and contact time. The results indicated that the maximum adsorption capacity and the maximum removal percent of Ni(II) reached 2665.33 mg/g and 82.6%, respectively, at an initial Ni(II) concentration of 100 mg/L, adsorption time of 30 min and no effect of the solution pH and adsorption temperature.

  9. Heat Pre-Treatment of Beverages Wastewater on Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Uyub, S. Z.; Mohd, N. S.; Ibrahim, S.

    2017-06-01

    At present, a large variety of alternative fuels have been investigated and hydrogen gas is considered as the possible solution for the future due to its unique characteristics. Through dark fermentation process, several factors were found to have significant impact on the hydrogen production either through process enhancement or inhibition and degradation rates or influencing parameters. This work was initiated to investigate the optimum conditions for heat pre-treatment and initial pH for the dark fermentative process under mesophilic condition using a central composite design and response surface methodology (RSM). Different heat treatment conditions and pH were performed on the seed sludge collected from the anaerobic digester of beverage wastewater treatment plant. Heat treatment of inoculum was optimized at different exposure times (30, 90, 120 min), temperatures (80, 90 and 100°C) and pH (4.5, 5.5, 6.5) in order to maximize the biohydrogen production and methanogens activity inhibition. It was found that the optimum heat pre-treatment condition and pH occurred at 100°C for 50 min and the pH of 6.00. At this optimum condition the hydrogen yield was 63.0476 ml H2/mol glucose (H2 Yield) and the COD removal efficiency was 90.87%. In conclusion, it can be hypothesized that different heat treatment conditions led to differences in the initial microbial communities (hydrogen producing bacteria) which resulted in the different hydrogen yields.

  10. New Insights into the Phylogeny and Molecular Classification of Nicotinamide Mononucleotide Deamidases

    PubMed Central

    Sánchez-Carrón, Guiomar; Martínez-Moñino, Ana Belén; Sola-Carvajal, Agustín; Takami, Hideto; García-Carmona, Francisco; Sánchez-Ferrer, Álvaro

    2013-01-01

    Nicotinamide mononucleotide (NMN) deamidase is one of the key enzymes of the bacterial pyridine nucleotide cycle (PNC). It catalyzes the conversion of NMN to nicotinic acid mononucleotide, which is later converted to NAD+ by entering the Preiss-Handler pathway. However, very few biochemical data are available regarding this enzyme. This paper represents the first complete molecular characterization of a novel NMN deamidase from the halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiPncC). The enzyme was active over a broad pH range, with an optimum at pH 7.4, whilst maintaining 90 % activity at pH 10.0. Surprisingly, the enzyme was quite stable at such basic pH, maintaining 61 % activity after 21 days. As regard temperature, it had an optimum at 65 °C but its stability was better below 50 °C. OiPncC was a Michaelian enzyme towards its only substrate NMN, with a K m value of 0.18 mM and a kcat/K m of 2.1 mM-1 s-1. To further our understanding of these enzymes, a complete phylogenetic and structural analysis was carried out taking into account the two Pfam domains usually associated with them (MocF and CinA). This analysis sheds light on the evolution of NMN deamidases, and enables the classification of NMN deamidases into 12 different subgroups, pointing to a novel domain architecture never before described. Using a Logo representation, conserved blocks were determined, providing new insights on the crucial residues involved in the binding and catalysis of both CinA and MocF domains. The analysis of these conserved blocks within new protein sequences could permit the more efficient data curation of incoming NMN deamidases. PMID:24340054

  11. Photodegradation of an azo dye of the textile industry.

    PubMed

    Cisneros, Rosario López; Espinoza, Abel Gutarra; Litter, Marta I

    2002-07-01

    An advanced oxidation treatment, UV/H2O2, was applied to an azo dye, Hispamin Black CA, widely used in the Peruvian textile industry. Rates of color removal and degradation of the dye have been evaluated. A strongly absorbing solution was completely decolorized after 35 min of treatment, and after 60 min an 82% reduction of the total organic carbon (TOC) was obtained. It has been found that the degradation rate increased until an optimum value, beyond which the reagent exerted an inhibitory effect. The degradation rate was also function of pH.

  12. Roseovarius ramblicola sp. nov., a moderately halophilic bacterium isolated from saline soil in Spain.

    PubMed

    Castro, David J; Cerezo, Isabel; Sampedro, Inmaculada; Martínez-Checa, Fernando

    2018-06-01

    Strain D15 T was isolated from a soil sample taken from Rambla Salada (Murcia), south-eastern Spain, by using the dilution-to-extinction method. The strain, a Gram-stain-negative aerobic bacteria, is non-motile, ovoid- or rod-shaped, catalase- and oxidase-positive, and grows at NaCl concentrations within the range 0.5-10 % (w/v) [optimum 3 % (w/v)], at 5-30 °C (optimum 28 °C) and at pH 6-9 (optimum pH 7.0). The 16S rRNA gene sequence indicates that it belongs to the genus Roseovarius in the class Alphaproteobacteria. Its closest relatives are Roseovarius tolerans EL-172 T and Roseovarius azorensis SSW084 T , to which the strain shows 16S rRNA gene-sequence similarity values of 96.1 and 95.3 %, respectively. The DNA G+C content is 63 mol%. The major fatty acids (>5 % of the total fatty acids) of strain D15 T are C18 : 1ω7c, C16 : 0 and C12 : 0. The only detected isoprenoid quinone of strain D15 T is ubiquinone 10 (Q-10). The polar lipid profile contains phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, aminolipid and three polar lipids. Based on the phylogenetic, genotypic, phenotypic and chemotaxonomic data, the strain represents a novel species of the genus Roseovarius, for which the name Roseovarius ramblicola sp. nov. is proposed. Strain D15 T (=CECT 9424=LMG 30322) is the type strain.

  13. A portable anaerobic microbioreactor reveals optimum growth conditions for the methanogen Methanosaeta concilii.

    PubMed

    Steinhaus, Benjamin; Garcia, Marcelo L; Shen, Amy Q; Angenent, Largus T

    2007-03-01

    Conventional studies of the optimum growth conditions for methanogens (methane-producing, obligate anaerobic archaea) are typically conducted with serum bottles or bioreactors. The use of microfluidics to culture methanogens allows direct microscopic observations of the time-integrated response of growth. Here, we developed a microbioreactor (microBR) with approximately 1-microl microchannels to study some optimum growth conditions for the methanogen Methanosaeta concilii. The microBR is contained in an anaerobic chamber specifically designed to place it directly onto an inverted light microscope stage while maintaining a N2-CO2 environment. The methanogen was cultured for months inside microchannels of different widths. Channel width was manipulated to create various fluid velocities, allowing the direct study of the behavior and responses of M. concilii to various shear stresses and revealing an optimum shear level of approximately 20 to 35 microPa. Gradients in a single microchannel were then used to find an optimum pH level of 7.6 and an optimum total NH4-N concentration of less than 1,100 mg/liter (<47 mg/liter as free NH3-N) for M. concilii under conditions of the previously determined ideal shear stress and pH and at a temperature of 35 degrees C.

  14. Deoxysarpagine hydroxylase--a novel enzyme closing a short side pathway of alkaloid biosynthesis in Rauvolfia.

    PubMed

    Yu, Bingwu; Ruppert, Martin; Stöckigt, Joachim

    2002-08-01

    Microsomal preparations from cell suspension cultures of the Indian plant Rauvolfia serpentina catalyze the hydroxylation of deoxysarpagine under formation of sarpagine. The newly discovered enzyme is dependent on NADPH and oxygen. It can be inhibited by typical cytochrome P450 inhibitors such as cytochrome c, ketoconazole, metyrapone, tetcyclacis and carbon monoxide. The CO-effect is reversible with light (450 nm). The data indicate that deoxysarpagine hydroxylase is a novel cytochrome P450-dependent monooxygenase. A pH optimum of 8.0 and a temperature optimum of 35 degrees C were determined. K(m) values were 25 microM for NADPH and 7.4 microM for deoxysarpagine. Deoxysarpagine hydroxylase activity was stable in presence of 20% sucrose at -25 degrees C for >3 months. The analysis of presence of the hydroxylase in nine cell cultures of seven different families indicates a very limited taxonomic distribution of this enzyme.

  15. Recovery of cyanide in gold leach waste solution by volatilization and absorption.

    PubMed

    Gönen, N; Kabasakal, O S; Ozdil, G

    2004-09-10

    In this study, the effects of pH, time and temperature in regeneration of cyanide in the leaching waste solution of gold production from disseminated gold ore by cyanidation process were investigated and the optimum conditions, consumptions and cyanide recovery values were determined. The sample of waste solution containing 156 mg/l free CN- and 358 mg/l total CN-, that was obtained from Gümüşhane-Mastra/Turkey disseminated gold ores by cyanidation and carbon-in-pulp (CIP) process under laboratory conditions was used in the experiments. Acidification with H2SO4, volatilization of hydrogen cyanide (HCN) with air stripping and absorption of HCN in a basic solution stages were applied and under optimum conditions, 100% of free cyanide and 48% of complex cyanide and consequently 70% of the total cyanide in the liquid phase of gold leach effluent are recovered.

  16. Thermal Characterization of Purified Glucose Oxidase from A Newly Isolated Aspergillus Niger UAF-1

    PubMed Central

    Anjum Zia, Muhammad; Khalil-ur-Rahman; K. Saeed, Muhammad; Andaleeb, Fozia; I. Rajoka, Muhammad; A. Sheikh, Munir; A. Khan, Iftikhar; I. Khan, Azeem

    2007-01-01

    An intracellular glucose oxidase was isolated from the mycelium extract of a locally isolated strain of Aspergillus niger UAF-1. The enzyme was purified to a yield of 28.43% and specific activity of 135 U mg−1 through ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The enzyme showed high affinity for D-glucose with a Km value of 2.56 mM. The enzyme exhibited optimum catalytic activity at pH 5.5. Temperature optimum for glucose oxidase, catalyzed D-glucose oxidation was 40°C. The enzyme showed a high thermostability having a half-life 30 min, enthalpy of denaturation 99.66 kJ mol−1 and free energy of denaturation 103.63 kJ mol−1. These characteristics suggest the use of glucose oxidase from Aspergillus niger UAF-1 as an analytical reagent and in the design of biosensors for clinical, biochemical and diagnostic assays. PMID:18193107

  17. Enhanced production of polygalacturonase in solid-state fermentation: selection of the process conditions, isolation and partial characterization of the enzyme.

    PubMed

    Zaslona, Halina; Trusek-Holownia, Anna

    2015-01-01

    Polygalacturonase (PG) production by Penicillium chrysogenum during solid-state fermentation was accompanied by decomposition of orange peels. A leaching procedure was developed through the selection of solvent, time and intensity of stirring. A maximum PG activity was observed after 48 h peel inoculation. Further cultivation decreased the enzyme activity significantly, up to 60% of the maximum PG activity. During fermentation, a rapid acidification of the solid medium which inhibited the pectinolytic enzyme, was observed. Buffering agents with different pH values and different ionic strengths were examined to identify the most suitable medium to avoid this problem. Buffer addition counteracted acidification and enhanced active protein production, which was observed for all of the applied pH values (6.5-8.0) of the buffering agent. The most satisfactory results were obtained when using the highest pH at 8.0. The protein content and PG activity increased from 3.5 mg/g and 1.09 U/g to 7.7 mg/g and 7.11 U/g during cultivation, with uncontrolled and pH-controlled medium, respectively. Measurements at wide pH and temperature ranges indicated an optimum for PG activity at pH 5.0 and 43°C; however, high thermal stability corresponded to lower temperatures, and a temperature of 37°C is thus recommended. Under these conditions, the operational stability was determined to be t1/2=570 h.

  18. Investigation of simultaneous biosorption of copper(II) and chromium(VI) on dried Chlorella vulgaris from binary metal mixtures: Application of multicomponent adsorption isotherms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksu, Z.; Acikel, U.; Kutsal, T.

    1999-02-01

    Although the biosorption of single metal ions to various kinds of microorganisms has been extensively studied and the adsorption isotherms have been developed for only the single metal ion situation, very little attention has been given to the bioremoval and expression of adsorption isotherms of multimetal ions systems. In this study the simultaneous biosorption of copper(II) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single- and dual-metal ion concentrations on the equilibrium uptakes were investigated. In previous studiesmore » the optimum biosorption pH had been determined as 4.0 for copper(II) and as 2.0 for chromium(VI). Multimetal ion biosorption studies were performed at these two pH values. It was observed that the equilibrium uptakes of copper(II) or chromium(VI) ions were changed due to the biosorption pH and the presence of other metal ions. Adsorption isotherms were developed for both single- and dual-metal ions systems at these two pH values, and expressed by the mono- and multicomponent Langmuir and Freundlich adsorption models. Model parameters were estimated by nonlinear regression. It was seen that the adsorption equilibrium data fitted very well to the competitive Freundlich model in the concentration ranges studied.« less

  19. Pectate hydrolases of parsley (Petroselinum crispum) roots.

    PubMed

    Flodrová, Dana; Dzúrovä, Mária; Lisková, Desana; Mohand, Fairouz Ait; Mislovicová, Danica; Malovícová, Anna; Voburka, Zdenek; Omelková, Jirina; Stratilová, Eva

    2007-01-01

    The presence of various enzyme forms with terminal action pattern on pectate was evaluated in a protein mixture obtained from parsley roots. Enzymes found in the soluble fraction of roots (juice) were purified to homogeneity according to SDS-PAGE, partially separated by preparative isoelectric focusing and characterized. Three forms with pH optima 3.6, 4.2 and 4.6 clearly preferred substrates with a lower degree of polymerization (oligogalacturonates) while the form with pH optimum 5.2 was a typical exopolygalacturonase [EC 3. 2.1.67] with relatively fast cleavage of polymeric substrate. The forms with pH optima 3.6, 4.2 and 5.2 were released from the pulp, too. The form from the pulp with pH optimum 4.6 preferred higher oligogalacturonates and was not described in plants previously. The production of individual forms in roots was compared with that produced by root cells cultivated on solid medium and in liquid one.

  20. Treatment of metal-contaminated wastewater: a comparison of low-cost biosorbents.

    PubMed

    Akunwa, N K; Muhammad, M N; Akunna, J C

    2014-12-15

    This study aimed to identify some optimum adsorption conditions for the use of low-cost adsorbent, seaweed (Ascophyllum nodosum), sawdust and reed plant (Phragmites australis) root, in the treatment of metal contaminated wastewater for the removal of cadmium, chromium and lead. The effect of pH on the absorption capacity of each of these biosorbents was found to be significant and dependent on the metal being removed. Post-adsorption FTIR analysis showed significant binding activities at the nitro NO groups site in all biosorbents, especially for lead. Competitive metal binding was found to have possibly affected the adsorption capacity for chromium by A. nodosum more than it affected sawdust and P. australis root. Adsorption is believed to take place mainly by ion exchange particularly at low pH values. P. australis root exhibited the highest adsorption for chromium at pH 2, cadmium at pH 10 and lead at pH 7. A. nodosum seaweed species demonstrated the highest adsorption capacity of the three biosorbents used in the study, for cadmium at pH 7 and for lead at pH 2. Sawdust proved to be an efficient biosorbent for lead removal only at pH 7 and 10. No significant effect of temperature on adsorption capacity was observed, particularly for cadmium and lead removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity.

    PubMed

    Gupta, Sonika; Sharma, Parul; Dev, Kamal; Sourirajan, Anuradha

    2016-01-01

    The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products.

  2. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity

    PubMed Central

    Gupta, Sonika; Sharma, Parul; Dev, Kamal; Sourirajan, Anuradha

    2016-01-01

    The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products. PMID:26885394

  3. Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563.

    PubMed

    Soni, S K; Magdum, A; Khire, J M

    2010-11-01

    Aspergillus niger NCIM 563 produced two different extracellular phytases (Phy I and Phy II) under submerged fermentation conditions at 30°C in medium containing dextrin-glucose-sodium nitrate-salts. Both the enzymes were purified to homogeneity using Rotavapor concentration, Phenyl-Sepharose column chromatography and Sephacryl S-200 gel filtration. The molecular mass of Phy I and II as determined by SDS-PAGE and gel filtration were 66, 264, 150 and 148 kDa respectively, indicating that Phy I consists of four identical subunits and Phy II is a monomer. The pI values of Phy I and II were 3.55 and 3.91, respectively. Phy I was highly acidic with optimum pH of 2.5 and was stable over a broad pH range (1.5-9.0) while Phy II showed a pH optimum of 5.0 with stability in the range of pH 3.5-9.0. Phy I exhibited very broad substrate specificity while Phy II was more specific for sodium phytate. Similarly Phy II was strongly inhibited by Ag(+), Hg(2+) (1 mM) metal ions and Phy I was partially inhibited. Peptide analysis by Mass Spectrometry (MS) MALDI-TOF also indicated that both the proteins were totally different. The K(m) for Phy I and II for sodium phytate was 2.01 and 0.145 mM while V(max) was 5,018 and 1,671 μmol min(-1) mg(-1), respectively. The N-terminal amino acid sequences of Phy I and Phy II were FSYGAAIPQQ and GVDERFPYTG, respectively. Phy II showed no homology with Phy I and any other known phytases from the literature suggesting its unique nature. This, according to us, is the first report of two distinct novel phytases from Aspergillus niger.

  4. Effect of direct electric current on contaminants removal from the peat water with continuous system

    NASA Astrophysics Data System (ADS)

    Amri, I.; Azis, A.; Drastinawati

    2018-04-01

    This research was analysed the essentially of treat peat water using an electric current. Initially, the characterization of peat water was determined including of three parameters they are pH, colour, and conductivity solution exhibited values that exceeded the water standard limit. There are two factors influencing the electric coagulation such as electric current and voltage that were observed in the continous study. The results obtained indicated that the majority of the an electric current were very effective for removing TDS, and pH. The research variable for the voltage from 23,5 to 42,5 volt and the electric current from 2,2 to 4,1. The optimum electric current and voltage was found around 1,5 Ampere and 25 volt, it was exhibited at 4 L/minute. In unit study, continous electric reactor showed that the optimal reduction on the 20 minutes treatment were found pH = 7, 256 ppm. It was meet to the minimum standard government permition.

  5. Flotation removal of the microalga Nannochloropsis sp. using Moringa protein-oil emulsion: A novel green approach.

    PubMed

    Kandasamy, Ganesan; Shaleh, Sitti Raehanah Muhamad

    2018-01-01

    A new approach to recover microalgae from aqueous medium using a bio-flotation method is reported. The method involves utilizing a Moringa protein extract - oil emulsion (MPOE) for flotation removal of Nannochloropsis sp. The effect of various factors has been assessed using this method, including operating parameters such as pH, MPOE dose, algae concentration and mixing time. A maximum flotation efficiency of 86.5% was achieved without changing the pH condition of algal medium. Moreover, zeta potential analysis showed a marked difference in the zeta potential values when increase the MPOE dose concentration. An optimum condition of MPOE dosage of 50ml/L, pH 8, mixing time 4min, and a flotation efficiency of greater than 86% was accomplished. The morphology of algal flocs produced by protein-oil emulsion flocculant were characterized by microscopy. This flotation method is not only simple, but also an efficient method for harvesting microalgae from culture medium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Biosorption of Nickel from Industrial Wastewater using Zygnema sp.

    NASA Astrophysics Data System (ADS)

    Sivaprakash, Kanchana; Blessi T. L., Adlin; Madhavan, Jeyanthi

    2015-12-01

    Contamination of water sources with heavy metals is a very important pollution problem in the current scenario. Biosorption is an effective method for the removal of heavy metal ions from wastewaters. In this study, the removal of Nickel(II) ions from electroplating industrial wastewater using biosorbent prepared from fresh water algal biomass Zygnema was investigated under batch mode. The sorption efficiency of nickel on Zygnema sp. was evaluated as a function of time, pH and sorbent dosage. The Nickel(II) uptake was dependent on initial pH with pH 3 being the optimum value. For 100 mg/L initial Nickel(II) concentration, sorption equilibrium was attained at a contact time of 100 min. The sorbent dosage affected the biosorption efficiency and maximum removal of 76.4 % was obtained at a dosage of 7.5 g/L. From the performance studies, algal biosorbent Zygnema is found to be a valuable material for the removal of Nickel from industrial wastewater and a better substitute for the conventional adsorbents.

  7. Photocatalytic degradation of pentachlorophenol by visible light Ν-F-TiO₂ in the presence of oxalate ions: optimization, modeling, and scavenging studies.

    PubMed

    Antonopoulou, M; Konstantinou, I

    2015-06-01

    The efficiency of heterogeneous photocatalysis using N-F-TiO2 as photocatalyst to degrade a priority pollutant, pentachlorophenol (PCP), in the presence of oxalates (OA) was investigated in detail. Response surface methodology was used to optimize the effect of three variables (catalyst concentration, OA/PCP ratio, and pH) on the photocatalytic degradation of pentachlorophenol. A quadratic model was established as a functional relationship between three independent variables and the degradation efficiency of PCP. The results of model fitting and statistical analysis demonstrated that the pH played a key role in the degradation of PCP. Within the studied experimental ranges, the optimum conditions for maximum PCP degradation efficiency (97.5 %) were: catalyst concentration 600 mg L(-1), OA/PCP ratio 2, and pH 10. The contribution of HO(·), O2 (·-), and e(-) produced during the photocatalytic treatment was investigated with the addition of scavengers. The photocatalytic degradation was essentially proceeded through an oxidative mechanism at both acid and alkaline pH values by HO(.) and O2 (·-) radicals attack. It was found that O2 (·-) were the major reactive species involved in PCP degradation in pH 4 and HO(·) in pH 10.

  8. Enhanced production of medicinal polysaccharide by submerged fermentation of Lingzhi or Reishi medicinal mushroom Ganoderma lucidium (W.Curt.:Fr.) P. Karst. Using statistical and evolutionary optimization methods.

    PubMed

    Baskar, Gurunathan; Sathya, Shree Rajesh K

    2011-01-01

    Statistical and evolutionary optimization of media composition was employed for the production of medicinal exopolysaccharide (EPS) by Lingzhi or Reishi medicinal mushroom Ganoderma lucidium MTCC 1039 using soya bean meal flour as low-cost substrate. Soya bean meal flour, ammonium chloride, glucose, and pH were identified as the most important variables for EPS yield using the two-level Plackett-Burman design and further optimized using the central composite design (CCD) and the artificial neural network (ANN)-linked genetic algorithm (GA). The high value of coefficient of determination of ANN (R² = 0.982) indicates that the ANN model was more accurate than the second-order polynomial model of CCD (R² = 0.91) for representing the effect of media composition on EPS yield. The predicted optimum media composition using ANN-linked GA was soybean meal flour 2.98%, glucose 3.26%, ammonium chloride 0.25%, and initial pH 7.5 for the maximum predicted EPS yield of 1005.55 mg/L. The experimental EPS yield obtained using the predicted optimum media composition was 1012.36 mg/L, which validates the high degree of accuracy of evolutionary optimization for enhanced production of EPS by submerged fermentation of G. lucidium.

  9. Extraction of palm tree cellulose and its functionalization via graft copolymerization.

    PubMed

    Al-Hoqbani, Abdulmajeed A; Abdel-Halim, E S; Al-Deyab, Salem S

    2014-09-01

    The work in this paper was planned with the aim of extracting the cellulosic component of palm tree waste and functionalizing this cellulose through graft copolymerization with acrylic acid. The cellulose extraction included hot alkali treatment with aqueous sodium hydroxide to remove the non-cellulosic binding materials. The alkali treatment was followed by an oxidative bleaching using peracid/hydrogen peroxide mixture with the aim of removing the rest of non-cellulosic materials to improve the fiber hydrophilicity and accessibility towards further grafting reaction. Optimum conditions for cellulose extraction are boiling in 5% (W/V) NaOH in a material to liquor ratio of 1:20 for 1 h then bleaching with 60 ml/l bleaching mixture at initial pH value of 6.5 for 30 min. The pH of the bleaching medium is turned to the alkaline range 11 and bleaching continues for extra 30 min. Graft copolymerization reaction was initiated by potassium bromate/thiourea dioxide redox system. Optimum conditions for grafting are 30 mmol of potassium bromate, 30 mmol of thiourea dioxide and 150 g of acrylic acid (each per 100 g of cellulose). The polymerization reaction was carried out for 120 min at 50°C using a material to liquor ratio of 1:20. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Removal of malachite green dye from aqueous solution using mesoporous silica synthesized from 1-octyl-3-methylimidazolium chloride ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekka, Basanti; Nayak, Soumitra Ranjan; Dash, Priyabrat, E-mail: dashp@nitrkl.ac.in, E-mail: rkpatel@nitrkl.ac.in

    2016-04-13

    In this research, mesoporous silica was synthesized via a modified sol-gel route using 1-octyl-3-methylimidazolium chloride and was employed to remove malachite green (MG) dye from aqueous solution. Subsequently, this material was characterized and identified by different techniques such as Fourier transform infrared spectroscopy (FT-IR), N{sub 2} adsorption-desorption method, scanning electron microscopy (SEM), and thermosgravimetric analysis (TGA). Unique properties such as high surface area and pore diameter, in addition to highly reactive atoms and presence of various functional groups make the mesoporous silica possible for efficient removal of malachite green (MG). In batch experimental set-up, optimum conditions for quantitative removal ofmore » MG by mesoporous silica was attained by varying different variables such as adsorbent dosage, initial dye concentration, contact time, and pH. Optimum values were set as pH of 8.0, 0.5 g of adsorbent at contact time of 120 min. The adsorption of MG follows the pseudo-second-order rate equation. Equilibrium data fitted well with the Freundlich model at all amount of adsorbent, while maximum adsorption capacity was 5.981 mg g{sup −}1 for 0.5 g mesoporous silica synthesized in IL.« less

  11. Electrochemical response of carbon paste electrode modified with mixture of titanium dioxide/zirconium dioxide in the detection of heavy metals: lead and cadmium.

    PubMed

    Nguyen, Phuong Khanh Quoc; Lunsford, Suzanne K

    2012-11-15

    A novel carbon modified electrode was developed by incorporating titanium dioxide/zirconium dioxide into the graphite carbon paste electrode to detect heavy metals-cadmium and lead. In this work, the development of the novel titanium dioxide/zirconium dioxide modified carbon paste electrode was studied to determine the optimum synthesis conditions related to the temperature, heating duration, amount and ratio of titanium dioxide/zirconium dioxide, and amount of surfactant, to create the most reproducible results. Using cyclic voltammetric (CV) analysis, this study has proven that the novel titanium dioxide/zirconium dioxide can be utilized to detect heavy metals-lead and cadmium, at relatively low concentrations (7.6×10(-6) M and 1.1×10(-5) M for Pb and Cd, respectively) at optimum pH value (pH=3). From analyzing CV data the optimal electrodes surface area was estimated to be 0.028 (±0.003) cm(2). Also, under the specific experimental conditions, electron transfer coefficients were estimated to be 0.44 and 0.33 along with the heterogeneous electron transfer rate constants of 5.64×10(-3) and 2.42×10(-3) (cm/s) for Pb and Cd, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Optimization of Crude Oil and PAHs Degradation by Stenotrophomonas rhizophila KX082814 Strain through Response Surface Methodology Using Box-Behnken Design

    PubMed Central

    Virupakshappa, Praveen Kumar Siddalingappa; Mishra, Gaurav; Mehkri, Mohammed Ameenuddin

    2016-01-01

    The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R 2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and % removal of crude oil. PMID:28116165

  13. Biosorption of textile dye reactive blue 221 by capia pepper (Capsicum annuum L.) seeds.

    PubMed

    Gürel, Levent

    2017-04-01

    Peppers are very important foodstuffs in the world for direct and indirect consumption, so they are extensively used. The seeds of these peppers are waste materials that are disposed of from houses and factories. To evaluate the performance of this biomass in the treatment of wastewaters, a study was conducted to remove a textile dye, reactive blue 221, which is commercially used in textile mills. Raw seed materials were used without any pre-treatment. The effects of contact time, initial concentration of dye, pH and dose of biosorbent were studied to determine the optimum conditions for this biomass on color removal from wastewaters. The optimum pH value for dye biosorption was found to be 2.0. At an initial dye concentration of 217 mg L -1 , treatment efficiency and biosorption capacity were 96.7% and 95.35 mg g -1 , respectively. A maximum biosorption capacity of 142.86 mg g -1 was also obtained. Equilibrium biosorption of dye by capia seeds was well described by the Langmuir isotherm with a correlation coefficient above 99%. The biosorption process was also successfully explained with the pseudo-second order kinetic model. This biomass was found to be effective in terms of textile dye removal from aqueous solutions.

  14. Experimental design data for the biosynthesis of citric acid using Central Composite Design method.

    PubMed

    Kola, Anand Kishore; Mekala, Mallaiah; Goli, Venkat Reddy

    2017-06-01

    In the present investigation, we report that statistical design and optimization of significant variables for the microbial production of citric acid from sucrose in presence of filamentous fungi A. niger NCIM 705. Various combinations of experiments were designed with Central Composite Design (CCD) of Response Surface Methodology (RSM) for the production of citric acid as a function of six variables. The variables are; initial sucrose concentration, initial pH of medium, fermentation temperature, incubation time, stirrer rotational speed, and oxygen flow rate. From experimental data, a statistical model for this process has been developed. The optimum conditions reported in the present article are initial concentration of sucrose of 163.6 g/L, initial pH of medium 5.26, stirrer rotational speed of 247.78 rpm, incubation time of 8.18 days, fermentation temperature of 30.06 °C and flow rate of oxygen of 1.35 lpm. Under optimum conditions the predicted maximum citric acid is 86.42 g/L. The experimental validation carried out under the optimal values and reported citric acid to be 82.0 g/L. The model is able to represent the experimental data and the agreement between the model and experimental data is good.

  15. Alicyclobacillus fodiniaquatilis sp. nov., isolated from acid mine water.

    PubMed

    Zhang, Bo; Wu, Yu-Fan; Song, Jin-Long; Huang, Zhong-Sheng; Wang, Bao-Jun; Liu, Shuang-Jiang; Jiang, Cheng-Ying

    2015-12-01

    Two novel, Gram-stain-variable, moderately thermophilic, acidophilic, rod-shaped, endospore-forming bacteria, G45-16T and G45-17, were isolated from acid mine water of Zijin copper mine in Fujian Province, China. Phylogenetic analysis of 16S rRNA gene sequences showed that they were closely related to Alicyclobacillus acidoterrestris ATCC 49025T with sequence similarities of 96.8 %. Cells grew aerobically at 20-45 °C (optimum, 40 °C), at pH 2.5-5.5(optimum, pH 3.5) and in the presence of 0-4.0 % (w/v) NaCl. Strains contained MK-7 as the major menaquinone and the major cellular fatty acids were ω-cyclohexane C19 : 0 and ω-cyclohexane C17 : 0. The DNA G+C content was 51.3 and 49.8 mol% (Tm) for G45-16T and G45-17, respectively. On the basis of phenotypic, chemotaxonomic and phylogenetic comparisons with their relatives and DNA-DNA relatedness values, it is concluded that strains G45-16T and G45-17 represent a novel species within the genus Alicyclobacillus, for which the name Alicyclobacillus fodiniaquatilis sp. nov. is proposed; the type strain is G45-16T(=CGMCC 1.15049T=NBRC 111483T).

  16. THE NATURE AND CONTROL OF REACTIONS IN BIOLUMINESCENCE

    PubMed Central

    Johnson, F. H.; Eyring, H.; Steblay, R.; Chaplin, H.; Huber, C.; Gherardi, G.

    1945-01-01

    On the basis of available data with regard to the chemical and physical properties of the "substrate" luciferin (LH2) and enzyme, luciferase (A), and of kinetic data derived both from the reaction in extracts of Cypridina, and from the luminescence of intact bacteria, the fundamental reactions involved in the phenomenon of bioluminescence have been schematized. These reactions provide a satisfactory basis for interpreting the known characteristics of the system, as well as the theoretical chemistry with regard to the control of its over-all velocity in relation to various factors. These factors, here studied experimentally wholly with bacteria, Photobacterium phosphoreum in particular, include pH, temperature, pressure, and the drugs sulfanilamide, urethane, and alcohol, separately and in relation to each other. Under steady state conditions of bacterial luminescence, with excess of oxidizable substrate and with oxygen not limiting, the data indicate that the chief effects of these agents center around the pace setting reactions, which may be designated by the equation: A + LH2 → ALH2 following which light emission is assumed proportional to the amount of the excited molecule, AL*. The relation between pH and luminescence intensity varies with (a), the buffer mixture and concentration, (b), the temperature, and (c), the hydrostatic pressure. At an optimum temperature for luminescence of about 22° C. in P. phosphoreum, the effects of increasing or decreasing the hydrogen ion concentration are largely reversible over the range between pH 3.6 and pH 8.8. The relation between luminescence intensity and pH, under the experimental conditions employed, is given by the following equation, in which I 1 represents the maximum intensity, occurring about pH 6.5; I 2 the intensity at any other given pH; K 5 the equilibrium constant between hydrogen ions and the AL-; and K 6 the corresponding constant with respect to hydroxyl ions: See PDF for Equation The value of K 5, as indicated by the data, amounts to 4.84 x 104, while that of K 6 amounts to 4.8 x 105. Beyond the range between approximately pH 3.8 and 8.8, destructive effects of the hydrogen and hydroxyl ions, respectively, were increasingly apparent. By raising the temperature above the optimum, the destructive effects were apparent at all pH, and the intensity of the luminescence diminished logarithmically with time. With respect to pH, the rate of destruction of the light-emitting system at temperatures above the optimum was slowest between pH 6.5 and 7.0, and increased rapidly with more acid or more alkaline reactions of the medium. The reversible effects of slightly acid pH vary with the temperature in the manner of an inhibitor (Type I) that acts independently of the normal, reversible denaturation equilibrium (K 1) of the enzyme. The per cent inhibition caused by a given acid pH in relation to the luminescence intensity at optimum pH, is much greater at low temperatures, and decreases as the temperature is raised towards the optimum temperature. The observed maximum intensity of luminescence is thus shifted to slightly higher temperatures by increase in (H+). The apparent activation energy of luminescence is increased by a decrease in pH. The value of ΔH‡ at pH 5.05 was calculated to be 40,900 calories, in comparison with 20,700 at a pH of 6.92. The difference of 20,200 is taken to represent an estimate of the heat of ionization of ALH in the activation process, and compares roughtly with the 14,000 calories estimated for the same process, by analyzing the data from the point of view of hydrogen ions as an inhibitor. The decreasing temperature coefficient for luminescence in proceeding from low temperatures towards the optimum is accounted for in part by the greater degree of ionization of ALH. At the optimum temperature and acid reactions, pressures up to about 500 atmospheres retard the velocity of the luminescent oxidation. At the same temperature, with decrease in hydrogen ion concentration, the pressure effect is much less, indicating a considerable volume increase in the process of ionization and activation. In the extremely alkaline range, beyond pH 9, luminescence is greatly reduced, as compared with the intensity at neutrality, and under these conditions pressure causes a pronounced increase in intensity, presumably by acting upon the reversible denaturation equilibrium of the protein enzyme, A. Sulfanilamide, in neutral solutions, acts on luminescence in a manner very much resembling that of hydrogen ions at acidities between pH 4.0 and pH 6.5. Like the hydrogen ion equilibrium, the sulfanilamide equilibrium involves a ratio of approximately one inhibitor molecule to one enzyme molecule. The heat of reaction amounts to about 11,600 calories or more in a reversible combination that evidently evolves heat. Like the action of H ions, sulfanilamide causes a slight shifting of maximum luminescence intensity in the direction of higher temperatures, and an increase in the energy of activation. The effect of sulfanilamide on the growth of broth cultures of eight species of luminous bacteria indicates that there is no regular relationship among the different organisms between the concentration of the drug that prevents growth, and that which prevents luminescence in the cells which develop in the presence of sulfanilamide. p-Aminobenzoic acid (PAB) antagonizes the sulfanilamide inhibition of growth in luminous bacteria, and the cultures that develop are luminous. When (PAB) is added to cells from fully developed cultures, it has no effect on luminescence, or causes a slight inhibition, depending on the concentration. With luminescence partly inhibited by sulfanilamide, the addition of PAB has no effect, or has an inhibitory effect which adds to that caused by sulfanilamide. Two different, though possibly related, enzyme systems thus appear to limit growth and luminescence, respectively. The possible mechanism through which both the inhibitions and the antagonism take place is discussed. The irreversible destruction of the luminescent system at temperatures above that of the maximum luminescence, in a medium of favorable pH to which no inhibitors have been added, proceeds logarithmically with time at both normal and increased hydrostatic pressures. Pressure retards the rate of the destruction, and the analysis of the data indicates that a volume increase of roughly 71 cc. per gm. molecule at 32° C. takes place in going from the normal to the activated state in this reaction. At normal pressure, the rate of destruction has a temperature coefficient of approximately 90,000 calories, or about 20,000 calories more than the heat of reaction in the reversible denaturation equilibrium. The data indicate that the equilibrium and the rate process are two distinct reactions. The equation for luminescence intensity, taking into account both the reversible and irreversible phases of the reaction is given below. In the equation b is a proportionality constant; k' the rate constant of the luminescent reaction; A0 the total luciferase; A0i the total initial luciferase at time t equals 0; kn the rate constant for the destruction of the native, active form of the enzyme; kd the rate constant for the destruction of the reversibly denatured, inactive form; t the time; and the other symbols are as indicated above: See PDF for Equation For reasons cited in the text, kn evidently equals kd. Urethane and alcohol, respectively, act in a manner (Type II) that promotes the breaking of the type of bonds broken in both the reversible and irreversible reactions and so promotes the irreversible denaturation. This result is in contrast to the effects of sulfanilamide, which at appropriate concentrations may give rise to the same initial inhibition as that caused by urethane, but remains constant with time. The inhibition caused by urethane and alcohol, respectively, increases as the temperature is raised. As a result, the apparent optimum is shifted to lower temperatures, and the activation energy for the over-all process of luminescence diminishes. An analysis for the approximate heat of reaction in the equilibrium between these drugs and the enzyme, indicates 65,000 calories for urethane, and 37,000 for alcohol. A similar analysis with respect to the effect of hydroxyl ions as the inhibitor gives 60,300 calories. The effects of alcohol and urethane are sensitive to hydrostatic pressure. Moderate inhibitions at optimum temperature and pH, caused by relatively small concentrations of either drug, are completely abolished by pressures of 3,000 to 4,000 pounds per square inch. At optimum temperature and pH, increasing concentrations of alcohol caused the apparent optimum pressure for luminescence to shift markedly in the direction of higher pressures. Analysis of the data with respect to concentration of alcohol at different pressures indicated that the ratio of alcohol to enzyme molecules amounted to approximately 4, at 7,000 pounds, but only about 2.8 at normal pressures. This phenomenon was taken to indicate that more than one equilibrium is established between the alcohol and the protein. A similar interpretation was suggested in connection with the fact that analysis of the relation between concentration of urethane and amount of inhibition at different temperatures also indicated a ratio of urethane to enzyme molecules that increased with temperature in the equilibria involved. Analysis of the data with respect to pressure and the inhibition caused by a given concentration of alcohol at different temperatures indicated that the volume change involved in the combination of alcohol with the enzyme must be very small, while the actual effect of pressure is apparently mediated through the reversible denaturation of the protein enzyme, which is promoted by alcohol, urethane, and drugs of similar type. PMID:19873433

  17. Enzymatic hydrolysis and fermentation of dilute acid pretreated cornstalk to biohydrogen

    NASA Astrophysics Data System (ADS)

    Pan, C. M.; Fan, Y. T.; Hou, H. W.

    2010-03-01

    The coupling method of acid pretreatment and enzymatic hydrolysis of cornstalk for hydrogen production was investigated in this study. Experimental results showed that temperature, pH and enzyme loading all had an individual significant influence on soluble sugar yield and Ps. The optimum condition for soluble sugar was close to that for Ps. The maximum hydrogen yield from cornstalk by anaerobic mixed microflora was 209.8 ml/g-TVS on the optimum enzymatic hydrolysis condition which was 52 °C of temperature, pH4.8 and 9.4 IU/g of enzyme loading.

  18. Modification of Natural Zeolite with Fe(III) and Its Application as Adsorbent Chloride and Carbonate ions

    NASA Astrophysics Data System (ADS)

    Suhartana; Sukmasari, Emmanuella; Azmiyawati, Choiril

    2018-04-01

    The aim of the research is to natural zeolite with Fe(III) using anion exchange process to improve the anion exchange capacity. Natural zeolite was activated using HNO3 1 N and then mixed with FeCl3 solution and refluxed followed by oven and calcination at a temperature of 550°C. The influence of Fe(III) to zeolite was characterized by FTIR while presence of Fe in zeolite characterized by AAS. Zeolite and Zeolite-Fe adsorption capacity of chloride and carbonate anions were determined through adsorption test by variation of pH and contact time. In advanced, and then to determining the Fe adsorbed concentration at Zeolite using UV-Vis spectrophotometer. FTIR analysis result showed that the addition of Fe does not affect the zeolite’s structure but change the intensity of the zeolite spectra. The Fe concentration in Zeolite-Fe of 714 mg L-1, indicate that Fe was present in the zeolite. Both Zeolite and Zeolite-Fe adsorbtion results showed that optimum pH of Chloride anion is 2, with adsorption capacity 2,33 x 10-3 gg-1 and optimum contact time is 8 minutes. While Zeolite and Zeolite-Fe adsorbtion results showed that optimum pH of Carbonate anion is 5, with adsorption capacity 5,31 x 10-3 gg-1 and optimum contact time is 8 minutes.

  19. Strategy for pH control and pH feedback-controlled substrate feeding for high-level production of L-tryptophan by Escherichia coli.

    PubMed

    Cheng, Li-Kun; Wang, Jian; Xu, Qing-Yang; Zhao, Chun-Guang; Shen, Zhi-Qiang; Xie, Xi-Xian; Chen, Ning

    2013-05-01

    Optimum production of L-tryptophan by Escherichia coli depends on pH. Here, we established conditions for optimizing the production of L-tryptophan. The optimum pH range was 6.5-7.2, and pH was controlled using a three-stage strategy [pH 6.5 (0-12 h), pH 6.8 (12-24 h), and pH 7.2 (24-38 h)]. Specifically, ammonium hydroxide was used to adjust pH during the initial 24 h, and potassium hydroxide and ammonium hydroxide (1:2, v/v) were used to adjust pH during 24-38 h. Under these conditions, NH4 (+) and K(+) concentrations were kept below the threshold for inhibiting L-tryptophan production. Optimization was also accomplished using ratios (v/v) of glucose to alkali solutions equal to 4:1 (5-24 h) and 6:1 (24-38 h). The concentration of glucose and the pH were controlled by adjusting the pH automatically. Applying a pH-feedback feeding method, the steady-state concentration of glucose was maintained at approximately 0.2 ± 0.02 g/l, and acetic acid accumulated to a concentration of 1.15 ± 0.03 g/l, and the plasmid stability was 98 ± 0.5 %. The final, optimized concentration of L-tryptophan was 43.65 ± 0.29 g/l from 52.43 ± 0.38 g/l dry cell weight.

  20. Isolation and characterization of urethanase from Penicillium variabile and its application to reduce ethyl carbamate contamination in Chinese rice wine.

    PubMed

    Zhou, Nan-di; Gu, Xiao-lei; Tian, Ya-ping

    2013-06-01

    A strain with urethanase activity was isolated from mouse gastrointestine. By combination of morphological characterization of the colony, hyphae, and spore and the sequence analysis of its rDNA ITS, the strain was determined as Penicillium variabile and named as P. variabile JN-A525. The enzymatic properties of urethanase from P. variabile JN-A525 were further studied. The optimum temperature and pH value of urethanase are of 50 °C and 6.0, respectively. The enzyme maintains stability when the temperature is below 50 °C and the pH is in the range of 7.0-10.0. The enzyme also exhibits ethanol tolerance. It can remove ethyl carbamate from Chinese rice wine without the change of flavor substances in the wine.

  1. Microbial desulphurization of Turkish lignites by White Rot Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinar Aytar; Mesut Sam; Ahmet Cabuk

    2008-03-15

    Biodesulphurization experiments were carried out with Tuncbilek lignite, characterized by high sulfur content (2.59%) by using Trametes versicolor ATCC 200801 and Phanerochaete chrysosporium ME 446. At fungal biomass studies, the effects of various parameters on fungal desulphurization of coals such as pH, temperature, pulp density, incubation time, and sterilization were investigated for both microorganisms. The maximum desulphurization (40%) was observed after 6 days of incubation at 35{sup o}C for T. versicolor. The optimum pH was measured at 6, and the agitation rate was fixed at 125 rpm. The pulp density was found as 5% (w/v) for the high extent ofmore » desulphurization. Also, calorific value did not change during this experiment. However, the ash and metal contents of coal were eliminated. 30 refs., 6 figs., 2 tabs.« less

  2. Removal of copper(II) ions from aqueous solutions by Azolla rongpong: batch and continuous study.

    PubMed

    Nedumaran, B; Velan, M

    2008-01-01

    Batch and packed bed continuous biosorption studies were conducted to investigate the kinetics and isotherms of Cu(II) ions on the biomass of blue green alga Azolla rongpong. It is observed that the biosorption capacity of algae depends on initial pH and dosage. The biosorption capacity increases with increasing concentration and follows Freundlich isotherm model well with k and n values 0.06223 and 0.949 respectively. The optimum pH of 3.5 with an algae dosage of 1 g/L was observed. The results indicate that with the advantage of high metal biosorption capacity and recovery of Cu(II) ions, A. rongpong can be used as an efficient and economic biosorbent for the removal and recovery of toxic heavy metals from aqueous wastes even at higher concentration.

  3. Structural investigation of endoglucanase 2 from the filamentous fungus Penicillium verruculosum

    NASA Astrophysics Data System (ADS)

    Vakhrusheva, A. V.; Nemashkalov, V. A.; Kravchenko, O. V.; Tishchenko, S. V.; Gabdulkhakov, A. G.; Kljashtorny, V. G.; Korotkova, O. G.; Gusakov, A. V.; Sinitsyn, A. P.

    2017-03-01

    Enzyme additives capable of degrading non-starch polysaccharides of cereal cell walls, which are major ingredients used in animal feed, can improve the efficiency of livestock production. Non-starch polysaccharides have antinutritional properties that interfere with efficient digestion and assimilation of nutrients by animals. Therefore, the improvement of the properties and characteristics of enzyme additive is an important issue. The three-dimensional structure of one of the key industrial enzymes involved in the degradation of non-starch polysaccharides — endoglucanase 2 from the filamentous fungus Penicillium verruculosum — was determined (PDB ID: 5I6S). The catalytic site of this enzyme was established. Based on the enzyme structure, it was suggested that the pH optimum of the enzyme activity can be shifted from acidic to neutral or alkaline pH values.

  4. Application of silica fume as a new SP-extractor for trace determination of Zn(II) and Cd(II) in pharmaceutical and environmental samples by square-wave anodic stripping voltammetry

    NASA Astrophysics Data System (ADS)

    Ahmed, Salwa A.; Gaber, Ahmed A. Abdel; Rahim, Asmaa M. Abdel

    2017-05-01

    In this work, silica fume (SF) is used as a solid-phase extractor for extraction of Zn(II) and Cd(II) from aqueous solutions. Characterization of SF is performed by Fourier transform infrared, X-ray diffraction, transmission and scanning electron microscopy. The optimum experimental conditions for the two metal ions are investigated using batch and column techniques. The maximum adsorption capacity values are found to be 54.13 and 121.28 mg g-1 at the optimum pH 6.0 and 8.0 for Zn(II) and Cd(II), respectively. The equilibrium data are analyzed using the Langmuir, Freundlich, and Temkin isotherms by nonlinear regression analysis. Also, the kinetics analysis revealed that the overall adsorption process is successfully fitted with the pseudo-second-order model. The method is applied for determination of the target metal ions in pharmaceutical and environmental samples using square-wave anodic stripping voltammetry. The limit of detection (LOD) values are 0.102 and 1.43 × 10-3 mg L-1 for Zn(II) and Cd(II), respectively. The percentage recovery values are 98.8-100.5 % which indicate the success of the proposed method for determination of Zn(II) and Cd(II) without interfering effects.

  5. GLUTAMIC DECARBOXYLASE OF ERGOT, CLAVICEPS PURPUREA

    PubMed Central

    Anderson, John A.; Cheldelin, Vernon H.; King, Tsoo E.

    1961-01-01

    Anderson, John A. (Oregon State University, Corvallis), Vernon H. Cheldelin, and Tsoo E. King. Glutamic decarboxylase of ergot, Claviceps purpurea. J. Bacteriol. 82:354–358. 1961.—l-Glutamic acid is the only naturally occurring amino acid which can be decarboxylated by cell-free extracts of Claviceps purpurea. This decarboxylase was partially purified and the properties of the enzyme studied. The specific activity of the purified preparation was 111 μliters per 10 min per mg of protein. The products formed, stability, inhibition, stimulation of activity with pyridoxal phosphate, and pH activity curve were typical of l-glutamic decarboxylase in Escherichia coli and other microorganisms. The substrate constants at pH 4.6, 5.25, and 5.65 were 0.0169 m, 0.0174 m, and 0.0139 m, respectively. The respective maximal velocities at these pH values were 104, 104, and 90 μliters per 10 min. The pH optimum was 4.8 to 5.2. The enzyme was unstable below pH 4.5 and it was suggested that the fall in activity at the lower end of the pH curve was due to inactivation of the enzyme. The decrease in activity above pH 5.2 did not appear to be due to a change in affinity of enzyme for substrate but to a change of the enzyme-substrate complex into an inactive form. PMID:13683214

  6. [Enzymatic degradation of organophosphorus insecticide chlorpyrifos by fungus WZ-I].

    PubMed

    Xie, Hui; Zhu, Lu-sheng; Wang, Jun; Wang, Xiu-guo; Liu, Wei; Qian, Bo; Wang, Qian

    2005-11-01

    Degradation characteristics of chlorpyrifos insecticides was determined by the crude enzyme extracted from the isolated strain WZ-I ( Fusarium LK. ex Fx). The best separating condition and the degrading characteristic of chlorpyrifos were studied. Rate of degradation for chlorpyrifos by its intracellular enzyme, extracellular enzyme and cell fragment was 60.8%, 11.3% and 48%, respectively. The degrading enzyme was extracted after this fungus was incubated for 8 generations in the condition of noninducement, and its enzymic activity lost less, the results show that this enzyme is an intracellular and connatural enzyme. The solubility protein of the crude enzyme was determined with Albumin (bovine serum) as standard protein and the solubility protein of the crude enzyme was 3.36 mg x mL(-1). The pH optimum for crude enzyme was 6.8 for enzymatic degradation of chlorpyrifos, and it had comparatively high activity in the range of pH 6.0 - 9.0. The optimum temperature for enzymatic activity was at 40 degrees C, it still had comparatively high activity in the range of temperature 20-50 degrees C, the activity of enzyme rapidly reduced at 55 degrees C, its activity was 41% of the maximal activity. The crude enzyme showed Km value for chlorpyrifos of 1.049 26 mmol x L(-1), and the maximal enzymatic degradation rate was 0.253 5 micromol x (mg x min)(-1). Additional experimental evidence suggests that the enzyme had the stability of endure for temperature and pH, the crude enzyme of fungus WZ-I could effectively degrade chlorpyrifos.

  7. Central Composite Design Optimization of Zinc Removal from Contaminated Soil, Using Citric Acid as Biodegradable Chelant.

    PubMed

    Asadzadeh, Farrokh; Maleki-Kaklar, Mahdi; Soiltanalinejad, Nooshin; Shabani, Farzin

    2018-02-08

    Citric acid (CA) was evaluated in terms of its efficiency as a biodegradable chelating agent, in removing zinc (Zn) from heavily contaminated soil, using a soil washing process. To determine preliminary ranges of variables in the washing process, single factor experiments were carried out with different CA concentrations, pH levels and washing times. Optimization of batch washing conditions followed using a response surface methodology (RSM) based central composite design (CCD) approach. CCD predicted values and experimental results showed strong agreement, with an R 2 value of 0.966. Maximum removal of 92.8% occurred with a CA concentration of 167.6 mM, pH of 4.43, and washing time of 30 min as optimal variable values. A leaching column experiment followed, to examine the efficiency of the optimum conditions established by the CCD model. A comparison of two soil washing techniques indicated that the removal efficiency rate of the column experiment (85.8%) closely matching that of the batch experiment (92.8%). The methodology supporting the research experimentation for optimizing Zn removal may be useful in the design of protocols for practical engineering soil decontamination applications.

  8. Digestive enzymes of the Californian two-spot octopus, Octopus bimaculoides (Pickford and McConnaughey, 1949).

    PubMed

    Ibarra-García, Laura Elizabeth; Tovar-Ramírez, Dariel; Rosas, Carlos; Campa-Córdova, Ángel Isidro; Mazón-Suástegui, José Manuel

    2018-01-01

    Octopus bimaculoides is an important commercially fished species in the California Peninsula with aquaculture potential; however, to date limited information is available regarding its digestive physiology. The objective of this study was focused on biochemically characterizing the main enzymes involved in the digestion of O. bimaculoides. Optimum pH, temperature and thermostability were determined for amylases, lipases, trypsin and chymotrypsin; optimum pH and protease inhibitor effect were assessed for acidic and alkaline proteases, and the effect of divalent ions on trypsin and chymotrypsin activity was evaluated in enzymatic extracts from the digestive (DG) and salivary glands (SG) and crop gastric juices (GJ). High amylase activity was detected in GD and GJ whereas this activity is very low in other cephalopods. Salivary glands had the greatest activity in most of the enzyme groups, showing the importance of this organ in digestion. Optimum pH was different depending on the organ and enzyme analyzed. The optimum pH in DG was 3 showing the predominance of acidic proteases in the digestion process. All enzymes were resistant and stable at high temperatures in contrast with other marine species. Trypsin and chymotrypsin activity were highly incremented with the presence of Mg 2+ , Co 2+ , Cu 2+ and Zn 2+ in some tissues. The inhibitor assay showed the importance of serine proteases, metalloproteases and aspartic proteases in the digestive process of this species. This study is the first in assessing the main digestive enzymes of O. bimaculoides and in remarking the importance of other digestive enzyme groups besides proteases in octopuses. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Survey of dissolved air flotation system efficiency for reduce of pollution of vegetable oil industry wastewater.

    PubMed

    Keramati, H; Alidadi, H; Parvaresh, A R; Movahedian, H; Mahvi, A H

    2008-10-01

    The aim of this research was to sudy the reduction of pollution of vegetable oil manufacturing wastewater with DAF system. At first phase of this examination, the optimum dosage of the coagulants was determined. The coagulants that used in this study were Alum and Ferric Chloride. The second phase was flotation in this series of examinations, oil, COD, total solid, volatile solid, fixed solid and suspended solid measured in raw wastewater and the effluent of the DAF pilot. Optimum value of pH for alum and ferric chloride obtained 7.5 and 5.5, respectively. Optimum dosage for these obtained 30 and 32 mg L(-1) in this research. Mean removal for the parameters ofoil, COD, total solid, volatile solid, fixed solid and suspended solid obtained 75.85, 78.27, 77.32, 82.47, 73.52 and 85.53%, respectively. With pressure rising from 3 to 4 and 5 atm removing rate of COD, total solid, volatile solid, fixed solid parameters reduced, but oil and suspended solid have increase. In addition, following increase of flotation time up to 120 sec all of the measured parameters have increase in removing rate. Optimum A/S for removal of COD, total solid, volatile solid, fixed solid parameters obtained 0.001 and for oil and suspended solid obtained 0.0015.

  10. Optimising the biogas production from leather fleshing waste by co-digestion with MSW.

    PubMed

    Shanmugam, P; Horan, N J

    2009-09-01

    Waste from the leather industry, known as limed leather fleshing (LF), has a low C:N (3.2) and an alkaline pH of 11.4. This is a major disadvantage for anaerobic digestion due to ammonia toxicity for methanogenesis. This study describes co-digestion of LF with biodegradable fraction of municipal solids waste optimised over a range of C:N and pH to minimise ammonia and to maximise biogas yield. The optimum conditions were found with a blend that provided C:N of 15 and pH of 6.5 and the cumulative biogas yield increased from 560 mL using LF fraction alone, to 6518 mL with optimum blend. At higher pH of 8.5, unionised ammonia was high (2473 mg L(-1)) coincided with poor biogas yield (47 m Ld(-1)) that confirms ammonia toxicity. By contrast at a pH of 4.5 the ammonia was minimum (510 mg L(-1)), but high VFA (26,803 mg L(-1)) inhibited the methanogens. Biomass activity measured using ATP correlated well with biogas yield as reported previously.

  11. The use of macroalgae (Gracilaria changii) as bio-adsorbent for Copper (II) removal

    NASA Astrophysics Data System (ADS)

    Lavania-Baloo; Idayu, Nordin; Umar Salihi, Ibrahim; Zainoddin, Jamari

    2017-05-01

    Biosorption of heavy metals using marine macroalgae biomass can be an effective process and alternative to conventional methods. Activated carbon was developed from macroalgae (Gracilaria changii) and used as adsorbents for the removal of copper (II) from wastewater. Gracilaria changii based activated carbon (GCBAC) was prepared using muffle furnace at a constant temperature of 300 °C for 1 hour. Batch adsorption experiments were conducted to investigate the effets of important parameters such as pH, contact time, initial metal concentration and adsorbent dosage on the removal of Cu (II) from synthetic aqueous solution. Batch adsorption study shows that removal of Cu (II) using GCBAC relied upon pH, contact time, initial metal concentration and GCBAC dosage. The optimum conditions parameters were found to be pH 6.0, time of 60 minutes and GCBAC dosage of 0.3 g, respectively. Adsorption data was described better by Freundlich isotherm model with R2 value of 0.7936. The maximum Cu (II) adsorption capacity of GCBAC was found to be 0.07 mg/g. The experimental adsorption data obtained fitted well into Pseudo-second-order kinetic model, with R2 value near unity. Thus, GCBAC can be used as an effective adsorbent for the removal of Cu (II) from aqueous solution.

  12. Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil.

    PubMed

    Sheu, Shih-Yi; Chou, Jui-Hsing; Bontemps, Cyril; Elliott, Geoffrey N; Gross, Eduardo; James, Euan K; Sprent, Janet I; Young, J Peter W; Chen, Wen-Ming

    2012-09-01

    Four strains, designated JPY-345(T), JPY-347, JPY-366 and JPY-581, were isolated from nitrogen-fixing nodules on the roots of two species of Mimosa, Mimosa cordistipula and Mimosa misera, that are native to North East Brazil, and their taxonomic positions were investigated by using a polyphasic approach. All four strains grew at 15-43 °C (optimum 35 °C), at pH 4-7 (optimum pH 5) and with 0-2 % (w/v) NaCl (optimum 0 % NaCl). On the basis of 16S rRNA gene sequence analysis, strain JPY-345(T) showed 97.3 % sequence similarity to the closest related species Burkholderia soli GP25-8(T), 97.3 % sequence similarity to Burkholderia caryophylli ATCC25418(T) and 97.1 % sequence similarity to Burkholderia kururiensis KP23(T). The predominant fatty acids of the strains were C(18 : 1)ω7c (36.1 %), C(16 : 0) (19.8 %) and summed feature 3, comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c (11.5 %). The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 64.2-65.7 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. DNA-DNA hybridizations between the novel strain and recognized species of the genus Burkholderia yielded relatedness values of <51.8 %. On the basis of 16S rRNA and recA gene sequence similarities and chemotaxonomic and phenotypic data, the four strains represent a novel species in the genus Burkholderia, for which the name Burkholderia symbiotica sp. nov. is proposed. The type strain is JPY-345(T) (= LMG 26032(T) = BCRC 80258(T) = KCTC 23309(T)).

  13. Roseomonas aerofrigidensis sp. nov., isolated from an air conditioner.

    PubMed

    Hyeon, Jong Woo; Jeon, Che Ok

    2017-10-01

    A Gram-stain-negative, strictly aerobic bacterium, designated HC1 T , was isolated from an air conditioner in South Korea. Cells were orange, non-motile cocci with oxidase- and catalase-positive activities and did not contain bacteriochlorophyll a. Growth of strain HC1 T was observed at 10-45 °C (optimum, 30 °C), pH 4.5-9.5 (optimum, pH 7.0) and 0-3 % (w/v) NaCl (optimum, 0 %). Strain HC1 T contained summed feature 8 (comprising C18 : 1ω7c/C18 : 1ω6c), C16 : 0 and cyclo-C19 : 0ω8c as the major fatty acids and ubiquinone-10 as the sole isoprenoid quinone. Phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unknown aminolipid were detected as the major polar lipids. The major carotenoid was hydroxyspirilloxanthin. The G+C content of the genomic DNA was 70.1 mol%. Phylogenetic analysis, based on 16S rRNA gene sequences, showed that strain HC1 T formed a phylogenetic lineage within the genus Roseomonas. Strain HC1 T was most closely related to the type strains of Roseomonas oryzae, Roseomonas rubra, Roseomonas aestuarii and Roseomonas rhizosphaerae with 98.1, 97.9, 97.6 and 96.8 % 16S rRNA gene sequence similarities, respectively, but the DNA-DNA relatedness values between strain HC1 T and closely related type strains were less than 70 %. Based on phenotypic, chemotaxonomic and molecular properties, strain HC1 T represents a novel species of the genus Roseomonas, for which the name Roseomonas aerofrigidensis sp. nov. is proposed. The type strain is HC1 T (=KACC 19097 T =JCM 31878 T ).

  14. A Novel Glutamyl (Aspartyl)-Specific Aminopeptidase A from Lactobacillus delbrueckii with Promising Properties for Application

    PubMed Central

    Stressler, Timo; Ewert, Jacob; Merz, Michael; Funk, Joshua; Claaßen, Wolfgang; Lutz-Wahl, Sabine; Schmidt, Herbert; Kuhn, Andreas; Fischer, Lutz

    2016-01-01

    Lactic acid bacteria (LAB) are auxotrophic for a number of amino acids. Thus, LAB have one of the strongest proteolytic systems to acquit their amino acid requirements. One of the intracellular exopeptidases present in LAB is the glutamyl (aspartyl) specific aminopeptidase (PepA; EC 3.4.11.7). Most of the PepA enzymes characterized yet, belonged to Lactococcus lactis sp., but no PepA from a Lactobacillus sp. has been characterized so far. In this study, we cloned a putative pepA gene from Lb. delbrueckii ssp. lactis DSM 20072 and characterized it after purification. For comparison, we also cloned, purified and characterized PepA from Lc. lactis ssp. lactis DSM 20481. Due to the low homology between both enzymes (30%), differences between the biochemical characteristics were very likely. This was confirmed, for example, by the more acidic optimum pH value of 6.0 for Lb-PepA compared to pH 8.0 for Lc-PepA. In addition, although the optimum temperature is quite similar for both enzymes (Lb-PepA: 60°C; Lc-PepA: 65°C), the temperature stability after three days, 20°C below the optimum temperature, was higher for Lb-PepA (60% residual activity) than for Lc-PepA (2% residual activity). EDTA inhibited both enzymes and the strongest activation was found for CoCl2, indicating that both enzymes are metallopeptidases. In contrast to Lc-PepA, disulfide bond-reducing agents such as dithiothreitol did not inhibit Lb-PepA. Finally, Lb-PepA was not product-inhibited by L-Glu, whereas Lc-PepA showed an inhibition. PMID:27003449

  15. Natronolimnobius aegyptiacus sp. nov., an extremely halophilic alkalithermophilic archaeon isolated from the athalassohaline Wadi An Natrun, Egypt.

    PubMed

    Zhao, Baisuo; Hu, Qingping; Guo, Xiaomeng; Liao, Ziya; Sarmiento, Felipe; Mesbah, Noha M; Yan, Yanchun; Li, Jun; Wiegel, Juergen

    2018-02-01

    An obligately aerobic extremely halophilic alkalithermophilic archaeon, strain JW/NM-HA 15 T , was isolated from the sediments of Wadi An Natrun in Egypt. Phylogenetic analysis based on 16S rRNA and rpoB' gene sequences indicated that it belongs to the family Natrialbaceae of the order Natrialbales. The closest relatives were Natronolimnobius baerhuensis IHC-005 T and Natronolimnobius innermongolicus N-1311 T (95.3 and 94.5 % 16S rRNA gene sequence similarity, respectively). Genome relatedness between strain JW/NM-HA 15 T and its neighbours was evaluated using average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity with the values of 75.7-85.0, 18.1-20.0, and 70.2-71.0%, respectively. Cells were obligately aerobic, rod-shaped, non-motile, Gram-stain-negative and chemo-organotrophic. The strain grew in the presence of 2.57 M to saturating Na + (optimum 3.25-4.60 M Na + ), at pH 55 °C 7.5-10.5 (optimum pH 55 °C 9.0-9.5), and at 30-56 °C (optimum 52 °C). The major polar lipids consisted of phosphatidylglycerol, methylated phosphatidylglycerolphosphate and two phospholipids. The complete genome size of strain JW/NM-HA 15 T is approximately 3.93 Mb, with a DNA G+C content of 64.1 mol%. On the basis of phylogenetic features, genomic relatedness, phenotypic and chemotaxonomic data, strain JW/NM-HA 15 T was thus considered to represent a novel species within the genus Natronolimnobius, for which the name Natronolimnobius aegyptiacus sp. nov. is proposed. The type strain is JW/NM-HA 15 T (=ATCC BAA-2088 T =DSM 23470 T ).

  16. A Novel Glutamyl (Aspartyl)-Specific Aminopeptidase A from Lactobacillus delbrueckii with Promising Properties for Application.

    PubMed

    Stressler, Timo; Ewert, Jacob; Merz, Michael; Funk, Joshua; Claaßen, Wolfgang; Lutz-Wahl, Sabine; Schmidt, Herbert; Kuhn, Andreas; Fischer, Lutz

    2016-01-01

    Lactic acid bacteria (LAB) are auxotrophic for a number of amino acids. Thus, LAB have one of the strongest proteolytic systems to acquit their amino acid requirements. One of the intracellular exopeptidases present in LAB is the glutamyl (aspartyl) specific aminopeptidase (PepA; EC 3.4.11.7). Most of the PepA enzymes characterized yet, belonged to Lactococcus lactis sp., but no PepA from a Lactobacillus sp. has been characterized so far. In this study, we cloned a putative pepA gene from Lb. delbrueckii ssp. lactis DSM 20072 and characterized it after purification. For comparison, we also cloned, purified and characterized PepA from Lc. lactis ssp. lactis DSM 20481. Due to the low homology between both enzymes (30%), differences between the biochemical characteristics were very likely. This was confirmed, for example, by the more acidic optimum pH value of 6.0 for Lb-PepA compared to pH 8.0 for Lc-PepA. In addition, although the optimum temperature is quite similar for both enzymes (Lb-PepA: 60°C; Lc-PepA: 65°C), the temperature stability after three days, 20°C below the optimum temperature, was higher for Lb-PepA (60% residual activity) than for Lc-PepA (2% residual activity). EDTA inhibited both enzymes and the strongest activation was found for CoCl2, indicating that both enzymes are metallopeptidases. In contrast to Lc-PepA, disulfide bond-reducing agents such as dithiothreitol did not inhibit Lb-PepA. Finally, Lb-PepA was not product-inhibited by L-Glu, whereas Lc-PepA showed an inhibition.

  17. Thermocrinis jamiesonii sp. nov., a thiosulfate-oxidizing, autotropic thermophile isolated from a geothermal spring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, John C.; Dodsworth, Jeremy A.; Hedlund, Brian P.

    2015-12-01

    An obligately thermophilic, chemolithotrophic, microaerophilic bacterium, designated strain GBS1T, was isolated from the water column of Great Boiling Spring, Nevada, USA. Thiosulfate was required for growth. Although capable of autotrophy, growth of GBS1T was enhanced in the presence of acetate, peptone, or Casamino acids. Growth occurred at 70-85 °C with an optimum at 80 °C, at pH 6.5-7.75 with an optimum at pH 7.25, at 0.5-8% oxygen with an optimum at 1-2%, and at ≤200 mM sodium chloride. The doubling time under optimal growth conditions was 1.3 hrs, with a final cell density of 6.2±0.5 x 107 cells/mL. Non-motile, rod-shapedmore » cells 1.4-2.4 x 0.4-0.6 µm occurred singly or in pairs. Major cellular fatty acids (>5% of total) were C20:1ω9c (44.8%), C18:0 (26.0%), C16:0 (9.9%) and C20:0 (5.4%). Phylogenetic analysis of the GBS1T 16S rRNA gene sequence indicated an affiliation with Thermocrinis ruber and other Thermocrinis spp., but comparisons of 16S rRNA gene identity (≤97.10%) and in silico estimated DNA-DNA hybridization values (≤18.4%) with Thermocrinis spp. indicate that his strain is distinct from described species. Based on phenotypic, genotypic, and phylogenetic characteristics, the name Thermocrinis jamiesonii sp. nov. is proposed, with GBS1T (= JCM 19133T = DSM 27162T) as the type strain.« less

  18. Characterization of digestive enzymes from de-oiled mackerel (Scomber japonicus) muscle obtained by supercritical carbon dioxide and n-hexane extraction as a comparative study.

    PubMed

    Asaduzzaman, A K M; Chun, Byung-Soo

    2015-06-01

    The oil in mackerel muscle was extracted using an environmental friendly solvent, supercritical carbon dioxide (SC-CO2) at a semi-batch flow extraction process and an n-hexane. The SC-CO2 was carried out at temperature 45 °C and pressures ranging from 15 to 25 MPa. The flow rate of CO2 (27 g/min) was constant at the entire extraction period of 2 h. The highest oil extracted residues after SC-CO2 extraction was used for activity measurement of digestive enzymes. Four digestive enzymes were found in water soluble extracts after n-hexane and SC-CO2 treated samples. Amylase, lipase and trypsin activities were higher in water soluble extracts after SC-CO2 treated samples except protease. Among the four digestive enzymes, the activity of amylase was highest and the value was 44.57 uM/min/mg of protein. The water soluble extracts of SC-CO2 and n-hexane treated mackerel samples showed same alkaline optimum pH and pH stability for each of the digestive enzymes. Optimum temperature of amylase, lipase, protease and trypsin was 40, 50, 60 and 30 °C, respectively of both extracts. More than 80 % temperature stability of amylase, lipase, protease and trypsin were retained at mentioned optimum temperature in water soluble extracts of both treated samples. Based on protein patterns, prominent protein band showed in water soluble extracts after SC-CO2 treated samples indicates no denaturation of protein than untreated and n-hexane.

  19. Facile Large-scale synthesis of stable CuO nanoparticles

    NASA Astrophysics Data System (ADS)

    Nazari, P.; Abdollahi-Nejand, B.; Eskandari, M.; Kohnehpoushi, S.

    2018-04-01

    In this work, a novel approach in synthesizing the CuO nanoparticles was introduced. A sequential corrosion and detaching was proposed in the growth and dispersion of CuO nanoparticles in the optimum pH value of eight. The produced CuO nanoparticles showed six nm (±2 nm) in diameter and spherical feather with a high crystallinity and uniformity in size. In this method, a large-scale production of CuO nanoparticles (120 grams in an experimental batch) from Cu micro-particles was achieved which may met the market criteria for large-scale production of CuO nanoparticles.

  20. Influence of the metal ion on the enzyme activity and kinetics of PepA from Lactobacillus delbrueckii.

    PubMed

    Ewert, Jacob; Glück, Claudia; Strasdeit, Henry; Fischer, Lutz; Stressler, Timo

    2018-03-01

    The aminopeptidase A (PepA; EC 3.4.11.7) belongs to the group of metallopeptidases with two bound metal ions per subunit (M1M2(PepA)) and is specific for the cleavage of N-terminal glutamic (Glu) and aspartic acid (Asp) and, in low amounts, serine (Ser) residues. Our group recently characterized the first PepA from a Lactobacillus strain. However, the characterization was performed using synthetic para-nitroaniline substrates and not original peptide substrates, as was done in the current study. Prior to the characterization using original peptide substrates, the PepA purified was converted to its inactive apo-form and eight different metal ions were tested to restore its activity. It was found that five of the metal ions were able to reactivate apo-PepA: Co 2+ , Cu 2+ , Mn 2+ , Ni 2+ and Zn 2+ . Interestingly, depending on the metal ion used for reactivation, the activity and the pH and temperature profile differed. Exemplarily, MnMn(PepA), NiNi(PepA) and ZnZn(PepA) had an activity optimum using MES buffer (50mM, pH 6.0) and 60°C, whereas the activity optimum changed to Na/K-phosphate-buffer (50mM, pH 7.0) and 55°C for CuCu(PepA). However, more important than the changes in optimum pH and temperature, the kinetic properties of PepA were affected by the metal ion used. While all PepA variants could release N-terminal Glu or Asp, only CoCo(PepA), NiNi(PepA) and CuCu(PepA) could release Ser from the particular peptide substrate. In addition, it was found that the enzyme efficiency (V max /K M ) and catalytic mechanism (positive cooperative binding (Hill coefficent; n), substrate inhibition (K IS )) were influenced by the metal ion. Exemplarily, a high cooperativity (n>2),K IS value >20mM and preference for N-terminal Glu were detected for CuCu(PepA). In summary, the results suggested that an exchange of the metal ion can be used for tailoring the properties of PepA for specific hydrolysis requirements. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed.

    PubMed

    El Nemr, Ahmed; Khaled, Azza; Abdelwahab, Ola; El-Sikaily, Amany

    2008-03-21

    The use of a new activated carbon developed from date palm seed wastes, generated in the jam industry, for removing toxic chromium from aqueous solution has been investigated. The activated carbon has been achieved from date palm seed by dehydrating methods using concentrated sulfuric acid. The batch experiments were conducted to determine the adsorption capacity of the biomass. The effect of initial metal concentration (25-125mgl(-1)), pH, contact time, and concentration of date palm seed carbon have been studied at room temperature. A strong dependence of the adsorption capacity on pH was observed, the capacity increase as pH value decrease and the optimum pH value is pH 1.0. Kinetics and adsorption equilibrium were studied at different sorbent doses. The adsorption process was fast and the equilibrium was reached within 180min. The maximum removal was 100% for 75mgl(-1) of Cr(+ concentration on 4gl(-1) carbon concentration and the maximum adsorption capacity was 120.48mgg(-1). The kinetic data were analyzed using various kinetic models - pseudo-first order equation, pseudo-second order equation, Elovich equation and intraparticle diffusion equation - and the equilibrium data were tested using several isotherm models, Langmuir, Freundlich, Koble-Corrigan, Redlich-Peterson, Tempkin, Dubinin-Radushkevich and Generalized isotherm equations. The Elovich equation and pseudo-second order equation provide the greatest accuracy for the kinetic data and Koble-Corrigan and Langmuir models the closest fit for the equilibrium data. Activation energy of sorption has also been evaluated as 0.115 and 0.229kJmol(-1).

  2. Effect of complexation conditions on microcapsulation of Lactobacillus acidophilus in xanthan-chitosan polyelectrolyte complex gels.

    PubMed

    Chen, He; Song, Yajuan; Liu, Nina; Wan, Hongchang; Shu, Guowei; Liao, Na

    2015-01-01

    Lactobacillus acidophilus has become increasingly popular because of their beneficial effects on health of their host, and are called proboscis. In order to exert beneficial effects for probiotics, they must be able to tolerate the acidic conditions of the stomach environment and the bile in the small intestine. Microencapsulated form has received reasonable attention, since it can protect probiotic organisms against an unfavourable environment, and to allow their release in a viable and metabolically active state in the intestine. The aim of this study was to investigate some factores, such as chitosan solution pH and concentration, xanthan concentration, cell suspension-xanthan ratio, mixed bacteria glue liquid-chitosan ratio, which impacted the process of microencapsulation of L. acidophilus. In this study, L. acidophilus was immobilized with xanthan⁄chitosan gel using extrusion method. The viable counts and encapsulation yield of L. acidophilus encapsulated in different chitosan solution pH (4.5, 5, 5.5 and 6), in different chitosan concentration (0.5%, 0.7%, 0.9% and 1.1%), in different xanthan concentration (0.5%, 0.7%, 0.9% and 1.1%), in different cell suspension-xanthan ratios (1:5, 1:10, 1:15 and 1:20), in different mixed bacteria glue liquid-chitosan ratios (1:3, 1:4, 1:5 and 1:6), have been investigated by single factor experiment method. The optimum conditions of microencapsulated L. acidophilus have been observed. The optimum chitosan solution pH for L. acidophilus was 5.5; the optimum chitosan concentration was 0.9%; the optimum xanthan concentration was 0.7%; the optimum cell suspension-xanthan ratio was 1:10; the optimum mixed bacteria glue liquid-chitosan ratio was 1:3. These results will be helpful to further optimize the process of L. acidophilus microencapsulation, and provide reference for obtaining higher viable counts and entrapped yield of L. acidophilus microcapsules.

  3. Factors affecting yield and safety of protein production from cassava by Cephalosporium eichhorniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikami, Y.; Gregory, K.F.; Levadoux, W.L.

    1982-01-01

    The properties of C. eichhorniae 152 (ATCC 38255) affecting protein production from cassava carbohydrate, for use as an animal feed, were studied. This strain is a true thermophile, showing optimum growth at 45-47 degrees, maximum protein yield at 45 degrees, and no growth at 25 degrees. It has an optimum pH of approximately 3.8 and is obligately acidophilic, being unable to sustain growth at pH of more than or equal to 6.0 in a liquid medium, or pH of more than or equal to 7.0 on solid media. The optimum growth conditions of pH 3.8 and 45 degrees were stronglymore » inhibitive to potential contaminants. It rapidly hydrolyzed cassava starch. It did not utilize sucrose, but approximately 16% of the small sucrose component of cassava was chemically hydrolyzed during the process. Growth with cassava meal (50 g/l) was complete in approximately 20 h, yielding 22.5 g/l (dry biomass), containing 41% crude protein (48-50% crude protein in the mycelium) and 31% true protein (7.0 g/l). Resting and germinating spores (10 to the power of 6 - 10 to the power of 8 per animal) injected by various routes into normal and gamma-irradiated 6-week-old mice and 7-day-old chickens failed to initiate infections.« less

  4. Removal of phenol from synthetic wastewater using carbon-mineral composite: Batch mechanisms and composition study

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Mohamad Anuar; Alrozi, Rasyidah; Aziz, Hamidi Abdul; Han, Tan Yong; Yusoff, Mohd Suffian

    2017-09-01

    This study investigates the treatability of composite adsorbent made from waste materials and minerals which is widely available in Malaysia. The composite adsorbent was prepared based on wet attrition method which focuses on the determination of optimum dosage of each of raw materials amount by conventional design of experiment work. Zeolite, activated carbon, rice husk and limestone were ground to obtained particle size of 150 µm. 45.94% zeolite, 15.31% limestone, 4.38% activated carbon, 4.38% rice husk carbon and 30% of ordinary Portland cement (OPC). The mixture was mixed together under pre-determined mixing time. About 60% (by weight) of water was added and the mixture paste was allowed to harden for 24 hours and then submersed in water for three days for curing. Batch experimental study was performed on synthetic dissolving a known amount of solid crystal phenol with distilled water into the volumetric flasks. From the batch experimental study, it was revealed that the optimum shaking speed for removal of phenol was 200 rpm. The removal efficiency was 65%. The optimum shaking time for removing phenol was 60 minutes; the percentage achieved was 55%. The removal efficiency increased with the increased of the amount of composite adsorbent. The removal efficiency for optimum adsorbent dosage achieved 86%. Furthermore, the influence of pH solution was studied. The optimum pH for removing phenol was pH 6, with the removal percentage of 95%. The results implies that carbon-mineral based composite adsorbent is promising replacement for commercial adsorbent that provides alternative source for industrial adsorption application in various types of effluent treatment system.

  5. Application of response surface methodology for optimization of biosorption of fluoride from groundwater using Shorea robusta flower petal

    NASA Astrophysics Data System (ADS)

    Biswas, G.; Kumari, M.; Adhikari, K.; Dutta, S.

    2017-12-01

    Fluoride pollution in groundwater is a major concern in rural areas. The flower petal of Shorea robusta, commonly known as sal tree, is used in the present study both in its native form and Ca-impregnated activated form to eradicate excess fluoride from simulated wastewater. Response surface methodology (RSM) was used for experimental designing and analyzing optimum condition for carbonization vis-à-vis calcium impregnation for preparation of adsorbent. During carbonization, temperature, time and weight ratio of calcium chloride to sal flower petal (SFP) have been considered as input factors and percentage removal of fluoride as response. Optimum condition for carbonization has been obtained as temperature, 500 °C; time, 1 h and weight ratio, 2.5 and the sample prepared has been termed as calcium-impregnated carbonized sal flower petal (CCSFP). Optimum condition as analyzed by one-factor-at-a-time (OFAT) method is initial fluoride concentration, 2.91 mg/L; pH 3 and adsorbent dose, 4 g/L. CCSFP shows maximum removal of 98.5% at this condition. RSM has also been used for finding out optimum condition for defluoridation considering initial concentration, pH and adsorbent dose as input parameters. The optimum condition as analyzed by RSM is: initial concentration, 5 mg/L; pH 3.5 and adsorbent dose, 2 g/L. Kinetic and equilibrium data follow Ho pseudo-second-order kinetic model and Freundlich isotherm model, respectively. Adsorption capacity of CCSFP has been found to be 5.465 mg/g. At optimized condition, CCSFP has been found to remove fluoride (80.4%) efficiently from groundwater collected from Bankura district in West Bengal, a fluoride-contaminated province in India.

  6. Factors affecting UV/H2O2 inactivation of Bacillus atrophaeus spores in drinking water.

    PubMed

    Zhang, Yongji; Zhang, Yiqing; Zhou, Lingling; Tan, Chaoqun

    2014-05-05

    This study aims at estimating the performance of the Bacillus atrophaeus spores inactivation by the UV treatment with addition of H2O2. The effect of factors affecting the inactivation was investigated, including initial H2O2 dose, UV irradiance, initial cell density, initial solution pH and various inorganic anions. Under the experimental conditions, the B. atrophaeus spores inactivation followed both the modified Hom Model and the Chick's Model. The results revealed that the H2O2 played dual roles in the reactions, while the optimum reduction of 5.88lg was received at 0.5mM H2O2 for 10min. The inactivation effect was affected by the UV irradiance, while better inactivation effect was achieved at higher irradiance. An increase in the initial cell density slowed down the inactivation process. A slight acid condition at pH 5 was considered as the optimal pH value. The inactivation effect within 10min followed the order of pH 5>pH 7>pH 9>pH 3>pH 11. The effects of three added inorganic anions were investigated and compared, including sulfate (SO4(2)(-)), nitrate (NO3(-)) and carbonate (CO3(2)(-)). The sequence of inactivation effect within 10min followed the order of control group>SO4(2)(-)>NO3(-)>CO3(2)(-). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Development of passion fruit juice beverage

    NASA Astrophysics Data System (ADS)

    Zhu, Xiang-hao; Duan, Zhen-hua; Yang, Yu-xia; Huang, Xin-hui; Xu, Cheng-ling; Huang, Zhi-zhuo

    2017-12-01

    In this experiment, the whole fruit of passion fruit was used as raw material. The effects of the ratio of material to liquid (RML), the amount of sucrose addition and the pH on the quality of passion fruit juice beverage were investigated by single factor test. And the optimum process conditions of passion fruit juice beverage were determined by orthogonal test. The results show that the optimum process paramenters were as follow: RML was 1:3, pH was 4.0 and sucrose addition was 8%. Under such optimal conditions, the color of passion fruit juice beverage was red, the flavor of passion fruit was rich and it tasted pleasant.

  8. Single-step electrodeposition of CIS thin films with the complexing agent triethanolamine

    NASA Astrophysics Data System (ADS)

    Chiu, Yu-Shuen; Hsieh, Mu-Tao; Chang, Chih-Min; Chen, Chun-Shuo; Whang, Thou-Jen

    2014-04-01

    Some difficulties have long been encountered by single-step electrodeposition such as the optimization of electrolyte composition, deposition potentials, deposition time, and pH values. The approach of introducing ternary components into single-step electrodeposition is rather challenging especially due to the different values of the equilibrium potential for each constituent. Complexing agents play an important role in single-step electrodeposition of CuInSe2 (CIS), since the equilibrium potential of every constituent can be brought closer to each other when complexing agents are employed. In this work, single-step electrodeposition of CIS was enhanced by adding triethanolamine (TEA) into deposition bath, the CIS thin films were improved consequently in the form of polycrystalline cauliflower structures through the examination of SEM images and XRD patterns. The optimum composition of the solution for single-step electrodeposition of CIS is found to be 5 mM CuCl2, 22 mM InCl3, and 22 mM SeO2 at pH 1.5 with 0.1 M TEA. The structures, compositions, and morphologies of as-deposited and of annealed films were investigated.

  9. Sequential nitrification and denitrification in a novel palm shell granular activated carbon twin-chamber upflow bio-electrochemical reactor for treating ammonium-rich wastewater.

    PubMed

    Mousavi, Seyyedalireza; Ibrahim, Shaliza; Aroua, Mohamed Kheireddine

    2012-12-01

    In this study, a twin-chamber upflow bio-electrochemical reactor packed with palm shell granular activated carbon as biocarrier and third electrode was used for sequential nitrification and denitrification of nitrogen-rich wastewater under different operating conditions. The experiments were performed at a constant pH value for the denitrification compartment. The effect of variables, namely, electric current (I) and hydraulic retention time (HRT), on the pH was considered in the nitrification chamber. The response surface methodology was used based on three levels to develop empirical models for the study on the effects of HRT and current values as independent operating variables on NH(4)(+)-N removal. The results showed that ammonium was reduced within the function of an extensive operational range of electric intensity (20-50 mA) and HRT (6-24h). The optimum condition for ammonium oxidation (90%) was determined with an I of 32 mA and HRT of 19.2h. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Removal of mercury (II), elemental mercury and arsenic from simulated flue gas by ammonium sulphide.

    PubMed

    Ning, Ping; Guo, Xiaolong; Wang, Xueqian; Wang, Ping; Ma, Yixing; Lan, Yi

    2015-01-01

    A tubular resistance furnace was used as a reactor to simulate mercury and arsenic in smelter flue gases by heating mercury and arsenic compounds. The flue gas containing Hg(2+), Hg(0) and As was treated with ammonium sulphide. The experiment was conducted to investigate the effects of varying the concentration of ammonium sulphide, the pH value of ammonium sulphide, the temperature of ammonium sulphide, the presence of SO2 and the presence of sulphite ion on removal efficiency. The prepared adsorption products were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The results showed that the optimal concentration of ammonium sulphide was 0.8 mol/L. The optimal pH value of ammonium sulphide was 10, and the optimal temperature of ammonium sulphide was 20°C.Under the optimum conditions, the removal efficiency of Hg(2+), Hg(0) and As could reach 99%, 88.8%, 98%, respectively. In addition, SO2 and sulphite ion could reduce the removal efficiency of mercury and arsenic from simulated flue gas.

  11. Removal of Pb (II) ions from aqueous solutions by Cladophora rivularis (Linnaeus) Hoek.

    PubMed

    Jafari, Naser; Senobari, Zoreh

    2012-01-01

    Biosorption of Pb(II) using Cladophora rivularis was examined as a function of initial pH heavy metal concentration and temperature. The optimum pH value for the biosorption of lead was 4.0. The adsorption equilibriums were well described by Langmuir and Freundlich isotherm models and it was implied by the results that the C. rivularis biomass is suitable for the development of efficient biosorbent in order to remove Pb(II) from wastewater and to recover it. The high values of correlation coefficient (R(2) = 0.984) demonstrate equilibrium data concerning algal biomass, which is well fitted in Freundlich isotherms model equations. The dimensionless parameter R(L) is found in the range of 0.0639 to 0.1925 (0 < R(L) < 1), which confirms the favorable biosorption process. Fourier transform infra-red (FTIR) spectroscopy of C. rivularis was used to reveal the main function groups of biosorption, which were hydroxyl, amine groups, C-H stretching vibrations of -CH3 and -CH2, and complexation with functional groups. All these results suggest that C. rivularis can be used effectively for removal of Pb(II).

  12. Response surface methodology for cadmium biosorption on Pseudomonas aeruginosa.

    PubMed

    Ahmady-Asbchin, Salman

    2016-01-01

    In this research the effects of various physicochemical factors on Cd(2+) biosorption such as initial metal concentration, pH and contact exposure time were studied. This study has shown a Cd(2+) biosorption, equilibrium time of about 5 min for Pseudomonas aeruginosa and the adsorption equilibrium data were well described by Langmuir equation. The maximum capacity for biosorption has been extrapolated to 0.56 mmol.g(-1) for P. aeruginosa. The thermodynamic properties ΔG(0), ΔH(0), and ΔS(0) of Cd(2+) for biosorption were analyzed by the equilibrium constant value obtained from experimented data at different temperatures. The results show that biosorption of Cd(2+) by P. aeruginosa are endothermic and spontaneous with ΔH value of 36.35 J.mol(-1). By response surface methodology, the quadratic model has adequately described the experimental data based on the adjusted determination coefficient (R(2) = 0.98). The optimum conditions for maximum uptake onto the biosorbent were established at 0.5 g.l(-1) biosorbent concentration, pH 6 for the aqueous solution, and a temperature of 30 °C.

  13. Feasibility investigation of oily wastewater treatment by combination of zinc and PAM in coagulation/flocculation.

    PubMed

    Zeng, Yubin; Yang, Changzhu; Zhang, Jingdong; Pu, Wenhong

    2007-08-25

    Poly-zinc silicate (PZSS) is a new type of coagulant with cationic polymer synthesized by polysilicic acid and zinc sulfate. It has been used in several sorts of wastewaters treatment, but not used in oily wastewater treatment. In this study, we investigated the coagulation/flocculation of oil and suspended solids in heavy oil wastewater (HOW) by PZSS and anion polyacrylamide (A-PAM). The properties of PZSS cooperated with A-PAM were compared with PAC and PFS in dosages, PAMs amount, settling time, pH value and flocs morphology. The results showed that PZSS was more efficient than PAC and PFS. Under the optimum experimental conditions of coagulation/flocculation (dosage: 100mg/L, A-PAM dosage: 1.0mg/L, settling time time: 40min and pH 6.5-9.5), more than 99% of oil was removed and suspended solid value less than 5mg/L by using PZSS cooperated with A-PAM, which could satisfy the demands of the pre-treatment process for HOW to be reused in the steam boiler or recycled into the injecting well.

  14. Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees.

    PubMed

    Tajabadi, Naser; Ebrahimpour, Afshin; Baradaran, Ali; Rahim, Raha Abdul; Mahyudin, Nor Ainy; Manap, Mohd Yazid Abdul; Bakar, Fatimah Abu; Saari, Nazamid

    2015-04-15

    Dominant strains of lactic acid bacteria (LAB) isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA)-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM) in MRS broth containing 50 mM initial glutamic acid cultured for 60 h. Effects of fermentation parameters, including initial glutamic acid level, culture temperature, initial pH and incubation time on GABA production were investigated via a single parameter optimization strategy. The optimal fermentation condition for GABA production was modeled using response surface methodology (RSM). The results showed that the culture temperature was the most significant factor for GABA production. The optimum conditions for maximum GABA production by Lactobacillus plantarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial pH of 5.31 and incubation time of 60 h, which produced 7.15 mM of GABA. The value is comparable with the predicted value of 7.21 mM.

  15. Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process.

    PubMed

    Guo, Jin-Song; Abbas, Abdulhussain A; Chen, You-Peng; Liu, Zhi-Ping; Fang, Fang; Chen, Peng

    2010-06-15

    The leachate from Changshengqiao landfill (Chongqing, China) was characterized and submitted to a combined process of air stripping, Fenton, sequencing batch reactor (SBR), and coagulation. Optimum operating conditions for each process were identified. The performance of the treatment was assessed by monitoring the removal of organic matter (COD and BOD(5)) and ammonia nitrogen (NH(3)-N). It has been confirmed that air stripping (at pH 11.0 and aeration time 18h) effectively removed 96.6% of the ammonia. The Fenton process was investigated under optimum conditions (pH 3.0, FeSO(4).7H(2)O of 20 g l(-1) and H(2)O(2) of 20 ml l(-1)), COD removal of up to 60.8% was achieved. Biodegradability (BOD(5)/COD ratio) increased from 0.18 to 0.38. Thereafter the Fenton effluent was mixed with sewage at dilutions to a ratio of 1:3 before it was subjected to the SBR reactor; under the optimum aeration time of 20 h, up to 82.8% BOD(5) removal and 83.1% COD removal were achieved. The optimum coagulant (Fe(2)(SO(4))(3)) was a dosage of 800 mg l(-1) at pH of 5.0, which reduced COD to an amount of 280 mg l(-1). These combined processes were successfully employed and very effectively decreased pollutant loading. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  16. Purification and characterization of an alkaline protease from Micrococcus sp. isolated from the South China Sea

    NASA Astrophysics Data System (ADS)

    Hou, Enling; Xia, Tao; Zhang, Zhaohui; Mao, Xiangzhao

    2017-04-01

    Protease is wildly used in various fields, such as food, medicine, washing, leather, cosmetics and other industrial fields. In this study, an alkaline protease secreted by Micrococcus NH54PC02 isolated from the South China Sea was purified and characterized. The growth curve and enzyme activity curve indicated that the cell reached a maximum concentration at the 30th hour and the enzyme activity reached the maximum value at the 36th hour. The protease was purified with 3 steps involving ammonium sulfate precipitation, ion-exchange chromatography and hydrophobic chromatography with 8.22-fold increase in specific activity and 23.68% increase in the recovery. The molecular mass of the protease was estimated to be 25 kDa by SDS-PAGE analysis. The optimum temperature and pH for the protease activity were 50°C and pH 10.0, respectively. The protease showed a strong stability in a wide range of pH values ranging from 6.0-11.0, and maintained 90% enzyme activity in strong alkaline environment with pH 11.0. Inhibitor trials indicated that the protease might be serine protease. But it also possessed the characteristic of metalloprotease as it could be strongly inhibited by EDTA and strongly stimulated by Mn2+. Evaluation of matrix-assisted laser desorption ionization/time-of-flight MS (MALDI-TOF-TOF/MS) showed that the protease might belong to the peptidase S8 family.

  17. Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach.

    PubMed

    Sahoo, C; Gupta, A K

    2012-05-15

    Photocatalytic degradation of methyl blue (MYB) was studied using Ag(+) doped TiO(2) under UV irradiation in a batch reactor. Catalytic dose, initial concentration of dye and pH of the reaction mixture were found to influence the degradation process most. The degradation was found to be effective in the range catalytic dose (0.5-1.5g/L), initial dye concentration (25-100ppm) and pH of reaction mixture (5-9). Using the three factors three levels Box-Behnken design of experiment technique 15 sets of experiments were designed considering the effective ranges of the influential parameters. The results of the experiments were fitted to two quadratic polynomial models developed using response surface methodology (RSM), representing functional relationship between the decolorization and mineralization of MYB and the experimental parameters. Design Expert software version 8.0.6.1 was used to optimize the effects of the experimental parameters on the responses. The optimum values of the parameters were dose of Ag(+) doped TiO(2) 0.99g/L, initial concentration of MYB 57.68ppm and pH of reaction mixture 7.76. Under the optimal condition the predicted decolorization and mineralization rate of MYB were 95.97% and 80.33%, respectively. Regression analysis with R(2) values >0.99 showed goodness of fit of the experimental results with predicted values. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. [Enzymatic conversion of tetradecanol in heterogenous phase by yeast-alcohol dehydrogenase].

    PubMed

    Rothe, U; Schöpp, W; Aurich, H

    1976-01-01

    Alcohol dehydrogenase from yeast converts long-chain primary alcohols not only in the dissolved state, but also at the surface of undissolved particles. Tetradecanol beads with a defined surface can be produced and employed as model substrate. The reaction rate was determined by the proton release accomplished in the reaction. The initial reaction rate depends on the enzyme concentration. The relation is nonlinear (vi = k-[e]0,4); the numerical value of the exponent (n = 0.4) argues in favour of a reaction occurring at the interface. The Lineweaver-Burk plots become linear if the substrate concentrations are based on the molar surface concentrations of the particles. The pH optimum for the reaction at the surface is displaced by 0.25 pH units towards the alkaline region (compared with ethanol as substrate). The activation energy of the reaction with tetradecanol beads as substrate is 30% lower than that for the ethanol oxydation.

  19. Treatment of automotive industry oily wastewater by electrocoagulation: statistical optimization of the operational parameters.

    PubMed

    GilPavas, Edison; Molina-Tirado, Kevin; Gómez-García, Miguel Angel

    2009-01-01

    An electrocoagulation process was used for the treatment of oily wastewater generated from an automotive industry in Medellín (Colombia). An electrochemical cell consisting of four parallel electrodes (Fe and Al) in bipolar configuration was implemented. A multifactorial experimental design was used for evaluating the influence of several parameters including: type and arrangement of electrodes, pH, and current density. Oil and grease removal was defined as the response variable for the statistical analysis. Additionally, the BOD(5), COD, and TOC were monitored during the treatment process. According to the results, at the optimum parameter values (current density = 4.3 mA/cm(2), distance between electrodes = 1.5 cm, Fe as anode, and pH = 12) it was possible to reach a c.a. 95% oils removal, COD and mineralization of 87.4% and 70.6%, respectively. A final biodegradability (BOD(5)/COD) of 0.54 was reached.

  20. Fungi from geothermal soils in Yellowstone National Park

    USGS Publications Warehouse

    Redman, R.S.; Litvintseva, A.; Sheehan, K.B.; Henson, J.M.; Rodriguez, R.J.

    1999-01-01

    Geothermal soils near Amphitheater Springs in Yellowstone National Park were characterized by high temperatures (up to 70??C), high heavy metal content, low pH values (down to pH 2.7), sparse vegetation, and limited organic carbon. From these soils we cultured 16 fungal species. Two of these species were thermophilic, and six were thermotolerant. We cultured only three of these species from nearby cool (0 to 22??C) soils. Transect studies revealed that higher numbers of CFUs occurred in and below the root zone of the perennial plant Dichanthelium lanuginosum (hot springs panic grass). The dynamics of fungal CFUs in geothermal soil and nearby nongeothermal soil were investigated for 12 months by examining soil cores and in situ mesocosms. For all of the fungal species studied, the temperature of the soil from which the organisms were cultured corresponded with their optimum axenic growth temperature.

  1. Growth of Aureobasidium pullulans on straw hydrolysate.

    PubMed Central

    Han, Y W; Cheeke, P R; Anderson, A W; Lekprayoon, C

    1976-01-01

    Growth characteristics and cell properties of Aureobasidium (Pullularia) pullulans were studied. The organism grew well on an acid hydrolysate of ryegrass straw over a wide range of pH and temperature. The optimum temperature and pH for the growth of the organism were 32 degrees C and 5.5, respectively. A cell yield of 1.5 g/liter of straw hydrolysate was obtained. The dried cell mass contained 42.6% crude protein, 0.4% crude fat, and 6.4% nucleic acids. The essential amino acid profile of the microbial protein was comparable to that of Candida utilis. A rat feeding study indicated that the A. pullulans cells were not toxic and that the feed intake, weight gain, and protein efficiency ratio values were superior to those obtained with C. utilis. Once the question of mathogenicity is resolved, A. pullulans could be useful for production of single-cell protein from cellulosic wastes. PMID:12721

  2. [Study on preparation of sagittatoside B with epimedin B converted from cellulase].

    PubMed

    Xu, Feng-Juan; Sun, E; Zhang, Zhen-Hai; Cui, Li; Jia, Xiao-Bin

    2014-01-01

    To prepare sagittatoside B with epimedin B Hydrolyzed from cellulase. With the conversion ratio as the index, the effects of pH value, temperature, reaction time, dosage of enzyme and concentration of substrates on the conversion ratio were detected. L9 (3(4)) orthogonal design was adopted to optimize the preparation process. Hydrolyzed products were identified by MS, 1H-NMR, and 13C-NMR. The results showed that the optimum reaction conditions for the enzymatic hydrolysis were that the temperature was 50 degrees C, the reaction medium was pH 5.6 acetic acid-sodium acetate buffer solution, the concentration of substrates was 20 g x L(-1), the mass ratio between enzyme and substrate was 3: 5, and the relative molecular mass of the reaction product was 646.23. NMR data proved that the product was sagittatoside B. The process is simple and reliable under mild reaction conditions, thus suitable for industrial production.

  3. Fungi from Geothermal Soils in Yellowstone National Park

    PubMed Central

    Redman, Regina S.; Litvintseva, Anastassia; Sheehan, Kathy B.; Henson, Joan M.; Rodriguez, Rusty J.

    1999-01-01

    Geothermal soils near Amphitheater Springs in Yellowstone National Park were characterized by high temperatures (up to 70°C), high heavy metal content, low pH values (down to pH 2.7), sparse vegetation, and limited organic carbon. From these soils we cultured 16 fungal species. Two of these species were thermophilic, and six were thermotolerant. We cultured only three of these species from nearby cool (0 to 22°C) soils. Transect studies revealed that higher numbers of CFUs occurred in and below the root zone of the perennial plant Dichanthelium lanuginosum (hot springs panic grass). The dynamics of fungal CFUs in geothermal soil and nearby nongeothermal soil were investigated for 12 months by examining soil cores and in situ mesocosms. For all of the fungal species studied, the temperature of the soil from which the organisms were cultured corresponded with their optimum axenic growth temperature. PMID:10583964

  4. [Monolithic column-gold composite substrate preparation and application to SERS detection of pigment].

    PubMed

    Xie, Yun-Fei; Li, Yan; Yu, Hui; Qian, He; Yao, Wei-Rong

    2014-03-01

    In the present study, we developed a novel SERS substrate with the porous monolith material combined with classic gold nanoparticles, and erythrosine as the research object, by adjusting the different experimental conditions for optimal SERS enhancements, including system pH and mixing time, and ultimately selected the optimum pH value 5.06 and mixing time 25 min. Compared with the traditional gold plastic substrate enhancement effect, the experimental conditions were applied to the monolith substrate SERS detection of dye erythrosine, different concentrations of samples were used for erythrosine SERS detection, and the detection limit reached 0.1 g x mL(-1). The method uses the payload of gold nanoparticles in mesoporous materials to effectively enhance the SERS signal. And this method has the advantages of simpleness and good stability, which provides a favorable theoretical basis for the rapid prohibited colorings screening.

  5. Effect of cultivating conditions on alpha-galactosidase production by a novel Aspergillus foetidus ZU-G1 strain in solid-state fermentation.

    PubMed

    Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing

    2007-05-01

    The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of alpha-galactosidase production in SSF were 60% initial moisture of medium, 28 degrees C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0 approximately 6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum alpha-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation.

  6. Effect of cultivating conditions on α-galactosidase production by a novel Aspergillus foetidus ZU-G1 strain in solid-state fermentation

    PubMed Central

    Liu, Cai-qin; Chen, Qi-he; Cheng, Qian-jun; Wang, Jin-ling; He, Guo-qing

    2007-01-01

    The work is intended to achieve optimum culture conditions of α-galactosidase production by a mutant strain Aspergillus foetidus ZU-G1 in solid-state fermentation (SSF). Certain fermentation parameters involving moisture content, incubation temperature, cultivation period of seed, inoculum volume, initial pH value, layers of pledget, load size of medium and period of cultivation were investigated separately. The optimal cultivating conditions of α-galactosidase production in SSF were 60% initial moisture of medium, 28 °C incubation temperature, 18 h cultivation period of seed, 10% inoculum volume, 5.0~6.0 initial pH of medium, 6 layers of pledget and 10 g dry matter loadage. Under the optimized cultivation conditions, the maximum α-galactosidase production was 2 037.51 U/g dry matter near the 144th hour of fermentation. PMID:17542067

  7. Characterization of a Polyamine Microsphere and Its Adsorption for Protein

    PubMed Central

    Wang, Feng; Liu, Pei; Nie, Tingting; Wei, Huixian; Cui, Zhenggang

    2013-01-01

    A novel polyamine microsphere, prepared from the water-in-oil emulsion of polyethylenimine, was characterized. The investigation of scanning electron microscopy showed that the polyamine microsphere is a regular ball with a smooth surface. The diameter distribution of the microsphere is 0.37–4.29 μm. The isoelectric point of the microsphere is 10.6. The microsphere can adsorb proteins through the co-effect of electrostatic and hydrophobic interactions. Among the proteins tested, the highest value of adsorption of microsphere, 127.8 mg·g−1 microsphere, was obtained with lipase. In comparison with other proteins, the hydrophobic force is more important in promoting the adsorption of lipase. The microsphere can preferentially adsorb lipase from an even mixture of proteins. The optimum temperature and pH for the selective adsorption of lipase by the microsphere was 35 °C and pH 7.0. PMID:23344018

  8. Parametric and energy consumption optimization of Basic Red 2 removal by electrocoagulation/egg shell adsorption coupling using response surface methodology in a batch system.

    PubMed

    de Carvalho, Helder Pereira; Huang, Jiguo; Zhao, Meixia; Liu, Gang; Yang, Xinyu; Dong, Lili; Liu, Xingjuan

    2016-01-01

    In this study, response surface methodology (RSM) model was applied for optimization of Basic Red 2 (BR2) removal using electrocoagulation/eggshell (ES) coupling process in a batch system. Central composite design was used to evaluate the effects and interactions of process parameters including current density, reaction time, initial pH and ES dosage on the BR2 removal efficiency and energy consumption. The analysis of variance revealed high R(2) values (≥85%) indicating that the predictions of RSM models are adequately applicable for both responses. The optimum conditions when the dye removal efficiency of 93.18% and energy consumption of 0.840 kWh/kg were observed were 11.40 mA/cm(2) current density, 5 min and 3 s reaction time, 6.5 initial pH and 10.91 g/L ES dosage.

  9. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil.

    PubMed

    Lee, Yunho; Jeon, Che Ok

    2018-04-01

    A Gram-stain-negative, facultatively aerobic, aromatic hydrocarbon-degrading bacterium, designated strain BN5 T , was isolated from gasoline-contaminated soil. Cells were motile and slightly curved rods with a single flagellum showing catalase and oxidase activities. Growth was observed at 20-37 °C (optimum, 25-30 °C), pH 3-7 (optimum, pH 5-6) and 0-2 % NaCl (optimum, 0 %). Ubiquinone-8 was the predominant respiratory quinone. The major fatty acids were C16 : 0, cyclo-C19 : 0ω8c and summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c). Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phosphoamino lipid, three unidentified amino lipids and eight unidentified lipids were the identified polar lipids. The DNA G+C content was 62.93 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BN5 T formed a phylogenic lineage with members of the genus Paraburkholderia and showed the highest 16S rRNA gene sequence similarities to Paraburkholderia phytofirmans PsJN T (99.4 %), Paraburkholderia dipogonis DL7 T (98.8 %) and Paraburkholderia insulsa PNG-April T (98.8 %). The average nucleotide identity and in silico DNA-DNA hybridization (DDH) values between strain BN5 T and P. phytofirmans PsJN T were 88.5 and 36.5 %, respectively. The DDH values for strain BN5 T with P. dipogonis LMG 28415 T and P. insulsa DSM 28142 T were 41.0±4.9 % (reciprocal, 33.0±4.3 %) and 47.1±6.6 % (reciprocal, 51.7±5.4 %), respectively. Based on its physiological, chemotaxonomic and phylogenetic features, we conclude that strain BN5 T is a novel species of the genus Paraburkholderia, for which the name Paraburkholderia aromaticivorans sp. nov. is proposed. The type strain is BN5 T (=KACC 19419 T =JCM 32303 T ).

  10. Optimized preparation and characterization of CLEA-lipase from cocoa pod husk.

    PubMed

    Khanahmadi, Soofia; Yusof, Faridah; Amid, Azura; Mahmod, Safa Senan; Mahat, Mohd Khairizal

    2015-05-20

    Cross-linked enzyme aggregate (CLEA) is easily prepared from crude enzyme and has many advantages to the environment and it is considered as an economic method in the context of industrial biocatalysis compared to free enzyme. In this work, a highly active and stable CLEA-lipase from cocoa pod husk (CPH) which is a by-product after removal of cocoa beans, were assayed for their hydrolytic activity and characterized under the optimum condition successfully. Face centered central composite design (FCCCD) under response surface methodology (RSM) was used to get the optimal conditions of the three significant factors (concentration of ammonium sulfate, concentration of glutaraldehyde and concentration of additive) to achieve higher enzyme activity of CLEA. From 20 runs, the highest activity recorded was around 9.407U (83% recovered activity) under the condition of using 20% saturated ammonium sulfate, 60mM glutaraldehyde as cross-linker and 0.17mM bovine serum albumin as feeder. Moreover, the optimal reaction temperature and pH value in enzymatic reaction for both crude enzyme and immobilized were found to be 45°C at pH 8 and 60°C at pH 8.2, respectively. A systematic study of the stability of CLEA and crude enzyme was taken with regards to temperature (25-60°C) and pH (5-10) value and in both factors, CLEA-lipase showed more stability than free lipase. The Km value of CLEA was higher compared to free enzyme (0.55mM vs. 0.08mM). The CLEA retained more than 60% of the initial activity after six cycles of reuse compared to free enzyme. The high stability and recyclability of CLEA-lipase from CPH make it efficient for different industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Effects of Cultivating Conditions on the Water Soluble Polysaccharides Content of Ganoderma lucidum Mycelium in Submerged Flask Culture

    NASA Astrophysics Data System (ADS)

    Rosyida, V. T.; Hayati, S. N.; Apriyana, W.; Darsih, C.; Hernawan; Poeloengasih, C. D.

    2017-12-01

    The carcinostatic substance in Ganoderma lucidum (Fr.) Karst (Polyporaceae) is a water soluble polysaccharides (WSP) which might be useful in immunotherapy. Attempt to produce effective substances from cultured mycelia is important to carry out since solid cultivation is a time consuming and quality fluctuating. The effects of cultivating conditions on the water soluble polysaccharides content of G. Lucidum mycelium were investigated in submerged flask cultures. Culture from fruiting bodies was maintained on potato dextrose-agar slope. Slopes were inoculated and incubated at 30°C for 7 days, and stored at 4°C. The flask experiments were performed in 100 ml erlenmeyer flasks containing 20 ml of the sterilized media. Actively growing mycelia (1 piece, 5 mm X 5 mm) from a newly prepared slant culture (about 7 days incubation at 30°C) were inoculated into the flask. The pH was measured and adjusted to the desired value by addition of either 4 M HCl or 2.5 M NaOH. Incubation temperature were 20, 25, and 30°C. At the end of inoculation period (14 days) mycelium consisting of individual pellets was harvested and wash for the analysis. WSP content was analysed using phenol-sulfuric acid method. The optimal initial pH for metabolite production would depend on the culture medium. Generally, high values of pH, such as 9, negatively affect both cell growth and WSP production. The optimum temperature range for the high G. lucidum mycelium and WSP production were found to be 25 - 30 °C at pH values 5 - 7 in both of media.

  12. Degradation of 4-aminoantipyrine by electro-oxidation with a boron-doped diamond anode: Optimization by central composite design, oxidation products and toxicity.

    PubMed

    de Melo da Silva, Lucas; Gozzi, Fábio; Sirés, Ignasi; Brillas, Enric; de Oliveira, Silvio Cesar; Machulek, Amilcar

    2018-08-01

    Electro-oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ) was applied to treat acidic aqueous solutions of 4-aminoantipyrine (4-AA), a persistent drug metabolite of dipyrone, in sulfate medium. Trials were made using a boron-doped diamond anode in the presence of H 2 O 2 electrogenerated on site. A 2 4 central composite design (CCD) was employed to evaluate the effect of four independent variables, namely current density (j), pH, 4-AA concentration and electrolysis time, on the percentages of degradation and mineralization, as well as on mineralization current efficiency (MCE). Predicted responses agreed with observed values, showing linear trendlines with good R 2 and R 2 adj values. The degradation was optimum at j=77.5mAcm -2 , pH3.5 and 62.5mgL -1 4-AA, leading to 63% and 99% removal after 3 and 7min, respectively. For those solutions, the largest mineralization was found at j=77.5mAcm -2 , attaining 45% abatement at 175min. Low MCE values were obtained in all electrolyses. An initial route for 4-AA degradation is proposed based on one dimer and eleven aromatic and aliphatic intermediates detected in the treated solutions at pH3.5 by LC-MS. The initial 62.5mgL -1 solution at pH3.5 presented acute toxicity on Artemia salina larvae, with LC 50 =13.6mgL -1 , being substantially reduced after 3 and 7min of EO-H 2 O 2 at j=77.5mAcm -2 due to the formation of less toxic derivatives. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Characterization of two coleopteran α-amylases and molecular insights into their differential inhibition by synthetic α-amylase inhibitor, acarbose.

    PubMed

    Channale, Sonal M; Bhide, Amey J; Yadav, Yashpal; Kashyap, Garima; Pawar, Pankaj K; Maheshwari, V L; Ramasamy, Sureshkumar; Giri, Ashok P

    2016-07-01

    Post-harvest insect infestation of stored grains makes them unfit for human consumption and leads to severe economic loss. Here, we report functional and structural characterization of two coleopteran α-amylases viz. Callosobruchus chinensis α-amylase (CcAmy) and Tribolium castaneum α-amylase (TcAmy) along with their interactions with proteinaceous and non-proteinaceous α-amylase inhibitors. Secondary structural alignment of CcAmy and TcAmy with other coleopteran α-amylases revealed conserved motifs, active sites, di-sulfide bonds and two point mutations at spatially conserved substrate or inhibitor-binding sites. Homology modeling and molecular docking showed structural differences between these two enzymes. Both the enzymes had similar optimum pH values but differed in their optimum temperature. Overall, pattern of enzyme stabilities were similar under various temperature and pH conditions. Further, CcAmy and TcAmy differed in their substrate affinity and catalytic efficiency towards starch and amylopectin. HPLC analysis detected common amylolytic products like maltose and malto-triose while glucose and malto-tetrose were unique in CcAmy and TcAmy catalyzed reactions respectively. At very low concentrations, wheat α-amylase inhibitor was found to be superior over the acarbose as far as complete inhibition of amylolytic activities of CcAmy and TcAmy was concerned. Mechanism underlying differential amylolytic reaction inhibition by acarbose was discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Expression, purification and functional characterization of a novel 3α-hydroxysteroid dehydrogenase from Pseudomonas aeruginosa.

    PubMed

    Chen, Jianmin; Gao, Xiufeng; Hong, Lin; Ma, Liting; Li, Yongsheng

    2015-11-01

    3α-Hydroxysteroid dehydrogenase (3α-HSD) catalyzes the oxidation of the 3-hydroxyl group of steroids. The enzymatic conversion is a critical step in the enzymatic assay of urinary sulfated bile acids (SBAs), which is a valuable diagnosis index of hepatobiliary diseases. However, the source of 3α-HSD for clinical applications is limited. In this study, an open reading frame (ORF) encoding a novel 3α-HSD was successfully cloned from Pseudomonas aeruginosa and expressed in Escherichia coli BL21 (DE3). The recombinant protein was purified by immobilized metal ion affinity chromatography. Enzyme characterization studies revealed that the protein has 3α-HSD activity and the Km value for sodium cholate is 1.06 mmol L(-1). More than 60% relative enzyme activity was observed in a wide range of pH and temperature, with an optimum pH at 8.0 and an optimum temperature at 30°C. The enzyme's good thermostability under 40°C would be favorable in clinical applications. Ion interference experiments indicated that Zn(2+) was an activating cofactor which increased the enzyme activity 1.75-fold. With the favorable characteristics mentioned above, the new 3α-HSD is a promising enzyme for clinical applications. More importantly, the present work is the first report on a 3α-HSD from P. aeruginosa. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. PLLA scaffolds surface-engineered via poly (propylene imine) dendrimers for improvement on its biocompatibility/controlled pH biodegradability

    NASA Astrophysics Data System (ADS)

    Ganjalinia, Atiyeah.; Akbari, Somaye.; Solouk, Atefeh.

    2017-02-01

    Novel aminolyzed Poly (L) Lactic Acid (PLLA) films and electrospun nanofibrous scaffolds were fabricated and characterized as potential substrates for tissue engineering. The second generation polypropylene imine dendrimer (PPI-G2) was used as the aminolysis agent to functionalize the inert surface of PLLA substrates directly without any pre-modification process. The effect of the solvent type, G2 concentration, reaction temperature and time were studied by following weight reduction percentage, FTIR and contact angle measurements due to determined optimum conditions. In addition, the modified scaffolds abbreviated by PLLA/G2 were analyzed using mechanical properties, SEM images and dye assays as host-guest modeling. The results indicate that under the 0.5 (wt.%) G2 concentration, ethanol as the solvent, room temperature and 4 h of treatment, the optimum conditions were obtained. It was shown that the hydrophilic properties of PLLA/G2 were greatly enhanced. Also, pH value analysis revealed that after 4 weeks, the biodegradation of PLLA caused massive immune cells infusion and inflammation in the medium through increasing the acidic rate by secretion the lactic acid, whereas the PLLA/G2 scaffolds greatly reduced and stabilize the acidic rate through aminolysis reaction. Finally, promoted cell adhesion and viability underlined the favorable properties of PLLA/G2 scaffolds as a biodegradable biomaterial for biomedical implants.

  16. Thermus tengchongensis sp. nov., isolated from a geothermally heated soil sample in Tengchong, Yunnan, south-west China.

    PubMed

    Yu, Tian-Tian; Yao, Ji-Cheng; Ming, Hong; Yin, Yi-Rui; Zhou, En-Min; Liu, Min-Jiao; Tang, Shu-Kun; Li, Wen-Jun

    2013-03-01

    A Gram-stain negative aerobic bacterium, designated YIM 77924(T), was isolated from a geothermally heated soil sample collected at Rehai National Park, Tengchong, Yunnan province, south-west China. Growth was found to occur from 55 to 75 °C (optimum 65 °C), pH 6.0-8.0 (optimum pH 7.0) and 0-1 % NaCl (w/v). Cells were observed to be rod-shaped and the colonies convex, circular, smooth, yellow and non-transparent. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain YIM 77924(T) belongs to the genus Thermus. The 16S rRNA gene sequence similarity values between strain YIM 77924(T) and other species of the genus Thermus were all below 97 %. The polar lipids of strain YIM 77924(T) were determined to be aminophospholipid, phospholipid and glycolipid. The predominant respiratory quinone was determined to be MK-8 and the G+C content was 66.64 mol%. The major fatty acids identified were iso-C(16:0), iso-C(15:0), iso-C(17:0) and C(16:0). On the basis of the morphological and chemotaxonomic characteristics as well as genotypic data, strain YIM 77924(T) is proposed to represent a novel species, Thermus tengchongensis sp. nov., in the genus Thermus. The type strain is YIM 77924(T) (=KCTC 32025(T) = CCTCC AB2012063(T)).

  17. Response surface analysis of nano-ureases from Canavalia ensiformis and Cajanus cajan.

    PubMed

    Dwevedi, Alka; Routh, Satya Brata; Yadav, Amit Singh; Singh, Ashwani Kumar; Srivastava, Onkar Nath; Kayastha, Arvind M

    2011-11-01

    Ureases isolated from leguminous sources, Canavalia ensiformis and Cajanus cajan were immobilized onto gold nanoparticles (nano-ureases). Optimization of the urease immobilization was carried using response surface methodology based on Central Composite Design. Immobilization efficiency of nano-urease from C. ensiformis and C. cajan were found to be 215.10% and 255.92%, respectively. The methodology adopted has deviation of 2.56% and 3.01% with respect to experimental values in case of C. ensiformis and C. cajan, respectively. Nano-urease from C. cajan has broad physico-chemical parameters with pH optimum from 7.1 to 7.3 and temperature optimum from 50 to 70°C. Nano-urease from C. ensiformis has sharp pH and temperature optima at 7.3 and 70°C, respectively. Fourier transform infra-red spectroscopy has revealed involvement of groups viz. amino, glycosyl moiety, etc. in urease immobilization onto gold nano-particles. Transmission and scanning electron micrographs revealed that arrangement of urease onto gold nano-particles from C. ensiformis was uniform while it was localized in case of C. cajan. Nano-urease from C. ensiformis has higher specificity and catalysis toward urea as compared to nano-urease from C. cajan. Nano-ureases from both sources are equally stable for 6 months under dried conditions and can be used for 10 washes. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Leifsonia psychrotolerans sp. nov., a psychrotolerant species of the family Microbacteriaceae from Livingston Island, Antarctica.

    PubMed

    Ganzert, Lars; Bajerski, Felizitas; Mangelsdorf, Kai; Lipski, André; Wagner, Dirk

    2011-08-01

    A cold-tolerant, yellow-pigmented, Gram-positive, motile, facultatively anaerobic bacterial strain, LI1(T), was isolated from a moss-covered soil from Livingston Island, Antarctica, near the Bulgarian station St. Kliment Ohridski. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Leifsonia kafniensis KFC-22(T), Leifsonia pindariensis PON10(T) and Leifsonia antarctica SPC-20(T), with which it showed sequence similarities of 99.0, 97.9 and 97.9 %, respectively. DNA-DNA hybridization revealed a reassociation value of 2.7 % with L. kafniensis LMG 24362(T). The DNA G+C content of strain LI1(T) was 64.5 mol%. The growth temperature range was -6 to 28 °C, with optimum growth at 16 °C. Growth occurred in 0-5 % NaCl and at pH 4.5-9.5, with optimum growth in 1-2 % NaCl and at pH 5.5-6.5. The predominant fatty acids were anteiso-C(15 : 0), C(18 : 0) and iso-C(15 : 0). The polar lipids were phosphatidylglycerol and diphosphatidylglycerol. Physiological and biochemical tests clearly differentiated strain LI1(T) from L. kafniensis. Therefore, a novel cold-tolerant species within the genus Leifsonia is proposed: Leifsonia psychrotolerans sp. nov. (type strain LI1(T) = DSM 22824(T) = NCCB 100313(T)).

  19. Lysobacter thermophilus sp. nov., isolated from a geothermal soil sample in Tengchong, south-west China.

    PubMed

    Wei, Da-Qiao; Yu, Tian-Tian; Yao, Ji-Cheng; Zhou, En-Min; Song, Zhao-Qi; Yin, Yi-Rui; Ming, Hong; Tang, Shu-Kun; Li, Wen-Jun

    2012-11-01

    A Gram-negative and aerobic bacterium, designated YIM 77875(T), was isolated from a geothermal soil sample collected at Rehai National Park, Tengchong, Yunnan Province, south-west China. Bacterial growth occurred from 37 to 65 °C (optimum 50 °C), pH 6.0-8.0 (optimum pH 7.0) and 0-1 % NaCl (w/v). Cells were rod-shaped and colonies were convex, circular, smooth, yellow and non-transparent. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain YIM 77875(T) belongs to the genus Lysobacter. The 16S rRNA gene sequence similarity values between strain YIM 77875(T) and other species of the genus Lysobacter were all below 94.7 %. The polar lipids of strain YIM 77875(T) were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and five unknown phospholipids. The predominant respiratory quinone was Q-8 and the G+C content was 68.8 mol%. Major fatty acids were iso-C(16:0), iso-C(15:0) and iso-C(11:0). On the basis of the morphological and chemotaxonomic characteristics, as well as genotypic data, strain YIM 77875(T) represents a novel species, Lysobacter thermophilus sp. nov., in the genus Lysobacter. The type strain is YIM 77875(T) (CCTCC AB 2012064(T) = KCTC 32020(T)).

  20. Removal of trivalent and hexavalent chromium by seaweed biosorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kratochvil, D.; Volesky, B.; Pimentel, P.

    1998-09-15

    Protonated or Ca-form Sargassum seaweed biomass bound up to 40 mg/g of Cr(III) by ion exchange at pH 4. An ion-exchange model assuming that the only species taken up by the biomass was Cr(OH){sup 2+} successfully fitted the experimental biosorption data for Cr(III). The maximum uptake of Cr(VI) by protonated Sargassum biomass at pH 2 was explained by simultaneous anion exchange and Cr(VI) to Cr(III) reduction. At pH <2.0, the reduction of Cr(VI) to Cr(III) dominated the equilibrium behavior of the batch systems, which was explained by the dependence of the reduction potential of HCrO{sub 4}{sup {minus}} ions on themore » pH. At pH >2.0, the removal of Cr(VI) was linked to the depletion of protons in equilibrium batch systems via an anion-exchange reaction. The optimum pH for Cr(VI) removal by sorption lies in the region where the two mechanisms overlap, which for Sargassum biomass is in the vicinity of pH 2. The existence of the optimum pH for the removal of Cr(VI) may be explained by taking into account (a) the desorption of Cr(III) from biomass at low pH and (b) the effect of pH on the reduction potential of Cr(VI) in aqueous solutions. Seventy percent of Cr(VI) bound to the seaweed at pH 2 can be desorbed with 0.2 M H{sub 2}SO{sub 4} via reduction to Cr(III).« less

  1. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu Amr, Salem S.; Aziz, Hamidi Abdul, E-mail: cehamidi@eng.usm.my; Adlan, Mohd Nordin

    Highlights: ► Ozone and persulfate reagent (O{sub 3}/S{sub 2}O{sub 8}{sup 2-}) was used to treat stabilized leachate. ► Central composite design (CCD) with response surface methodology (RSM) was applied. ► Operating variables including ozone and persulfate dosage, pH variance, and reaction time. ► Optimum removal of COD, color, and NH{sub 3}–N was 72%, 96%, and 76%, respectively. ► A good value of ozone consumption (OC) obtained with 0.60 (kg O{sub 3}/kg COD). - Abstract: The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate inmore » an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.0001): COD, color, NH{sub 3}–N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m{sup 3} ozone, 1 g/1 g COD{sub 0}/S{sub 2}O{sub 8}{sup 2-} ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH{sub 3}–N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O{sub 3}/kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S{sub 2}O{sub 8}{sup 2-} only, to evaluate its effectiveness. The combined method (i.e., O{sub 3}/S{sub 2}O{sub 8}{sup 2-}) achieved higher removal efficiencies for COD, color, and NH{sub 3}–N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate.« less

  2. Effects of ultraviolet light on biogenic amines and other quality indicators of chicken meat during refrigerated storage.

    PubMed

    Lázaro, C A; Conte-Júnior, C A; Monteiro, M L G; Canto, A C V S; Costa-Lima, B R C; Mano, S B; Franco, R M

    2014-09-01

    Radiation from UV-C has been demonstrated as a potential surface decontamination method in addition to several advantages over regular sanitation methods. However, UV-C radiation possibly affects the physicochemical properties of meat products. To determine the optimum exposure time for bacterial reduction, 39 chicken breasts, inoculated with a pool of Salmonella spp., were submitted to 3 levels of UV-C intensities (0.62, 1.13, and 1.95 mW/cm²) for up to 120 s. After the optimum exposure time of 90 s was determined, changes in the biogenic amines, total aerobic mesophilic bacteria, Enterobacteriaceae, lipid oxidation, pH, and instrumental color were evaluated in 84 chicken breasts that were irradiated (0.62, 1.13, and 1.95 mW/cm²) and stored at 4°C for 9 d. The groups treated with UV-C radiation exhibited an increase in tyramine, cadaverine, and putrescine contents (P < 0.05). The highest UV-C intensity (1.95 mW/cm²) promoted a decrease in the initial bacterial load, and extended the lag phase and the shelf life. The groups irradiated with 1.13 and 1.95 mW/cm² exhibited a more stable b* value than the other groups; similar trends for L*, a*, pH, and TBA reactive substance values were observed among all groups. The UV-C light was demonstrated to be an efficient alternative technology to improve the bacteriological quality of chicken meat without negatively affecting the physical and chemical parameters of chicken breast meat. Nonetheless, the increases on the biogenic amines content should be considered as an effect of the UV processing and not as an indicator of bacterial growth. © 2014 Poultry Science Association Inc.

  3. Simultaneous spectrophotometric determination of synthetic dyes in food samples after cloud point extraction using multiple response optimizations.

    PubMed

    Heidarizadi, Elham; Tabaraki, Reza

    2016-01-01

    A sensitive cloud point extraction method for simultaneous determination of trace amounts of sunset yellow (SY), allura red (AR) and brilliant blue (BB) by spectrophotometry was developed. Experimental parameters such as Triton X-100 concentration, KCl concentration and initial pH on extraction efficiency of dyes were optimized using response surface methodology (RSM) with a Doehlert design. Experimental data were evaluated by applying RSM integrating a desirability function approach. The optimum condition for extraction efficiency of SY, AR and BB simultaneously were: Triton X-100 concentration 0.0635 mol L(-1), KCl concentration 0.11 mol L(-1) and pH 4 with maximum overall desirability D of 0.95. Correspondingly, the maximum extraction efficiency of SY, AR and BB were 100%, 92.23% and 95.69%, respectively. At optimal conditions, extraction efficiencies were 99.8%, 92.48% and 95.96% for SY, AR and BB, respectively. These values were only 0.2%, 0.25% and 0.27% different from the predicted values, suggesting that the desirability function approach with RSM was a useful technique for simultaneously dye extraction. Linear calibration curves were obtained in the range of 0.02-4 for SY, 0.025-2.5 for AR and 0.02-4 μg mL(-1) for BB under optimum condition. Detection limit based on three times the standard deviation of the blank (3Sb) was 0.009, 0.01 and 0.007 μg mL(-1) (n=10) for SY, AR and BB, respectively. The method was successfully used for the simultaneous determination of the dyes in different food samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Kinetic studies of L-asparaginase from Penicillium digitatum.

    PubMed

    Shrivastava, Abhinav; Khan, Abdul Arif; Shrivastav, Archana; Jain, Sudhir K; Singhal, Pradeep K

    2012-01-01

    L-Asparaginase is an enzyme used in the treatment of acute lymphoblastic leukemia and other related malignancies. Its further use includes reduction of asparagine concentration in food products, which may lead to formation of acrylamide. Currently bacterial asparaginase is produced at industrial scale, but the enzyme isolated from bacterial origin is often associated with adverse reactions. These side effects require development of asparaginase from alternative sources. In the present study, Penicillium digitatum was explored for the production of extracellular L-asparaginase using modified Czapek-Dox media. The enzyme was purified about 60.95-fold and then kinetic study showed that the Km value of the enzyme was 1 × 10⁻⁵ M. The optimum pH and temperature for the enzyme were 7.0 and 30°C, respectively. The optimum incubation period for L-asparaginase was 15 min. This work concludes that this enzyme can be a suitable candidate due to its strong kinetic properties, and further research can usher into development of asparaginase formulation from fungal origin with less adverse effects.

  5. Statistical optimization of process parameters for the production of tannase by Aspergillus flavus under submerged fermentation.

    PubMed

    Mohan, S K; Viruthagiri, T; Arunkumar, C

    2014-04-01

    Production of tannase by Aspergillus flavus (MTCC 3783) using tamarind seed powder as substrate was studied in submerged fermentation. Plackett-Burman design was applied for the screening of 12 medium nutrients. From the results, the significant nutrients were identified as tannic acid, magnesium sulfate, ferrous sulfate and ammonium sulfate. Further the optimization of process parameters was carried out using response surface methodology (RSM). RSM has been applied for designing of experiments to evaluate the interactive effects through a full 31 factorial design. The optimum conditions were tannic acid concentration, 3.22 %; fermentation period, 96 h; temperature, 35.1 °C; and pH 5.4. Higher value of the regression coefficient (R 2  = 0.9638) indicates excellent evaluation of experimental data by second-order polynomial regression model. The RSM revealed that a maximum tannase production of 139.3 U/ml was obtained at the optimum conditions.

  6. Development of modified starch technology (maltodextrin) from commercial tapioca on semi production scale using oil heater dextrinator

    NASA Astrophysics Data System (ADS)

    Triyono, Agus; Cecep Erwan Andriansyah, Raden; Luthfiyanti, Rohmah; Rahman, Taufik

    2017-12-01

    One way to improve functional starch is by modification of starch into dextrin or maltodextrin. Maltodextrin is used in the food industry as a food substitution. Development of enzymatically modified starch technology has been performed with the use of α-amylase at optimum pH of 5.5, temperature 75-85 °C, with enzyme activity of 135 KNU/g. The maltodextrin produced from commercial tapioca has the quality requirements for food according to SNI 1992. The yield of maltodextrin obtained is about 80%. The use of the optimum amount of the α-amylase enzyme is 0.07 % v/w and the substrate amount of tapioca starch is 35%. Analysis of the feasibility of modified starch with the assumption of production scale of 300 kg per day, the economic value of 10 years business, the price of starch is IDR 8,350/kg, from tapioca starch (tapioca) IDR 4,000 - IDR 4,500/kg.

  7. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Li, Gui-yin; Zhou, Zhi-de; Li, Yuan-jian; Huang, Ke-long; Zhong, Ming

    2010-12-01

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe 3O 4/KCTS) as support. The magnetic Fe 3O 4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe 3O 4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe 3O 4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  8. Fast start-up of the CANON process with a SABF and the effects of pH and temperature on nitrogen removal and microbial activity.

    PubMed

    Yue, Xiu; Yu, Guangping; Liu, Zhuhan; Tang, Jiali; Liu, Jian

    2018-04-01

    The long start-up time of the completely autotrophic nitrogen removal over nitrite (CANON) process is one of the main disadvantages of this system. In this paper, the CANON process with a submerged aerated biological filter (SABF) was rapidly started up within 26 days. It gave an average ammonium nitrogen removal rate (ANR) and a total nitrogen removal rate (TNR) of 94.2% and 81.3%, respectively. The phyla Proteobacteria and Planctomycetes were confirmed as the ammonia oxidizing bacteria (AOB) and anaerobic ammonium oxidation bacteria (AnAOB). The genus Candidatus Brocadia was the major contributor of nitrogen removal. pH and temperature affect the performance of the CANON process. This experimental results showed that the optimum pH and temperature were 8.0 and 30 °C, respectively, which gave the highest average ANR and TNR values of 94.6% and 85.1%, respectively. This research could promote the nitrogen removal ability of CANON process in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Thermal stability and structural characterization of organic/inorganic hybrid nonlinear optical material containing a two-dimensional chromophore.

    PubMed

    Chang, Po-Hsun; Tsai, Hsieh-Chih; Chen, Yu-Ren; Chen, Jian-Yu; Hsiue, Ging-Ho

    2008-10-21

    In this study, two nonlinear optic hybrid materials with different dimensional alkoxysilane dyes were prepared and characterized. One NLO silane (Cz2PhSO 2OH- TES), a two-dimensional structure based on carbazole, had a larger rotational volume than the other (DR19-TES). Second harmonic ( d 33) analysis verified there is an optimum heating process for the best poling efficiency. The maximum d 33 value of NLO hybrid film containing Cz2PhSO 2OH was obtained for 10.7 pm/V after precuring at 150 degrees C for 3 h and poling at 210 degrees C for 60 min. The solid-state (29)Si NMR spectrum shows that the main factor influencing poling efficiency and thermal stability was cross-linking degree of NLO silane, but not that of TMOS. In particular, the two-dimensional sol-gel system has a greater dynamic and temporary stability than the one-dimensional system due to Cz2PhSO 2OH-TES requiring a larger volume to rotate in the hybrid matrix after cross-linking.

  10. A new amperometric enzyme electrode for alcohol determination.

    PubMed

    Gülce, H; Gülce, A; Kavanoz, M; Coşkun, H; Yildiz, A

    2002-06-01

    A new enzyme electrode for the determination of alcohols was developed by immobilizing alcohol oxidase in polvinylferrocenium matrix coated on a Pt electrode surface. The amperometric response due to the electrooxidation of enzymatically generated H(2)O(2) was measured at a constant potential of +0.70 V versus SCE. The effects of substrate, buffer and enzyme concentrations, pH and temperature on the response of the electrode were investigated. The optimum pH was found to be pH 8.0 at 30 degrees C. The steady-state current of this enzyme electrode was reproducible within +/-5.0% of the relative error. The sensitivity of the enzyme electrode decreased in the following order: methanol>ethanol>n-butanol>benzyl alcohol. The linear response was observed up to 3.7 mM for methanol, 3.0 mM for ethanol, 6.2 mM for n-butanol, and 5.2 mM for benzyl alcohol. The apparent Michaelis-Menten constant (K(Mapp)) value and the activation energy, E(a), of this immobilized enzyme system were found to be 5.78 mM and 38.07 kJ/mol for methanol, respectively.

  11. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan.

    PubMed

    Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying

    2011-01-01

    A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.

  12. Immobilization of alpha-amylase from Bacillus circulans GRS 313 on coconut fiber.

    PubMed

    Dey, Gargi; Nagpal, Varima; Banerjee, Rintu

    2002-01-01

    A simple and inexpensive method for immobilizing alpha-amylase from Bacillus circulans GRS 313 on coconut fiber was developed. The immobilization conditions for highest efficiency were optimized with respect to immobilization pH of 5.5, 30 degrees C, contact time of 4 h, and enzyme to support a ratio of 1:1 containing 0.12 mg/mL of protein. The catalytic properties of the immobilized enzyme were compared with that of the free enzyme. The activity of amylase adsorbed on coconut fiber was 38.7 U/g of fiber at its optimum pH of 5.7 and 48 degrees C, compared with the maximum activity of 40.2 U/mL of free enzyme at the optimum pH of 4.9 and 48 degrees C. The reutilization capacity of the immobilized enzyme was up to three cycles.

  13. Multiple forms of endopeptidase activity from jojoba seeds.

    PubMed

    Wolf, M J; Storey, R D

    1990-01-01

    The cotyledons of 27 day post-germination jojoba seedlings (Simmondsia chinensis) contained five distinct endopeptidase activities separable by DEAE Bio-Gel and CM-cellulose ion exchange chromatography. The endopeptidases were purified 108- to 266-fold and their individuality was confirmed by activity-specific assays in native acrylamide gels along with differences in their Mr and catalytic properties. The five endopeptidases, which showed activity on model substrates and protein, were named EP Ia, EP Ib, EP II, EP III and EP IV. EP Ia was a serine proteinase with a pH optimum of ca 8 and Mr of 58,000. EP Ib, II and III were discrete cysteine proteinases showing pH optima of ca 6.8, 6.0 and 5.4 and Mr of 41,000, 47,000 and 35,000 respectively. EP IV was an aspartic acid proteinase with a ca pH optimum of 3.5 and Mr of 33,000.

  14. The mechanism of thorium biosorption by Rhizopus arrhizus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsezos, M.; Volesky, B.

    1982-04-01

    Inactive cells of Rhizopus arrhizus have been documented to exhibit a high thorium biosorptive uptake (170 mg/g) from aqueous solutions. The mechanism of thorium sequestering by this biomass type was investigated following the same method as for the uranium biosorption emchanism. The thorium sequestering mechanism appeared somewhat different from that of uranium. Experimental evidence is presented which indicates that, at optimum biosorption pH (4), thorium coordinates with the nitroge of the chitin cell wall network and, in addition, more thorium is adsorbed by the external section of the fungal cell wall. At pH 2 the overall thorium uptake is reduced.more » The kinetic study of thorium biosorption revealed a very rapid rate of uptake. Unlike uranium at optimum solution pH, Fe/sup 2 +/ and Zn/sup 2 +/ did not interfere significantly with the thorium biosorptive uptake capacity of R. arrhizus.« less

  15. Chitosan based grey wastewater treatment--a statistical design approach.

    PubMed

    Thirugnanasambandham, K; Sivakumar, V; Prakash Maran, J; Kandasamy, S

    2014-01-01

    In this present study, grey wastewater was treated under different operating conditions such as agitation time (1-3 min), pH (2.5-5.5), chitosan dose (0.3-0.6g/l) and settling time (10-20 min) using response surface methodology (RSM). Four factors with three levels Box-Behnken response surface design (BBD) were employed to optimize and investigate the effect of process variables on the responses such as turbidity, BOD and COD removal. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to predict the responses. Under the optimum conditions, experimental values such as turbidity (96%), BOD (91%) and COD (73%) removals are closely agreed with predicted values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A Decolorization Technique with Spent “Greek Coffee” Grounds as Zero-Cost Adsorbents for Industrial Textile Wastewaters

    PubMed Central

    Kyzas, George Z.

    2012-01-01

    In this study, the decolorization of industrial textile wastewaters was studied in batch mode using spent “Greek coffee” grounds (COF) as low-cost adsorbents. In this attempt, there is a cost-saving potential given that there was no further modification of COF (just washed with distilled water to remove dirt and color, then dried in an oven). Furthermore, tests were realized both in synthetic and real textile wastewaters for comparative reasons. The optimum pH of adsorption was acidic (pH = 2) for synthetic effluents, while experiments in free pH (non-adjusted) were carried out for real effluents. Equilibrium data were fitted to the Langmuir, Freundlich and Langmuir-Freundlich (L-F) models. The calculated maximum adsorption capacities (Qmax) for total dye (reactive) removal at 25 °C was 241 mg/g (pH = 2) and 179 mg/g (pH = 10). Thermodynamic parameters were also calculated (ΔH0, ΔG0, ΔS0). Kinetic data were fitted to the pseudo-first, -second and -third order model. The optimum pH for desorption was determined, in line with desorption and reuse analysis. Experiments dealing the increase of mass of adsorbent showed a strong increase in total dye removal.

  17. Conversion and degradation of shellfish wastes by Serratia sp. TKU016 fermentation for the production of enzymes and bioactive materials.

    PubMed

    Wang, San-Lang; Chang, Tao-Jen; Liang, Tzu-Wen

    2010-06-01

    A chitosanase and a protease were purified from the culture supernatant of Serratia sp. TKU016 with shrimp shell as the sole carbon/nitrogen source. The molecular masses of the chitosanase and protease determined by SDS-PAGE were approximately 65 and 53 kDa, respectively. The chitosanase was inhibited completely by Mn2+, but the protease was enhanced by all of tested divalent metals. The optimum pH, optimum temperature, pH stability, and thermal stability of the chitosanase and protease were (pH 7, 50 degrees C, pH 6-7, <50 degrees C) and (pH 8-10, 40 degrees C, pH 5-10, <50 degrees C), respectively. SDS (2 mM) had stimulatory effect on TKU016 protease activity. The result demonstrates that TKU016 protease is SDS-resistant protease and probably has a rigid structure. Besides, TKU016 culture supernatant (2% SPP) incubated for 2 days has the highest antioxidant activity, the DPPH scavenging ability was about 76%. With this method, we have shown that shrimp shell wastes can be utilized and it's effective in the production of enzymes, antioxidants, peptide and reducing sugar, facilitating its potential use in biological applications and functional foods.

  18. Adsorptive removal of Auramine-O: kinetic and equilibrium study.

    PubMed

    Mall, Indra Deo; Srivastava, Vimal Chandra; Agarwal, Nitin Kumar

    2007-05-08

    Present study deals with the adsorption of Auramine-O (AO) dye by bagasse fly ash (BFA) and activated carbon-commercial grade (ACC) and laboratory grade (ACL). BFA is a solid waste obtained from the particulate collection equipment attached to the flue gas line of the bagasse fired boilers of cane sugar mills. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH(0)), contact time, adsorbent dose and initial concentration (C(0)) for the removal of AO. Optimum conditions for AO removal were found to be pH(0) approximately 7.0 and equilibrium time approximately 30 min for BFA and approximately 120 min for activated carbons. Optimum BFA, ACC and ACL dosages were found to be 1, 20 and 2g/l, respectively. Adsorption of AO followed pseudo-second order kinetics with the initial sorption rate for adsorption on BFA being the highest followed by those on ACL and ACC. The sorption process was found to be controlled by both film and pore diffusion with film diffusion at the earlier stages followed by pore diffusion at the later stages. Equilibrium isotherms for the adsorption of AO on BFA, ACC and ACL were analyzed by Freundlich, Langmuir, Dubinin-Radushkevich, and Temkin isotherm equations using linear correlation coefficient. Langmuir isotherm gave the best correlation of adsorption for all the adsorbents studied. Thermodynamic study showed that adsorption of AO on ACC (with a more negative Gibbs free energy value) is more favoured. BFA which was used without any pretreatment showed high surface area, pore volume and pore size exhibiting its potential to be used as an adsorbent for the removal of AO.

  19. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.

    PubMed

    Mahdavi, Mahnaz; Ahmad, Mansor Bin; Haron, Md Jelas; Namvar, Farideh; Nadi, Behzad; Rahman, Mohamad Zaki Ab; Amin, Jamileh

    2013-06-27

    Superparamagnetic iron oxide nanoparticles (MNPs) with appropriate surface chemistry exhibit many interesting properties that can be exploited in a variety of biomedical applications such as magnetic resonance imaging contrast enhancement, tissue repair, hyperthermia, drug delivery and in cell separation. These applications required that the MNPs such as iron oxide Fe₃O₄ magnetic nanoparticles (Fe₃O₄ MNPs) having high magnetization values and particle size smaller than 100 nm. This paper reports the experimental detail for preparation of monodisperse oleic acid (OA)-coated Fe₃O₄ MNPs by chemical co-precipitation method to determine the optimum pH, initial temperature and stirring speed in order to obtain the MNPs with small particle size and size distribution that is needed for biomedical applications. The obtained nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence spectrometry (EDXRF), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and vibrating sample magnetometer (VSM). The results show that the particle size as well as the magnetization of the MNPs was very much dependent on pH, initial temperature of Fe²⁺ and Fe³⁺ solutions and steering speed. The monodisperse Fe₃O₄ MNPs coated with oleic acid with size of 7.8 ± 1.9 nm were successfully prepared at optimum pH 11, initial temperature of 45°C and at stirring rate of 800 rpm. FTIR and XRD data reveal that the oleic acid molecules were adsorbed on the magnetic nanoparticles by chemisorption. Analyses of TEM show the oleic acid provided the Fe₃O₄ particles with better dispersibility. The synthesized Fe₃O₄ nanoparticles exhibited superparamagnetic behavior and the saturation magnetization of the Fe₃O₄ nanoparticles increased with the particle size.

  20. Optimum allocation of redundancy among subsystems connected in series. Ph.D. Thesis - Case Western Reserve Univ., Sep. 1970

    NASA Technical Reports Server (NTRS)

    Bien, D. D.

    1973-01-01

    This analysis considers the optimum allocation of redundancy in a system of serially connected subsystems in which each subsystem is of the k-out-of-n type. Redundancy is optimally allocated when: (1) reliability is maximized for given costs; or (2) costs are minimized for given reliability. Several techniques are presented for achieving optimum allocation and their relative merits are discussed. Approximate solutions in closed form were attainable only for the special case of series-parallel systems and the efficacy of these approximations is discussed.

  1. Studies on the Development of Mouse Embyros in Vitro

    PubMed Central

    Brinster, Ralph L.

    2016-01-01

    The effect of various possible energy sources on the development in vitro of two-cell mouse ova into blastocysts was examined. Energy for development of two-cell mouse ova could be supplied by lactate, pyruvate, oxaloacetate, or phosphoenolpyruvate. Compounds such as glucose, fructose, ribose, glucose-6-phosphate, fructose-1, 6-phosphate, acetate, citrate, α-ketoglutarate, succinate, fumarate, and malate could not provide energy for development of two-cell mouse ova. The optimum concentrations at pH 7.38 for those compounds which would supply energy was 5.00 × 10−2 M lactate, 3.16 × 10−4 M pyruvate, 3.16 × 10−4 M oxaloacetate, and 1.00 × 10−2 M phosphoenolpyruvate. The possibility that interactions existed between the effects of osmolarity, pH, and energy source was examined in several experiments. There was no interaction between the effects of osmolarity and pH or osmolarity and the four possible energy sources. However, there was a significant interaction between energy source and pH. The result of this is that an increase in pH of the medium results in an increase in the optimum concentration of the compound supplying energy to the developing ova. PMID:14299682

  2. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads.

    PubMed

    Başak, Esra; Aydemir, Tülin; Dinçer, Ayşe; Becerik, Seda Çınar

    2013-12-01

    Catalase was immobilized on chitosan and modified chitosan. Studies were carried out on free-immobilized catalase concerning the determination of optimum temperature, pH, thermal, storage stability, reusability, and kinetic parameters. Optimum temperature and pH for free catalase and catalase immobilized were found as 35°C and 7.0, respectively. After 100 times of repeated tests, the immobilized catalases on chitosan-clay and magnetic chitosan maintain over 50% and 60% of the original activity, respectively. The ease of catalase immobilization on low-cost matrices and good stability upon immobilization in the present study make it a suitable product for further use in the food industry.

  3. Draft Genome Sequence of Bacillus urumqiensis BZ-SZ-XJ18T, a Moderately Haloalkaliphilic Bacterium Isolated from a Saline-Alkaline Lake.

    PubMed

    Liao, Ziya; Ren, Chao; Guo, Xiaomeng; Yan, Yanchun; Li, Jun; Zhao, Baisuo

    2018-05-31

    The moderately haloalkaliphilic bacterium Bacillus urumqiensis BZ-SZ-XJ18 T was isolated from a saline-alkaline lake located in the Xinjiang Uyghur Autonomous Region of China. Optimum growth occurred at the total Na + concentration of 1.08 M, with a broad optimum pH of 8.5 to 9.5. The draft genome consists of approximately 3.28 Mb and contains 3,228 predicted genes. A number of genes associated with adaptation strategies for osmotic balance and alkaline pH homeostasis were identified, providing pertinent insight into specific adaptations to the double-extreme environment. Copyright © 2018 Liao et al.

  4. Exo-polygalacturonase production by Bacillus subtilis CM5 in solid state fermentation using cassava bagasse

    PubMed Central

    Swain, Manas R.; Kar, Shaktimay; Ray, Ramesh C.

    2009-01-01

    The purpose of this investigation was to study the effect of Bacillus subtilis CM5 in solid state fermentation using cassava bagasse for production of exo-polygalacturonase (exo-PG). Response surface methodology was used to evaluate the effect of four main variables, i.e. incubation period, initial medium pH, moisture holding capacity (MHC) and incubation temperature on enzyme production. A full factorial Central Composite Design was applied to study these main factors that affected exo-PG production. The experimental results showed that the optimum incubation period, pH, MHC and temperature were 6 days, 7.0, 70% and 50°C, respectively for optimum exo-PG production. PMID:24031409

  5. Bench-scale evaluation of ferrous iron oxidation kinetics in drinking water: effect of corrosion control and dissolved organic matter.

    PubMed

    Rahman, Safiur; Gagnon, Graham A

    2014-01-01

    Corrosion control strategies are important for many utilities in maintaining water quality from the water treatment plant to the customers' tap. In drinking water with low alkalinity, water quality can become significantly degraded in iron-based pipes if water utilities are not diligent in maintaining proper corrosion control. This article reports on experiments conducted in bicarbonate buffered (5 mg-C/L) synthetic water to determine the effects of corrosion control (pH and phosphate) and dissolved organic matter (DOM) on the rate constants of the Fe(II) oxidation process. A factorial design approach elucidated that pH (P = 0.007, contribution: 42.5%) and phosphate (P = 0.025, contribution: 22.7%) were the statistically significant factors in the Fe(II) oxidation process at a 95% confidence level. The comprehensive study revealed a significant dependency relationship between the Fe(II) oxidation rate constants (k) and phosphate-to- Fe(II) mole ratio. At pH 6.5, the optimum mole ratio was found to be 0.3 to reduce the k values. Conversely, the k values were observed to increase for the phosphate-to- Fe(II) mole ratio > 1. The factorial design approach revealed that chlorine and DOM for the designated dosages did not cause a statistically significant (α = 0.05, P > 0.05)change in rate constants. However, an increment of the chlorine to ferrous iron mole ratio by a factor of ∼ 2.5 resulted in an increase k values by a factor of ∼ 10. This study conclusively demonstrated that the lowest Fe(II) oxidation rate constant was obtained under low pH conditions (pH ≤ 6.5), with chlorine doses less than 2.2 mg/L and with a phosphate-to-Fe(II) mole ratio ≈ 0.3 in the iron water systems.

  6. Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters.

    PubMed

    Sheng, Guodong; Dong, Huaping; Li, Yimin

    2012-11-01

    Clay minerals have been extensively studied because of their strong sorption and complexation ability. In this work, diatomite was characterized by using acid-base titration. Retention of radionuclide (60)Co(II) from aqueous solution by sorption onto diatomite was investigated by using batch technique under various environmental conditions such as pH, ionic strength, humic acid (HA), fulvic acid (FA), and temperature. The results indicated that the sorption of Co(II) onto diatomite was strongly dependent on pH. At low pH value, the sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na(+)/H(+) on diatomite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH value. The D-R model fitted the sorption isotherms better than the Langmuir and Freundlich models. The thermodynamic parameters (ΔH(0), ΔS(0) and ΔG(0)) calculated from the temperature-dependent sorption isotherms suggested that the sorption of Co(II) was an endothermic and spontaneous process. In addition, diatomite showed higher sorption capacity than that of lots of the sorbents reported in the literatures we surveyed. From the results of Co(II) removal by diatomite, the optimum reaction conditions can be obtained for the maximum removal of Co(II) from water. It is clear that the best pH values of the system to remove Co(II) from solution by using diatomite are 7-8. Considering the low cost and effective disposal of Co(II)-contaminated wastewaters, the best condition for Co(II) removal is at room temperature and solid content of 0.5 g/L. The results might be important for assessing the potential of practical application of diatomite in Co(II) and related radionuclide pollution management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Purification and characterization of chitinases and chitosanases from a new species strain Pseudomonas sp. TKU015 using shrimp shells as a substrate.

    PubMed

    Wang, San-Lang; Chen, Shin-Jen; Wang, Chuan-Lu

    2008-05-19

    A chitinase (CHT1) and a chitosanase (CHS1) were purified from the culture supernatant of Pseudomonas sp. TKU015 with shrimp shell wastes as the sole carbon and nitrogen source. The optimized conditions of this new species strain (Gen Bank Accession Number EU103629) for the production of chitinases were found to be when the culture was shaken at 30 degrees C for 3 days in 100 mL of medium (pH 8) containing 0.5% shrimp shell powder (SSP) (w/v), 0.1% K2HPO4, and 0.05% MgSO(4).7H2O. The molecular weights of CHT1 and CHS1 determined by SDS-PAGE were approximately 68 kDa and 30 kDa, respectively. The optimum pH, optimum temperature, pH stability, and the thermal stability of CHT1 and CHS1 were pH 6, 50 degrees C, pH 5-7, <50 degrees C and pH 4, 50 degrees C, pH 3-9, <50 degrees C, respectively. CHT1 was inhibited completely by Mn2+ and Fe2+, and CHS1 was inhibited by Mn2+, Cu2+, and PMSF. CHT1 was only specific to chitin substrates, whereas the relative activity of CHS1 increased when the degree of deacetylation of soluble chitosan increased.

  8. Fungi immobilization for landfill leachate treatment.

    PubMed

    Saetang, Jenjira; Babel, Sandhya

    2010-01-01

    This paper investigated treatment of landfill leachate collected from Nonthaburi landfill site, Thailand, by using immobilized white rot fungi, namely, Trametes versicolor BCC 8725 and Flavodon flavus BCC 17421. Effects of pH and co-substrates were investigated at different contact times. Three types of co-substrates as carbon source used in this study are glucose, corn starch and cassava. Treatment efficiency was evaluated based on color, BOD, and COD removal. Initial BOD and COD were found to be 5,600 and 34,560 mg/L, respectively. The optimum pH was found to be 4, the optimum co-substrate concentration (glucose, corn starch and cassava) was 3 g/L and the optimum contact time was 10 days for both types of fungi. Addition of glucose, corn starch and cassava as co-substrate at optimum conditions could remove 78, 74, and 66% of color, respectively for T. versicolor and 73, 68, and 60%, respectively, for F. flavus. Moreover, for T. versicolor, BOD and COD reduction of 69 and 57%, respectively, could be achieved at optimum conditions when using glucose as a co-substrate. For F. flavus, BOD and COD reduction of 66 and 52%, respectively were obtained when using glucose as a co-substrate. White rot fungi can be considered potentially useful in the treatment of landfill leachate as they can help in removing color, BOD and COD due to their biodegradative abilities.

  9. pH treatment as an effective tool to select the functional and structural properties of yak milk caseins.

    PubMed

    Liu, H N; Zhang, C; Zhang, H; Guo, H Y; Wang, P J; Zhu, Y B; Ren, F Z

    2013-09-01

    Qula is made from yak milk after defatting, acidifying, and drying. Yak milk caseins are purified from Qula by dissolving in alkali solution. The effects of different pH treatments on the functional and structural properties of yak milk caseins were investigated. Over a broad range of pH (from 6.0 to 12.0), functional properties of yak milk caseins, including solubility, emulsifying activities, and thermal characteristics, and the structural properties, including 1-anilino-8-naphthalene-sulfonate fluorescence, turbidity and particle diameter, were evaluated. The results showed that the yak milk casein yield increased as the pH increased from 6.0 to 12.0. The solubility dramatically increased as the pH increased from 6.0 to 8.0, and decreased as the pH increased from 9.0 to 12.0. The changes in emulsifying activity were not significant. Caseins were remarkably heat stable at pH 9.0. The turbidity of the casein solution decreased rapidly as the pH increased from 6.0 to 12.0, and the results suggested that reassembled casein micelles were more compact at low pH than high pH. At pH values higher than 8.0, the yield of yak milk caseins reached more than 80%. The highest solubility was at pH 8.0, the best emulsification was at pH 10.0 and the greatest thermal stability was at pH 9.0. According to the functional characteristics of yak milk caseins, alkali conditions (pH 8.0-10.0) should be selected for optimum production. These results suggested that pH-dependent treatment could be used to modify the properties of yak milk caseins by appropriate selection of the pH level. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. A Sensitive Microplate Assay for Lipase Activity Measurement Using Olive Oil Emulsion Substrate: Modification of the Copper Soap Colorimetric Method.

    PubMed

    Mustafa, Ahmad; Karmali, Amin; Abdelmoez, Wael

    2016-01-01

    The present work involves a sensitive high-throughput microtiter plate based colorimetric assay for estimating lipase activity using cupric acetate pyridine reagent (CAPR). In the first approach, three factors two levels factorial design methodology was used to evaluate the interactive effect of different parameters on the sensitivity of the assay method. The optimization study revealed that the optimum CAPR concentration was 7.5% w/v, the optimum solvent was heptane and the optimum CAPR pH was 6. In the second approach, the optimized colorimetric microplate assay was used to measure lipase activity based on enzymatic hydrolysis of olive oil emulsion substrate at 37°C and 150 rpm. The emulsion substrates were formulated by using olive oil, triton X-100 (10% v/v in pH 8) and sodium phosphate buffer of pH 8 in ratio of 1:1:1 in the case of Candida sp. lipase. While in the case of immobilized lipozyme RMIM, The emulsion substrates were formulated by using olive oil, triton X-100 (1% v/v in pH 8) and sodium phosphate buffer of pH 8 in ratio of 2:1:1. Absorbance was measured at 655 nm. The stability of this assay (in terms of colored heptane phase absorbance readings) retained more than 92.5% after 24 h at 4°C compared to the absorbance readings measured at zero time. In comparison with other lipase assay methods, beside the developed sensitivity, the reproducibility and the lower limit of detection (LOD) of the proposed method, it permits analyzing of 96 samples at one time in a 96-well microplate. Furthermore, it consumes small quantities of chemicals and unit operations.

  11. Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15.

    PubMed

    Arikan, Burhan

    2008-05-01

    A thermostable alkaline alpha-amylase producing Bacillus sp. A3-15 was isolated from compost samples. There was a slight variation in amylase synthesis within the pH range 6.0 and 12.0 with an optimum pH of 8.5 (8mm zone diameter in agar medium) on starch agar medium. Analyses of the enzyme for molecular mass and amylolytic activity were carried out by starch SDS-PAGE electrophoresis, which revealed two independent bands (86,000 and 60,500 Da). Enzyme synthesis occurred at temperatures between 25 and 65 degrees C with an optimum of 60 degrees C on petri dishes. The partial purification enzyme showed optimum activity at pH 11.0 and 70 degrees C. The enzyme was highly active (95%) in alkaline range of pH (10.0-11.5), and it was almost completely active up to 100 degrees C with 96% of the original activity remaining after heat treatment at 100 degrees C for 30 min. Enzyme activity was enhanced in the presence of 5mM CaCl2 (130%) and inhibition with 5mM by ZnCl2, NaCl, Na-sulphide, EDTA, PMSF (3mM), Urea (8M) and SDS (1%) was obtained 18%, 20%, 36%, 5%, 10%, 80% and 18%, respectively. The enzyme was stable approximately 70% at pH 10.0-11.0 and 60 degrees C for 24h. So our result showed that the enzyme was both, highly thermostable-alkaline, thermophile and chelator resistant. The A3-15 amylase enzyme may be suitable in liquefaction of starch in high temperature, in detergent and textile industries and in other industrial applications.

  12. A novel high-throughput screening format to identify inhibitors of secreted acid sphingomyelinase.

    PubMed

    Mintzer, Robert J; Appell, Kenneth C; Cole, Andrew; Johns, Anthony; Pagila, Rene; Polokoff, Mark A; Tabas, Ira; Snider, R Michael; Meurer-Ogden, Janet A

    2005-04-01

    Secreted extracellular acid sphingomyelinase (sASM) activity has been suggested to promote atherosclerosis by enhancing subendothelial aggregation and retention of low-density lipoprotein (LDL) with resultant foam cell formation. Compounds that inhibit sASM activity, at neutral pH, may prevent lipid retention and thus would be expected to be anti-atherosclerotic. With the goal of identifying novel compounds that inhibit sASM at pH 7.4, a high-throughput screen was performed. Initial screening was run using a modification of a proven system that measures the hydrolysis of radiolabeled sphingomyelin presented in detergent micelles in a 96-well format. Separation of the radiolabeled aqueous phosphorylcholine reaction product from uncleaved sphingomyelin lipid substrate was achieved by chloroform/methanol extraction. During the screening campaign, a novel extraction procedure was developed to eliminate the use of the hazardous organic reagents. This new procedure exploited the ability of uncleaved, radiolabeled lipid substrate to interact with hydrophobic phenyl-sepharose beads. A comparison of the organic-based and the bead-based extraction sASM screening assays revealed Z' factor values ranging from 0.7 to 0.95 for both formats. In addition, both assay formats led to the identification of sub- to low micromolar inhibitors of sASM at pH 7.4 with similar IC(50) values. Subsequent studies demonstrated that both methods were also adaptable to run in a 384-well format. In contrast to the results observed at neutral pH, however, only the organic extraction assay was capable of accurately measuring sASM activity at its pH optimum of 5.0. The advantages and disadvantages of both sASM assay formats are discussed.

  13. Haloplanus salinarum sp. nov., an extremely halophilic archaeon isolated from a solar saltern.

    PubMed

    Hwang, Han-Bit; Kim, Ye-Eun; Koh, Hyeon-Woo; Song, Hye Seon; Roh, Seong Woon; Kim, So-Jeong; Nam, Seung Won; Park, Soo-Je

    2017-11-01

    An extremely halophilic archaeal strain SP28 T was isolated from the Gomso solar saltern, Republic of Korea. Cells of the new strain SP28 T were pleomorphic and Gram stain negative, and produced red-pigmented colonies. These grew in medium with 2.5-4.5 M NaCl (optimum 3.1 M) and 0.05-0.5 M MgCl2 (optimum 0.1 M), at 25-50 °C (optimum 37 °C) and at a pH of 6.5-8.5 (optimum pH 8.0). Mg 2+ was required for growth. A concentration of at least 2 M NaCl was required to prevent cell lysis. Polar lipids included phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one glycolipid chromatographically identical to sulfated mannosyl glucosyl diether. 16S rRNA and rpoB' gene sequence analyses showed that strain SP28 T is closely related to Haloplanus ruber R35 T (97.3 and 94.1 %, 16S rRNA and rpoB' gene sequence similarity, respectively), Haloplanus litoreus GX21 T (97.0 and 92.1 %), Haloplanus salinus YGH66 T (96.0 and 91.9 %), Haloplanus vescus RO5-8 T (95.9 and 90.9 %), Haloplanus aerogenes TBN37 T (95.6 and 90.3 %) and Haloplanus natans RE-101 T (95.3 and 89.8 %). The DNA G+C content of the novel strain SP28 T was 66.2 mol%, which is slightly higher than that of Hpn.litoreus GX21 T (65.8 mol%) and Hpn.ruber R35 T (66.0 mol%). DNA-DNA hybridization values betweenHpn.ruber R35 T and strain SP28 T and between Hpn.litoreus GX21 T and strain SP28 T were about 24.8 and 20.7 %, respectively. We conclude that strain SP28 T represents a novel species of the genus Haloplanus and propose the name Haloplanus salinarum sp. nov. The type strain is SP28 T (=JCM 31424 T =KCCM 43210 T ).

  14. Halorubrum laminariae sp. nov., isolated from the brine of salted brown alga Laminaria.

    PubMed

    Han, Dong; Cui, Heng-Lin

    2015-01-01

    Two halophilic archaeal strains, R60(T) and R61, were isolated from the brine of salted brown alga Laminaria. Cells of the two strains were observed to be rod-shaped, stain Gram-negative and to lyse in distilled water. Strain R60(T) was found to contain gas vacuoles and to produce pink-pigmented colonies, while strain R61 lacked gas vacuoles and produces red-pigmented colonies. Both strains were found to be able to grow at 20-50 °C (optimum 30 °C), at 1.7-4.8 M NaCl (optimum 2.6-3.1 M NaCl), at 0-1.0 M MgCl2 (optimum 0.005-0.1 M MgCl2) and at pH 6.0-9.5 (optimum pH 7.0). The major polar lipids were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one major glycolipid chromatographically identical to a sulfated mannosyl glucosyl diether produced by Halorubrum members of the Halobacteriaceae. The 16S rRNA gene sequences of the two strains were 99.9 % identical, showing 94.6-98.0 % similarity to those of members of the genus Halorubrum. The EF-2 gene similarity between strains R60(T) and R60 was 100 % and showed 84.6-94.5 % similarity to those of members of the genus Halorubrum. The DNA G+C contents of the two strains were determined to be 63.0 mol %. The DNA-DNA hybridization value between strain R60(T) and strain R61 was 92 % and the two strains showed low DNA-DNA relatedness with the most related members of Halorubrum. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain R60(T) (= CGMCC 1.12689(T) = JCM 30040(T)) and strain R61 (= CGMCC 1.12696) represent a novel species of the genus Halorubrum, for which the name Halorubrum laminariae sp. nov. is proposed.

  15. The biochemical characterization, stabilization studies and the antiproliferative effect of bromelain against B16F10 murine melanoma cells.

    PubMed

    São Paulo Barretto Miranda, Íngara Keisle; Fontes Suzart Miranda, Anderson; Souza, Fernanda Vidigal Duarte; Vannier-Santos, Marcos André; Pirovani, Carlos Priminho; Pepe, Iuri Muniz; Rodowanski, Ivanoé João; Ferreira, Katiúcia Tícila de Souza Eduvirgens; Mendes Souza Vaz, Luciano; de Assis, Sandra Aparecida

    2017-06-01

    The current study aims to extract bromelain from different parts (stem, crown, peels, pulp and leaves) of Ananas comosus var. comosus AGB 772; to determine of optimum pH and temperature; to test bromelain stability in disodium EDTA and sodium benzoate, and to investigate its pharmacological activity on B16F10 murine melanoma cells in vitro. The highest enzymatic activity was found in bromelain extracted from the pulp and peel. The optimum bromelain pH among all studied pineapple parts was 6.0. The optimum temperature was above 50 °C in all bromelain extracts. The fluorescence analysis confirmed the stability of bromelain in the presence of EDTA and sodium benzoate. Bromelain was pharmacologically active against B16F10 melanoma cells and it was possible verifying approximately 100% inhibition of tumor cell proliferation in vitro. Since bromelain activity was found in different parts of pineapple plants, pineapple residues from the food industry may be used for bromelain extraction.

  16. Chlorophyll extraction from suji leaf (Pleomele angustifolia Roxb.) with ZnCl2 stabilizer.

    PubMed

    Rahayuningsih, Edia; Pamungkas, Mukmin Sapto; Olvianas, Muhammad; Putera, Andreas Diga Pratama

    2018-03-01

    Suji ( Pleomele angustifolia Roxb .) leaves are a prominent source of chlorophyll and well-known for their ability to produce green color for food ingredients. However, chlorophyll is suspectible to color degradation at high temperature. Color degradation occurred because porphyrin loses magnesium in its ring and it can be avoided by adding zinc. The aim of this work was to investigate the combined effect of independent variables on chlorophyll extraction process using ZnCl 2 as a stabilizer. Suji leaves were blanched with boiling water for 2 min, Zn-chlorophyll synthesis was done by varying concentration of ZnCl 2 , Zn-chlorophyll extraction with ethanol, and UV-Vis spectrophotometry analysis of the final extracted solutions. A full three-level factorial design under response surface methodology was used to obtain the optimum condition of extraction process. The experimental data were analyzed by analysis of variance and fitted with second order polynomial equation. The coefficient of determination (R 2 ) was found to be 81.99%. The optimum operating conditions were obtained at pH 7, ZnCl 2 concentration of 700 ppm and temperature of 85 °C with desirability value of 1.0000. At the optimum conditions, the total chlorophyll content (TCC) was found to be 47.2975 mg/100 g fresh weight.

  17. Ozonation of Common Textile Auxiliaries

    NASA Astrophysics Data System (ADS)

    Iskender, Gulen; Arslan-Alaton, Idil; Koyunluoglu, Sebnem; Yilmaz, Zeynep; Germirli Babuna, Fatos

    2016-10-01

    The treatability of four different commonly applied textile auxiliary chemicals, namely two tannin formulations (Tannin 1: a condensation product of aryl sulphonate; Tannin 2: natural tannic acid) and two biocidal finishing agents (Biocide 1: 2,4,4’-trichloro-2’- hydroxydiphenyl ether; Biocide 2: a nonionic diphenyl alkane derivative) with ozone was investigated. Increasing the ozone dose yielded higher COD removals for the natural tannin. Optimum ozone doses of 485 and 662 mg/h were obtained at a pH of 3.5 for natural and synthetic tannin carrying textile bath discharges, respectively. When the reaction pH was increased from 3.5 to 7.0, a slight decrease in COD removal was observed for the natural tannin due to ozone selectivity towards its polyaromatic structure. The same increase in ozonation pH enhanced COD removals for the synthetic tannin as a result of enhanced ozone decomposition rendering free radical chain reactions dominant. Optimum ozone doses of 499 and 563 mg/h were established for Biocide 1 and 2, respectively. With the increase of ozonation, pH exhibited a positive influence on COD removals for both textile tannins. A substantial improvement in terms of TOC removals was observed as the reaction pH was increased from 3.5 to 7.0 for the synthetic tannin, and from 7 to 12 for both textile biocides. Higher AOX removals were evident at pH 7 than at pH 12 for Biocide 1 as a result of the higher selectivity of the dehalogenation reaction at neutral pH.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudneva, Irina A.; Timofeeva, Tatiana A.; Ignatieva, Anna V.

    In the present study we assessed pleiotropic characteristics of the antibody-selected mutations. We examined pH optimum of fusion, temperatures of HA heat inactivation, and in vitro and in vivo replication kinetics of the previously obtained influenza H5 escape mutants. Our results showed that HA1 N142K mutation significantly lowered the pH of fusion optimum. Mutations of the escape mutants located in the HA lateral loop significantly affected H5 HA thermostability (P<0.05). HA changes at positions 131, 144, 145, and 156 and substitutions at positions 131, 142, 145, and 156 affected the replicative ability of H5 escape mutants in vitro and inmore » vivo, respectively. Overall, a co-variation between antigenic specificity and different HA phenotypic properties has been demonstrated. We believe that the monitoring of pleiotropic effects of the HA mutations found in H5 escape mutants is essential for accurate prediction of mutants with pandemic potential. - Highlights: • HA1 N142K mutation significantly lowered the pH of fusion optimum. • Mutations located in the HA lateral loop significantly affected H5 HA thermostability. • HA changes at positions 131, 142, 144, 145, and 156 affected the replicative ability of H5 mutants. • Acquisition of glycosylation site could lead to the emergence of multiple pleiotropic effects.« less

  19. Construction of an amperometric ascorbate biosensor using epoxy resin membrane bound Lagenaria siceraria fruit ascorbate oxidase.

    PubMed

    Pundir, C S; Chauhan, Nidhi; Jyoti

    2011-06-01

    Ascorbate oxidase purified from Lagenaria siceraria fruit was immobilized onto epoxy resin "Araldite" membrane with 79.4% retention of initial activity of free enzyme. The biosensor showed optimum response within 15s at pH 5.8 and 35°C, which was directly proportional to ascorbate concentration ranging from 1-100μM. There was a good correlation (R(2) = 0.99) between serum ascorbic acid values by standard enzymic colorimetric method and the present method. The enzyme electrode was used for 200 times without considerable loss of activity during the span of 90 days when stored at 4°C.

  20. Production of well-matured compost from night-soil sludge by an extremely short period of thermophilic composting.

    PubMed

    Nakasaki, Kiyohiko; Ohtaki, Akihito; Takemoto, Minoru; Fujiwara, Shunrokuro

    2011-03-01

    The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60°C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (E(C)), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., E(C)=10% and 20%). It was found that the larger the E(C), the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Solid-substrate bioprocessing of cow dung for the production of carboxymethyl cellulase by Bacillus halodurans IND18.

    PubMed

    Vijayaraghavan, P; Prakash Vincent, S G; Dhillon, G S

    2016-02-01

    The production of carboxymethyl cellulase (CMCase) by Bacillus halodurans IND18 under solid substrate fermentation (SSF) using cow dung was optimized through two level full factorial design and second order response surface methodology (RSM). The central composite design (CCD) was employed to optimize the vital fermentation parameters, such as pH of the substrate, concentration of nitrogen source (peptone) and ion (sodium dihydrogen phosphate) sources in medium for achieving higher enzyme production. The optimum medium composition was found to be 1.46% (w/w) peptone, 0.095% (w/w) sodium dihydrogen phosphate and pH 8.0. The model prediction of 4210IU/g enzyme activity at optimum conditions was verified experimentally as 4140IU/g. The enzyme was active over a broad temperature range (40-60±1°C) and pH (7.0-9.0) with maximal activity at 60±1°C and pH 8.0. This study demonstrated the potential of cow dung as novel substrate for CMCase production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Modeling Lactic Fermentation of Gowé Using Lactobacillus Starter Culture.

    PubMed

    de J C Munanga, Bettencourt; Loiseau, Gérard; Grabulos, Joël; Mestres, Christian

    2016-12-01

    A global model of the lactic fermentation step of gowé was developed by assembling blocks hosting models for bacterial growth, lactic acid production, and the drop of pH during fermentation. Commercial strains of Lactobacillus brevis and of Lactobacillus plantarum were used; their growth was modeled using Rosso's primary model and the gamma concept as a secondary model. The optimum values of pH and temperature were 8.3 ± 0.3, 44.6 ± 1.2 °C and 8.3 ± 0.3, 3.2 ± 37.1 °C with μ max values of 1.8 ± 0.2 and 1.4 ± 0.1 for L. brevis and L. plantarum respectively. The minimum inhibitory concentration of undissociated lactic acid was 23.7 mM and 35.6 mM for L. brevis and L. plantarum , respectively. The yield of lactic acid was five times higher for L. plantarum than for L. brevis , with a yield of glucose conversion to lactic acid close to 2.0 for the former and 0.8 for the latter. A model was developed to predict the pH drop during gowé fermentation. The global model was partially validated during manufacturing of gowé. The global model could be a tool to aid in the choice of suitable starters and to determine the conditions for the use of the starter.

  3. Purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis (X5B).

    PubMed

    Ghafoori, Hossein; Askari, Mansoure; Sarikhan, Sajjad

    2016-03-01

    This study reports the purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis, strain X5B. The enzyme was purified to homogeneity by acetone precipitation, ultrafiltration and carboxymethyl (CM) cation exchange chromatography, respectively. The purified protease was a monomeric enzyme with a relative molecular mass of 48-50 kDa and it was inhibited by PMSF indicating that it is a serine-protease. The optimum pH, temperature and NaCl concentration were 9.5, 35 °C and 0.98 M, respectively. The enzyme showed a significant tolerance to salt and alkaline pH. It retained approximately 50% of activity at 2.5 M NaCl and about 70% of activity at highly alkaline pH of 11.0; therefore, it was a moderately halophilic and also can be activated by metals, especially by Ca(2+). The specific activity of the purified protease was measured to be 425.23 μmol of tyrosine/min per mg of protein using casein as a substrate. The apparent K m and V max values were 0.126 mM and 0.523 mM/min, respectively and the accurate value of k cat was obtained as 3.284 × 10(-2) s(-1). These special and important characteristics make this serine protease as valuable tool for industrial applications.

  4. Modeling Lactic Fermentation of Gowé Using Lactobacillus Starter Culture

    PubMed Central

    de J. C. Munanga, Bettencourt; Loiseau, Gérard; Grabulos, Joël; Mestres, Christian

    2016-01-01

    A global model of the lactic fermentation step of gowé was developed by assembling blocks hosting models for bacterial growth, lactic acid production, and the drop of pH during fermentation. Commercial strains of Lactobacillus brevis and of Lactobacillus plantarum were used; their growth was modeled using Rosso’s primary model and the gamma concept as a secondary model. The optimum values of pH and temperature were 8.3 ± 0.3, 44.6 ± 1.2 °C and 8.3 ± 0.3, 3.2 ± 37.1 °C with μmax values of 1.8 ± 0.2 and 1.4 ± 0.1 for L. brevis and L. plantarum respectively. The minimum inhibitory concentration of undissociated lactic acid was 23.7 mM and 35.6 mM for L. brevis and L. plantarum, respectively. The yield of lactic acid was five times higher for L. plantarum than for L. brevis, with a yield of glucose conversion to lactic acid close to 2.0 for the former and 0.8 for the latter. A model was developed to predict the pH drop during gowé fermentation. The global model was partially validated during manufacturing of gowé. The global model could be a tool to aid in the choice of suitable starters and to determine the conditions for the use of the starter. PMID:27916901

  5. Lipase production in lipolytic yeast from Wonorejo mangrove area

    NASA Astrophysics Data System (ADS)

    Alami, Nur Hidayatul; Nasihah, Liziyatin; Umar, Rurin Luswidya Artaty; Kuswytasari, Nengah Dwianita; Zulaika, Enny; Shovitri, Maya

    2017-06-01

    Lipase is an enzyme that is often used in industry and become a commercial enzyme. One group of microorganisms capable of producing lipase is a yeast. This study aims to screen yeast from Wonorejo mangrove that potential to produce lipase and to optimize the production of these enzymes. Screening test include the measurement of lipolytic index and value of fatty acid. Yeast with the best value of fatty acid will be continued to the measurement of lipase activity. It is affected by several environmental factors, such as pH, temperature, and incubation time. This research was conducted to observe the optimization variation on environmental factors combination to produce lipase. Lipase activity was tested by using p-Nitrophenyl Palmitate (pNPP). Absorbency was measured by spectrofotometer on wavelength of 410 nm. Measurement of the enzyme activity was done by interpolating the absorbance values on the p-nitrophenol standard curve then calculated by the formula. All data were analyzed by using descriptive quantitative method. The results show that the highest lypolityc index was 2.08. The highest value of fatty acid was 0.49 that was reached on 168 hours of incubation. Candida W3.8 expressed the highest lypolylitic potential. The optimum environment to produce lipase by Candida W 3.8 was on 120 hours of incubation time, in temperature range of 27°C - 45°C and pH range of 4,5 - 7.

  6. Examination of the polished surface character of fused silica.

    PubMed

    Tesar, A A; Fuchs, B A; Hed, P P

    1992-12-01

    Investigation of the surface character of fused silica polished with various compounds dispersed in water identified pH 4 as the optimum condition for high quality. Analyses support the conclusion that at this pH redeposition of hydrated material onto the surface during polishing is limited. Comparative polishing results for Zerodur are included. Improvement of the laser-damage threshold of a coating on the pH 4 polished fused silica is suggested.

  7. Optimum Disinfection Properties and Commercially Available Disinfectants

    DTIC Science & Technology

    1989-07-01

    organic constituents that display a chlorine demand.) d. Upon addition to water, the agent should dissolve quickly and release its active ingredient(s...trione pH dependence alkaline pH favored Temperature dependence high at low residual Palatability Taste and odor claimed to be lartgly absent Color...CryptosgortdLjM at various temperature and pH levels. 2. A field procedwu for masueing disinfectant residual is ".eded for chlorin dioaide. 3. Stability

  8. Examination of the polished surface character of fused silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesar, A.A.; Fuchs, B.A.; Hed, P.P.

    1992-12-01

    Investigation of the surface character of fused silica polished with various compounds dispersed in water identified pH 4 as the optimum condition for high quality. Analyses support the conclusion that at this pH redeposition of hydrated material onto the surface during polishing is limited. Comparative polishing results for Zerodur are included. Improvement of the laser-damage threshold of a coating on the pH 4 polished fused silica is suggested.

  9. Roof-harvested rainwater for potable purposes: application of solar disinfection (SODIS) and limitations.

    PubMed

    Amin, Muhammad Tahir; Han, Mooyoung

    2009-01-01

    Efficiency of solar disinfection (SODIS) was evaluated for the potability of rainwater in view of the increasing water and energy crises especially in developing countries. Rainwater samples were collected from an underground storage tank in 2 L polyethylene terephthalate (PET) bottles and SODIS efficiency was evaluated at different weather conditions. For optimizing SODIS, PET bottles with different backing surfaces to enhance the optical and thermal effects of SODIS were used and different physicochemical parameters were selected and evaluated along with microbial re-growth observations and calculating microbial decay constants. Total and fecal coliforms were used along with Escherichia Coli and Heterotrophic Plate Counts (HPC) as basic microbial and indicator organisms of water quality. For irradiance less than 600 W/m(2), reflective type PET bottles were best types while for radiations greater than 700 W/m(2), absorptive type PET bottles offered best solution due to the synergistic effects of both thermal and UV radiations. Microbial inactivation did not improve significantly by changing the initial pH and turbidity values but optimum SODIS efficiency is achieved for rainwater with acidic pH and low initial turbidity values by keeping air-spaced PET bottles in undisturbed conditions. Microbial re-growth occurred after one day only at higher turbidity values and with basic pH values. First-order reaction rate constant was in accordance with recent findings for TC but contradicted with previous researches for E. coli. No microbial parameter met drinking water guidelines even under strong experimental weather conditions rendering SODIS ineffective for complete disinfection and hence needed more exposure time or stronger sunlight radiations. With maximum possible storage of rainwater, however, and by using some means for accelerating SODIS process, rainwater can be disinfected and used for potable purposes.

  10. Degradation kinetics and mechanism of trace nitrobenzene by granular activated carbon enhanced microwave/hydrogen peroxide system.

    PubMed

    Tan, Dina; Zeng, Honghu; Liu, Jie; Yu, Xiaozhang; Liang, Yanpeng; Lu, Lanjing

    2013-07-01

    The kinetics of the degradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202) system was studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiency were examined. It was found that the reaction rate fits well to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced the degradation rate of NB in water. Under a given condition (MW power 300 W, H202 dosage 10 mg/L, pH 6.85 and temperature (60 +/- 5)degrees C), the degradation rate of NB was 0.05214 min-1when 4 g/L GAC was added. In general, alkaline pH was better for NB degradation; however, the optimum pH was 8.0 in the tested pH value range of 4.0-12.0. At H202 dosage of 10 mg/L and GAC dosage of 4 g/L, the removal of NB was decreased with increasing initial concentrations of NB, indicating that a low initial concentration was beneficial for the degradation of NB. These results indicated that the MW/GAC/H202 process was effective for trace NB degradation in water. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction and dehydrogenation reaction enhanced NB degradation.

  11. Expression and Properties of the Highly Alkalophilic Phenylalanine Ammonia-Lyase of Thermophilic Rubrobacter xylanophilus

    PubMed Central

    Kovács, Klaudia; Bánóczi, Gergely; Varga, Andrea; Szabó, Izabella; Holczinger, András; Hornyánszky, Gábor; Zagyva, Imre

    2014-01-01

    The sequence of a phenylalanine ammonia-lyase (PAL; EC: 4.3.1.24) of the thermophilic and radiotolerant bacterium Rubrobacter xylanophilus (RxPAL) was identified by screening the genomes of bacteria for members of the phenylalanine ammonia-lyase family. A synthetic gene encoding the RxPAL protein was cloned and overexpressed in Escherichia coli TOP 10 in a soluble form with an N-terminal His6-tag and the recombinant RxPAL protein was purified by Ni-NTA affinity chromatography. The activity assay of RxPAL with l-phenylalanine at various pH values exhibited a local maximum at pH 8.5 and a global maximum at pH 11.5. Circular dichroism (CD) studies showed that RxPAL is associated with an extensive α-helical character (far UV CD) and two distinctive near-UV CD peaks. These structural characteristics were well preserved up to pH 11.0. The extremely high pH optimum of RxPAL can be rationalized by a three-dimensional homology model indicating possible disulfide bridges, extensive salt-bridge formation and an excess of negative electrostatic potential on the surface. Due to these properties, RxPAL may be a candidate as biocatalyst in synthetic biotransformations leading to unnatural l- or d-amino acids or as therapeutic enzyme in treatment of phenylketonuria or leukemia. PMID:24475062

  12. pH controls over methanogenesis and iron reduction along soil depth profile in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Gu, B.; Wullschleger, S. D.; Graham, D. E.

    2017-12-01

    Increasing soil temperature in the Arctic is expected to accelerate rates of soil organic matter decomposition. However, the magnitude of this impact is uncertain due to the many physical, chemical, and biological processes that control the decomposition pathways. Varying soil redox conditions present a key control over pathways of organic matter decomposition by diverting the flow of reductants among different electron accepting processes and further driving acid-base reactions that alter soil pH. In this study we investigated the pH controls over anaerobic carbon mineralization, methanogenesis, Fe(III) reduction and the interplay between these processes across a range of pH and redox conditions. pH manipulation experiments were conducted by incubating soils representing organic, mineral, cryoturbated transitional layers and permafrost. In the experiments we sought to understand (1) if methanogenesis or Fe(III) reduction had similar pH optima; (2) if this pH response also occurs at `upstream' fermentation process; and (3) if pH alters organo-mineral association or organic matter sorption and desorption and its availability for microbial degradation. Our preliminary results suggest that the common bell-shaped pH response curve provides a good fit for both Fe(III) reduction and methanogenesis, with optimum pH at 6.0-7.0. Exceptions to this were found in transitional layer where methanogenesis rates positively correlated with increasing pH, with maximum rates measured at pH 8.5. It is likely that the transitional layer harbors distinct groups of methanogens that prefer a high pH. Variations in the optimum pH of Fe(III) reduction and methanogenesis may play a significant role in regulating organic matter decomposition pathways and thus greenhouse gas production in thawing soils. These results support biogeochemical modeling efforts to accurately simulate organic matter decomposition under changing redox and pH conditions.

  13. Preparation and characterization of a novel pH-sensitive hydrogel obtained from UV light-induced polymerization

    NASA Astrophysics Data System (ADS)

    Tian, R. Q.; Zhao, Y. G.; Cui, Y. Q.; Zhang, X. Y.; Zhang, J.; Liang, X. Y.; Shang, Q.

    2015-05-01

    The main aim of this study was to develop a novel pH-sensitive hydrogel prepared via an UV light-induced polymerization. Single-factor experiments were performed to acquire the optimum formula of final poly(MAA-co-PEGMA) hydrogel. Fourier transform infrared spectroscopy (FTIR) spectra were employed to confirm the successful preparation of the designed copolymers. Inner morphologies of the polymeric hydrogels were observed via an S-4800 scanning electron microscope (SEM). Swelling and reversible swelling-shrinking studies were carried out in different phosphate buffer solution (PBS) with various pH values. Drug-loading tests were performed with bovine serum albumin (BSA) as a model drug. The in vitro release profile was also investigated in PBS with the pH values of 1.2 and 7.4. FTIR spectra confirmed the preparation of the poly(MAA-co-PEGMA) copolymers without any residual monomers. The typical space grid structures were observed from the SEM photographs of hydrogels. The obtained hydrogel showed an excellent pH-sensibility and reversible swelling-shrinking property. The maximum drug-loading (40.9 %) was gained from the BSA concentration of 50.0 mg/mL. During the releasing process, only 5.8 ± 0.9 % of BSA was released at pH 1.2, but 82.1 ± 6.2 % was diffused at pH 7.4. These data suggested that such medicated hydrogel could deliver BSA to alkaline conditions (e.g., intestinal environments) site-specifically, which protected BSA from destroying by gastric acid or pepsase. Therefore, such hydrogel had a significant meaning in theoretical research and practical application.

  14. Coagulation-flocculation process applied to wastewaters generated in hydrocarbon-contaminated soil washing: Interactions among coagulant and flocculant concentrations and pH value.

    PubMed

    Torres, Luis G; Belloc, Claudia; Vaca, Mabel; Iturbe, Rosario; Bandala, Erick R

    2009-11-01

    Wastewater produced in the contaminated soil washing was treated by means of coagulation-flocculation (CF) process. The wastewater contained petroleum hydrocarbons, a surfactant, i.e., sodium dodecyl sulfate (SDS) as well as salts, brownish organic matter and other constituents that were lixiviated from the soil during the washing process. The main goal of this work was to develop a process for treating the wastewaters generated when washing hydrocarbon-contaminated soils in such a way that it could be recycled to the washing process, and also be disposed at the end of the process properly. A second objective was to study the relationship among the coagulant and flocculant doses and the pH at which the CF process is developed, for systems where methylene blue active substances (MBAS) as well as oil and greases were present. The results for the selection of the right coagulant and flocculant type and dose, the optimum pH value for the CF process and the interactions among the three parameters are detailed along this work. The best coagulant and flocculant were FeCl(3) and Tecnifloc 998 at doses of 4,000 and 1 mg/L, correspondingly at pH of 5. These conditions gave color, turbidity, chemical oxygen demand (COD) and conductivity removals of 99.8, 99.6, 97.1 and 35%, respectively. It was concluded that it is feasible to treat the wastewaters generated in the contaminated soil washing process through CF process, and therefore, wastewaters could be recycled to the washing process or disposed to drainage.

  15. Fungal trehalose phosphorylase: kinetic mechanism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune.

    PubMed Central

    Eis, C; Watkins, M; Prohaska, T; Nidetzky, B

    2001-01-01

    Initial-velocity measurements for the phospholysis and synthesis of alpha,alpha-trehalose catalysed by trehalose phosphorylase from Schizophyllum commune and product and dead-end inhibitor studies show that this enzyme has an ordered Bi Bi kinetic mechanism, in which phosphate binds before alpha,alpha-trehalose, and alpha-D-glucose is released before alpha-D-glucose 1-phosphate. The free-energy profile for the enzymic reaction at physiological reactant concentrations displays its largest barriers for steps involved in reverse glucosyl transfer to D-glucose, and reveals the direction of phospholysis to be favoured thermodynamically. The pH dependence of kinetic parameters for all substrates and the dissociation constant of D-glucal, a competitive dead-end inhibitor against D-glucose (K(i)=0.3 mM at pH 6.6 and 30 degrees C), were determined. Maximum velocities and catalytic efficiencies for the forward and reverse reactions decrease at high and low pH, giving apparent pK values of 7.2--7.8 and 5.5--6.0 for two groups whose correct protonation state is required for catalysis. The pH dependences of k(cat)/K are interpreted in terms of monoanionic phosphate and alpha-D-glucose 1-phosphate being the substrates, and of the pK value seen at high pH corresponding to the phosphate group in solution or bound to the enzyme. The K(i) value for the inhibitor decreases outside the optimum pH range for catalysis, indicating that binding of D-glucal is tighter with incorrectly ionized forms of the complex between the enzyme and alpha-D-glucose 1-phosphate. Each molecule of trehalose phosphorylase contains one Mg(2+) that is non-dissociable in the presence of metal chelators. Measurements of the (26)Mg(2+)/(24)Mg(2+) ratio in the solvent and on the enzyme by using inductively coupled plasma MS show that exchange of metal ion between protein and solution does not occur at measurable rates. Tryptic peptide mass mapping reveals close structural similarity between trehalose phosphorylases from basidiomycete fungi. PMID:11389683

  16. Characterization and localization of progesterone 5 alpha-reductase from cell cultures of foxglove (Digitalis lanata EHRH).

    PubMed Central

    Wendroth, S; Seitz, H U

    1990-01-01

    Progesterone 5 alpha-reductase, which catalyses the reduction of progesterone to 5 alpha-pregnane-3,20-dione, was isolated and characterized from cell cultures of Digitalis lanata (foxglove). Optimum enzyme activity was observed at pH 7.0, and the enzyme had an apparent Km value of 30 microM for its substrate progesterone. The enzyme needs NADPH as reductant, which could not be replaced by NADH. For NADPH, the apparent Km value is 130 microM. The optimum temperature was 40 degrees C; at temperatures below 45 degrees C, the product 5 alpha-pregnane-3,20-dione was reduced by a second reaction to 5 alpha-pregnan-3 beta-ol-20-one. Progesterone 5 alpha-reductase activity was not dependent on bivalent cations. In the presence of EDTA, 0.1 mM-Mn2+ had no influence on enzyme activity, whereas 0.1 mM-Ca2+, -Co2+ and -Zn2+ decreased progesterone 5 alpha-reductase activity. Only 0.1 mM-Mg2+ was slightly stimulatory. EDTA and thiol reagents such as dithiothreitol stimulate progesterone 5 alpha-reductase activity. By means of linear sucrose gradient fractionation of the cellular membranes, progesterone 5 alpha-reductase was found to be located in the endoplasmic reticulum. PMID:2106876

  17. Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies.

    PubMed

    Joshi, Ravi K; Gogate, Parag R

    2012-05-01

    The degradation of an aqueous solution of dichlorvos, a commonly used pesticide in India, has been systematically investigated using hydrodynamic cavitation reactor. All the experiments have been carried out using a 20 ppm solution of commercially available dichlorvos. The effect of important operating parameters such as inlet pressure (over a range 3-6 bar), temperature (31 °C, 36 °C and 39 °C) and pH (natural pH = 5.7 and acidic pH = 3) on the extent of degradation has been investigated initially. It has been observed that an optimum value of pressure gives maximum degradation whereas low temperature and pH of 3 are favorable. Intensification studies have been carried out using different additives such as hydrogen peroxide, carbon tetrachloride, and Fenton's reagent. Use of hydrogen peroxide and carbon tetrachloride resulted in the enhancement of the extent of degradation at optimized conditions but significant enhancement was obtained with the combined use of hydrodynamic cavitation and Fenton's chemistry. The maximum extent of degradation as obtained by using a combination of hydrodynamic cavitation and Fenton's chemistry was 91.5% in 1h of treatment time. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton's chemistry can be effectively used for the degradation of dichlorvos. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Persulfate activation by iron oxide-immobilized MnO2 composite: identification of iron oxide and the optimum pH for degradations.

    PubMed

    Jo, Young-Hoon; Do, Si-Hyun; Kong, Sung-Ho

    2014-01-01

    Iron oxide-immobilized manganese oxide (MnO2) composite was prepared and the reactivity of persulfate (PS) with the composite as activator was investigated for degradation of carbon tetrachloride and benzene at various pH levels. Brunauer-Emmett-Teller (BET) surface area of the composite was similar to that of pure MnO2 while the pore volume and diameter of composite was larger than those of MnO2. Scanning electron microscopy couples with energy dispersive spectroscopy (SEM-EDS) showed that Fe and Mn were detected on the surface of the composite, and X-ray diffraction (XRD) analysis indicated the possibilities of the existence of various iron oxides on the composite surface. Furthermore, the analyses of X-ray photoelectron (XPS) spectra revealed that the oxidation state of iron was identified as 1.74. In PS/composite system, the same pH for the highest degradation rates of both carbon tetrachloride and benzene were observed and the value of pH was 9. Scavenger test was suggested that both oxidants (i.e. hydroxyl radical, sulfate radical) and reductant (i.e. superoxide anion) were effectively produced when PS was activated with the iron-immobilized MnO2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. On the enzymatic formation of platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Govender, Y.; Riddin, T. L.; Gericke, M.; Whiteley, C. G.

    2010-01-01

    A dimeric hydrogenase enzyme (44.5 and 39.4 kDa sub units) was isolated in a 39.5% yield from the fungus Fusarium oxysporum and purified 4.64-fold by ion exchange chromatography on Sephacryl S-200. Characterisation of the enzyme afforded pH and temperature optima of 7.5 and 38 °C, respectively, a half-life stability of 36 min and a V max and K m of 3.57 nmol min-1 mL-1 and 2.25 mM, respectively. This enzyme was inhibited (non-competitively) by hydrogen hexachloroplatinic acid (H2PtCl6) at 1 or 2 mM with a K i value of 118 μM. Incubation of the platinum salt with the pure enzyme under an atmosphere of hydrogen and optimum enzyme conditions (pH 7.5, 38 °C) afforded <10% bioreduction after 8 h while at conditions suitable for platinum nanoparticle formation (pH 9, 65 °C) over 90% reduction took place after the same length of time. Cell-free extract from the fungal isolates produced nearly 90% bioreduction of the platinum salt under both pH and temperature conditions. The bioreduction of the platinum salt by a hydrogenase enzyme takes place by a passive process and not an active one as previously understood.

  20. Removal of bisphenol derivatives through quinone oxidation by polyphenol oxidase and subsequent quinone adsorption on chitosan in the heterogeneous system.

    PubMed

    Kimura, Yuji; Takahashi, Ayumi; Kashiwada, Ayumi; Yamada, Kazunori

    2015-01-01

    In this study, the combined use of a biopolymer chitosan and an oxidoreductase polyphenol oxidase (PPO) was systematically investigated for the removal of bisphenol derivatives from aqueous medium. The process parameters, such as the pH value, temperature, and PPO concentration, were estimated to conduct the enzymatic quinone oxidation of bisphenol derivatives by as little enzyme as possible. Bisphenol derivatives effectively underwent PPO-catalysed quinone oxidation without H2O2 unlike other oxidoreductases, such as peroxidase and tyrosinase, and the optimum conditions were determined to be pH 7.0 and 40°C for bisphenol B, bisphenol E, bisphenol O, and bisphenol Z; pH 7.0 and 30°C for bisphenol C and bisphenol F; and pH 8.0 and 40°C for bisphenol T. They were completely removed through adsorption of enzymatically generated quinone derivatives on chitosan beads or chitosan powders. Quinone adsorption on chitosan beads or chitosan powders in the heterogeneous system was found to be a more effective procedure than generation of aggregates in the homogeneous system with chitosan solution. The removal time was shortened by increasing the amount of chitosan beads or decreasing the size of the chitosan powders.

  1. Optimization of maltodextrin production from avocado seed starch by response surface methodology

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Viet; Ma, Tuyen-Hoang Nguyen; Nguyen, Tha Thi; Ho, Vinh-Nghi Kim; Vo, Hau Tan

    2018-04-01

    A process for maltodextrin production from avocado seed starch was reported in this study. Response surface methodology was used to investigate the effects of three independent variables for hydrolysis of the starch using a commercial food-grade α-amylase, Termamyl SC. These variables included enzyme concentration (0.05 - 0.15% starch), pH (5.0 - 6.0) and hydrolysis time (1.0 - 3.0 h), while the temperature fixed at 95°C. The result showed that the optimum conditions were using enzyme concentration at 0.12%, pH at 5.5 and 2.75 h of the incubation time. Under the optimum conditions, the recovered starch yield was 79.8% and the maltodextrin powder had 15.8 of dextrose equivalent.

  2. Biochemical characteristics and thermal inhibition kinetics of polyphenol oxidase extracted from Thompson seedless grape

    USDA-ARS?s Scientific Manuscript database

    Polyphenol oxidase (PPO) was isolated from Thompson seedless grape (Vitis vinifera 'Thompson Seedless') and its biochemical characteristics were studied. Optimum pH and temperature for grape PPO activity were pH 6.0 and 25 degrees C with 10 mM catechol as substrate. The enzyme was heat-stable betwee...

  3. Near infrared spectroscopy as an on-line method to quantitatively determine glycogen and predict ultimate pH in pre rigor bovine M. longissimus dorsi.

    PubMed

    Lomiwes, D; Reis, M M; Wiklund, E; Young, O A; North, M

    2010-12-01

    The potential of near infrared (NIR) spectroscopy as an on-line method to quantify glycogen and predict ultimate pH (pH(u)) of pre rigor beef M. longissimus dorsi (LD) was assessed. NIR spectra (538 to 1677 nm) of pre rigor LD from steers, cows and bulls were collected early post mortem and measurements were made for pre rigor glycogen concentration and pH(u). Spectral and measured data were combined to develop models to quantify glycogen and predict the pH(u) of pre rigor LD. NIR spectra and pre rigor predicted values obtained from quantitative models were shown to be poorly correlated against glycogen and pH(u) (r(2)=0.23 and 0.20, respectively). Qualitative models developed to categorize each muscle according to their pH(u) were able to correctly categorize 42% of high pH(u) samples. Optimum qualitative and quantitative models derived from NIR spectra found low correlation between predicted values and reference measurements. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd.. All rights reserved.

  4. Statistical optimization of bioprocess parameters for enhanced gallic acid production from coffee pulp tannins by Penicillium verrucosum.

    PubMed

    Bhoite, Roopali N; Navya, P N; Murthy, Pushpa S

    2013-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid) was produced by microbial biotransformation of coffee pulp tannins by Penicillium verrucosum. Gallic acid production was optimized using response surface methodology (RSM) based on central composite rotatable design. Process parameters such as pH, moisture, and fermentation period were considered for optimization. Among the various fungi isolated from coffee by-products, Penicillium verrucosum produced 35.23 µg/g of gallic acid on coffee pulp as sole carbon source in solid-state fermentation. The optimum values of the parameters obtained from the RSM were pH 3.32, moisture 58.40%, and fermentation period of 96 hr. Gallic acid production with an increase of 4.6-fold was achieved upon optimization of the process parameters. The results optimized could be translated to 1-kg tray fermentation. High-performance liquid chromatography (HPLC) analysis and spectral studies such as mass spectroscopy (MS) and (1)H-nuclear magnetic resonance (NMR) confirmed that the bioactive compound isolated was gallic acid. Thus, coffee pulp, which is available in enormous quantity, could be used for the production of value-added products that can find avenues in food, pharmaceutical, and chemical industries.

  5. Optimization of Acid Orange 7 Degradation in Heterogeneous Fenton-like Reaction Using Fe3-xCoxO4 Catalyst

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. Z.; Alrozi, R.; Zubir, N. A.; Bashah, N. A.; Ali, S. A. Md; Ibrahim, N.

    2018-05-01

    The oxidation process such as heterogeneous Fenton and/or Fenton-like reactions is considered as an effective and efficient method for treatment of dye degradation. In this study, the degradation of Acid Orange 7 (AO7) was investigated by using Fe3-xCoxO4 as a heterogeneous Fenton-like catalyst. Response surface methodology (RSM) was used to optimize the operational parameters condition and the interaction of two or more parameters. The parameter studies were catalyst dosage (X1 ), pH (X2 ) and H2O2 concentration (X3 ) towards AO7 degradation. Based on analysis of variance (ANOVA), the derived quadratic polynomial model was significant whereby the predicted values matched the experimental values with regression coefficient of R2 = 0.9399. The optimum condition for AO7 degradation was obtained at catalyst dosage of 0.84 g/L, pH of 3 and H2O2 concentration of 46.70 mM which resulted in 86.30% removal of AO7 dye. These findings present new insights into the influence of operational parameters in the heterogeneous Fenton-like oxidation of AO7 using Fe3-xCoxO4 catalyst.

  6. Removal of Pb (II) Ions from Aqueous Solutions by Cladophora rivularis (Linnaeus) Hoek

    PubMed Central

    Jafari, Naser; Senobari, Zoreh

    2012-01-01

    Biosorption of Pb(II) using Cladophora rivularis was examined as a function of initial pH heavy metal concentration and temperature. The optimum pH value for the biosorption of lead was 4.0. The adsorption equilibriums were well described by Langmuir and Freundlich isotherm models and it was implied by the results that the C. rivularis biomass is suitable for the development of efficient biosorbent in order to remove Pb(II) from wastewater and to recover it. The high values of correlation coefficient (R 2 = 0.984) demonstrate equilibrium data concerning algal biomass, which is well fitted in Freundlich isotherms model equations. The dimensionless parameter R L is found in the range of 0.0639 to 0.1925 (0 < R L < 1), which confirms the favorable biosorption process. Fourier transform infra-red (FTIR) spectroscopy of C. rivularis was used to reveal the main function groups of biosorption, which were hydroxyl, amine groups, C–H stretching vibrations of –CH3 and –CH2, and complexation with functional groups. All these results suggest that C. rivularis can be used effectively for removal of Pb(II). PMID:22629198

  7. Degradation of various chlorophenols under alkaline conditions by gram-negative bacteria closely related to Ochrobactrum anthropi.

    PubMed

    Müller, R H; Jorks, S; Kleinsteuber, S; Babel, W

    1998-01-01

    From concrete debris of a demolished herbicide production plant several Gram-negative bacterial strains were isolated, which exhibit metabolic capabilities for the degradation of 2,4-dichlorophenol (DCP)l), 4-chloro-2-methylphenol (MCP) and 4-chlorophenol (4-CP), while 2-chlorophenol (2-CP) was degraded at a slower rate. Degradative activity was inducible and was impeded by adding of 100 mg/l of chloramphenicol to growing cultures. The strains displayed alkaliphilic properties with optimum DCP/MCP degradation at pH values around 8.5-9.5; activity was observed up to pH values of 11. Degradation was most likely complete according to chlorine balances; formation of intermediary products was observed with MCP some time. Specific activity of up to 380 mumol/h.g dry mass was found within the concentration range of 10-20 mg/l DCP; higher concentrations retarded the activity with complete inhibition at 200-400 mg/l. Some of the strains carry plasmids whose presence was not unambiguously correlated to the degradative properties. Ribotyping revealed a high degree of relationship between the strains. Preliminary taxonomic investigations showed close relationship to Ochrobactrum anthropi.

  8. Conversion of shrimp shell by using Serratia sp. TKU017 fermentation for the production of enzymes and antioxidants.

    PubMed

    Wang, San-Lang; Li, Jeng-Yu; Liang, Tzu-Wen; Hsieh, Jia-Lin; Tseng, Wan-Nine

    2010-01-01

    A chitinase (CHT), and a protease (PRO) were purified from the culture supernatant of Serratia sp. TKU017 with shrimp shell as the sole carbon/nitrogen source. The molecular masses of CHT and PRO determined by SDS-PAGE were approximately 65 kDa and 53 kDa, respectively. CHT was inhibited by Mn2+, Cu2+ and PRO was inhibited by most tested divalent metals, EDTA. The optimum pH, optimum temperature, pH stability, and thermal stability of CHT and PRO were (pH 5, 50 degrees , pH 5 degrees ) and (pH 9, 40 degrees , pH 5 degrees ), respectively. PRO retained 95% of its protease activity in the presence of 0.5 mM SDS. The result demonstrates that PRO is SDS-resistant protease and probably has a rigid structure. The 4th day supernatant showed the strongest antioxidant activity (70%, DPPH scavenging ability) and the highest total phenolic content (196+/-6.2 microng of gallic acid equival/mL). Significant associations between the antioxidant potency and the total phenolic content, as well as between the antioxidant potency and free amino groups, were found for the supernatant. With this method, we have shown that shrimp shell wastes can be utilized and it's effective in the production of enzymes and antioxidants, facilitating its potential use in industrial applications and functional foods.

  9. Arsenic Removal and Its Chemistry in Batch Electrocoagulation Studies.

    PubMed

    Sharma, Anshul; Adapureddy, Sri Malini; Goel, Sudha

    2014-04-01

    The aim of this study was to evaluate the impact of different oxidizing agents like light, aeration (by mixing) and electrocoagulation (EC) on the oxidation of As (III) and its subsequent removal in an EC batch reactor. Arsenic solutions prepared using distilled water and groundwater were evaluated. Optimum pH and the effect of varying initial pH on As removal efficiency were also evaluated. MaximumAs (III) removal efficiency with EC, light and aeration was 97% from distilled water and 71% from groundwater. Other results show that EC alone resulted in 90% As removal efficiency in the absence of light and mixing from distilled water and 53.6% from groundwater. Removal with light and mixing but without EC resulted in only 26% As removal from distilled water and 29% from groundwater proving that electro-oxidation and coagulation were more effective in removing arsenic compared to the other oxidizing agents examined. Initial pH was varied from 5 to 10 in distilled water and from 3 to 12 in groundwater for evaluating arsenic removal efficiency by EC. The optimum initial pH for arsenic removal was 7 for distilled water and groundwater. For all initial pHs tested between 5 and 10 in distilled water, the final pH ranged between 7 and 8 indicating that the EC process tends towards near neutral pH under the conditions examined in this study.

  10. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles.

    PubMed

    Azeez, Fadhel; Al-Hetlani, Entesar; Arafa, Mona; Abdelmonem, Yasser; Nazeer, Ahmed Abdel; Amin, Mohamed O; Madkour, Metwally

    2018-05-08

    Herein, a simple approach based on tailoring the surface charge of nanoparticles, NPs, during the preparation to boost the electrostatic attraction between NPs and the organic pollutant was investigated. In this study, chargeable titania nanoparticles (TiΟ 2 NPs) were synthesized via a hydrothermal route under different pH conditions (pH = 1.6, 7.0 and 10). The prepared TiΟ 2 NPs were fully characterized via various techniques including; transmission electron microscopy (TEM), X-ray diffraction (XRD), N 2 adsorption/desorption, X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible spectroscopy (UV-Vis) and dynamic light scattering (DLS). The influence of the preparation pH on the particle size, surface area and band gap was investigated and showed pH-dependent behavior. The results revealed that upon increasing the pH value, the particle size decreases and lead to larger surface area with less particles agglomeration. Additionally, the effect of pH on the surface charge was monitored by XPS to determine the amount of hydroxyl groups on the TiO 2 NPs surface. Furthermore, the photocatalytic activity of the prepared TiΟ 2 NPs towards methylene blue (MB) photodegradation was manifested. The variation in the preparation pH affected the point of zero charge (pH PZC ) of TiO 2 NPs, subsequently, different photocatalytic activities based on electrostatic interactions were observed. The optimum efficiency obtained was 97% at a degradation rate of 0.018 min -1 using TiO 2 NPs prepared at pH 10.

  11. Treatment of combined acid mine drainage (AMD)--flotation circuit effluents from copper mine via Fenton's process.

    PubMed

    Mahiroglu, Ayse; Tarlan-Yel, Esra; Sevimli, Mehmet Faik

    2009-07-30

    The treatability of a copper mine wastewater, including heavy metals, AMD, as well as flotation chemicals, with Fenton process was investigated. Fenton process seems advantageous for this treatment, because of Fe(2+) content and low pH of AMD. First, optimum Fe(2+) condition under constant H(2)O(2) was determined, and initial Fe(2+) content of AMD was found sufficient (120 mg/L for removal of chemical oxygen demand (COD) of 6125 mg/L). In the second step, without any additional Fe(2+), optimum H(2)O(2) dosage was determined as 40 mg/L. Fe(2+)/H(2)O(2) molar ratio of 1.8 was enough to achieve the best treatment performance. In all trials, initial pH of AMD was 4.8 and pH adjustment was not performed. Utilization of existing pH and Fe(2+), low H(2)O(2) requirements, and up to 98% treatment performances in COD, turbidity, color, Cu(2+), Zn(2+) made the proposed treatment system promising. Since the reaction occurs stepwise, a two-step kinetic model was applied and calculated theoretical maximum removal rate was consistent to experimental one, which validates the applied model. For the optimum molar ratio (1.8), 140 mL/L sludge of high density (1.094 g/mL), high settling velocity (0.16 cm/s) with low specific resistance (3.15 x 10(8)m/kg) was obtained. High reaction rates and easily dewaterable sludge characteristics also made the proposed method advantageous.

  12. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    PubMed

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  13. Biochemical Characterization, Thermal Stability, and Partial Sequence of a Novel Exo-Polygalacturonase from the Thermophilic Fungus Rhizomucor pusillus A13.36 Obtained by Submerged Cultivation.

    PubMed

    Trindade, Lucas Vinícius; Desagiacomo, Carla; Polizeli, Maria de Lourdes Teixeira de Moraes; Damasio, André Ricardo de Lima; Lima, Aline Margarete Furuyama; Gomes, Eleni; Bonilla-Rodriguez, Gustavo Orlando

    2016-01-01

    This work reports the production of an exo-polygalacturonase (exo-PG) by Rhizomucor pusillus A13.36 in submerged cultivation (SmC) in a shaker at 45°C for 96 h. A single pectinase was found and purified in order to analyze its thermal stability, by salt precipitation and hydrophobic interaction chromatography. The pectinase has an estimated Mw of approximately 43.5-47 kDa and optimum pH of 4.0 but is stable in pH ranging from 3.5 to 9.5 and has an optimum temperature of 61°C. It presents thermal stability between 30 and 60°C, has 70% activation in the presence of Ca 2+ , and was tested using citrus pectin with a degree of methyl esterification (DE) of 26%. E a ( d ) for irreversible denaturation was 125.5 kJ/mol with positive variations of entropy and enthalpy for that and Δ G ( d ) values were around 50 kJ/mol. The hydrolysis of polygalacturonate was analyzed by capillary electrophoresis which displayed a pattern of sequential hydrolysis (exo). The partial identification of the primary sequence was done by MS MALDI-TOF and a comparison with data banks showed the highest identity of the sequenced fragments of exo-PG from R. pusillus with an exo-pectinase from Aspergillus fumigatus . Pectin hydrolysis showed a sigmoidal curve for the Michaelis-Menten plot.

  14. Biochemical Characterization, Thermal Stability, and Partial Sequence of a Novel Exo-Polygalacturonase from the Thermophilic Fungus Rhizomucor pusillus A13.36 Obtained by Submerged Cultivation

    PubMed Central

    Trindade, Lucas Vinícius; Desagiacomo, Carla; Damasio, André Ricardo de Lima; Lima, Aline Margarete Furuyama; Gomes, Eleni

    2016-01-01

    This work reports the production of an exo-polygalacturonase (exo-PG) by Rhizomucor pusillus A13.36 in submerged cultivation (SmC) in a shaker at 45°C for 96 h. A single pectinase was found and purified in order to analyze its thermal stability, by salt precipitation and hydrophobic interaction chromatography. The pectinase has an estimated Mw of approximately 43.5–47 kDa and optimum pH of 4.0 but is stable in pH ranging from 3.5 to 9.5 and has an optimum temperature of 61°C. It presents thermal stability between 30 and 60°C, has 70% activation in the presence of Ca2+, and was tested using citrus pectin with a degree of methyl esterification (DE) of 26%. E a(d) for irreversible denaturation was 125.5 kJ/mol with positive variations of entropy and enthalpy for that and ΔG (d) values were around 50 kJ/mol. The hydrolysis of polygalacturonate was analyzed by capillary electrophoresis which displayed a pattern of sequential hydrolysis (exo). The partial identification of the primary sequence was done by MS MALDI-TOF and a comparison with data banks showed the highest identity of the sequenced fragments of exo-PG from R. pusillus with an exo-pectinase from Aspergillus fumigatus. Pectin hydrolysis showed a sigmoidal curve for the Michaelis-Menten plot. PMID:28025649

  15. Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non-steroidal anti-inflammatory drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Deepti; Rawat, Surender; Waseem, Mohd

    The YacK gene from Yersinia enterocolitica strain 7, cloned in pET28a vector and expressed in Escherichia coli BL21 (DE3), showed laccase activity when oxidized with 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and guaiacol. The recombinant laccase protein was purified and characterized biochemically with a molecular mass of ≈58 KDa on SDS-PAGE and showed positive zymogram with ABTS. The protein was highly robust with optimum pH 9.0 and stable at 70 °C upto 12 h with residual activity of 70%. Kinetic constants, K{sub m} values, for ABTS and guaiacol were 675 μM and 2070 μM, respectively, with corresponding Vmax values of 0.125 μmol/ml/min and 6500 μmol/ml/min. It also possess antioxidative propertymore » against BSA and Cu{sup 2+}/H{sub 2}O{sub 2} model system. Constant pH MD simulation studies at different protonation states of the system showed ABTS to be most stable at acidic pH, whereas, diclofenac at neutral pH. Interestingly, aspirin drifted out of the binding pocket at acidic and neutral pH, but showed stable binding at alkaline pH. The biotransformation of diclofenac and aspirin by laccase also corroborated the in silico results. This is the first report on biotransformation of non-steroidal anti-inflammatory drugs (NSAIDs) using recombinant laccase from gut bacteria, supported by in silico simulation studies. - Highlights: • Laccase from Yersinia enterocolitica strain 7 was expressed in Escherichia coli BL21 (DE3). • Recombinant laccase was found to be thermostable and alkali tolerant. • The in silico and experimental studied proves the biotransformation of NSAIDs. • Laccase binds to ligands differentially under different protonation state. • Laccase also possesses free radical scavenging property.« less

  16. Coagulant from Leucaena leucocephala for Chromium Removal

    NASA Astrophysics Data System (ADS)

    Razak, N. H. Abd; Khairuddin, N.; Ismail, K. N.; Musa, M.

    2018-05-01

    This research investigated the effectiveness of leucaena leucocephala as a natural coagulant for chromium removal. Leucaena leucocephala is a permanent non-climbing shrub tree which is wild and abundant in Malaysia and commonly known as petai belalang. Coagulation experiment using jar test were performed where the effect of coagulant dosage and pH were examined. The parameters investigated were suspended solid (SS), chemical oxygen demand (COD), biological oxygen demand (BOD), turbidity and chromium content. The optimum of leucaena leucocephala coagulant dosage for removal of suspended solid, turbidity, COD, BOD and Chromium is at range 400-600 mg/L which yielded 45, 31.4, 38.5, 27.5 and 4.05% removal respectively. While the optimum pH is at pH 2-4 (acidic) which give 33.3, 26.8, 33.75, 31.4 and 14.06% removal of suspended solid, COD, BOD, turbidity and chromium content respectively. It is concluded that the leucaena leucocephala showed tremendous potential for chromium removal.

  17. Purification and characterization of a fibrinolytic enzyme from tempeh bongkrek as an alternative of thrombolytic agents

    NASA Astrophysics Data System (ADS)

    Sasmita, I. R. A.; Sutrisno, A.; Zubaidah, E.; Wardani, A. K.

    2018-03-01

    Tempeh is one of Indonesia’s traditional foods that contain fibrinolytic enzymes. Tempeh bongkrek shows very strong activity among various tempeh. The fibrinolytic enzymes of bongkrek tempeh are obtained by steps of purification i.e, ammonium sulphate precipitation, ion exchange chromatography and gel filtration chromatography. The fibrinolytic enzymes has been successfully purified with a yield of 4.37%, specific activity of 3,361 U / mg and purification fold of 44.02. SDS PAGE analysis showed that the enzyme was purified in to single band with estimated molecular mass of 75.82 kDa. The purified enzyme has optimum pH of 7 and optimum temperature of 50°C and pH stability between pH 4 - 7 with temperature stability from 30°-50°C. The fibrinolytic activity is increased with addition of CaCl2 but inhibited with CuSO4, phenylmethylsulfonyl fluoride (PMSF), sodium dodecyl sulfate (SDS), and ethylenediaminetetraacetic acid (EDTA).

  18. Biosorption of copper, nickel and manganese using non-living biomass of marine alga, Ulva lactuca.

    PubMed

    Omar, Hanan Hafez

    2008-04-01

    The adsorption of Cu2+, Ni2+ and Mn2+ onto the marine algal biomass of Ulva lactuca was investigated in single and multimetal solutions. This study was intended to determine the role of different pH values (2-8) on the biosorption of metals at different concentrations (10, 20 and 30 mg L(-1)). The biosorption capacity of Cu2+, Ni2+ and Mn2+ for 10 mg L(-1) was the same as 20 and 30 mg L(-1), increase with increasing pH up to pH 5.0 and then decreased, in single and multimetal solutions. The optimum pH value was observed in the pH range 4-5 for Cu2+ and pH 5-6 for Ni2+ and Mn2+. The maximum biosorption capacities of tested alga for Cu2+, Ni2+ and Mn2+ were 92, 80 and 75%, respectively in single metal solution at 10 mg L(-1) and pH 5.0. At a further increase of pH (8.0) the biosorption process for Cu2+, Ni2+ and Mn2+ (75, 69 and 63%, respectively at 10 mg L(-1)) was decreased. The minimum biosorptions were 60, 49 and 44% for Cu2+, Ni2+ and Mn2+, respectively in single metal solution at 10 mg L(-1) and pH 2.0. In the multimetal solution, algal biomass exhibited the maximum and the minimum biosorption capacity at different pH values the same as in single metal solution. The inhibitory role of other ions on sorption process can be well observed in multimetal mixture, where biosorption capacity of Cu2+, Ni2+ and Mn2+ were significantly decreased in the multimetal solutions. The maximum biosorption was recorded for Cu2+ (83%) in solution of Cu2+ + Mn2+, Mn2+ (67%) in solution of Ni2 + Mn2+ and for Ni2+ (74%) in solution of Ni2+ + Mn2+ at the concentration 10 mg L(-1) and pH 5.0. The observed reduction in the biosorption of Cu2+, Ni2+ and Mn2+ (65, 57 and 52%, respectively at 10 mg L(-1) and pH 5.0) was more pronounced in the multimetal solution of Cu2 + Ni2+ + Mn2+ as compared with single metal solution. The results demonstrated that the affinity of the tested alga for sorption of the investigated metal ions in single and multimetal solutions runs in the order Cu2+ > Ni2+ > Mn2+. Biosorption equilibrium was established by the Langmuir and Freundlich isotherm models. According to the analyses conducted, the biosorption of Cu2+, Ni2+ and Mn2+ to Ulva lactuca was more consistent with Freundlich isotherm.

  19. Removal of Heavy Metals from Solid Wastes Leachates Coagulation-Flocculation Process

    NASA Astrophysics Data System (ADS)

    Yousefi, Z.; Zazouli, M. A.

    The main objectives of present research were to determine heavy metals (Ni, Cd, Cr, Zn and Cu) and COD concentration in raw leachate in Esfahan (Iran) composting plant and to examine the application of coagulation-flocculation process for the treatment of raw leachates. Jar-test experiments were employed in order to determine the optimum conditions (effective dosage and optimum pH) for the removal of COD and heavy metals. Alum (aluminum sulphate) and Ferric chloride were tested as conventional coagulants. Ten times had taken sampling from leachates as standard methods in the composting plant prior to composting process. The results showed that Leachate pH was 4.3-5.9 and the average was 4.98±0.62. The concentration of Leachate pollutants were more than effluent standard limits (Environment protection Agency). And also the results indicated, Cd and Zn with concentration 0.46±0.41 and 5.81±3.69 mg L-1, had minimum and maximum levels, respectively. The results of coagulation and flocculation tests showed that in optimum conditions, the removal efficiency of heavy metals and COD by using alum were 77-91 and 21%, respectively. While removal of heavy metals and COD by ferric chloride were 68-85.5% and 28%, respectively. Also the residues of heavy metals after treatment get to under of standard limits of Iran EPA. The results have indicated optimum pH of two coagulants for leachate treatment was 6.5 and 10 and also effective coagulant dosages were 1400 and 1000 mg L-1 for alum and ferric chloride, respectively. In view of economical, ferric chloride is cost benefit. The physico-chemical process may be used as a useful pretreatment step, especially for fresh leachates.

  20. Planococcus salinus sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil.

    PubMed

    Gan, Longzhan; Zhang, Heming; Tian, Jiewei; Li, Xiaoguang; Long, Xiufeng; Zhang, Yuqin; Dai, Yumei; Tian, Yongqiang

    2018-02-01

    A novel aerobic, Gram-stain-positive, motile, moderately halophilic and coccoid bacterial strain, designated LCB217 T , was isolated from a saline-alkali soil in north-western China and identified using a polyphasic taxonomic approach. Growth occurred with 3-15 % (w/v) NaCl (optimum 3-5 %), at 10-45 °C (optimum 30 °C) and at pH 7.0-9.0 (optimum pH 9.0). Strain LCB217 T contained MK-7 and MK-8 as the predominant menaquinones and anteiso-C15 : 0, iso-C14 : 0 and iso-C16 : 0 as the major fatty acids. The polar lipids from strain LCB217 T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified phospholipid, one unidentified aminophospholipid and one unidentified lipid. The peptidoglycan type was A4α (l-Lys-d-Glu). Phylogenetic analysis of the 16S rRNA gene sequence showed that strain LCB217 T belonged to the genus Planococcus and was closely related to the type strains Planococcus plakortidis AS/ASP6 (II) T (98.2 % similarity), Planococcus maitriensis S1 T (97.7 %) and Planococcus salinarum ISL-16 T (97.2 %). The G+C content of the genomic DNA was 49.4 mol%. DNA-DNA relatedness values between strain LCB217 T andPlanococcusplakortidis AS/ASP6 (II) T , Planococcusmaitriensis S1 T andPlanococcussalinarum ISL-16 T were 29.5, 38.1 and 39.5 %, respectively. On the basis of the phenotypic, phylogenetic and genomic data, strain LCB217 T represents a novel species of the genus Planococcus, for which the name Planococcus salinus sp. nov. is proposed. The type strain is LCB217 T (=CGMCC 1.15685 T =KCTC 33861 T ).

  1. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater.

    PubMed

    Xu, Zhen-Xing; Zhang, Heng-Xi; Han, Ji-Ru; Dunlap, Christopher A; Rooney, Alejandro P; Mu, Da-Shuai; Du, Zong-Jun

    2017-06-01

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate represented a member of the genus Colwellia and exhibited the highest sequence similarity (97.4 %) to Colwellia aestuarii SMK-10T. Average nucleotide identity (ANI) values based on draft genome sequences between strain QM50T and C. aestuarii KCTC 12480T showed a relatedness of 72.0 % (ANIb) and 85.1 % (ANIm). Cells of strain QM50T were approximately 0.3-0.6×0.8-2.5 µm in size and motile by means of a polar flagellum. Growth occurred in the presence of 1.0-6.0 % (w/v) NaCl (optimum, 2.0-3.0 %), at pH 6.5-8.5 (optimum, pH 7.0) and at 4-37 °C (optimum, 28-30 °C). Strain QM50T was found to contain ubiquinone 8 (Q-8) as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and C17 : 1ω8c as the main cellular fatty acids. Phosphatidylethanolamine and phosphatidylglycerol were found to be major polar lipids. The DNA G+C content of strain QM50T was determined to be 35.7 mol%. On the basis of phylogenetic and phenotypic data, strain QM50T represents a novel species of the genus Colwellia, for which the name Colwellia agarivorans sp. nov. is proposed. The type strain is QM50T (=KCTC 52273T=MCCC 1H00143T).

  2. Lysobacter oligotrophicus sp. nov., isolated from an Antarctic freshwater lake in Antarctica.

    PubMed

    Fukuda, Wakao; Kimura, Tomomi; Araki, Shigeo; Miyoshi, Yuki; Atomi, Haruyuki; Imanaka, Tadayuki

    2013-09-01

    A Gram-stain-negative, non-spore-forming, rod-shaped, aerobic bacterium (strain 107-E2(T)) was isolated from freshwater samples containing microbial mats collected at a lake in Skarvsnes, Antarctica (temporary lake name, Lake Tanago Ike). Strain 107-E2(T) grew between 5 and 25 °C, with an optimum of 23 °C. Moreover, colony formation was observed on agar media even at -5 °C. The pH range for growth was between 6.0 and 9.0, with an optimum of pH 7.0-8.0. The range of NaCl concentration for growth was between 0.0 and 0.5% (w/v), with an optimum of 0.0%. No growth was observed in media containing organic compounds at high concentrations, which indicated that strain 107-E2(T) was an oligotroph. In the late stationary phase, strain 107-E2(T) produced a dark brown water-soluble pigment. Esterase, amylase and protease production was observed. Antimicrobial-lytic activities for Gram-negative bacteria and yeast were observed. Ubiquinone-8 was the major respiratory quinone. The major fatty acids were iso-C15:0, iso-C(17:1)ω9c and iso-C(15:1) at 5. The G+C content of genomic DNA was 66.1 mol%. Analysis of the 16S rRNA gene sequences revealed that strain 107-E2(T) belonged to the genus Lysobacter, and low DNA-DNA relatedness values with closely related species distinguished strain 107-E2(T) from recognized species of the genus Lysobacter. The phylogenetic situation and physiological characteristics indicated that strain 107-E2(T) should be classified as a representative of a novel species of the genus Lysobacter, for which the name Lysobacter oligotrophicus sp. nov. is proposed. The type strain is 107-E2(T) ( =JCM 18257(T) =ATCC BAA-2438(T)).

  3. Raineyella antarctica gen. nov., sp. nov., a psychrotolerant, d-amino-acid-utilizing anaerobe isolated from two geographic locations of the Southern Hemisphere.

    PubMed

    Pikuta, Elena Vladimirovna; Menes, Rodolfo Javier; Bruce, Alisa Michelle; Lyu, Zhe; Patel, Nisha B; Liu, Yuchen; Hoover, Richard Brice; Busse, Hans-Jürgen; Lawson, Paul Alexander; Whitman, William Barney

    2016-12-01

    A Gram-stain-positive bacterium, strain LZ-22T, was isolated from a rhizosphere of moss Leptobryum sp. collected at the shore of Lake Zub in Antarctica. Cells were motile, straight or pleomorphic rods with sizes of 0.6-1.0×3.5-10 µm. The novel isolate was a facultatively anaerobic, catalase-positive, psychrotolerant mesophile. Growth was observed at 3-41 °C (optimum 24-28 °C), with 0-7 % (w/v) NaCl (optimum 0.25 %) and at pH 4.0-9.0 (optimum pH 7.8). The quinone system of strain LZ-22T possessed predominately menaquinone MK-9(H4). The genomic G+C content was 70.2 mol%. Strain 10J was isolated from a biofilm of sediment microbial fuel cell, in Uruguay and had 99 % 16S rRNA gene sequence similarity to strain LZ-22T. DNA-DNA-hybridization values of 84 % confirmed that both strains belonged to the same species. Both strains grew on sugars, proteinaceous compounds, and some amino- and organic acids. Strain LZ-22T uniquely grew on D-enantiomers of histidine and valine while neglecting growth on L-enantiomers. Both strains were sensitive to most of the tested antibiotics but resistant to tested nitrofurans and sulfanilamides. Phylogenetic analyses of the 16S rRNA gene sequences indicated that the strains were related to members of the family Propionibacteriaceae (~93-94 % 16S rRNA gene sequence similarity) with formation of a separate branch within the radiation of the genera Granulicoccus and Luteococcus. Based on phenotypic and genotypic characteristics, we propose the affiliation of both strains into a novel species of a new genus. The name Raineyella antarctica gen. nov., sp. nov. is proposed for the novel taxon with the type strain LZ-22T (=ATCC TSD-18T=DSM 100494T=JCM 30886T).

  4. Methylobacterium frigidaeris sp. nov., isolated from an air conditioning system.

    PubMed

    Lee, Yunho; Jeon, Che Ok

    2018-01-01

    A reddish pink-pigmented, Gram-stain-negative, aerobic and methylotrophic bacterial strain, designated strain IER25-16 T , was isolated from a laboratory air conditioning system in the Republic of Korea. Cells were motile rods showing catalase- and oxidase-positive reactions. Strain IER25-16 T grew at 10-40 °C (optimum, 30 °C), at pH 4.0-7.0 (optimum, pH 5.0-7.0) and in the presence of 0-1.0 % (w/v) NaCl (optimum, 0 %). The major respiratory quinone was ubiquinone-10 and ubiquinone-9 was also detected as the minor respiratory quinone. Summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c) was detected as the predominant fatty acids. The genomic DNA G+C content of strain IER25-16 T was 70.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that strain IER25-16 T belonged to the genus Methylobacterium of the class Alphaproteobacteria. Strain IER25-16 T was most closely related to Methylobacterium platani PMB02 T (97.9 %), Methylobacterium aquaticum GR16 T (97.9 %) and Methylobacterium tarhaniae N4211 T (97.5 %). The average nucleotide identity and in silico DNA-DNA hybridization values between strain IER25-16 T and M. platani, M. aquaticum and M. tarhaniae were 88.3, 88.8 and 89.6 % and 36.2, 37.3 and 39.3 %, respectively. The phenotypic and chemotaxonomic features and the phylogenetic inference clearly suggested that strain IER25-16 T represents a novel species of the genus Methylobacterium, for which the name Methylobacteriumfrigidaeris sp. nov. is proposed. The type strain is strain IER25-16 T (=KACC 19280 T =JCM 32048 T ).

  5. Cloning and high-level expression of β-xylosidase from Selenomonas ruminantium in Pichia pastoris by optimizing of pH, methanol concentration and temperature conditions.

    PubMed

    Dehnavi, Ehsan; Ranaei Siadat, Seyed Omid; Fathi Roudsari, Mehrnoosh; Khajeh, Khosro

    2016-08-01

    β-xylosidase and several other glycoside hydrolase family members, including xylanase, cooperate together to degrade hemicelluloses, a commonly found xylan polymer of plant-cell wall. β-d-xylosidase/α-l-arabinofuranosidase from the ruminal anaerobic bacterium Selenomonas ruminantium (SXA) has potential utility in industrial processes such as production of fuel ethanol and other bioproducts. The optimized synthetic SXA gene was overexpressed in methylotrophic Pichia pastoris under the control of alcohol oxidase I (AOX1) promoter and secreted into the medium. Recombinant protein showed an optimum pH 4.8 and optimum temperature 50 °C. Furthermore, optimization of growth and induction conditions in shake flask was carried out. Using the optimum expression condition (pH 6, temperature 20 °C and 1% methanol induction), protein production was increased by about three times in comparison to the control. The recombinant SXA we have expressed here showed higher turnover frequency using ρ-nitrophenyl β-xylopyranoside (PNPX) substrate, in contrast to most xylosidase experiments reported previously. This is the first report on the cloning and expression of a β-xylosidase gene from glycoside hydrolase (GH) family 43 in Pichia pastoris. Our results confirm that P. pastoris is an appropriate host for high level expression and production of SXA for industrial applications. Copyright © 2016. Published by Elsevier Inc.

  6. Evaluating photo-degradation of COD and TOC in petroleum refinery wastewater by using TiO2/ZnO photo-catalyst.

    PubMed

    Aljuboury, Dheeaa Al Deen Atallah; Palaniandy, Puganeshwary; Abdul Aziz, Hamidi Bin; Feroz, Shaik; Abu Amr, Salem S

    2016-09-01

    The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO 2 /ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO 2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (<0.0001). The obtained optimum conditions included a reaction time of 170 min, TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), and pH 6.8 COD and TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.

  7. Heterotrophic Nature of the Cell-Free Protein-Synthesizing System from the Strict Chemolithotroph, Thiobacillus thiooxidans

    PubMed Central

    Amemiya, K.; Umbreit, W. W.

    1974-01-01

    A cell-free protein-synthesizing system prepared from the strict chemolithotroph, Thiobacillus thiooxidans, was similar to that of heterotrophs. The poly-U directed system had a temperature optimum of 37 C, but in the presence of spermidine (3 mM) the optimum shifted to 45 C. Although growth of the chemolithotroph occurs only in acid conditions, the pH optimum for the cell-free system was pH 7.2. The endogenous-directed activity in the presence or absence of spermidine was maximal at pH 7.8. Spermidine had a stimulatory effect; however, this effect was dependent on the magnesium and tris(hydroxymethyl)aminomethane (Tris) concentrations. At low Tris concentrations (10 mM), spermidine (3 to 5 mM) could completely replace magnesium. When the Tris concentration was increased (50 mM), spermidine could not replace magnesium. Supernatant and ribosomal fractions from T. thiooxidans were exchanged with those of Bacillus thuringiensis and Escherichia coli, and the ribosomal fraction from the chemolithotroph gave good to moderate stimulation when exchanged with the supernatant from the heterotrophs. On the other hand, the supernatant from T. thiooxidans gave good stimulation when mixed with ribosomes from B. thuringiensis but poor activity with ribosomes from E. coli. Both supernatant and ribosomal fractions prepared from stationary phase extracts of T. thiooxidans were inactive in the cell-free system. PMID:4590488

  8. Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and a(w).

    PubMed

    Baril, Eugénie; Coroller, Louis; Couvert, Olivier; El Jabri, Mohammed; Leguerinel, Ivan; Postollec, Florence; Boulais, Christophe; Carlin, Frédéric; Mafart, Pierre

    2012-10-01

    Sporulation niches in the food chain are considered as a source of hazard and are not clearly identified. Determining the sporulation environmental boundaries could contribute to identify potential sporulation niches. Spore formation was determined in a Sporulation Mineral Buffer. The effect of incubation temperature, pH and water activity on time to one spore per mL, maximum sporulation rate and final spore concentration was investigated for a Bacillus weihenstephanensis and a Bacillus licheniformis strain. Sporulation boundaries of B. weihenstephanensis and of B. licheniformis were similar to, or included within, the range of temperatures, pH and water activities supporting growth. For instance, sporulation boundaries of B. weihenstephanensis were evaluated at 5°C, 35°C, pH 5.2 and a(w) 0.960 while growth boundaries were observed at 5°C, 37°C, pH 4.9 and a(w) 0.950. Optimum spore formation was determined at 30°C pH 7.2 for B. weihenstephanensis and at 45°C pH 7.2 for B. licheniformis. Lower temperatures and pH delayed the sporulation process. For instance, the time to one spore per mL was tenfold longer when sporulation occurred at 10°C and 20°C, for each strain respectively, than at optimum sporulation temperature. The relative effect of temperature and pH on sporulation rates and on growth rates is similar. This work suggests that the influence of environmental factors on the quantitative changes in sporulation boundaries and rates was similar to their influence on changes in growth rate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Removal of ammonium from aqueous solutions with volcanic tuff.

    PubMed

    Marañón, E; Ulmanu, M; Fernández, Y; Anger, I; Castrillón, L

    2006-10-11

    This paper presents kinetic and equilibrium data concerning ammonium ion uptake from aqueous solutions using Romanian volcanic tuff. The influence of contact time, pH, ammonium concentration, presence of other cations and anion species is discussed. Equilibrium isotherms adequately fit the Langmuir and Freundlich models. The results showed a contact time of 3h to be sufficient to reach equilibrium and pH of 7 to be the optimum value. Adsorption capacities of 19 mg NH(4)(+)/g were obtained in multicomponent solutions (containing NH(4)(+), Zn(2+), Cd(2+), Ca(2+), Na(2+)). The presence of Zn and Cd at low concentrations did not decrease the ammonium adsorption capacity. Comparison of Romanian volcanic tuff with synthetic zeolites used for ammonium removal (5A, 13X and ZSM-5) was carried out. The removal efficiciency of ammonium by volcanic tuff were similar to those of zeolites 5A and 13X at low initial ammonium concentration, and much higher than those of zeolite ZSM-5.

  10. Preparation and Characterization of Biochars from Eichornia crassipes for Cadmium Removal in Aqueous Solutions.

    PubMed

    Li, Feng; Shen, Kaixuan; Long, Xiaolin; Wen, Jiasheng; Xie, Xiaojie; Zeng, Xiangyun; Liang, Yanyan; Wei, Yansha; Lin, Zefeng; Huang, Wenrou; Zhong, Ruida

    2016-01-01

    The study investigated the preparation and characterization of biochars from water hyacinth at 300°C to 700°C for cadmium (Cd) removal from aqueous solutions. The adsorption process was dominated by oxygen-containing functional groups with irregular surfaces via esterification reactions. Furthermore, the mineral components in the biochars also contributed to Cd absorption through precipitation. Parameters such as the effects of solution pH, contact time, and initial concentration were studied. The optimum pH value was observed at 5.0, in which nearly 90% of Cd was removed. The maximum Cd adsorption capacities based on the Langmuir isotherm were calculated at 49.837, 36.899, and 25.826 mg g(-1). The adsorption processes of the biochars followed the pseudo-second-order kinetics, with the equilibrium achieved around 5 h. The biochar from E. crassipes is a promising adsorbent for the treatment of wastewater, which can in turn convert one environmental problem to a new cleaning Technology.

  11. Preparation and Characterization of Biochars from Eichornia crassipes for Cadmium Removal in Aqueous Solutions

    PubMed Central

    Li, Feng; Shen, Kaixuan; Long, Xiaolin; Wen, Jiasheng; Xie, Xiaojie; Zeng, Xiangyun; Liang, Yanyan; Wei, Yansha; Lin, Zefeng; Huang, Wenrou; Zhong, Ruida

    2016-01-01

    The study investigated the preparation and characterization of biochars from water hyacinth at 300°C to 700°C for cadmium (Cd) removal from aqueous solutions. The adsorption process was dominated by oxygen-containing functional groups with irregular surfaces via esterification reactions. Furthermore, the mineral components in the biochars also contributed to Cd absorption through precipitation. Parameters such as the effects of solution pH, contact time, and initial concentration were studied. The optimum pH value was observed at 5.0, in which nearly 90% of Cd was removed. The maximum Cd adsorption capacities based on the Langmuir isotherm were calculated at 49.837, 36.899, and 25.826 mg g−1. The adsorption processes of the biochars followed the pseudo-second-order kinetics, with the equilibrium achieved around 5 h. The biochar from E. crassipes is a promising adsorbent for the treatment of wastewater, which can in turn convert one environmental problem to a new cleaning Technology. PMID:26882239

  12. Synthesis, Characterization and Application of N-Ti/13X/MCM-41 Mesoporous Molecular Sieves.

    PubMed

    Tao, Hong; Nguyen, Nhat-Thien; Hei, Xiao-Hui; Nguyen, Cong Nguyen; Tsai, Hsiao-Hsin; Chang, I-Cheng; Chang, Chang-Tang

    2016-06-01

    Di-n-butyl phthalate (DBP) is a type of phthalate ester. In recent years, an increasing number of studies have examined the removal of DBP. In this study we use a composite material of N-Ti/13X/MCM-41, synthesized by nitrogen, molecular sieve 13X, tetrabutyl orthotitanate and tetraethyl orthosilicate as raw materials, CTAB as a structural template and tetrabutyl titanate and urea under hydrothermal conditions. The optimized experimental conditions, such as the amount of material, reaction time, pH value and initial concentration were tested. The surface areas of N-Ti/13X/MCM-41 were found to be 664 m2g(-1). TEM micrographs revealed N-Ti/13X/MCM-41 is consisting of aggregates of spherical particles, similar with standard synthesized MCM-41 (Mobil Composition of Matter No. 41). Through photocatalytic degradation experiments, the optimum degradation efficiency of DBP was more than 90% at a pH 6.0 with catalyst dosing of 0.15 g L(-1).

  13. Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase.

    PubMed

    Niu, Panqing; Dong, Xiaoxiang; Wang, Yuancai; Liu, Liming

    2014-06-10

    In this study, a novel strategy for α-ketoglutaric acid (α-KG) production from l-glutamic acid using recombinant l-glutamate oxidase (LGOX) was developed. First, by analyzing the molecular structure characteristics of l-glutamic acid and α-KG, LGOX was found to be the best catalyst for oxidizing the amino group of l-glutamic acid to a ketonic group without the need for exogenous cofactor. Then the LGOX gene was expressed in Escherichia coli BL21 (DE3) in a soluble and active form, and the recombinant LGOX activity reached to a maximum value of 0.59U/mL at pH 6.5, 30°C. Finally, the maximum α-KG concentration reached 104.7g/L from 110g/L l-glutamic acid in 24h, under the following optimum conditions: 1.5U/mL LGOX, 250U/mL catalase, 3mM MnCl2, 30°C, and pH 6.5. Copyright © 2014. Published by Elsevier B.V.

  14. [Optimization of expression conditions and activity identification of hepatocyte-targeting peptide-human endostatin].

    PubMed

    Ma, Yan; Li, Wei; Li, Xiaobo; Bao, Dongmei; Lu, Jianpei

    2016-12-25

    To obtain sufficient purified and active fusion protein-hepatocyte-targeting peptide-human endostatin (HTP-rES), we studied the growth curve and the optimal induction timing of BL21/pET21b-HTP-rES. Different conditions of pH value, induction time, induction concentration and induction temperature were optimized by univariate analysis. After washing, refolding and purifying, the activity of fusion protein was identified by flow cytometry and 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT). Results show that the logarithmic growth phase of BL21/pET21b-HTP-rES was from 1.5 h to 3.5 h, the optimum expression conditions were pH 8.0, 0.06 mmol/L IPTG, at 42 ℃ for 5 h. The purity of inclusion bodies was up to 60% after washing. The purity of target protein was more than 95% after refolding and purification. Our findings provide the foundation for further biological activity and drug development.

  15. The removal of As(III) and As(V) from aqueous solutions by waste materials.

    PubMed

    Rahaman, M S; Basu, A; Islam, M R

    2008-05-01

    The use of different waste materials such as Atlantic Cod fish scale, chicken fat, coconut fibre and charcoal in removing arsenic [As(III) and As(V)] from aqueous solutions was investigated. Initial experimental runs, conducted for both As(III) and As(V) with the aforementioned materials, demonstrated the potential of using Atlantic Cod fish scale in removing both species of arsenic from aqueous streams. Therefore, the biosorbent fish scale was selected for further investigations and various parameters such as residence time, adsorbent dose, initial concentration of adsorbate, grain size of the adsorbent and pH of the bulk phase were studied to establish optimum conditions. The maximum adsorption capacity was observed at pH value 4.0. The equilibrium adsorption data were interpreted by using both Freundlich and Langmuir models. Rapid small-scale column tests (RSSCT) were also performed to determine the breakthrough characteristics of the arsenic species with respect to packed biosorbent columns.

  16. Preparation and biosorption evaluation of Bacillus subtilis/alginate–chitosan microcapsule

    PubMed Central

    Tong, Ke

    2017-01-01

    The aim of this study was to assess the effect of alginate–chitosan microcapsule on viability characteristics of Bacillus subtilis and the ability of B. subtilis/alginate–chitosan microcapsule to remove uranium ion from aqueous solution. The effects of particle size, chitosan molecular weight and inoculum density on viability characteristics were studied using alginate–chitosan microcapsule-immobilized B. subtilis experiments. In addition, the effects of pH, immobilized spherule dosage, temperature, initial uranium ion concentration and contact time on removal of uranium ion were studied using batch adsorption experiments. The results showed that alginate–chitosan microcapsule significantly improved the viability characteristics of B. subtilis and that B. subtilis/alginate–chitosan microcapsule strongly promoted uranium ion absorption. Moreover, the optimum values of pH was 6; immobilized spherule dosage was 3.5; temperature was 20°C; initial uranium ion concentration was 150 mg/L; contact time was 3 h of uranium ion absorption and the maximum adsorption capacity of uranium ion was 376.64 mg/g. PMID:28223783

  17. Bioethanol produced from Moringa oleifera seeds husk

    NASA Astrophysics Data System (ADS)

    Ali, E. N.; Kemat, S. Z.

    2017-06-01

    This paper presents the potential of bioethanol production from Moringa oleifera seeds husk which contains lignocellulosic through Simultaneous Saccharification and Fermentation (SSF) process by using Saccharomyces cerevisiae. This paper investigates the parameters which produce optimum bioethanol yield. The husk was hydrolyzed using NaOH and fermented using Saccharomyces cerevisiae yeast. Batch fermentation was performed with different yeast dosage of 1, 3, and 5 g/L, pH value was 4.5, 5.0 and 5.5, and fermentation time of 3, 6, 9 and 12 hours. The temperature of fermentation process in incubator shaker is kept constant at 32ºC. The samples are then filtered using a 0.20 μm nylon filter syringe. The yield of bioethanol produced was analysed using High Performance Liquid Chromatography (HPLC). The results showed that the highest yield of 29.69 g/L was obtained at 3 hours of fermentation time at pH of 4.5 and using 1g/L yeast. This research work showed that Moringa oleifera seeds husk can be considered to produce bioethanol.

  18. Statistical analysis and isotherm study of uranium biosorption by Padina sp. algae biomass.

    PubMed

    Khani, Mohammad Hassan

    2011-06-01

    The application of response surface methodology is presented for optimizing the removal of U ions from aqueous solutions using Padina sp., a brown marine algal biomass. Box-Wilson central composite design was employed to assess individual and interactive effects of the four main parameters (pH and initial uranium concentration in solutions, contact time and temperature) on uranium uptake. Response surface analysis showed that the data were adequately fitted to second-order polynomial model. Analysis of variance showed a high coefficient of determination value (R (2)=0.9746) and satisfactory second-order regression model was derived. The optimum pH and initial uranium concentration in solutions, contact time and temperature were found to be 4.07, 778.48 mg/l, 74.31 min, and 37.47°C, respectively. Maximized uranium uptake was predicted and experimentally validated. The equilibrium data for biosorption of U onto the Padina sp. were well represented by the Langmuir isotherm, giving maximum monolayer adsorption capacity as high as 376.73 mg/g.

  19. Growth kinetics of Chlorococcum humicola - A potential feedstock for biomass with biofuel properties.

    PubMed

    Thomas, Jibu; Jayachithra, E V

    2015-11-01

    Economically viable production facilities for microalgae depend on the optimization of growth parameters with regard to nutrient requirements. Using microalgae to treat industrial effluents containing heavy metals presents an alternative to the current practice of using physical and chemical methods. Present work focuses on the statistical optimization of growth of Chlorococcum humicola to ascertain the maximum production of biomass. Plackett Burman design was carried out to screen the significant variables influencing biomass production. Further, Response Surface Methodology was employed to optimize the effect of inoculum, light intensity and pH on net biomass yield. Optimum conditions for maximum biomass yield were identified to be inoculum at 15%, light intensity to be 1500lx and pH 8.5. Theoretical and predicted values were in agreement and thus the model was found to be significant. Gas chromatography analyses of the FAME derivatives showed a high percentage of saturated fatty acids thereby confirming the biofuel properties of the oil derived from algal biomass. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The role of polyphenol oxidase and peroxidase in the browning of water caltrop pericarp during heat treatment.

    PubMed

    Ciou, Jhih-Ying; Lin, Hsin-Hung; Chiang, Po-Yuan; Wang, Chiun-C; Charles, Albert Linton

    2011-07-15

    The mechanism of browning involving enzymatic browning was investigated in the pericarp of water caltrop, an Asian vegetable popular for its taste and medicinal properties. Polyphenol oxidase (PPO) and peroxidase (POD) activities were determined in pericarp at various times and temperatures. Water caltrop consisted of 44.22% moisture content, 37.23% crude fibre, and 2.63% crude protein. PPO and POD activities dropped from 62 and 38units/g sample, respectively, as water temperature was increased from 30 to 80°C. Optimum pH and temperature for PPO activity was at pH 5.0, 25-45°C, and POD activity peaked at 60°C. High PPO and POD activities at 40-50°C resulted in degradation of phenolic compounds, which led to increased aggregation of browning pigments and discolouration (lower L-values) of the pericarp. Enzymatic browning was determined as the major factor in the browning discolouration of heat-treated water caltrop pericarp. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules Mine of Coahuila, Mexico

    NASA Astrophysics Data System (ADS)

    Núñez-Ramírez, Diola Marina; Solís-Soto, Aquiles; López-Miranda, Javier; Pereyra-Alférez, Benito; Rutiaga-Quiñónes, Miriam; Medina-Torres, Luis; Medrano-Roldán, Hiram

    2011-10-01

    The iron concentrate from Hercules Mine of Coahuila, Mexico, which mainly contained pyrite and pyrrhotite, was treated by the bioleaching process using native strain Acidithiobacillus ferrooxidans ( A. ferrooxidans) to determine the ability of these bacteria on the leaching of zinc. The native bacteria were isolated from the iron concentrate of the mine. The bioleaching experiments were carried out in shake flasks to analyze the effects of pH values, pulp density, and the ferrous sulfate concentration on the bioleaching process. The results obtained by microbial kinetic analyses for the evaluation of some aspects of zinc leaching show that the native bacteria A. ferrooxidans, which is enriched with a 9K Silverman medium under the optimum conditions of pH 2.0, 20 g/L pulp density, and 40 g/L FeSO4, increases the zinc extraction considerably observed by monitoring during15 d, i.e., the zinc concentration has a decrease of about 95% in the iron concentrate.

  2. Optimization of enzymatic hydrolysis of guar gum using response surface methodology.

    PubMed

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2014-08-01

    Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3-7), temperature (20-60 °C), reaction time (1-5 h) and cellulase concentration (0.25-1.25 mg/g) on viscosity during enzymatic hydrolysis of guar (Cyamopsis tetragonolobus) gum. A second order polynomial model was developed for viscosity using regression analysis. Results revealed statistical significance of model as evidenced from high value of coefficient of determination (R(2) = 0.9472) and P < 0.05. Viscosity was primarily affected by cellulase concentration, pH and hydrolysis time. Maximum viscosity reduction was obtained when pH, temperature, hydrolysis time and cellulase concentration were 6, 50 °C, 4 h and 1.00 mg/g, respectively. The study is important in optimizing the enzymatic process for hydrolysis of guar gum as potential source of soluble dietary fiber for human health benefits.

  3. Streptococcus thermophilus urease activity boosts Lactobacillus delbrueckii subsp. bulgaricus homolactic fermentation.

    PubMed

    Arioli, Stefania; Della Scala, Giulia; Remagni, Maria Chiara; Stuknyte, Milda; Colombo, Stefano; Guglielmetti, Simone; De Noni, Ivano; Ragg, Enzio; Mora, Diego

    2017-04-17

    The proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in the yogurt consortium enhances the growth rate and size of each population. In contrast, the independent growth of the two species in milk leads to a slower growth rate and a smaller population size. In this study, we report the first evidence that the urease activity of S. thermophilus increases the intracellular pH of L. delbrueckii in the absence of carbon source. However, in milk, in the presence of lactose the alkalizing effect of urea-derived ammonia was not detectable. Nevertheless, based on glucose consumption and lactic acid production at different pH in , L. delbrueckii showed an optimum of glycolysis and homolactic fermentation at alkaline pH values. In milk, we observed that ammonia provided by urea hydrolysis boosted lactic acid production in S. thermophilus and in L. delbrueckii when the species were grown alone or in combination. Therefore, we propose that urease activity acts as an altruistic cooperative trait, which is costly for urease-positive individuals but provides a local benefit because other individuals can take advantage of urease-dependent ammonia release. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Acid-base characterization of 5-hydroxypyrazine-2-carboxylic acid and the role of ionic equilibria in the optimization of some process conditions for its biocatalytic production.

    PubMed

    Sak-Bosnar, M; Kovar, K

    2005-10-01

    This paper describes the use of potentiometric titration to determine the relevant acid-base properties of 5-hydroxypyrazine-2-carboxylic acid (5OH-PYCA), an important intermediate in the production of tuberculostatics. The data obtained were used for calculation of the dissociation constants of 5OH-PYCA. It was found that 5OH-PYCA dissociates in two steps, with the corresponding dissociation constants pK (a1)=3.42 and pK (a2)=7.96, designating 5OH-PYCA as a medium weak acid (1st step). The distribution diagram of dissociated species and the buffer-strength diagram of 5OH-PYCA provide useful information about its behaviour at different pH. The ionic equilibria data obtained can be used for selection of the optimum pH for biotransformation of pyrazine-2-carboxylic acid (PYCA) and for prediction of pH changes during the biotransformation. These data can also be used for selection of the optimum pH for precipitating 5OH-PYCA in downstream processing. All computations have been optimized by mathematical modelling using Solver.

  5. Anoxybacter fermentans gen. nov., sp. nov., a piezophilic, thermophilic, anaerobic, fermentative bacterium isolated from a deep-sea hydrothermal vent.

    PubMed

    Zeng, Xiang; Zhang, Zhao; Li, Xi; Zhang, Xiaobo; Cao, Junwei; Jebbar, Mohamed; Alain, Karine; Shao, Zongze

    2015-02-01

    A novel piezophilic, thermophilic, anaerobic, fermentative bacterial strain, designated strain DY22613(T), was isolated from a deep-sea hydrothermal sulfide deposit at the East Pacific Rise (GPS position: 102.6° W 3.1° S). Cells of strain DY22613(T) were long, motile rods (10 to 20 µm in length and 0.5 µm in width) with peritrichous flagella and were Gram-stain-negative. Growth was recorded at 44-72 °C (optimum 60-62 °C) and at hydrostatic pressures of 0.1-55 MPa (optimum 20 MPa). The pH range for growth was from pH 5.0 to 9.0 with an optimum at pH 7.0. Growth was observed in the presence of 1 to 8 % (w/v) sea salts and 0.65 to 5.2 % (w/v) NaCl, with optimum salt concentrations at 3.5 % for sea salts and at 2.3 % for NaCl. Under optimal growth conditions, the shortest generation time observed was 27 min (60 °C, 20 MPa). Strain DY22613(T) was heterotrophic, able to utilize complex organic compounds, amino acids, sugars and organic acids including peptone, tryptone, beef extract, yeast extract, alanine, glutamine, methionine, phenylalanine, serine, threonine, fructose, fucose, galactose, gentiobiose, glucose, mannose, melibiose, palatinose, rhamnose, turanose, pyruvate, lactic acid, methyl ester, erythritol, galacturonic acid and glucosaminic acid. Strain DY22613(T) was able to reduce Fe(III) compounds, including Fe(III) oxyhydroxide (pH 7.0), amorphous iron(III) oxide (pH 9.0), goethite (α-FeOOH, pH 12.0), Fe(III) citrate and elementary sulfur. Products of fermentation were butyrate, acetate and hydrogen. Main cellular fatty acids were iso-C15 : 0, iso-C14 : 0 3-OH and C14 : 0. The genomic DNA G+C content of strain DY22613(T) was 36.7 mol%. Based on 16S rRNA gene sequence analysis, the strain forms a novel lineage within the class Clostridia and clusters with the order Haloanaerobiales (86.92 % 16S rRNA gene sequence similarity). The phylogenetic data suggest that the lineage represents at least a novel genus and species, for which the name Anoxybacter fermentans gen. nov., sp. nov. is proposed. The type strain is DY22613(T) ( = JCM 19466(T) = DSM 28033(T) = MCCC 1A06456(T)). © 2015 IUMS.

  6. Adenine nucleotide transport in sonic submitochondrial particles. Kinetic properties and binding of specific inhibitors.

    PubMed

    Lauquin, G J; Villiers, C; Michejda, J W; Hryniewiecka, L V; Vignais, P V

    1977-05-11

    1. A procedure for preparation of sonic submitochondrial particles competent for adenine nucleotide transport is described. ADP or ATP transport was assayed, in the presence of oligomycin, in a saline medium made of 0.125 M KCl, 1 mM EDTA, 10 mM 4-morpholinopropane sulfonic acid buffer, pH 6.5. 2. Sonic particles transport ADP and ATP by an exchange diffusion process. Externally added ADP (or ATP) is exchanged with internal ADP and ATP with a stoichiometry of one to one. The V value for ADP transport 5 degrees C was between 2 and 3 nmol/min per mg protein. 3. The transport system in sonic particles is specific for ADP and ATP. It is strongly dependent on temperature. The activation energy between 0 and 9 degrees C is approx. 35 kcal/mol. The optimum pH is 6.5, 4, Like in intact mitochondria, externally added ADP is transported into sonic particles faster at a given concentration than externally added ATP. The V value for ADP transport is 1.5-2 times higher than the V value for ATP transport. 5. The transition from the energized to the deenergized state in sonic particles results in a decrease of the pH gradient across the membrane (internal pH less than external pH) and in a 2-4 fold increase in the Km value for ATP. This latter effect is opposite that found for transport of added ATP in intact mitochondria (Souverijn, J.H.M., Huisman, L.A., Rosing J. and Kemp, Jr., A. (1973) Biochim. Biophys. Acta 305, 185-198). Energization has no effect on the V value of ATP transport in sonic particles. 6. In contrast to intact mitochondria, inhibition of ADP transport in sonic particles by bongkrekic acid does not have any lag-time and does not depend on pH. The inhibition caused by bongkrekic acid is a mixed type inhibition with a Ki value of 1.2 micronM. Atractyloside and carboxyatractyloside do not inhibit ADP transport in sonic particles, unless the particles have been preloaded with these inhibitors during the sonication. 7. Palmityl-CoA added to sonic particles inhibits efficiently ADP transport. The mixed type inhibition found with palmityl-CoA has a Ki value of 1.6 micronM. 8. [3H]Bongkrekic acid binds to sonic particles readily and with high affinity. Bongkrekic acic binding to sonic particles does not depend on pH and it has a saturation plateau, corresponding approximately to 1.3 mol of site per mol of cytochrome a. The number of [3H]atracytloside binding sites is much lower (one-fifth of the bongkrekic acid). External carboxyatractyloside does not compete with [3H]bongkrekic acid for binding to sonic particles. However, when carboxyatractyloside is present inside the particles, it inhibits the binding of [3H]bongkrekic acid.

  7. Enhancing Degradation of Low Density Polyethylene Films by Curvularia lunata SG1 Using Particle Swarm Optimization Strategy.

    PubMed

    Raut, Sangeeta; Raut, Smita; Sharma, Manisha; Srivastav, Chaitanya; Adhikari, Basudam; Sen, Sudip Kumar

    2015-09-01

    In the present study, artificial neural network (ANN) modelling coupled with particle swarm optimization (PSO) algorithm was used to optimize the process variables for enhanced low density polyethylene (LDPE) degradation by Curvularia lunata SG1. In the non-linear ANN model, temperature, pH, contact time and agitation were used as input variables and polyethylene bio-degradation as the output variable. Further, on application of PSO to the ANN model, the optimum values of the process parameters were as follows: pH = 7.6, temperature = 37.97 °C, agitation rate = 190.48 rpm and incubation time = 261.95 days. A comparison between the model results and experimental data gave a high correlation coefficient ([Formula: see text]). Significant enhancement of LDPE bio-degradation using C. lunata SG1by about 48 % was achieved under optimum conditions. Thus, the novelty of the work lies in the application of combination of ANN-PSO as optimization strategy to enhance the bio-degradation of LDPE.

  8. Partial biochemical characterization of crude extract extracellular chitinase enzyme from Bacillus subtilis B 298

    NASA Astrophysics Data System (ADS)

    Lestari, P.; Prihatiningsih, N.; Djatmiko, H. A.

    2017-02-01

    Extraction and characterization of extracellular chitinase from Bacillus subtilis B 298 have been done. Growth curve determination of B. subtilis B 298, production curve determination of crude extract chitinase from B. subtilis B 298, and partial biochemical characterization of crude extract chitinase have been achieved in this study. Optimum growth of B. subtilis B 298 was achieved at logarithmic phase within 9 hours incubation time, so it was used as inoculum for enzyme production. According to production curve of the enzyme, it was known that incubation time which gave the highest chitinase activity of 15 hours with activity of 6.937 U/mL respectively. Effect of various temperatures on chitinase activity showed that optimum activity was achieved at 40°C with an activity of 5.764 U/mL respectively. Meanwhile, the optimum pH for chitinase activity was achieved at pH of 5.0 with an activity of 6.813 U/mL respectively. This enzyme was then classified as metalloenzyme due to the decline of the activity by EDTA addition. All divalent cations tested acted as inhibitors.

  9. Distribution and characteristics of endogenous digestive enzymes in the red-eared slider turtle, Trachemys scripta elegans.

    PubMed

    Sun, Jian-Yi; Du, Jie; Qian, Li-Chun; Jing, Ming-Yan; Weng, Xiao-Yan

    2007-08-01

    Distribution and properties of the main digestive enzymes including protease and amylase, from stomach, pancreas and the anterior, middle and posterior intestine of the adult red-eared slider turtle Trachemys scripta elegans were studied at various pHs and temperatures. The optimum temperature and pH for protease in stomach, pancreas and the anterior, middle and posterior intestine were 40 degrees C, 2.5; 50 degrees C, 8.0; 50 degrees C, 7.0; 50 degrees C, 8.0; and 50 degrees C, 8.5; respectively. The optimum temperature and pH for amylase in stomach, pancreas and anterior, middle and posterior intestine were 40 degrees C, 8.0; 30 degrees C, 7.5; 40 degrees C, 7.0; 50 degrees C, 8.0; and 50 degrees C, 8.0; respectively. Under the optimum conditions, the order of protease activity from high to low was of pancreas, stomach and the anterior, posterior and middle intestine; the activity of amylase in descending order was of anterior intestine, pancreas, posterior intestine, middle intestine and stomach.

  10. Biosorption of toxic lead (II) ions using tomato waste (Solanum lycopersicum) activated by NaOH

    NASA Astrophysics Data System (ADS)

    Permatasari, Diah; Heraldy, Eddy; Lestari, Witri Wahyu

    2016-02-01

    This research present to uptake lead (II) ion from aqueous solutions by activated tomato waste. Biosorbent were characterized by applying Fourier Transform Infrared Spectroscopy (FTIR) and Surface Area Analyzer (SAA). The biosorption investigated with parameters including the concentration of NaOH, effects of solution pH, biosorbent dosage, contact time,and initial metal concentration. Experimental data were analyzed in terms of two kinetic model such us the pseudo-first order and pseudo-second order. Langmuir and Freundlich isotherm models were applied todescribe the biosorption process. According to the experiment, the optimum concentration of NaOH was achieved at 0.1 M. The maximum % lead (II) removal was achieved at pH 4 with 94.5%. Optimum biosorbentdosage were found as 0.1 g/25 mL solution while optimum contact time were found at 75 minutes. The results showed that the biosorption processes of Lead (II) followed pseudo-second order kinetics. Langmuir adsorption isotherm was found fit the adsorption data with amaximum capacity of 24.079 mg/g with anadsorption energy of 28.046 kJ/mol.

  11. Rhodohalobacter barkolensis sp. nov., isolated from a saline lake and emended description of the genus Rhodohalobacter.

    PubMed

    Han, Shuai-Bo; Yu, Yang-Huan; Ju, Zhao; Li, Yu; Zhang, Ran; Hou, Xin-Jun; Ma, Xin-Yuan; Yu, Xiao-Yun; Sun, Cong; Wu, Min

    2018-06-01

    A Gram-stain-negative, non-motile, aerobic, rod-shaped bacterium, designated 15182 T , was isolated from a saline lake in China. The novel strain 15182 T was able to grow at 10-40 °C (optimum, 37 °C), pH 7.0-8.0 (optimum, 7.5) and with 0.5-4 % NaCl (optimum, 2-3 %, w/v). The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 15182 T was most closely related to the genus Rhodohalobacter by sharing the highest sequence similarity of 97.0 % with Rhodohalobacter halophilus JZ3C29 T . Chemotaxonomic analysis showed that the sole respiratory quinone was menaquinone 7, the major fatty acids included C16 : 0 N alcohol and C16 : 1ω11c. The major polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four uncharacterized glycolipids, one uncharacterized phospholipid and two uncharacterized lipids. The genomic DNA G+C content of the strain 15182 T was 42.4 mol%. The average nucleotide identity value between 15182 T and R. halophilus JZ3C29 T was 75.4 %, and the in silico DNA-DNA hybridization value of the two strains was 19.1 %. On the basis of its phenotypic, chemotaxonomic, genotypic and genomic characteristics presented in this study, strain 15182 T is suggested to represent a novel species in the genus Rhodohalobacter, for which the name Rhodohalobacter barkolensis sp. nov. is proposed. The type strain is 15182 T (=KCTC 62172 T =MCCC 1K03442 T ). An emended description of the genus Rhodohalobacter is also presented.

  12. Characterization of cellulose acetate micropore membrane immobilized acylase I.

    PubMed

    Guo, Yong-Sheng; Wang, Jie; Song, Xi-Jin

    2004-12-01

    This paper describes an innovative method for the immobilization of acylase I, which was entrapped into the CA-CTA micropore membrane. The most suitable casting solutions proportion for immobilizing the enzyme was obtained through orthogonal experiment. Properties of the enzyme membrane were investigated and compared with those of free enzyme and blank membrane. The thermal stability and pH stability of the enzyme inside the membrane were changed by immobilization. The optimum pH was found to be 6.0, which changes 1.0 unit compared with that of free acylase I. The optimum temperature was found to be about 90 degrees C, which is higher than that of free acylase I (60 degrees C). Experimental results showed that immobilization had effects on the kinetic parameters of acylase I.

  13. Production of Sterilizing Agents from Calendula officinalis Extracts Optimized by Response Surface Methodology

    PubMed Central

    Goktas, Fatih Mehmet; Sahin, Bilgesu; Yigitarslan, Sibel

    2015-01-01

    The aim of this study was to produce hand sterilizing liquid and wet wipes with the extracts of Calendula officinalis. Since this plant has well known antimicrobial activity due to its phytochemical constituents, the increase in the extraction yield was chosen as the principle part of the production process. To achieve the maximum yield, parameters of solid-to-liquid ratio, extraction temperature, and time were studied. The optimum conditions were determined by response surface methodology as 41°C, 7 h, and 3.3 g/200 mL for temperature, time, and solid-to-liquid ratio, respectively. The yield achieved at those conditions was found to be 90 percent. The highest amounts of flavonoids were detected at optimum, whereas the highest triterpene and saponin constituents were determined at different design points. The microbial efficiencies of extracts were determined by the inhibition of the growth of selected microorganisms. Different dilution rates and interaction times were used as parameters of inhibition. Not any of the constituent but symbiotic relation in-between reached the highest inhibition of 90 percent. The pH values of the extracts were 5.1 to 5.4. As a result, the extraction of Calendula officinalis at the optimum conditions can be used effectively in the production of wet wipes and hand sterilizing liquid. PMID:26064122

  14. Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater.

    PubMed

    Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden

    2018-04-01

    The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD 5 , TSS, NH 3 -N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H 2 O 2 , 2-5 g/L for Fe 2+ , and 13-36 for H 2 O 2 /Fe 2+ molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.

  15. Preparation of anchovy (Engraulis japonicus) protein hydrolysates with high free radical-scavenging activity using endogenous and commercial enzymes.

    PubMed

    He, Silian; Wang, Fanghua; Ning, Zhengxiang; Yang, Bo; Wang, Yonghua

    2014-12-01

    Anchovy protein hydrolysates with high free radical-scavenging activity were prepared by endogenous and commercial enzymes. Various hydrolytic factors (commercial protease composition, protease concentration, temperature, and reaction time) were optimized. Using a single-factor experiment, three commercial proteases (Protamex, Flavourzyme 500 MG, and Alcalase 2.4 L) were selected for further optimization using a simplex lattice design. The optimum composition of Protamex:Flavourzyme 500 MG:Alcalase 2.4 L was found to be 1.1:1.0:0.9. The hydrolytic conditions (commercial protease concentration, temperature, and reaction time) for the optimum protease composition were optimized using a Box-Behnken design. The optimum hydrolytic conditions were as follows: total commercial protease concentration of 3.27%, pH of 7.5, temperature of 55.4℃, and reaction time of 2.7 h. Under these conditions, hydrolysate with a 1, 1-diphenyl-2-picryhydrazyl scavenging activity of 84.7% was obtained. Meanwhile, a degree of hydrolysis of 33.2% and high protein nitrogen recovery of 87.5% were achieved. The amino acid composition of the hydrolysates demonstrated that they have high nutritional value, thereby suggesting that the hydrolysates have potential to be used as raw material for functional food. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Biochemical characterization of recombinant mevalonate kinase from Bacopa monniera.

    PubMed

    Kumari, Uma; Vishwakarma, Rishi K; Sonawane, Prashant; Abbassi, Shakeel; Khan, Bashir M

    2015-01-01

    Mevalonate kinase (MK; ATP: mevalonate 5-phosphotransferase; EC 2.7.1.36) plays a key role in isoprenoid biosynthetic pathway in plants. MK catalyzes the phosphorylation of mevalonate to form mevalonate-5-phosphate. The recombinant BmMK was cloned and over-expressed in E. coli BL21 (DE3), and purified to homogeneity by affinity chromatography followed by gel filtration. Optimum pH and temperature for forward reaction was found to be 7.0 and 30 °C, respectively. The enzyme was most stable at pH 8 at 25 °C with deactivation rate constant (Kd*) 1.398 × 10(-4) and half life (t1/2) 49 h. pH activity profile of BmMK indicates the involvement of carboxylate ion, histidine, lysine, arginine or aspartic acid at the active site of enzyme. Activity of recombinant BmMK was confirmed by phosphorylation of RS-mevalonate in the presence of Mg(2+), having Km and Vmax 331.9 μM and 719.1 pKat μg(-1), respectively. The values of kcat and kcat/Km for RS-mevalonate were determined to be 143.82 s(-1) and 0.43332 M(-1) s(-1) and kcat and kcat/Km values for ATP were found 150.9 s(-1) and 1.023 M(-1) s(-1). The metal ion studies suggested that BmMK is a metal dependent enzyme and highly active in the presence of MgCl2. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A highly selective and sensitive ultrasonic assisted dispersive liquid phase microextraction based on deep eutectic solvent for determination of cadmium in food and water samples prior to electrothermal atomic absorption spectrometry.

    PubMed

    Zounr, Rizwan Ali; Tuzen, Mustafa; Deligonul, Nihal; Khuhawar, Muhammad Yar

    2018-07-01

    A simple, fast, green, sensitive and selective ultrasonic assisted deep eutectic solvent liquid-phase microextraction technique was used for preconcentration and extraction of cadmium (Cd) in water and food samples by electrothermal atomic absorption spectrometry (ETAAS). In this technique, a synthesized reagent (Z)-N-(3,5-diphenyl-1H-pyrrol-2-yl)-3,5-diphenyl-2H-pyrrol-2-imine (Azo) was used as a complexing agent for Cd. The main factors effecting the pre-concentration and extraction of Cd such as effect of pH, type and composition of deep eutectic solvent (DES), volume of DES, volume of complexing agent, volume of tetrahydrofuran (THF) and ultrasonication time have been examined in detail. At optimum conditions the value of pH and molar ratio of DES were found to be 6.0 and 1:4 (ChCl:Ph), respectively. The detection limit (LOD), limit of quantification (LOQ), relative standard deviation (RSD) and preconcentration factor (PF) were observed as 0.023 ng L -1 , 0.161 ng L -1 , 3.1% and 100, correspondingly. Validation of the developed technique was observed by extraction of Cd in certified reference materials (CRMs) and observed results were successfully compared with certified values. The developed procedure was practiced to various food, beverage and water samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Study and characterization of powder mackerel (Scomberomorus commerson) bone gelatin through hydrolysis of hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Mardawati, E.; Sugandi, H.; Kayaputri, I. L.; Cahyana, Y.; Wira, D. W.; Pujianto, T.; Kastaman, R.

    2018-02-01

    Gelatin is one of the most common food additives in the food and beverage industry. Gelatin is generally made of leather or pig bones, causing concerns about the halal and safety of its product. Mackerel fish bone (Scomberomorus commerson) is a waste fish that has not been utilized well and it contains 18.6% of collagen so that it can be made into gelatin. The purpose of this research is to know the relation between HCl concentration with physical and chemical characteristics of gelatin and to know the best HCl concentration for gelatin production. Based on the physical and chemical analysis of gelatin, it is known that the concentration of hydrochloric acid influences the yield, viscosity, gel strength and pH produced. The higher HCl concentration there will be decrease in the pH value, gel strength, viscosity and protein. The yield will rise to the optimum point then decrease with respect to the high HCl concentration. Gelatin with 2% HCl concentration was the best treatment, with pH value 3.83, viscosity 3.65cP, gel strength 190.50 blooms which fulfilled British Standard, yield 10.16%, protein content 43.34%. It has functional group such as amino acids glycine, proline and hydroxyproline and 15 other amino acids, the gelatin group uptake in the region of amide wave numbers A, amides I, II and III, with a gelatin molecular weight of 290.35 g/mol.

  19. Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process.

    PubMed

    Monteagudo, J M; Durán, A; Aguirre, M; San Martín, I

    2011-01-15

    The mineralization of solutions containing a mixture of three phenolic compounds, gallic, p-coumaric and protocatechuic acids, in a ferrioxalate-induced solar photo-Fenton process was investigated. The reactions were carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and neuronal networks that included the following variables: pH, temperature, solar power, air flow and initial concentrations of H(2)O(2), Fe(II) and oxalic acid. Under optimal conditions, total elimination of the original compounds and 94% TOC removal of the mixture were achieved in 5 and 194 min, respectively. pH and initial concentrations of H(2)O(2) and Fe(II) were the most significant factors affecting the mixture mineralization. The molar correlation between consumed hydrogen peroxide and removed TOC was always between 1 and 3. A detailed analysis of the reaction was presented. The values of the pseudo-first-order mineralization kinetic rate constant, k(TOC), increased as initial Fe(II) and H(2)O(2) concentrations and temperature increased. The optimum pH value also slightly increased with greater Fe(II) and hydrogen peroxide concentrations but decreased when temperature increased. OH and O(2)(-) radicals were the main oxidative intermediate species in the process, although singlet oxygen ((1)O(2)) also played a role in the mineralization reaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Purification and characterization of the extracellular laccase produced by Trametes polyzona WR710-1 under solid-state fermentation.

    PubMed

    Chairin, Thanunchanok; Nitheranont, Thitinard; Watanabe, Akira; Asada, Yasuhiko; Khanongnuch, Chartchai; Lumyong, Saisamorn

    2014-01-01

    Laccase from Trametes polyzona WR710-1 was produced under solid-state fermentation using the peel from the Tangerine orange (Citrus reticulata Blanco) as substrate, and purified to homogeneity. This laccase was found to be a monomeric protein with a molecular mass of about 71 kDa estimated by SDS-PAGE. The optimum pH was 2.0 for ABTS, 4.0 for L-DOPA, guaiacol, and catechol, and 5.0 for 2,6-DMP. The K(m) value of the enzyme for the substrate ABTS was 0.15 mM, its corresponding V(max) value was 1.84 mM min(-1), and the k(cat)/K(m) value was about 3960 s(-1)  mM(-1). The enzyme activity was stable between pH 6.0 and 8.0, at temperatures of up to 40 °C. The laccase was inhibited by more than 50% in the presence of 20 mM NaCl, by 95% at 5 mM of Fe(2+), and it was completely inhibited by 0.1 mM NaN(3). The N-terminal amino acid sequence of this laccase is AVTPVADLQISNAGISPDTF, which is highly similar to those of laccases from other white-rot basidiomycetes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Optimization of pH and nitrogen for enhanced hydrogen production by Synechocystis sp. PCC 6803 via statistical and machine learning methods.

    PubMed

    Burrows, Elizabeth H; Wong, Weng-Keen; Fern, Xiaoli; Chaplen, Frank W R; Ely, Roger L

    2009-01-01

    The nitrogen (N) concentration and pH of culture media were optimized for increased fermentative hydrogen (H(2)) production from the cyanobacterium, Synechocystis sp. PCC 6803. The optimization was conducted using two procedures, response surface methodology (RSM), which is commonly used, and a memory-based machine learning algorithm, Q2, which has not been used previously in biotechnology applications. Both RSM and Q2 were successful in predicting optimum conditions that yielded higher H(2) than the media reported by Burrows et al., Int J Hydrogen Energy. 2008;33:6092-6099 optimized for N, S, and C (called EHB-1 media hereafter), which itself yielded almost 150 times more H(2) than Synechocystis sp. PCC 6803 grown on sulfur-free BG-11 media. RSM predicted an optimum N concentration of 0.63 mM and pH of 7.77, which yielded 1.70 times more H(2) than EHB-1 media when normalized to chlorophyll concentration (0.68 +/- 0.43 micromol H(2) mg Chl(-1) h(-1)) and 1.35 times more when normalized to optical density (1.62 +/- 0.09 nmol H(2) OD(730) (-1) h(-1)). Q2 predicted an optimum of 0.36 mM N and pH of 7.88, which yielded 1.94 and 1.27 times more H(2) than EHB-1 media when normalized to chlorophyll concentration (0.77 +/- 0.44 micromol H(2) mg Chl(-1) h(-1)) and optical density (1.53 +/- 0.07 nmol H(2) OD(730) (-1) h(-1)), respectively. Both optimization methods have unique benefits and drawbacks that are identified and discussed in this study. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  2. CZE determination of submicromolar level of phenol in seawater using improved dynamic pH junction.

    PubMed

    Yasuno, Koki; Fukushi, Keiichi

    2016-10-01

    Using an improved dynamic pH junction as an on-line concentration procedure, we developed CZE for determining submicromolar phenol in seawater for chloride to phenol concentration ratios of 1 000 000. To enhance the effect of conventional dynamic pH junction, a saturated fatty acid solution was injected into the capillary after sample injection. We named the procedure an improved dynamic pH junction. The method requires no sample pretreatment. The following optimum conditions were established: BGE, 40 mM sodium tetraborate decahydrate adjusted to pH 9.8 containing 0.001% m/v hexadimethrine bromide; 190 nm detection wavelength; 18 s (370 nL) vacuum injection period of sample; a saturated fatty acid solution, 30 mM sodium n-hexanoate; 20 s (420 nL) vacuum injection period of the sodium n-hexanoate; and 15 kV applied voltage with the sample inlet side as the cathode. The LOD for phenol was 5.9 μg/L at S/N of 3. The respective values of the RSD (intraday) of the peak area, peak height, and migration time for phenol were 1.9, 2.9, and 0.46%. The recoveries of phenol (25-100 μg/L) spiked into the natural seawater sample obtained using the peak areas were 92-110%. The proposed method was applied to simple biodegradation experiments using natural seawater samples containing phenol. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Batch technique to evaluate the efficiency of different natural adsorbents for defluoridation from groundwater

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Saraswat, Chitresh; Mishra, Binaya Kumar; Avtar, Ram; Patel, Hiral; Patel, Asha; Sharma, Tejal; Patel, Roshni

    2017-09-01

    Fluoride pollution (with concentration >1.0 mg/L) in groundwater has become a global threat in the recent past due to the lesser availability of potable groundwater resource. In between several defluoridation techniques discovered so far, the adsorption process proved to be most economic and efficient. This study is an effort to evaluate defluoridation efficiency of powdered rice husk, fine chopped rice husk and sawdust by the batch adsorption process. Optimum defluoridation capacity is achieved by optimizing various parameters, viz. dose of adsorbent, pH, contact time and initial concentration. It was found that all three materials can be employed for the defluoridation technique, but powdered rice husk is the best adsorbent in the midst of all three. Powdered rice husk showed fluoride removal efficiency ranging between 85 and 90 % in the contact period of 7 h only in conditions of all optimized parameter. Following this parameter optimization, adsorption efficiency was also evaluated at natural pH of groundwater to minimize the cost of defluoridation. No significant difference was found between fluoride adsorption at optimized pH (pH = 4) and natural one (pH = 7), which concludes that powdered rice husk can be efficiently used for the defluoridation technique at field scale. The adsorption isotherm using this adsorbent perfectly followed Langmuir isotherms. The value of calculated separation factor also suggests the favourable adsorption of fluoride onto this adsorbent under the conditions used for the experiments. The field application for defluoridation of groundwater using this adsorbent (based on pH of natural groundwater there and seasonal variation of temperature) showed the high success rate.

  4. Performance Study of Chromium (VI) Removal in Presence of Phenol in a Continuous Packed Bed Reactor by Escherichia coli Isolated from East Calcutta Wetlands

    PubMed Central

    Chakraborty, Bhaswati; Indra, Suvendu; Hazra, Ditipriya; Betai, Rupal; Ray, Lalitagauri; Basu, Srabanti

    2013-01-01

    Organic pollutants, like phenol, along with heavy metals, like chromium, are present in various industrial effluents that pose serious health hazard to humans. The present study looked at removal of chromium (VI) in presence of phenol in a counter-current continuous packed bed reactor packed with E. coli cells immobilized on clay chips. The cells removed 85% of 500 mg/L of chromium (VI) from MS media containing glucose. Glucose was then replaced by 500 mg/L phenol. Temperature and pH of the MS media prior to addition of phenol were 30°C and 7, respectively. Hydraulic retention times of phenol- and chromium (VI)-containing synthetic media and air flow rates were varied to study the removal efficiency of the reactor system. Then temperature conditions of the reactor system were varied from 10°C to 50°C, the optimum being 30°C. The pH of the media was varied from pH 1 to pH 12, and the optimum pH was found to be 7. The maximum removal efficiency of 77.7% was achieved for synthetic media containing phenol and chromium (VI) in the continuous reactor system at optimized conditions, namely, hydraulic retention time at 4.44 hr, air flow rate at 2.5 lpm, temperature at 30°C, and pH at 7. PMID:24073400

  5. Identification of lipolytic enzymes isolated from bacteria indigenous to Eucalyptus wood species for application in the pulping industry.

    PubMed

    Ramnath, L; Sithole, B; Govinden, R

    2017-09-01

    This study highlights the importance of determining substrate specificity at variable experimental conditions. Lipases and esterases were isolated from microorganisms cultivated from Eucalyptus wood species and then concentrated (cellulases removed) and characterized. Phenol red agar plates supplemented with 1% olive oil or tributyrin was ascertained to be the most favourable method of screening for lipolytic activity. Lipolytic activity of the various enzymes were highest at 45-61 U/ml at the optimum temperature and pH of between at 30-35 °C and pH 4-5, respectively. Change in pH influenced the substrate specificity of the enzymes tested. The majority of enzymes tested displayed a propensity for longer aliphatic acyl chains such as dodecanoate (C 12 ), myristate (C 14 ), palmitate (C 16 ) and stearate (C 18 ) indicating that they could be characterised as potential lipases. Prospective esterases were also detected with specificity towards acetate (C 2 ), butyrate (C 4 ) and valerate (C 5 ). Enzymes maintained up to 95% activity at the optimal pH and temperature for 2-3 h. It is essential to test substrates at various pH and temperature when determining optimum activity of lipolytic enzymes, a method rarely employed. The stability of the enzymes at acidic pH and moderate temperatures makes them excellent candidates for application in the treatment of pitch during acid bi-sulphite pulping, which would greatly benefit the pulp and paper industry.

  6. Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption.

    PubMed

    Ahmadi, Mehdi; Ghanbari, Farshid

    2016-10-01

    Greywater (GW) is a potential source for water reuse in various applications. However, GW treatment is still a vital issue in water reuse in cases of environmental standards and risk to public health. This study investigates optimization and modeling of a hybrid process for COD removal from GW. Persulfate (PS) was simultaneously activated by electrogenerated ferrous ion (EC) and UV to generate sulfate radical. Photoelectro-persulfate (PEPS) was optimized by Box-Behnken design and the effects of four variables (pH, PS dosage, current density, and electrolysis time) were evaluated on COD removal. The results and several coefficients showed that the obtained model was acceptable for predicting the COD removal. Moreover, under optimum conditions (pH = 6.9, PS = 8.8 mM, current density = 2.0 mA/cm(2), and 49.3 min electrolysis time), BOD5, turbidity, TSS, phosphate, and UV254 were effectively removed and COD and BOD5 values reached to discharge standards. Different configurations of the processes were assessed for COD removal. The order of COD removal efficiency followed: PS < Fe(II) < UV/PS ≤ Fe(II)/PS < Fe(II)/PS/UV < electrocoagulation ≤ electrocoagulation/UV < electro-PS < PEPS. The monitoring PS concentration during 60 min reaction time in the aforesaid processes indicated that PEPS could remarkably activate PS. The solution pH was also monitored and related results revealed that the presence of PS during the 10 min first time decreased pH value while production of hydroxide ion at cathode increased pH significantly. Finally, the contribution of electrochemical process in the electrical energy consumption was far less than that of photolysis process in hybrid PEPS process.

  7. Adsorption of cadmium(II) on waste biomaterial.

    PubMed

    Baláž, M; Bujňáková, Z; Baláž, P; Zorkovská, A; Danková, Z; Briančin, J

    2015-09-15

    Significant increase of the adsorption ability of the eggshell biomaterial toward cadmium was observed upon milling, as is evidenced by the value of maximum monolayer adsorption capacity of 329mgg(-1), which is markedly higher than in the case of most "green" sorbents. The main driving force of the adsorption was proven to be the presence of aragonite phase as a consequence of phase transformation from calcite occurring during milling. Cadmium is adsorbed in a non-reversible way, as documented by different techniques (desorption tests, XRD and EDX measurements). The optimum pH for cadmium adsorption was 7. The adsorption process was accompanied by the increase of the value of specific surface area. The course of adsorption has been described by Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The adsorption kinetics was evaluated using three models, among which the best correlation coefficients and the best normalized standard deviation values were achieved for the pseudo-second order model and the intraparticle diffusion model, respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Palaeococcus pacificus sp. nov., an archaeon from deep-sea hydrothermal sediment.

    PubMed

    Zeng, Xiang; Zhang, Xiaobo; Jiang, Lijing; Alain, Karine; Jebbar, Mohamed; Shao, Zongze

    2013-06-01

    A hyperthermophilic, anaerobic, piezophilic archaeon (strain DY20341(T)) was isolated from a sediment sample collected from an East Pacific Ocean hydrothermal field (1° 37' S 102° 45' W) at a depth of 2737 m. The cells were irregular cocci, 0.8-1.5 µm in diameter. Growth was observed between 50 and 90 °C (optimum 80 °C), pH 5.0 and 8.0 (optimum pH 7.0), 1% and 7% (w/v) sea salts (Sigma, optimum 3%), 1% and 4% (w/v) NaCl (optimum 3%) and 0.1 and 80 MPa (optimum 30 MPa). The minimum doubling time was 66 min at 30 MPa and 80 °C. The isolate was an obligate chemoorganoheterotroph, capable of utilizing complex organic compounds and organic acids including yeast extract, peptone, tryptone, casein, starch, Casamino acids, citrate, lactate, acetate, fumarate, propanoate and pyruvate for growth. It was strictly anaerobic and facultatively dependent on elemental sulfur or sulfate as electron acceptors, but did not reduce sulfite, thiosulfate, Fe(III) or nitrate. The presence of elemental sulfur enhanced growth. The G+C content of the genomic DNA was 43.6 ± 1 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Palaeococcus ferrophilus DMJ(T) (95.7% 16S rRNA gene similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Palaeococcus pacificus sp. nov. is proposed. The type strain is strain DY20341(T) (=JCM 17873(T)=DSM 24777(T)).

  9. Optimization Recovery of Yttrium Oxide in Precipitation, Extraction, and Stripping Process

    NASA Astrophysics Data System (ADS)

    Perwira, N. I.; Basuki, K. T.; Biyantoro, D.; Effendy, N.

    2018-04-01

    Yttrium oxide can be used as a dopant control rod of nuclear reactors in YSH material and superconductors. Yttrium oxide is obtained in the Xenotime mineral derived from byproduct of tin mining PT Timah Bangka which contain rare earth elements (REE) dominant Y, Dy, and Gd whose content respectively about 29.53%, 7.76%, and 2.58%. Both usage in the field of nuclear and non-nuclear science and technology is need to pure from the impurities. The presence of impurities in the yttrium oxide may affect the characteristic of the material and the efficiency of its use. Thus it needs to be separated by precipitation and extraction-stripping and calcination in the making of the oxide. However, to obtain higher levels of Yttrium oxide, it is necessary to determine the optimum conditions for its separation. The purpose of this research was to determine the optimum pH of precipitation, determine acid media and concentration optimum in extraction and stripping process and determine the efficiency of the separation of Y from REE concentrate. This research was conducted with pH variation in the precipitation process that pHs were 4 - 8, the difference of acid media for the extraction process, i.e., HNO3, HCl and H2SO4 with each concentration of 0,5 M; 1 M; 1,5 M; and 2 M and for stripping process were HNO3, HCl, and H2SO4 with each concentration of 1 M; 2M; and 3 M. Based on the result, the optimum pH of precipitation process was 6,5, the optimumacid media was HNO3 0,5 M, and for stripping process media was HNO3 3 M. The efficiency of precipitation process at pH 6,5 was 69,53 %, extraction process was 96.39% and stripping process was 4,50%. The separation process from precipitation to extraction had increased the purity and the highest efficiency recovery of Y was in the extraction process and obtained Y2O3 purer compared to the feed with the Y2O3 content of 92.87%.

  10. Bacterial exopolysaccharides as a modern biotechnological tool for modification of fungal laccase properties and metal ion binding.

    PubMed

    Osińska-Jaroszuk, Monika; Jaszek, Magdalena; Starosielec, Magdalena; Sulej, Justyna; Matuszewska, Anna; Janczarek, Monika; Bancerz, Renata; Wydrych, Jerzy; Wiater, Adrian; Jarosz-Wilkołazka, Anna

    2018-03-26

    Four bacterial EPSs extracted from Rhizobium leguminosarum bv. trifolii Rt24.2, Sinorhizobium meliloti Rm1021, Bradyrhizobium japonicum USDA110, and Bradyrhizobium elkanii USDA76 were determined towards their metal ion adsorption properties and possible modification of Cerrena unicolor laccase properties. The highest magnesium and iron ion-sorption capacity (~ 42 and ~ 14.5%, respectively) was observed for EPS isolated from B. japonicum USDA110. An evident influence of EPSs on the stability of laccase compared to the control values (without EPSs) was shown after 30-day incubation at 25 °C. The residual activity of laccases was obtained in the presence of Rh76EPS and Rh1021EPS, i.e., 49.5 and 41.5% of the initial catalytic activity, respectively. This result was confirmed by native PAGE electrophoresis. The EPS effect on laccase stability at different pH (from 3.8 to 7.0) was also estimated. The most significant changes at the optimum pH value (pH 5.8) was observed in samples of laccase stabilized by Rh76EPS and Rh1021EPS. Cyclic voltamperometry was used for analysis of electrochemical parameters of laccase stabilized by bacterial EPS and immobilized on single-walled carbon nanotubes (SWCNTs) with aryl residues. Laccases with Rh76EPS and Rh1021EPS had an evident shift of the value of the redox potential compared to the control without EPS addition. In conclusion, the results obtained in this work present a new potential use of bacterial EPSs as a metal-binding component and a modulator of laccase properties especially stability of enzyme activity, which can be a very effective tool in biotechnology and industrial applications.

  11. Performance of continuous stirred tank reactor (CSTR) on fermentative biohydrogen production from melon waste

    NASA Astrophysics Data System (ADS)

    Cahyari, K.; Sarto; Syamsiah, S.; Prasetya, A.

    2016-11-01

    This research was meant to investigate performance of continuous stirred tank reactor (CSTR) as bioreactor for producing biohydrogen from melon waste through dark fermentation method. Melon waste are commonly generated from agricultural processing stages i.e. cultivation, post-harvesting, industrial processing, and transportation. It accounted for more than 50% of total harvested fruit. Feedstock of melon waste was fed regularly to CSTR according to organic loading rate at value 1.2 - 3.6 g VS/ (l.d). Optimum condition was achieved at OLR 2.4 g VS/ (l.d) with the highest total gas volume 196 ml STP. Implication of higher OLR value is reduction of total gas volume due to accumulation of acids (pH 4.0), and lower substrate volatile solid removal. In summary, application of this method might valorize melon waste and generates renewable energy sources.

  12. Comparative Study on Synergetic Degradation of a Reactive Dye Using Different Types of Fly Ash in Combined Adsorption and Photocatalysis

    NASA Astrophysics Data System (ADS)

    Giri Babu, P. V. S.; Swaminathan, G.

    2016-09-01

    A comprehensive study was carried out on four different fly ashes used as a catalyst for the degradation of Acid Red 1 using ultraviolet rays. These fly ashes are collected from different thermal power stations located at various places in India and having different chemical compositions. Three fly ashes are from lignite-based thermal power plants, and one is from the coal-based power plant. One fly ash is classified as Class F, two fly ashes are classified as Class C and remaining one is not conforming to ASTM C618 classification. X-Ray Fluorescence analysis was used to identify the chemical composition of fly ashes and SiO2, Al2O3, CaO, Fe2O3 and TiO2 were found to be the major elements present in different proportions. Various analysis were carried out on all the fly ashes like Scanning Electron Microscopy to identify the microphysical properties, Energy Dispersive X-Ray spectroscopy to quantify the elements present in the catalyst and X-Ray Diffraction to identify the catalyst phase analysis. The radical generated during the reaction was identified by Electron paramagnetic resonance spectroscopy. The parameters such as initial pH of the dye solution, catalyst dosage and initial dye concentration which influence the dye degradation efficiency were studied and optimised. In 60 min duration, the dye degradation efficiency at optimum parametric values of pH 2.5, initial dye concentration of 10 mg/L and catalyst dosage of 1.0 g/L using various fly ashes, i.e., Salam Power Plant, Barmer Lignite Power Plant, Kutch Lignite Power Plant and Neyveli Lignite Thermal Power plant (NLTP) were found to be 40, 60, 67 and 95 % respectively. The contribution of adsorption alone was 18 % at the above mentioned optimum parametric values. Among the above four fly ash NLTP fly ashes proved to be most efficient.

  13. Production, Purification, and Characterization of a Major Penicillium glabrum Xylanase Using Brewer's Spent Grain as Substrate

    PubMed Central

    Beitel, Susan Michelz; Fortkamp, Diana; Terrasan, César Rafael Fanchini; de Almeida, Alex Fernando

    2013-01-01

    In recent decades, xylanases have been used in many processing industries. This study describes the xylanase production by Penicillium glabrum using brewer's spent grain as substrate. Additionally, this is the first work that reports the purification and characterization of a xylanase using this agroindustrial waste. Optimal production was obtained when P. glabrum was grown in liquid medium in pH 5.5, at 25 °C, under stationary condition for six days. The xylanase from P. glabrum was purified to homogeneity by a rapid and inexpensive procedure, using ammonium sulfate fractionation and molecular exclusion chromatography. SDS-PAGE analysis revealed one band with estimated molecular mass of 18.36 kDa. The optimum activity was observed at 60 °C, in pH 3.0. The enzyme was very stable at 50 °C, and high pH stability was verified from pH 2.5 to 5.0. The ion Mn2+ and the reducing agents β-mercaptoethanol and DTT enhanced xylanase activity, while the ions Hg2+, Zn2+, and Cu2+ as well as the detergent SDS were strong inhibitors of the enzyme. The use of brewer's spent grain as substrate for xylanase production cannot only add value and decrease the amount of this waste but also reduce the xylanase production cost. PMID:23762855

  14. Advanced oxidation of Reactive Blue 181 solution: a comparison between Fenton and Sono-Fenton process.

    PubMed

    Basturk, Emine; Karatas, Mustafa

    2014-09-01

    In this work, the decolorization of C.I. Reactive Blue 181 (RB181), an anthraquinone dye, by Ultrasound and Fe(2+) H2O2 processes was investigated. The effects of operating parameters, such as Fe(2+) dosage, H2O2 dosage, pH value, reaction time and temperature were examined. Process optimisation [pH, ferrous ion (Fe(2+)), hydrogen peroxide (H2O2), and reaction time], kinetic studies and their comparison were carried out for both of the processes. The Sono-Fenton process was performed by indirect sonication in an ultrasonic water bath, which was operated at a fixed 35-kHz frequency. The optimum conditions were determined as [Fe(2+)]=30 mg/L, [H2O2]=50 mg/L and pH=3 for the Fenton process and [Fe(2+)]=10 mg/L, [H2O2]=40 mg/L and pH=3 for the Sono-Fenton process. The colour removals were 88% and 93.5% by the Fenton and Sono-Fenton processes, respectively. The highest decolorization was achieved by the Sono-Fenton process because of the production of some oxidising agents as a result of sonication. The paper also discussed kinetic parameters. The decolorization kinetic of RB181 followed pseudo-second-order reaction (Fenton study) and Behnajady kinetics (Sono-Fenton study). Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The 2-Aminoethylphosphonate-Specific Transaminase of the 2-Aminoethylphosphonate Degradation Pathway

    PubMed Central

    Kim, Alexander D.; Baker, Angela S.; Dunaway-Mariano, Debra; Metcalf, W. W.; Wanner, B. L.; Martin, Brian M.

    2002-01-01

    The 2-aminoethylphosphonate transaminase (AEPT; the phnW gene product) of the Salmonella enterica serovar Typhimurium 2-aminoethylphosphonate (AEP) degradation pathway catalyzes the reversible reaction of AEP and pyruvate to form phosphonoacetaldehyde (P-Ald) and l-alanine (l-Ala). Here, we describe the purification and characterization of recombinant AEPT. pH rate profiles (log Vm and log Vm/Km versus pH) revealed a pH optimum of 8.5. At pH 8.5, Keq is equal to 0.5 and the kcat values of the forward and reverse reactions are 7 and 9 s−1, respectively. The Km for AEP is 1.11 ± 0.03 mM; for pyruvate it is 0.15 ± 0.02 mM, for P-Ald it is 0.09 ± 0.01 mM, and for l-Ala it is 1.4 ± 0.03 mM. Substrate specificity tests revealed a high degree of discrimination, indicating a singular physiological role for the transaminase in AEP degradation. The 40-kDa subunit of the homodimeric enzyme is homologous to other members of the pyridoxalphosphate-dependent amino acid transaminase superfamily. Catalytic residues conserved within well-characterized members are also conserved within the seven known AEPT sequences. Site-directed mutagenesis demonstrated the importance of three selected residues (Asp168, Lys194, and Arg340) in AEPT catalysis. PMID:12107130

  16. Synthesis and performance of Zn-Ni-P thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Ghita, M.; Constantin, V.; Miculescu, F.; Popescu, A. M.

    2015-03-01

    The electroplating of Zn-Ni-P thin film alloys from a sulfate bath containing phosphoric and phosphorous acid was investigated. The bath composition and the deposition parameters were optimized through Hull cell experiments, and the optimum experimental conditions were determined (pH = 2, temperature = 298-313 K, zinc sulfate concentration = 30 g·L-1, EDTA concentration = 15 g·L-1, and current density, = ,1.0-2.0 A·dm-2). The SEM analysis of the coating deposited from the optimum bath revealed fine-grained deposits of the alloy in the presence of EDTA. Optical microscopy analysis indicated an electrodeposited thin film with uniform thickness and good adhesion to the steel substrate. The good adherence of the coatings was also demonstrated by the scratch tests that were performed, with a maximum determined value of 25 N for the critical load. Corrosion resistance tests revealed good protection of the steel substrate by the obtained Zn-Ni-P coatings, with values up to 85.89% for samples with Ni contents higher than 76%. The surface analysis of the thin film samples before and after corrosion was performed by X-ray photoelectron spectroscopy (XPS). Project support by the Partnership Romanian Research Program (PNCDI2), CORZIFILM Project nr.72-221/2008-2011 and “EU (ERDF) and Romanian Government” that allowed for acquisition of the research infrastructure under POS-CEEO 2.2.1 project INFRANANOCHEM-Nr.19/01.03.2009.

  17. Kinetic characterization of recombinant Bacillus coagulans FDP-activated l-lactate dehydrogenase expressed in Escherichia coli and its substrate specificity.

    PubMed

    Jiang, Ting; Xu, Yanbing; Sun, Xiucheng; Zheng, Zhaojuan; Ouyang, Jia

    2014-03-01

    Bacillus coagulans is a homofermentative, acid-tolerant and thermophilic sporogenic lactic acid bacterium, which is capable of producing high yields of optically pure lactic acid. The l-(+)-lactate dehydrogenase (l-LDH) from B. coagulans is considered as an ideal biocatalyst for industrial production. In this study, the gene ldhL encoding a thermostable l-LDH was amplified from B. coagulans NL01 genomic DNA and successfully expressed in Escherichia coli BL21 (DE3). The recombinant enzyme was partially purified and its enzymatic properties were characterized. Sequence analysis demonstrated that the l-LDH was a fructose 1,6-diphosphate-activated NAD-dependent lactate dehydrogenase (l-nLDH). Its molecular weight was approximately 34-36kDa. The Km and Vmax values of the purified l-nLDH for pyruvate were 1.91±0.28mM and 2613.57±6.43μmol(minmg)(-1), respectively. The biochemical properties of l-nLDH showed that the specific activity were up to 2323.29U/mg with optimum temperature of 55°C and pH of 6.5 in the pyruvate reduction and 351.01U/mg with temperature of 55°C and pH of 11.5 in the lactate oxidation. The enzyme also showed some activity in the absence of FDP, with a pH optimum of 4.0. Compared to other lactic acid bacterial l-nLDHs, the enzyme was found to be relatively stable at 50°C. Ca(2+), Ba(2+), Mg(2+) and Mn(2+) ions had activated effects on the enzyme activity, and the enzyme was greatly inhibited by Ni(2+) ion. Besides these, l-nLDH showed the higher specificity towards pyruvate esters, such as methyl pyruvate and ethyl pyruvate. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Biodegradation of waste greases and biochemical properties of a novel lipase from Pseudomonas synxantha PS1.

    PubMed

    Cai, Xianghai; Chen, Siqi; Yang, Hong; Wang, Wei; Lin, Lin; Shen, Yaling; Wei, Wei; Wei, Dong-Zhi

    2016-07-01

    A lipase-producing bacterial strain was isolated from oil-well-produced water in Shengli oilfield (Shandong province, China) and was identified as Pseudomonas synxantha by 16S rDNA sequence analysis (named Pseudomonas synxantha PS1). Strain PS1 showed a maximum lipase activity of 10.8 U/mL after culturing for 48 h at 30 °C, with lactose (4 g/L) as carbon source, tryptone (8 g/L) as nitrogen source, olive oil (0.5%, v/v) as inductor, and the initial pH 8.0. Meanwhile, the lipase gene from P. synxantha PS1 was cloned and expressed in Escherichia coli BL21 with the vector pET28a. The novel gene (lipPS1) has an open reading frame of 1425 bp and encodes a 474 aa lipase (LipPS1) sharing the most identity (87%) with the lipase in Pseudomonas fluorescens. LipPS1 preferably acted on substrates with a long chain (C10-C18) of fatty acids. The optimum pH and temperature of the recombinant enzyme were 8.0 and 40 °C, respectively, towards the optimum substrate p-nitrophenyl palmitate. The LipPS1 showed remarkable stability under alkaline conditions and was stable at pH 7.0-10.0 (retaining more than 60% activity). From the organic solvents tests, the lipase was activated by 15% (v/v) methanol (112%), 15% ethanol (127%), and 15% n-butyl alcohol (116%). LipPS1 presented strong biodegradability of waste grease; 93% of waste grease was hydrolyzed into fatty acid after 12 h at 30 °C. This is the first report of the lipase activity and lipase gene obtained from P. synxantha (including wild strain and recombinant strain) and of the recombinant LipPS1 with the detailed enzymatic properties. Also a preliminary study of the biodegradability of waste greases shows the potential value in industry applications.

  19. Thermosporothrix narukonensis sp. nov., belonging to the class Ktedonobacteria, isolated from fallen leaves on geothermal soil, and emended description of the genus Thermosporothrix.

    PubMed

    Yabe, Shuhei; Sakai, Yasuteru; Yokota, Akira

    2016-06-01

    A thermophilic, Gram-stain-positive, spore-forming bacterium that formed branched vegetative and aerial mycelia was isolated from fallen leaves on geothermal soil. This strain, designated F4T, grew at temperatures between 30 and 60 °C; optimum growth temperature was 50 °C, whereas no growth was observed below 28 °C or above 65 °C. The pH range for growth was 4.9-9.5; the pH for optimum growth was 7.0, but no growth was observed at pH below 4.4 or above 10.0. Strain F4T was able to hydrolyse polysaccharides such as cellulose, xylan, chitin and starch. The G+C content in the DNA of strain F4T was 52.5 mol%. The major fatty acid was iso-C17 : 0 and the major menaquinone was MK-9 (H2). The cell wall of strain F4T contained glutamic acid, serine, glycine, alanine and ornithine in a molar ratio of 1.0:1.5:1.4:1.8:0.7. The polar lipids of this strain consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, one unknown phospholipid, three unknown glycolipids and two unknown lipids. The cell-wall sugar was mannose. Detailed phylogenetic analysis based on 16S rRNA gene sequences indicated that strain F4T belongs to the genus Thermosporothrix, and that it was related most closely to Thermosporothrix hazakensis SK20-1T (98.7 % similarity). DNA-DNA hybridization showed relatedness values of less than 15 % with the type strain of Thermosporothrix hazakensis. On the basis of phenotypic features and phylogenetic position, strain F4T is considered to represent a novel species, Thermosporothrix narukonensis sp. nov. The type strain is F4T(=NBRC 111777T=BCCM/LMG 29329T).

  20. Effect of reaction temperature on biodiesel production from waste cooking oil using lipase as biocatalyst

    NASA Astrophysics Data System (ADS)

    Istiningrum, Reni Banowati; Aprianto, Toni; Pamungkas, Febria Lutfi Udin

    2017-12-01

    This study aims to determine the effect of temperature on conversion of biodiesel from waste cooking oil enzymatically using lipase extracted from rice bran. The feedstock was simulated waste cooking oil and lipase enzyme was extracted with buffer pH variation. The enzyme activity was titrimetrically determined and the optimum pH buffer was used to study the effect of temperature on the transesterification reaction. Temperature effects were assessed in the range of 45-60 °C and the content of methyl esters in biodiesel was determined by GC-MS. The reaction temperature significantly influences the transesterification reaction with optimum biodiesel conversion occurred at 55 °C with methyl ester content of 81.19%. The methyl ester composition in the resulting biodiesel is methyl palmitate, methyl oleate and methyl stearate.

  1. Column with CNT/magnesium oxide composite for lead(II) removal from water.

    PubMed

    Saleh, Tawfik A; Gupta, Vinod K

    2012-05-01

    In this study, manganese dioxide-coated multiwall carbon nanotube (MnO(2)/CNT) nanocomposite has been successfully synthesized. The as-produced nanocomposite was characterized by different characteristic tools, such as X-ray diffraction, SEM, and FTIR. The MnO(2)/CNT nanocomposite was utilized as a fixed bed in a column system for removal of lead(II) from water. The experimental conditions were investigated and optimized. The pH range between 3 and 7 was studied; the optimum removal was found when the pH was equal to 6 and 7. The thickness of MnO(2)/CNT nanocomposite compact layer was also changed to find the optimum parameter for higher removal. It was observed that the slower the flow rates of the feed solution the higher the removal because of larger contact time.

  2. Electrospun biocompatible Chitosan/MIL-101 (Fe) composite nanofibers for solid-phase extraction of Δ9-tetrahydrocannabinol in whole blood samples using Box-Behnken experimental design.

    PubMed

    Asiabi, Mina; Mehdinia, Ali; Jabbari, Ali

    2017-01-06

    The nanofibers of biocompatible Chitosan/MIL-101 (Fe) composite were synthesized by a simple, cheap and accessible electrospining method and applied for mat-based extraction of trace amount of Δ9-tetrahydrocannabinol (THC) from human whole blood sample following its combination by high performance liquid chromatography-ultraviolet detection. The composite nanofibres were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and N 2 adsorption-desorption experiments. The volume of eluting solvent, sorbent amount, pH and% NaCl (w/v) influencing on the responses were investigated using factorial experimental design. The optimum point was achieved by analysis of the results according to design expert (DX) software. The volume of eluting solvent, sorbent amount and pH were significant variables, and 150μL, 7mg and 7.0 were respectively chosen for obtaining the best extraction response. Under the optimum conditions, the method was exhibited a linear range of 0.1-100μgL -1 (R 2 =0.9943) for THC with a detection limit of 0.04μgL -1 . Acceptable values for intra-day (3.2%) and inter-day (4.8%) relative standard deviations were obtained. The high preconcentration factor (970) and satisfactory recoveries (88.2%-92.4%) in whole blood samples were achieved which proved the capability of the method for trace determination of THC in the human whole blood samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Three extracellular dipeptidyl peptidases found in Aspergillus oryzae show varying substrate specificities.

    PubMed

    Maeda, Hiroshi; Sakai, Daisuke; Kobayashi, Takuji; Morita, Hiroto; Okamoto, Ayako; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei

    2016-06-01

    Three extracellular dipeptidyl peptidase genes, dppB, dppE, and dppF, were unveiled by sequence analysis of the Aspergillus oryzae genome. We investigated their differential enzymatic profiles, in order to gain an understanding of the diversity of these genes. The three dipeptidyl peptidases were expressed using Aspergillus nidulans as the host. Each recombinant enzyme was purified and subsequently characterized. The enzymes displayed similar optimum pH values, but optimum temperatures, pH stabilities, and substrate specificities varied. DppB was identified as a Xaa-Prolyl dipeptidyl peptidase, while DppE scissile substrates were similar to the substrates for Aspergillus fumigatus DPPV (AfDPPV). DppF was found to be a novel enzyme that could digest both substrates for A. fumigatus DPPIV and AfDPPV. Semi-quantitative PCR revealed that the transcription of dppB in A. oryzae was induced by protein substrates and repressed by the addition of an inorganic nitrogen source, despite the presence of protein substrates. The transcription of dppE depended on its growth time, while the transcription of dppF was not affected by the type of the nitrogen source in the medium, and it started during the early stage of the fungal growth. Based on these results, we conclude that these enzymes may represent the nutrition acquisition enzymes. Additionally, DppF may be one of the sensor peptidases responsible for the detection of the protein substrates in A. oryzae environment. DppB may be involved in nitrogen assimilation control, since the transcription of dppB was repressed by NaNO3, despite the presence of protein substrates.

  4. Characterization of NADP-dependent 7 beta-hydroxysteroid dehydrogenases from Peptostreptococcus productus and Eubacterium aerofaciens.

    PubMed Central

    Hirano, S; Masuda, N

    1982-01-01

    Peptostreptococcus productus strain b-52 (a human fecal isolate) and Eubacterium aerofaciens ATCC 25986 were found to contain NADP-dependent 7 beta-hydroxysteriod dehydrogenase activity. The enzyme was synthesized constitutively by both organisms, and the enzyme yields were suppressed by the addition of 0.5 mM 7 beta-hydroxy bile acid to the growth medium. Purification of the enzyme by chromatography resulted in preparations with 3.5 (P. productus b-52, on Sephadex G-200) and 1.8 (E. aerofaciens, on Bio-Gel A-1.5 M) times the activity of the crude cell extracts. A pH optimum of 9.8 and a molecular weight of approximately 53,000 were shown for the enzyme of strain b-52, and an optimum pH at 10.5 and a molecular weight of 45,000 was shown for that from strain ATCC 25986. Kinetic studies revealed that both enzyme preparations oxidized the 7 beta-hydroxy group in unconjugated and conjugated bile acids, a lower Km value being demonstrated with free bile acid than with glycine and taurine conjugates. No measureable activity against 3 alpha-, 7 alpha-, or 12 alpha-hydroxy groups was detected in either enzyme preparation. When tested with strain ATCC 25986, little 7 beta-hydroxy-steroid dehydrogenase activity was detected in cells grown in the presence of glucose in excess. The enzyme from strain b-52 was found to be heat labile (90% inactivation at 50 degrees C for 3 min) and highly sensitive to sulfhydryl inhibitors. PMID:6954878

  5. Silver nanoparticle (AgNPs) doped gum acacia-gelatin-silica nanohybrid: an effective support for diastase immobilization.

    PubMed

    Singh, Vandana; Ahmed, Shakeel

    2012-03-01

    An effective carrier matrix for diastase alpha amylase immobilization has been fabricated by gum acacia-gelatin dual templated polymerization of tetramethoxysilane. Silver nanoparticle (AgNp) doping to this hybrid could significantly enhance the shelf life of the impregnated enzyme while retaining its full bio-catalytic activity. The doped nanohybrid has been characterized as a thermally stable porous material which also showed multipeak photoluminescence under UV excitation. The immobilized diastase alpha amylase has been used to optimize the conditions for soluble starch hydrolysis in comparison to the free enzyme. The optimum pH for both immobilized and free enzyme hydrolysis was found to be same (pH=5), indicating that the immobilization made no major change in enzyme conformation. The immobilized enzyme showed good performance in wide temperature range (from 303 to 323 K), 323 K being the optimum value. The kinetic parameters for the immobilized, (K(m)=10.30 mg/mL, V(max)=4.36 μmol mL(-1)min(-1)) and free enzyme (K(m)=8.85 mg/mL, V(max)=2.81 μmol mL(-1)min(-1)) indicated that the immobilization improved the overall stability and catalytic property of the enzyme. The immobilized enzyme remained usable for repeated cycles and did not lose its activity even after 30 days storage at 40°C, while identically synthesized and stored silver undoped hybrid lost its ~31% activity in 48 h. Present study revealed the hybrids to be potentially useful for biomedical and optical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Factors Affecting Oxidation of Thiosalts by Thiobacilli

    PubMed Central

    Silver, M.; Dinardo, O.

    1981-01-01

    The effects of temperature, initial pH, and the concentrations of ammonium, phosphate, and heavy metals on the oxidation of thiosalts by an authentic strain of Thiobacillus thiooxidans (ATCC 8085) and by a mixed culture isolated from a base metal-processing mill effluent pond were studied. The optimum temperature was 30°C and the optimum initial pH was 3.75 for both cultures using thiosulfate and for the mixed culture using tetrathionate. T. thiooxidans ATCC 8085 did not oxidize tetrathionate. For a thiosalt concentration of 2,000 ppm (2,000 mg/liter), maximal rates of destruction occurred at concentrations of ammonium ion above 2 mg/liter and in the presence of 1 mg of phosphate per liter. Under optimal conditions, the rate of thiosulfate oxidation by the pure culture was 55 ± 3 mg/liter per h; the mixed culture oxidized thiosulfate at the rate of 40 ± 1 mg/liter per h and tetrathionate at the rate of 50 ± 2 mg/liter per h. Metal ions caused normal inhibition kinetics in the oxidation of thiosulfate by T. thiooxidans ATCC 8085. Ki values were calculated for cadmium (16 mg/liter), copper (0.46 mg/liter), lead (2 mg/liter), silver (3.1 mg/liter), and zinc (33 mg/liter). Only a slight additive effect was apparent in the presence of all of these metal ions. The mixed culture of thiosalt-oxidizing bacteria was less sensitive to heavy metal inhibition; the order of inhibition of thiosulfate oxidation was Cd < Zn < Pb < Ag < Cu, and that of tetrathionate oxidation was Zn < Cd < Pb < Ag < Cu. PMID:16345785

  7. Sonophotocatalytic degradation of trypan blue and vesuvine dyes in the presence of blue light active photocatalyst of Ag3PO4/Bi2S3-HKUST-1-MOF: Central composite optimization and synergistic effect study.

    PubMed

    Mosleh, S; Rahimi, M R; Ghaedi, M; Dashtian, K

    2016-09-01

    An efficient simultaneous sonophotocatalytic degradation of trypan blue (TB) and vesuvine (VS) using Ag3PO4/Bi2S3-HKUST-1-MOF as a novel visible light active photocatalyst was carried out successfully in a continuous flow-loop reactor equipped to blue LED light. Ag3PO4/Bi2S3-HKUST-1-MOF with activation ability under blue light illumination was synthesized and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), photoluminescence (PL) and diffuse reflectance spectra (DRS). The effect of operational parameters such as the initial TB and VS concentration (5-45mg/L), flow rate (30-110mL/min), irradiation and sonication time (10-30min), pH (3-11) and photocatalyst dosage (0.15-0.35g/L) has been investigated and optimized using central composite design (CCD) combined with desirability function (DF). Maximum sonophotodegradation percentage (98.44% and 99.36% for TB and VS, respectively) was found at optimum condition set as: 25mg/L of each dye, 70mL/min of solution flow rate, 25min of irradiation and sonication time, pH 6 and 0.25g/L of photocatalyst dosage. At optimum conditions, synergistic index value was obtained 2.53 that indicated the hybrid systems including ultrasound irradiation and photocatalysis have higher efficiency compared with sum of the individual processes. Copyright © 2016. Published by Elsevier B.V.

  8. Immobilization and characterization of tannase from a metagenomic library and its use for removal of tannins from green tea infusion.

    PubMed

    Yao, Jian; Chen, Qinglong; Zhong, Guoxiang; Cao, Wen; Yu, An; Liu, Yuhuan

    2014-01-01

    Tannase (Tan410) from a soil metagenomic library was immobilized on different supports, including mesoporous silica SBA-15, chitosan, calcium alginate, and amberlite IRC 50. Entrapment in calcium alginate beads was comparatively found to be the best method and was further characterized. The optimum pH of the immobilized Tan410 was shifted toward neutrality compared with the free enzyme (from pH 6.4 to pH 7.0). The optimum temperature was determined to be 45°C for the immobilized enzyme and 30°C for the free enzyme, respectively. The immobilized enzyme had no loss of activity after 10 cycles, and retained more than 90% of its original activity after storage for 30 days. After immobilization, the enzyme activity was only slightly affected by Hg(2+), which completely inhibited the activity of the free enzyme. The immobilized tannase was used to remove 80% of tannins from a green tea infusion on the first treatment. The beads were used for six successive runs resulting in overall hydrolysis of 56% of the tannins.

  9. Statistical key factors optimization of conditions for hydrogen production from S-TE (solubilization by thermophilic enzyme) waste sludge.

    PubMed

    Guo, Liang; Zhao, Jun; She, Zonglian; Lu, Mingmin; Zong, Yan

    2013-06-01

    Waste sludge can be solubilized after S-TE (solubilization by thermophilic enzyme) pretreatment as the cryptic growth occurs at the expense of the cell lysate. The hydrogen production from S-TE sludge is greatly influenced by many factors. In this study, factors including pH, C/N, C/P, and Fe(2+) affecting hydrogen production from S-TE sludge were optimized using uniform design. The optimum condition for maximum hydrogen yield of 68.4 ml H2/g VSS (volatile suspended solid) could be predicted from regression model, and the optimum conditions were pH of 6.4, C/N ratio of 38, C/P ratio of 265, and Fe(2+) concentration of 85 mg/L. There was interaction effect of factors on hydrogen production from S-TE sludge. Different pH, C/N, C/P and Fe(2+) conditions could influence the VSS removal rate, carbohydrate and protein utilization. When the highest compositions of acetate and ethanol and lowest propionate were observed in metabolites, effective hydrogen production was also achieved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Fuel alcohol biosynthesis by Zymomonas anaerobia: optimization studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosaric, N.; Ong, S.L.; Davnjak, Z.

    1982-03-01

    The optimum operating conditions for growth and ethanol production of Zymomonas anaerobia ATCC 29501 were established. The optimum pH range and temperature were found to be 5.0-6.0 and 35/sup 0/C, respectively. Based on the results obtained from the temperature optimization study, an Arrhenius-type temperature relationship for the specific growth rate was developed. The growth and ethanol production of this microbe also have been optimized in terms of concentrations of glucose, essential nutrients, and minerals. With optimum medium and operating conditions, an ethanol concentration of 96 g/L was obtained in 23h. Both growth and ethanol yield coefficients in dependence on initialmore » glucose concentrations were determined.« less

  11. Fuel alcohol biosynthesis by Zymomonas anaerobia: optimization studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosaric, N.; Ong, S.L.; Duvnjak, Z.

    1982-03-01

    The optimum operating conditions for growth and ethanol production of Zymomonas anaerobia ATCC 29501 were established. The optimum pH range and temperature were found to be 5.0-6.0 and 35 degrees C, respectively. Based on the results obtained from the temperature optimization study, an Arrhenius-type temperature relationship for the specific growth rate was developed. The growth and ethanol production of this microbe also have been optimized in terms of concentrations of glucose, essential nutrients, and minerals. With optimum medium and operating conditions, an ethanol concentration of 96 g/L was obtained in 23 hours. Both growth and ethanol yield coefficients in dependencemore » on initial glucose concentrations were determined. (Refs. 16).« less

  12. Highly efficient micellar extraction of toxic picric acid into novel ionic liquid: Effect of parameters, solubilization isotherm, evaluation of thermodynamics and design parameters.

    PubMed

    Bhatt, Darshak R; Maheria, Kalpana C; Parikh, Jigisha K

    2015-12-30

    A simple and new approach in cloud point extraction (CPE) method was developed for removal of picric acid (PA) by the addition of N,N,N,N',N',N'-hexaethyl-ethane-1,2-diammonium dibromide ionic liquid (IL) in non-ionic surfactant Triton X-114 (TX-114). A significant increase in extraction efficiency was found upon the addition of dicationic ionic liquid (DIL) at both nearly neutral and high acidic pH. The effects of different operating parameters such as pH, temperature, time, concentration of surfactant, PA and DIL on extraction of PA were investigated and optimum conditions were established. The extraction mechanism was also proposed. A developed Langmuir isotherm was used to compute the feed surfactant concentration required for the removal of PA up to an extraction efficiency of 90%. The effects of temperature and concentration of surfactant on various thermodynamic parameters were examined. It was found that the values of ΔG° increased with temperature and decreased with surfactant concentration. The values of ΔH° and ΔS° increased with surfactant concentration. The developed approach for DIL mediated CPE has proved to be an efficient and green route for extraction of PA from water sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd.

    PubMed

    Miura, Hiroshi; Mogi, Tatsushi; Ano, Yoshitaka; Migita, Catharina T; Matsutani, Minenosuke; Yakushi, Toshiharu; Kita, Kiyoshi; Matsushita, Kazunobu

    2013-06-01

    Cyanide-insensitive terminal quinol oxidase (CIO) is a subfamily of cytochrome bd present in bacterial respiratory chain. We purified CIO from the Gluconobacter oxydans membranes and characterized its properties. The air-oxidized CIO showed some or weak peaks of reduced haemes b and of oxygenated and ferric haeme d, differing from cytochrome bd. CO- and NO-binding difference spectra suggested that haeme d serves as the ligand-binding site of CIO. Notably, the purified CIO showed an extraordinary high ubiquinol-1 oxidase activity with the pH optimum of pH 5-6. The apparent Vmax value of CIO was 17-fold higher than that of G. oxydans cytochrome bo3. In addition, compared with Escherichia coli cytochrome bd, the quinol oxidase activity of CIO was much more resistant to cyanide, but sensitive to azide. The Km value for O2 of CIO was 7- to 10-fold larger than that of G. oxydans cytochrome bo3 or E. coli cytochrome bd. Our results suggest that CIO has unique features attributable to the structure and properties of the O2-binding site, and thus forms a new sub-group distinct from cytochrome bd. Furthermore, CIO of acetic acid bacteria may play some specific role for rapid oxidation of substrates under acidic growth conditions.

  14. Kinetic characterization, optimum conditions for catalysis and substrate preference of secretory phospholipase A2 from Glycine max in model membrane systems.

    PubMed

    Mariani, María Elisa; Madoery, Ricardo Román; Fidelio, Gerardo Daniel

    2015-01-01

    Two secretory phospholipase A2 (sPLA2s) from Glycine max, GmsPLA2-IXA-1 and GmsPLA2-XIB-2, have been purified as recombinant proteins and the activity was evaluated in order to obtain the optimum conditions for catalysis using mixed micelles and lipid monolayers as substrate. Both sPLA2s showed a maximum enzyme activity at pH 7 and a requirement of Ca(2+) in the micromolar range. These parameters were similar to those found for animal sPLA2s but a surprising optimum temperature for catalysis at 60 °C was observed. The effect of negative interfacial charges on the hydrolysis of organized substrates was evaluated through initial rate measurements using short chain phospholipids with different head groups. The enzymes showed subtle differences in the specificity for phospholipids with different head groups (DLPC, DLPG, DLPE, DLPA) in presence or absence of NaCl. Both recombinant enzymes showed lower activity toward anionic phospholipids and a preference for the zwitterionic ones. The values of the apparent kinetic parameters (Vmax and KM) demonstrated that these enzymes have more affinity for phosphatidylcholine compared with phosphatidylglycerol, in contrast with the results observed for pancreatic sPLA2. A hopping mode of catalysis was proposed for the action of these sPLA2 on mixed phospholipid/triton micelles. On the other hand, Langmuir-monolayers assays indicated an optimum lateral surface pressure for activity in between 13 and 16 mN/m for both recombinant enzymes. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  15. Organic solvent tolerance of an α-amylase from haloalkaliphilic bacteria as a function of pH, temperature, and salt concentrations.

    PubMed

    Pandey, Sandeep; Singh, S P

    2012-04-01

    A haloalkaliphilic bacterium was isolated from salt-enriched soil of Mithapur, Gujarat (India) and identified as Bacillus agaradhaerens Mi-10-6₂ based on 16S rRNA sequence analysis (NCBI gene bank accession, GQ121032). The bacterium was studied for its α-amylase characteristic in the presence of organic solvents. The enzyme was quite active and it retained considerable activity in 30% (v/v) organic solvents, dodecane, decane, heptane, n-hexane, methanol, and propanol. At lower concentrations of solvents, the catalysis was quite comparable to control. Enzyme catalysis at wide range of alkanes and alcohol was an interesting finding of the study. Mi-10-6₂ amylase retained activity over a broader alkaline pH range, with the optimal pH at 10-11. Two molars of salt was optimum for catalysis in the presence of most of the tested solvents, though the enzyme retained significant activity even at 4 M salt. With dodecane, the optimum temperature shifted from 50 °C to 60 °C, while the enzyme was active up to 80 °C. Over all, the present study focused on the effect of organic solvents on an extracellular α-amylase from haloalkaliphilic bacteria under varying conditions of pH, temperature, and salt.

  16. Grafting of GMA and some comonomers onto chitosan for controlled release of diclofenac sodium.

    PubMed

    Sharma, Rajeev Kr; Lalita; Singh, Anirudh P; Chauhan, Ghanshyam S

    2014-03-01

    In order to develop pH sensitive hydrogels for controlled drug release we have graft copolymerized glycidyl methacrylate (GMA) with comonomers acrylic acid, acrylamide and acrylonitrile, onto chitosan (Ch) by using potassium persulphate (KPS) as free radical initiator in aqueous solution. The optimum percent grafting for GMA was recorded for 1g chitosan at [KPS]=25.00 × 10(-3)mol/L, [GMA]=0.756 × 10(-3)mol/L, reaction temperature=60 °C and reaction time=1h in 20 mL H2O. Binary monomers were grafted for five different concentrations at optimum grafting conditions evaluated for GMA alone onto chitosan. The graft copolymers were characterized by FTIR, XRD, TGA and SEM. The swelling properties of chitosan and graft copolymers were investigated at different pH to define their end uses in sustained release of an anti-inflammatory drug, diclofenac sodium. Percent drug release w.r.t. drug loaded in polymeric sample was studied as function of time in buffer solutions of pH 2.0 and 7.4. In vitro release data was analyzed using Fick's Law. Chitosan grafted with binary monomers, GMA-co-AAm and GMA-co-AN showed very good results for sustained release of drug at 7.4 pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A sacrificial millipede altruistically protects its swarm using a drone blood enzyme, mandelonitrile oxidase

    PubMed Central

    Ishida, Yuko; Kuwahara, Yasumasa; Dadashipour, Mohammad; Ina, Atsutoshi; Yamaguchi, Takuya; Morita, Masashi; Ichiki, Yayoi; Asano, Yasuhisa

    2016-01-01

    Soldiers of some eusocial insects exhibit an altruistic self-destructive defense behavior in emergency situations when attacked by large enemies. The swarm-forming invasive millipede, Chamberlinius hualienensis, which is not classified as eusocial animal, exudes irritant chemicals such as benzoyl cyanide as a defensive secretion. Although it has been thought that this defensive chemical was converted from mandelonitrile, identification of the biocatalyst has remained unidentified for 40 years. Here, we identify the novel blood enzyme, mandelonitrile oxidase (ChuaMOX), which stoichiometrically catalyzes oxygen consumption and synthesis of benzoyl cyanide and hydrogen peroxide from mandelonitrile. Interestingly the enzymatic activity is suppressed at a blood pH of 7, and the enzyme is segregated by membranes of defensive sacs from mandelonitrile which has a pH of 4.6, the optimum pH for ChuaMOX activity. In addition, strong body muscle contractions are necessary for de novo synthesis of benzoyl cyanide. We propose that, to protect its swarm, the sacrificial millipede also applies a self-destructive defense strategy—the endogenous rupturing of the defensive sacs to mix ChuaMOX and mandelonitrile at an optimum pH. Further study of defensive systems in primitive arthropods will pave the way to elucidate the evolution of altruistic defenses in the animal kingdom. PMID:27265180

  18. Ebselen is a dehydroascorbate reductase mimic, facilitating the recycling of ascorbate via mammalian thioredoxin systems.

    PubMed

    Zhao, Rong; Holmgren, Arne

    2004-02-01

    Ebselen is a selanazal drug recently revealed as a highly efficient peroxiredoxin mimic catalyzing the hydroperoxide reduction by the mammalian thioredoxin system [thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH]. The mammalian Trx system is a dehydroascorbic acid reductase recycling ascorbic acid essential for cell functions. Here we report that ebselen strongly facilitated the recycling of ascorbic acid by the TrxR both with and without Trx present. Reduction of dehydroascorbic acid by TrxR has a pH optimum of 6.4, and only approximately 55% of this activity at a physiological pH of 7.4. Ebselen at 6 microM enhances this reaction three-fold and with the same pH optimum of 6.4. The mechanism of the ebselen effect is suggested to involve reduction of dehydroascorbic acid by the ebselen selenol, a highly efficient two-electron reductant. Thus, ebselen acts as an antioxidant to lower the peroxide tone inside cells and to facilitate the recycling of dehydroascorbic acid to ascorbic acid, so as to increase the radical scavenging capacity of ascorbic acid directly or indirectly via vitamin E. The high ascorbic acid recycling efficiency of ebselen at pH 6.4 may play a major role in oxidatively stressed cells, where cytosol acidosis may trigger various responses, including apoptosis.

  19. Biochemical Evaluation of Phenylalanine Ammonia Lyase from Endemic Plant Cyathobasis fruticulosa (Bunge) Aellen. for the Dietary Treatment of Phenylketonuria

    PubMed Central

    Aydaş, Selcen Babaoğlu; Aslım, Belma

    2016-01-01

    Summary Enzyme substitution therapy with the phenylalanine ammonia lyase (PAL) is a new approach to the treatment of patients with phenylketonuria (PKU). This enzyme is responsible for the conversion of phenylalanine to trans-cinnamic acid. We assessed the PAL enzyme of the endemic plant Cyathobasis fruticulosa (Bunge) Aellen. for its possible role in the dietary treatment of PKU. The enzyme was found to have a high activity of (64.9±0.1) U/mg, with the optimum pH, temperature and buffer (Tris–HCl and l-phenylalanine) concentration levels of pH=8.8, 37 °C and 100 mM, respectively. Optimum enzyme activity was achieved at pH=4.0 and 7.5, corresponding to pH levels of gastric and intestinal juice, and NaCl concentration of 200 mM. The purification of the enzyme by 1.87-fold yielded an activity of 98.6 U/mg. PAL activities determined by HPLC analyses before and after purification were similar. Two protein bands, one at 70 and the other at 23 kDa, were determined by Western blot analysis of the enzyme. This enzyme is a potential candidate for serial production of dietary food and biotechnological products. PMID:27956861

  20. A sacrificial millipede altruistically protects its swarm using a drone blood enzyme, mandelonitrile oxidase.

    PubMed

    Ishida, Yuko; Kuwahara, Yasumasa; Dadashipour, Mohammad; Ina, Atsutoshi; Yamaguchi, Takuya; Morita, Masashi; Ichiki, Yayoi; Asano, Yasuhisa

    2016-06-06

    Soldiers of some eusocial insects exhibit an altruistic self-destructive defense behavior in emergency situations when attacked by large enemies. The swarm-forming invasive millipede, Chamberlinius hualienensis, which is not classified as eusocial animal, exudes irritant chemicals such as benzoyl cyanide as a defensive secretion. Although it has been thought that this defensive chemical was converted from mandelonitrile, identification of the biocatalyst has remained unidentified for 40 years. Here, we identify the novel blood enzyme, mandelonitrile oxidase (ChuaMOX), which stoichiometrically catalyzes oxygen consumption and synthesis of benzoyl cyanide and hydrogen peroxide from mandelonitrile. Interestingly the enzymatic activity is suppressed at a blood pH of 7, and the enzyme is segregated by membranes of defensive sacs from mandelonitrile which has a pH of 4.6, the optimum pH for ChuaMOX activity. In addition, strong body muscle contractions are necessary for de novo synthesis of benzoyl cyanide. We propose that, to protect its swarm, the sacrificial millipede also applies a self-destructive defense strategy-the endogenous rupturing of the defensive sacs to mix ChuaMOX and mandelonitrile at an optimum pH. Further study of defensive systems in primitive arthropods will pave the way to elucidate the evolution of altruistic defenses in the animal kingdom.

  1. A Novel Phytase Derived from an Acidic Peat-Soil Microbiome Showing High Stability under Acidic Plus Pepsin Conditions.

    PubMed

    Tan, Hao; Wu, Xiang; Xie, Liyuan; Huang, Zhongqian; Peng, Weihong; Gan, Bingcheng

    2016-01-01

    Four novel phytases of the histidine acid phosphatase family were identified in two publicly available metagenomic datasets of an acidic peat-soil microbiome in northeastern Bavaria, Germany. These enzymes have low similarity to all the reported phytases. They were overexpressed in Escherichia coli and purified. Catalytic efficacy in simulated gastric fluid was measured and compared among the four candidates. The phytase named rPhyPt4 was selected for its high activity. It is the first phytase identified from unculturable Acidobacteria. The phytase showed a longer half-life than all the gastric-stable phytases that have been reported to date, suggesting a strong resistance to low pH and pepsin. A wide pH profile was observed between pH 1.5 and 5.0. At the optimum pH (2.5) the activity was 2,790 μmol/min/mg at the physiological temperature of 37°C and 3,989 μmol/min/mg at the optimum temperature of 60°C. Due to the competent activity level as well as the high gastric stability, the phytase could be a potential candidate for practical use in livestock and poultry feeding. © 2016 S. Karger AG, Basel.

  2. An interfacial and comparative in vitro study of gastrointestinal lipases and Yarrowia lipolytica LIP2 lipase, a candidate for enzyme replacement therapy.

    PubMed

    Bénarouche, Anaïs; Point, Vanessa; Carrière, Frédéric; Cavalier, Jean-François

    2014-07-01

    Lipolytic activities of Yarrowia lipolytica LIP2 lipase (YLLIP2), human pancreatic (HPL) and dog gastric (DGL) lipases were first compared using lecithin-stabilized triacylglycerol (TAG) emulsions (Intralipid) at various pH and bile salt concentrations. Like DGL, YLLIP2 was able to hydrolyze TAG droplets covered by a lecithin monolayer, while HPL was not directly active on that substrate. These results were in good agreement with the respective kinetics of adsorption on phosphatidylcholine (PC) monomolecular films of the same three lipases, YLLIP2 being the most tensioactive lipase. YLLIP2 adsorption onto a PC monolayer spread at the air/water interface was influenced by pH-dependent changes in the enzyme/lipid interfacial association constant (KAds) which was optimum at pH 6.0 on long-chain egg PC monolayer, and at pH 5.0 on medium chain dilauroylphosphatidylcholine film. Using substrate monolayers (1,2-dicaprin, trioctanoin), YLLIP2 displayed the highest lipolytic activities on both substrates in the 25-35 mN m(-1) surface pressure range. YLLIP2 was active in a large pH range and displayed a pH-dependent activity profile combining DGL and HPL features at pH values found in the stomach (pH 3-5) and in the intestine (pH 6-7), respectively. The apparent maximum activity of YLLIP2 was observed at acidic pH 4-6 and was therefore well correlated with an efficient interfacial binding at these pH levels, whatever the type of interfaces (Intralipid emulsions, substrate or PC monolayers). All these findings support the use of YLLIP2 in enzyme replacement therapy for the treatment of pancreatic exocrine insufficiency, a pathological situation in which an acidification of intestinal contents occurs. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Synthesis and antimicrobial activity of gold nanoparticle conjugates with cefotaxime

    NASA Astrophysics Data System (ADS)

    Titanova, Elena O.; Burygin, Gennady L.

    2016-04-01

    Gold nanoparticles (GNPs) have attracted significant interest as a novel platform for various applications to nanobiotechnology and biomedicine. The conjugates of GNPs with antibiotics and antibodies were also used for selective photothermal killing of protozoa and bacteria. Also the conjugates of some antibiotics with GNPs decreased the number of bacterial growing cells. In this work was made the procedure optimization for conjugation of cefotaxime (a third-generation cephalosporin antibiotic) with GNPs (15 nm) and we examined the antimicrobial properties of this conjugate to bacteria culture of E. coli K-12. Addition of cefotaxime solution to colloidal gold does not change their color and extinction spectrum. For physiologically active concentration of cefotaxime (3 μg/mL), it was shown that the optimum pH for the conjugation was more than 9.5. A partial aggregation of the GNPs in saline medium was observed at pH 6.5-7.5. The optimum concentration of K2CO3 for conjugation cefotaxime with GNPs-15 was 5 mM. The optimum concentration of cefotaxime was at 0.36 μg/mL. We found the inhibition of the growth of E. coli K12 upon application cefotaxime-GNP conjugates.

  4. Identification and Characterization of a High Efficiency Aniline Resistance and Degrading Bacterium MC-01.

    PubMed

    Yang, Liu; Ying, Chen; Fang, Ni; Zhong, Yao; Zhao-Xiang, Zhong; Yun, Sun

    2017-05-01

    Biodegradation is one of the important methods for the treatment of industrial wastewater containing aniline. In this paper, a degrading bacterium named MC-01, which could survive in high concentration aniline wastewater, was screened from industrial wastewater containing aniline and sludge. MC-01 was preliminarily identified as Ochrobactrum sp. based on the amplified 16S rDNA gene sequence and Biolog system identification. MC-01 was highly resistant to aniline. After 24-h culture under aniline concentration of 6500 mg/L, the amount of bacterium survived still remained 0.05 × 10 6  CFU/mL. Experiments showed that there was no coupling expression between the growth of MC-01 and aniline degradation. The optimum growth conditions in LB culture were pH 6.0, 30 °C of temperature, and 4% of incubation amount, respectively. And the optimum conditions of aniline degradation of MC-01 were pH 7.0, 45 °C of temperature, and 3.0% of salt concentration, respectively. The degradation rate of MC-01 (48 h) in different aniline concentrations (200~1600 mg/L) was stable under the optimum conditions, which could reach more than 75%.

  5. Study on gold concentrate leaching by iodine-iodide

    NASA Astrophysics Data System (ADS)

    Wang, Hai-xia; Sun, Chun-bao; Li, Shao-ying; Fu, Ping-feng; Song, Yu-guo; Li, Liang; Xie, Wen-qing

    2013-04-01

    Gold extraction by iodine-iodide solution is an effective and environment-friendly method. In this study, the method using iodine-iodide for gold leaching is proved feasible through thermodynamic calculation. At the same time, experiments on flotation gold concentrates were carried out and encouraging results were obtained. Through optimizing the technological conditions, the attained high gold leaching rate is more than 85%. The optimum process conditions at 25°C are shown as follows: the initial iodine concentration is 1.0%, the iodine-to-iodide mole ratio is 1:8, the solution pH value is 7, the liquid-to-solid mass ratio is 4:1, the leaching time is 4 h, the stirring intensity is 200 r/mim, and the hydrogen peroxide consumption is 1%.

  6. [Collagen fractions, obtained by water-salt extraction from animal fats].

    PubMed

    Nekliudov, A D; Berdutina, A V; Ivankin, A N; Mitaleva, S I; Evstaf'eva, E A

    2003-01-01

    Collagen fractions have been isolated by water-salt extraction from raw materials of animal origin (various tendon types or subcutaneous tissues of cattle, or porcine skin). Collagen fractions with maximum capacity for water and fat retention were isolated with high efficiency by water-salt solutions containing 1-10% sodium chloride at temperatures below 50 degrees C. The values of the effective constant of extraction rate (min-1) at pH 6.5, 9.0, and 12.0 were equal to (2.7 +/- 0.1) x 10(-3), (6.2 +/- 0.5) x 10(-3), and (15.4 +/- 0.7) x 10(-3), respectively. The optimum conditions found made it possible to isolate collagen those proteinaceous fractions that are of practical use in food industry.

  7. Optimum conditions for detecting hepatic micronuclei caused by numerical chromosome aberration inducers in mice.

    PubMed

    Igarashi, Miyuki; Setoguchi, Mayumi; Takada, Sanae; Itoh, Satoru; Furuhama, Kazuhisa

    2007-08-15

    To ascertain an optimum condition for detecting micronuclei in the liver caused by numerical aberration inducers, either carbendazim (125-1000mg/kg, p.o.), colchicine (0.375-1.5mg/kg, i.v.), cytochalasin B (2.5-20mg/kg, i.v.), diazepam (3.13-25mg/kg, i.v.), noscapine (7.8-62.5mg/kg, i.v.), paclitaxel (1-100mg/kg, i.v.) or trichlorfon (18.75-150mg/kg, i.v.) was administered once to male Slc:ddY mice 1 day before or after partial hepatectomy (PH, Day 1). Five days after PH (on Day 6), hepatic micronuclei were determined in conjunction with classifications of the main nuclei and relative liver weights as a proliferative indicator or a dysfunction marker of cell division. Additionally, hepatocyte proliferation index (HPI) was calculated by using mono-, bi- and multinucleated cell counts. Treatment of mice with six compounds, except for colchicine, after PH showed higher incidence of micronucleated hepatocytes (MNH) than that before PH, and also increases in binucleated and multinucleated cells. Especially for carbendazim, diazepam, noscapine and trichlorfon, the dosing after PH was essential for the detecting numerical aberration. Colchicine evidently increased HPI and decreased relative liver weights without MNH induction on Day 6. On Day 8 when HPI and relative liver weights almost returned to the basal range, a significant increase in MNH was noted. This implied that the strong inhibition of colchicine on hepatocyte proliferation may obstruct the induction of MNH on Day 6. In conclusion, to detect the potential numerical aberration, exposure of mice to test chemicals should be performed 1 day after PH, during which enhanced proliferation of hepatocytes was seen, and it would be better to analyze the liver specimens on Day 6 or more post-PH.

  8. Strain improvement of Pichia kudriavzevii TY13 for raised phytase production and reduced phosphate repression.

    PubMed

    Qvirist, Linnea; Vorontsov, Egor; Veide Vilg, Jenny; Andlid, Thomas

    2017-03-01

    In this work, we present the development and characterization of a strain of Pichia kudriavzevii (TY1322), with highly improved phytate-degrading capacity. The mutant strain TY1322 shows a biomass-specific phytate degradation of 1.26 mmol g -1  h -1 after 8 h of cultivation in a high-phosphate medium, which is about 8 times higher compared with the wild-type strain. Strain TY1322 was able to grow at low pH (pH 2), at high temperature (46°C) and in the presence of ox bile (2% w/v), indicating this strain's ability to survive passage through the gastrointestinal tract. The purified phytase showed two pH optima, at pH 3.5 and 5.5, and one temperature optimum at 55°C. The lower pH optimum of 3.5 matches the reported pH of the pig stomach, meaning that TY1322 and/or its phytase is highly suitable for use in feed production. Furthermore, P. kudriavzevii TY1322 tolerates ethanol up to 6% (v/v) and shows high osmotic stress tolerance. Owing to the phenotypic characteristics and non-genetically modified organisms nature of TY1322, this strain show great potential for future uses in (i) cereal fermentations for increased mineral bioavailability, and (ii) feed production to increase the phosphate bioavailability for monogastric animals to reduce the need for artificial phosphate fortification. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application

    PubMed Central

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65°C, respectively, and is stable at 55°C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments. PMID:26938873

  10. Decontamination of industrial cyanide-containing water in a solar CPC pilot plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duran, A.; Monteagudo, J.M.; San Martin, I.

    2010-07-15

    The aim of this work was to improve the quality of wastewater effluent coming from an Integrated Gasification Combined-Cycle (IGCC) power station to meet with future environmental legislation. This study examined a homogeneous photocatalytic oxidation process using concentrated solar UV energy (UV/Fe(II)/H{sub 2}O{sub 2}) in a Solar Compound Parabolic Collector (CPC) pilot plant. The efficiency of the process was evaluated by analysis of the oxidation of cyanides and Total Organic Carbon (TOC). A factorial experimental design allowed the determination of the influences of operating variables (initial concentration of H{sub 2}O{sub 2}, oxalic acid and Fe(II) and pH) on the degradationmore » kinetics. Temperature and UV-A solar power were also included in the Neural Network fittings. The pH was maintained at a value >9.5 during cyanide oxidation to avoid the formation of gaseous HCN and later lowered to enhance mineralization. Under the optimum conditions ([H{sub 2}O{sub 2}] = 2000 ppm, [Fe(II)] = 8 ppm, pH = 3.3 after cyanide oxidation, and [(COOH){sub 2}] = 60 ppm), it was possible to degrade 100% of the cyanides and up to 92% of Total Organic Carbon. (author)« less

  11. Use of gold nanoparticles as crosslink agent to form chitosan nanocapsules: study of the direct interaction in aqueous solutions.

    PubMed

    Prado-Gotor, R; López-Pérez, G; Martín, M J; Cabrera-Escribano, F; Franconetti, A

    2014-06-01

    A systematic study of the interaction between free anionic gold nanoparticles and chitosan in a solution is presented. A spectroscopic study of the interaction between 10nm gold nanoparticles and low molecular weight chitosan is reported as a function of the concentration and pH of the polymer in a solution. Zeta potential measurements and TEM images indicate the effective aggregation of the nanoparticles in the presence of chitosan. At the same time, anionic gold nanoparticles act as crosslink agents to form chitosan nanocapsules with an average molecular size of 260nm. The changes of the surface plasmon band due to the adsorption of the polymer on the nanoparticle surface allow using of the citrate gold nanoparticles as sensors of the polymer for analytical purposes. The limit of detection for chitosan biopolymer is 69nM. The optimum pH for the interaction between the biopolymer and the nanoparticles is found at a value of 6.4, obtained from spectrophotometric measurements and applying a deconvolution analysis of the experimental data. A simple model based on molecular surface electrostatic interactions is proposed to understand the pH dependence of the investigated system. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. New insights into the pH-dependent interfacial adsorption of dog gastric lipase using the monolayer technique.

    PubMed

    Bénarouche, Anaïs; Point, Vanessa; Parsiegla, Goetz; Carrière, Frédéric; Cavalier, Jean-François

    2013-11-01

    The access to kinetic parameters of lipolytic enzyme adsorption onto lipids is essential for a better understanding of interfacial enzymology and lipase-lipid interactions. The interfacial adsorption of dog gastric lipase (DGL) was monitored as a function of pH and surface pressure (Π), independently from the catalytic activity, using non-hydrolysable 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) monomolecular films. The acid-stable DGL, which initiates fat digestion in the stomach, was then selected because its adsorption kinetics onto hydrophobic solid surfaces were already studied. This gastric lipase was therefore used as a model enzyme to validate both experimental and theoretical approaches. Results show that the adsorption process of DGL at the lipid/water interface depends on a pH-dependent adsorption equilibrium coefficient which is optimum at pH 5.0 (K(Ads) = 1.7 ± 0.05 × 10(8)M(-1)). KAds values further allowed an indirect estimation of the molar fraction (ΦE*(%), mol%) as well as the molecular area (AE*) of DGL adsorbed onto DLPC monolayer. Based on these data, a model for DGL adsorption onto DLPC monolayer at pH 5.0 is proposed for a surface pressure range of 15-25 mNm(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application.

    PubMed

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65 °C, respectively, and is stable at 55 °C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0 was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments.

  14. Extraction, purification and characterization of a protease from Micrococcus sp. VKMM 037.

    PubMed

    Manikandan, Muthu; Kannan, Vijayaraghavan; Pasić, Lejla

    2011-10-01

    The haloalkaliphilic bacterium Micrococcus sp. VKMM 037, isolated from an effluent of the caustic soda industry, was found to produce a protease. Maximal proteolytic activity was observed in cell culture grown at 40 degrees C using 2% (w/v) glycerol, 2% (w/v) beef extract and 2% (w/v) peptone as nutrients in medium also containing 0.85 M NaCl with a pH of 10.0. An efficient purification procedure combining ammonium sulphate precipitation and Q-Sepharose ion-exchange chromatography was developed. The purified 41 kDa protease was stable in a temperature range between 20 degrees C and 60 degrees C. The protease remained active over a wide range of pH values (4.0-12.0) and NaCl concentrations (0-3.42 M) with an optimum at pH 10.0 and 0.85 M NaCl, respectively. Furthermore, the enzyme remained stable or was only marginally inhibited in the presence of various organic solvents, surfactants and reducing agents. The purified protease of Micrococcus sp. VKMM 037 efficiently removed blood stains within 40 minutes of treatment. Given the biochemical characteristics determined, this novel protease could be exploited as an additive in the detergent industry and also for the synthesis of biomolecules and the degradation of protein.

  15. Preliminary screening oxidative degradation methyl orange using ozone/ persulfate

    NASA Astrophysics Data System (ADS)

    Aqilah Razali, Nur; Zulzikrami Azner Abidin, Che; An, Ong Soon; Ridwan, Fahmi Muhammad; Haqi Ibrahim, Abdul; Nasuha Sabri, Siti; Huan Kow, Su

    2018-03-01

    The present study focusing on the performances of advanced oxidation process by using ozonation method towards Methyl Orange based on the efficiency of colour removal and Chemical Oxygen Demand (COD) removal. Factorial design with response surface methodology (RSM) was used to evaluate the interaction between operational conditions, such as pH, initial concentration, contact time and persulfate dosage to obtain the optimum range conditions using a semi-batch reactor. The range of independent variables investigated were pH (3-11), initial concentration (100-500mg/L), contact time (10-50min) and persulfate dosage (20-100mM) while the response variables were colour removal and COD removal of Methyl Orange. The experimental results and statistical analysis showed all the parameters were significant. Thus, from this findings, optimization of operational conditions that had been suggested from the ozone/persulfate RSM analysis were (pH 3, 100 mg/L, 50min, 60mM) that would be produced 99% Colour Removal and 80% COD Removal and help in promoting an efficient ozonation process. The effect list data that showed the most contributed effects to increase the percentages of colour removal were pH and persulfate dosage whereas the contact time and initial concentration had the highest positive effects on the COD removal. Other than that, the interaction between pH, contact time and persulfate dosage were found to be the most influencing interaction. Therefore the least influencing interaction was interaction between persulfate dosage and pH. In this study, the correlation coefficient value R2 for colour removal and COD removal of Methyl Orange were R2= 0.9976 and R2= 0.9924 which suggested a good fit of the first-order regression model with the experimental data.

  16. Protein Buffering in Model Systems and in Whole Human Saliva

    PubMed Central

    Lamanda, Andreas; Cheaib, Zeinab; Turgut, Melek Dilek; Lussi, Adrian

    2007-01-01

    The aim of this study was to quantify the buffer attributes (value, power, range and optimum) of two model systems for whole human resting saliva, the purified proteins from whole human resting saliva and single proteins. Two model systems, the first containing amyloglucosidase and lysozyme, and the second containing amyloglucosidase and α-amylase, were shown to provide, in combination with hydrogencarbonate and di-hydrogenphosphate, almost identical buffer attributes as whole human resting saliva. It was further demonstrated that changes in the protein concentration as small as 0.1% may change the buffer value of a buffer solution up to 15 times. Additionally, it was shown that there was a protein concentration change in the same range (0.16%) between saliva samples collected at the time periods of 13:00 and others collected at 9:00 am and 17:00. The mode of the protein expression changed between these samples corresponded to the change in basic buffer power and the change of the buffer value at pH 6.7. Finally, SDS Page and Ruthenium II tris (bathophenantroline disulfonate) staining unveiled a constant protein expression in all samples except for one 50 kDa protein band. As the change in the expression pattern of that 50 kDa protein band corresponded to the change in basic buffer power and the buffer value at pH 6.7, it was reasonable to conclude that this 50 kDa protein band may contain the protein(s) belonging to the protein buffer system of human saliva. PMID:17327922

  17. Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash.

    PubMed

    Mane, Venkat S; Deo Mall, Indra; Chandra Srivastava, Vimal

    2007-09-01

    The present study deals with the adsorption of Brilliant Green (BG) on rice husk ash (RHA). RHA is a solid waste obtained from the particulate collection equipment attached to the flue gas lines of rice husk fired boilers. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH0), contact time, adsorbent dose and initial concentration (C0) on the removal of BG. Optimum conditions for BG removal were found to be pH0 approximately 3.0, adsorbent dose approximately 6 g L(-1) of solution and equilibrium time approximately 5 h for the C0 range of 50-300 mg L(-1). Adsorption of BG followed pseudo-second-order kinetics. Intra-particle diffusion does not seem to control the BG removal process. Equilibrium isotherms for the adsorption of BG on RHA were analyzed by Freundlich, Langmuir, Redlich-Peterson (R-P), Dubnin-Radushkevich (D-R), and Temkin isotherm models using a non-linear regression technique. Langmuir and R-P isotherms were found to best represent the data for BG adsorption onto RHA. Adsorption of BG on RHA is favourably influenced by an increase in the temperature of the operation. Values of the change in entropy (DeltaS0) and heat of adsorption (DeltaH0) for BG adsorption on RHA were positive. The high negative value of change in Gibbs free energy (DeltaG0) indicates the feasible and spontaneous adsorption of BG on RHA.

  18. Removal of Arsenic from water using synthetic Fe7S8 nanoparticles

    PubMed Central

    Cantu, Jesus; Gonzalez, Louis E.; Goodship, Jacqueline; Contreras, Monica; Joseph, Meera; Garza, Cameron; Eubanks, T.M.; Parsons, J.G.

    2016-01-01

    In the present study, pyrrhotite was used to remove arsenite and arsenate from aqueous solutions. The Fe7S8 was synthesized using a solvothermal synthetic method and it was characterized using XRD and SEM micrographs. Furthermore, the particle size for the nanomaterial Fe7S8 was determined to be 29.86 ± 0.87 nm using Scherer’s equation. During the pH profile studies, the optimum pH for the binding of As (III) and As (V) was determined to be pH 4. Batch isotherm studies were performed to determine the binding capacity of As(III) and As(V), which was determined to be 14.3 mg/g and 31.3 mg/g respectively for 25°C. The thermodynamic studies indicated that the ΔG for the sorption of As(III) and As(V) ranged from −115.5 to −0.96 kJ/mol, indicating a spontaneous process was occurring. The enthalpy indicated that an exothermic reaction was occurring during the adsorption in which the ΔH was −53.69 kJ/mol and −32.51 kJ/mol for As(III) and As(V) respectively. In addition, ΔS values for the reaction had negative values of −160.46 J/K and −99.77 J/K for the adsorption of As(III) and As(V) respectively which indicated that the reaction was spontaneous at low temperatures. Furthermore, the sorption for As(III) and As(V) was determined to follow the second order kinetics adsorption model. PMID:27065750

  19. Enhancement stability and catalytic activity of immobilized α-amylase using bioactive phospho-silicate glass as a novel inorganic support.

    PubMed

    Ahmed, Samia A; Mostafa, Faten A; Ouis, Mona A

    2018-06-01

    α-Amylase enzyme was immobilized on bioactive phospho-silicate glass (PS-glass) as a novel inorganic support by physical adsorption and covalent binding methods using glutaraldehyde and poly glutaraldehyde as a spacer. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) studies confirmed the glass-enzyme linkage. Dissolution of PS-glass in acidic and neutral pH is higher than that of alkaline pH. Some immobilization variables were optimized using statistical factorial design (Central Composite Design). Optimized immobilization variables enhanced the immobilization yield (IY) from 27.9 to 79.9% (2.9-fold). It was found that the immobilized enzyme had higher optimum temperature, higher half-life time (t 1/2 ), lower activation energy (E a ), lower deactivation constant rate (k d ) and higher decimal reduction time (D-values) within the temperature range of 40-60°C. Differential scanning calorimetry analysis (DSC) confirmed the thermalstability of the immobilized enzyme. The immobilized enzyme was stable at a wide pH range (5.0-8.0). Kinetic studies of starch hydrolysis demonstrated that immobilized enzyme had lower Michaelis constant (K m ), maximum velocity (V max ) and catalytic efficiency (V max /K m ) values. The storage stability and reusability of the immobilized enzyme were found to be about 74.7 and 62.5% of its initial activity after 28days and 11cycles, respectively. Enhanced α-amylase stabilities upon immobilization make it suitable for industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Purification and Characterization of Alkaline-Thermostable Protease Enzyme from Pitaya (Hylocereus polyrhizus) Waste: A Potential Low Cost of the Enzyme

    PubMed Central

    ABD Manap, Mohd Yazid; Zohdi, Nor Khanani

    2014-01-01

    The thermoalkaline protease enzyme from pitaya (Hylocereus polyrhizus) waste was purified by a factor of 221.2 with 71.3% recovery using ammonium sulphate precipitation, gel filtration, and cation exchange chromatography. Gel filtration chromatography together with sodium dodecyl sulphate gel electrophoresis (SDS-PAGE) revealed that the enzyme is monomeric with a molecular weight of 26.7 kDa. The apparent K m and V max of the protease were 2.8 mg/mL and 31.20 u/min, respectively. The optimum pH and temperature were 8.0 and 70°C. The enzyme was highly active and stable over a wide pH range (from pH 3.0 to pH 11.0 with the optimum activity at pH 8.0). The protease has broad specificity toward azocasein, casein, hemoglobin, and gelatine. Activity of the enzyme was inhibited by Fe2+ and Zn2+, while protease activity was increased in the presence of Ca2+ and Mg2+ and Cu2+ by factors of 125%, 110%, and 105%, respectively. The alkaline protease showed extreme stability toward surfactants and oxidizing agent. The purified protease exhibited extreme stability in the presence of organic solvents and inhibitors. In addition, the enzyme was relativity stable toward organic solvents and chelating agents, such as ethylenediaminetetraacetic acid (EDTA). The enzyme, derived from pitaya peel, possesses unique characteristics and could be used in various industrial and biotechnological applications. PMID:25328883

  1. Isolation and characterization of Keratinibaculum paraultunense gen. nov., sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity.

    PubMed

    Huang, Yan; Sun, Yingjie; Ma, Shichun; Chen, Lu; Zhang, Hui; Deng, Yu

    2013-08-01

    A novel thermophilic, anaerobic, keratinolytic bacterium designated KD-1 was isolated from grassy marshland. Strain KD-1 was a spore-forming rod with a Gram-positive type cell wall, but stained Gram-negative. The temperature, pH, and NaCl concentration range necessary for growth was 30-65 °C (optimum 55 °C), 6.0-10.5 (optimum 8.0-8.5), and 0-6% (optimum 0.2%) (w/v), respectively. Strain KD-1 possessed extracellular keratinase, and the optimum activity of the crude enzyme was pH 8.5 and 70 °C. The enzyme was identified as a thermostable serine-type protease. The strain was sensitive to rifampin, chloramphenicol, kanamycin, and tetracycline and was resistant to erythromycin, neomycin, penicillin, and streptomycin. The main cellular fatty acid was predominantly C15:0 iso (64%), and the G+C content was 28 mol%. Morphological and physiological characterization, together with phylogenetic analysis based on 16S rRNA gene sequencing identified KD-1 as a new species of a novel genus of Clostridiaceae with 95.3%, 93.8% 16S rRNA gene sequence similarity to Clostridium ultunense BS(T) (DSM 10521(T)) and Tepidimicrobium xylanilyticum PML14(T) (= JCM 15035(T)), respectively. We propose the name Keratinibaculum paraultunense gen. nov., sp. nov., with KD-1 (=JCM 18769(T) =DSM 26752(T)) as the type strain. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Salinirubellus salinus gen. nov., sp. nov., isolated from a marine solar saltern.

    PubMed

    Hou, Jing; Zhao, Yang-Jie; Zhu, Lin; Cui, Heng-Lin

    2018-06-01

    A halophilic archaeal strain, designated ZS-35-S2 T , was isolated from Zhoushan marine solar saltern in Zhejiang Province, China. Cells were pleomorphic, Gram-stain-negative and formed red-pigmented colonies on agar plates. The cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 8 % (w/v). Strain ZS-35-S2 T was able to grow at 25-50 °C (optimum, 37 °C), with 1.4-4.8 M NaCl (optimum, 2.1 M), with 0-1.0 M MgCl2 (optimum, 0.1 M) and at pH 5.0-9.5 (optimum, pH 7.5). Phylogenetic tree reconstructions based on 16S rRNA genes and rpoB' genes revealed that strain ZS-35-S2 T was distinct from the related genera Halomarina, Natronomonas, Halorientalis, Salinirubrum and Halobaculum of the order Halobacteriales. The major polar lipids of the strain were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and three unidentified glycolipids. The two major glycolipids were chromatographically identical to S-DGD-1 and DGD-1, respectively. The DNA G+C content of strain ZS-35-S2 T is 67.0 mol%. The phenotypic, chemotaxonomic and phylogenetic properties suggested that strain ZS-35-S2 T (=CGMCC 1.12551 T =JCM 30036 T ) represents a novel species of a new genus within the order Halobacteriales, for which the name Salinirubellus salinus gen. nov., sp. nov. is proposed.

  3. Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws.

    PubMed

    Tong, Xuejiao; Xu, Renkou

    2013-04-01

    The removal efficiency of copper (Cu(II)) from an actual acidic electroplating effluent by biochars generated from canola, rice, soybean and peanut straws was investigated. The biochars simultaneously removed Cu(II) from the effluent, mainly through the mechanisms of adsorption and precipitation, and neutralized its acidity. The removal efficiency of Cu(II) by the biochars followed the order: peanut straw char > soybean straw char > canola straw char > rice straw char > a commercial activated carbonaceous material, which is consistent with the alkalinity of the biochars. The pH of the effluent was a key factor determining the removal efficiency of Cu(II) by biochars. Raising the initial pH of the effluent enhanced the removal of Cu(II) from it. The optimum pyrolysis temperature was 400 degrees C for producing biochar from crop straws for acidic wastewater treatment, and the optimum reaction time was 8 hr.

  4. A newly-detected reductase from Rauvolfia closes a gap in the biosynthesis of the antiarrhythmic alkaloid ajmaline.

    PubMed

    Gao, Shujuan; von Schumann, Gerald; Stöckigt, Joachim

    2002-10-01

    A new enzyme, 1,2-dihydrovomilenine reductase (E.C. 1.3.1), has been detected in Rauvolfia cell suspension cultures. The enzyme specifically converts 2beta( R)-1,2-dihydrovomilenine through an NADPH-dependent reaction into 17-O-acetylnorajmaline, a close biosynthetic precursor of the antiarrhythmic alkaloid ajmaline from Rauvolfia. A five-step purification procedure using SOURCE 30Q chromatography, hydroxyapatite chromatography, 2',5'-ADP Sepharose 4B affinity chromatography and ion exchange chromatography on DEAE Sepharose and Mono Q delivered an approximately 200-fold enriched enzyme in a yield of approximately 6%. SDS-PAGE showed an M r for the enzyme of approximately 48 kDa. Optimum pH and optimum temperature of the reductase were at pH 6.0 and 37 degrees C. The enzyme shows a limited distribution in cell cultures expressing ajmaline biosynthesis, and is obviously highly specific for the ajmaline pathway.

  5. Optimization of growth for the hyperthermophilic archaeon Aeropyrum pernix on a small-batch scale.

    PubMed

    Milek, Igor; Cigic, Blaz; Skrt, Mihaela; Kaletunç, Gönül; Ulrih, Natasa Poklar

    2005-09-01

    Growth of Aeropyrum pernix, the first reported aerobic neutrophilic hyperthermophilic archaeon, was investigated under different cultivation parameters. Different sources of seawater, pH, and the cultivation methods were tested with the aim to improve the biomass production. A 1-L glass flask fitted with a condenser and air diffuser was used as a bioreactor. The optimum conditions for maximizing A. pernix biomass were obtained when Na2S2O3.5H2O (1 g/L) with added marine broth 2216 at pH 7.0 (20 mmol HEPES buffer/L) was used as a growing medium in a 1-L flask. The biomass production was 0.45 g dry cell mass/L in 40 h under the optimum conditions, which is more than the 0.42 g dry cell mass/L in 60 h previously obtained.

  6. Nickel solvent extraction from cold purification filter cakes of Angouran mine concentrate using LIX984N

    NASA Astrophysics Data System (ADS)

    Balesini, A. A.; Zakeri, A.; Razavizadeh, H.; Khani, A.

    2013-11-01

    Cold purification filter cakes generated in the hydrometallurgical processing of Angouran mine zinc concentrate commonly contain significant amounts of Zn, Cd, and Ni ions and thus are valuable resources for metal recovery. In this research, a nickel containing solution that was obtained from sulfuric acid leaching of the filter cake following cadmium and zinc removal was subjected to solvent extraction experiments using 10vol% LIX984N diluted in kerosene. Under optimum experimental conditions (pH 5.3, volume ratio of organic/aqueous (O:A) = 2:1, and contact time = 5 min), more than 97.1% of nickel was extracted. Nickel was stripped from the loaded organic by contacting with a 200 g/L sulfuric acid solution, from which 77.7% of nickel was recovered in a single contact at the optimum conditions (pH 1-1.5, O:A = 5:1, and contact time = 15 min).

  7. Crystalline Bacterial Surface Layer (S-Layer) Opens Golden Opportunities for Nanobiotechnology in Textiles.

    PubMed

    Asadi, Narges; Chand, Nima; Rassa, Mehdi

    2015-12-01

    This study focuses on the successful recrystallization of bacterial S-layer arrays of the Lactobacillus acidophilus ATCC 4356 at textile surfaces to create a novel method and material. Optimum bacterial growth was obtained at approximately 45 °C, pH 5.0, and 14 h pi. The cells were resuspended in guanidine hydrochloride and the 43 kDa S-protein was dialyzed and purified. The optimum reassembly on the polypropylene fabric surface in terms of scanning electron microscopy (SEM), reflectance, and uniformity (spectrophotometry) was obtained at 30 °C, pH 5.0 for 30 minutes in the presence of 2 gr/l (liquor ratio; 1:40) of the S-protein. Overall, our data showed that the functional aspects and specialty applications of the fabric would be very attractive for the textile and related sciences, and result in advanced technical textiles.

  8. Enzymatic browning and biochemical alterations in black spots of pineapple [Ananas comosus (L.) Merr.].

    PubMed

    Avallone, Sylvie; Guiraud, Joseph-Pierre; Brillouet, Jean-Marc; Teisson, Claude

    2003-08-01

    Penicillium funiculosum Thom. was consistently isolated from pineapple-infected fruitlet (black spots). Polyphenol oxidase, peroxidase, and laccase activities were determined in extracts from contiguous and infected fruitlets. Healthy fruitlets showed a rather high level of polyphenol oxidase (optimum pH 7.0), and this activity was tremendously increased (X 10) in contiguous infected fruitlets. Furthermore, infected fruitlets also exhibited laccase activity (optimum pH 4.0), while peroxidase was rather constant in both fruitlets. Browning reactions were attributed to qualitative and quantitative modifications of the enzymatic equipment (polyphenol oxidase and laccase) (p < 0.0001). In infected fruiltets, sucrose and L-malic acid were present at significantly lower amounts than in healthy ones, likely owing to fungal metabolism (p < 0.0001), whereas cell wall material was three times higher, which could be viewed as a defense mechanism to limit expansion of the mycelium.

  9. Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction.

    PubMed

    Pereira, L; Pereira, R; Pereira, M F R; van der Zee, F P; Cervantes, F J; Alves, M M

    2010-11-15

    The surface chemistry of a commercial AC (AC(0)) was selectively modified, without changing significantly its textural properties, by chemical oxidation with HNO(3) (AC(HNO3)) and O(2) (AC(O2)), and thermal treatments under H(2) (AC(H2)) or N(2) (AC(N2)) flow. The effect of modified AC on anaerobic chemical dye reduction was assayed with sulphide at different pH values 5, 7 and 9. Four dyes were tested: Acid Orange 7, Reactive Red 2, Mordant Yellow 10 and Direct Blue 71. Batch experiments with low amounts of AC (0.1 g L(-1)) demonstrated an increase of the first-order reduction rate constants, up to 9-fold, as compared with assays without AC. Optimum rates were obtained at pH 5 except for MY10, higher at pH 7. In general, rates increased with increasing the pH of point zero charge (pH(pzc)), following the trend AC(HNO3) < AC(O2) < AC(0) < AC(N2) < AC(H2). The highest reduction rate was obtained for MY10 with AC(H2) at pH 7, which corresponded to the double, as compared with non-modified AC. In a biological system using granular biomass, AC(H2) also duplicated and increase 4.5-fold the decolourisation rates of MY10 and RR2, respectively. In this last experiment, reaction rate was independent of AC concentration in the tested range 0.1-0.6 g L(-1). Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Unravelling the pH-dependence of a molecular photocatalytic system for hydrogen production.

    PubMed

    Reynal, Anna; Pastor, Ernest; Gross, Manuela A; Selim, Shababa; Reisner, Erwin; Durrant, James R

    2015-08-01

    Photocatalytic systems for the reduction of aqueous protons are strongly pH-dependent, but the origin of this dependency is still not fully understood. We have studied the effect of different degrees of acidity on the electron transfer dynamics and catalysis taking place in a homogeneous photocatalytic system composed of a phosphonated ruthenium tris(bipyridine) dye ( RuP ) and a nickel bis(diphosphine) electrocatalyst ( NiP ) in an aqueous ascorbic acid solution. Our approach is based on transient absorption spectroscopy studies of the efficiency of photo-reduction of RuP and NiP correlated with pH-dependent photocatalytic H 2 production and the degree of catalyst protonation. The influence of these factors results in an observed optimum photoactivity at pH 4.5 for the RuP - NiP system. The electron transfer from photo-reduced RuP to NiP is efficient and independent of the pH value of the medium. At pH <4.5, the efficiency of the system is limited by the yield of RuP photo-reduction by the sacrificial electron donor, ascorbic acid. At pH >4.5, the efficiency of the system is limited by the poor protonation of NiP , which inhibits its ability to reduce protons to hydrogen. We have therefore developed a rational strategy utilising transient absorption spectroscopy combined with bulk pH titration, electrocatalytic and photocatalytic experiments to disentangle the complex pH-dependent activity of the homogenous RuP - NiP photocatalytic system, which can be widely applied to other photocatalytic systems.

  11. Tuning the field distribution and fabrication of an Al@ZnO core-shell nanostructure for a SPR-based fiber optic phenyl hydrazine sensor.

    PubMed

    Tabassum, Rana; Kaur, Parvinder; Gupta, Banshi D

    2016-05-27

    We report the fabrication and characterization of a surface plasmon resonance (SPR)-based fiber optic sensor that uses coatings of silver and aluminum (Al)-zinc oxide (ZnO) core-shell nanostructure (Al@ZnO) for the detection of phenyl hydrazine (Ph-Hyd). To optimize the volume fraction (f) of Al in ZnO and the thickness of the core-shell nanostructure layer (d), the electric field intensity along the normal to the multilayer system is simulated using the two-dimensional multilayer matrix method. The Al@ZnO core-shell nanostructure is prepared using the laser ablation technique. Various probes are fabricated with different values of f and an optimized thickness of core-shell nanostructure for the characterization of the Ph-Hyd sensor. The performance of the Ph-Hyd sensor is evaluated in terms of sensitivity. It is found that the Ag/Al@ZnO nanostructure core-shell-coated SPR probe with f = 0.25 and d = 0.040 μm possesses the maximum sensitivity towards Ph-Hyd. These results are in agreement with the simulated ones obtained using electric field intensity. In addition, the performance of the proposed probe is compared with that of probes coated with (i) Al@ZnO nanocomposite, (ii) Al nanoparticles and (iii) ZnO nanoparticles. It is found that the probe coated with an Al@ZnO core-shell nanostructure shows the largest resonance wavelength shift. The detailed mechanism of the sensing (involving chemical reactions) is presented. The sensor also manifests optimum performance at pH 7.

  12. Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption.

    PubMed

    Zou, Jiaxiu; Peng, Xiaolan; Li, Miao; Xiong, Ying; Wang, Bing; Dong, Faqin; Wang, Bin

    2017-03-01

    In the present study, the electrochemical oxidation of real wastewaters discharged by textile industry was carried out using a boron-doped diamond (BDD) anode. The effect of operational variables, such as applied current density (20-100 mA·cm -2 ), NaCl concentration added to the real wastewaters (0-3 g·L -1 ), and pH value (2.0-10.0), on the kinetics of COD oxidation and on the energy consumption was carefully investigated. The obtained experimental results could be well matched with a proposed kinetic model, in which the indirect oxidation mediated by electrogenerated strong oxidants would be described through a pseudo-first-order kinetic constant k. Values of k exhibited a linear increase with increasing applied current density and decreasing pH value, and an exponential increase with NaCl concentration. Furthermore, high oxidation kinetics resulted in low specific energy consumption, but this conclusion was not suitable to the results obtained under different applied current density. Under the optimum operational conditions, it only took 3 h to complete remove the COD in the real textile wastewaters and the specific energy consumption could be as low as 11.12 kWh·kg -1  COD. The obtained results, low energy consumption and short electrolysis time, allowed to conclude that the electrochemical oxidation based on BDD anodes would have practical industrial application for the treatment of real textile wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Purification and characterization of 2-oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately chemolithoautotrophic bacterium, Hydrogenobacter thermophilus TK-6.

    PubMed Central

    Yoon, K S; Ishii, M; Igarashi, Y; Kodama, T

    1996-01-01

    2-Oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately autotrophic, hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, was purified to homogeneity by precipitation with ammonium sulfate and by fractionation by DEAE-Sepharose CL-6B, polyacrylate-quaternary amine, hydroxyapatite, and Superdex-200 chromatography. The purified enzyme had a molecular mass of about 105 kDa and comprised two subunits (70 kDa and 35 kDa). The activity of the 2-oxoglutarate:ferredoxin oxidoreductase was detected by the use of 2-oxoglutarate, coenzyme A, and one of several electron acceptors in substrate amounts (ferredoxin isolated from H. thermophilus, flavin adenine dinucleotide, flavin mononucleotide, or methyl viologen). NAD, NADP, and ferredoxins from Chlorella spp. and Clostridium pasteurianum were ineffective. The enzyme was extremely thermostable; the temperature optimum for 2-oxoglutarate oxidation was above 80 degrees C, and the time for a 50% loss of activity at 70 degrees C under anaerobic conditions was 22 h. The optimum pH for a 2-oxoglutarate oxidation reaction was 7.6 to 7.8. The apparent Km values for 2-oxoglutarate and coenzyme A at 70 degrees C were 1.42 mM and 80 microM, respectively. PMID:8655524

  14. Study of Montmorillonite Clay for the Removal of Copper (II) by Adsorption: Full Factorial Design Approach and Cascade Forward Neural Network

    PubMed Central

    Turan, Nurdan Gamze; Ozgonenel, Okan

    2013-01-01

    An intensive study has been made of the removal efficiency of Cu(II) from industrial leachate by biosorption of montmorillonite. A 24 factorial design and cascade forward neural network (CFNN) were used to display the significant levels of the analyzed factors on the removal efficiency. The obtained model based on 24 factorial design was statistically tested using the well-known methods. The statistical analysis proves that the main effects of analyzed parameters were significant by an obtained linear model within a 95% confidence interval. The proposed CFNN model requires less experimental data and minimum calculations. Moreover, it is found to be cost-effective due to inherent advantages of its network structure. Optimization of the levels of the analyzed factors was achieved by minimizing adsorbent dosage and contact time, which were costly, and maximizing Cu(II) removal efficiency. The suggested optimum conditions are initial pH at 6, adsorbent dosage at 10 mg/L, and contact time at 10 min using raw montmorillonite with the Cu(II) removal of 80.7%. At the optimum values, removal efficiency was increased to 88.91% if the modified montmorillonite was used. PMID:24453833

  15. Biodegradation of Dimethyl Phthalate by Freshwater Unicellular Cyanobacteria.

    PubMed

    Zhang, Xiaohui; Liu, Lincong; Zhang, Siping; Pan, Yan; Li, Jing; Pan, Hongwei; Xu, Shiguo; Luo, Feng

    2016-01-01

    The biodegradation characteristics of dimethyl phthalate (DMP) by three freshwater unicellular organisms were investigated in this study. The findings revealed that all the organisms were capable of metabolizing DMP; among them, Cyanothece sp. PCC7822 achieved the highest degradation efficiency. Lower concentration of DMP supported the growth of the Cyanobacteria; however, with the increase of DMP concentration growth of Cyanobacteria was inhibited remarkably. Phthalic acid (PA) was detected to be an intermediate degradation product of DMP and accumulated in the culture solution. The optimal initial pH value for the degradation was detected to be 9.0, which mitigated the decrease of pH resulting from the production of PA. The optimum temperature for DMP degradation of the three species of organisms is 30°C. After 72 hours' incubation, no more than 11.8% of the residual of DMP aggregated in Cyanobacteria cells while majority of DMP remained in the medium. Moreover, esterase was induced by DMP and the activity kept increasing during the degradation process. This suggested that esterase could assist in the degradation of DMP.

  16. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Joulié, M.; Laucournet, R.; Billy, E.

    2014-02-01

    A hydrometallurgical process is developed to recover valuable metals of the lithium nickel cobalt aluminum oxide (NCA) cathodes from spent lithium-ion batteries (LIBs). Effect of parameters such as type of acid (H2SO4, HNO3 and HCl), acid concentration (1-4 mol L-1), leaching time (3-18 h) and leaching temperature (25-90 °C) with a solid to liquid ratio fixed at 5% (w/v) are investigated to determine the most efficient conditions of dissolution. The preliminary results indicate that HCl provides higher leaching efficiency. In optimum conditions, a complete dissolution is performed for Li, Ni, Co and Al. In the nickel and cobalt recovery process, at first the Co(II) in the leaching liquor is selectively oxidized in Co(III) with NaClO reagent to recover Co2O3, 3H2O by a selective precipitation at pH = 3. Then, the nickel hydroxide is precipitated by a base addition at pH = 11. The recovery efficiency of cobalt and nickel are respectively 100% and 99.99%.

  17. Response surface optimization of medium components for naringinase production from Staphylococcus xylosus MAK2.

    PubMed

    Puri, Munish; Kaur, Aneet; Singh, Ram Sarup; Singh, Anubhav

    2010-09-01

    Response surface methodology was used to optimize the fermentation medium for enhancing naringinase production by Staphylococcus xylosus. The first step of this process involved the individual adjustment and optimization of various medium components at shake flask level. Sources of carbon (sucrose) and nitrogen (sodium nitrate), as well as an inducer (naringin) and pH levels were all found to be the important factors significantly affecting naringinase production. In the second step, a 22 full factorial central composite design was applied to determine the optimal levels of each of the significant variables. A second-order polynomial was derived by multiple regression analysis on the experimental data. Using this methodology, the optimum values for the critical components were obtained as follows: sucrose, 10.0%; sodium nitrate, 10.0%; pH 5.6; biomass concentration, 1.58%; and naringin, 0.50% (w/v), respectively. Under optimal conditions, the experimental naringinase production was 8.45 U/mL. The determination coefficients (R(2)) were 0.9908 and 0.9950 for naringinase activity and biomass production, respectively, indicating an adequate degree of reliability in the model.

  18. Combination process method of lactic acid hydrolysis and hydrogen peroxide oxidation for cassava starch modification

    NASA Astrophysics Data System (ADS)

    Sumardiono, Siswo; Pudjihastuti, Isti; Budiyono, Hartanto, Hansen; Sophiana, Intan Clarissa

    2017-05-01

    Indonesia is one of the world's largest wheat importer, some research are conducted to find other carbohydrate sources which can replace wheat. Cassava is very easy to find and grown in tropical climates especially Indonesia. The research is focused on cassava starch modification as a substitute for wheat flour in order to reduce consumption of wheat flour. The aim of this research is to assess the effect of temperature, pH, and the concentration of H2O2 in modifying cassava starch which. The combination methods are lactic acid hydroxylation and hydrogen peroxide oxidation to improve baking expansion. The carboxyl group, carbonyl group, swelling power, starch solubility, and baking expansion of starch are analized and calculated. Results showed that the modified cassava starch can substitute wheat flour with optimum conditions process at a concentration of H2O2 is 1.5% w/w, oxidation temperature is 50°C, and pH is 3 by the value of swelling power is 6.82%, solubility is 0.02%, and baking expansion is 7.2 cm3/gram.

  19. Kinetics study of invertase covalently linked to a new functional nanogel.

    PubMed

    Raj, Lok; Chauhan, Ghanshyam S; Azmi, Wamik; Ahn, J-H; Manuel, James

    2011-02-01

    Nanogels are promising materials as supports for enzyme immobilization. A new hydrogel comprising of methacrylic acid (MAAc) and N-vinyl pyrrolidone (N-VP) and ethyleneglycol dimethacrylate (EGDMA) was synthesized and converted to nanogel by an emulsification method. Nanogel was further functionalized by Curtius azide reaction for use as support for the covalent immobilization of invertase (Saccharomyces cerevisiae). As-prepared or invertase-immobilized nanogel was characterized by FTIR, XRD, TEM and nitrogen analysis. The characterization of both free and the immobilized-invertase were performed using a spectrophotometric method at 540 nm. The values of V(max), maximum reaction rate, (0.123 unit/mg), k(m), Michaelis constant (7.429 mol/L) and E(a), energy of activation (3.511 kj/mol) for the immobilized-invertase are comparable with those of the free invertase at optimum conditions (time 70 min, pH 6.0 and temperature 45°C). The covalent immobilization enhanced the pH and thermal stability of invertase. The immobilized biocatalyst was efficiently reused up to eight cycles. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Isolation and characterization of a novel glycosyl hydrolase family 74 (GH74) cellulase from the black goat rumen metagenomic library.

    PubMed

    Song, Yun-Hee; Lee, Kyung-Tai; Baek, Jin-Young; Kim, Min-Ju; Kwon, Mi-Ra; Kim, Young-Joo; Park, Mi-Rim; Ko, Haesu; Lee, Jin-Sung; Kim, Keun-Sung

    2017-05-01

    This study aimed to isolate and characterize a novel cellulolytic enzyme from black goat rumen by using a culture-independent approach. A metagenomic fosmid library was constructed from black goat rumen contents and screened for a novel cellulase. The KG37 gene encoding a protein of 858 amino acid residues (92.7 kDa) was isolated. The deduced protein contained a glycosyl hydrolase family 74 (GH74) domain and showed 77% sequence identity to two endo-1,4-β-glucanases from Fibrobacter succinogenes. The novel GH74 cellulase gene was overexpressed in Escherichia coli, and its protein product was functionally characterized. The recombinant GH74 cellulase showed a broad substrate spectrum. The enzyme exhibited its optimum activity at pH 5.0 and temperature range of 20-50 °C. The enzyme was thermally stable at pH 5.0 and at a temperature of 20-40 °C. The novel GH74 cellulase can be practically exploited to convert lignocellulosic biomass to value-added products in various industrial applications in future.

Top