Science.gov

Sample records for optimum tilt angle

  1. Axial Tilt Angles of Active Regions

    NASA Astrophysics Data System (ADS)

    Howard, Robert F.

    1996-12-01

    Separate Mount Wilson plage and sunspot group data sets are analyzed in this review to illustrate several interesting aspects of active region axial tilt angles. (1) The distribution of tilt angles differs between plages and sunspot groups in the sense that plages have slightly higher tilt angles, on average, than do spot groups. (2) The distributions of average plage total magnetic flux, or sunspot group area, with tilt angle show a consistent effect: those groups with tilt angles nearest the average values are larger (or have a greater total flux) on average than those farther from the average values. Moreover, the average tilt angles on which these size or flux distributions are centered differ for the two types of objects, and represent closely the actual different average tilt angles for these two features. (3) The polarity separation distances of plages and sunspot groups show a clear relationship to average tilt angles. In the case of each feature, smaller polarity separations are correlated with smaller tilt angles. (4) The dynamics of regions also show a clear relationship with region tilt angles. The spot groups with tilt angles nearest the average value (or perhaps 0-deg tilt angle) have on average a faster rotation rate than those groups with extreme tilt angles. All of these tilt-angle characteristics may be assumed to be related to the physical forces that affect the magnetic flux loop that forms the region. These aspects are discussed in this brief review within the context of our current view of the formation of active region magnetic flux at the solar surface.

  2. Behavior of Tilted Angle Shear Connectors.

    PubMed

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  3. Behavior of Tilted Angle Shear Connectors

    PubMed Central

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  4. Rotation Angle for the Optimum Tracking of One-Axis Trackers

    SciTech Connect

    Marion, W. F.; Dobos, A. P.

    2013-07-01

    An equation for the rotation angle for optimum tracking of one-axis trackers is derived along with equations giving the relationships between the rotation angle and the surface tilt and azimuth angles. These equations are useful for improved modeling of the solar radiation available to a collector with tracking constraints and for determining the appropriate motor revolutions for optimum tracking.

  5. Perceptions of tilt angles of an agricultural tractor.

    PubMed

    Görücü, Serap; Cavallo, Eugenio; Murphy, Dennis

    2014-01-01

    A tractor stability simulator has been developed to help study tractor operators' perceptions of angles when the simulator is tilted to the side. The simulator is a trailer-mounted tractor cab equipped with hydraulic lift that can tilt the tractor cabin up to 30 degrees. This paper summarizes data from 82 participants who sat in the simulator while it was tilted. Demographic variables, estimates of tilt angles, and measured tilt angles were collected. The effects of age, gender, tractor driving experience, and frequency of operation on the estimated and measured tilt angles were analyzed. The results showed that about 50% of the participants reported estimations of side tilt angles within ±5 degrees of the actual angles, and nearly the same percentage overestimated the actual side tilt angles. Only a small percentage underestimated the angles. Older, more experienced, and male participants set higher limits on the actual angle at which they felt uncomfortable and would not drive. PMID:24417527

  6. Sunspot group tilt angle measurements from historical observations

    NASA Astrophysics Data System (ADS)

    Senthamizh Pavai, V.; Arlt, R.; Diercke, A.; Denker, C.; Vaquero, J. M.

    2016-10-01

    Sunspot positions from various historical sets of solar drawings are analyzed with respect to the tilt angles of bipolar sunspot groups. Data by Scheiner, Hevelius, Staudacher, Zucconi, Schwabe, and Spörer deliver a series of average tilt angles spanning a period of 270 years, additional to previously found values for 20th-century data obtained by other authors. We find that the average tilt angles before the Maunder minimum were not significantly different from the modern values. However, the average tilt angles of a period 50 years after the Maunder minimum, namely for cycles 0 and 1, were much lower and near zero. The normal tilt angles before the Maunder minimum suggest that it was not abnormally low tilt angles which drove the solar cycle into a grand minimum.

  7. Calibration method of tilt and azimuth angles for alignment of TEM tomographic tilt series.

    PubMed

    Hayashida, Misa; Terauchi, Shinya; Fujimoto, Toshiyuki

    2011-10-01

    This paper describes the calibration method of the tilt and azimuth angles of specimen using a digital protractor and a laser autocollimator for alignment of electron tomography. It also suggests an easy method to check whether the specimen is tilted by 180.0°, and whether the azimuth angle is 0.0°; the method involves the use of two images of a rod-shaped specimen collected before and after a 180.0° tilt. The method is based on the assumption that these images are symmetric about the tilt axis when the azimuth angle is 0.0°. In addition, we used an experiment to demonstrate the effect of the incorrect angles on reconstructed images and simulated the image quality against distance away from tilt axis.

  8. LONG-TERM MEASUREMENTS OF SUNSPOT MAGNETIC TILT ANGLES

    SciTech Connect

    Li Jing; Ulrich, Roger K.

    2012-10-20

    Tilt angles of close to 30,600 sunspots are determined using Mount Wilson daily averaged magnetograms taken from 1974 to 2012, and SOHO/MDI magnetograms taken from 1996 to 2010. Within a cycle, more than 90% of sunspots have a normal polarity alignment along the east-west direction following Hale's law. The median tilts increase with increasing latitude (Joy's law) at a rate of {approx}0.{sup 0}5 per degree of latitude. Tilt angles of spots appear largely invariant with respect to time at a given latitude, but they decrease by {approx}0.{sup 0}9 per year on average, a trend that largely reflects Joy's law following the butterfly diagram. We find an asymmetry between the hemispheres in the mean tilt angles. On average, the tilts are greater in the Southern than in the Northern Hemisphere for all latitude zones, and the differences increase with increasing latitude.

  9. Long-Term Measurements of Sunspot Magnetic Tilt Angles

    NASA Astrophysics Data System (ADS)

    Li, J.; Ulrich, R. K.

    2012-12-01

    Tilt angles of close to 30,600 sunspots are determined using Mount Wilson daily averaged magnetograms taken from 1974 to 2012, and MDI/SoHO magnetograms taken from 1996 to 2010. Within a cycle, more than 90% of sunspots have a normal polarity alignment along the east-west direction following Hale's law. The median tilts increase with increasing latitude (Joy's law) at a rate of 0.5 degree per degree of latitude. Tilt angles of spots appear largely invariant with respect to time at a given latitude, but they decrease by 0.9 degree per year on average, a trend which largely reflects Joy's law following the butterfly diagram. We find an asymmetry between the hemispheres in the mean tilt angles. On average, the tilts are greater in the southern than in the northern hemisphere for all latitude zones, and the differences increases with increasing latitude.

  10. Long-term Measurements of Sunspot Magnetic Tilt Angles

    NASA Astrophysics Data System (ADS)

    Li, Jing; Ulrich, Roger K.

    2012-10-01

    Tilt angles of close to 30,600 sunspots are determined using Mount Wilson daily averaged magnetograms taken from 1974 to 2012, and SOHO/MDI magnetograms taken from 1996 to 2010. Within a cycle, more than 90% of sunspots have a normal polarity alignment along the east-west direction following Hale's law. The median tilts increase with increasing latitude (Joy's law) at a rate of ~0fdg5 per degree of latitude. Tilt angles of spots appear largely invariant with respect to time at a given latitude, but they decrease by ~0fdg9 per year on average, a trend that largely reflects Joy's law following the butterfly diagram. We find an asymmetry between the hemispheres in the mean tilt angles. On average, the tilts are greater in the Southern than in the Northern Hemisphere for all latitude zones, and the differences increase with increasing latitude.

  11. Photovoltaic Modules: Effect of Tilt Angle on Soiling

    NASA Astrophysics Data System (ADS)

    Cano, Jose

    2011-12-01

    Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted environments, over time, they will collect grime and dust. There are also limited field data studies about soiling losses on PV modules. The study showed how important it is to investigate the effect of tilt angle on soiling. The study includes two sets of mini-modules. Each set has 9 PV modules tilted at 0, 5, 10, 15, 20, 23, 30, 33 and 40°. The first set called "Cleaned" was cleaned every other day. The second set called "Soiled" was never cleaned after the first day. The short circuit current, a measure of irradiance, and module temperature was monitored and recorded every two minutes over three months (January-March 2011). The data were analyzed to investigate the effect of tilt angle on daily and monthly soiling, and hence transmitted solar insolation and energy production by PV modules. The study shows that during the period of January through March 2011 there was an average loss due to soiling of approximately 2.02% for 0° tilt angle. Modules at tilt angles 23° and 33° also have some insolation losses but do not come close to the module at 0° tilt angle. Tilt angle 23° has approximately 1.05% monthly insolation loss, and 33° tilt angle has an insolation loss of approximately 0.96%. The soiling effect is present at any tilt angle, but the magnitude is evident: the flatter the solar module is placed the more energy it will lose.

  12. Calibration method of tilt and azimuth angles for alignment of TEM tomographic tilt series

    SciTech Connect

    Hayashida, Misa; Terauchi, Shinya; Fujimoto, Toshiyuki

    2011-10-15

    This paper describes the calibration method of the tilt and azimuth angles of specimen using a digital protractor and a laser autocollimator for alignment of electron tomography. It also suggests an easy method to check whether the specimen is tilted by 180.0 deg., and whether the azimuth angle is 0.0 deg.; the method involves the use of two images of a rod-shaped specimen collected before and after a 180.0 deg. The method is based on the assumption that these images are symmetric about the tilt axis when the azimuth angle is 0.0 deg. In addition, we used an experiment to demonstrate the effect of the incorrect angles on reconstructed images and simulated the image quality against distance away from tilt axis.

  13. Solar subsurface magnetic and velocity fields from tilt angle patterns

    NASA Astrophysics Data System (ADS)

    Baranyi, Tünde; Muraközy, Judit; Ludmány, András

    2015-08-01

    ABSTRACT A refined form of the well known Joy's law has been formulated by using the new Debrecen tilt angle datasets. These data are intercalibrated with the traditional datasets and several determination methods help to make the material reliable. It has been found that the latitudinal distribution of the tilt angles is not merely a monotonously increasing function, but it has a plateau between the latitudes of about 15-25 degrees, where the toroidal field is the strongest. This may provide new constraints for the theoretical investigations about the mechanisms contributing to the observable tilt angles. The new data also allow to demonstrate that the tilts are primarily caused by the Coriolis impact, no signature has been found for the winding up of the global magnetic field. This work has received funding from the European Community's Seventh Framework Programme (FP7/2012-2015) under grant agreement No. 284461 (eHEROES).

  14. Tilt angle of bipolar sunspot groups and solar dynamo

    NASA Astrophysics Data System (ADS)

    Sokoloff, Dmitry; Illarionov, Egor; Pipin, Valery; Tlatov, Andrey

    We obtain the latitude-time distribution of the averaged tilt angle of solar bipoles. For large bipoles, which are mainly bipolar sunspot groups, the spatially averaged tilt angle is positive in the Northern solar hemisphere and negative in the Southern, with modest variations during course of the solar cycle. We consider the averaged tilt angle to be a tracer for a crucial element of the solar dynamo, i.e. the regeneration rate of poloidal large-scale magnetic field from toroidal. The value of the tilt obtained crudely corresponds to a regeneration factor corresponding to about 10% of r.m.s. velocity of solar convection. These results develop findings of Kosovichev and Stenflo (2012) concerning Joy's law, and agree with the usual expectations of solar dynamo theory. Quite surprisingly, we find a pronounced deviation from these properties for smaller bipoles, which are mainly solar ephemeral regions. They possess tilt angles of approximately the same absolute value, but of opposite sign compared to that of the large bipoles. Of course, the tilt data for small bipoles are less well determined than those for large bipoles; however they remain robust under various modifications of the data processing.

  15. Automated small tilt-angle measurement using Lau interferometry

    SciTech Connect

    Prakash, Shashi; Singh, Sumitra; Rana, Santosh

    2005-10-01

    A technique for a tilt-angle measurement of reflecting objects based on the Lau interferometry coupled with the moire readout has been proposed. A white-light incoherent source illuminates a set of two gratings, resulting in the generation of the Fresnel image due to the Lau effect. The Fresnel image is projected onto a reflecting object. The image reflected from the object is superimposed onto an identical grating, which results in the formation of a moire fringe pattern. The inclination angle of moire fringes is a function of tilt angle of the object. Theory and experimental arrangement of the proposed technique is presented and results of the investigation are reported.

  16. Tilt angle control of nanocolumns grown by glancing angle sputtering at variable argon pressures

    SciTech Connect

    Garcia-Martin, J. M.; Cebollada, A.; Alvarez, R.; Romero-Gomez, P.; Palmero, A.

    2010-10-25

    We show that the tilt angle of nanostructures obtained by glancing angle sputtering is finely tuned by selecting the adequate argon pressure. At low pressures, a ballistic deposition regime dominates, yielding high directional atoms that form tilted nanocolumns. High pressures lead to a diffusive regime which gives rise to vertical columnar growth. Monte Carlo simulations reproduce the experimental results indicating that the loss of directionality of the sputtered particles in the gas phase, together with the self-shadowing mechanism at the surface, are the main processes responsible for the development of the columns.

  17. Sunspot Tilt Angles Measured with MDI/SOHO and HMI/SDO

    NASA Astrophysics Data System (ADS)

    Li, J.; Ulrich, R. K.

    2015-12-01

    We present sunspot magnetic tilt angles measured from 1996 to the present time, spanning almost two solar cycles. Full disk magnetograms from MDI/SoHO and HMI/SDO are used in our study. The data cadence in our analyses is 96 minutes per day giving about 90 measurements of the tilt angles for each sunspot during the disk passage between -40 to +40 longitudinal degree. In addition to an automated computation, we use a scheme to visually examine each sunspot efficiently to check the tilt angle determinations. Such measurements not only confirm Joy's and Hale's laws, but also reveal the tilt angle variations during the sunspot lifetime, the effect of Coriolis force on the magnetic flux tubes, and the tilt angle dependence of the cycle progress. The measurements also provide uncertainties on the tilt angle measurements.

  18. Optimum design of 2D micro-angle sensor

    NASA Astrophysics Data System (ADS)

    Liu, Qinggang; Zhao, Heng; Lou, Xiaona; Jiang, Ningchuan; Hu, Xiaotang

    2008-12-01

    To improve dynamic measurement performance and resolution, an optimum design on two-dimensional (2D) micro-angle sensor based on optical internal-reflection method via critical-angle refractive index measurement is presented in the paper. The noise signals were filtered effectively by modulating laser-driven and demodulating in signal proceeding. The system's accuracy and response speed are improved further by using 16-bit high-precision AD converter and MSP430 CPU which present with a high-speed performance during signals processes such as fitting angle-voltage curve through specific arithmetic, full range and zero point calibration, filter, scaling transformation etc. The experiment results indicated that, dynamic signal measurement range can be up to +/-600arcsec, the measurement resolution can be better than 0.1arcsec, and the repeatability could be better than +/-0.5arcsec.

  19. Note: Differential amplified high-resolution tilt angle measurement system.

    PubMed

    Zhao, Shijie; Li, Yan; Zhang, Enyao; Huang, Pei; Wei, Haoyun

    2014-09-01

    A high-resolution tilt angle measurement system is presented in this paper. In this system, the measurement signal is amplified by two steps: (1) amplified by operational amplifier and (2) differential amplified by two MEMS-based inclinometers. The novel application not only amplifies the signal but, more importantly, substantially reduces the electrical interference and common-mode noise among the same circuit design. Thus, both the extremely high resolution and great long-term stability are achieved in this system. Calibrated by an autocollimator, the system shows a resolution of 2 arc sec. The accuracy is better than ±1.5 arc sec. The zero-drift error is below ±1 arc sec and ±2 arc sec in the short and long term, respectively.

  20. Note: Differential amplified high-resolution tilt angle measurement system

    NASA Astrophysics Data System (ADS)

    Zhao, Shijie; Li, Yan; Zhang, Enyao; Huang, Pei; Wei, Haoyun

    2014-09-01

    A high-resolution tilt angle measurement system is presented in this paper. In this system, the measurement signal is amplified by two steps: (1) amplified by operational amplifier and (2) differential amplified by two MEMS-based inclinometers. The novel application not only amplifies the signal but, more importantly, substantially reduces the electrical interference and common-mode noise among the same circuit design. Thus, both the extremely high resolution and great long-term stability are achieved in this system. Calibrated by an autocollimator, the system shows a resolution of 2 arc sec. The accuracy is better than ±1.5 arc sec. The zero-drift error is below ±1 arc sec and ±2 arc sec in the short and long term, respectively.

  1. Cell separation using tilted-angle standing surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-09-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.

  2. Cell separation using tilted-angle standing surface acoustic waves

    PubMed Central

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-01-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150

  3. Cell separation using tilted-angle standing surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-09-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150

  4. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    SciTech Connect

    McClintock, B. H.; Norton, A. A.; Li, J. E-mail: aanorton@stanford.edu

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.

  5. Re-examining Sunspot Tilt Angle to Include Anti-Hale Statistics

    NASA Astrophysics Data System (ADS)

    McClintock, B. H.; Norton, A. A.; Li, J.

    2014-12-01

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li & Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.

  6. Measurements of sunspot group tilt angles for solar cycles 19-24

    NASA Astrophysics Data System (ADS)

    Isik, Seda; Isik, Emre

    2016-07-01

    The tilt angle of a sunspot group is a critical quantity in the surface transport magnetic flux on global scales, playing a role in the solar dynamo. To investigate Joy's law for four cycles, we measured the tilt angles of sunspot groups for solar cycles 19-24. We have developed an IDL routine, which allows the user to interactively select and measure sunspot positions and areas on the solar disc, using the sunspot drawing database of Kandilli Observatory. The method is similar to that used by others in the literature, with the exception that sunspot groups were identified manually, which has improved the accuracy of the tilt angles. We present cycle averages of the tilt angle and compare the results with the existing data in the literature.

  7. Interpretation of Gravity Data using 3D Euler Deconvolution, Tilt Angle, Horizontal Tilt Angle and Source Edge Approximation of the North-West Himalaya

    NASA Astrophysics Data System (ADS)

    Ghosh, Gopal K.

    2016-08-01

    The collision of the Indian plate and the Eurasian plate created shortening and imbrications with thrusting and faulting which influences northward tectonic movement. This plate movement has divided the Himalaya into four parts, viz. Outer Himalaya, Lesser Himalaya, Greater Himalaya, and Tethys Himalaya. The crystalline basement rock plays an imperative role for structural and tectonic association. The study has been carried out near Rishikesh-Badrinath neighborhood in the northwestern part of the Himalayan girdle with multifarious tectonic set up with thrusted and faulted geological setting. In this study area, 3D Euler deconvolution, horizontal gradient analysis, tilt angle (TILT) and horizontal tilt angle (TDX) analysis have been carried out using gravity data to delineate the subsurface geology and heterogeneity in the northwestern part of Himalaya. The Euler depth solutions suggest the source depth of about 12 km and various derivative analyses suggest the trend of the delineation thrust-fault boundaries along with the dip and strike direction in the study area.

  8. Optimum Projection Angle for Attaining Maximum Distance in a Soccer Punt Kick

    PubMed Central

    Linthorne, Nicholas P.; Patel, Dipesh S.

    2011-01-01

    To produce the greatest horizontal distance in a punt kick the ball must be projected at an appropriate angle. Here, we investigated the optimum projection angle that maximises the distance attained in a punt kick by a soccer goalkeeper. Two male players performed many maximum-effort kicks using projection angles of between 10° and 90°. The kicks were recorded by a video camera at 100 Hz and a 2 D biomechanical analysis was conducted to obtain measures of the projection velocity, projection angle, projection height, ball spin rate, and foot velocity at impact. The player’s optimum projection angle was calculated by substituting mathematical equations for the relationships between the projection variables into the equations for the aerodynamic flight of a soccer ball. The calculated optimum projection angles were in agreement with the player’s preferred projection angles (40° and 44°). In projectile sports even a small dependence of projection velocity on projection angle is sufficient to produce a substantial shift in the optimum projection angle away from 45°. In the punt kicks studied here, the optimum projection angle was close to 45° because the projection velocity of the ball remained almost constant across all projection angles. This result is in contrast to throwing and jumping for maximum distance, where the projection velocity the athlete is able to achieve decreases substantially with increasing projection angle and so the optimum projection angle is well below 45°. Key points The optimum projection angle that maximizes the distance of a punt kick by a soccer goalkeeper is about 45°. The optimum projection angle is close to 45° because the projection velocity of the ball is almost the same at all projection angles. This result is in contrast to throwing and jumping for maximum distance, where the optimum projection angle is well below 45° because the projection velocity the athlete is able to achieve decreases substantially with increasing

  9. Reliability and validity of goniometric and photographic measurements of clavicular tilt angle.

    PubMed

    Ha, Sung-min; Kwon, Oh-yun; Weon, Jong-hyuck; Kim, Moon-hwan; Kim, Su-jung

    2013-10-01

    The aims of the present study were to assess the reliability of clavicular tilt angle measurement using goniometric and photographic measurements and to test the validity of the measurement by comparing the results with radiographic findings (gold standard). Clavicular tilt angles were measured in 18 healthy subjects (36 clavicles) using goniometric, photographic, and radiographic measurement. Repeated measurements using goniometric and photographic measurements were made in two test sessions conducted on different days by two examiners to assess inter-rater and intra-rater reliability of the two methods. Radiographic measurement was taken once, and the correlation between the radiographic findings and those of the indirect methods was calculated to test the validity of the goniometric and photographic measurement of clavicular tilt angle. No significant difference in clavicular tilt angle measurement was found between test sessions. The reliability of goniometric measurement (inter-rater intraclass correlation coefficients (ICC) = 0.85 (95% CI = 0.72-0.92) - 0.87 (95% CI = 0.77-0.87); intra-rater ICC = 0.80 (95% CI = 0.64-0.89)) and photographic measurement (inter-rater ICC = 0.89 (95% CI = 0.80-0.94) - 0.95 (95% CI = 0.91-0.98); intra-rater ICC = 0.84 (95% CI = 0.71-0.92) - 0.84 (95% CI = 0.69-0.91)) were excellent. The goniometric and photographic measurements of clavicular tilt angle were highly correlated with the radiographic findings (r = 0.83, 0.78, respectively). Goniometric and photographic measurements of clavicular tilt angle obtained by raters in this study may be considered reliable, and data obtained using the goniometric and photographic measurements are representative of radiographic findings of clavicular tilt angle.

  10. Optimum Projection Angle for Attaining Maximum Distance in a Rugby Place Kick

    PubMed Central

    Linthorne, Nicholas P.; Stokes, Thomas G.

    2014-01-01

    This study investigated the effect of projection angle on the distance attained in a rugby place kick. A male rugby player performed 49 maximum-effort kicks using projection angles of between 20 and 50°. The kicks were recorded by a video camera at 50 Hz and a 2 D biomechanical analysis was conducted to obtain measures of the projection velocity and projection angle of the ball. The player’s optimum projection angle was calculated by substituting a mathematical expression for the relationship between projection velocity and projection angle into the equations for the aerodynamic flight of a rugby ball. We found that the player’s calculated optimum projection angle (30.6°, 95% confidence limits ± 1.9°) was in close agreement with his preferred projection angle (mean value 30.8°, 95% confidence limits ± 2.1°). The player’s calculated optimum projection angle was also similar to projection angles previously reported for skilled rugby players. The optimum projection angle in a rugby place kick is considerably less than 45° because the projection velocity that a player can produce decreases substantially as projection angle is increased. Aerodynamic forces and the requirement to clear the crossbar have little effect on the optimum projection angle. Key Points The optimum projection angle in a rugby place kick is about 30°. The optimum projection angle is considerably less than 45° because the projection velocity that a player can produce decreases substantially as projection angle is increased. Aerodynamic forces and the requirement to clear the crossbar have little effect on the optimum projection angle. PMID:24570626

  11. A new dynamo pattern revealed by the tilt angle of bipolar sunspot groups

    NASA Astrophysics Data System (ADS)

    Tlatov, A.; Illarionov, E.; Sokoloff, D.; Pipin, V.

    2013-07-01

    We obtain the latitude-time distribution of the averaged tilt angle of solar bipoles. For large bipoles, which are mainly bipolar sunspot groups, the spatially averaged tilt angle is positive in the Northern solar hemisphere and negative in the Southern, with modest variations during the course of the solar cycle. We consider the averaged tilt angle to be a tracer for a crucial element of the solar dynamo, i.e. the regeneration rate of poloidal large-scale magnetic field from toroidal. The value of the tilt obtained crudely corresponds to a regeneration factor corresponding to about 10 per cent of rms velocity of solar convection. These results develop findings of Stenflo & Kosovichev concerning Joy's law, and agree with the usual expectations of solar dynamo theory. Quite surprisingly, we find a pronounced deviation from these properties for smaller bipoles, which are mainly solar ephemeral regions. They possess tilt angles of approximately the same absolute value, but of opposite sign compared to that of the large bipoles. Of course, the tilt data for small bipoles are less well determined than those for large bipoles; however, they remain robust under various modifications of the data processing.

  12. Comparison of Debrecen and Mount Wilson/Kodaikanal sunspot group tilt angles and the Joy's law

    NASA Astrophysics Data System (ADS)

    Baranyi, T.

    2015-02-01

    The study of active region tilt angles and their variations in different time-scales plays an important role in revealing the subsurface dynamics of magnetic flux ropes and in understanding the dynamo mechanism. In order to reveal the exact characteristics of tilt angles, precise long-term tilt angle data bases are needed. However, there are only a few different data sets at present, which are difficult to be compared and cross-calibrate because of their substantial deviations. In this paper, we describe new tilt angle data bases derived from the Debrecen Photoheliographic Data (DPD) (1974-) and from the SOHO/MDI-Debrecen Data (SDD) (1996-2010) sunspot catalogues. We compare them with the traditional sunspot group tilt angle data bases of Mount Wilson Observatory (1917-85) and Kodaikanal Solar Observatory (1906-87) and we analyse the deviations. Various methods and filters are investigated which may improve the sample of data and may help in deriving better results based on combined data. As a demonstration of the enhanced quality of the improved data set a refined diagram of Joy's law is presented.

  13. Optimum subsonic, high-angle-of-attack nacelles

    NASA Technical Reports Server (NTRS)

    Luidens, R. W.; Stockman, N. O.; Diedrich, J. H.

    1979-01-01

    The optimum design of nacelles that operate over a wide range of aerodynamic conditions and their inlets is described. For low speed operation the optimum internal surface velocity distributions and skin friction distributions are described for three categories of inlets: those with BLC, and those with blow in door slots and retractable slats. At cruise speed the effect of factors that reduce the nacelle external surface area and the local skin friction is illustrated. These factors are cruise Mach number, inlet throat size, fan-face Mach number, and nacelle contour. The interrelation of these cruise speed factors with the design requirements for good low speed performance is discussed.

  14. Tilt Angle and Footpoint Separation of Small and Large Bipolar Sunspot Regions Observed with HMI

    NASA Astrophysics Data System (ADS)

    McClintock, B. H.; Norton, A. A.

    2016-02-01

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. (2015) results that the sunspots appear to be two distinct populations.

  15. Control of the bias tilt angles in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Yablonskii, S. V.; Nakayama, K.; Okazaki, S.; Ozaki, M.; Yoshino, K.; Palto, S. P.; Baranovich, M. Yu.; Michailov, A. S.

    1999-03-01

    The pretilt angle controlled by electric field was studied by the modulation ellipsometry technique. The easy direction of compensated nematic liquid crystals was controlled by surface flexoelectric torque created by the linear coupling of the director deformation and electric field. The weak anchoring energy necessary for the occurrence of flexoelectric distortion was produced by unidirectional rubbing of the clean indium-tin-oxide covered glasses with a cotton cloth. The pretilt angle was measured as a function of electric field. Long relaxation times of the optical response (hundreds of seconds) were observed. The rubbed thin polyvinyl alcohol and polyimide aligning layers were seen to promote strong anchoring energy (>0.5 erg/cm2) preventing any deviation of pretilt angle and, consequently, to suppress the optical response. The probable applications of the obtained results are discussed.

  16. Active-region Tilt Angles: Magnetic versus White-light Determinations of Joy's Law

    NASA Astrophysics Data System (ADS)

    Wang, Y.-M.; Colaninno, R. C.; Baranyi, T.; Li, J.

    2015-01-01

    The axes of solar active regions are inclined relative to the east-west direction, with the tilt angle tending to increase with latitude ("Joy's law"). Observational determinations of Joy's law have been based either on white-light images of sunspot groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magnetic data. We confirm this effect by comparing sunspot-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21-23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light "tilt angles" refer to sunspots of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent sunspots. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16-23.

  17. ACTIVE-REGION TILT ANGLES: MAGNETIC VERSUS WHITE-LIGHT DETERMINATIONS OF JOY'S LAW

    SciTech Connect

    Wang, Y.-M.; Colaninno, R. C.; Baranyi, T.; Li, J. E-mail: robin.colaninno@nrl.navy.mil E-mail: jli@igpp.ucla.edu

    2015-01-01

    The axes of solar active regions are inclined relative to the east-west direction, with the tilt angle tending to increase with latitude ({sup J}oy's law{sup )}. Observational determinations of Joy's law have been based either on white-light images of sunspot groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magnetic data. We confirm this effect by comparing sunspot-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21-23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light ''tilt angles'' refer to sunspots of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent sunspots. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16-23.

  18. 'Abnormal' angle response curves of TW/Rs for near zero tilt and high tilt channeling implants

    SciTech Connect

    Guo Baonian; Gossmann, Hans-Joachim; Toh, Terry; Colombeau, Benjamin; Todorov, Stan; Sinclair, Frank; Shim, Kyu-Ha; Henry, Todd

    2012-11-06

    Angle control has been widely accepted as the key requirement for ion implantation in semiconductor device processing. From an ion implanter point of view, the incident ion direction should be measured and corrected by suitable techniques, such as XP-VPS for the VIISta implanter platform, to ensure precision ion placement in device structures. So called V-curves have been adopted to generate the wafer-based calibration using channeling effects as the Si lattice steer ions into a channeling direction. Thermal Wave (TW) or sheet resistance (Rs) can be used to determine the minimum of the angle response curve. Normally it is expected that the TW and Rs have their respective minima at identical angles. However, the TW and Rs response to the angle variations does depend on factors such as implant species, dose, and wafer temperature. Implant damage accumulation effects have to be considered for data interpretation especially for some 'abnormal' V-curve data. In this paper we will discuss some observed 'abnormal' angle responses, such as a) TW/Rs reverse trend for Arsenic beam, 2) 'W' shape of Rs Boron, and 3) apparent TW/Rs minimum difference for high tilt characterization, along with experimental data and TCAD simulations.

  19. Active correction of the tilt angle of the surface plane with respect to the rotation axis during azimuthal scan

    NASA Astrophysics Data System (ADS)

    Sereno, M.; Lupone, S.; Debiossac, M.; Kalashnyk, N.; Roncin, P.

    2016-09-01

    A procedure to measure the residual tilt angle τ between a flat surface and the azimuthal rotation axis of the sample holder is described. When the incidence angle θ and readout of the azimuthal angle ϕ are controlled by motors, an active compensation mechanism can be implemented to reduce the effect of the tilt angle during azimuthal motion. After this correction, the effective angle of incidence is kept fixed, and only a small residual oscillation of the scattering plane remains.

  20. Optimum Strategies for Selecting Descent Flight-Path Angles

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)

    2016-01-01

    An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.

  1. Evaluation of electrolytic tilt sensors for measuring model angle of attack in wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    1992-01-01

    The results of a laboratory evaluation of electrolytic tilt sensors as potential candidates for measuring model attitude or angle of attack in wind tunnel tests are presented. The performance of eight electrolytic tilt sensors was compared with that of typical servo accelerometers used for angle-of-attack measurements. The areas evaluated included linearity, hysteresis, repeatability, temperature characteristics, roll-on-pitch interaction, sensitivity to lead-wire resistance, step response time, and rectification. Among the sensors being evaluated, the Spectron model RG-37 electrolytic tilt sensors have the highest overall accuracy in terms of linearity, hysteresis, repeatability, temperature sensitivity, and roll sensitivity. A comparison of the sensors with the servo accelerometers revealed that the accuracy of the RG-37 sensors was on the average about one order of magnitude worse. Even though a comparison indicates that the cost of each tilt sensor is about one-third the cost of each servo accelerometer, the sensors are considered unsuitable for angle-of-attack measurements. However, the potential exists for other applications such as wind tunnel wall-attitude measurements where the errors resulting from roll interaction, vibration, and response time are less and sensor temperature can be controlled.

  2. Unique determination of the -CN group tilt angle in Langmuir monolayers using sum-frequency polarization null angle and phase

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-10-14

    The relative phase and amplitude ratio between the ssp and ppp polarization combinations of the vibrational sum-frequency generation (SFG) response can be uniquely and accurately determined by the polarization null angle (PNA) method. In this report we show that PNA measurements of the -CN vibration in the 4-n pentyl-4'-cyanoterphenyl (5CT) Langmuir monolayer at the air/water interface yields ssp and ppp response of the same phase, while those in the 4-n-octyl-4'cyanobiphenyl (8CB) Langmuir monolayer have the opposite phase. Accordingly, the -CN group in the 5CT monolayer is tilted around 25+/-2 from the interface normal, while that in the 8CB is tilted around 57+/-2, consistent with the significant differences in the phase diagrams and hydrogen bonding SFG spectra of the two Langmuir monolayers as reported in the literature. These results also demonstrate that in SFG studies the relative phase information of the different polarization combinations, especially for the ssp and ppp, is important in the unique determination of the tilt angle and conformation of a molecular group at the interface.

  3. Multispectral imaging with optical bandpass filters: tilt angle and position estimation

    NASA Astrophysics Data System (ADS)

    Brauers, Johannes; Aach, Til

    2009-01-01

    Optical bandpass filters play a decisive role in multispectral imaging. Various multispectral cameras use this type of color filter for the sequential acquisition of different spectral bands. Practically unavoidable, small tilt angles of the filters with respect to the optical axis influence the imaging process: First, by tilting the filter, the center wavelength of the filter is shifted, causing color variations. Second, due to refractions of the filter, the image is distorted geometrically depending on the tilt angle. Third, reflections between sensor and filter glass may cause ghosting, i.e., a weak and shifted copy of the image, which also depends on the filter angle. A method to measure the filter position parameters from multispectral color components is thus highly desirable. We propose a method to determine the angle and position of an optical filter brought into the optical path in, e.g., filter-wheel multispectral cameras, with respect to the camera coordinate system. We determine the position and angle of the filter by presenting a calibration chart to the camera, which is always partly reflected by the highly reflective optical bandpass filter. The extrinsic parameters of the original and mirrored chart can then be estimated. We derive the angle and position of the filter from the coordinates of the charts. We compare the results of the angle measurements to a ground truth obtained from the settings of a high-precision rotation table and thus validate our measurement method. Furthermore, we simulate the refraction effect of the optical filter and show that the results match quite well with the reality, thus also confirming our method.

  4. A deep-seated mechanism for cycle-dependent sunspot group tilt angles

    NASA Astrophysics Data System (ADS)

    Isik, Emre

    2016-07-01

    The cycle-averaged tilt angle of sunspot groups is an important quantity in determining the magnetic flux diffusing across the equator, which is highly correlated with the strength of the next cycle. This quantity has recently been reported to be anti-correlated with the strength of the solar cycle. I suggest that a deep-seated thermodynamic cycle can be responsible for the observed correlation. Motivated by helioseismic indications, I calculate the effect of cooling of the convective overshoot region on the stability and dynamics of thin, unstable flux tubes. I find that only 5-20 K of cooling in the layer can explain the observed range of tilt angle fluctuations among different cycles. This mechanism can play a role in the nonlinear saturation and amplitude fluctuations of the solar dynamo.

  5. A literature review on optimum and preferred joint angles in automotive sitting posture.

    PubMed

    Schmidt, Susanne; Amereller, Maximilian; Franz, Matthias; Kaiser, Ralf; Schwirtz, Ansgar

    2014-03-01

    In this study, a survey of the scientific literature in the field of optimum and preferred human joint angles in automotive sitting posture was conducted by referring to thirty different sources published between 1940 and today. The strategy was to use only sources with numerical angle data in combination with keywords. The aim of the research was to detect commonly used joint angles in interior car design. The main analysis was on data measurement, usability and comparability of the different studies. In addition, the focus was on the reasons for the differently described results. It was found that there is still a lack of information in methodology and description of background. Due to these reasons published data is not always usable to design a modern ergonomic car environment. As a main result of our literature analysis we suggest undertaking further research in the field of biomechanics and ergonomics to work out scientific based and objectively determined "optimum" joint angles in automotive sitting position.

  6. Dislocation structures and electrical conduction properties of low angle tilt grain boundaries in LiNbO3

    NASA Astrophysics Data System (ADS)

    Furushima, Yuho; Nakamura, Atsutomo; Tochigi, Eita; Ikuhara, Yuichi; Toyoura, Kazuaki; Matsunaga, Katsuyuki

    2016-10-01

    Dislocations in crystalline materials constitute unique, atomic-scale, one-dimensional structure and have a potential to induce peculiar physical properties that are not found in the bulk. In this study, we fabricated LiNbO3 bicrystals with low angle tilt grain boundaries and investigated the relationship between the atomic structure of the boundary dislocations and their electrical conduction properties. Observations by using transmission electron microscopy revealed that dislocation structures at the (0001) low angle tilt grain boundaries depend on the tilt angle of the boundaries. Specifically, the characteristic dislocation structures with a large Burgers vector were formed in the boundary with the tilt angle of 2°. It is noteworthy that only the grain boundary of 2° exhibits distinct electrical conductivity after reduction treatment, although LiNbO3 is originally insulating. This unique electrical conductivity is suggested to be due to the characteristic dislocation structures with a large Burgers vector.

  7. Evaluation of electrolytic tilt sensors for wind tunnel model angle-of-attack (AOA) measurements

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    1991-01-01

    The results of a laboratory evaluation of three types of electrolytic tilt sensors as potential candidates for model attitude or angle of attack (AOA) measurements in wind tunnel tests are presented. Their performance was also compared with that from typical servo accelerometers used for AOA measurements. Model RG-37 electrolytic tilt sensors were found to have the highest overall accuracy among the three types. Compared with the servo accelerometer, their accuracies are about one order of magnitude worse and each of them cost about two-thirds less. Therefore, the sensors are unsuitable for AOA measurements although they are less expensive. However, the potential for other applications exists where the errors resulting from roll interaction, vibration, and response time are less, and sensor temperature can be controlled.

  8. Effects of the Scatter in Sunspot Group Tilt Angles on the Large-scale Magnetic Field at the Solar Surface

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Cameron, R. H.; Schüssler, M.

    2014-08-01

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input based upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.

  9. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    SciTech Connect

    Jiang, J.; Cameron, R. H.; Schüssler, M.

    2014-08-10

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input based upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.

  10. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    PubMed

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  11. Optimum angle-cut of collimator for dense objects in high-energy proton radiography

    NASA Astrophysics Data System (ADS)

    Xu, Hai-Bo; Zheng, Na

    2016-02-01

    The use of minus identity lenses with an angle-cut collimator can achieve high contrast images in high-energy proton radiography. This article presents the principles of choosing the angle-cut aperture of the collimator for different energies and objects. Numerical simulation using the Monte Carlo code Geant4 has been implemented to investigate the entire radiography for the French test object. The optimum angle-cut apertures of the collimators are also obtained for different energies. Supported by NSAF (11176001) and Science and Technology Developing Foundation of China Academy of Engineering Physics (2012A0202006)

  12. The effects of different types of automated inclining bed and tilt angle on body-pressure redistribution.

    PubMed

    Yi, Chung-Hwi; Kim, Han-Sung; Yoo, Won-Gyu; Kim, Min-Hee; Kwon, Oh-Yun

    2009-06-01

    The damage caused by pressure in bedridden hospitalized patients is attributable to the body tissues becoming compressed against bony prominences, which results in poor capillary perfusion. Automated inclining beds were developed in this study to assist patients in repositioning, with the aim of quantifying the effects of 3 types of bed (bed 1, 1-axis tilting; bed 2, 1-axis and 2-segment tilting; and bed 3, 2-axis and 3-segment tilting) and 3 tilt angles (10, 15, and 20 degrees upward from the horizontal) on body-pressure redistribution. Twenty healthy subjects (14 men and 6 women) aged 21 to 26 years were recruited from the Yonsei University student population (mean [SD]: height, 164.0 cm [5.5 cm]; weight, 58.7 kg [7.3 kg]). A body-pressure measurement system was used to analyze the pressure distributions of the human body for the different bed types and tilt angles. The results showed that pressure reduction was significantly greater for bed 2 than for beds 1 and 3, and for tilt angles of 15 and 20 degrees upward. The highest pressure reduction was found for bed 2, with a tilt angle of 20 degrees upward from the horizontal.

  13. VizieR Online Data Catalog: Sunspot areas and tilt angles (Senthamizh Pavai+, 2015)

    NASA Astrophysics Data System (ADS)

    Senthamizh Pavai, V.; Arlt, R.; Dasi-Espuig, M.; Krivova, N.; Solanki, S.

    2015-11-01

    We present sunspot positions and areas from historical observations of sunspots by Samuel Heinrich Schwabe from Dessau, Germany. He has recorded his observations of sunspots from 1825-1867 as drawings in small circles of about 5cm diameter (representing the solar disk). Even though he has used quite a number of telescopes for his observations, the majority of the full-disk drawings were made with a 3-1/2-foot telescope from Fraunhofer. His observing log books are stored in the library of the Royal Astronomical Society in London. Those drawings were digitized photographically with a resolution of 2912x4378 pixels per page. The sizes and positions of the sunspots were measured using a dozen of circular mouse cursor shapes with different diameters. The sunspot sizes in Schwabe's drawings are not to scale and need to be converted into physical sunspot areas. We employed a statistical approach assuming that the area distribution of sunspots was the same in the 19th century as it was in the 20th century. Umbral areas for about 130,000 sunspots observed by Schwabe were obtained, as well as the tilt angles of sunspot groups assuming them to be bipolar (two or more spots). There is, of course, no polarity information in the observations. Both an updated sunspot database and a tilt angle database are available at http://www.aip.de/Members/rarlt/ sunspots for further study. (2 data files).

  14. Optimum design of fibrous laminated plates with sectionally-varied fiber orientation angles

    NASA Astrophysics Data System (ADS)

    Miki, Mitsunori; Sugiyama, Yoshihiko; Ohba, Ichiro

    1993-03-01

    This paper deals with the optimum design of fibrous laminated composite plates. The plates are subjected to any concentrated and/or distributed loads and they are optimized under the constraint that the strain energy or the maximum deflection of the plates is minimized for the given thickness. The design variables are the fiber orientation angles of the small sections of the plates. Thus, the optimum fiber orientation becomes curvilinear. The deflection analysis is performed by using the Rayleigh-Ritz method and the complexity in developing the analytical formulation for the sectional plate is reduced by using the symbolic calculation system, Mathematica. The optimizer has a SUMT-type algorism. The calculated results show that the laminated plate with the sectionally-optimized fiber orientation angles yield a considerable improvement in the strain energy and maximum deflection.

  15. Correlation between Lamina Cribrosa Tilt Angles, Myopia and Glaucoma Using OCT with a Wide Bandwidth Femtosecond Mode-Locked Laser

    PubMed Central

    Shoji, Takuhei; Kuroda, Hiroto; Suzuki, Masayuki; Baba, Motoyoshi; Hangai, Masanori; Araie, Makoto; Yoneya, Shin

    2014-01-01

    Purpose To measure horizontal and vertical lamina cribrosa (LC) tilt angles and investigate associated factors using prototype optical coherence tomography (OCT) with a broad wavelength laser light source. Design Cross sectional study. Methods Twenty-eight no glaucoma eyes (from 15 subjects) and 25 glaucoma eyes (from 14 patients) were enrolled. A total of 300 optic nerve head B-scans were obtained in 10 µm steps and the inner edge of Bruch's membrane opening (BMO) was identified as the reference plane. The vertical and horizontal angles between BMO line and approximate the best-fitting line for the surface of the LC were measured and potential associated factors were estimated with univariate and multivariate logistic regression analyses. Results The median (interquartile range) horizontal and vertical tilt angles were 7.10 (2.43–11.45) degrees and 4.15 (2.60–6.85) degrees in eyes without glaucoma and 8.50 (4.40–14.10) degrees and 9.30 (6.90–14.15) degrees in glaucoma eyes, respectively. The refractive errors had a statistically significant association with horizontal LC tilt angles (coefficients, −1.53 per diopter) and glaucoma had a significant correlation with vertical tilt angles (coefficients, 6.56) using multiple logistic regression analysis (p<0.001). Conclusions OCT allowed evaluation of the internal tilting of the LC compared with the BMO. The horizontal internal LC tilt angle was correlated with refractive errors, corresponding to myopic physiological changes, and vertical internal LC tilt was correlated with glaucoma, corresponding to glaucomatous pathological changes. These parameters have important implications for investigation of the correlation between myopia, glaucoma and LC morphological features. PMID:25551632

  16. A literature review on optimum and preferred joint angles in automotive sitting posture.

    PubMed

    Schmidt, Susanne; Amereller, Maximilian; Franz, Matthias; Kaiser, Ralf; Schwirtz, Ansgar

    2014-03-01

    In this study, a survey of the scientific literature in the field of optimum and preferred human joint angles in automotive sitting posture was conducted by referring to thirty different sources published between 1940 and today. The strategy was to use only sources with numerical angle data in combination with keywords. The aim of the research was to detect commonly used joint angles in interior car design. The main analysis was on data measurement, usability and comparability of the different studies. In addition, the focus was on the reasons for the differently described results. It was found that there is still a lack of information in methodology and description of background. Due to these reasons published data is not always usable to design a modern ergonomic car environment. As a main result of our literature analysis we suggest undertaking further research in the field of biomechanics and ergonomics to work out scientific based and objectively determined "optimum" joint angles in automotive sitting position. PMID:23664245

  17. Impact of interface misfit strain on the movement and tilt angles of the domain wall in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Guo, Lili; Jiang, Limei; Zhou, Yichun

    2016-09-01

    The effect of interface misfit strain on the movement and tilt angles of the domain wall in ferroelectric thin film is investigated with a multicoupling finite element model. Since this theoretical model is developed based on the phase field method and is solved using the finite element method, it can effectively predict the electromechanical coupling behavior of materials that have complicated boundary conditions. The simulated results demonstrate that the position, tilt angles, strain gradient and energy density of the domain wall can be modulated by misfit compressive strain at the interface of ferroelectric nanostructures. A larger interface misfit compressive strain will lead to the movement of domain wall towards the direction which allows the a domain to possess a larger volume. The difference of the tilt angles of domain walls on both sides of the a domain becomes larger as the interface misfit strain increases, implying a transition of the shape of the a domain from parallelogram to wedge.

  18. Accurate measurement of relative tilt and azimuth angles in electron tomography: A comparison of fiducial marker method with electron diffraction

    NASA Astrophysics Data System (ADS)

    Hayashida, Misa; Malac, Marek; Bergen, Michael; Egerton, Ray F.; Li, Peng

    2014-08-01

    Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy of the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.

  19. Accurate measurement of relative tilt and azimuth angles in electron tomography: A comparison of fiducial marker method with electron diffraction

    SciTech Connect

    Hayashida, Misa; Malac, Marek; Egerton, Ray F.; Bergen, Michael; Li, Peng

    2014-08-15

    Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy of the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.

  20. Transmission of electrons through insulating PET foils: Dependence on charge deposition, tilt angle and incident energy

    NASA Astrophysics Data System (ADS)

    Keerthisinghe, D.; Dassanayake, B. S.; Wickramarachchi, S. J.; Stolterfoht, N.; Tanis, J. A.

    2016-09-01

    Transmission of electrons through insulating polyethylene terephthalate (PET) nanocapillaries was observed as a function of charge deposition, angular and energy dependence. Two samples with capillary diameters 100 and 200 nm and pore densities 5 × 108/cm2 and 5 × 107/cm2, respectively, were studied for incident electron energies of 300, 500 and 800 eV. Transmission and steady state of the electrons were attained after a time delay during which only a few electron counts were observed. The transmission through the capillaries depended on the tilt angle with both elastic and inelastic electrons going through. The guiding ability of electrons was found to increase with the incident energy in contrast to previous measurements in our laboratory for a similar PET foil.

  1. Development of intelligent model to determine favorable wheelchair tilt and recline angles for people with spinal cord injury.

    PubMed

    Fu, Jicheng; Jan, Yih-Kuen; Jones, Maria

    2011-01-01

    Machine-learning techniques have found widespread applications in bioinformatics. Such techniques provide invaluable insight on understanding the complex biomedical mechanisms and predicting the optimal individualized intervention for patients. In our case, we are particularly interested in developing an individualized clinical guideline on wheelchair tilt and recline usage for people with spinal cord injury (SCI). The current clinical practice suggests uniform settings to all patients. However, our previous study revealed that the response of skin blood flow to wheelchair tilt and recline settings varied largely among patients. Our finding suggests that an individualized setting is needed for people with SCI to maximally utilize the residual neurological function to reduce pressure ulcer risk. In order to achieve this goal, we intend to develop an intelligent model to determine the favorable wheelchair usage to reduce pressure ulcers risk for wheelchair users with SCI. In this study, we use artificial neural networks (ANNs) to construct an intelligent model that can predict whether a given tilt and recline setting will be favorable to people with SCI based on neurological functions and SCI injury history. Our results indicate that the intelligent model significantly outperforms the traditional statistical approach in accurately classifying favorable wheelchair tilt and recline settings. To the best of our knowledge, this is the first study using intelligent models to predict the favorable wheelchair tilt and recline angles. Our methods demonstrate the feasibility of using ANN to develop individualized wheelchair tilt and recline guidance for people with SCI. PMID:22254738

  2. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    PubMed Central

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-01-01

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975

  3. Determination of optimum viewing angles for the angular normalization of land surface temperature over vegetated surface.

    PubMed

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-03-27

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.

  4. Eye movements and motion perception induced by off-vertical axis rotation (OVAR) at small angles of tilt after spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Darlot, C.; Petropoulos, A.; Berthoz, A.

    1995-01-01

    The nystagmus and motion perception of two astronauts were recorded during Earth-vertical axis rotation and during off-vertical axis rotation (OVAR) before and after 7 days of spaceflight. Postflight, the peak velocity and duration of per- and postrotatory nystagmus during velocity steps about the Earth-vertical axis were the same as preflight values. During OVAR at constant velocity (45/s, tilt angles successively 5, 10, and 15 degrees), the mean horizontal slow-phase eye velocity (bias), produced by the 'velocity storage mechanism' in the vestibular system, and the peak-to-peak amplitude (modulation) in horizontal eye velocity and position, generated from the output of otolith afferents, were also the same before as after flight. There were, however, changes in the vertical eve position and in the perceived body motion during OVAR. The angle of the perceived body path described as a cone was larger in both astronauts postflight. One astronaut experienced either a large cone angle with its axis upright, or a smaller cone angle with its axis tilted backwards, accompanied by an upward vertical eye drift. These results suggest an increase in the sensitivity of the otolithic system after spaceflight and a longer period of readaptation to Earth's gravity for otolith-induced responses than for canal-induced responses. Our data support the hypothesis that just after spaceflight the CNS generally interprets changes in the otolith signals to be due to translation rather than to tilt.

  5. The use of view angle tilting to reduce distortions in magnetic resonance imaging of cryosurgery.

    PubMed

    Daniel, B L; Butts, K

    2000-04-01

    Susceptibility artifacts from magnetic resonance (MR)-compatible cryoprobes can distort MR images of iceballs. In this work, we investigate the ability of view angle tilting (VAT) to correct susceptibility induced distortions in MR images of cryosurgery. The efficacy of VAT was tested in an ex vivo bovine liver model of cryosurgery using MR-compatible cryoprobes. Artifacts on high bandwidth fast spin echo images of freezing obtained with and without VAT were compared with photographs of the actual iceball shape and size. In vivo imaging with VAT was demonstrated during percutaneous MR-guided cryosurgery of pig liver and brain. VAT was most successful in reducing probe and iceball distortions when the imaging plane was normal to the cryoprobe, and the cryoprobe was perpendicular to the main magnetic field of the scanner. VAT had the greatest benefit when used to correct MR images of freezing when the surface of the iceball was relatively near to the cryoprobe. For large iceballs, the artifact was small so the VAT correction was less important. We conclude that VAT significantly reduced distortions in the shape of the signal void corresponding to the extent of freezing visualized during MR-guided cryosurgery. This improved ability to visualize the exact location of the cryoprobe, as well as the precise shape of the iceball, particularly during initial freezing when the iceball is small, has potential to significantly improve the accuracy of MR-guided cryosurgery of small lesions, and the accuracy of MR-assisted temperature calculations that are based on precise imaging of the probe location, and boundary geometry of the iceball.

  6. Investigations on the Effects of the Tool Material, Geometry, and Tilt Angle on Friction Stir Welding of Pure Titanium

    NASA Astrophysics Data System (ADS)

    Reshad Seighalani, K.; Besharati Givi, M. K.; Nasiri, A. M.; Bahemmat, P.

    2010-10-01

    Friction stir welding (FSW) parameters, such as tool material, tool geometry, tilt angle, tool rotational speed, welding speed, and axial force play a major role in the weld quality of titanium alloys. Because of excessive erosion, tool material and geometry play the main roles in FSW of titanium alloys. Therefore, in the present work for the first time, tool material and geometry, tool tilt angle, cooling system and shielding gas effects on macrostructure, microstructure, and mechanical properties of pure titanium weld joint were investigated. Result of this research shows that Ti can be joined by the FSW, using a tool with a shoulder made of tungsten (W) and simple pin made of tungsten carbide (WC). The best conditions for welding were use of compressed air as a cooling system, tool tilt angle of 1°, and a stream of Argon as a shielding medium. Investigation on mechanical properties shows that the tensile strength and the yield strength of the welded joint in the best case could be similar to the corresponding strengths of the base metal.

  7. Comparative analysis on viewing angle change in Fresnel and Fourier holographic images reconstructed by a tilted plane wave.

    PubMed

    Chae, Byung Gyu

    2014-05-20

    We carry out a comparative analysis on a viewing angle change in Fresnel and Fourier holographic images reconstructed by a tilted plane wave. A tilted plane wave illuminating an on-axis hologram generates a diffractive wave carrying the holographic image in a paraxial region of a new diffraction axis. The reconstructed image in the Fresnel hologram is deformed along the new viewing direction, which is well described as Affine transformation. In the Fourier holographic image, the replica of the image is formed without its deformation when the hologram is placed in the front focal plane of the lens, whereas in the case of a hologram that is located at a distance different from a focal length, image deformation arises. This property is investigated through numerical simulation based on a wide-angle diffraction phenomenon. We also perform a similar interpretation for high-order diffraction images appearing in the sampled Fourier hologram and discuss a method for enlarging the viewing angle of the holographic image.

  8. Precipitation of low energy electrons at high latitudes: Effects of substorms, interplanetary magnetic field and dipole tilt angle

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1972-01-01

    Data from the auroral particles experiment on OGO-4 were used to study effects of substorm activity, interplanetary magnetic field latitutde, and dipole tilt angle on high-latitude precipitation of 700 eV electrons. It was found that: (1) The high-latitude zone of 700 eV electron precipitation in late evening and early morning hours moves equatorward by 5 to 10 deg during substorms. (2) The low-latitude boundary of polar cusp electron precipitation at 9 to 15 hours MLT also moves equatorward by several degrees during substorms and, in the absence of significant substorm activity, after a period of southward interplanetary magnetic field. (3) With times containing substorm activity or a southward interplanetary magnetic field eliminated, the low-latitude boundary of polar cusp electron precipitation is found to move by approximately 4 deg over the total yearly range of tilt angles. At maximum winter and summer conditions the invariant latitude of the boundary is shown to shift by approximately -3 deg and +1 deg respectively from its equinox location.

  9. Effect of wearing tight pants on the trunk flexion and pelvic tilting angles in the stand-to-sit movement and a seated posture

    PubMed Central

    Yoo, Won-gyu

    2016-01-01

    [Purpose] The purpose of this study was to evaluate the effect of wearing the tight pants on the trunk flexion and pelvic tilting angles in the stand-to-sit movement and a seated posture. [Subjects] Nine male subjects were recruited. [Methods] The trunk flexion angle and pelvic posterior tilting angle were measured using a motion-capture system during the stand-to-sit movement and in a seated posture. [Results] The trunk flexion and the posterior pelvic tilting angles during the stand-to-sit movement and in the seated posture when wearing tight pants significantly increased compared with those when wearing of general pants. [Conclusion] Therefore, wearing tight pants could produce musculoskeletal disorders via abnormal movement and posture in the lumbar spine and pelvis. So the effects of wearing tight pants need to be investigated in further studies to reveal their direct relationship to musculoskeletal problems. PMID:26957736

  10. Dipole tilt angle effects on the latitude of the cusp and cleft/low-latitude boundary layer

    SciTech Connect

    Newell, P.T.; Meng, C.I. )

    1989-06-01

    A large data set of approximately 12,000 Defense Meteorological Satellite Program satellite F7 crossings of the cusp or the cleft (i.e., the dayside magnetospheric boundary layer) over a 3-year period is studied for seasonal dependence in latitudinal position. A carefully tested algorithm is used to distinguish the various dayside particle precipitation regions and boundaries. It is found that in the 1,100-1,300 MLT sector, the cusp proper exhibits about {minus}0.06{degree} magnetic latitude (MLAT) shift for each degree increase in dipole tilt angle. Thus the difference between the average summer and winter cusp positions is close to 4{degree} MLAT, approximately symmetric about equinox. For the cleft (magnetospheric boundary layer) the variation is smaller. For example, in the 0700-0900 MLT sector the cleft equatorward boundary shift is {minus} 0.027{degree} MLAT/1{degree} dipole tilt. These results are in general agreement with the predictions of empirical magnetospheric magnetic field models. Various ground-based and low-altitude observations can be systematically affected by the seasonal latitudinal shift herein documented.

  11. Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in Czochralski-grown silicon crystals

    SciTech Connect

    Ohno, Yutaka Inoue, Kaihei; Fujiwara, Kozo; Deura, Momoko; Kutsukake, Kentaro; Yonenaga, Ichiro; Shimizu, Yasuo; Inoue, Koji; Ebisawa, Naoki; Nagai, Yasuyoshi

    2015-06-22

    Three-dimensional distribution of oxygen atoms at small-angle tilt boundaries (SATBs) in Czochralski-grown p-type silicon ingots was investigated by atom probe tomography combined with transmission electron microscopy. Oxygen gettering along edge dislocations composing SATBs, post crystal growth, was observed. The gettering ability of SATBs would depend both on the dislocation strain and on the dislocation density. Oxygen atoms would agglomerate in the atomic sites under the tensile hydrostatic stress larger than about 2.0 GPa induced by the dislocations. It was suggested that the density of the atomic sites, depending on the tilt angle of SATBs, determined the gettering ability of SATBs.

  12. Liquid-crystal variable-focus lenses with a spatially-distributed tilt angles.

    PubMed

    Honma, Michinori; Nose, Toshiaki; Yanase, Satoshi; Yamaguchi, Rumiko; Sato, Susumu

    2009-06-22

    A pretilt angle controlling method by the density of rubbings using a tiny stylus is proposed. The control of the surface pretilt angle is achieved by rubbing a side-chain type polyimide film for a homeotropic alignment. Smooth liquid crystal (LC) director distribution in the bulk layer is successfully obtained even though the rough surface orientation. This approach is applied to LC cylindrical and rectangular lenses with a variable-focusing function. The distribution profile of the rubbing pitch (the reciprocal of the rubbing density) for small aberration is determined to be quadratic. The variable focusing function is successfully achieved in the LC rectangular lens, and the voltage dependence of the focal length is tried to be explained by the LC molecular reorientation behavior. PMID:19550499

  13. DSS 15, 45, and 65 34-meter high efficiency antenna radio frequency performance enhancement by tilt added to the subreflector during elevation angle changes

    NASA Technical Reports Server (NTRS)

    Katow, M. S.

    1990-01-01

    The focusing adjustments of the subreflectors of an az-el Cassegrainian antenna that uses only linear motions have always ended in lateral offsets of the phase centers at the subreflector's focus points at focused positions, which have resulted in small gain losses. How lateral offsets at the two focus points were eliminated by tilting the subreflector, resulting in higher radio frequency (RF) efficiencies at all elevation angles rotated from the rigging angles are described.

  14. Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Forrest, Stephen R.

    2009-09-01

    We demonstrate small molecule bulk heterojunction organic photovoltaic cells using oblique angle vacuum deposition. Obliquely deposited donor chloroaluminum phthalocyanine (ClAlPc) films on indium tin oxide have surface feature sizes of ˜30 nm, resulting in ClAlPc/C60 donor-acceptor heterojunctions (HJs) with approximately twice the interface area of HJs grown at normal incidence. This results in nearly twice the external quantum efficiency in the ClAlPc absorption band compared with analogous, planar HJs. The efficiency increase is attributed to the increased surface area presented by the donor-acceptor junction to the incident illumination by ClAlPc protrusions lying obliquely to the substrate plane formed during deposition. The power conversion efficiency improves from (2.0±0.1)% to (2.8±0.1)% under 1 sun, AM 1.5G simulated solar illumination. Similarly, the power efficiency of copper phthalocyanine/C60 organic photovoltaic cells is increased from (1.3±0.1)% to (1.7±0.1)%.

  15. Bioinspired tilt-angle fabricated structure gradient fibers: micro-drops fast transport in a long-distance

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Wang, Lin; Xue, Yan; Jiang, Lei; Zheng, Yongmei

    2013-10-01

    Issues of surfaces, e.g., inspired from beetle's back, spider silk, cactus stem, etc., become the active area of research on designing novel materials in need of human beings to acquire fresh water resource from air. However, the design of materials on surface structure is little achieved on controlling of micro-scale drop transport in a long distance. Here, we report the ability of micro-drop transport in a long distance on a bioinspired Fibers with Gradient Spindle-knots (BFGS), which are fabricated by tilt angle dip-coating method. The micro-drop of ~0.25 μL transports in distance of ~5.00 mm, with velocity of 0.10-0.22 m s-1 on BFGS. It is attributed to the multi-level cooperation of the release energy of drop coalescence along the gradient spindle-knots, in addition to capillary adhesion force and continuous difference of Laplace pressure, accordingly, water drops are driven to move fast directionally in a long distance on BFGS.

  16. A quantitative analysis of the relation between the clavicular tilt angle and subclavian central venous catheter misplacement

    PubMed Central

    Jeong, Hoe-Hwan; Yoon, Jung-Hoon; Oh, Sungho; Won, Je Hwan; Min, Young-Gi; Gravenstein, Nikolaus; Choi, Sang-Cheon

    2014-01-01

    Objective The aim of the present study was to investigate the relation between shoulder position and subclavian central venous (SCV) catheter misplacement. The shoulder position was estimated using clavicular tilt angle (CTA) values observed on anteroposterior chest X-ray images. Methods A retrospective case-control study was conducted on all adult patients who underwent SCV catheterization in the emergency department during a 12-month period. Collected data included patient age, sex, diagnosis, catheterization side, catheter misplacement, and physician’s level of experience in catheterization. The CTA and other radiological variables such as the ipsilateral transverse length of the thorax and thickness of the clavicle were investigated. Results Among all central venous catheterizations (n=1,599), the subclavian route was used 981 times (61.4%). There were 51 misplacements of SCV catheters (5.2%) during the study period. There were no differences in the sex, age, blood pressure, and diagnosis between the two groups. The CTA values were 28.5°±7.3° and 22.6°±6.3° in the misplacement group and control group, respectively (95% confidence interval, 3.6 to 8.1; P<0.001). Conclusion In this study, the CTA was found to be 5.9° larger in the misplacement group than in the control group. Assuming that CTA indicates the shoulder position, our findings suggest that the chance of SCV catheter misplacement may be reduced by avoiding the shoulder elevated.

  17. Vortex flow structures and interactions for the optimum thrust efficiency of a heaving airfoil at different mean angles of attack

    SciTech Connect

    Martín-Alcántara, A.; Fernandez-Feria, R.

    2015-07-15

    The thrust efficiency of a two-dimensional heaving airfoil is studied computationally for a low Reynolds number using a vortex force decomposition. The auxiliary potentials that separate the total vortex force into lift and drag (or thrust) are obtained analytically by using an elliptic airfoil. With these auxiliary potentials, the added-mass components of the lift and drag (or thrust) coefficients are also obtained analytically for any heaving motion of the airfoil and for any value of the mean angle of attack α. The contributions of the leading- and trailing-edge vortices to the thrust during their down- and up-stroke evolutions are computed quantitatively with this formulation for different dimensionless frequencies and heave amplitudes (St{sub c} and St{sub a}) and for several values of α. Very different types of flows, periodic, quasi-periodic, and chaotic described as St{sub c}, St{sub a}, and α, are varied. The optimum values of these parameters for maximum thrust efficiency are obtained and explained in terms of the interactions between the vortices and the forces exerted by them on the airfoil. As in previous numerical and experimental studies on flapping flight at low Reynolds numbers, the optimum thrust efficiency is reached for intermediate frequencies (St{sub c} slightly smaller than one) and a heave amplitude corresponding to an advance ratio close to unity. The optimal mean angle of attack found is zero. The corresponding flow is periodic, but it becomes chaotic and with smaller average thrust efficiency as |α| becomes slightly different from zero.

  18. Electron-beam transmission through a micrometer-sized tapered-glass capillary: Dependence on incident energy and angular tilt angle

    NASA Astrophysics Data System (ADS)

    Wickramarachchi, S. J.; Ikeda, T.; Dassanayake, B. S.; Keerthisinghe, D.; Tanis, J. A.

    2016-08-01

    An experimental study of 500- and 1000-eV incident electrons transmitted through a micrometer-sized funnel-shaped (tapered) glass capillary with inlet diameter 0.80 mm, outlet diameter 0.10 mm, and a length of 35 mm is reported. The properties of the electron beam transmitted were measured as a function of the emerging angle and the incident energy dependence. The angular profiles were found to be comprised of up to three peaks for both 500 and 1000 eV showing evidence for transmission going straight through the capillary without interacting with the walls (direct), as well as transmission resulting from Coulomb deflection of the electrons from a negative charge patch or by scattering from nuclei close to the surface of the capillary (indirect). The energy spectra show that elastically transmitted electrons dominate at 500 eV for increasing sample tilt angles up to ˜5.0°, while inelastic processes dominate for 1000 eV already at tilt angles of ˜1.0°. The angular width of the emitted electrons was found to constitute a narrow beam for direct (˜0.4°) and indirect (<0.6° for 500 eV and <1.0° for 1000 eV) transmission for both energies with the widths decreasing for the largest tilt angles measured and approaching the inherent resolution (˜0.3°) of the electron analyzer.

  19. Wave Propagation Direction and c-Axis Tilt Angle Influence on the Performance of ScAlN/Sapphire-Based SAW Devices.

    PubMed

    Kochhar, Abhay; Yamamoto, Yasuo; Teshigahara, Akihiko; Hashimoto, Ken-Ya; Tanaka, Shuji; Esashi, Masayoshi

    2016-07-01

    Some previously reported surface acoustic wave (SAW) devices using bulk piezoelectric substrates showed higher acoustic power radiated in either forward or backward wave propagation direction depending on their crystal orientations and are called natural single-phase unidirectional transducers (NSPUDT). While these reports were based on bulk piezoelectric substrates, we report directionality in the c-axis tilted 44% scandium doped aluminum nitride thin piezoelectric film-based SAW devices on sapphire. It is worth noting that our observance of directionality is specifically in Sezawa mode. We produced a c-axis tilt up to 5.5° over the single wafer and examined the directionality by comparing the forward and backward insertion loss utilizing split finger electrodes as a receiver. The wave propagation direction and c-axis tilt angle influence on the performance of SAW devices is evaluated. Furthermore, return loss and insertion loss data are presented for various SAW propagation directions and c-axis tilt angles. Finally, the comparison for both acoustic modes, i.e., Rayleigh and Sezawa, is reported. PMID:26978772

  20. Switchable dual-wavelength Q-switched and mode-locked fiber lasers using a large-angle tilted fiber grating.

    PubMed

    Zhang, Zuxing; Mou, Chengbo; Yan, Zhijun; Wang, Yongjin; Zhou, Kaiming; Zhang, Lin

    2015-01-26

    We proposed and demonstrated pulsed fiber lasers Q-switched and mode-locked by using a large-angle tilted fiber grating, for the first time to our best knowledge. Owing to the unique polarization properties of the large-angle tilted fiber grating (LA-TFG), i.e. polarization-dependent loss and polarization-mode splitting, switchable dual-wavelength Q-switched and mode-locked pulses have been achieved with short and long cavities, respectively. For the mode-locking case, the laser was under the operation of nanosecond rectangular pulses, due to the peak-power clamping effect. With the increasing pump power, the durations of both single- and dual-wavelength rectangular pulses increase. It was also found that each filtered wavelength of the dual-wavelength rectangular pulse corresponds to an individual nanosecond rectangular pulse by employing a tunable bandpass filter.

  1. Control of Pre-Tilt Angles of Liquid Crystal Molecules Using a Chemically Adsorbed Monomolecular Layer as an Alignment Film in Liquid Crystal Cells

    NASA Astrophysics Data System (ADS)

    Ogawa, Kazufumi; Ohtake, Tadashi; Nomura, Takaiki

    2002-11-01

    Photoaligned monomolecular layers containing two materials were formed to control pre-tilt angles (θp) of liquid crystal molecules for twisted nematic (TN) type liquid crystal displays (LCDs) by a chemical adsorption (CA) technique and a photoalignment technique. One was a new chlorosilane type surfactant, 4‧-(6-trichlorosilyloxyhexyloxy) chalcone (CO), having photopolymerizablity, and the other was a surfactant having a straight carbon chain (SC). Although we tried screening six different surfectants as an additive to CO, a surfactant having a long straight hydrocarbon chain (octadecyl-trichlorosilane: C18) was the most suitable for the TN type LCDs. By changing the molecular ratio of CO and C18, pre-tilt angles of liquid crystal molecules in a test liquid crystal (LC) cell could be controlled from 0 to 8° with perfect mono-domain alignment. When surfactants having short hydrocarbon chains and those having fluorocarbon chains were used, the quality of the TN type LC cells obtained was not good.

  2. Tilted Solar Panels

    Atmospheric Science Data Center

    2014-09-25

    ... from the monthly average insolation on a horizontal surface. Tilt angles are 0, latitude - 15, latitude, latitude + 15, 90, and the ... the monthly averaged maximum radiation.   Minimum radiation for equator-pointed tilted surfaces (kWh/m2/day) ...

  3. Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)

    2014-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.

  4. Peridynamic simulation of the effects of coatings, substrate properties, incident angle, and tilt on sand impact damage in transparent ceramic windows

    NASA Astrophysics Data System (ADS)

    Tune, Shanna; Schultz, Robert; Guven, Ibrahim; Zelinski, Brian J.

    2014-05-01

    The mechanical durability of the external electromagnetic window or dome of a sensor often limits the environments in which the sensor or seeker system can be deployed. More durable window and dome materials will allow platforms to fly longer and faster and sustain lower maintenance and replacement costs. Unfortunately, no good models exist for predicting the performance of window and dome materials under harsh erosion environments, especially when the aperture substrates are protected by advanced coating systems. Recently, Peridynamic (PD) models of sand impact damage have been shown to produce the same phenomenological damage as is observed experimentally in zinc sulfide (ZnS). This paper discusses improvements in the PD impact simulation model which now allow it to simulate coated substrates and non-parallel impact events (where the flat impactor face is no longer parallel to the substrate but tilted by some small impact angle.) Two different substrates are considered, one with the properties of ZnS and another which is twice as strong and stiff as ZnS. Finally, the variation in damage as a function of impact angle is discussed. These modeling results demonstrate the versatility of the peridynamic model of sand impact damage and its potential for identifying trade space and providing design guidance during the development of more durable apertures.

  5. Role of polarizer-tilting-angle in zero-field spin-transfer nano-oscillators with perpendicular anisotropy

    SciTech Connect

    Gonzalez-Fuentes, C.; Gallardo, R. A. Landeros, P.

    2015-10-05

    An analytical model for studying the stability of a single domain ferromagnetic layer under the influence of a spin-polarized current is presented. The theory is applied to bias-field-free nano-oscillators with perpendicular anisotropy, which allows to obtain a polarizer-angle vs. current phase diagram that describes the stability of magnetic states. Explicit formulae for the critical current densities unveil the influence of the relative orientation between free and polarizer layers, allowing the emergence of precessional steady-states, and also the possibility to reduce the magnitude of the threshold current density to produce microwave oscillations. It is shown that oscillating steady-states arise in a broad angular region, and the dependence of their boundaries is fully specified by the model. The reliability of the analytical results has been corroborated by comparison to numerical calculations. Such structures are currently under intense research because of remarkable properties offering new prospects for microwave applications in communication technologies.

  6. Orthogonally polarized bright-dark pulse pair generation in mode-locked fiber laser with a large-angle tilted fiber grating

    NASA Astrophysics Data System (ADS)

    Zhang, Zuxing; Mou, Chengbo; Yan, Zhijun; Sun, Zhongyuan; Zhang, Lin

    2016-06-01

    We report on the generation of orthogonally polarized bright-dark pulse pair in a passively mode-locked fiber laser with a large-angle tilted fiber grating (LA-TFG). The unique polarization properties of the LA-TFG, i.e., polarization-dependent loss and polarization-mode splitting, enable dual-wavelength mode-locking operation. Besides dual-wavelength bright pulses with uniform polarization at two different wavelengths, the bright-dark pulse pair has also been achieved. It is found that the bright-dark pulse pair is formed due to the nonlinear couplings between lights with two orthogonal polarizations and two different wavelengths. Furthermore, harmonic mode-locking of bright-dark pulse pair has been observed. The obtained bright-dark pulse pair could find potential use in secure communication system. It also paves the way to manipulate the generation of dark pulse in terms of wavelength and polarization, using specially designed fiber grating for mode-locking.

  7. Determination of basic friction angle using various laboratory tests.

    NASA Astrophysics Data System (ADS)

    Jang, Bo-An

    2016-04-01

    The basic friction angle of rock is an important factor of joint shear strength and is included within most shear strength criteria. It can be measured by direct shear test, triaxial compression test and tilt test. Tilt test is mostly used because it is the simplest method. However, basic friction angles measured using tilt test for same rock type or for one sample are widely distributed and often do not show normal distribution. In this research, the basic friction angles for the Hangdeung granite form Korea and Berea sandstone from USA are measured accurately using direct shear test and triaxial compression test. Then basic friction angles are again measured using tilt tests with various conditions and are compared with those measured using direct shear test and triaxial compression test to determine the optimum condition of tilt test. Three types of sliding planes, such as planes cut by saw and planes polished by #100 and #600 grinding powders, are prepared. When planes are polished by #100 grinding powder, the basic friction angles measured using direct shear test and triaxial compression test are very consistent and show narrow ranges. However, basic friction angles show wide ranges when planes are cut by saw and are polished by #600 grinding powder. The basic friction angle measured using tilt test are very close to those measured using direct shear test and triaxial compression test when plane is polished by #100 grinding powder. When planes are cut by saw and are polished by #600 grinding powder, basic friction angles measured using tilt test are slightly different. This indicates that tilt test with plane polished by #100 grinding powder can yield an accurate basic friction angle. In addition, the accurate values are obtained not only when planes are polished again after 10 times of tilt test, but values are averaged by more 30 times of tests.

  8. Transmission-grating-based wavefront tilt sensor.

    PubMed

    Iwata, Koichi; Fukuda, Hiroki; Moriwaki, Kousuke

    2009-07-10

    We propose a new type of tilt sensor. It consists of a grating and an image sensor. It detects the tilt of the collimated wavefront reflected from a plane mirror. Its principle is described and analyzed based on wave optics. Experimental results show its validity. Simulations of the ordinary autocollimator and the proposed tilt sensor show that the effect of noise on the measured angle is smaller for the latter. These results show a possibility of making a smaller and simpler tilt sensor.

  9. Ultraviolet fast-response photoelectric effect in tilted orientation SrTiO{sub 3} single crystals

    SciTech Connect

    Zhao Kun; Jin Kuijuan; Huang Yanhong; Zhao Songqing; Lu Huibin; He Meng; Chen Zhenghao; Zhou Yueliang; Yang Guozhen

    2006-10-23

    Ultraviolet photoelectricity based on the vicinal cut as-supplied SrTiO{sub 3} single crystals has been experimentally studied in the absence of an applied bias at room temperature. An open-circuit photovoltage of 130 ps rise time and 230 ps full width at half maximum was observed under the irradiation of a 355 nm pulsed laser of 25 ps in duration. The dependence of the photoelectric effect on the tilting angles was studied, and the optimum angle is 20.9 deg. . Seebeck effect is proposed to elucidate the tilting angle dependence of laser-induced photovoltage. This work demonstrates the potential of SrTiO{sub 3} single crystals in ultraviolet detection.

  10. Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series

    SciTech Connect

    Dahmen, Tim; Baudoin, Jean-Pierre G; Lupini, Andrew R; Kubel, Christian; Slusallek, Phillip; De Jonge, Niels

    2014-01-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  11. Tilted fuel cell apparatus

    DOEpatents

    Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.

    2005-04-12

    Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.

  12. Aeroelastic optimization of a composite tilt rotor

    NASA Astrophysics Data System (ADS)

    Soykasap, Omer

    Composite tilt rotor aeroelastic optimization is performed by using a published formulation of mixed variational exact intrinsic equations of motion for dynamics of beams along with a finite-state dynamic inflow theory for rotors. A composite box beam model is used to represent the principal load carrying member of the rotor blade. The blade is discretized using finite elements. Each wall used to model the box beam is made of laminated composite plies. For the optimization, design variables are blade twist, box width and height, horizontal and vertical wall thicknesses, the ply angles of the laminated walls and nonstructural masses. The rotor is optimized for the figure of merit in hover and the axial efficiency in forward flight while keeping the same thrust levels in both flight modes. Blade weight, autorotational inertia, geometry, and aeroelastic stability are considered as constraints. The feasible direction technique is used for optimization. The results are validated by earlier test results. A trim calculation procedure is added to the analysis to keep the desired values of the thrust. Sensitivities of the rotor performance to design variables are studied. The effect of structural couplings on rotor performance is studied. Of all the couplings extension-torsion is found to be the most effective parameter to improve the performance. The ply angles of the laminates are assumed to be the same over the span and through the thickness of walls. Such a model can be built by the filament winding technique and offers manufacturing ease. Isolated rotor stability is investigated for both flight regimes. Some values of elastic coupling result in isolated rotor instability. However, the optimized configuration was free of instability. Optimization results are presented for effects such as extension-torsion coupling, choice of layups, twist distribution, and cross-sectional geometry of the blade. Optimum designs are compared with XV-15 tilt rotor performance, which is

  13. Resolution enhancement in tilted coordinates

    NASA Astrophysics Data System (ADS)

    Hariri Naghadeh, Diako; Keith Morley, Christopher

    2016-11-01

    Deconvolution is applied to remove source wavelet effects from seismograms. The results are resolution enhancement that enables detection of thin layers. Following enhancement of resolution, low frequency and high angle reflectors, particularly at great depth, appear as low amplitude and semi-invisible reflectors that are difficult to track and pick. A new approach to enhance resolution is introduced that estimates a derivative using continuous wavelet transform in tilted coordinates. The results are compared with sparse spike deconvolution, curvelet deconvolution and inverse quality filtering in wavelet domain. The positive consequence of the new method is to increase sampling of high dip features by changing the coordinate system from Cartesian to tilted. To compare those methods a complex data set was chosen that includes high angle faults and chaotic mass transport complex. Image enhancement using curvelet deconvolution shows a chaotic system as a non-chaotic one. The results show that sparse spike deconvolution and inverse quality filtering in wavelet domain are able to enhance resolution more than curvelet deconvolution especially at great depth but it is impossible to follow steep dip reflectors after resolution enhancement using these methods, especially when their apparent dips are more than 45°. By estimating derivatives in a continuous wavelet transform from tilted data sets similar resolution enhancement as the other deconvolution methods is achieved but additionally steep dipping reflectors are imaged much better than others. Subtracted results of the enhanced resolution data set using new method and the other introduced methods show that steeply dipping reflectors are highlighted as a particular ability of the new method. The results show that high frequency recovery in Cartesian co-ordinate is accompanied by inability to image steeply dipping reflectors especially at great depths. Conversely recovery of high frequency data and imaging of the data

  14. Assessment of head tilt in young children with unilateral posterior crossbite by video recording.

    PubMed

    Bevilaqua-Grossi, Débora; Chaves, Thaís Cristina; Lovato, Margarete; de Oliveira, Anamaria Siriani; Regalo, Simone Cecílio Hallak

    2008-01-01

    14 children with unilateral posterior crossbites (PCB) participated in this study and 14 children with Angle's class I occlusion. Body posture analysis was made by a video recording technique. The results showed greater tilt in the angles of head tilt in PCB children when compared to neutral occlusion children. We also observed that head tilt followed the side of crossbite. Such results suggest that unilateral PCB could be related to the development of head tilt on the same side of the crossbite.

  15. Correcting the vertical component of ocean bottom seismometers for the effects of tilt and compliance

    NASA Astrophysics Data System (ADS)

    Bell, S. W.; Forsyth, D. W.

    2013-12-01

    constant, but we observe significant day-to-day variation in tilt angle, requiring the calculation of a tilt transfer function for each individual day for optimum removal of bottom current noise. In removing the compliance noise, there is some distortion of the signal. We show how to correct for this distortion using theoretical and empirical transfer functions between pressure and displacement records for seismic signals.

  16. Microwave Brightness Temperatures of Tilted Convective Systems

    NASA Technical Reports Server (NTRS)

    Hong, Ye; Haferman, Jeffrey L.; Olson, William S.; Kummerow, Christian D.

    1998-01-01

    Aircraft and ground-based radar data from the Tropical Ocean and Global Atmosphere Coupled-Ocean Atmosphere Response Experiment (TOGA COARE) show that convective systems are not always vertical. Instead, many are tilted from vertical. Satellite passive microwave radiometers observe the atmosphere at a viewing angle. For example, the Special Sensor Microwave/Imager (SSM/I) on Defense Meteorological Satellite Program (DMSP) satellites and the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) on the TRMM satellite have an incident angle of about 50deg. Thus, the brightness temperature measured from one direction of tilt may be different than that viewed from the opposite direction due to the different optical depth. This paper presents the investigation of passive microwave brightness temperatures of tilted convective systems. To account for the effect of tilt, a 3-D backward Monte Carlo radiative transfer model has been applied to a simple tilted cloud model and a dynamically evolving cloud model to derive the brightness temperature. The radiative transfer results indicate that brightness temperature varies when the viewing angle changes because of the different optical depth. The tilt increases the displacements between high 19 GHz brightness temperature (Tb(sub 19)) due to liquid emission from lower level of cloud and the low 85 GHz brightness temperature (Tb(sub 85)) due to ice scattering from upper level of cloud. As the resolution degrades, the difference of brightness temperature due to the change of viewing angle decreases dramatically. The dislocation between Tb(sub 19) and Tb(sub 85), however, remains prominent.

  17. Tilted ghost inflation

    SciTech Connect

    Senatore, Leonardo

    2005-02-15

    In a ghost inflationary scenario, we study the observational consequences of a tilt in the potential of the ghost condensate. We show how the presence of a tilt tends to make contact between the natural predictions of ghost inflation and the ones of slow roll inflation. In the case of positive tilt, we are able to build an inflationary model in which the Hubble constant H is growing with time. We compute the amplitude and the tilt of the two-point function, as well as the three-point function, for both cases of positive and negative tilt. We find that a good fraction of the parameter space of the model is within experimental reach.

  18. Tilt effects on GWR superconducting gravimeters

    NASA Astrophysics Data System (ADS)

    Riccardi, U.; Hinderer, J.; Boy, J.-P.; Rogister, Y.

    2009-12-01

    The superconducting gravimeters (SGs) are the most sensitive and stable gravity sensors currently available. The low drift and high sensitivity of these instruments allow to investigate several geophysical phenomena inducing small- and long-period gravity changes. In order to study such topics, any kind of disturbance of instrumental origin has to be identified and possibly modelled. A critical point in gravity measurement is the alignment of the gravimeter to the local vertical. In fact a tilt of the instrument will lead to an apparent gravity change and can affect the instrumental drift. To avoid these drawbacks, SGs are provided with an "active tilt feedback system" (ATFS) designed to keep the meter aligned to the vertical. We analyse tilt and environmental parameters collected near Strasbourg, France, since 1997 to study the source of the tilt changes and check the capability of the ATFS to compensate them. We also present the outcomes of a calibration test applied to the ATFS output to convert the Tilt Power signals into angles. We find that most of the observed signal has a thermal origin dominated by a strong annual component of about 200 μrad. Nevertheless, our analysis shows that even the tilt due to different geophysical phenomena, other than the thermal ones, can be detected. A clear tidal signal of about 0.05 μrad is detectable thanks to the large data stacking (>11 years). We conclude that (i) the ATFS device compensates the tilt having a thermal origin or coming from any sources and (ii) no significant tilt changes alter the gravity signal, except for the high frequency (>1 mHz) perturbations.

  19. Modelling of the UV Index on vertical and 40° tilted planes for different orientations.

    PubMed

    Serrano, D; Marín, M J; Utrillas, M P; Tena, F; Martínez-Lozano, J A

    2012-02-01

    In this study, estimated data of the UV Index on vertical planes are presented for the latitude of Valencia, Spain. For that purpose, the UVER values have been generated on vertical planes by means of four different geometrical models a) isotropic, b) Perez, c) Gueymard, d) Muneer, based on values of the global horizontal UVER and the diffuse horizontal UVER, measured experimentally. The UVER values, obtained by any model, overestimate the experimental values for all orientations, with the exception of the Perez model for the East plane. The results show statistical values of the MAD parameter (Mean Absolute Deviation) between 10% and 25%, the Perez model being the one that obtained a lower MAD for all levels. As for the statistic RMSD parameter (Root Mean Square Deviation), the results show values between 17% and 32%, and again the Perez model provides the best results in all vertical planes. The difference between the estimated UV Index and the experimental UV Index, for vertical and 40° tilted planes, was also calculated. 40° is an angle close to the latitude of Burjassot, Valencia, (39.5°), which, according to various studies, is the optimum angle to capture maximum radiation on tilted planes. We conclude that the models provide a good estimate of the UV Index, as they coincide or differ in one unit compared to the experimental values in 99% of cases, and this is valid for all orientations. Finally, we examined the relation between the UV Index on vertical and 40° tilted planes, both the experimental and estimated by the Perez model, and the experimental UV Index on a horizontal plane at 12 GMT. Based on the results, we can conclude that it is possible to estimate with a good approximation the UV Index on vertical and 40° tilted planes in different directions on the basis of the experimental horizontal UVI value, thus justifying the interest of this study. PMID:22193984

  20. Modelling of the UV Index on vertical and 40° tilted planes for different orientations.

    PubMed

    Serrano, D; Marín, M J; Utrillas, M P; Tena, F; Martínez-Lozano, J A

    2012-02-01

    In this study, estimated data of the UV Index on vertical planes are presented for the latitude of Valencia, Spain. For that purpose, the UVER values have been generated on vertical planes by means of four different geometrical models a) isotropic, b) Perez, c) Gueymard, d) Muneer, based on values of the global horizontal UVER and the diffuse horizontal UVER, measured experimentally. The UVER values, obtained by any model, overestimate the experimental values for all orientations, with the exception of the Perez model for the East plane. The results show statistical values of the MAD parameter (Mean Absolute Deviation) between 10% and 25%, the Perez model being the one that obtained a lower MAD for all levels. As for the statistic RMSD parameter (Root Mean Square Deviation), the results show values between 17% and 32%, and again the Perez model provides the best results in all vertical planes. The difference between the estimated UV Index and the experimental UV Index, for vertical and 40° tilted planes, was also calculated. 40° is an angle close to the latitude of Burjassot, Valencia, (39.5°), which, according to various studies, is the optimum angle to capture maximum radiation on tilted planes. We conclude that the models provide a good estimate of the UV Index, as they coincide or differ in one unit compared to the experimental values in 99% of cases, and this is valid for all orientations. Finally, we examined the relation between the UV Index on vertical and 40° tilted planes, both the experimental and estimated by the Perez model, and the experimental UV Index on a horizontal plane at 12 GMT. Based on the results, we can conclude that it is possible to estimate with a good approximation the UV Index on vertical and 40° tilted planes in different directions on the basis of the experimental horizontal UVI value, thus justifying the interest of this study.

  1. Head tilt during driving.

    PubMed

    Zikovitz, D C; Harris, L R

    1999-05-01

    In order to distinguish between the use of visual and gravito-inertial force reference frames, the head tilt of drivers and passengers were measured as they went around corners at various speeds. The visual curvature of the corners were thus dissociated from the magnitude of the centripetal forces (0.30-0.77 g). Drivers' head tilts were highly correlated with the visually-available estimate of the curvature of the road (r2=0.86) but not with the centripetal force (r2<0.1). Passengers' head tilts were inversely correlated with the lateral forces (r2=0.3-0.7) and seem to reflect a passive sway. The strong correlation of the tilt of drivers' heads with a visual aspect of the road ahead, supports the use of a predominantly visual reference frame for the driving task. PMID:10722313

  2. Regional tilt patterns of Late Cenozoic basin-range fault blocks, western United States.

    USGS Publications Warehouse

    Stewart, John H.

    1980-01-01

    The pattern of tilt domains is characterized by transverse zones or boundaries, parallel to the extension direction, and by antiformal (tilts away from) and synformal (tilts toward) boundaries at right angles to the extension direction. Tilting of ranges averages about 15o to 20o in Nevada and Utah and indicates extension of about 20% to 30% for the entire Great Basin region. -from Author

  3. Combined scanning transmission electron microscopy tilt- and focal series.

    PubMed

    Dahmen, Tim; Baudoin, Jean-Pierre; Lupini, Andrew R; Kübel, Christian; Slusallek, Philipp; de Jonge, Niels

    2014-04-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt-focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller "missing wedge" artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  4. Fabrication and Characterization of Tilted Fiber Optic Bragg Grating Filters over Various Wavelengths

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Jackson, Kurt V.; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber Optic Bragg Grating taps are fabricated and characterized at various wavelengths using a modified Talbot interferometric technique. Gratings are fabricated by tilting the photosensitive fiber to angles up to 45 degrees w.r.t. the writing angle. Diffraction characteristics of the tilted grating is monitored in first and second orders.

  5. Tilt sensitivity of the two-grating interferometer

    SciTech Connect

    Anderson, Christopher N.; Naulleau, Patrick P.

    2008-01-30

    Fringe formation in the two-grating interferometer is analyzed in the presence of a small parallelism error between the diffraction gratings assumed in the direction of grating shear. Our analysis shows that with partially coherent illumination, fringe contrast in the interference plane is reduced in the presence of nonzero grating tilt with the effect proportional to the grating tilt angle and the grating spatial frequencies. Our analysis also shows that for a given angle between the gratings there is an angle between the final grating and the interference plane that optimizes fringe contrast across the field.

  6. How do visual and postural cues combine for self-tilt perception during slow pitch rotations?

    PubMed

    Scotto Di Cesare, C; Buloup, F; Mestre, D R; Bringoux, L

    2014-11-01

    Self-orientation perception relies on the integration of multiple sensory inputs which convey spatially-related visual and postural cues. In the present study, an experimental set-up was used to tilt the body and/or the visual scene to investigate how these postural and visual cues are integrated for self-tilt perception (the subjective sensation of being tilted). Participants were required to repeatedly rate a confidence level for self-tilt perception during slow (0.05°·s(-1)) body and/or visual scene pitch tilts up to 19° relative to vertical. Concurrently, subjects also had to perform arm reaching movements toward a body-fixed target at certain specific angles of tilt. While performance of a concurrent motor task did not influence the main perceptual task, self-tilt detection did vary according to the visuo-postural stimuli. Slow forward or backward tilts of the visual scene alone did not induce a marked sensation of self-tilt contrary to actual body tilt. However, combined body and visual scene tilt influenced self-tilt perception more strongly, although this effect was dependent on the direction of visual scene tilt: only a forward visual scene tilt combined with a forward body tilt facilitated self-tilt detection. In such a case, visual scene tilt did not seem to induce vection but rather may have produced a deviation of the perceived orientation of the longitudinal body axis in the forward direction, which may have lowered the self-tilt detection threshold during actual forward body tilt. PMID:25299446

  7. Tilt rotor hover aeroacoustics

    NASA Technical Reports Server (NTRS)

    Coffen, Charles David

    1992-01-01

    The methodology, results, and conclusions of a study of tilt rotor hover aeroacoustics and aerodynamics are presented. Flow visualization and hot wire velocity measurement were performed on a 1/12-scale model of the XV-15 Tilt Rotor Aircraft in hover. The wing and fuselage below the rotor cause a complex recirculating flow. Results indicate the physical dimensions and details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Discrete frequency harmonic thickness and the loading noise mechanism were predicted using WOPWOP for the standard metal blades and the Advanced Technology Blades. The recirculating flow created by the wing below the rotor is a primary sound mechanism for a hovering tilt rotor. The effects of dynamic blade response should be included for fountain flow conditions which produce impulsive blade loading. Broadband noise mechanisms were studied using Amiet's method with azimuthally varying turbulence characteristics derived from the measurements. The recirculating fountain flow with high turbulence levels in the recirculating zone is the dominant source of broadband noise for a hovering rotor. It is shown that tilt rotor hover aeroacoustic noise mechanisms are now understood. Noise predictions can be made based on reasonably accurate aerodynamic models developed here.

  8. Optimum propeller wind turbines

    NASA Astrophysics Data System (ADS)

    Sanderson, R. J.; Archer, R. D.

    1983-12-01

    The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different 'optimum' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

  9. Inverse solutions for tilting orthogonal double prisms.

    PubMed

    Li, Anhu; Ding, Ye; Bian, Yongming; Liu, Liren

    2014-06-10

    An analytical reverse solution and actual examples are given to show how to direct a laser beam from a pair of orthogonal prisms to given targets in free space. Considering the influences of double-prism structural parameters, a lookup table method to seek the numerical reverse solution of each prism's tilting angle is also proposed for steering the double-prism orientation to track a target position located in the near field. Some case studies, as well as a specified elliptical target trajectory scanned by the cam-based driving double prisms, exhibit the significant application values of the theoretical derivation. The analytic reverse and numerical solutions can be generalized to investigate the synthesis of scanning patterns and the controlling strategy of double-prism tilting motion, the potentials of which can be explored to perform the orientation and position tracking functions in applications of precision engineering fields.

  10. Tilted string cosmologies

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-04-01

    Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.

  11. Perception of self-tilt in a true and illusory vertical plane

    NASA Technical Reports Server (NTRS)

    Groen, Eric L.; Jenkin, Heather L.; Howard, Ian P.; Oman, C. M. (Principal Investigator)

    2002-01-01

    A tilted furnished room can induce strong visual reorientation illusions in stationary subjects. Supine subjects may perceive themselves upright when the room is tilted 90 degrees so that the visual polarity axis is kept aligned with the subject. This 'upright illusion' was used to induce roll tilt in a truly horizontal, but perceptually vertical, plane. A semistatic tilt profile was applied, in which the tilt angle gradually changed from 0 degrees to 90 degrees, and vice versa. This method produced larger illusory self-tilt than usually found with static tilt of a visual scene. Ten subjects indicated self-tilt by setting a tactile rod to perceived vertical. Six of them experienced the upright illusion and indicated illusory self-tilt with an average gain of about 0.5. This value is smaller than with true self-tilt (0.8), but comparable to the gain of visually induced self-tilt in erect subjects. Apparently, the contribution of nonvisual cues to gravity was independent of the subject's orientation to gravity itself. It therefore seems that the gain of visually induced self-tilt is smaller because of lacking, rather than conflicting, nonvisual cues. A vector analysis is used to discuss the results in terms of relative sensory weightings.

  12. Dynamics of tilted cylindrical geometry

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Sadiq, Sobia

    2016-09-01

    In this paper, we study the dynamics of tilted cylindrical model with imperfect matter distribution. We formulate the field equations and develop relations between tilted and non-tilted variables. We evaluate kinematical as well as dynamical quantities and discuss the inhomogeneity factor. We also obtain the Raychaudhuri equation to study evolution of expansion scalar. The solutions of field equations are also investigated for static cylinder under isotropy and conformally flat condition. Finally, we analyze some thermoinertial aspects of the system.

  13. The use of specimen tilt in transmission electron microscopy of the central nervous system.

    PubMed

    Milroy, A M; Ralston, D D

    1988-09-01

    Thin sections of nervous tissue were viewed at different tilt angles using a transmission electron microscope equipped with a eucentric goniometer stage. In a comparison study of various degrees of tilt, one can observe additional morphological features within synaptic profiles, define subsynaptic structures such as Taxi-bodies, and clearly see the crystalline formation of cytochemical tracers. This study demonstrates the value of tilting thin-sections in the analysis of synapses and other biological material at the ultrastructural level. PMID:3193243

  14. Aberration and boresight error correction for conformal aircraft windows using the inner window surface and tilted fixed correctors.

    PubMed

    Zhao, Chunzhu; Cui, Qingfeng; Mao, Shan

    2016-04-01

    A static solution to aberrations and boresight error for tilted conformal aircraft windows at different look angles is reported. The solution uses the inner window surface to correct the window aberrations at a 0° look angle and uses fixed correctors behind the window to correct the residual window aberrations at other look angles. Then, the boresight error for the window at different look angles is corrected by tilting the fixed correctors. The principle of the solution is discussed, and a design example shows that the solution is effective in correcting the aberrations and boresight error for a tilted conformal aircraft window at different look angles.

  15. Human perceptual overestimation of whole body roll tilt in hypergravity

    PubMed Central

    Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2014-01-01

    Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally. PMID:25540216

  16. Method to fabricate a tilted logpile photonic crystal

    DOEpatents

    Williams, John D.; Sweatt, William C.

    2010-10-26

    A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.

  17. Tilt compensated MOEMS projector as input device

    NASA Astrophysics Data System (ADS)

    Grüger, Heinrich; Heberer, Andreas; Gerwig, Christian; Nauber, Petra; Scholles, Michael; Lakner, Hubert

    2007-02-01

    Silicon micro machining once headed into two directions: MEMS (micro electro mechanical systems) based sensors like accelerometers and gyroscopes on the one hand, MOEMS (micro opto electro mechanical systems) based actuators like scanner mirrors on the other hand. Now both directions meet again: A tilt compensated projector module uses a two dimensional excited scanner mirror as well as accelerometers and gyroscopes. The projector module can have a minimum size of 30 x 15 x 15 mm 3 with a monochrome red laser source (λ = 635 nm). It reaches a resolution of 640 x 480 pixels (VGA) and a frame rate of 50fps. Colour projection requires lager size due to the lack of compact green laser sources. The tilt and roll angles are measured statically by a three axes accelerometer, fast movement is detected dynamically by three single axis gyroscopes. Thus tilt of the projection systems was compensated successfully. The dynamic range was set to 300 x 300 pixels for sufficient system dynamic. Furthermore the motion detection was used to achieve control and input device functions. The first demonstration and test system consists of a projector mounted at the axis of a PC racing wheel together with the additional inertial measurement unit (IMU) system. It was shown that projection and input function work well together. Using this approach, new possibilities for hand-held devices arise in the close future.

  18. Optimum Cassegrain baffle systems.

    PubMed

    Hales, W L

    1992-09-01

    Formulas are developed for the precise calculation of optimum stray-light baffles for Cassegrain optical systems, including systems having extreme optical curvatures such as those in infrared missile guidance systems. Minimum diffraction and maximum optical efficiency are the primary considerations.

  19. Tilted dipole model for bias-dependent photoluminescence pattern

    NASA Astrophysics Data System (ADS)

    Fujieda, Ichiro; Suzuki, Daisuke; Masuda, Taishi

    2014-12-01

    In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5 wt. % coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission.

  20. Tilted dipole model for bias-dependent photoluminescence pattern

    SciTech Connect

    Fujieda, Ichiro Suzuki, Daisuke; Masuda, Taishi

    2014-12-14

    In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5 wt. % coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission.

  1. An optimum world population.

    PubMed

    Willey, D

    2000-01-01

    The optimum population of the world is the one that is most likely to make the option of a good quality of life available to everyone everywhere, both now and in the future. Establishing a consensus about the size of such a population would be an important step towards achieving it. Estimates of an optimum involve three main steps. First, estimate the maximum (carrying capacity) assuming a specified lifestyle. The main criteria are the maintenance of biodiversity, the availability of freshwater, and the availability of land--for agriculture, forestry and artificial systems but above all for the conversion of energy. (In applying the criteria, there are always two questions to ask: 'What is the maximum amount of consumption that the biosphere can stand?' and 'What is an adequate share of such consumption per person?') Second, convert the maximum (two to three billion) into an optimum by applying a far wider range of criteria, including personal liberty, mobility, recreation and political representation. Third, consider just two criteria (economies of scale and technological innovation) in order to ensure that the optimum (one to two billion) has not fallen below the minimum (half to one billion). The estimates are so low because of the need for a huge increase in median per capita consumption if everyone is to have the option of an adequate material standard of living. Opinion-formers are likely not to take much notice of such estimates, but it is probable that minds will be concentrated by an energy shock some time during the next decade. Achieving an optimum world population will not solve the world's major problems, but it would make them solvable. PMID:10824524

  2. Method for Determining Optimum Injector Inlet Geometry

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, W. Neill (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  3. Tilt angular anisoplanatism and a full-aperture tilt-measurement technique with a laser guide star.

    PubMed

    Belen'kii, M S

    2000-11-20

    A method is presented for sensing atmospheric wave-front tilt from a laser guide star (LGS) by observing a laser beacon with auxiliary telescopes. The analysis is performed with a LGS scatter model and Zernike polynomial expansion of wave-front distortions. It is shown that integration of the LGS image over its angular extent and the position of the auxiliary telescope in an array reduce the tilt sensing error associated with the contribution from the downward path. This allows us to single out only the wave-front tilt of the transmitted beam on the uplink path that corresponds to the tilt for the scientific object. The tilt angular correlation is analyzed in the atmosphere with a finite turbulence outer scale. The tilt correlation angle depends on the angular size of the telescope and the outer scale of turbulence. The tilt sensing error increases with the auxiliary telescope diameter, suggesting that an auxiliary telescope must be small. The Strehl ratio associated with the contribution from the downward path is in the range from 0.1 to 0.9 when the relative telescope diameter D/r(0) varies from 4 to 93 and the turbulence outer scale is in the 10-150-m range. Tilt correction increases the Strehl ratio compared with the uncorrected image for all the system parameters and seeing conditions considered. The method discussed gives a higher performance than the conventional technique, which uses an off-axis natural guide star. A scheme for measuring tilt with a beam projected from a small aperture is described. This scheme allows us to avoid phosphorescence of the main optical train for a sodium LGS.

  4. Variable tilt on lipid membranes

    PubMed Central

    Rangamani, P.; Steigmann, D. J.

    2014-01-01

    A continuum theory for lipid membranes is developed that accounts for mechanical interactions between lipid tilt and membrane shape. For planar membranes, a linear version of the theory is used to predict tilt variations similar to those observed in experiments and molecular dynamics simulations. PMID:25484606

  5. Tilts in strong ground motion

    USGS Publications Warehouse

    Graizer, V.

    2006-01-01

    Most instruments used in seismological practice to record ground motion are pendulum seismographs, velocigraphs, or accelerographs. In most cases it is assumed that seismic instruments are only sensitive to the translational motion of the instrument's base. In this study the full equation of pendulum motion, including the inputs of rotations and tilts, is considered. It is shown that tilting the accelerograph's base can severely impact its response to the ground motion. The method of tilt evaluation using uncorrected strong-motion accelerograms was first suggested by Graizer (1989), and later tested in several laboratory experiments with different strong-motion instruments. The method is based on the difference in the tilt sensitivity of the horizontal and vertical pendulums. The method was applied to many of the strongest records of the Mw 6.7 Northridge earthquake of 1994. Examples are shown when relatively large tilts of up to a few degrees occurred during strong earthquake ground motion. Residual tilt extracted from the strong-motion record at the Pacoima Dam-Upper Left Abutment reached 3.1?? in N45??E direction, and was a result of local earthquake-induced tilting due to high-amplitude shaking. This value is in agreement with the residual tilt measured by using electronic level a few days after the earthquake. The method was applied to the building records from the Northridge earthquake. According to the estimates, residual tilt reached 2.6?? on the ground floor of the 12-story Hotel in Ventura. Processing of most of the strongest records of the Northridge earthquake shows that tilts, if happened, were within the error of the method, or less than about 0.5??.

  6. Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter

    SciTech Connect

    Meot, F.; Huang, H.

    2015-06-15

    A possible origin of a 14 deg y-normal spin n0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.

  7. Optimum connection management scheduling

    NASA Astrophysics Data System (ADS)

    Kadar, Ivan

    2000-08-01

    Connection Management plays a key role in both distributed 'local' network-centric and 'globally' connected info- centric systems. The role of Connection Management is to provide seamless demand-based sharing of the information products. For optimum distributed information fusion performance, these systems must minimize communications delays and maximize message throughput, and at the same time take into account relative-sensors-targets geometrical constraints and data pedigree. In order to achieve overall distributed 'network' effectiveness, these systems must be adaptive, and be able to distribute data s needed in real- time. A system concept will be described which provides optimum capacity-based information scheduling. A specific example, based on a satellite channel, is used to illustrate simulated performance results and their effects on fusion systems performance.

  8. The effects of gantry tilt on breast dose and image noise in cardiac CT

    SciTech Connect

    Hoppe, Michael E.; Gandhi, Diksha; Schmidt, Taly Gilat; Stevens, Grant M.; Foley, W. Dennis

    2013-12-15

    Purpose: This study investigated the effects of tilted-gantry acquisition on image noise and glandular breast dose in females during cardiac computed tomography (CT) scans. Reducing the dose to glandular breast tissue is important due to its high radiosensitivity and limited diagnostic significance in cardiac CT scans.Methods: Tilted-gantry acquisition was investigated through computer simulations and experimental measurements. Upon IRB approval, eight voxelized phantoms were constructed from previously acquired cardiac CT datasets. Monte Carlo simulations quantified the dose deposited in glandular breast tissue over a range of tilt angles. The effects of tilted-gantry acquisition on breast dose were measured on a clinical CT scanner (CT750HD, GE Healthcare) using an anthropomorphic phantom with MOSFET dosimeters in the breast regions. In both simulations and experiments, scans were performed at gantry tilt angles of 0°–30°, in 5° increments. The percent change in breast dose was calculated relative to the nontilted scan for all tilt angles. The percent change in noise standard deviation due to gantry tilt was calculated in all reconstructed simulated and experimental images.Results: Tilting the gantry reduced the breast dose in all simulated and experimental phantoms, with generally greater dose reduction at increased gantry tilts. For example, at 30° gantry tilt, the dosimeters located in the superior, middle, and inferior breast regions measured dose reductions of 74%, 61%, and 9%, respectively. The simulations estimated 0%–30% total breast dose reduction across the eight phantoms and range of tilt angles. However, tilted-gantry acquisition also increased the noise standard deviation in the simulated phantoms by 2%–50% due to increased pathlength through the iodine-filled heart. The experimental phantom, which did not contain iodine in the blood, demonstrated decreased breast dose and decreased noise at all gantry tilt angles.Conclusions: Tilting the

  9. Tilt control in optical tweezers.

    PubMed

    Ichikawa, Masatoshi; Kubo, Koji; Yoshikawa, Kenichi; Kimura, Yasuyuki

    2008-01-01

    Laser trapping of micrometer-sized objects floating in water is investigated through the use of a tilted laser beam. With a change in the tilt direction, the orientation of the trapped object can be easily controlled when the object has an asymmetric body or nonuniform refractive index, such as nanowires, living cells, and so on. The method enables efficient orientation control under laser trapping through a simple setup. This method for tilt control may be useful for high-performance laser trapping in bioengineering and microsurgery in single living cells.

  10. A Search for Coriolis Forces Acting on Tilt in Bipolar Active Regions

    NASA Astrophysics Data System (ADS)

    McClintock, B. H.

    2013-12-01

    Bipolar active regions tend to be tilted with respect to the East - West equator of the Sun in accordance with Joy's law that describes the average tilt angle as a function of latitude. As individual bipolar active regions emerge, tilt angles vary with time. Data collected by the Helioseismic and Magnetic Imager aboard the Solar Dynamic Observatory at a higher cadence than previous data allow for a more continuous analysis of emerging regions over their lifetimes. It is theorized that rising magnetic flux-tubes, which emerge as active regions on the surface, are tilted by Coriolis forces acting on the retrograde flow inside the tubes. We will search for and measure any decrease in tilt near the end of emergence, as an indicator of Coriolis forces ending.

  11. Modeling impurities and tilted plates in the ITER divertor

    SciTech Connect

    Rensink, M.E.; Rognlien, T.D.

    1996-07-29

    The UEDGE 2-D edge transport code is used to model the effect of impurities and tilted divertor plates for the ITER SOL/divertor region. The impurities are modeled as individual charge states using either the FMOMBAL 21-moment description or parallel force balance. Both helium and neon impurities are used together with a majority hydrogenic species. A fluid description of the neutrals is used that includes parallel inertia and neutral-neutral collisions. Effects of geometry are analyzed by using the nonorthogonal mesh capability of UEDGE to obtain solutions with the divertor plate tilted at various angles.

  12. Mass flow rate of granular material flowing from tilted bins

    NASA Astrophysics Data System (ADS)

    Klapp, Jaime; Medina, Abraham; Torres Victoria, Ayax Hernando; Peralta Lopez, Salomon

    2015-11-01

    We report experiments performed to describe the behavior of the experimental mass flow rate of cohesionless granular material, Mβexpt', through circular orifices of diameter D made on sidewalls of tilted bins. In such experiments, the influence of the wall thickness of the bin, w, and the tilt angle respect to the vertical, β, were also regarded. The experimental measurements, using beach sand and granulated sugar, yield a linear correlation among Mβexpt' and a theoretical piecewise correlation of the mass flow rate, Mβ',which is valid for the overall range of values of β. Numerical simulation will be also a discussed.

  13. A tilt-pair based method for assigning the projection directions of randomly oriented single-particle molecules.

    PubMed

    Ueno, Yutaka; Mine, Shouhei; Kawasaki, Kazunori

    2015-04-01

    In this article, we describe an improved method to assign the projection angle for averaged images using tilt-pair images for three-dimensional reconstructions from randomly oriented single-particle molecular images. Our study addressed the so-called 'initial volume problem' in the single-particle reconstruction, which involves estimation of projection angles of the particle images. The projected images of the particles in different tilt observations were mixed and averaged for the characteristic views. After the ranking of these group average images in terms of reliable tilt angle information, mutual tilt angles between images are assigned from the constituent tilt-pair information. Then, multiples of the conical tilt series are made and merged to construct a network graph of the particle images in terms of projection angles, which are optimized for the three-dimensional reconstruction. We developed the method with images of a synthetic object and applied it to a single-particle image data set of the purified deacetylase from archaea. With the introduction of low-angle tilt observations to minimize unfavorable imaging conditions due to tilting, the results demonstrated reasonable reconstruction models without imposing symmetry to the structure. This method also guides its users to discriminate particle images of different conformational state of the molecule.

  14. Optimum hovering wing planform.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2016-10-01

    Theoretical analysis is used to identify the optimum wing planform of a flapping/revolving wing in hover. This solution is of interest as a benchmark to which hovering wing geometries driven by broader multidisciplinary evolutionary or engineering constraints can be compared. Furthermore, useful insights into the aerodynamic performance of untwisted hovering wings are delivered. It is shown that profile power is minimised by using an untwisted elliptical planform whereas induced power is minimised by a more highly tapered planform similar to that of a hummingbird. PMID:27329340

  15. What is Optimum Variability?

    PubMed

    Schuldberg, David

    2015-10-01

    Guastello (2015a) opened the call for articles for this issue with Goldberger (1991) and colleagues' findings of chaotic variability in healthy heart rate, noting, 'the principle of healthy variability has extended to other biomedical and psychological phenomena.' He suggests a dialectical underpinning for optimal variability involving 'a combination of the minimum entropy or free energy principle that pushes in a downward direction, and Ashby's Law of Requisite Variety that pushes in an upward direction.' Each of the papers in this issue addresses optimal variability across a variety of health-related areas. The present article surveys these seven papers in relation to five conceptual questions about optimal variability: (a) Is variability a positive or a negative, and how are positive things related to health? (b) How shall we define and measure variability? (c) What constitutes an optimum, and how do we locate one? (d) What is the relationship between optimum variability and health? Finally, it touches on (e) What are underlying principles and phenomena behind healthy variability, and can they inform our vocabulary for health? The paper concludes by discussing practical approaches to dealing with optimization. PMID:26375940

  16. Reverse time migration in tilted transversely isotropic media

    SciTech Connect

    Zhang, Linbing; Rector III, James W.; Hoversten, G. Michael

    2004-07-01

    This paper presents a reverse time migration (RTM) method for the migration of shot records in tilted transversely isotropic (TTI) media. It is based on the tilted TI acoustic wave equation that was derived from the dispersion relation. The RTM is a full depth migration allowing for velocity to vary laterally as well as vertically and has no dip limitations. The wave equation is solved by a tenth-order finite difference scheme. Using 2D numerical models, we demonstrate that ignoring the tilt angle will introduce both lateral and vertical shifts in imaging. The shifts can be larger than 0.5 wavelength in the vertical direction and 1.5 wavelength in the lateral direction.

  17. Angle-specific transparent conducting electrodes with metallic gratings

    SciTech Connect

    Rivolta, N. X. A. Maes, B.

    2014-08-07

    Transparent conducting electrodes, which are not made from indium tin oxide, and which display a strong angular dependence are useful for various technologies. Here, we introduce a tilted silver grating that combines a large conductance with a strong and angle-specific transmittance. When the light incidence angle matches the tilt angle of the grating, transmittance is close to the maximum along a very broadband range. We explain the behavior through simulations that show in detail the plasmonic and interference effects at play.

  18. High tilt susceptibility of the Scintrex CG-5 relative gravimeters

    NASA Astrophysics Data System (ADS)

    Reudink, R.; Klees, R.; Francis, O.; Kusche, J.; Schlesinger, R.; Shabanloui, A.; Sneeuw, N.; Timmen, L.

    2014-06-01

    We report on the susceptibility of the Scintrex CG-5 relative gravimeters to tilting, that is the tendency of the instrument of providing incorrect readings after being tilted (even by small angles) for a moderate period of time. Tilting of the instrument can occur when in transit between sites usually on the backseat of a car even using the specially designed transport case. Based on a series of experiments with different instruments, we demonstrate that the readings may be offset by tens of Gal. In addition, it may take hours before the first reliable readings can be taken, with the actual time depending on how long the instrument had been tilted. This sensitivity to tilt in combination with the long time required for the instrument to provide reliable readings has not yet been reported in the literature and is not addressed adequately in the Scintrex CG-5 user manual. In particular, the inadequate instrument state cannot easily be detected by checking the readings during the observation or by reviewing the final data before leaving a site, precautions suggested by Scintrex Ltd. In regional surveys with car transportation over periods of tens of minutes to hours, the gravity measurements can be degraded by some 10 Gal. To obtain high-quality results in line with the CG-5 specifications, the gravimeters must remain in upright position to within a few degrees during transits. This requirement may often be unrealistic during field observations, particularly when observing in hilly terrain or when walking with the instrument in a backpack.

  19. Conservative GRMHD simulations of moderately thin, tilted accretion disks

    SciTech Connect

    Teixeira, Danilo Morales; Fragile, P. Chris; Zhuravlev, Viacheslav V.; Ivanov, Pavel B.

    2014-12-01

    This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work, we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for both prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bardeen-Petterson alignment for prograde disks may be rather small, only including very thin disks. Unlike our previous work, we find no evidence for standing shocks in our simulated tilted disks. We ascribe this to the black hole spin, tilt angle, and disk scale height all being small in these simulations. We also add to the growing body of literature pointing out that the turbulence driven by the magnetorotational instability in global simulations of accretion disks is not isotropic. Finally, we provide a comparison between our moderately thin, untilted reference simulation and other numerical simulations of thin disks in the literature.

  20. The Application of Normal Stress Reduction Function in Tilt Tests for Different Block Shapes

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hyun; Gratchev, Ivan; Hein, Maw; Balasubramaniam, Arumugam

    2016-08-01

    This paper focuses on the influence of the shapes of rock cores, which control the sliding or toppling behaviours in tilt tests for the estimation of rock joint roughness coefficients (JRC). When the JRC values are estimated by performing tilt tests, the values are directly proportional to the basic friction of the rock material and the applied normal stress on the sliding planes. Normal stress obviously varies with the shape of the sliding block, and the basic friction angle is also affected by the sample shapes in tilt tests. In this study, the shapes of core blocks are classified into three representative shapes and those are created using plaster. Using the various shaped artificial cores, a set of tilt tests is carried out to identify the shape influences on the normal stress and the basic friction angle in tilt tests. The test results propose a normal stress reduction function to estimate the normal stress for tilt tests according to the sample shapes based on Barton's empirical equation. The proposed normal stress reduction functions are verified by tilt tests using artificial plaster joints and real rock joint sets. The plaster joint sets are well matched and cast in detailed printed moulds using a 3D printing technique. With the application of the functions, the obtained JRC values from the tilt tests using the plaster samples and the natural rock samples are distributed within a reasonable JRC range when compared with the measured values.

  1. 2D tilting MEMS micro mirror integrating a piezoresistive sensor position feedback

    NASA Astrophysics Data System (ADS)

    Lani, S.; Bayat, D.; Despont, M.

    2015-02-01

    An integrated position sensor for a dual-axis electromagnetic tilting mirror is presented. This tilting mirror is composed of a silicon based mirror directly assembled on a silicon membrane supported by flexible beams. The position sensors are constituted by 4 Wheatstone bridges of piezoresistors which are fabricated by doping locally the flexible beams. A permanent magnet is attached to the membrane and the scanner is mounted above planar coils deposited on a ceramic substrate to achieve electromagnetic actuation. The performances of the piezoresistive sensors are evaluated by measuring the output signal of the piezoresistors as a function of the tilt of the mirror and the temperature. White light interferometry was performed for all measurement to measure the exact tilt angle. The minimum detectable angle with such sensors was 30µrad (around 13bits) in the range of the minimum resolution of the interferometer. The tilt reproducibility was 0.0186%, obtained by measuring the tilt after repeated actuations with a coil current of 50mA during 30 min and the stability over time was 0.05% in 1h without actuation. The maximum measured tilt angle was 6° (mechanical) limited by nonlinearity of the MEMS system.

  2. Web server for tilt-pair validation of single particle maps from electron cryomicroscopy.

    PubMed

    Wasilewski, Sebastian; Rosenthal, Peter B

    2014-04-01

    Three-dimensional structures of biological assemblies may be calculated from images of single particles obtained by electron cryomicroscopy. A key step is the correct determination of the orientation of the particle in individual image projections. A useful tool for validation of the quality of a 3D map and its consistency with images is tilt-pair analysis. In a successful tilt-pair test, the relative angle between orientations assigned to each image of a tilt-pair agrees with the known relative rotation angle of the microscope specimen holder during the experiment. To make the procedure easy to apply to the increasing number of single particle maps, we have developed software and a web server for tilt-pair analysis. The tilt-pair analysis program reports the overall agreement of the assigned orientations with the known tilt angle and axis of the experiment and the distribution of tilt transformations for individual particles recorded in a single image field. We illustrate application of the validation tool to several single particle specimens and describe how to interpret the scores.

  3. Crystal lattice tilting in prismatic calcite.

    PubMed

    Olson, Ian C; Metzler, Rebecca A; Tamura, Nobumichi; Kunz, Martin; Killian, Christopher E; Gilbert, Pupa U P A

    2013-08-01

    We analyzed the calcitic prismatic layers in Atrina rigida (Ar), Haliotis iris (Hi), Haliotis laevigata (HL), Haliotis rufescens (Hrf), Mytilus californianus (Mc), Pinctada fucata (Pf), Pinctada margaritifera (Pm) shells, and the aragonitic prismatic layer in the Nautilus pompilius (Np) shell. Dramatic structural differences were observed across species, with 100-μm wide single-crystalline prisms in Hi, HL and Hrf, 1-μm wide needle-shaped calcite prisms in Mc, 1-μm wide spherulitic aragonite prisms in Np, 20-μm wide single-crystalline calcite prisms in Ar, and 20-μm wide polycrystalline calcite prisms in Pf and Pm. The calcite prisms in Pf and Pm are subdivided into sub-prismatic domains of orientations, and within each of these domains the calcite crystal lattice tilts gradually over long distances, on the order of 100 μm, with an angle spread of crystal orientation of 10-20°. Furthermore, prisms in Pf and Pm are harder than in any other calcite prisms analyzed, their nanoparticles are smaller, and the angle spread is strongly correlated with hardness in all shells that form calcitic prismatic layers. One can hypothesize a causal relationship of these correlated parameters: greater angle spread may confer greater hardness and resistance to wear, thus providing Pf and Pm with a structural advantage in their environment. This is the first structure-property relationship thus far hypothesized in mollusk shell prisms.

  4. Balance prosthesis based on micromechanical sensors using vibrotactile feedback of tilt.

    PubMed

    Wall, C; Weinberg, M S; Schmidt, P B; Krebs, D E

    2001-10-01

    A prototype balance prosthesis has been made using miniature, high-performance inertial sensors to measure lateral head tilt and vibrotactile elements mounted on the body to display head tilt to the user. The device has been used to study the feasibility of providing artificial feedback of head tilt to reduce postural sway during quiet standing using six healthy subjects. Two vibrotactile display schemes were used: one in which the individual vibrating elements, called tactors, were placed on the shoulders (shoulder tactors); another in which columns of tactors were placed on the right and left sides of the trunk (side tactors). Root-mean-square head-tilt angle (Tilt) and center of pressure displacement (Sway) were measured for normal subjects standing in a semi-tandem Romberg position with eyes closed, under four conditions: no balance aids; shoulder tactors; side tactors; and light touch. Compared with no balance aids, the side tactors significantly reduced Tilt (35%) and Sway (33%). Shoulder tactors also significantly reduced Tilt (44%) and Sway (17%). Compared with tactors, light touch resulted in less Sway, but more Tilt. The results suggest that healthy normal subjects can reduce their lateral postural sway using head tilt information as provided by a vibrotactile display. Thus, further testing with balance-impaired subjects is now warranted.

  5. Rectification of the heading and tilting of sediment trap arrays due to strong tidal currents in a submarine canyon

    NASA Astrophysics Data System (ADS)

    Lee, I.-Huan; Liu, James T.

    2006-04-01

    Two taut-line sediment trap moorings deployed in Kao-ping Submarine Canyon were subjected to tidal flows, resulting in significant vertical movements and tilt of the mounted instruments. Based on simple trigonometric relations, the true heading and tilt angles were derived from the raw readings of heading, pitch, and roll of the two Nortek Aquadopp Doppler current meters (NADCM). The true tilt and heading angles of the NADCMs were highly correlated with depth and reflected the orientation of the axis of the canyon, respectively. The precluded data points of tilt and heading angles therefore can be reconstructed. Our study suggests a systematic way to rectify the heading and tilting of a sediment trap array of the mounted NADCM from raw readings of the heading, pitch and roll meters.

  6. Can the Universe be "tilted"?

    NASA Astrophysics Data System (ADS)

    La, Daile

    1992-03-01

    We investigated the "tilting" of the universe, i.e., a non-Doppler origin of the dipole moment of the cosmic background radiation(CBR). Superhorizon-sized isocurvature, rotational and true vaccuum bubble perturbations are considered. We show that the more natural way of the "tilting" the Universe is via the true vaccuum buble perturbation. Neverthless, due to the small filling fraction of the bubbles of viable extended inflationary models, we find that the probability of the real occurence in the universe is quite insignificant.

  7. Tilt and Translation Motion Perception during Off Vertical Axis Rotation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Reschke, Millard F.; Clement, Gilles

    2006-01-01

    The effect of stimulus frequency on tilt and translation motion perception was studied during constant velocity off-vertical axis rotation (OVAR), and compared to the effect of stimulus frequency on eye movements. Fourteen healthy subjects were rotated in darkness about their longitudinal axis 10deg and 20deg off-vertical at 0.125 Hz, and 20deg offvertical at 0.5 Hz. Oculomotor responses were recorded using videography, and perceived motion was evaluated using verbal reports and a joystick with four degrees of freedom (pitch and roll tilt, mediallateral and anteriorposterior translation). During the lower frequency OVAR, subjects reported the perception of progressing along the edge of a cone. During higher frequency OVAR, subjects reported the perception of progressing along the edge of an upright cylinder. The modulation of both tilt recorded from the joystick and ocular torsion significantly increased as the tilt angle increased from 10deg to 20deg at 0.125 Hz, and then decreased at 0.5 Hz. Both tilt perception and torsion slightly lagged head orientation at 0.125 Hz. The phase lag of torsion increased at 0.5 Hz, while the phase of tilt perception did not change as a function of frequency. The amplitude of both translation perception recorded from the joystick and horizontal eye movements was negligible at 0.125 Hz and increased as a function of stimulus frequency. While the phase lead of horizontal eye movements decreased at 0.5 Hz, the phase of translation perception did not vary with stimulus frequency and was similar to the phase of tilt perception during all conditions. During dynamic linear acceleration in the absence of other sensory input (canal, vision) a change in stimulus frequency alone elicits similar changes in the amplitude of both self motion perception and eye movements. However, in contrast to the eye movements, the phase of both perceived tilt and translation motion is not altered by stimulus frequency. We conclude that the neural processing

  8. Human responses to upright tilt: a window on central autonomic integration.

    PubMed

    Cooke, W H; Hoag, J B; Crossman, A A; Kuusela, T A; Tahvanainen, K U; Eckberg, D L

    1999-06-01

    1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low

  9. Human responses to upright tilt: a window on central autonomic integration

    NASA Technical Reports Server (NTRS)

    Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.

    1999-01-01

    1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low

  10. Welfare support-equipment for character input with head tilting and breathing

    NASA Astrophysics Data System (ADS)

    Nakazawa, Nobuaki; Yamada, Kou; Matsui, Toshikazu; Itoh, Isao

    2005-12-01

    This paper describes support-equipment of operating a personal computer for users who have an obstacle on the regions of upper limb. The user wears a head set device with an angle sensor, and holds a plastic pipe connected to a pressure sensor in his or her mouth. Tilting his or her head and breathing are used for mouse cursor operation and characters input. Considering user's body conditions, the voluntary angle range of head tilting and strength of breathing are memorized to the controller beforehand, and obtained information is reflected for operations without fatigue. The character display board is used to indicate the Japanese characters and input options such as Back Space or Enter. Tilting motions change the indicated character and breathing actions can select and input the illuminated functions on the character display board. In test trial, it is confirmed that Japanese characters including Kanji and Katakana can be input with head tilting and breathing, instead of a general keyboard.

  11. Pseudo-polar tilted smectic phases exhibited by bent-core hockey stick shaped molecules.

    PubMed

    Malkar, Deepshika; Sadashiva, B K; Roy, Arun

    2016-06-14

    We report experimental and theoretical studies on two new achiral fluid lamellar phases exhibited by bent-core hockey stick shaped molecules. The packing of these bent-core hockey stick shaped molecules in the layers leads to a pseudo-polar order in these tilted smectic phases. An anticlinic SmCA type stacking of the pseudo-polar layers is observed in the higher temperature smectic phase, while in the lower temperature phase the difference in the azimuthal angles of the tilt directions in successive layers is between zero and π with a randomized tilt organization between the successive layers. The randomness arises due to the sign degeneracy of the azimuthal angle difference of the tilt directions in successive layers. Both of these smectic phases show a strong electro-optic response which can be exploited for potential applications.

  12. Tilted microstrip phased arrays with improved electromagnetic decoupling for ultrahigh-field magnetic resonance imaging.

    PubMed

    Pang, Yong; Wu, Bing; Jiang, Xiaohua; Vigneron, Daniel B; Zhang, Xiaoliang

    2014-12-01

    One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T.

  13. Selective growth of tilted ZnO nanoneedles and nanowires by PLD on patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Shkurmanov, Alexander; Sturm, Chris; Lenzner, Jörg; Feuillet, Guy; Tendille, Florian; De Mierry, Philippe; Grundmann, Marius

    2016-09-01

    We report the possibility to control the tilting of nanoneedles and nanowires by using structured sapphire substrates. The advantage of the reported strategy is to obtain well oriented growth along a single direction tilted with respect to the surface normal, whereas the growth in other directions is suppressed. In our particular case, the nanostructures are tilted with respect to the surface normal by an angle of 58 ° . Moreover, we demonstrate that variation of the nanostructures shape from nanoneedles to cylindrical nanowires by using SiO2 layer is observed.

  14. Tilted helical Feldkamp cone-beam reconstruction algorithm for multislice CT

    NASA Astrophysics Data System (ADS)

    Hein, Ilmar A.; Taguchi, Katsuyuki; Mori, Issei; Kazama, Masahiro; Silver, Michael D.

    2003-05-01

    In many clinical applications, it is necessary to tilt the gantry of an X-ray CT system with respect to the patient. Tilting the gantry introduces no complications for single-slice fan-beam systems; however, most systems today are helical multislice systems with up to 16 slices (and this number is sure to increase in the future). The image reconstruction algorithms used in multislice helical CT systems must be modified to compensate for the tilt. If they are not, the quality of reconstructed images will be poor with the presence of significant artifacts produced by the tilt. Practical helical multislice algorithms currently incorporated in today"s systems include helical fan-beam, ASSR (Advanced single-slice rebinning), and Feldkamp algorithms. This paper presents the modifications necessary to compensate for gantry tilt for the helical cone-beam Feldkamp algorithm implemented by Toshiba (referred to as TCOT for true cone-beam tomography). Unlike some of the other algorithms, gantry tilt compensation is simple and straightforward to implement with no significant increase in computational complexity. It will be shown that the effect of the gantry tilt is to introduce a lateral shift in the isocenter of the reconstructed slice of interest, which is a function of the tilt, couch speed, and view angle. This lateral shift is easily calculated and incorporated into the backprojection algorithm. The tilt-compensated algorithm is called T-TCOT. Experimental tilted-gantry data has been obtained with 8- and 16 slice Toshiba Aquilion systems, and examples of uncompensated and tilt compensated images are presented.

  15. Equilibrium contact angle or the most-stable contact angle?

    PubMed

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation.

  16. SYSTEMATIC ERROR REDUCTION: NON-TILTED REFERENCE BEAM METHOD FOR LONG TRACE PROFILER.

    SciTech Connect

    QIAN,S.; QIAN, K.; HONG, Y.; SENG, L.; HO, T.; TAKACS, P.

    2007-08-25

    Systematic error in the Long Trace Profiler (LTP) has become the major error source as measurement accuracy enters the nanoradian and nanometer regime. Great efforts have been made to reduce the systematic error at a number of synchrotron radiation laboratories around the world. Generally, the LTP reference beam has to be tilted away from the optical axis in order to avoid fringe overlap between the sample and reference beams. However, a tilted reference beam will result in considerable systematic error due to optical system imperfections, which is difficult to correct. Six methods of implementing a non-tilted reference beam in the LTP are introduced: (1) application of an external precision angle device to measure and remove slide pitch error without a reference beam, (2) independent slide pitch test by use of not tilted reference beam, (3) non-tilted reference test combined with tilted sample, (4) penta-prism scanning mode without a reference beam correction, (5) non-tilted reference using a second optical head, and (6) alternate switching of data acquisition between the sample and reference beams. With a non-tilted reference method, the measurement accuracy can be improved significantly. Some measurement results are presented. Systematic error in the sample beam arm is not addressed in this paper and should be treated separately.

  17. Tilted Thick-Disk Accretion onto a Kerr Black Hole

    SciTech Connect

    Fragile, P C; Anninos, P

    2003-12-12

    We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M{sup 2} = +0.9 (prograde disk). The black hole is then instantaneously tilted, through a change in the metric, by an angle {beta}{sub 0}. In this Letter we report results with {beta}{sub 0} = 0, 15, and 30{sup o}. The disk is allowed to respond to the Lense-Thirring precession of the tilted black hole. We find that the disk settles into a quasi-static, twisted, warped configuration with Lense-Thirring precession dominating out to a radius analogous to the Bardeen-Petterson transition in tilted Keplerian disks.

  18. Tilt Correction of High Explosive Test Data with Examples

    NASA Astrophysics Data System (ADS)

    Hill, Larry; Francois, Elizabeth; Morris, John

    2013-06-01

    Many high-explosive experiments view a nominally-axially-symmetric detonation wave breaking through a charge surface. Emerging waves virtually always exhibit a degree of tilt, which one generally wants to excise from the data whilst quantifying its direction and magnitude. In some cases, such as front-curvature rate sticks and Onionskin (OS)-type tests, the diagnostic is a single-slit streak camera (1D correction). In other cases, such as a Plane-Wave Lens characterization test or a Furball test, multiple slits or fibers provide sparse data over a surface (2D correction). We demonstrate both 1D and 2D corrections, the latter of which is the more challenging. In 2D, we represent the breakout time as the sum of a symmetric component and an asymmetric component (a tilted plane). The two tilt angle components are found that minimize the data scatter associated with the symmetric component. The most compelling example is the Furball test, an OS-variant for which the breakout time over the hemispherical observation surface is measured at many points using optical fibers. Unlike the OS test that looks in one (random) direction, we are able to construct OS-type data in the direction of maximum tilt, even though there are generally no fibers at that direction.

  19. Experimental determination of optimum gutter brush parameters and road sweeping criteria for different types of waste.

    PubMed

    Abdel-Wahab, Magd M; Wang, Chong; Vanegas-Useche, Libardo V; Parker, Graham A

    2011-06-01

    The removal ability of gutter brushes for road sweeping for various debris types and different sweeping parameters is studied through experimental tests. The brushing test rig used comprises two commercial gutter brushes, a concrete test bed, and an asphalt test road with a gutter of 0.25 cm width and 10° slope. The brush-surface contact area is determined by sweeping sand on the concrete test bed. Sweeping problems are identified and discussed, and sweeping criteria for the different debris types are suggested. Also, optimum sweeping parameters are proposed for each debris type. In addition, debris removal mechanisms are discussed and analysed. The results indicate that for large heavy debris such as stones and gravel, it is not difficult to achieve large removal forces, because the steel bristles are relatively stiff. Conversely, high removal forces are not needed for particles of millimetre or micron sizes, but bristle curvature has to be appropriate to remove particles from road concavities. Finally, it is found that mud, especially dry mud on a rough surface, is the hardest debris to sweep, requiring a brush with a large tilt angle and a very large penetration to produce large removal forces.

  20. Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability.

    PubMed

    Morrison, Jessica; Imboden, Matthias; Little, Thomas D C; Bishop, D J

    2015-04-01

    MEMS micromirrors have proven to be very important optical devices with applications ranging from steerable mirrors for switches and cross-connects to spatial light modulators for correcting optical distortions. Usually beam steering and focusing are done with different MEMS devices and tilt angles in excess of 10 degrees are seldom obtained. Here we describe a single MEMS device that combines tip/tilt, piston mode and varifocal capability into a single, low cost device with very large tilt angles. Our device consists of a 400 micron diameter mirror driven with thermal bimorphs. We have demonstrated deflection angles of ± 40 degrees along both axes, a tunable focal length which varies between -0.48 mm to + 20.5 mm and a piston mode range of 300 microns - four separately controllable degrees of freedom in a single device. Potential applications range from smart lighting to optical switches and devices for telecom systems. PMID:25968784

  1. Quantum cascade lasers with a tilted facet utilizing the inherent polarization purity.

    PubMed

    Ahn, Sangil; Ristanic, Daniela; Gansch, Roman; Reininger, Peter; Schwarzer, Clemens; MacFarland, Donald C; Detz, Hermann; Schrenk, Werner; Strasser, Gottfried

    2014-10-20

    We report on quantum cascade lasers (QCLs) with a tilted facet utilizing their polarization property. Contrary to diode lasers, QCLs generate purely TM polarized light due to the intersubband selection rules. This property enables the utilization of reflectivity in terms of only TM polarized light (TM reflectivity). The TM reflectivity is reduced by tilting the front facet, resulting in enhanced light output power from the tilted facet. The peak output power of a QCL with a facet angle of 12° are increased by 31 %. The slope efficiency of a QCL with a facet angle of 17° are increased by 43 %. Additionally, a peculiar property of TM reflectivity, the Brewster angle, is investigated by using COMSOL simulations to find its availability in QCLs.

  2. Theoretical Analysis of Interferometer Wave Front Tilt and Fringe Radiant Flux on a Rectangular Photodetector

    PubMed Central

    Smith, Robert; Fuss, Franz Konstantin

    2013-01-01

    This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector for variable location within the fringe pattern and with varying wave front angle. The results indicate that the flux is a damped sine function of the wave front angle, with a decay constant of the ratio of wavelength to detector width. The modulation amplitude of the dynamic fringe pattern reduces to zero at wave front angles that are an integer multiple of this ratio and the results show that the polarity of the radiant flux changes exclusively at these multiples. Varying tilt angle causes radiant flux oscillations under an envelope curve, the frequency of which is dependent on the location of the detector with the fringe pattern. It is also shown that a fringe count of zero can be obtained for specific photodetector locations and wave front angles where the combined effect of fringe contraction and fringe tilt can have equal and opposite effects. Fringe tilt as a result of a wave front angle of 0.05° can introduce a phase measurement difference of 16° between a photodetector/pixel located 20 mm and one located 100 mm from the optical origin. PMID:24018954

  3. Theoretical analysis of interferometer wave front tilt and fringe radiant flux on a rectangular photodetector.

    PubMed

    Smith, Robert; Fuss, Franz Konstantin

    2013-09-06

    This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector for variable location within the fringe pattern and with varying wave front angle. The results indicate that the flux is a damped sine function of the wave front angle, with a decay constant of the ratio of wavelength to detector width. The modulation amplitude of the dynamic fringe pattern reduces to zero at wave front angles that are an integer multiple of this ratio and the results show that the polarity of the radiant flux changes exclusively at these multiples. Varying tilt angle causes radiant flux oscillations under an envelope curve, the frequency of which is dependent on the location of the detector with the fringe pattern. It is also shown that a fringe count of zero can be obtained for specific photodetector locations and wave front angles where the combined effect of fringe contraction and fringe tilt can have equal and opposite effects. Fringe tilt as a result of a wave front angle of 0.05° can introduce a phase measurement difference of 16° between a photodetector/pixel located 20 mm and one located 100 mm from the optical origin.

  4. Defining Optimal Head-Tilt Position of Resuscitation in Neonates and Young Infants Using Magnetic Resonance Imaging Data.

    PubMed

    Bhalala, Utpal S; Hemani, Malvi; Shah, Meehir; Kim, Barbara; Gu, Brian; Cruz, Angelo; Arunachalam, Priya; Tian, Elli; Yu, Christine; Punnoose, Joshua; Chen, Steven; Petrillo, Christopher; Brown, Alisa; Munoz, Karina; Kitchen, Grant; Lam, Taylor; Bosemani, Thangamadhan; Huisman, Thierry A G M; Allen, Robert H; Acharya, Soumyadipta

    2016-01-01

    Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0-28 days) and young infants (age: 29 days-4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144-150°. PMID:27003759

  5. Defining Optimal Head-Tilt Position of Resuscitation in Neonates and Young Infants Using Magnetic Resonance Imaging Data.

    PubMed

    Bhalala, Utpal S; Hemani, Malvi; Shah, Meehir; Kim, Barbara; Gu, Brian; Cruz, Angelo; Arunachalam, Priya; Tian, Elli; Yu, Christine; Punnoose, Joshua; Chen, Steven; Petrillo, Christopher; Brown, Alisa; Munoz, Karina; Kitchen, Grant; Lam, Taylor; Bosemani, Thangamadhan; Huisman, Thierry A G M; Allen, Robert H; Acharya, Soumyadipta

    2016-01-01

    Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0-28 days) and young infants (age: 29 days-4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144-150°.

  6. Defining Optimal Head-Tilt Position of Resuscitation in Neonates and Young Infants Using Magnetic Resonance Imaging Data

    PubMed Central

    Bhalala, Utpal S.; Hemani, Malvi; Shah, Meehir; Kim, Barbara; Gu, Brian; Cruz, Angelo; Arunachalam, Priya; Tian, Elli; Yu, Christine; Punnoose, Joshua; Chen, Steven; Petrillo, Christopher; Brown, Alisa; Munoz, Karina; Kitchen, Grant; Lam, Taylor; Bosemani, Thangamadhan; Huisman, Thierry A. G. M.; Allen, Robert H.; Acharya, Soumyadipta

    2016-01-01

    Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0–28 days) and young infants (age: 29 days–4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144–150°. PMID:27003759

  7. Effect of lens tilt on SCE and filamentation characteristics of femtosecond pulses in air

    NASA Astrophysics Data System (ADS)

    Sreeja, S.; Prashant, T. Shuvan; Leela, Ch.; Kumar, V. Rakesh; Tewari, Surya P.; Venugopal Rao, S.; Kiran, P. Prem

    2012-06-01

    We present the evolution of SCE associated with filaments due to the tilt of focusing lens under tight focusing geometries. Transform limited femtosecond (fs) pulses (800 nm, 45 fs, 1 kHz repetition rate) were focused in ambient air using three different focusing geometries f/#6, f/#7.5, and f/#12 corresponding to numerical apertures (NA) of 0.08, 0.06, and 0.04, respectively. The focusing lens was tilted from zero up to 20 degrees. The filaments decayed into two shorter parts through tilting of the lens and the separation between shorter filaments increased with increasing lens tilt, in tune with earlier reports [Kamali et al., Opt. Commun. 282, 950-954 (2009)]. The separation between the filaments matched well with the predicted distances due to astigmatism induced in loose focusing geometries. However the deviation increased as we moved to the tighter focusing geometries. The SCE spectrum demonstrated an anomalous behaviour. The SCE spectrum was suppressed at larger tilt angles of 12 - 20°. However at lower tilt angles, up to 8°, the SCE was observed to be same to that measured without any tilt of the focusing lens. This behaviour is predominant with tighter focusing geometries of f/#6 and f/#7.5, wherein the SCE was observed to be higher at 4° and 8° in comparison with that observed at an angle of 0°. Systematic study of the focusing lens tilt on anomalous SCE spectra and filament characteristics in the tight focusing geometry are presented.

  8. TILT

    SciTech Connect

    Jones, J.F. )

    1992-06-01

    The system is focused on the Employee Business Travel Event. The system must be able to CRUD (Create, Retrieve, Update, Delete) instances of the Travel Event as well as the ability to CRUD frequent flyer milage associated with airline travel. Additionally the system must provide for a compliance reporting system to monitor reductions in travel costs and lost oppurtunity costs (i.e., not taking advantage of business class or 7 day advance tickets)

  9. ''Optimum productivity'': a geneticist's view

    SciTech Connect

    Libby, W.J.

    1980-01-01

    Both ''optimum'' and ''productivity'' are explored in a social context with a long time dimension. Renewability, flexibility, and diversity are important concepts in long-term planning to achieve optimum productivity. Various possible genetic contributions, including complementary clones, quantitative genetic engineering, resistant trees and plantations, elimination of inbreeding, single-gene genetic engineering, and agri-forestry, are suggested for long-term sustained or increased productivity.

  10. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this…

  11. Gravito-Inertial Force Resolution in Perception of Synchronized Tilt and Translation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Holly, Jan; Zhang, Guen-Lu

    2011-01-01

    the GIF-resolution hypothesis even when the gravito-inertial force vector remains aligned with the body during periodic motion. Perception is also consistent with GIF-resolution in the opposite condition, when the gravito-inertial force vector angle is enhanced by synchronized tilt and translation.

  12. Model tilt-rotor hover performance and surface pressure measurement

    NASA Technical Reports Server (NTRS)

    Tung, Chee; Branum, Lonnie

    1990-01-01

    A test of a small scale 3-bladed model rotor, with geometry typical of that used on tilt rotor aircraft, was conducted in the Army Aeroflightdynamics Directorate's anechoic hover chamber. The purpose was to determine the hover performance of the rotor and investigate the pressure distributions on a blade at various collective pitch angles and tip speeds. The measured pressures indicate that the rotor did not stall for high collective pitch angles up to theta sub c = 25 deg. This is clearly a 3-D effect since 2-D theory predicts flow separation at these high angles. The flow near the trailing edge separated above theta sub c = 25 deg which caused a sharp increase in power.

  13. Atlas based kinematic optimum design of the Stewart parallel manipulator

    NASA Astrophysics Data System (ADS)

    Shao, Zhufeng; Tang, Xiaoqiang; Wang, Liping; Sun, Dengfeng

    2015-01-01

    Optimum design is a key approach to make full use of potential advantages of a parallel manipulator. The optimum design of multi-parameter parallel manipulators(more than three design parameters), such as Stewart manipulator, relies on analysis based and algorithm based optimum design methods, which fall to be accurate or intuitive. To solve this problem and achieve both accurate and intuition, atlas based optimum design of a general Stewart parallel manipulator is established, with rational selection of design parameters. Based on the defined spherical usable workspace(SUW), primary kinematic performance indices of the Stewart manipulator, involving workspace and condition number are introduced and analyzed. Then, corresponding performance atlases are drawn with the established non-dimensional design space, and impact of joint distribution angles on the manipulator performance is analyzed and illustrated. At last, an example on atlas based optimum design of the Stewart manipulator is accomplished to illustrate the optimum design process, considering the end-effector posture. Deduced atlases can be flexibly applied to both quantitative and qualitative analysis to get the desired optimal design for the Stewart manipulator with respect to related performance requirements. Besides, the established optimum design method can be further applied to other multi-parameter parallel manipulators.

  14. Tilting marks: Observations on tool marks resembling trace fossils and their morphological varieties

    NASA Astrophysics Data System (ADS)

    Wetzel, Andreas

    2013-04-01

    Tilting marks, defined here as linear tool marks having transverse ornamentation, are produced in shallow water when the oscillatory action of waves of short wavelength tilt grounded objects rhythmically in such a way that they move and push sediment aside. These tool marks can resemble trace fossils, particularly if they are bilaterally symmetrical. Even asymmetrical objects can produce symmetrical tilting marks because the shape of the mark only depends on the geometry of the ground-touching part of the object, which may be partially floating. Objects of either soft or hard consistency, such as jellyfish or wood, respectively, can produce tilting marks. Tilting marks are normally produced linearly parallel or at an angle to the direction of wave propagation and do not show sharp bends or curves. Tilting marks can be formed on plane beds as well as rippled surfaces. Tilting marks can be distinguished from trace fossils by taking into account the geometry (symmetry), the direction of movement, and the mainly linear course and the internal pattern.

  15. Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph

    PubMed Central

    Crotty, D J; McKinley, R L; Tornai, M P

    2010-01-01

    A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient’s pendant breast. This study evaluated stationary-tilt angles for the CT subsystem that will enable maximal volumetric sampling and viewing of the breast and chest wall. Images of geometric/anthropomorphic phantoms were acquired using various fixed-tilt circular and 3D sinusoidal trajectories. The iteratively reconstructed images showed more distortion and attenuation coefficient inaccuracy from tilted cone-beam orbits than from the complex trajectory. Additionally, line profiles illustrated cupping artifacts in planes distal to the central plane of the tilted cone-beam, otherwise not apparent for images acquired with complex trajectories. This indicates that undersampled cone-beam data may be an additional cause of cupping artifacts. High-frequency objects could be distinguished for all trajectories, but their shapes and locations were corrupted by out-of-plane frequency information. Although more acrylic balls were visualized with a fixed-tilt and nearly flat cone-beam at the posterior of the breast, 3D complex trajectories have less distortion and more complete sampling throughout the reconstruction volume. While complex trajectories would ideally be preferred, negatively fixed-tilt source–detector configuration demonstrates minimally distorted patient images. PMID:19478374

  16. Evaluation of tilted cone-beam CT orbits in the development of a dedicated hybrid mammotomograph

    NASA Astrophysics Data System (ADS)

    Madhav, P.; Crotty, D. J.; McKinley, R. L.; Tornai, M. P.

    2009-06-01

    A compact dedicated 3D breast SPECT-CT (mammotomography) system is currently under development. In its initial prototype, the cone-beam CT sub-system is restricted to a fixed-tilt circular rotation around the patient's pendant breast. This study evaluated stationary-tilt angles for the CT sub-system that will enable maximal volumetric sampling and viewing of the breast and chest wall. Images of geometric/anthropomorphic phantoms were acquired using various fixed-tilt circular and 3D sinusoidal trajectories. The iteratively reconstructed images showed more distortion and attenuation coefficient inaccuracy from tilted cone-beam orbits than from the complex trajectory. Additionally, line profiles illustrated cupping artifacts in planes distal to the central plane of the tilted cone-beam, otherwise not apparent for images acquired with complex trajectories. This indicates that undersampled cone-beam data may be an additional cause of cupping artifacts. High-frequency objects could be distinguished for all trajectories, but their shapes and locations were corrupted by out-of-plane frequency information. Although more acrylic balls were visualized with a fixed-tilt and nearly flat cone-beam at the posterior of the breast, 3D complex trajectories have less distortion and more complete sampling throughout the reconstruction volume. While complex trajectories would ideally be preferred, negatively fixed-tilt source-detector configuration demonstrates minimally distorted patient images.

  17. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy.

    PubMed

    Bell, Linda J; Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2014-01-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle change between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more

  18. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy

    SciTech Connect

    Bell, Linda J.; Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2014-10-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle change between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1 cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more

  19. Modulation of internal estimates of gravity during and after prolonged roll-tilts.

    PubMed

    Tarnutzer, Alexander A; Bertolini, Giovanni; Bockisch, Christopher J; Straumann, Dominik; Marti, Sarah

    2013-01-01

    Perceived direction of gravity, as assessed by the subjective visual vertical (SVV), shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56 yo) repetitively adjusted a luminous arrow to the SVV over periods of 5 min while upright, roll-tilted (± 45°, ± 90°), and immediately after returning to upright. Significant (p<0.05) drifts (median absolute drift-amplitude: 10°/5 min) were found in 71% (± 45°) and 78% (± 90°) of runs. At ± 90° roll-tilt significant increases in absolute adjustment errors were more likely (76%), whereas significant increases (56%) and decreases (44%) were about equally frequent at ± 45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71 sec) was noted in 47% of all runs (all subjects pooled). No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central

  20. Modulation of internal estimates of gravity during and after prolonged roll-tilts.

    PubMed

    Tarnutzer, Alexander A; Bertolini, Giovanni; Bockisch, Christopher J; Straumann, Dominik; Marti, Sarah

    2013-01-01

    Perceived direction of gravity, as assessed by the subjective visual vertical (SVV), shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56 yo) repetitively adjusted a luminous arrow to the SVV over periods of 5 min while upright, roll-tilted (± 45°, ± 90°), and immediately after returning to upright. Significant (p<0.05) drifts (median absolute drift-amplitude: 10°/5 min) were found in 71% (± 45°) and 78% (± 90°) of runs. At ± 90° roll-tilt significant increases in absolute adjustment errors were more likely (76%), whereas significant increases (56%) and decreases (44%) were about equally frequent at ± 45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71 sec) was noted in 47% of all runs (all subjects pooled). No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central

  1. Modulation of Internal Estimates of Gravity during and after Prolonged Roll-Tilts

    PubMed Central

    Tarnutzer, Alexander A.; Bertolini, Giovanni; Bockisch, Christopher J.; Straumann, Dominik; Marti, Sarah

    2013-01-01

    Perceived direction of gravity, as assessed by the subjective visual vertical (SVV), shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56yo) repetitively adjusted a luminous arrow to the SVV over periods of 5min while upright, roll-tilted (±45°, ±90°), and immediately after returning to upright. Significant (p<0.05) drifts (median absolute drift-amplitude: 10°/5min) were found in 71% (±45°) and 78% (±90°) of runs. At ±90° roll-tilt significant increases in absolute adjustment errors were more likely (76%), whereas significant increases (56%) and decreases (44%) were about equally frequent at ±45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71sec) was noted in 47% of all runs (all subjects pooled). No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central adaptation, most

  2. Optimum Solar Conversion Cell Configurations

    NASA Technical Reports Server (NTRS)

    Chen, Bin (Inventor)

    2015-01-01

    Methods for maximizing a fraction of light energy absorbed in each of three classes of light concentrators (rectangular parallelepipeds, paraboloids and prisms) by choice of incident angle of radiation and of one or more geometrical or physical parameters (absorber thickness, paraboloid dimensions, location of paraboloid focus, prism angles, concentrator material, cladding, prism angles, etc.). Alternatively, the light energy absorbed plus the light energy that escapes through non-total internal reflection within the light concentrator can be minimized.

  3. Tilt perception during dynamic linear acceleration.

    PubMed

    Seidman, S H; Telford, L; Paige, G D

    1998-04-01

    Head tilt is a rotation of the head relative to gravity, as exemplified by head roll or pitch from the natural upright orientation. Tilt stimulates both the otolith organs, owing to shifts in gravitational orientation, and the semicircular canals in response to head rotation, which in turn drive a variety of behavioral and perceptual responses. Studies of tilt perception typically have not adequately isolated otolith and canal inputs or their dynamic contributions. True tilt cannot readily dissociate otolith from canal influences. Alternatively, centrifugation generates centripetal accelerations that simulate tilt, but still entails a rotatory (canal) stimulus during important periods of the stimulus profiles. We reevaluated the perception of head tilt in humans, but limited the stimulus to linear forces alone, thus isolating the influence of otolith inputs. This was accomplished by employing a centrifugation technique with a variable-radius spinning sled. This allowed us to accelerate the sled to a constant angular velocity (128 degrees/s), with the subject centered, and then apply dynamic centripetal accelerations after all rotatory perceptions were extinguished. These stimuli were presented in the subjects' naso-occipital axis by translating the subjects 50 cm eccentrically either forward or backward. Centripetal accelerations were thus induced (0.25 g), which combined with gravity to yield a dynamically shifting gravitoinertial force simulating pitch-tilt, but without actually rotating the head. A magnitude-estimation task was employed to characterize the dynamic perception of pitch-tilt. Tilt perception responded sluggishly to linear acceleration, typically reaching a peak after 10-30 s. Tilt perception also displayed an adaptation phenomenon. Adaptation was manifested as a per-stimulus decline in perceived tilt during prolonged stimulation and a reversal aftereffect upon return to zero acceleration (i.e., recentering the subject). We conclude that otolith

  4. Geometry dependence of the clogging transition in tilted hoppers

    NASA Astrophysics Data System (ADS)

    Thomas, C. C.; Durian, D. J.

    2013-05-01

    We report the effects of system geometry on the clogging of granular material flowing out of flat-bottomed hoppers with variable aperture size D and with variable angle θ of tilt of the hopper away from horizontal. In general, larger tilt angles make the system more susceptible to clogging. To quantify this effect for a given θ, we measure the distribution of mass discharged between clogging events as a function of aperture size and extrapolate to the critical size at which the average mass diverges. By repeating for different angles, we map out a clogging phase diagram as a function of D and θ that demarcates the regimes of free flow (large D, small θ) and clogging (small D, large θ). We do this for both circular holes and long rectangular slits. Additionally, we measure four types of grain: smooth spheres (glass beads), compact angular grains (beach sand), disklike grains (lentils), and rodlike grains (rice). For circular apertures, the clogging phase diagram is found to be the same for all grain types. For narrow slit apertures and compact grains, the shape is also the same as for circular holes when expressed in terms of projected area of the aperture against the average flow direction. For lentils and rice discharged from slits, the behavior differs and may be due to alignment between grain and slit axes.

  5. Tilting and Magnetization of Ocean Crust

    NASA Astrophysics Data System (ADS)

    Schouten, H.; Denham, C.

    2003-04-01

    The argument of tectonic rotation (tilting) versus secular variation as the cause of variable paleomagnetic inclination in ocean crust drill holes has existed since the beginning of the drilling program. Drill core samples measure inclination without azimuth, which makes it difficult to test the tilting hypothesis. Furthermore, inclinations, even in adjacent holes, do not show a systematic variation with depth and the inclinations indicate tilts that are both toward the spreading axis and away from it. In the seventies, the leading paradigm for tectonic rotation in ocean crust was distributed deformation causing tilting of the lavas toward the axis due to lava loading or lava burial. In the eighties, block rotation along listric normal faults causing tilting away from the axis became the leading paradigm. Neither tilt paradigm, however, has been able to provide a satisfactory explanation for the variable inclination in ocean crust drill holes. The lack of independent information on the azimuth of the tilt of lavas in the holes and of a satisfactory paradigm to explain tilt variation has suggested that either upper ocean crust is too randomly tilted or that secular variation dominates the variable inclination in the holes. In either case the magnetic inclinations in ocean crust drill holes have eluded meaningful interpretation. A new analysis of several deep drill holes in Troodos ophiolite (CY-1, CY-1A) and oceanic crust (504B, 417D) suggests that the longer-wavelength paleomagnetic inclination variation in ocean crust drill holes is caused by tilting. The variable tilt in the ocean crust drill holes can be used to quantify important aspects of the process of seafloor accretion and deformation in spreading centers. Lava accumulation in the neovolcanic zone generates a sequence of overlapping lava flows that are progressively tilted with depth toward the spreading axis/eruption center depending on the vertical cross section of lava flows. This progressive tilting

  6. Focus variation microscope: linear theory and surface tilt sensitivity.

    PubMed

    Nikolaev, Nikolay; Petzing, Jon; Coupland, Jeremy

    2016-05-01

    In a recent publication [3rd International Conference on Surface Metrology, Annecy, France, 2012, p. 1] it was shown that surface roughness measurements made using a focus variation microscope (FVM) are influenced by surface tilt. The effect appears to be most significant when the surface has microscale roughness (Ra≈50  nm) that is sufficient to provide a diffusely scattered signal that is comparable in magnitude to the specular component. This paper explores, from first principles, image formation using the focus variation method. With the assumption of incoherent scattering, it is shown that the process is linear and the 3D point spread characteristics and transfer characteristics of the instrument are well defined. It is argued that for the case of microscale roughness and through the objective illumination, the assumption of incoherence cannot be justified and more rigorous analysis is required. Using a foil model of surface scattering, the images that are recorded by a FVM have been calculated. It is shown that for the case of through-the-objective illumination at small tilt angles, the signal quality is degraded in a systematic manner. This is attributed to the mixing of specular and diffusely reflected components and leads to an asymmetry in the k-space representation of the output signals. It is shown that by using extra-aperture illumination or tilt angles greater than the acceptance angle of aperture (such that the specular component is lost), the incoherent assumption can be justified once again. The work highlights the importance of using ring-light illumination and/or polarizing optics, which are often available as options on commercial instruments, as a means to mitigate or prevent these effects.

  7. Focus variation microscope: linear theory and surface tilt sensitivity.

    PubMed

    Nikolaev, Nikolay; Petzing, Jon; Coupland, Jeremy

    2016-05-01

    In a recent publication [3rd International Conference on Surface Metrology, Annecy, France, 2012, p. 1] it was shown that surface roughness measurements made using a focus variation microscope (FVM) are influenced by surface tilt. The effect appears to be most significant when the surface has microscale roughness (Ra≈50  nm) that is sufficient to provide a diffusely scattered signal that is comparable in magnitude to the specular component. This paper explores, from first principles, image formation using the focus variation method. With the assumption of incoherent scattering, it is shown that the process is linear and the 3D point spread characteristics and transfer characteristics of the instrument are well defined. It is argued that for the case of microscale roughness and through the objective illumination, the assumption of incoherence cannot be justified and more rigorous analysis is required. Using a foil model of surface scattering, the images that are recorded by a FVM have been calculated. It is shown that for the case of through-the-objective illumination at small tilt angles, the signal quality is degraded in a systematic manner. This is attributed to the mixing of specular and diffusely reflected components and leads to an asymmetry in the k-space representation of the output signals. It is shown that by using extra-aperture illumination or tilt angles greater than the acceptance angle of aperture (such that the specular component is lost), the incoherent assumption can be justified once again. The work highlights the importance of using ring-light illumination and/or polarizing optics, which are often available as options on commercial instruments, as a means to mitigate or prevent these effects. PMID:27140371

  8. TILTING TABLE AREA, PDP ROOM, LEVEL +27’, LOOKING NORTHWEST. TILTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TILTING TABLE AREA, PDP ROOM, LEVEL +27’, LOOKING NORTHWEST. TILTING TABLE MARKED BY WHITE ELECTRICAL CORD IN LOWER LEFT CENTER - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  9. Tilting pad journal bearings - Measured and predicted stiffness coefficients

    SciTech Connect

    Parkins, D.W.; Horner, D. Michell Bearings, Newcastle-upon-Tyne )

    1993-07-01

    This paper presents measured and calculated characteristics of a tilting pad journal bearing suitable for high speed machinery. Descriptions are given of the experimental techniques used with this variety of bearing and the theoretical model for predicting performance. Measured values of pad temperature, eccentricity, attitude angle, and the four stiffness coefficients are given for a range of loads and rotational speeds. Data are given for both load on pad and between pad configurations, the two principal loading arrangements. Comparisons are made between the measured and predicted bearing temperatures and stiffness coefficients over a wide range of values. 11 refs.

  10. Dynamics in a Spiral FFAG with Tilted Cavities.

    SciTech Connect

    BERG,J.S.

    2007-12-20

    I develop a formulation for Hamiltonian dynamics in an accelerator with magnets whose edges follow a spiral. I demonstrate using this Hamiltonian that a spiral FFAG can be made perfectly 'scaling'. I describe how one computes the RF phase during a rapid acceleration cycle to keep the beam at the appropriate RF phase. I examine the effect of tilting an RF cavity with respect a radial line from the center of the machine, potentially with a different angle than the spiral of the magnets. I discuss partially the effects of the finite energy jumps on the dynamics. This is a status report of work that is still incomplete.

  11. Tilting pad journal bearings - Measured and predicted stiffness coefficients

    NASA Astrophysics Data System (ADS)

    Parkins, D. W.; Horner, D.

    1993-07-01

    This paper presents measured and calculated characteristics of a tilting pad journal bearing suitable for high speed machinery. Descriptions are given of the experimental techniques used with this variety of bearing and the theoretical model for predicting performance. Measured values of pad temperature, eccentricity, attitude angle, and the four stiffness coefficients are given for a range of loads and rotational speeds. Data are given for both load on pad and between pad configurations, the two principal loading arrangements. Comparisons are made between the measured and predicted bearing temperatures and stiffness coefficients over a wide range of values.

  12. A novel method for measuring transit tilt error in laser trackers

    NASA Astrophysics Data System (ADS)

    Zhang, Zili; Zhou, Weihu; Zhu, Han; Lin, Xinlong

    2015-02-01

    A novel method was proposed to measure the tilt error between the transit axis and standing axis of the laser tracker. A gradienter was first used to make the standing axis of the laser tracker perpendicular to the horizontal plane. The laser beam of the tracker was then projected onto a vertical plane set at a certain distance from the tracker with equal horizontal angles and diverse vertical angles in two-face mode. The contrail of the laser beam was recorded while the simulation was manipulated to estimate the beam trail under the same circumstance. The tilt error was thus obtained according to the comparison of the actual result against the simulated one. Experimental results showed that the accuracy of the tilt measuring method could meet the user's demand.

  13. Side-Wall Measurement using Tilt-Scanning Method in Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Murayama, Ken; Gonda, Satoshi; Koyanagi, Hajime; Terasawa, Tsuneo; Hosaka, Sumio

    2006-06-01

    We have developed a novel atomic force microscope (AFM) measurement technique which can examine sidewalls of fine patterns on wafers. This technique uses a sharpen tip tilted at an angle in combination with digital probing mode operation, and is thus referred as “tilt-step-in” mode operation. This method allows one to measure sidewall shape moving along tilted tip axis. We analyzed the slip condition between the tip and the sample using a simple spring-mass system model and finite element method (FEM) with several parameters, such as moving direction, stiffness of tip and cantilever, sidewall angle and frictional coefficient. To verify this method, we then measured several reference samples with perpendicular sidewalls and 105° undercuts. By using this technique three dimensional (3-D) images of low-k etch structure of semiconductor device patterns with 88° sidewall and line edge roughness of ArF resist were clearly observed.

  14. Tilting Uranus without a Collision

    NASA Astrophysics Data System (ADS)

    Rogoszinski, Zeeve; Hamilton, Douglas P.

    2016-10-01

    The most accepted hypothesis for the origin of Uranus' 98° obliquity is a giant collision during the late stages of planetary accretion. This model requires a single Earth mass object striking Uranus at high latitudes; such events occur with a probability of about 10%. Alternatively, Uranus' obliquity may have arisen from a sequence of smaller impactors which lead to a uniform distribution of obliquities. Here we explore a third model for tilting Uranus using secular spin-orbit resonance theory. We investigate early Solar System configurations in which a secular resonance between Uranus' axial precession frequency and another planet's orbital node precession frequency might occur.Thommes et al. (1999) hypothesized that Uranus and Neptune initially formed between Jupiter and Saturn, and were then kicked outward. In our scenario, Neptune leaves first while Uranus remains behind. As an exterior Neptune slowly migrates outward, it picks up both Uranus and Saturn in spin-orbit resonances (Ward and Hamilton 2004; Hamilton and Ward 2004). Only a distant Neptune has a nodal frequency slow enough to resonate with Uranus' axial precession.This scenario, with diverging orbits, results in resonance capture. As Neptune migrates outward its nodal precession slows. While in resonance, Uranus and Saturn each tilt a bit further, slowing their axial precession rates to continually match Neptune's nodal precession rate. Tilting Uranus to high obliquities takes a few 100 Myrs. This timescale may be too long to hold Uranus captive between Jupiter and Saturn, and we are investigating how to reduce it. We also find that resonance capture is rare if Uranus' initial obliquity is greater than about 10°, as the probability of capture decreases as the planet's initial obliquity increases. We will refine this estimate by quantifying capture statistics, and running accretion simulations to test the likelihood of a low early obliquity. Our preliminary findings show that most assumptions about

  15. A study of the cornering forces generated by aircraft tires on a tilted, free-swiveling nose gear

    NASA Technical Reports Server (NTRS)

    Daugherty, R. H.; Stubbs, S. M.

    1985-01-01

    An experimental investigation was conducted to study the effect of various parameters on the cornering forces produced by a rolling aircraft tire installed on a tilted, free-swiveling nose gear. The parameters studied included tilt angle, trial, tire inflation pressure, rake angle, vertical load, and whether or not a twin tire configuration corotates. These parameters were evaluated by measuring the cornering force produced by an aircraft tire installed on the nose gear of a modified vehicle as it was towed slowly. Cornering force coefficient increased with increasing tilt angle. Increasing trial or rake angle decreased the magnitude of the cornering force coefficient. Tire inflation pressure had no effect on the cornering force coefficient. Increasing vertical load decreased the cornering force coefficient. When the tires of a twin tire system rotated independently, the cornering force coefficients were the same as those for the single-tire configuration. When the twin tire system was made to corotate, however, the cornering force coefficients increased significantly.

  16. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    PubMed Central

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-01-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems. PMID:24770490

  17. Large optics inspection, tilting, and washing stand

    DOEpatents

    Ayers, Marion Jay; Ayers, Shannon Lee

    2010-08-24

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  18. Large optics inspection, tilting, and washing stand

    DOEpatents

    Ayers, Marion Jay; Ayers, Shannon Lee

    2012-10-09

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  19. Tip--tilt compensation for astronomical imaging

    SciTech Connect

    Olivier, S.S. ); Gavel, D.T. )

    1994-01-01

    We present a performance analysis of tip--tilt-compensation systems that use natural stars as tilt references. Taking into account properties of the atmosphere and of the galactic stellar populations, we optimize operating parameters over the system to determine performance limits for several varieties of tip--tilt-compensation system operating on a 10-m telescope on Mauna Kea, Hawaii. We find that, for systems that use a single tilt reference star, if the image of the star is uncorrected, a one-axis root-mean-square tilt residual of less than 190 nrad can be obtained for at least 99% of all astronomical objects, whereas if the image of the tilt reference star is fully corrected this limit drops to 90 nrad. For systems that use two tilt reference stars the limits drop to 160 nrad if the images of the stars are uncorrected and to 60 nrad if the images of the stars are fully corrected. These residual tilt levels would permit [ital V]-band images with long-exposure resolution of 8.5, 4.2, 7.3, and 2.9 times the diffraction limit, respectively, where the diffraction-limited resolution in the [ital V] band is 0.011 arcsec. These results may be compared with the typical seeing of 0.75 arcsec.

  20. Tilts in strong-ground motion

    NASA Astrophysics Data System (ADS)

    Graizer, V.

    2006-12-01

    Most instruments used in seismological practice to record ground motion are pendulum seismographs, velocigraphs or accelerographs. In most cases it is assumed that seismic instruments are only sensitive to the translational motion of the instrument's base. In this study the full equation of pendulum motion including the inputs of rotations and tilts is considered. It is shown that tilting the accelerograph's base can severely impact its response to the ground motion. The method of tilt evaluation using uncorrected strong-motion accelerograms was first suggested by Graizer (1989), and later tested in a number of laboratory experiments with different strong-motion instruments. The method is based on the difference in the tilt sensitivity of the horizontal and vertical pendulums. The method was applied to a number of strongest records of the Mw 6.7 Northridge earthquake of 1994. Examples are shown when relatively large tilts of up to a few degrees occurred during strong earthquake ground motion. Residual tilt extracted from the strong-motion record at the Pacoima Dam Upper Left Abutment reached 3.1 degrees in N45E direction, and was a result of local earthquake induced tilting due to high amplitude shaking. This value is in agreement with the residual tilt measured using electronic level a few days after the earthquake. The method was applied to the building records from the Northridge earthquake. According to the estimates, residual tilt reached 2.6 degrees on the ground floor of the 12-story Hotel in Ventura. Processing of most of the strongest records of the Northridge earthquake shows that tilts, if happened, were within the error of the method, or less than about 0.5 degree.

  1. Influence of shoulder abduction and lateral trunk tilt on peak elbow varus torque for college baseball pitchers during simulated pitching.

    PubMed

    Matsuo, Tomoyuki; Fleisig, Glenn S

    2006-05-01

    Elbow varus torque is a primary factor in the risk of elbow injury during pitching. To examine the effects of shoulder abduction and lateral trunk tilt angles on elbow varus torque, we conducted simulation and regression analyses on 33 college baseball pitchers. Motion data were used for computer simulations in which two angles-shoulder abduction and lateral trunk tilt-were systematically altered. Forty-two simulated motions were generated for each pitcher, and the peak elbow varus torque for each simulated motion was calculated. A two-way analysis of variance was performed to analyze the effects of shoulder abduction and trunk tilt on elbow varus torque. Regression analyses of a simple regression model, second-order regression model, and multiple regression model were also performed. Although regression analyses did not show any significant relationship, computer simulation indicated that the peak elbow varus torque was affected by both angles, and the interaction of those angles was also significant. As trunk tilt to the contralateral side increased, the shoulder abduction angle producing the minimum peak elbow varus torque decreased. It is suggested that shoulder abduction and lateral trunk tilt may be only two of several determinants of peak elbow varus torque.

  2. Optimum windmill-site matching

    SciTech Connect

    Salameh, Z.M.; Safari, I. )

    1992-12-01

    In this paper a methodology for the selection of the optimum windmill for a specific site is developed. The selection windmill for a specific site is developed. The selection is based on finding the capacity factors (CF) of the available windmills. This is done by using long term wind speed data recorded at different hours of the day for many years. This data is then used to generate mean wind speeds for a typical day in a month. Probability density functions for the mean wind speeds for the different hours of the day are generated with the manufacturer's specifications on windmills used to calculate the capacity factors for the windmills. The windmill with the highest average capacity factor for the specific site is the optimum one and to be recommended.

  3. From plane to spatial angles: PTB's spatial angle autocollimator calibrator

    NASA Astrophysics Data System (ADS)

    Kranz, Oliver; Geckeler, Ralf D.; Just, Andreas; Krause, Michael; Osten, Wolfgang

    2015-10-01

    Electronic autocollimators are utilised versatilely for non-contact angle measurements in applications like straightness measurements and profilometry. Yet, no calibration of the angle measurement of an autocollimator has been available when both its measurement axes are engaged. Additionally, autocollimators have been calibrated at fixed distances to the reflector, although its distance may vary during the use of an autocollimator. To extend the calibration capabilities of the Physikalisch-Technische Bundesanstalt (PTB) regarding spatial angles and variable distances, a novel calibration device has been set up: the spatial angle autocollimator calibrator (SAAC). In this paper, its concept and its mechanical realisation will be presented. The focus will be on the system's mathematical modelling and its application in spatial angle calibrations. The model considers the misalignments of the SAAC's components, including the non-orthogonalities of the measurement axes of the autocollimators and of the rotational axes of the tilting unit. It allows us to derive specific measurement procedures to determine the misalignments in situ and, in turn, to correct the measurements of the autocollimators. Finally, the realisation and the results of a traceable spatial angle calibration of an autocollimator will be presented. This is the first calibration of this type worldwide.

  4. Deformation of a free interface pierced by a tilted cylinder

    NASA Astrophysics Data System (ADS)

    Raufaste, C.; Kirstetter, G.; Celestini, F.; Cox, S. J.

    2012-07-01

    We investigate the interaction between an infinite cylinder and a free fluid-fluid interface governed only by its surface tension. We study the deformation of an initially flat interface when it is deformed by the presence of a cylindrical object, tilted at an arbitrary angle, that the interface “totally wets”. Our simulations predict all significant quantities such as the interface shape, the position of the contact line, and the force exerted by the interface on the cylinder. These results are compared with an experimental study of the penetration of a soap film by a cylindrical liquid jet. This dynamic situation exhibits all the characteristics of a totally wetting interface. We show that whatever the inclination, the force is always perpendicular to the plane of the interface, and its amplitude diverges as the inclination angle increases. Such results should bring new insights in both fluid and solid mechanics, from animal locomotion to surface micro-processing.

  5. Determination of settings of a tilted head-cutter for generation of hypoid and spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Zhang, Y.; Lundy, M.; Heine, C.

    1988-01-01

    Kinematics of Gleason mechanisms of hypoid and spiral bevel cutting machines are considered. These mechanisms are designated to install the position and tilt of the head cutter. The tilt of the head cutter with standard blades provides the required pressure angle. The authors have developed the matrix presentation of kinematics of these meachanisms and basic equations for the required settings. An example is presented based on the developed computation procedure.

  6. Origin of the Director Tilt in the Lyotropic Smectic C* Analog Phase: Hydration Interactions and Solvent Variations.

    PubMed

    Bruckner, Johanna R; Knecht, Friederike; Giesselmann, Frank

    2016-01-01

    The origin and long-range correlation of the director tilt in the recently discovered Lα'* phase, which is the lyotropic analog of the thermotropic smectic C* (SmC*) liquid crystalline phase, are investigated. Polarized micro-Raman spectroscopy reveals that the director tilt in the Lα'* phase originates from a tilting of the aromatic 2-phenylpyrimidine cores of the surfactant molecules. Optical measurements of the tilt angle show that its magnitude decreases with increasing solvent concentration, suggesting that the long-range inter-lamellar correlation of the tilt directions is reduced at increasing thickness of the solvent layers. The phase diagrams with four different solvents (water, formamide, N-methylformamide, N,N-dimethylformamide) are investigated, showing that the Lα'* phase is only formed with those solvents that exhibit a dense network of hydrogen bonds. This observation suggests that these hydrogen bond networks play an essential role in the long-range correlation of the director tilt between adjacent surfactant layers. To verify this assumption, mixtures with deuterated solvents are investigated, showing that the tilt angle in the Lα'* phase is indeed reduced by this modification of the solvent's hydrogen bond network.

  7. Sensitivity of off-axis performance of aspheric spectacle lenses to tilt and decentration.

    PubMed

    Atchison, D A; Tame, S A

    1993-10-01

    Apparatus was modified to measure, and theoretical raytracing was used to predict, off-axis powers of spectacle lenses in the presence of tilt or decentration. In response to poor fitting in the form of tilt or decentration, lenses with aspheric front surfaces were found to have greater off-axis power errors than best-form lenses with spherical surfaces. This is attributable to the aspheric lenses having flatter surfaces than the spherical lenses. The errors are up to twice those occurring for the spherical lenses, and can be quite high, e.g. 0.9 D astigmatism for +6D power with 10 degrees tilt in 20 degrees upgaze. Negative lenses are more sensitive to poor fitting than are positive lenses of the same power. The errors for straight ahead vision associated with tilt are approximately proportional to the square of the angle of tilt, and the errors for straight ahead vision associated with decentration are approximately proportional to the square of decentration. It is most important that aspheric lenses be correctly fitted, which means that each 2 degrees of pantascopic tilt should be accompanied by approximately 1 mm decentration. PMID:8278198

  8. All-Polymer Electrolytic Tilt Sensor with Conductive Poly(dimethylsiloxane) Electrodes

    NASA Astrophysics Data System (ADS)

    Lee, June Kyoo; Choi, Ju Chan; Kong, Seong Ho

    2013-06-01

    In this study, an all-polymer electrolytic tilt sensor with conductive and corrosion-resistant poly(dimethylsiloxane) (PDMS) electrodes was designed and its performances were characterized. A PDMS cavity in the sensor for holding an electrolyte was fabricated by soft lithography using an ultraviolet-sensitive polymer. A conductive PDMS composite (gPDMS) with graphite powder was used for the electrode to measure the inclination angle of the electrolyte. A gPDMS composite with a graphite concentration above 40 wt % was able to function as a conductive polymer. The fabricated all-polymer tilt sensor exhibited a detectable inclination range of ± 60° and showed a relatively linear output signal compared with those exhibited by conventional micromachined tilt sensors with axis asymmetrical cavities. The maximum hysteresis of the output signal was approximately 0.1 V\\text{rms when the sensor repeatedly tilted and leveled off. In addition to the fundamental characterization of the sensor, various characteristics of the all-polymer tilt sensor, such as time-dependent and electrolyte-volume-dependent variations in the output signal, were investigated in this study. While the performance of the proposed sensor was comparable to that of conventional silicon-micromachined tilt sensors, the sensor could be produced at a fraction of the cost required to fabricate the conventional sensors.

  9. Tilt correction for intracavity mirror of laser with an unstable resonator

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Xu, Bing; Yang, Wei

    2005-12-01

    The influence on outcoupled mode by introducing intracavity tilt-perturbation in confocal unstable resonator is analyzed. The intracavity mode properties and Zernike-aberration coefficient of intrcavity mirror's maladjustment are calculated theoretically. The experimental results about the relations of intracavity mirror maladjustment and the properties of mode aberration are presented by adopting Hartmann-Shack wavefront sensor. The results show that the intracavity perturbation of the concave mirror has more remarkable effect on outcoupled beam-quality than that of the convex mirror. For large Fresnel-number resonator, the tilt angle of intracavity mirror has a close linear relationship with extracavity Zernike tilt coefficient. The ratio of tilt aberration coefficient approaches to the magnification of unstable resonator if equivalent perturbation is applied to concave mirror and convex mirror respectively. Furthermore, astigmatism and defocus aberration also increase with the augment of tilt aberration of beam mode. So intracavity phase-corrected elements used in unstable resonator should be close to the concave mirror. Based these results, a set of automatic control system of intracavity tilt aberration is established and the aberration-corrected results are presented and analyzed in detail.

  10. Buoyancy-induced turbulent mixing in a narrow tilted tank

    NASA Astrophysics Data System (ADS)

    Lin, Tiras Y.; Caulfield, C. P.; Woods, Andrew W.

    2014-11-01

    We describe a series of experiments in which a constant buoyancy flux Bs of dyed salty water of density ρs is introduced at the top of a long narrow tank of square cross-section tilted at an angle θ from the vertical. The tank is initially filled with fresh clear water of density ρ0 <ρs , and we investigate the resulting buoyancy-driven high Reynolds number turbulent mixing at various tilt angles θ using a light-attenuation method. When θ >0° , the ensemble averaged reduced gravity develops a statically stable gradient normal to the walls of the tank, and this induces a counterflow. We model the evolution of the cross-tank and ensemble averaged reduced gravity < g ' ̲ >e as a diffusive process using Prandtl's mixing length theory, building on the model of van Sommeren et al. (JFM 701, 2012) who considered vertical tanks. We show that the counterflow acts to enhance the effective along-tank turbulent diffusivity, and from experiments, we find that the mixing length increases approximately linearly with θ, and that both the along-tank and cross-tank turbulent diffusivities are proportional to (∂ < g ' ̲ >e / ∂ z)1/2 .

  11. Echocardiograms during six hours of bedrest at head-down and head-up tilt and during space flight

    NASA Technical Reports Server (NTRS)

    Lathers, C. M.; Riddle, J. M.; Mulvagh, S. L.; Mukai, C.; Diamandis, P. H.; Dussack, L. G.; Bungo, M. W.; Charles, J. B.

    1993-01-01

    Left ventricular end-diastolic volume increased after 4 1/2 to 6 hours of space flight, but was significantly decreased after 5 to 6 days of space flight. To determine the role of acute gravitational effects in this phenomenon, responses to a 6-hour bedrest model of 0 gravity (G; 5 degrees head-down tilt) were compared with those of fractional gravity loads of 1/6 G, 1/3 G, and 2/3 G by using head-up tilts of 10 degrees, 20 degrees, and 42 degrees, respectively. On 4 different days, six healthy male subjects were tilted at one of the four angles for 6 hours. Cardiac dimensions and volumes were determined from two-dimensional and M-mode echocardiograms in the left lateral decubitus position at control (0), 2, 4, and 6 hours. Stroke volume decreased with time (P < .05) for all tilt angles when compared with control. Ejection fraction (EF) at -5 degrees was greater than at +20 degrees and +42 degrees (not significant); EF at +10 degrees was greater than at +42 degrees (not significant). For the tilt angles of -5 degrees, +10 degrees, and +20 degrees, mean heart rate decreased during the first 2 hours, and returned to control or was slightly elevated above control (+20 degrees) by 6 hours (not significant). At the +42 degrees angle of tilt, heart rate was increased above control at hours 2, 4, and 6. There were no significant differences in cardiac output at any time point for any tilt angle.(ABSTRACT TRUNCATED AT 250 WORDS).

  12. Spin transport in tilted electron vortex beams

    NASA Astrophysics Data System (ADS)

    Basu, Banasri; Chowdhury, Debashree

    2014-12-01

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  13. Spin transport in tilted electron vortex beams

    SciTech Connect

    Basu, Banasri; Chowdhury, Debashree

    2014-12-10

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  14. Chaos in a quantum well in tilted fields: A scaling system

    NASA Astrophysics Data System (ADS)

    Monteiro, T. S.; Dando, P. A.

    1996-04-01

    Recent experiments have shown that the resonant tunneling diode in a tilted magnetic field is a new and promising probe of quantum chaos. We show that by using a scaling transformation a quantum spectrum is obtained that corresponds to a single classical regime and may be reliably analyzed in terms of periodic orbits. We show that for parameters close to experimental values (with an injection energy of about 25% of that due to the voltage drop), with increasing tilt angle, the disappearance of one set of fluctuations in the tunneling current is associated with a confluence where two periodic orbits are absorbed, persisting briefly in the spectrum as a ``ghost.''

  15. Modeling of magnetization precession in spin-torque nano-oscillators with a tilted polarizer

    SciTech Connect

    Lv, Gang; Zhang, Hong E-mail: yaowen@tongji.edu.cn; Cao, Xuecheng; Qin, Yufeng; Li, Guihua; Wang, Linhui; Liu, Yaowen E-mail: yaowen@tongji.edu.cn; Hou, Zhiwei

    2015-07-15

    The spin-torque induced magnetization precession dynamics are studied in a spin-valve with a tilted spin polarizer. Macrospin simulations demonstrate that the frequency of precession state depends both on the external DC current and the intrinsic parameters of devices such as the tilted angle of spin polarizer, the damping factor and saturation magnetization of the free layer. The dependence role of those parameters is characterized by phase diagrams. An analytical model is presented, which can successfully interpret the features of precession frequency.

  16. An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering.

    PubMed

    Yan, Ming; Zhang, Cishen; Liang, Hongzhu

    2006-01-01

    FDK algorithm is a well-known 3D (three-dimensional) approximate algorithm for CT (computed tomography) image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional) approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction.

  17. Scanning transmission electron microscopy through-focal tilt-series on biological specimens.

    PubMed

    Trepout, Sylvain; Messaoudi, Cédric; Perrot, Sylvie; Bastin, Philippe; Marco, Sergio

    2015-10-01

    Since scanning transmission electron microscopy can produce high signal-to-noise ratio bright-field images of thick (≥500 nm) specimens, this tool is emerging as the method of choice to study thick biological samples via tomographic approaches. However, in a convergent-beam configuration, the depth of field is limited because only a thin portion of the specimen (from a few nanometres to tens of nanometres depending on the convergence angle) can be imaged in focus. A method known as through-focal imaging enables recovery of the full depth of information by combining images acquired at different levels of focus. In this work, we compare tomographic reconstruction with the through-focal tilt-series approach (a multifocal series of images per tilt angle) with reconstruction with the classic tilt-series acquisition scheme (one single-focus image per tilt angle). We visualised the base of the flagellum in the protist Trypanosoma brucei via an acquisition and image-processing method tailored to obtain quantitative and qualitative descriptors of reconstruction volumes. Reconstructions using through-focal imaging contained more contrast and more details for thick (≥500 nm) biological samples.

  18. Dynamic of charged planar geometry in tilted and non-tilted frames

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Zaeem Ul Haq Bhatti, M.

    2015-05-01

    We investigate the dynamics of charged planar symmetry with an anisotropic matter field subject to a radially moving observer called a tilted observer. The Einstein-Maxwell field equations are used to obtain a relation between non-tilted and tilted frames and between kinematical and dynamical quantities. Using the Taub mass formalism and conservation laws, two evolution equations are developed to analyze the inhomogeneities in the tilted congruence. It is found that the radial velocity (due to the tilted observer) and the electric charge have a crucial effect on the inhomogeneity factor. Finally, we discuss the stability in the non-tilted frame in the pure diffusion case and examine the effects of the electromagnetic field.

  19. Dynamic of charged planar geometry in tilted and non-tilted frames

    SciTech Connect

    Sharif, M. Zaeem Ul Haq Bhatti, M.

    2015-05-15

    We investigate the dynamics of charged planar symmetry with an anisotropic matter field subject to a radially moving observer called a tilted observer. The Einstein-Maxwell field equations are used to obtain a relation between non-tilted and tilted frames and between kinematical and dynamical quantities. Using the Taub mass formalism and conservation laws, two evolution equations are developed to analyze the inhomogeneities in the tilted congruence. It is found that the radial velocity (due to the tilted observer) and the electric charge have a crucial effect on the inhomogeneity factor. Finally, we discuss the stability in the non-tilted frame in the pure diffusion case and examine the effects of the electromagnetic field.

  20. Aurelia aurita bio-inspired tilt sensor

    NASA Astrophysics Data System (ADS)

    Smith, Colin; Villanueva, Alex; Priya, Shashank

    2012-10-01

    The quickly expanding field of mobile robots, unmanned underwater vehicles, and micro-air vehicles urgently needs a cheap and effective means for measuring vehicle inclination. Commonly, tilt or inclination has been mathematically derived from accelerometers; however, there is inherent error in any indirect measurement. This paper reports a bio-inspired tilt sensor that mimics the natural balance organ of jellyfish, called the ‘statocyst’. Biological statocysts from the species Aurelia aurita were characterized by scanning electron microscopy to investigate the morphology and size of the natural sensor. An artificial tilt sensor was then developed by using printed electronics that incorporates a novel voltage divider concept in conjunction with small surface mount devices. This sensor was found to have minimum sensitivity of 4.21° with a standard deviation of 1.77°. These results open the possibility of developing elegant tilt sensor architecture for both air and water based platforms.

  1. Stabilizing windings for tilting and shifting modes

    SciTech Connect

    Jardin, S.C.; Christensen, U.R.

    1982-02-26

    This invention provides simple, inexpensive, independent and passive, conducting loops for stabilizing a plasma ring having externally produced equilibrium fields on opposite sides of the plasma ring and internal plasma currents that interact to tilt and/or shift the plasma ring relative to the externally produced equilibrium field so as to produce unstable tilting and/or shifting modes in the plasma ring. More particularly this invention provides first and second passive conducting loops for containing first and second induced currents in first and second directions corresponding to the amplitude and directions of the unstable tilting and/or shifting modes in the plasma ring. To this end, the induced currents provide additional magnetic fields for producing restoring forces and/or restoring torques for counteracting the tilting and/or shifting modes when the conducting loops are held fixed in stationary positions relative to the externally produced equilibrium fields on opposite sides of the plasma ring.

  2. Signatures of the Berry curvature in the frequency dependent interlayer magnetoresistance in tilted magnetic fields.

    PubMed

    Wright, Anthony R; McKenzie, Ross H

    2014-02-26

    We show that in a layered metal, the angle dependent, finite frequency, interlayer magnetoresistance is altered due to the presence of a non-zero Berry curvature at the Fermi surface. At zero frequency, we find a conservation law which demands that the 'magic angle' condition for interlayer magnetoresistance extrema as a function of magnetic field tilt angle is essentially both field and Berry curvature independent. In the finite frequency case, however, we find that surprisingly large signatures of a finite Berry curvature occur in the periodic orbit resonances. We outline a method whereby the presence and magnitude of the Berry curvature at the Fermi surface can be extracted.

  3. Development of a novel straining holder for transmission electron microscopy compatible with single tilt-axis electron tomography.

    PubMed

    Sato, K; Miyazaki, H; Gondo, T; Miyazaki, S; Murayama, M; Hata, S

    2015-10-01

    We have developed a newly designed straining specimen holder for in situ transmission electron microscopy (TEM) compatible with high-angle single tilt-axis electron tomography. The holder can deform a TEM specimen under tensile stress with the strain rate between 1.5 × 10(-6) and 5.2 × 10(-3) s(-1). We have also confirmed that the maximum tilt angle of the specimen holder reaches ±60° with a rectangular shape aluminum specimen. The new specimen holder, termed as 'straining and tomography holder', will have wide range potential applications in materials science. PMID:25904643

  4. Liquid film dynamics in horizontal and tilted tubes: Dry spots and sliding drops

    NASA Astrophysics Data System (ADS)

    King, A. A.; Cummings, L. J.; Naire, S.; Jensen, O. E.

    2007-04-01

    Using a model derived from lubrication theory, we consider the evolution of a thin viscous film coating the interior or exterior of a cylindrical tube. The flow is driven by surface tension and gravity and the liquid is assumed to wet the cylinder perfectly. When the tube is horizontal, we use large-time simulations to describe the bifurcation structure of the capillary equilibria appearing at low Bond number. We identify a new film configuration in which an isolated dry patch appears at the top of the tube and demonstrate hysteresis in the transition between rivulets and annular collars as the tube length is varied. For a tube tilted to the vertical, we show how a long initially uniform rivulet can break up first into isolated drops and then annular collars, which subsequently merge. We also show that the speed at which a localized drop moves down the base of a tilted tube is nonmonotonic in tilt angle.

  5. Testing a fast off-axis parabolic mirror by using tilted null screens.

    PubMed

    Avendaño-Alejo, M; Díaz-Uribe, R

    2006-04-20

    We propose the design of tilted null screens for testing off-axis segments of conic surfaces. The tilt allows us to control the size of the screen and the sensitivity of the test. For positive tilt angles the sensitivity is increased while the size of the screen is reduced in the sagittal caustic region and vice versa in the tangential caustic region. Further analysis and preliminary experimental results are presented for a fast off-axis concave parabolic mirror with an elliptical aperture. An offset distance of X(C) = 25.4 mm yields radius of curvature at the vertex R = 20.4 mm; major axis of the mirror D(M) = 49.4 mm; and minor axis D(m) = 29.5 mm.

  6. General Relativistic Magnetohydrodynamics Simulations of Tilted Black Hole Accretion Flows and Their Radiative Properties

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Gammie, C. F.; Dolence, J.; Noble, S. C.

    2013-01-01

    We perform global General Relativistic Magnetohydrodynamics (GRMHD) simulations of non-radiative, magnetized disks that are initially tilted with respect to the black hole's spin axis. We run the simulations with different size and tilt angle of the tori for 2 different resolutions. We also perform radiative transfer using Monte Carlo based code that includes synchrotron emission, absorption and Compton scattering to obtain spectral energy distribution and light curves. Similar work was done by Fragile et al. (2007) and Dexter & Fragile (2012) to model the super massive black hole SgrA* with tilted accretion disks. We compare our results of fully conservative hydrodynamic code and spectra that include X-ray, with their results.

  7. Observation of beam-induced changes in the polarization of Balmer-{alpha} radiation emitted following beam--tilted-foil transmission

    SciTech Connect

    Harper, D.L.; Albridge, R.G.; Tolk, N.H.; Qi, W.; Allred, D.D.; Knight, L.V.

    1995-12-01

    Measurements of the circular polarization of Balmer-{alpha} radiation emitted by excited hydrogen atoms, following the transmission of (20--50)-keV protons through thin, tilted amorphous carbon foils, exhibit markedly unexpected behavior as a function of exposure of the foil to the proton beam. Specifically, the circular polarization changes from an initially well understood tilt-angle dependence to a behavior which, for low tilt angles, gives the {ital opposite} {ital handedness} {ital of} {ital circular} {ital polarization} from that predicted. In addition, the degree of alignment, indicated by the linear Stokes parameter {ital M}/{ital I}, is enhanced also as a function of dose. These changes in the tilt-angle dependence of the Stokes parameters have been systematically correlated with beam-induced graphitization of the foil, which is observed to occur from Raman measurements.

  8. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  9. Optimum constrained image restoration filters

    NASA Technical Reports Server (NTRS)

    Riemer, T. E.; Mcgillem, C. D.

    1974-01-01

    The filter was developed in Hilbert space by minimizing the radius of gyration of the overall or composite system point-spread function subject to constraints on the radius of gyration of the restoration filter point-spread function, the total noise power in the restored image, and the shape of the composite system frequency spectrum. An iterative technique is introduced which alters the shape of the optimum composite system point-spread function, producing a suboptimal restoration filter which suppresses undesirable secondary oscillations. Finally this technique is applied to multispectral scanner data obtained from the Earth Resources Technology Satellite to provide resolution enhancement. An experimental approach to the problems involving estimation of the effective scanner aperture and matching the ERTS data to available restoration functions is presented.

  10. Optimum constrained image restoration filters

    NASA Technical Reports Server (NTRS)

    Riemer, T. E.; Mcgillem, C. D.

    1977-01-01

    The research described centered on development of an optimum image restoration filter (IRF) minimizing the radius of gyration of the corrected or composite system point-spread function (P-SF) subject to contraints, and reducing 2-dimensional spatial smearing or blurring of an image. The constraints are imposed on the radius of gyration of the IRF P-SF, the total restored image noise power, and the shape of the composite system frequency spectrum. The image degradation corresponds to mapping many points from the original image into a single resolution element. The P-SF is obtained as solution to a set of simultaneous differential equations obeying nonlinear integral constraints. Truncation errors due to edge effects are controlled by constraining the radius of gyration of the IRF P-SF. An iterative technique suppresses sidelobes of the composite system P-SF.

  11. Swarms: Optimum aggregations of spacecraft

    NASA Technical Reports Server (NTRS)

    Mayer, H. L.

    1980-01-01

    Swarms are aggregations of spacecraft or elements of a space system which are cooperative in function, but physically isolated or only loosely connected. For some missions the swarm configuration may be optimum compared to a group of completely independent spacecraft or a complex rigidly integrated spacecraft or space platform. General features of swarms are induced by considering an ensemble of 26 swarms, examples ranging from Earth centered swarms for commercial application to swarms for exploring minor planets. A concept for a low altitude swarm as a substitute for a space platform is proposed and a preliminary design studied. The salient design feature is the web of tethers holding the 30 km swarm in a rigid two dimensional array in the orbital plane. A mathematical discussion and tutorial in tether technology and in some aspects of the distribution of services (mass, energy, and information to swarm elements) are included.

  12. Reply to "Comment on 'Origin of tilted-phase generation in systems of ellipsoidal molecules with dipolar interactions' "

    NASA Astrophysics Data System (ADS)

    Bose, Tushar Kanti; Saha, Jayashree

    2014-04-01

    In a recent article [T. K. Bose and J. Saha, Phys. Rev. E 86, 050701 (2012), 10.1103/PhysRevE.86.050701], we have presented the results of a Monte Carlo simulation study of the systems of dipolar Gay-Berne ellipsoids where two terminal antiparallel dipoles are placed symmetrically on the long axis of each ellipsoid, and the results revealed the combined contribution of dipolar separation and transverse orientations in controlling the tilt angle in the tilted hexatic smectic phase. The tilt angle changed from zero to a significant value, in the case of transverse dipoles, with a change in the dipolar separation. In the related comment, Madhusudana [preceding Comment, Phys. Rev. E 89, 046501 (2014), 10.1103/PhysRevE.89.046501] has claimed that the physical origin of the molecular tilt in the significantly tilted phases found in the simulations is similar to that proposed by McMillan [Phys. Rev. A 8, 1921 (1973), 10.1103/PhysRevA.8.1921]. Here, we explain that the claim is not correct and make it clear that the two compared pictures are quite different. In the preceding Comment, Madhusudana has also suggested an alternative explanation for tilt generation in the simulations by criticizing the original one proposed by us. We argue here in support of the original explanation and clarify that his explanation does not follow the simulation results.

  13. Reply to "Comment on 'Origin of tilted-phase generation in systems of ellipsoidal molecules with dipolar interactions' ".

    PubMed

    Bose, Tushar Kanti; Saha, Jayashree

    2014-04-01

    In a recent article [T. K. Bose and J. Saha, Phys. Rev. E 86, 050701 (2012)], we have presented the results of a Monte Carlo simulation study of the systems of dipolar Gay-Berne ellipsoids where two terminal antiparallel dipoles are placed symmetrically on the long axis of each ellipsoid, and the results revealed the combined contribution of dipolar separation and transverse orientations in controlling the tilt angle in the tilted hexatic smectic phase. The tilt angle changed from zero to a significant value, in the case of transverse dipoles, with a change in the dipolar separation. In the related comment, Madhusudana [preceding Comment, Phys. Rev. E 89, 046501 (2014)] has claimed that the physical origin of the molecular tilt in the significantly tilted phases found in the simulations is similar to that proposed by McMillan [Phys. Rev. A 8, 1921 (1973)]. Here, we explain that the claim is not correct and make it clear that the two compared pictures are quite different. In the preceding Comment, Madhusudana has also suggested an alternative explanation for tilt generation in the simulations by criticizing the original one proposed by us. We argue here in support of the original explanation and clarify that his explanation does not follow the simulation results. PMID:24827369

  14. Hybrid monitor for both beam position and tilt of pulsed high-current beams

    SciTech Connect

    Pang, J. He, X.; Ma, C.; Zhao, L.; Li, Q.; Dai, Z.

    2014-09-15

    A Hybrid beam monitor, integrated with both azimuthal and axial B-dot probes, was designed for simultaneous measurement of both beam position and beam angle for pulsed high-current beams at the same location in beam pipe. The output signals of axial B-dot probes were found to be mixed with signals caused by transverse position deviation. In order to eliminate the unwanted signals, an elimination method was developed and its feasibility tested on a 50-Ω coaxial line test stand. By this method, a waveform, shape-like to that of input current and proportional to the tilt angle, was simulated and processed by following integration step to achieve the tilt angle. The tests showed that the measurement error of displacement and tilt angle less than 0.3 mm and 1.5 mrad, respectively. The latter error could be reduced with improved probes by reducing the inductance of the axial B-dot probe, but the improvement reached a limit due to some unknown systemic mechanism.

  15. Human Ocular Counter-Rolling and Roll Tilt Perception during Off-Vertical Axis Rotation after Spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Denise, Pierre; Reschke, Millard; Wood, Scott J.

    2007-01-01

    Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 /s in darkness at two angles of tilt (10 and 20 ). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weigthing of the internal representation of gravitational vertical as a result of adaptation to microgravity.

  16. Experimental evidence of ageing and slow restoration of the weak-contact configuration in tilted 3D granular packings

    NASA Astrophysics Data System (ADS)

    Kiesgen de Richter, S.; Zaitsev, V. Yu; Richard, P.; Delannay, R.; Le Caër, G.; Tournat, V.

    2010-11-01

    Granular packings slowly driven towards their instability threshold are studied using a digital imaging technique as well as a nonlinear acoustic method. The former method allows us to study grain rearrangements on the surface during the tilting and the latter enables us to selectively probe the modifications of the weak-contact fraction in the material bulk. Gradual ageing of both the surface activity and the weak-contact reconfigurations is observed as a result of repeated tilt cycles up to a given angle smaller than the angle of avalanche. For an aged configuration reached after several consecutive tilt cycles, abrupt resumption of the on-surface activity and of the weak-contact rearrangements occurs when the packing is subsequently inclined beyond the previous maximal tilting angle. This behavior is compared with literature results from numerical simulations of inclined 2D packings. It is also found that the aged weak-contact configurations exhibit spontaneous restoration towards the initial state if the packing remains at rest for tens of minutes. When the packing is titled forth and back between zero and near-critical angles, instead of ageing, the weak-contact configuration exhibits 'internal weak-contact avalanches' in the vicinity of both the near-critical and zero angles. By contrast, the stronger-contact skeleton remains stable.

  17. The Transmembrane Helix Tilt May Be Determined by the Balance between Precession Entropy and Lipid Perturbation

    PubMed Central

    2012-01-01

    Hydrophobic helical peptides interact with lipid bilayers in various modes, determined by the match between the length of the helix’s hydrophobic core and the thickness of the hydrocarbon region of the bilayer. For example, long helices may tilt with respect to the membrane normal to bury their hydrophobic cores in the membrane, and the lipid bilayer may stretch to match the helix length. Recent molecular dynamics simulations and potential of mean force calculations have shown that some TM helices whose lengths are equal to, or even shorter than, the bilayer thickness may also tilt. The tilt is driven by a gain in the helix precession entropy, which compensates for the free energy penalty resulting from membrane deformation. Using this free energy balance, we derived theoretically an equation of state, describing the dependence of the tilt on the helix length and membrane thickness. To this end, we conducted coarse-grained Monte Carlo simulations of the interaction of helices of various lengths with lipid bilayers of various thicknesses, reproducing and expanding the previous molecular dynamics simulations. Insight from the simulations facilitated the derivation of the theoretical model. The tilt angles calculated using the theoretical model agree well with our simulations and with previous calculations and measurements. PMID:24932138

  18. Influence of Pelvic Tilt on Polyethylene Wear after Total Hip Arthroplasty.

    PubMed

    Tezuka, Taro; Inaba, Yutaka; Kobayashi, Naomi; Ike, Hiroyuki; Kubota, So; Kawamura, Masaki; Saito, Tomoyuki

    2015-01-01

    We aimed to evaluate the effects of pelvic tilt on polyethylene wear after total hip arthroplasty (THA). A total of 105 joints treated with primary THA were included; conventional polyethylene (CPE) liners were used in 43 hips and highly cross-linked polyethylene (HXLPE) liners were used in the remaining 62 hips. The pelvis was tilted 6° posteriorly in the standing position as compared to the supine position, which resulted in significant increases of 1.7° and 2.8° in cup inclination in the CPE and HXLPE groups, respectively. Moreover, the change in pelvic tilt resulted in significant increases of 3.6° and 4.9° in cup anteversion in the CPE and HXLPE groups, respectively. For the CPE group, multiple regression analysis showed a significant association between the angle of pelvic tilt (PTA) and cup inclination and the polyethylene wear ratio. The adjusted R (2) of the regression model was larger for measures obtained in the standing position as compared to the supine position. For the HXLPE group, there was no significant relationship between radiographic parameters and polyethylene wear. Close observation of polyethylene wear is recommended for patients with severe posterior pelvic tilt who have undergone THA with conventional polyethylene.

  19. Improved tilt-depth method for fast estimation of top and bottom depths of magnetic bodies

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Guo; Zhang, Jin; Ge, Kun-Peng; Chen, Xiao; Nie, Feng-Jun

    2016-06-01

    The tilt-depth method can be used to make fast estimation of the top depth of magnetic bodies. However, it is unable to estimate bottom depths and its every inversion point only has a single solution. In order to resolve such weaknesses, this paper presents an improved tilt-depth method based on the magnetic anomaly expression of vertical contact with a finite depth extent, which can simultaneously estimate top and bottom depths of magnetic bodies. In addition, multiple characteristic points are selected on the tilt angle map for joint computation to improve reliability of inversion solutions. Two- and threedimensional model tests show that this improved tilt-depth method is effective in inverting buried depths of top and bottom bodies, and has a higher inversion precision for top depths than the conventional method. The improved method is then used to process aeromagnetic data over the Changling Fault Depression in the Songliao Basin, and inversion results of top depths are found to be more accurate for actual top depths of volcanic rocks in two nearby drilled wells than those using the conventional tilt-depth method.

  20. Evaluation of Anterior Segment's Structures in Tilted Disc Syndrome.

    PubMed

    Ozsoy, Ercan; Gunduz, Abuzer; Demirel, Ersin Ersan; Cumurcu, Tongabay

    2016-01-01

    Purpose. To evaluate anterior segment's structures by Pentacam in patients with tilted disc syndrome (TDS). Methods. Group 1 included forty-six eyes of forty-six patients who have the TDS. Group 2 including forty-six eyes of forty-six cases was the control group which was equal to the study group in age, gender, and refraction. A complete ophthalmic examination was performed in both groups. All cases were evaluated by Pentacam. The axial length (AL) of eyes was measured by ultrasound. Quantitative data obtained from these measurements were compared between two groups. Results. There was no statistically significant difference for age, gender, axial length, and spherical equivalent measurements between two groups (p = 0.625, p = 0.830, p = 0.234, and p = 0.850). There was a statistically significant difference for central corneal thickness (CCT), corneal volume (CV), anterior chamber angle (ACA), and pupil size measurements between two groups (p = 0.001, p = 0.0001, p = 0.003, and p = 0.001). Also, there was no statistically significant difference for anterior chamber depth (ACD), anterior chamber volume (ACV), and lens thickness (LT) measurements between two groups (p = 0.130, p = 0.910, and p = 0.057). Conclusion. We determined that CCT was thinner, CV was less, and ACA was narrower in patients with TDS. There are some changes in the anterior segment of the eyes with tilted disc. PMID:27648303

  1. Evaluation of Anterior Segment's Structures in Tilted Disc Syndrome

    PubMed Central

    Ozsoy, Ercan; Demirel, Ersin Ersan; Cumurcu, Tongabay

    2016-01-01

    Purpose. To evaluate anterior segment's structures by Pentacam in patients with tilted disc syndrome (TDS). Methods. Group 1 included forty-six eyes of forty-six patients who have the TDS. Group 2 including forty-six eyes of forty-six cases was the control group which was equal to the study group in age, gender, and refraction. A complete ophthalmic examination was performed in both groups. All cases were evaluated by Pentacam. The axial length (AL) of eyes was measured by ultrasound. Quantitative data obtained from these measurements were compared between two groups. Results. There was no statistically significant difference for age, gender, axial length, and spherical equivalent measurements between two groups (p = 0.625, p = 0.830, p = 0.234, and p = 0.850). There was a statistically significant difference for central corneal thickness (CCT), corneal volume (CV), anterior chamber angle (ACA), and pupil size measurements between two groups (p = 0.001, p = 0.0001, p = 0.003, and p = 0.001). Also, there was no statistically significant difference for anterior chamber depth (ACD), anterior chamber volume (ACV), and lens thickness (LT) measurements between two groups (p = 0.130, p = 0.910, and p = 0.057). Conclusion. We determined that CCT was thinner, CV was less, and ACA was narrower in patients with TDS. There are some changes in the anterior segment of the eyes with tilted disc. PMID:27648303

  2. Evaluation of Anterior Segment's Structures in Tilted Disc Syndrome

    PubMed Central

    Ozsoy, Ercan; Demirel, Ersin Ersan; Cumurcu, Tongabay

    2016-01-01

    Purpose. To evaluate anterior segment's structures by Pentacam in patients with tilted disc syndrome (TDS). Methods. Group 1 included forty-six eyes of forty-six patients who have the TDS. Group 2 including forty-six eyes of forty-six cases was the control group which was equal to the study group in age, gender, and refraction. A complete ophthalmic examination was performed in both groups. All cases were evaluated by Pentacam. The axial length (AL) of eyes was measured by ultrasound. Quantitative data obtained from these measurements were compared between two groups. Results. There was no statistically significant difference for age, gender, axial length, and spherical equivalent measurements between two groups (p = 0.625, p = 0.830, p = 0.234, and p = 0.850). There was a statistically significant difference for central corneal thickness (CCT), corneal volume (CV), anterior chamber angle (ACA), and pupil size measurements between two groups (p = 0.001, p = 0.0001, p = 0.003, and p = 0.001). Also, there was no statistically significant difference for anterior chamber depth (ACD), anterior chamber volume (ACV), and lens thickness (LT) measurements between two groups (p = 0.130, p = 0.910, and p = 0.057). Conclusion. We determined that CCT was thinner, CV was less, and ACA was narrower in patients with TDS. There are some changes in the anterior segment of the eyes with tilted disc.

  3. Measurement of Transcranial Distance During Head-Down Tilt Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Torikoshi, Shigeyo; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Bowley, S.; Yost, W. T.; Hargens, Alan R.

    1995-01-01

    Exposure to microgravity probably elevates blood pressure and flow in the head which may increase intracranial volume (ICV) and pressure (ICP). Due to the slightly compliant nature of the cranium, any increase of ICP will increase ICV and transcranial distance. We used a noninvasive ultrasound technique to measure transcranial distance (frontal to occipital) during head-down tilt. Seven subjects (ages 26-53) underwent the following tilt angles: 90 deg. upright, 30 deg., 0 deg., -6 deg., -10 deg., -6 deg., 0 deg., 30 deg., and 90 deg. Each angle was maintained for 1 min. Ultrasound wave frequency was collected continuously and transcranial distance was calculated (Delta(x) = x(Delta)f/f, where x is path length and f is frequency of the wave) for each tilt angle. Frequency decreased from 503.687 kHz (90 deg. upright) to 502.619 kHz (-10 deg.). These frequencies translated to an increased transcranial distance of 0.403 mm. Although our data suggest a significant increase in transcranial distance during head-down tilt, this apparent increase may result, in part, from head-down tilt-induced subcutaneous edema or cutaneous blood volume elevation. In three subjects, when the above protocol was repeated with an ace bandage wrapped around the head to minimize such edema, the increased transcranial distance from 90 deg. to -10 deg. was reduced by 0.174 mm. Further development of the technique to quantify bone-to-bone expansion unconfounded by cutaneous fluid is necessary. Therefore, this ultrasound technique may provide measurements of changes in cranial dimensions during microgravity.

  4. Tilts of the Master Equatorial Tower

    NASA Astrophysics Data System (ADS)

    Ahlstrom, H. G., Jr.; Gawronski, W.; Girdner, D.; Noskoff, E.; Sommerville, J. N.

    2000-07-01

    At the center of the DSS-14 antenna, a tower reaches to the focal point of the antenna dish. The master equatorial (ME) instrument is located at the top of the tower. This instrument precisely (with an accuracy that exceeds that of the antenna) follows the commanded trajectory. Through the optical coupling, the antenna focal point follows the ME. One factor of the antenna pointing precision is the movement of the ME base, i.e., the top of the tower. For this reason, measurements of the ME tower tilts have been taken in order to quantify the tilts, to determine possible causes of the tilting, and to update the antenna pointing budget. They were conducted under three antenna operating modes: during tracking, slewing, and antenna stowing. The measurements indicate that the ME tower tilts introduce significant pointing errors that exceed the required 32-GHz (Ka-band) pointing precision (estimated as 0.8 mdeg for a 0.1-dB gain loss). Four different sources of tilt were identified and require verification.

  5. The effect of cell tilting on turbulent thermal convection in a rectangular cell

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng-Qi; Guo, Shuang-Xi; Cen, Xian-Rong; Qu, Ling; Lu, Yuan-Zheng; Sun, Liang; Shang, Xiao-Dong

    2014-11-01

    In the study, the influence of cell tilting on flow dynamics is explored experimentally in a rectangular cell (aspect ratios Γx = 1 and Γy = 0 . 25). The measurements are carried out in a wide range of tilt angles (0 <= β <= π / 2 rad) at Prandtl number (Pr ~= 6 . 3) and Rayleigh number (Ra ~= 4 . 42 ×109). With the velocity measurements, the large-scale circulation (LSC) is found to be sensitive to the symmetry of the system. In the level case, the LSC is at about quarter width of the cell. As the cell is slightly tilted (β ~= 0 . 04 rad), the LSC moves quickly towards the boundary. With increasing β, the LSC changes gradually from oblique ellipse-like to square-like, and to more complicated patterns. Oscillation has been found for almost all β and it is the strongest at around β ~= 0 . 48 rad. With increasing β, the Reynolds number (Re) first increases till it reaches its maximum at the transition angle β = 0 . 15 rad, then it gradually decreases. A simple energy model is proposed to interpret the cell tilting on flow dynamics. It is predicted that the spatial distribution of the boundary layer affects the flow dynamics by varing the potential energy of system. Supported by China NSF 41176027 and 11072253 and SPR Program of CAS (XDA11030302).

  6. Optimum form of posterior chamber intraocular lenses to minimize aberrational astigmatism.

    PubMed

    Takei, K; Hommura, S; Okajima, H

    1995-01-01

    To optically determine the optimum form for a posterior chamber intraocular lens (PC IOL), we calculated the aberrational astigmatism induced by tilt and decentration of the PCIOL using an exact raytracing. First, the position and the radii of curvatures of the IOL were determined to make an emmetropic eye model using a paraxial raytracing. Next, the chief rays originating from the fovea centralis were traced backward through the tilted and/or decentrated PC IOL, the center of the pupil and the cornea, using trigonometric raytracing. Finally, the maximum and minimum aberrational astigmatism were calculated based on the Coddington's Equations for the sagittal and the tangential foci of the ray. All the refractive parameters in Gullstrand's No. 1 schematic eye were adopted. The effect of varying anterior corneal asphericity on the results was also examined. Four forms of polymethylmethacrylate PC IOLs (refractive index: 1.491) were analyzed; a plano-convex IOL with the curved surface facing the cornea, and three bi-convex forms with the ratio of anterior-to-posterior radii of curvatures of 1:4, 1:2 and 1:1, respectively. The 1:4 bi-convex form showed the lowest values for the maximum aberrational astigmatism calculated at every combination of tilt and decentration except 0 degrees tilt and/or 0 mm decentration. The aberrational astigmatism with the 1:4 bi-convex form of PC IOL did not exceed 1.0 D at the maximum tilt and decentration. The variation of anterior corneal asphericity did not influence the results. We conclude that the 1:4 bi-convex form of PC IOL minimizes the postoperative astigmatism induced by tilt and/or decentration of the lens. PMID:8926647

  7. The optimum hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Cary, A., Jr.; Voisinet, R. L. P.

    1986-01-01

    The capabilities of existing hypersonic wind tunnels in the U.S. are assessed to form a basis for recommendations for a new, costly facility which would provide data for modeling the hypervelocity aerodynamics envisioned for the new generation of aerospace vehicles now undergoing early studies. Attention is given to the regimes, both entry and aerodynamic, which the new vehicles will encounter, and the shortcomings of data generated for the Orbiter before flight are discussed. The features of foreign-gas, impulse, aeroballistic range, arc-heated and combustion-heated facilities are examined, noting that in any hypersonic wind tunnel the flow must be preheated to prevent liquefaction upon expansion in the test channel. The limitations of the existing facilities and the identification of the regimes which must be studied lead to a description of the characteristics of an optimum hypersonic wind tunnel, including the operations and productivity, the instrumentation, the nozzle design and the flow quality. Three different design approaches are described, each costing at least $100 million to achieve workability.

  8. Apparatus for raising or tilting a micromechanical structure

    SciTech Connect

    Allen, James J.

    2008-09-09

    An active hinge apparatus is disclosed which can be used to raise a micromechanical structure (e.g. a plate or micromirror) on a substrate. The active hinge apparatus utilizes one or more of teeth protruding outward from an axle which also supports the micromechanical structure on one end thereof. A rack is used to engage the teeth and rotate the axle to raise the micromechanical structure and tilt the structure at an angle to the substrate. Motion of the rack is provided by an actuator which can be a mechanically-powered actuator, or alternately an electrostatic comb actuator or a thermal actuator. A latch can be optionally provided in the active hinge apparatus to lock the micromechanical structure in an "erected" position.

  9. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2004-07-06

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  10. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2003-04-08

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  11. Advances in tilt rotor noise prediction

    NASA Technical Reports Server (NTRS)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    1992-01-01

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  12. Advances in tilt rotor noise prediction

    NASA Astrophysics Data System (ADS)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  13. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  14. Design and Performance of the Keck Angle Tracker

    NASA Technical Reports Server (NTRS)

    Crawford, Samuel L.; Ragland, S.; Booth, A.; Colavita, M. M.; Hovland, E.

    2006-01-01

    The Keck Angle Tracker (KAT) is a key subsystem in the NASA-funded Keck Interferometer at the Keck Observatory on the summit of Mauna Kea in Hawaii. KAT, which has been in operation since the achievement of first fringes in March 2001, senses the tilt of the stellar wavefront for each of the beams from the interferometer telescopes and provides tilt error signals to fast tip/tilt mirrors for high-bandwidth, wavefront tilt correction. In addition, KAT passes low-bandwidth, desaturation offsets to the adaptive optics system of the Keck telescopes to correct for slow pointing drifts. We present an overview of the instrument design and recent performance of KAT in support of the V2 science and nulling observing modes of the Keck Interferometer.

  15. Transition from multiplicity to singularity of steady natural convection in a tilted cubical enclosure

    NASA Astrophysics Data System (ADS)

    Torres, Juan F.; Henry, Daniel; Komiya, Atsuki; Maruyama, Shigenao

    2015-08-01

    The transition from the complex Rayleigh-Bénard convection to the simple heated-from-the-sides configuration in a cubical cavity filled with a Newtonian fluid is numerically studied. The cavity is tilted by an angle θ around its lower horizontal edge and is heated and cooled from two opposite tilted sides. We first analyze the effect of a marginal inclination angle on quasi-Rayleigh-Bénard convection (θ ≈0∘ ), which is a realistic physical approximation to the ideal Rayleigh-Bénard convection. We then yield the critical angles where multiple solutions that were initially found for θ ≈0∘ disappear, eventually resulting in the single steady roll solution found in the heated-from-the-sides configuration (θ =90∘ ). We confirm the existence of critical angles during the transition θ :0∘→90∘ , and we demonstrate that such angles are a consequence of either singularities or collisions of bifurcation points in the Rayleigh-number-θ parameter space. We finally derive the most important critical angles corresponding to any Newtonian fluid of Prandtl number greater than that of air.

  16. Tilt error in cryospheric surface radiation measurements at high latitudes: a model study

    NASA Astrophysics Data System (ADS)

    Bogren, W. S.; Burkhart, J. F.; Kylling, A.

    2015-08-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in-situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response foreoptic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can respectively introduce up to 2.6, 7.7, and 12.8 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo.

  17. Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit.

    PubMed

    Lu, Huihui; Lee, Jun Su; Zhao, Yan; Scarcella, Carmelo; Cardile, Paolo; Daly, Aidan; Ortsiefer, Markus; Carroll, Lee; O'Brien, Peter

    2016-07-25

    In this article we describe a cost-effective approach for hybrid laser integration, in which vertical cavity surface emitting lasers (VCSELs) are passively-aligned and flip-chip bonded to a Si photonic integrated circuit (PIC), with a tilt-angle optimized for optical-insertion into standard grating-couplers. A tilt-angle of 10° is achieved by controlling the reflow of the solder ball deposition used for the electrical-contacting and mechanical-bonding of the VCSEL to the PIC. After flip-chip integration, the VCSEL-to-PIC insertion loss is -11.8 dB, indicating an excess coupling penalty of -5.9 dB, compared to Fibre-to-PIC coupling. Finite difference time domain simulations indicate that the penalty arises from the relatively poor match between the VCSEL mode and the grating-coupler.

  18. Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit.

    PubMed

    Lu, Huihui; Lee, Jun Su; Zhao, Yan; Scarcella, Carmelo; Cardile, Paolo; Daly, Aidan; Ortsiefer, Markus; Carroll, Lee; O'Brien, Peter

    2016-07-25

    In this article we describe a cost-effective approach for hybrid laser integration, in which vertical cavity surface emitting lasers (VCSELs) are passively-aligned and flip-chip bonded to a Si photonic integrated circuit (PIC), with a tilt-angle optimized for optical-insertion into standard grating-couplers. A tilt-angle of 10° is achieved by controlling the reflow of the solder ball deposition used for the electrical-contacting and mechanical-bonding of the VCSEL to the PIC. After flip-chip integration, the VCSEL-to-PIC insertion loss is -11.8 dB, indicating an excess coupling penalty of -5.9 dB, compared to Fibre-to-PIC coupling. Finite difference time domain simulations indicate that the penalty arises from the relatively poor match between the VCSEL mode and the grating-coupler. PMID:27464079

  19. An experimental study of an aerodynamically optimum windmill

    NASA Astrophysics Data System (ADS)

    Ishida, Y.; Toda, N.; Hoshino, H.; Noguchi, M.

    1982-08-01

    Aerodynamic characteristics of an optimum horizontal axis windmill are described. The windmill, rated at 20 KW at 8 m/s with a two bladed rotor of 14m diameter, is designed so as to vary the geometry of the blade in such a way that the aerodynamic efficiency becomes maximum. The combined blade element momentum theory is used as an analytical tool. To check the design method and get some useful aerodynamic data, a wind tunnel test of a 1/7th scale model (2m diameter) is performed in a low speed tunnel, whose test section is 35.75 sq m. Two models, whose blades have the same optimum chord distribution but have different planforms, are tested. Measurements are made of the efficiency, torque, axial drag force and initial torque for various combinations of the pitch angle and the tip speed ratio. The yaw characteristics of the windmill are also measured.

  20. UV Index on tilted surfaces.

    PubMed

    Esteve, A R; Marín, M J; Martínez-Lozano, J A; Tena, F; Utrillas, M P; Cañada, J

    2006-01-01

    Solar ultraviolet erythemal irradiance (UVER) has been studied on inclined planes with different orientations in Valencia, Spain. To do this a platform was designed that could turn through 90 degrees on its own axis. The radiometers were inclined at an angle close to the latitude of Valencia (39.5 degrees N). Using two timers the platform could be turned through 90 degrees every 5 min. On clear or partially cloudy days, including those with different turbidity values, it was observed that the UVER showed a maximum at 1200 h GMT, very close to solar noon, in the north and south positions, while the maximum for east and west orientations was found at approximately one hour before and one hour after midday respectively. It was also observed how the irradiance for the south orientation was greater and for the north was less than for the horizontal plane, as well as the opposite performances of the east and west orientations, for four days close to the summer and winter solstices and each equinox. Some experimental results were also compared with the results from the SMARTS2.9 model for the same conditions. It was found that the model frequently overestimated the experimental data. With respect to the maximum calculated UV Index in the different planes this was always higher for the south orientation than for the north, while it was similar for east and west orientations throughout the year. Finally the accumulated erythemal dosage for the considered period was obtained as a function of phototype and orientation, confirming that the accumulated erythemal dosage decreased by around 37% in the north orientation compared to the horizontal value, while in the south position it was only 6% less and some 20% and 15% less in the east and west positions, respectively. PMID:17205628

  1. User's instructions for the GE cardiovascular model to simulate LBNP and tilt experiments, with graphic capabilities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The present form of this cardiovascular model simulates both 1-g and zero-g LBNP (lower body negative pressure) experiments and tilt experiments. In addition, the model simulates LBNP experiments at any body angle. The model is currently accessible on the Univac 1110 Time-Shared System in an interactive operational mode. Model output may be in tabular form and/or graphic form. The graphic capabilities are programmed for the Tektronix 4010 graphics terminal and the Univac 1110.

  2. Ion Implantation Angle Variation to Device Performance and the Control in Production

    SciTech Connect

    Zhao, Z.Y.; Hendrix, D.; Wu, L.Y.; Cusson, B.K.

    2003-08-26

    As the device features get smaller and aspect ratios of photoresist openings get steeper, shadowing effect has more impact on the performance of devices. Many of the traditional 7 deg. tilt implants have progressed to 0 deg. implants. But shadowing may still occur if the tilt angle deviates from normal direction. Some implants, such as halo implants, demand even more stringent angle control to reduce device performance variation. The demand for implant angle control and monitoring thus becomes more obvious and important. However, statistical process control (SPC) cannot be done on shadowing effect without special test structures. Channeling, on the other hand, provides good sensitivity in regard to implant angle changes. It is the authors' intention to introduce channeling implant in different channels to monitor the implant angle variation. The incoming <100> silicon wafers have a cut-angle spec of +/- 1.0 deg. This poses a difficulty if one wants to control the implant angle's accuracy within +/- 0.5 deg. Other measures have to be taken to ensure the consistency of test wafers and to have prompt diagnosis feedback when needed. This paper will discuss the effect of implant tilt angle on device parameters and how to control the angle variation in production. Correlations of implant tilt angle variation to ThermaWave, sheet resistance (Rs), Secondary Ion Mass Spectrometry (SIMS) and device parameters will be covered with certain implant conditions.

  3. Ion Implantation Angle Variation to Device Performance and the Control in Production

    NASA Astrophysics Data System (ADS)

    Zhao, Z. Y.; Hendrix, D.; Wu, L. Y.; Cusson, B. K.

    2003-08-01

    As the device features get smaller and aspect ratios of photoresist openings get steeper, shadowing effect has more impact on the performance of devices. Many of the traditional 7° tilt implants have progressed to 0° implants. But shadowing may still occur if the tilt angle deviates from normal direction. Some implants, such as halo implants, demand even more stringent angle control to reduce device performance variation. The demand for implant angle control and monitoring thus becomes more obvious and important. However, statistical process control (SPC) cannot be done on shadowing effect without special test structures. Channeling, on the other hand, provides good sensitivity in regard to implant angle changes. It is the authors' intention to introduce channeling implant in different channels to monitor the implant angle variation. The incoming <100> silicon wafers have a cut-angle spec of +/- 1.0°. This poses a difficulty if one wants to control the implant angle's accuracy within +/- 0.5°. Other measures have to be taken to ensure the consistency of test wafers and to have prompt diagnosis feedback when needed. This paper will discuss the effect of implant tilt angle on device parameters and how to control the angle variation in production. Correlations of implant tilt angle variation to ThermaWave™, sheet resistance (Rs), Secondary Ion Mass Spectrometry (SIMS) and device parameters will be covered with certain implant conditions.

  4. Postural and Chronological Change in Pelvic Tilt Five Years After Total Hip Arthroplasty in Patients With Developmental Dysplasia of the Hip: A Three-Dimensional Analysis.

    PubMed

    Suzuki, Haruka; Inaba, Yutaka; Kobayashi, Naomi; Ishida, Takashi; Ike, Hiroyuki; Saito, Tomoyuki

    2016-01-01

    The pelvis generally tilts to the posterior with movement from the supine to standing position, and with time after total hip arthroplasty (THA). This study aimed to investigate changes in pelvic tilt from the preoperative supine position to the standing position at 5 years after THA (pelvic change, PC). We measured pelvic tilt using a 2D-3D matching technique in 77 unilaterally affected patients who underwent primary THA. PC in 8% of all patients was ≤-20°, and the greatest PC was -25°. In these patients, posterior pelvic tilt continued up to 5 years after THA. These patients were older, and their lumbo-lordotic angle was small. For such cases, cup orientation should be planned to account for continuous posterior change in pelvic tilt after THA.

  5. "Happiness and Education": Tilting at Windmills?

    ERIC Educational Resources Information Center

    Verducci, Susan

    2013-01-01

    This essay explores the question: Is Nel Noddings a visionary who sees past the constraints of contemporary education or is she, like Don Quixote, madly tilting at windmills in her description and defense of happiness as an educational aim? Viewing the educational aim of happiness as an ideal raises substantial challenges for the practicality of…

  6. Rotatable prism for pan and tilt

    NASA Technical Reports Server (NTRS)

    Ball, W. B.

    1980-01-01

    Compact, inexpensive, motor-driven prisms change field of view of TV camera. Camera and prism rotate about lens axis to produce pan effect. Rotating prism around axis parallel to lens produces tilt. Size of drive unit and required clearance are little more than size of camera.

  7. An integrated optimum design approach for high speed prop rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.

    1995-01-01

    The objective is to develop an optimization procedure for high-speed and civil tilt-rotors by coupling all of the necessary disciplines within a closed-loop optimization procedure. Both simplified and comprehensive analysis codes are used for the aerodynamic analyses. The structural properties are calculated using in-house developed algorithms for both isotropic and composite box beam sections. There are four major objectives of this study. (1) Aerodynamic optimization: The effects of blade aerodynamic characteristics on cruise and hover performance of prop-rotor aircraft are investigated using the classical blade element momentum approach with corrections for the high lift capability of rotors/propellers. (2) Coupled aerodynamic/structures optimization: A multilevel hybrid optimization technique is developed for the design of prop-rotor aircraft. The design problem is decomposed into a level for improved aerodynamics with continuous design variables and a level with discrete variables to investigate composite tailoring. The aerodynamic analysis is based on that developed in objective 1 and the structural analysis is performed using an in-house code which models a composite box beam. The results are compared to both a reference rotor and the optimum rotor found in the purely aerodynamic formulation. (3) Multipoint optimization: The multilevel optimization procedure of objective 2 is extended to a multipoint design problem. Hover, cruise, and take-off are the three flight conditions simultaneously maximized. (4) Coupled rotor/wing optimization: Using the comprehensive rotary wing code CAMRAD, an optimization procedure is developed for the coupled rotor/wing performance in high speed tilt-rotor aircraft. The developed procedure contains design variables which define the rotor and wing planforms.

  8. Angle-dependent magnetotransport in GaAs/InAs core/shell nanowires

    PubMed Central

    Haas, Fabian; Wenz, Tobias; Zellekens, Patrick; Demarina, Nataliya; Rieger, Torsten; Lepsa, Mihail; Grützmacher, Detlev; Lüth, Hans; Schäpers, Thomas

    2016-01-01

    We study the impact of the direction of magnetic flux on the electron motion in GaAs/InAs core/shell nanowires. At small tilt angles, when the magnetic field is aligned nearly parallel to the nanowire axis, we observe Aharonov–Bohm type h/e flux periodic magnetoconductance oscillations. These are attributed to transport via angular momentum states, formed by electron waves within the InAs shell. With increasing tilt of the nanowire in the magnetic field, the flux periodic magnetoconductance oscillations disappear. Universal conductance fluctuations are observed for all tilt angles, however with increasing amplitudes for large tilt angles. We record this evolution of the electron propagation from a circling motion around the core to a diffusive transport through scattering loops and give explanations for the observed different transport regimes separated by the magnetic field orientation. PMID:27091000

  9. Aero-optimum hovering kinematics.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2015-08-07

    Hovering flight for flapping wing vehicles requires rapid and relatively complex reciprocating movement of a wing relative to a stationary surrounding fluid. This note develops a compact analytical aero-kinematic model that can be used for optimization of flapping wing kinematics against aerodynamic criteria of effectiveness (maximum lift) and efficiency (minimum power for a given amount of lift). It can also be used to make predictions of required flapping frequency for a given geometry and basic aerodynamic parameters. The kinematic treatment is based on a consolidation of an existing formulation that allows explicit derivation of flapping velocity for complex motions whereas the aerodynamic model is based on existing quasi-steady analysis. The combined aero-kinematic model provides novel explicit analytical expressions for both lift and power of a hovering wing in a compact form that enables exploration of a rich kinematic design space. Good agreement is found between model predictions of flapping frequency and observed results for a number of insects and optimal hovering kinematics identified using the model are consistent with results from studies using higher order computational models. For efficient flight, the flapping angle should vary using a triangular profile in time leading to a constant velocity flapping motion, whereas for maximum effectiveness the shape of variation should be sinusoidal. For both cases the wing pitching motion should be rectangular such that pitch change at stroke reversal is as rapid as possible.

  10. Aero-optimum hovering kinematics.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2015-08-01

    Hovering flight for flapping wing vehicles requires rapid and relatively complex reciprocating movement of a wing relative to a stationary surrounding fluid. This note develops a compact analytical aero-kinematic model that can be used for optimization of flapping wing kinematics against aerodynamic criteria of effectiveness (maximum lift) and efficiency (minimum power for a given amount of lift). It can also be used to make predictions of required flapping frequency for a given geometry and basic aerodynamic parameters. The kinematic treatment is based on a consolidation of an existing formulation that allows explicit derivation of flapping velocity for complex motions whereas the aerodynamic model is based on existing quasi-steady analysis. The combined aero-kinematic model provides novel explicit analytical expressions for both lift and power of a hovering wing in a compact form that enables exploration of a rich kinematic design space. Good agreement is found between model predictions of flapping frequency and observed results for a number of insects and optimal hovering kinematics identified using the model are consistent with results from studies using higher order computational models. For efficient flight, the flapping angle should vary using a triangular profile in time leading to a constant velocity flapping motion, whereas for maximum effectiveness the shape of variation should be sinusoidal. For both cases the wing pitching motion should be rectangular such that pitch change at stroke reversal is as rapid as possible. PMID:26248884

  11. Deformation analysis of tilted primary mirror for an off-axis beam compressor

    NASA Astrophysics Data System (ADS)

    Clark, James H., III; Penado, F. Ernesto; Dugdale, Joel

    2011-09-01

    The Navy Prototype Optical Interferometer (NPOI), located near Flagstaff, Arizona, is a ground-based interferometer that collects and transports stellar radiation from six primary flat collectors, known as siderostats, through a common vacuum relay system to a beam combiner where the beams are combined, fringes are obtained and modulated, and data are recorded for further analysis. The current number of observable stellar objects can increase from 6,000 to approximately 47,000 with the addition of down-tilting beam compressors in the optical train. The increase in photon collection area from the beam compressors opens the sky to many additional and fainter stars. The siderostats are capable of redirecting 35 cm stellar beams into the vacuum relay system. Sans beam compressors, any portion of the beam greater than the capacity of the vacuum transport system, 12.5 cm, is wasted. Engineering analysis of previously procured as-built beam compressor optics show the maximum allowable primary mirror surface sag, resulting in λ/10 peak-to-valley wavefront aberration, occurs at 2.8° down-tilt angle. At the NPOI operational down-tilt angle of 20° the wavefront aberration reduces to an unacceptable λ/4. A design modification concept that reduces tilt-induced sag was investigated. Four outwardly applied 4-lb forces on the rear surface of the mirror reduce the sag from 155 nm to 32 nm at 20° down-tilt and reduce peak-to-valley wavefront deviation to λ/8.6. This preliminary effort indicates that this solution path is a viable and economic way to repair an expensive set of optical components. However, it requires further work to optimize the locations, magnitudes, and quantity of the forces within this system and their influence on the mirror surface.

  12. Tilt and Translation Motion Perception during Pitch Tilt with Visual Surround Translation

    NASA Technical Reports Server (NTRS)

    O'Sullivan, Brita M.; Harm, Deborah L.; Reschke, Millard F.; Wood, Scott J.

    2006-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Previous studies suggest that multisensory integration is critical for discriminating linear accelerations arising from tilt and translation head motion. Visual input is especially important at low frequencies where canal input is declining. The NASA Tilt Translation Device (TTD) was designed to recreate postflight orientation disturbances by exposing subjects to matching tilt self motion with conflicting visual surround translation. Previous studies have demonstrated that brief exposures to pitch tilt with foreaft visual surround translation produced changes in compensatory vertical eye movement responses, postural equilibrium, and motion sickness symptoms. Adaptation appeared greatest with visual scene motion leading (versus lagging) the tilt motion, and the adaptation time constant appeared to be approximately 30 min. The purpose of this study was to compare motion perception when the visual surround translation was inphase versus outofphase with pitch tilt. The inphase stimulus presented visual surround motion one would experience if the linear acceleration was due to foreaft self translation within a stationary surround, while the outofphase stimulus had the visual scene motion leading the tilt by 90 deg as previously used. The tilt stimuli in these conditions were asymmetrical, ranging from an upright orientation to 10 deg pitch back. Another objective of the study was to compare motion perception with the inphase stimulus when the tilts were asymmetrical relative to upright (0 to 10 deg back) versus symmetrical (10 deg forward to 10 deg back). Twelve subjects (6M, 6F, 22-55 yrs) were tested during 3 sessions separated by at least one week. During each of the three sessions (out-of-phase asymmetrical, in-phase asymmetrical, inphase symmetrical), subjects were exposed to visual surround translation

  13. Internal tilting mode stability of non-sperical spheromak

    SciTech Connect

    Yamazaki, K.

    1980-06-01

    Fixed boundary tilting mode stability is analyzed for spheromak with arbitrarily shaped cross section. A prolate spheromak can be stabilized against tilting mode by adding a conducting shell of triangular or trapesoidal half-cross section.

  14. Design of composite laminates for optimum frequency response

    NASA Astrophysics Data System (ADS)

    Kayikci, Rengin; Sonmez, Fazil O.

    2012-04-01

    In this study, natural frequency response of symmetrically laminated composite plates was optimized. An analytical model accounting for bending-twisting effects was used to determine the laminate natural frequency. Two different problems, fundamental frequency maximization and frequency separation maximization, were considered. Fiber orientation angles were chosen as design variables. Because of the existence of numerous local optimums, a global search algorithm, a variant of simulated annealing, was utilized to find the optimal designs. Results were obtained for different plate aspect ratios. Effects of the number of design variables and the range of values they may take on the optimal frequency were investigated. Problems in which fiber angles showed uncertainty were considered. Optimal frequency response of laminates subjected to static loads was also investigated.

  15. Method for pan-tilt camera calibration using single control point.

    PubMed

    Li, Yunting; Zhang, Jun; Hu, Wenwen; Tian, Jinwen

    2015-01-01

    The pan-tilt (PT) camera is widely used in video surveillance systems due to its rotatable property and low cost. The rough output of a PT camera may not satisfy the demand of practical applications; hence an accurate calibration method of a PT camera is desired. However, high-precision camera calibration methods usually require sufficient control points not guaranteed in some practical cases of a PT camera. In this paper, we present a novel method to online calibrate the rotation angles of a PT camera by using only one control point. This is achieved by assuming that the intrinsic parameters and position of the camera are known in advance. More specifically, we first build a nonlinear PT camera model with respect to two parameters Pan and Tilt. We then convert the nonlinear model into a linear model according to sine and cosine of Tilt, where each element in the augmented coefficient matrix is a function of the single variable Pan. A closed-form solution of Pan and Tilt can then be derived by solving a quadratic equation of tangent of Pan. Our method is noniterative and does not need features matching; thus its time efficiency is better. We evaluate our calibration method on various synthetic and real data. The quantitative results demonstrate that the proposed method outperforms other state-of-the-art methods if the intrinsic parameters and position of the camera are known in advance.

  16. Steering Dynamics of Tilting Narrow Track Vehicle with Passive Front Wheel Design

    NASA Astrophysics Data System (ADS)

    TAN, Jeffrey Too Chuan; ARAKAWA, Hiroki; SUDA, Yoshihiro

    2016-09-01

    In recent years, narrow track vehicle has been emerged as a potential candidate for the next generation of urban transportation system, which is greener and space effective. Vehicle body tilting has been a symbolic characteristic of such vehicle, with the purpose to maintain its stability with the narrow track body. However, the coordination between active steering and vehicle tilting requires considerable driving skill in order to achieve effective stability. In this work, we propose an alternative steering method with a passive front wheel that mechanically follows the vehicle body tilting. The objective of this paper is to investigate the steering dynamics of the vehicle under various design parameters of the passive front wheel. Modeling of a three-wheel tilting narrow track vehicle and multibody dynamics simulations were conducted to study the effects of two important front wheel design parameters, i.e. caster angle and trail toward the vehicle steering dynamics in steering response time, turning radius, steering stability and resiliency towards external disturbance. From the results of the simulation studies, we have verified the relationships of these two front wheel design parameters toward the vehicle steering dynamics.

  17. Terahertz surface plasmons propagation through periodically tilted pillars and control on directional properties

    NASA Astrophysics Data System (ADS)

    Islam, Maidul; Kumar, Gagan

    2016-11-01

    We investigate a terahertz (THz) plasmonic waveguide using periodically arranged tilted pillars and control the propagation properties of the guided modes with the bending of pillars. A metal surface approximated as a perfect electrical conductor at terahertz frequencies is periodically corrugated with sub-wavelength scale tilted pillars thereby forming a plasmonic waveguide. The tilted pillars plasmonic waveguide supports highly confined guided terahertz modes at specific frequencies depending upon the pillar dimensions. We confirm the propagation of terahertz modes through a semi-analytical model that we employ specifically for our geometry. We observe that the propagation properties of the terahertz modes can be controlled by changing the bending of the pillars. We have examined in detail, the propagation properties of the guided modes for different angles and direction through which the pillars are tilted. We further examine terahertz waveguides comprising of pillars with increasing height and investigate their ability in confining terahertz waves at a certain position where the resonant frequency of a pillar matches with the incident frequency.

  18. Automated optimum design of wing structures. Deterministic and probabilistic approaches

    NASA Technical Reports Server (NTRS)

    Rao, S. S.

    1982-01-01

    The automated optimum design of airplane wing structures subjected to multiple behavior constraints is described. The structural mass of the wing is considered the objective function. The maximum stress, wing tip deflection, root angle of attack, and flutter velocity during the pull up maneuver (static load), the natural frequencies of the wing structure, and the stresses induced in the wing structure due to landing and gust loads are suitably constrained. Both deterministic and probabilistic approaches are used for finding the stresses induced in the airplane wing structure due to landing and gust loads. A wing design is represented by a uniform beam with a cross section in the form of a hollow symmetric double wedge. The airfoil thickness and chord length are the design variables, and a graphical procedure is used to find the optimum solutions. A supersonic wing design is represented by finite elements. The thicknesses of the skin and the web and the cross sectional areas of the flanges are the design variables, and nonlinear programming techniques are used to find the optimum solution.

  19. Enhanced patterning by tilted ion implantation

    NASA Astrophysics Data System (ADS)

    Kim, Sang Wan; Zheng, Peng; Kato, Kimihiko; Rubin, Leonard; Liu, Tsu-Jae King

    2016-03-01

    Tilted ion implantation (TII) is proposed as a lower-cost alternative to self-aligned double patterning (SADP) for pitch halving. This new approach is based on an enhancement in etch rate of a hard-mask layer by implant-induced damage. Ar+ implantation into a thin layer of silicon dioxide (SiO2) is shown to enhance its etch rate in dilute hydrofluoric acid (HF) solution, by up to 9× for an implant dose of 3×1014 cm-2. The formation of sub-lithographic features defined by masked tilted Ar+ implantation into a SiO2 hard-mask layer is experimentally demonstrated. Features with sizes as small as ~21 nm, self-aligned to the lithographically patterned mask, are achieved. As compared with SADP, enhanced patterning by TII requires far fewer and lower-cost process steps and hence is expected to be much more cost-effective.

  20. A CFD study of tilt rotor flowfields

    NASA Technical Reports Server (NTRS)

    Fejtek, Ian; Roberts, Leonard

    1989-01-01

    The download on the wing produced by the rotor wake of a tilt rotor vehicle in hover is of major concern because of its severe impact on payload-carrying capability. In a concerted effort to understand the fundamental fluid dynamics that cause this download, and to help find ways to reduce it, computational fluid dynamics (CFD) is employed to study this problem. The thin-layer Navier-Stokes equations are used to describe the flow, and an implicit, finite difference numerical algorithm is the method of solution. The methodology is developed to analyze the tilt rotor flowfield. Included are discussions of computations of an airfoil and wing in freestream flows at -90 degrees, a rotor alone, and wing/rotor interaction in two and three dimensions. Preliminary results demonstrate the feasibility and great potential of the present approach. Recommendations are made for both near-term and far-term improvements to the method.

  1. A COLLISIONLESS SCENARIO FOR URANUS TILTING

    SciTech Connect

    Boue, Gwenael; Laskar, Jacques

    2010-03-20

    The origin of the high inclination of Uranus' spin-axis (Uranus' obliquity) is one of the great unanswered questions about the solar system. Giant planets are believed to form with nearly zero obliquity, and it has been shown that the present behavior of Uranus' spin is essentially stable. Several attempts were made in order to solve this problem. Here we report numerical simulations showing that Uranus' axis can be tilted during the planetary migration, without the need of a giant impact, provided that the planet had an additional satellite and a temporary large inclination. This might have happened during the giant planet instability phase described in the Nice model. In our scenario, the satellite is ejected after the tilt by a close encounter at the end of the migration. This model can both explain Uranus' large obliquity and bring new constraints on the planet orbital evolution.

  2. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Realization of Fine Tip Tilting by 16-Step Line Tilting

    NASA Astrophysics Data System (ADS)

    Ding, Lu; Chen, Ying-Tian; Hu, Sen; Zhang, Yang

    2010-07-01

    Following Chen's method [Common. Theor. Phys. 52 (2009) 549] to use 8-step line tilting to realize tip tilting, to achieve finer rotation, it is discovered that a 16-step line tilting method may realize a rotation two order smaller than that achieved by 8-step.

  3. A tilted cold dark matter cosmological scenario

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Gnedin, Nickolay Y.; Kofman, Lev A.; Ostriker, Jeremiah P.

    1992-01-01

    A new cosmological scenario based on CDM but with a power spectrum index of about 0.7-0.8 is suggested. This model is predicted by various inflationary models with no fine tuning. This tilted CDM model, if normalized to COBE, alleviates many problems of the standard CDM model related to both small-scale and large-scale power. A physical bias of galaxies over dark matter of about two is required to fit spatial observations.

  4. Interplay between tilted and principal axis rotation

    SciTech Connect

    Datta, Pradip

    2014-08-14

    At IUAC-INGA, our group has studied four neutron rich nuclei of mass-110 region, namely {sup 109,110}Ag and {sup 108,110}Cd. These nuclei provide the unique platform to study the interplay between Tilted and Principal axis rotation since these are moderately deformed and at the same time, shears structures are present at higher spins. The salient features of the high spin behaviors of these nuclei will be discussed which are the signatures of this interplay.

  5. A miniature tilting pad gas lubricated bearing

    NASA Astrophysics Data System (ADS)

    Sixsmith, H.; Swift, W. L.

    1983-12-01

    This paper describes the design and development of a miniature tilting pad gas bearing developed for use in very small turbomachines. The bearings have been developed for cryogenic turboexpanders with shaft diameters down to about 0.3 cm and rotational speeds up to one million rpm. Cryogenic expansion turbines incorporating this type of bearing should be suitable for refrigeration rates down to about 10 w.

  6. A miniature tilting pad gas lubricated bearing

    NASA Technical Reports Server (NTRS)

    Sixsmith, H.; Swift, W. L.

    1983-01-01

    This paper describes the design and development of a miniature tilting pad gas bearing developed for use in very small turbomachines. The bearings have been developed for cryogenic turboexpanders with shaft diameters down to about 0.3 cm and rotational speeds up to one million rpm. Cryogenic expansion turbines incorporating this type of bearing should be suitable for refrigeration rates down to about 10 w.

  7. Dry tilt network at Mount Rainier, Washington

    USGS Publications Warehouse

    Dzurisin, Daniel; Johnson, Daniel J.; Symonds, R.B.

    1984-01-01

    In addition to its primary responsibility of monitoring active Mount St. Helens, the David A. Johnston Cascades Volcano Observatory (CVO) has been charged with obtaining baseline geodetic and geochemical information at each of the other potentially active Cascade volcanoes. Dry tilt and/or trilateration networks were established during 1975-82 at Mount Baker, Mount St. Helens, Mount Hood, Mount Shasta, Lassen Peak, Crater Lake, and Long Valley caldera; coverage was extended during September 1982 to include Mount Rainier.

  8. High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet

    SciTech Connect

    Ahn, Sangil Schwarzer, Clemens; Zederbauer, Tobias; MacFarland, Donald C.; Detz, Hermann; Andrews, Aaron M.; Schrenk, Werner; Strasser, Gottfried

    2014-02-03

    We introduce a simple technique to improve the beam quality of broad area quantum cascade lasers. Moderately tilted front facets of the laser provide suppression of higher order lateral waveguide modes. A device with a width of 60 μm and a front facet angle of 17° shows a nearly diffraction limited beam profile. In addition, the peak output power and the slope efficiency of the device are increased since most of the light inside the cavity is emitted through the tilted front facet by an asymmetric light intensity distribution along the cavity.

  9. Simultaneous high bit-rate format and mode conversion with a single tilted apodized few-mode fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Gao, Ya; Sun, Junqiang; Sima, Chaotan

    2016-10-01

    We propose an all-optical approach for simultaneous high bit-rate return-to-zero (RZ) to non-return-to-zero (NRZ) format and LP01 to LP11 mode conversion using a weakly tilted apodized few-mode fiber Bragg grating (TA-FM-FBG) with specific linear spectral response. The grating apodization profile is designed by utilizing an efficient inverse scattering algorithm and the maximum refractive index modulation is adjusted based on the grating tilt angle, according to Coupled-Mode Theory. The temporal performance and operation bandwidth of the converter are discussed. The approach provides potential favorable device for the connection of various communication systems.

  10. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading.

    PubMed

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-01-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.

  11. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading

    PubMed Central

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-01-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors. PMID:27641908

  12. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading.

    PubMed

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-01-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors. PMID:27641908

  13. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading

    NASA Astrophysics Data System (ADS)

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-09-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.

  14. Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.

    2008-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize

  15. TILT, WARP, AND SIMULTANEOUS PRECESSIONS IN DISKS

    SciTech Connect

    Montgomery, M. M.

    2012-07-10

    Warps are suspected in disks around massive compact objects. However, the proposed warping source-non-axisymmetric radiation pressure-does not apply to white dwarfs. In this Letter, we report the first smoothed particle hydrodynamic simulations of accretion disks in SU UMa-type systems that naturally tilt, warp, and simultaneously precess in the prograde and retrograde directions using white dwarf V344 Lyrae in the Kepler field as our model. After {approx}79 days in V344 Lyrae, the disk angular momentum L{sub d} becomes misaligned to the orbital angular momentum L{sub o} . As the gas stream remains normal to L{sub o} , hydrodynamics (e.g., the lift force) is a likely source to disk tilt. In addition to tilt, the outer disk annuli cyclically change shape from circular to highly eccentric due to tidal torques by the secondary star. The effect of simultaneous prograde and retrograde precession is a warp of the colder, denser midplane as seen along the disk rim. The simulated rate of apsidal advance to nodal regression per orbit nearly matches the observed ratio in V344 Lyrae.

  16. A COMMON SOURCE OF ACCRETION DISK TILT

    SciTech Connect

    Montgomery, M. M.; Martin, E. L.

    2010-10-20

    Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source that causes and maintains disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through the disk's center of mass. The disk responds to lift by pitching around the disk's line of nodes. If the gas stream flow ebbs, then lift also ebbs and the disk attempts to return to its original orientation. To first approximation, lift does not depend on magnetic fields or radiation sources but does depend on the mass and the surface area of the disk. Also, for disk tilt to be initiated, a minimum mass transfer rate must be exceeded. For example, a 10{sup -11} M{sub sun} disk around a 0.8 M{sub sun} compact central object requires a mass transfer rate greater than {approx} 8 x 10{sup -11} M{sub sun} yr{sup -1}, a value well below the known mass transfer rates in cataclysmic variable dwarf novae systems that retrogradely precess and exhibit negative superhumps in their light curves and a value well below mass transfer rates in protostellar-forming systems.

  17. High brightness angled cavity quantum cascade lasers

    SciTech Connect

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M.

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightest QCL to date.

  18. High brightness angled cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M.

    2015-03-01

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm-2 sr-1 is obtained, which marks the brightest QCL to date.

  19. Scale effect and optimum relations for sea surface planning

    NASA Technical Reports Server (NTRS)

    Sedov, L.

    1947-01-01

    From the general dimensional and mechanical similarity theory it follows that a condition of steady motion of a given shape\\bottom with constant speed on the surface of water is determined by four nondimensional parameters. By considering the various systems of independent parameters which are applied in theory and practice and special tests, there is determined their mutual relations and their suitability as planning characteristics. In studying the scale effect on the basis of the Prnndtl formula for the friction coefficient for a turbulent condition the order of magnitude is given of the error in applying the model data to full scale in the case of a single-step bottom For a bottom of complicated shape it is shown how from the test data of the hydrodynamic characteristics for one speed with various loads, or one load with various speeds, there may be obtained by simple computation with good approximation the hydrodynamic characteristics for a different speed or for a different load. (These considerations may be of use in solving certain problems on the stability of planning.) This permits extrapolating the curve of resistance against speed for large speeds inaccessible in the tank tests or for other loads which were not tested. The data obtained by computation are in good agreement with the test results. Problems regarding the optimum trim angle or the optimum width in the case of planning of a flat plate are considered from the point of view of the minimum resistance for a given load on the water and planning speeds. Formulas and graphs are given for the optimum value of the planning coefficient and the corresponding values of the trim angle and width of the flat plate.

  20. Tilt error in cryospheric surface radiation measurements at high latitudes: a model study

    NASA Astrophysics Data System (ADS)

    Bogren, Wiley Steven; Faulkner Burkhart, John; Kylling, Arve

    2016-03-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response fore optic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high-latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can, respectively introduce up to 2.7, 8.1, and 13.5 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo. Simulations including a cloud layer demonstrate decreasing tilt error with increasing cloud optical depth.

  1. Directional Light Extinction and Emission in a Metasurface of Tilted Plasmonic Nanopillars.

    PubMed

    Verre, R; Svedendahl, M; Odebo Länk, N; Yang, Z J; Zengin, G; Antosiewicz, T J; Käll, M

    2016-01-13

    Plasmonic optical antennas and metamaterials with an ability to boost light-matter interactions for particular incidence or emission angles could find widespread use in solar harvesting, biophotonics, and in improving photon source performance at optical frequencies. However, directional plasmonic structures have generally large footprints or require complicated geometries and costly nanofabrication technologies. Here, we present a directional metasurface realized by breaking the out-of-plane symmetry of its individual elements: tilted subwavelength plasmonic gold nanopillars. Directionality is caused by the complex charge oscillation induced in each individual nanopillar, which essentially acts as a tilted dipole above a dielectric interface. The metasurface is homogeneous over a macroscopic area and it is fabricated by a combination of facile colloidal lithography and off-normal metal deposition. Fluorescence excitation and emission from dye molecules deposited on the metasurface is enhanced in specific directions determined by the tilt angle of the nanopillars. We envisage that these directional metasurfaces can be used as cost-effective substrates for surface-enhanced spectroscopies and a variety of nanophotonic applications.

  2. Characterizing the contribution of cardiac and hepatic uptake in dedicated breast SPECT using tilted trajectories

    PubMed Central

    Perez, K L; Cutler, S J; Madhav, P; Tornai, M P

    2012-01-01

    A small field of view, high resolution gamma camera has been integrated into a dedicated breast, single photon emission computed tomography (SPECT) device. The detector can be flexibly positioned relative to the breast and image beyond the chest wall, allowing the system to capture direct views of the heart and liver. The incomplete sampling of these organs creates artifacts in reconstructed images, complicating lesion detection. To understand the limits imposed on a 3D acquisition trajectory, sequential tilted trajectories at increasing polar tilt are utilized to collect data of anthropomorphic phantoms filled with aqueous 99mTc in a clinically realistic concentration ratio. The counts collected per projection between different scans and the SNR, contrast and resolution (FWHM) of two hot lesions were compared. As expected, the counts per projection increased when the camera had direct views of the heart and liver, but remained relatively constant at other angles. The SNR, contrast and FWHM were more affected by the insufficient sampling of the data by the large polar angles than by the cardiac and hepatic activity. An upper bound on polar tilt for each azimuthal position reduces the artifacts in the reconstructed images. Such trajectories were implemented to show artifact-free reconstructed images. PMID:20671354

  3. Speed benefits of tilt-rotor designs for LHX

    NASA Technical Reports Server (NTRS)

    Mcdaniel, R. L.; Adams, J. V.; Balberde, A.; Dereska, S. P.; Gearin, C. J.; Shaw, D. E.

    1983-01-01

    The merits of an advanced helicopter and a tilt rotor aircraft for light utility, scout, and attack roles in combat missions envisioned for the year 2000 and beyond were compared. It is demonstrated that speed has increasing value for 11 different mission classes broadly encompassing the intended LHX roles. Helicopter speeds beyond 250 knots are judged to have lower military worth. Since the tilt rotor concept offers a different cost speed relationship than that of helicopters, assessment of a tilt rotor LHX variant was warranted. The technical parameters of an advanced tilt rotor are stablished. Parameters of representative missions are identified, computed relative value of the tilt rotor LHX are compared to the baseline helicopter, a first-order life cycle estimate for the tilt rotor LHX is established, military worth of the alternative design is computed and the results are evaluated. It is suggested that the tilt rotor is the solution with the greatest capability for meeting the uncertainties of future needs.

  4. Measurement of two-dimensional small angle deviation with a prism interferometer

    SciTech Connect

    Chatterjee, Sanjib; Kumar, Y. Pavan

    2008-09-20

    A new technique for the measurement of two-dimensional small angular deviation is presented. A compound prism, which effectively produces a combination of two right-angled prisms in orthogonal directions, and plane reference surfaces have been utilized for the measurement of the orthogonal components of the angular tilt of an incident plane wavefront. Each orthogonal component of the angular tilt is separately measured from the angular rotation of the resultant wedge fringes between two plane wavefronts generated due to splitting of the incident plane wavefront by the corresponding set of right-angled prism and plane reference surface. The technique is shown to have high sensitivity for the measurement of small angle deviation. A monolithic prism interferometer, which is practically insensitive to vibration, is also proposed. Results obtained for the measurement of a known tilt angle are presented.

  5. Cranial diameter pulsations measured by non-invasive ultrasound decrease with tilt

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    INTRODUCTION: Intracranial pressure (ICP) may play a significant role in physiological responses to microgravity by contributing to the nausea associated with microgravity exposure. However, effects of altered gravity on ICP in astronauts have not been investigated, primarily due to the invasiveness of currently available techniques. We have developed an ultrasonic device that monitors changes in cranial diameter pulsation non-invasively so that we can evaluate ICP dynamics in astronauts during spaceflight. This study was designed to demonstrate the feasibility of our ultrasound technique under the physiological condition in which ICP dynamics are changed due to altered gravitational force. METHODS: Six healthy volunteers were placed at 60 degrees head-up, 30 degrees headup, supine, and 15 degrees head-down positions for 3 min at each angle. We measured arterial blood pressure (ABP) with a finger pressure cuff, and cranial diameter pulsation with a pulsed phase lock loop device (PPLL). RESULTS: Analysis of covariance demonstrated that amplitudes of cranial diameter pulsations were significantly altered with the angle of tilt (p < 0.001). The 95% confidence interval for linear regression coefficients of the cranial diameter pulsation amplitudes with tilt angle was 0.862 to 0.968. However, ABP amplitudes did not show this relationship. DISCUSSION: Our noninvasive ultrasonic technique reveals that the amplitude of cranial diameter pulsation decreases as a function of tilt angle, suggesting that ICP pulsation follows the same relationship. It is demonstrated that the PPLL device has a sufficient sensitivity to detect changes non-invasively in ICP pulsation caused by altered gravity.

  6. Body contour 180 degrees pinhole SPET with or without tilted detector: a phantom study.

    PubMed

    Seret, Alain; Flérès, David; Firket, Olivier; Defrise, Michel

    2003-09-01

    This study investigated the feasibility of ordered subsets expectation maximisation (OS-EM) reconstruction of 180 degrees pinhole single-photon emission tomography (SPET) acquired in body contour mode (variable distance between the detector and the axis of rotation for each projection) with or without a tilted detector head. Four non-circular orbits were designed bearing in mind the rotation radius and tilt angle values of previous pinhole SPET acquisitions in patients with circular orbits. The reconstructions were performed using a dedicated OS-EM algorithm. Reconstructed images of line and uniformity phantoms showed that the spatial and uniformity characteristics of the radioactive objects were preserved. In comparison with the circular orbits, the non-circular orbits allowed only a moderate gain (maximum 10%) in resolution. However, body contour pinhole SPET would significantly facilitate the camera set-up and in this way should decrease the camera set-up time, which is an important parameter in patient studies.

  7. Modulation of bilayer quantum Hall states by tilted-field-induced subband-Landau-level coupling

    NASA Astrophysics Data System (ADS)

    Kumada, N.; Iwata, K.; Tagashira, K.; Shimoda, Y.; Muraki, K.; Hirayama, Y.; Sawada, A.

    2008-04-01

    We study effects of tilted magnetic fields on energy levels in a double-quantum-well (DQW) system, focusing on the coupling of subbands and Landau levels (LLs). The subband-LL coupling induces anticrossings between LLs directly manifested in the magnetoresistance. The anticrossing gap becomes larger than the spin splitting at the tilting angle θ˜20° and larger than the cyclotron energy at θ˜50° , demonstrating that the subband-LL coupling exerts a strong influence on quantum Hall states even at a relatively small θ and plays a dominant role for larger θ . We also find that when the DQW potential is asymmetric, LL coupling occurs even within a subband. Calculations including higher-order coupling reproduce the experimental results quantitatively well.

  8. On the effect of tilted roof reflectors in Martin-Puplett spectrometers

    NASA Astrophysics Data System (ADS)

    Schillaci, Alessandro; de Bernardis, Paolo

    2012-01-01

    In this paper we analyze theoretically and experimentally the effect of tilt of the roof mirrors in a double pendulum Martin-Puplett Polarizing Interferometer (MPI), focusing on the polarization of the interfering beams. In principle, the tilt affects the efficiency and polarimetric properties of the interferometer. The case of a moderate resolution spectrometer is analysed in detail. Using the Stokes formalism we recover the analytical expressions for the orientation angle and the ellipticity of the beam reflected from a metallic surface, and we compute these quantities for the roof-mirror of a MPI. We find that the polarization rotation and depolarization are small. Using the Jones formalism we propagate their effect on the measured interferogram and spectrum, and demonstrate that the performance degradation is small compared to other systematic effects.

  9. Dislocation-Mediated Deformation in Solid Langmuir Monolayers: Plastic Bending and Tilt Boundary.

    PubMed

    Hatta, E

    2015-09-01

    The shear response of three types of textures (mosaic, striation, and stripe) in 10,12-pentacosadiynoic acid solid Langmuir monolayers has been investigated with Brewster angle microscopy. Low temperature mosaic textures respond to an applied stress elastically. Upon the application of shear the change of contrast appears in the form of propagation of fronts roughly perpendicularly to the shear direction within a single domain reversibly, while the domain shape keeps constant since it is presumably frozen kinetically. The striation and stripe textures at high temperatures show a viscoplastic behavior (plastic bending) in its rheological response, being consistent with the formation of a dislocation wall (tilt boundary) through dislocation dynamics (dislocation glide and climb). The stress-induced formation of a tilt boundary provides a manifestation of the collective motion of a number of dislocations.

  10. Static roll-tilt over 5 minutes locally distorts the internal estimate of direction of gravity.

    PubMed

    Tarnutzer, A A; Bockisch, C J; Straumann, D; Marti, S; Bertolini, G

    2014-12-01

    The subjective visual vertical (SVV) indicates perceived direction of gravity. Even in healthy human subjects, roll angle-dependent misestimations, roll overcompensation (A-effect, head-roll > 60° and <135°) and undercompensation (E-effect, head-roll < 60°), occur. Previously, we demonstrated that, after prolonged roll-tilt, SVV estimates when upright are biased toward the preceding roll position, which indicates that perceived vertical (PV) is shifted by the prior tilt (Tarnutzer AA, Bertolini G, Bockisch CJ, Straumann D, Marti S. PLoS One 8: e78079, 2013). Hypothetically, PV in any roll position could be biased toward the previous roll position. We asked whether such a "global" bias occurs or whether the bias is "local". The SVV of healthy human subjects (N = 9) was measured in nine roll positions (-120° to +120°, steps = 30°) after 5 min of roll-tilt in one of two adaptation positions (±90°) and compared with control trials without adaptation. After adapting, adjustments were shifted significantly (P < 0.05) toward the previous adaptation position for nearby roll-tilted positions (±30°, ±60°) and upright only. We computationally simulated errors based on the sum of a monotonically increasing function (producing roll undercompensation) and a mixture of Gaussian functions (representing roll overcompensation centered around PV). In combination, the pattern of A- and E-effects could be generated. By shifting the function representing local overcompensation toward the adaptation position, the experimental postadaptation data could be fitted successfully. We conclude that prolonged roll-tilt locally distorts PV rather than globally shifting it. Short-term adaptation of roll overcompensation may explain these shifts and could reflect the brain's strategy to optimize SVV estimates around recent roll positions. Thus postural stability can be improved by visually-mediated compensatory responses at any sustained body-roll orientation.

  11. Fabrication of Fiber-Optic Tilted Bragg Grating Filter in 40 nm Range with A Single Phase Mask

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber-optic Bragg grating filters are fabricated with a range of Bragg wavelength between 1296 and 1336 nm, using a single phase mask. 30 mW of continuous-wave light at 244 nm is used from a frequency-doubled argon-ion laser having an intracavity etalon. Gratings are fabricated by tilting the photosensitive fiber with respect to the phase mask up to an angle of 15 degrees. The variation of Bragg wavelength with the fiber-tilt is explained with a simple formula. High spatial coherence of 244 nm light makes it possible to displace the fiber as much as 6 mm in front of the phase mask and tilt the fiber by as much as 15 degrees. This results in nearly constant band-width and near 100% reflectively for all gratings throughout the 40 nm range.

  12. Modelling PTB's spatial angle autocollimator calibrator

    NASA Astrophysics Data System (ADS)

    Kranz, Oliver; Geckeler, Ralf D.; Just, Andreas; Krause, Michael

    2013-05-01

    The accurate and traceable form measurement of optical surfaces has been greatly advanced by a new generation of surface profilometers which are based on the reflection of light at the surface and the measurement of the reflection angle. For this application, high-resolution electronic autocollimators provide accurate and traceable angle metrology. In recent years, great progress has been made at the Physikalisch-Technische Bundesanstalt (PTB) in autocollimator calibration. For an advanced autocollimator characterisation, a novel calibration device has been built up at PTB: the Spatial Angle Autocollimator Calibrator (SAAC). The system makes use of an innovative Cartesian arrangement of three autocollimators (two reference autocollimators and the autocollimator to be calibrated), which allows a precise measurement of the angular orientation of a reflector cube. Each reference autocollimator is sensitive primarily to changes in one of the two relevant tilt angles, whereas the autocollimator to be calibrated is sensitive to both. The distance between the reflector cube and the autocollimator to be calibrated can be varied flexibly. In this contribution, we present the SAAC and aspects of the mathematical modelling of the system for deriving analytical expressions for the autocollimators' angle responses. These efforts will allow advancing the form measurement substantially with autocollimator-based profilometers and approaching fundamental measurement limits. Additionally, they will help manufacturers of autocollimators to improve their instruments and will provide improved angle measurement methods for precision engineering.

  13. Tilt-Pair Analysis of Images from a Range of Different Specimens in Single-Particle Electron Cryomicroscopy

    PubMed Central

    Henderson, Richard; Chen, Shaoxia; Chen, James Z.; Grigorieff, Nikolaus; Passmore, Lori A.; Ciccarelli, Luciano; Rubinstein, John L.; Crowther, R. Anthony; Stewart, Phoebe L.; Rosenthal, Peter B.

    2011-01-01

    The comparison of a pair of electron microscope images recorded at different specimen tilt angles provides a powerful approach for evaluating the quality of images, image-processing procedures, or three-dimensional structures. Here, we analyze tilt-pair images recorded from a range of specimens with different symmetries and molecular masses and show how the analysis can produce valuable information not easily obtained otherwise. We show that the accuracy of orientation determination of individual single particles depends on molecular mass, as expected theoretically since the information in each particle image increases with molecular mass. The angular uncertainty is less than 1° for particles of high molecular mass (∼ 50 MDa), several degrees for particles in the range 1–5 MDa, and tens of degrees for particles below 1 MDa. Orientational uncertainty may be the major contributor to the effective temperature factor (B-factor) describing contrast loss and therefore the maximum resolution of a structure determination. We also made two unexpected observations. Single particles that are known to be flexible showed a wider spread in orientation accuracy, and the orientations of the largest particles examined changed by several degrees during typical low-dose exposures. Smaller particles presumably also reorient during the exposure; hence, specimen movement is a second major factor that limits resolution. Tilt pairs thus enable assessment of orientation accuracy, map quality, specimen motion, and conformational heterogeneity. A convincing tilt-pair parameter plot, where 60% of the particles show a single cluster around the expected tilt axis and tilt angle, provides confidence in a structure determined using electron cryomicroscopy. PMID:21939668

  14. Can imaginary head tilt shorten postrotatory nystagmus?

    NASA Technical Reports Server (NTRS)

    Gianna-Poulin, C. C.; Voelker, C. C.; Erickson, B.; Black, F. O.

    2001-01-01

    In healthy subjects, head tilt upon cessation of a constant-velocity yaw head rotation shortens the duration of postrotatory nystagmus. The presumed mechanism for this effect is that the velocity storage of horizontal semicircular canal inputs is being discharged by otolith organ inputs which signal a constant yaw head position when the head longitudinal axis is no longer earth-vertical. In the present study, normal subjects were rotated head upright in the dark on a vertical-axis rotational chair at 60 degrees/s for 75 s and were required to perform a specific task as soon as the chair stopped. Horizontal position of the right eye was recorded with an infra-red video camera. The average eye velocity (AEV) was measured over a 30-s interval following chair acceleration/deceleration. The ratios (postrotatory AEV/perrotatory AEV) were 1.1 (SD 0.112) when subjects (N=10) kept their head erect, 0.414 (SD 0.083) when subjects tilted their head forward, 1.003 (SD 0.108) when subjects imagined watching a TV show, 1.012 (SD 0.074) when subjects imagined looking at a painting on a wall, and 0.995 (SD 0.074) when subjects imagined floating in a prone position on a lake. Thus, while actual head tilt reduced postrotatory nystagmus, the imagination tasks did not have a statistically significant effect on postrotatory nystagmus. Therefore, velocity storage does not appear to be under the influence of cortical neural signals when subjects imagine that they are floating in a prone orientation.

  15. Thermal annealing of tilted fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    González-Vila, Á.; Rodríguez-Cobo, L.; Mégret, P.; Caucheteur, C.; López-Higuera, J. M.

    2016-05-01

    We report a practical study of the thermal decay of cladding mode resonances in tilted fiber Bragg gratings, establishing an analogy with the "power law" evolution previously observed on uniform gratings. We examine how this process contributes to a great thermal stability, even improving it by means of a second cycle slightly increasing the annealing temperature. In addition, we show an improvement of the grating spectrum after annealing, with respect to the one just after inscription, which suggests the application of this method to be employed to improve saturation issues during the photo-inscription process.

  16. Tilted foils polarization at REX-ISOLDE

    NASA Astrophysics Data System (ADS)

    Törnqvist, H.; Sotty, C.; Balabanski, D.; Dhal, A.; Georgiev, G.; Hass, M.; Heinz, A.; Hirayama, Y.; Imai, N.; Johansson, H.; Kowalska, M.; Kusoglu, A.; Nilsson, T.; Stuchbery, A.; Wenander, F.; Yordanov, D. T.

    2013-12-01

    The tilted-foils nuclear-spin polarization method has been evaluated using the REX-ISOLDE linear accelerator at the ISOLDE facility, CERN. A beam of 8Li delivered with an energy of 300 keV/u traversed through one Mylar foil to degrade the beam energy to 200 keV/u and consequently through 10 thin diamond-like carbon foils to polarize the nuclear spin. The attained nuclear spin polarization of 3.6±0.3% was measured with a β-NMR setup.

  17. Tilted excitation implies odd periodic resonances

    NASA Astrophysics Data System (ADS)

    Depetri, G. I.; Sartorelli, J. C.; Marin, B.; Baptista, M. S.

    2016-07-01

    Our aim is to unveil how resonances of parametric systems are affected when symmetry is broken. We showed numerically and experimentally that odd resonances indeed come about when the pendulum is excited along a tilted direction. Applying the Melnikov subharmonic function, we not only determined analytically the loci of saddle-node bifurcations delimiting resonance regions in parameter space but also explained these observations by demonstrating that, under the Melnikov method point of view, odd resonances arise due to an extra torque that appears in the asymmetric case.

  18. Border-ownership-dependent tilt aftereffect

    NASA Astrophysics Data System (ADS)

    von der Heydt, Rüdiger; Macuda, Todd; Qiu, Fangtu T.

    2005-10-01

    Single-cell recordings from macaque visual cortex have shown orientation-selective neurons in area in V2 code for border ownership [J. Neurosci. 20, 6594 (2000)]: Each piece of contrast border is represented by two pools of neurons whose relative firing rate indicates the side of border ownership. Here we show that the human visual cortex uses a similar coding scheme by demonstrating a border-ownership-contingent tilt aftereffect. The aftereffect was specific for the adapted location, indicating that the adapted neurons have small receptive fields. We conclude that figure-ground organization is represented by border-ownership-selective neurons at early stages in the human visual cortex.

  19. Tilted excitation implies odd periodic resonances.

    PubMed

    Depetri, G I; Sartorelli, J C; Marin, B; Baptista, M S

    2016-07-01

    Our aim is to unveil how resonances of parametric systems are affected when symmetry is broken. We showed numerically and experimentally that odd resonances indeed come about when the pendulum is excited along a tilted direction. Applying the Melnikov subharmonic function, we not only determined analytically the loci of saddle-node bifurcations delimiting resonance regions in parameter space but also explained these observations by demonstrating that, under the Melnikov method point of view, odd resonances arise due to an extra torque that appears in the asymmetric case. PMID:27575118

  20. Optimum blending gives best pool octane

    SciTech Connect

    Morris, W.E.

    1986-01-20

    Optimum blending of gasoline components can increase the pool octane by 0.1 to 0.5 numbers. To achieve the optimum octane blending scheme, accurate octane blending values must be obtained. These blending values can be developed from an interaction blending study or from generalized predicted interaction coefficients. Many refiners are blending in a non-optimum fashion so that there are some cheap octanes available for the taking by simply changing to an optimum blending scheme. A study of 1984 gasoline compositions indicated that many refiners were blending in a non-optimum fashion and that ''pool octane'' could have been increased almost 0.5 octane. The term pool octane usually refers to the weighted average octane of all of the gasoline components. It can be calculated by multiplying the octane of each component by its fraction of the pool and adding the results. If the components are blended into two or more grades, a second pool octane could be calculated by multiplying the octane of each grade, before any lead antiknock addition, by its fraction of the total pool. The second pool octane will differ from the first because the components do not blend linearly. The octane of a 50:50 blend of two components may be higher or lower than the average of the octanes of the two components.

  1. Tilt-effect of holograms and images displayed on a spatial light modulator.

    PubMed

    Harm, Walter; Roider, Clemens; Bernet, Stefan; Ritsch-Marte, Monika

    2015-11-16

    We show that a liquid crystal spatial light modulator (LCOS-SLM) can be used to display amplitude images, or phase holograms, which change in a pre-determined way when the display is tilted, i.e. observed under different angles. This is similar to the tilt-effect (also called "latent image effect") known from various security elements ("kinegrams") on credit cards or bank notes. The effect is achieved without any specialized optical components, simply by using the large phase shifting capability of a "thick" SLM, which extends over several multiples of 2π, in combination with the angular dependence of the phase shift. For hologram projection one can use the fact that the phase of a monochromatic wave is only defined modulo 2π. Thus one can design a phase pattern extending over several multiples of 2π, which transforms at different readout angles into different 2π-wrapped phase structures, due to the angular dependence of the modulo 2π operation. These different beams then project different holograms at the respective readout angles. In amplitude modulation mode (with inserted polarizer) the intensity of each SLM pixel oscillates over several periods when tuning its control voltage. Since the oscillation period depends on the readout angle, it is possible to find a certain control voltage which produces two (or more) selectable gray levels at a corresponding number of pre-determined readout angles. This is done with all SLM pixels individually, thus constructing different images for the selected angles. We experimentally demonstrate the reconstruction of multiple (Fourier- and Fresnel-) holograms, and of different amplitude images, by readout of static diffractive patterns in a variable angular range between 0° and 60°. PMID:26698528

  2. Zone plate tilt study in transmission x-ray microscope system at 8-11 keV

    NASA Astrophysics Data System (ADS)

    Chao, Fu-Han; Yin, Gung-Chian; Liang, Keng S.; Lai, Yin-Chieh

    2009-08-01

    Zone plate [1] has been used as a focal lens in transmission X-ray microscope (TXM) optical system in recent decades [2, 3]. In TXM of NSRRC[4,5], the thickness of zone plate is about 900nm and the width of its out most zones is 50nm, which has a high aspect ratio 18. When zone plate is tilted, the image quality will be affected by aberration. Since the aspect ratio of zone plate is large, for incident beam, the shape of zone plate's transmission function will look different when zone plate is tilted. The both experimental and simulation result will be shown in this present. A five axes stage is designed and manufactured for the zone plate holder for three dimensional movement, tip and tilt. According to Fourier theory, we can calculate the wave distribution on image plane, if we know the original wave function, the distances between each element, and the transparencies of the sample and zone plate. A parallel simulation process code in MATLAB is developed in workstation cluster with up to 128Gbytes memory. The effects of aberration generated by tilt effect are compared from the experimental data and simulation result. A maximum tilt angle within the acceptable image quality is calculated by simulation and will be verified by experiment.

  3. Analysis of the effects of disk tilt on the differential-phase-detection signal in a high-density DVD read-only disk driver

    NASA Astrophysics Data System (ADS)

    Shen, Quanhong; Xu, Duanyi

    2006-06-01

    A high-density DVD (HD-DVD) is one of the high-density optical storage technology newly designed to meet the demands of high-definition video broadcasting that is very sensitive to the radial tilt of a disk. An analytic model based on diffraction theory is presented in detail to calculate the tracking error signal of a HD-DVD read-only disk driver by using the differential-phase-detection (DPD) method when radial tilt of a disk occurs. The effects of the tilt on a DPD signal in a HD-DVD read-only disk driver are quantified and compared to those in a DVD read-only disk driver. Experimental measurements for the DPD signal under different radial tilt angles in a HD-DVD read-only disk driver are also reported.

  4. A percentile-based coarse graining approach is helpful in symbolizing heart rate variability during graded head-up tilt.

    PubMed

    Cysarz, Dirk; Edelhauser, Friedrich; Javorka, Michal; Montano, Nicola; Porta, Alberto

    2015-01-01

    Coarse graining of physiological time series such as the cardiac interbeat interval series by means of a symbolic transformation retains information about dynamical properties of the underlying system and complements standard measures of heart rate variability. The transformations of the original time series to the coarse grained symbolic series usually lead to a non-uniform occurrence of the different symbols, i.e. some symbols appear more often than others influencing the results of the subsequent symbolic series analysis. Here, we defined a transformation procedure to assure that each symbol appears with equal probability using a short alphabet {0,1,2,3} and a long alphabet {0,1,2,3,4,5}. The procedure was applied to the cardiac interbeat interval series RRi of 17 healthy subjects obtained during graded head-up tilt testing. The symbolic dynamics is analyzed by means of the occurrence of short sequences (`words') of length 3. The occurrence of words is grouped according to words without variations of the symbols (0V%), one variation (1V%), two like variations (2LV%) and two unlike variations (2UV%). Linear regression analysis with respect to tilt angle showed that for the short alphabet 0V% increased with increasing tilt angle whereas 1V%, 2LV% and 2UV% decreased. For the long alphabet 0V%, and 1V% increased with increasing tilt angle whereas 2LV% and 2UV% decreased. These results were slightly better compared to the results from non-uniform symbolic transformations reflecting the deviation from the mean. In conclusion, the symbolic transformation assuring the appearance of symbols with equal probability is capable of reflecting changes of the cardiac autonomic nervous system during graded head-up tilt. Furthermore, the transformation is independent of the time series' distribution. PMID:26736256

  5. Symmetry rules and strain/order-parameter relationships for coupling between octahedral tilting and cooperative Jahn-Teller transitions in ABX3 perovskites. II. Application.

    PubMed

    Carpenter, Michael A; Howard, Christopher J

    2009-04-01

    The structural evolution of selected perovskites containing Jahn-Teller cations has been investigated in the light of a formal analysis of symmetry hierarchies for phase transitions driven by octahedral tilting and Jahn-Teller cooperative distortions. General expressions derived from the strain/order-parameter coupling relationships allowed by symmetry are combined with observed changes in lattice parameters to reveal details of order-parameter evolution and coupling. LuVO3, YbVO3, YVO3 and CeVO3 are representative of systems which develop Jahn-Teller ordering schemes associated with irreducible representations M2+ and R3+ of the space group Pm3m. Tilting of their octahedra is associated with M3+ and R4+. The Pnma (M3+ + R4+ tilting) <--> P2(1)/a (M3+ + R4+ tilting, R3+ Jahn-Teller order) transition below room temperature is close to second order in character. Shear strains which depend primarily on tilt angles show little variation, implying that there is only weak coupling between the tilting and Jahn-Teller order parameters. The subsequent P2(1)/a <--> Pnma (M3+ + R4+ tilting, M2+ Jahn-Teller order) is first order in character, and involves either a reduction in the R4+ tilt angle or a change in the strength of tilt/Jahn-Teller order-parameter coupling. In LaMnO3, the isosymmetric Pnma (M3+ + R4+ tilting) <--> Pnma (M3+ + R4+ tilting, M2+ Jahn-Teller order) transition can be described in terms of a classical first-order transition conforming to a 246 Landau expansion with negative fourth-order coefficients. Strain evolution in Ba-doped samples suggests that the transition becomes second order in character and reveals a new strain relaxation mechanism in LaMnO3 which might be understood in terms of local strain heterogeneities due to the disordering of distorted MnO6 octahedra. Transitions in PrAlO3 and La(0.5)Ba(0.5)CoO3 illustrate the transformation behaviour of systems in which the Jahn-Teller ordering scheme is associated with the irreducible representation

  6. Expected accuracy of tilt measurements on a novel hexapod-based digital zenith camera system: a Monte-Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Hirt, Christian; Papp, Gábor; Pál, András; Benedek, Judit; Szũcs, Eszter

    2014-08-01

    Digital zenith camera systems (DZCS) are dedicated astronomical-geodetic measurement systems for the observation of the direction of the plumb line. A DZCS key component is a pair of tilt meters for the determination of the instrumental tilt with respect to the plumb line. Highest accuracy (i.e., 0.1 arc-seconds or better) is achieved in practice through observation with precision tilt meters in opposite faces (180° instrumental rotation), and application of rigorous tilt reduction models. A novel concept proposes the development of a hexapod (Stewart platform)-based DZCS. However, hexapod-based total rotations are limited to about 30°-60° in azimuth (equivalent to ±15° to ±30° yaw rotation), which raises the question of the impact of the rotation angle between the two faces on the accuracy of the tilt measurement. The goal of the present study is the investigation of the expected accuracy of tilt measurements to be carried out on future hexapod-based DZCS, with special focus placed on the role of the limited rotation angle. A Monte-Carlo simulation study is carried out in order to derive accuracy estimates for the tilt determination as a function of several input parameters, and the results are validated against analytical error propagation. As the main result of the study, limitation of the instrumental rotation to 60° (30°) deteriorates the tilt accuracy by a factor of about 2 (4) compared to a 180° rotation between the faces. Nonetheless, a tilt accuracy at the 0.1 arc-second level is expected when the rotation is at least 45°, and 0.05 arc-second (about 0.25 microradian) accurate tilt meters are deployed. As such, a hexapod-based DZCS can be expected to allow sufficiently accurate determination of the instrumental tilt. This provides supporting evidence for the feasibility of such a novel instrumentation. The outcomes of our study are not only relevant to the field of DZCS, but also to all other types of instruments where the instrumental tilt

  7. Optimum Suction Distribution for Transition Control

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; Hall, P.

    1996-01-01

    The optimum suction distribution which gives the longest laminar region for a given total suction is computed. The goal here is to provide the designer with a method to find the best suction distribution subject to some overall constraint applied to the suction. We formulate the problem using the Lagrangian multiplier method with constraints. The resulting non-linear system of equations is solved using the Newton-Raphson technique. The computations are performed for a Blasius boundary layer on a flat-plate and crossflow cases. For the Blasius boundary layer, the optimum suction distribution peaks upstream of the maximum growth rate region and remains flat in the middle before it decreases to zero at the end of the transition point. For the stationary and travelling crossflow instability, the optimum suction peaks upstream of the maximum growth rate region and decreases gradually to zero.

  8. "Tilt" in color space: Hue changes induced by chromatic surrounds.

    PubMed

    Klauke, Susanne; Wachtler, Thomas

    2015-01-01

    The perceived color of a chromatic stimulus is influenced by the chromaticity of its surround. To investigate these influences along the dimension of hue, we measured hue changes induced in stimuli of different hues by isoluminant chromatic surrounds. Generally, induced hue changes were directed in color space away from the hue of the inducing surround and depended on the magnitude on the hue difference between stimulus and surround. With increasing difference in hue between stimulus and surround, induced hue changes increased up to a maximum and then decreased for larger differences. This qualitative pattern was similar for different inducers, but quantitatively, induction was weaker along some directions in cone-opponent color space than along other directions. The strongest induction effects were found along an oblique, blue-yellow axis that corresponds to the daylight axis. The overall pattern of the induction effect shows similarities to the well-known tilt effect, where shifts in perceived angle of oriented stimuli are induced by oriented surrounds. This suggests analogous neural representations and similar mechanisms of contextual processing for different visual features such as orientation and color. PMID:26401624

  9. "Tilt" in color space: Hue changes induced by chromatic surrounds.

    PubMed

    Klauke, Susanne; Wachtler, Thomas

    2015-01-01

    The perceived color of a chromatic stimulus is influenced by the chromaticity of its surround. To investigate these influences along the dimension of hue, we measured hue changes induced in stimuli of different hues by isoluminant chromatic surrounds. Generally, induced hue changes were directed in color space away from the hue of the inducing surround and depended on the magnitude on the hue difference between stimulus and surround. With increasing difference in hue between stimulus and surround, induced hue changes increased up to a maximum and then decreased for larger differences. This qualitative pattern was similar for different inducers, but quantitatively, induction was weaker along some directions in cone-opponent color space than along other directions. The strongest induction effects were found along an oblique, blue-yellow axis that corresponds to the daylight axis. The overall pattern of the induction effect shows similarities to the well-known tilt effect, where shifts in perceived angle of oriented stimuli are induced by oriented surrounds. This suggests analogous neural representations and similar mechanisms of contextual processing for different visual features such as orientation and color.

  10. Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4 percent. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

  11. Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4%. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

  12. Rotor stability estimation with competing tilting pad bearing models

    NASA Astrophysics Data System (ADS)

    Cloud, C. Hunter; Maslen, Eric H.; Barrett, Lloyd E.

    2012-05-01

    When predicting the stability of rotors supported by tilting pad journal bearings, it is currently debated whether or not the bearings should be represented with frequency dependent dynamics. Using an experimental apparatus, measurements of pad temperatures, unbalance response and stability are compared with modeling predictions for two tilting pad bearing designs. Predictions based on frequency dependent tilting pad bearing dynamics exhibited significantly better correlation with the stability measurements than those assuming frequency independent dynamics.

  13. Stretchability of the rectus femoris muscle: investigation of validity and intratester reliability of two methods including X-ray analysis of pelvic tilt.

    PubMed

    Hamberg, J; Björklund, M; Nordgren, B; Sahlstedt, B

    1993-03-01

    Validity and intratester reliability of two test methods designed to identify stretchability of the rectus femoris muscle (RFM) was investigated, combined with x-ray analysis of pelvic tilt in the sagittal plane. The first method is commonly used in clinical practice. The second is a new technique supposed to tilt the pelvis posteriorly and thus further separate the origin and insertion of the muscle. Investigation of validity and intratester reliability of the two methods was made by testing and retesting a random sample of 71 persons. The tests were performed with an equipment that automatically recorded the angle of knee flexion from a previously determined applied torque, indicating the end point of motion for that particular subject. Angle of knee flexion and subjective estimation of pain sensation due to stretch were recorded at each measurement. The pelvic tilt-analysis consisted of test-retest reliability of x-ray measurements, comparison between the methods in both starting and final position, and x-ray and electronic goniometer measurements. All applied torques were measured with a strain gauge. Two out of three criteria of validity favored the new method and the third pointed out the two methods as equal. The two methods as well as the x-ray measurements showed high reliability, and the hypothesis of a more posterior tilted pelvis in the new method was confirmed. The electronic goniometer was less sensitive than x-ray, but proposed to analyse pelvic tilt clinically. Methodology procedures for joint angle measurements are discussed.

  14. Magnetotransport properties of Co90Fe10/Cu/Ni80Fe20 pseudo-spin-valve with out-of-plane tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Luo, Linqiang; Dao, Nam; Kittiwatanakul, Salinporn; Wolf, Stuart; Lu, Jiwei; UVa NanoStar Team

    The giant magnetoresistance (GMR) effect of a pseudo spin valve made of Co90Fe10/Cu/Ni80Fe20 has been investigated, with a magnetic field applied perpendicularly tilted to the sample plane. Without using a pinning layer, the magnetic separation of the free and fixed layers is uniquely achieved by utilizing perpendicular fields due to different anisotropy energies between Ni80Fe20 and Co90Fe10. The magneto-transport measurements are carried out by Van der Pauw method in current-in-plane geometry at room temperature. By tilting the magnetic field at different angles from out-of-plane, the GMR plateau's width can be tuned. A plateau width of about 2000 Oe is observed at tilted angle 0.5o, which opens a significantly larger window for high-resistance states comparing with a plateau width of 10 Oe for in-plane fields. With the out-of-plane tilted fields, the orientation of the magnetic moments can be tuned continuously out of the sample plane, and the relative orientation between Ni80Fe20 and Co90Fe10 can also be tuned by the tilted angle, enabling us to precisely control the sample's states for current-induced spin dynamics study that is very difficult in the case of in-plane applied magnetic fields.

  15. Optimum viewing distance for target acquisition

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    2015-05-01

    Human visual system (HVS) "resolution" (a.k.a. visual acuity) varies with illumination level, target characteristics, and target contrast. For signage, computer displays, cell phones, and TVs a viewing distance and display size are selected. Then the number of display pixels is chosen such that each pixel subtends 1 min-1. Resolution of low contrast targets is quite different. It is best described by Barten's contrast sensitivity function. Target acquisition models predict maximum range when the display pixel subtends 3.3 min-1. The optimum viewing distance is nearly independent of magnification. Noise increases the optimum viewing distance.

  16. Optimum Detection of Frequency-Hopped Signals

    NASA Technical Reports Server (NTRS)

    Cheng, Unjeng; Levitt, Barry; Polydoros, Andreas; Simon, Marvin K.

    1992-01-01

    This paper derives and analyzes optimum and near-optimum structures for detecting frequency-hopped (FH) signals with arbitrary modulation in additive white Gaussian noise. The principalmodulation formats considered are M-ary frequency-shift-keying (MFSK) with fast frequency hopping(FFH) wherein a single tone is transmitted per hop, and slow frequency hopping (SFH) with multipleMFSK tones (data symbols) per hop. The SFH detection category has not previously been addressedin the open literature and its analysis is generally more complex than FFH.

  17. Modes of tilting during extensional core complex development.

    PubMed

    Coleman, D S; Walker, J D

    1994-01-14

    Crustal extension and formation of the Mineral Mountains core complex, Utah, involved tilting of the Mineral Mountains batholith and associated faults during hanging wall and footwall deformation. The batholith was folded in the hanging wall of the Beaver Valley fault between 11 and 9 million years ago yielding about 45 degrees of tilt. Subsequently, the batholith was unroofed along the Cave Canyon detachment fault, and the batholith and fault were tilted approximately 40 degrees during footwall uplift. Recognition of deformed dikes beneath the detachment fault establishes the importance of footwall tilt during formation of extensional core complexes and demonstrates that footwall rebound can be an important process during extension.

  18. Prediction of the heliospheric current sheet tilt: 1992-1996

    SciTech Connect

    Suess, S.T. ); McComas, D.J. ); Hoeksema, J.T. )

    1993-02-05

    Heliospheric current sheet tilt evolves systematically over the solar cycle. Here the authors show that this evolution is different than the sunspot cycle and that tilt for the period 1992-1996 can be predicted using persistence. That is, the tilt over the coming cycle will be the same as for the past cycle. The Ulysses spacecraft has passed Jupiter and is moving out of the plane of the ecliptic, so they use the prediction of the changing heliospheric current sheet tilt to predict that Ulysses will pass beyond the envelope, or maximum latitude, of the heliospheric current sheet in November 1993. 10 refs., 6 figs.

  19. Transient cardio-respiratory responses to visually induced tilt illusions

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Ramsdell, C. D.; Mullen, T. J.; Oman, C. M.; Harm, D. L.; Paloski, W. H.

    2000-01-01

    Although the orthostatic cardio-respiratory response is primarily mediated by the baroreflex, studies have shown that vestibular cues also contribute in both humans and animals. We have demonstrated a visually mediated response to illusory tilt in some human subjects. Blood pressure, heart and respiration rate, and lung volume were monitored in 16 supine human subjects during two types of visual stimulation, and compared with responses to real passive whole body tilt from supine to head 80 degrees upright. Visual tilt stimuli consisted of either a static scene from an overhead mirror or constant velocity scene motion along different body axes generated by an ultra-wide dome projection system. Visual vertical cues were initially aligned with the longitudinal body axis. Subjective tilt and self-motion were reported verbally. Although significant changes in cardio-respiratory parameters to illusory tilts could not be demonstrated for the entire group, several subjects showed significant transient decreases in mean blood pressure resembling their initial response to passive head-up tilt. Changes in pulse pressure and a slight elevation in heart rate were noted. These transient responses are consistent with the hypothesis that visual-vestibular input contributes to the initial cardiovascular adjustment to a change in posture in humans. On average the static scene elicited perceived tilt without rotation. Dome scene pitch and yaw elicited perceived tilt and rotation, and dome roll motion elicited perceived rotation without tilt. A significant correlation between the magnitude of physiological and subjective reports could not be demonstrated.

  20. Parametric Study of Water Rocket for Optimum Flight

    NASA Astrophysics Data System (ADS)

    Ota, Takayuki; Umemura, Akira

    Parametric study is conducted to find the optimum condition of water rocket for long flight, provided that the tank volume is prescribed. The parameters considered in the present study are the initial air pressure, water volume fraction, empty rocket mass, launching angle and bottle diameter which significantly affect the flight performance of water rocket. First, we calculate the temporal changes in tank pressure, water and air issue speeds and thrust, on the basis of a simple physical model which has been experimentally validated. Then, this model is incorporated into the equation of motion to calculate the ballistic flight of water rocket with various parameter values. As a result, it is found that PET bottles in the market are one of the most suitable for use as the pressure tank of water rocket.

  1. Pulse-front tilt for short-wavelength lasing by means of traveling-wave plasma-excitation.

    PubMed

    Bleiner, Davide; Feurer, Thomas

    2012-12-20

    Generation of coherent short-wavelength radiation across a plasma column is dramatically improved under traveling-wave excitation (TWE). The latter is optimized when its propagation is close to the speed of light, which implies small-angle target-irradiation. Yet, short-wavelength lasing needs large irradiation angles in order to increase the optical penetration of the pump into the plasma core. Pulse-front back-tilt is considered to overcome such trade-off. In fact, the TWE speed depends on the pulse-front slope (envelope of amplitude), whereas the optical penetration depth depends on the wave-front slope (envelope of phase). Pulse-front tilt by means of compressor misalignment was found effective only if coupled with a high-magnification front-end imaging/focusing component. It is concluded that speed matching should be accomplished with minimal compressor misalignment and maximal imaging magnification.

  2. Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field

    DOE PAGES

    Lin, Shi-Zeng; Saxena, Avadh

    2015-11-03

    Here we study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is non-circular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chain like structure. Lastly, the dynamical response ofmore » the non-circular skyrmions depends on the direction of external currents.« less

  3. Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field

    SciTech Connect

    Lin, Shi-Zeng; Saxena, Avadh

    2015-11-03

    Here we study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is non-circular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chain like structure. Lastly, the dynamical response of the non-circular skyrmions depends on the direction of external currents.

  4. Micromagnetic study of spin transfer switching with a spin polarization tilted out of the free layer plane

    SciTech Connect

    Chaves-O'Flynn, Gabriel D. Wolf, Georg; Pinna, Daniele; Kent, Andrew D.

    2015-05-07

    We present the results of zero temperature macrospin and micromagnetic simulations of spin transfer switching of thin film nanomagnets in the shape of an ellipse with a spin-polarization tilted out of the layer plane. The perpendicular component of the spin-polarization is shown to increase the reversal speed, leading to a lower current for switching in a given time. However, for tilt angles larger than a critical angle, the layer magnetization starts to precess about an out-of-plane axis, which leads to a final magnetization state that is very sensitive to simulation conditions. As the ellipse lateral size increases, this out-of-plane precession is suppressed, due to the excitation of spatially non-uniform magnetization modes.

  5. A mathematical simulation model of a 1985-era tilt-rotor passenger aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.; Widdison, C. A.

    1976-01-01

    A mathematical model for use in real-time piloted simulation of a 1985-era tilt rotor passenger aircraft is presented. The model comprises the basic six degrees-of-freedom equations of motion, and a large angle of attack representation of the airframe and rotor aerodynamics, together with equations and functions used to model turbine engine performance, aircraft control system and stability augmentation system. A complete derivation of the primary equations is given together with a description of the modeling techniques used. Data for the model is included in an appendix.

  6. Fast optimum decoding for nonadditive readable watermarking

    NASA Astrophysics Data System (ADS)

    Baitello, Riccardo; Barni, Mauro; Bartolini, Franco; Caldelli, Roberto; De Rosa, Alessia

    2001-08-01

    Watermarking algorithms for copyright protection are usually classified as belonging to one of two classes: detectable and readable. The aim of this paper is to present a possible approach for transforming an optimum, detectable technique previously proposed by the authors into a readable one. Similarly to what has been done previously by other authors we embed multiple copies of the watermark into the image, letting their relative positions in the frequency domain to be related to the informative message. The main drawback of this approach is that all copies of the watermark have to be detected without knowing their positions, i.e. all possible positions (many tenth thousands in our case) have to be tested, which is a prohibitive task from the point of view of the computational cost. Correlation based watermark detectors can overcome this problem by exploiting the Fast Fourier Transform (FFT) algorithm, but they are not optimum in the case of non additive watermarks. In this paper we demonstrate how the formula of the optimum watermark detector can be re-conducted to a correlation structure, thus allowing us to use the FFT for testing the watermark presence at all possible positions: in this way a fast optimum decoding system is obtained.

  7. Optimum Building Shapes for Energy Conservation

    ERIC Educational Resources Information Center

    Berkoz, Esher Balkan

    1977-01-01

    An approach to optimum building shape design is summarized that is based on local climate and is especially important for heat control in lower cost construction with temperature-responsive thermal characteristics. The study was supported by Istanbul Technical University. For journal availability see HE 508 931. (Author/LBH)

  8. Common Core: Teaching Optimum Topic Exploration (TOTE)

    ERIC Educational Resources Information Center

    Karge, Belinda Dunnick; Moore, Roxane Kushner

    2015-01-01

    The Common Core has become a household term and yet many educators do not understand what it means. This article explains the historical perspectives of the Common Core and gives guidance to teachers in application of Teaching Optimum Topic Exploration (TOTE) necessary for full implementation of the Common Core State Standards. An effective…

  9. Impact of body tilt on the central aortic pressure pulse.

    PubMed

    Rotaru, Corina; Liaudet, Lucas; Waeber, Bernard; Feihl, François

    2015-04-01

    The present work was undertaken to investigate, in young healthy volunteers, the relationships between the forward propagation times of arterial pressure waves and the timing of reflected waves observable on the aortic pulse, in the course of rapid changes in body position. 20 young healthy subjects, 10 men, and 10 women, were examined on a tilt table at two different tilt angles, -10° (Head-down) and + 45° (Head-up). In each position, carotid-femoral (Tcf) and carotid-tibial forward propagation times (Tct) were measured with the Complior device. In each position also, the central aortic pressure pulse was recorded with radial tonometry, using the SphygmoCor device and a generalized transfer function, so as to evaluate the timing of reflected waves reaching the aorta in systole (onset of systolic reflected wave, sT1r) and diastole (mean transit time of diastolic reflected wave, dMTT). The position shift from Head-up to Head-down caused a massive increase in both Tct (women from 130 ± 10 to 185 ± 18 msec P < 0.001, men from 136 ± 9 to 204 ± 18 msec P < 0.001) and dMTT (women from 364 ± 35 to 499 ± 33 msec P < 0.001, men from 406 ± 22 to 553 ± 21 msec P < 0.001). Mixed model regression showed that the changes in Tct and dMTT observed between Head-up and Head-down were tightly coupled (regression coefficient 2.1, 95% confidence interval 1.9-2.3, P < 0.001). These results strongly suggest that the diastolic waves observed on central aortic pulses reconstructed from radial tonometric correspond at least in part to reflections generated in the lower limbs.

  10. Impact of body tilt on the central aortic pressure pulse

    PubMed Central

    Rotaru, Corina; Liaudet, Lucas; Waeber, Bernard; Feihl, François

    2015-01-01

    The present work was undertaken to investigate, in young healthy volunteers, the relationships between the forward propagation times of arterial pressure waves and the timing of reflected waves observable on the aortic pulse, in the course of rapid changes in body position. 20 young healthy subjects, 10 men, and 10 women, were examined on a tilt table at two different tilt angles, −10° (Head-down) and + 45° (Head-up). In each position, carotid-femoral (Tcf) and carotid-tibial forward propagation times (Tct) were measured with the Complior device. In each position also, the central aortic pressure pulse was recorded with radial tonometry, using the SphygmoCor device and a generalized transfer function, so as to evaluate the timing of reflected waves reaching the aorta in systole (onset of systolic reflected wave, sT1r) and diastole (mean transit time of diastolic reflected wave, dMTT). The position shift from Head-up to Head-down caused a massive increase in both Tct (women from 130 ± 10 to 185 ± 18 msec P < 0.001, men from 136 ± 9 to 204 ± 18 msec P < 0.001) and dMTT (women from 364 ± 35 to 499 ± 33 msec P < 0.001, men from 406 ± 22 to 553 ± 21 msec P < 0.001). Mixed model regression showed that the changes in Tct and dMTT observed between Head-up and Head-down were tightly coupled (regression coefficient 2.1, 95% confidence interval 1.9–2.3, P < 0.001). These results strongly suggest that the diastolic waves observed on central aortic pulses reconstructed from radial tonometric correspond at least in part to reflections generated in the lower limbs. PMID:25862096

  11. Impact of body tilt on the central aortic pressure pulse.

    PubMed

    Rotaru, Corina; Liaudet, Lucas; Waeber, Bernard; Feihl, François

    2015-04-01

    The present work was undertaken to investigate, in young healthy volunteers, the relationships between the forward propagation times of arterial pressure waves and the timing of reflected waves observable on the aortic pulse, in the course of rapid changes in body position. 20 young healthy subjects, 10 men, and 10 women, were examined on a tilt table at two different tilt angles, -10° (Head-down) and + 45° (Head-up). In each position, carotid-femoral (Tcf) and carotid-tibial forward propagation times (Tct) were measured with the Complior device. In each position also, the central aortic pressure pulse was recorded with radial tonometry, using the SphygmoCor device and a generalized transfer function, so as to evaluate the timing of reflected waves reaching the aorta in systole (onset of systolic reflected wave, sT1r) and diastole (mean transit time of diastolic reflected wave, dMTT). The position shift from Head-up to Head-down caused a massive increase in both Tct (women from 130 ± 10 to 185 ± 18 msec P < 0.001, men from 136 ± 9 to 204 ± 18 msec P < 0.001) and dMTT (women from 364 ± 35 to 499 ± 33 msec P < 0.001, men from 406 ± 22 to 553 ± 21 msec P < 0.001). Mixed model regression showed that the changes in Tct and dMTT observed between Head-up and Head-down were tightly coupled (regression coefficient 2.1, 95% confidence interval 1.9-2.3, P < 0.001). These results strongly suggest that the diastolic waves observed on central aortic pulses reconstructed from radial tonometric correspond at least in part to reflections generated in the lower limbs. PMID:25862096

  12. Comparison of calculated and measured blade loads on a full-scale tilting proprotor in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1980-01-01

    The loads measured in a wind tunnel on a full-scale tilting proprotor are compared with calculated results. The data consists primarily of oscillatory beamwise bending moments at 35% radial station, oscillatory spindle chord bending moments, and oscillatory pitch link loads. The measured and calculated results as a function of thrust are compared over a range of nacelle angles from 0 to 75 deg, and a range of speeds from 80 to 185 knots.

  13. Tilted femtosecond pulses for velocity matching in gas-phase ultrafast electron diffraction

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Yang, Jie; Centurion, Martin

    2014-08-01

    Recent advances in pulsed electron gun technology have resulted in femtosecond electron pulses becoming available for ultrafast electron diffraction experiments. For experiments investigating chemical dynamics in the gas phase, the resolution is still limited to picosecond time scales due to the velocity mismatch between laser and electron pulses. Tilted laser pulses can be used for velocity matching, but thus far this has not been demonstrated over an extended target in a diffraction setting. We demonstrate an optical configuration to deliver high-intensity laser pulses with a tilted pulse front for velocity matching over the typical length of a gas jet. A laser pulse is diffracted from a grating to introduce angular dispersion, and the grating surface is imaged on the target using large demagnification. The laser pulse duration and tilt angle were measured at and near the image plane using two different techniques: second harmonic cross correlation and an interferometric method. We found that a temporal resolution on the order of 100 fs can be achieved over a range of approximately 1 mm around the image plane.

  14. Optical coherence tomography endoscopic probe based on a tilted MEMS mirror

    PubMed Central

    Duan, Can; Tanguy, Quentin; Pozzi, Antonio; Xie, Huikai

    2016-01-01

    This paper reports a compact microendoscopic OCT probe with an outer diameter of only 2.7 mm. The small diameter is enabled by a novel 2-axis scanning MEMS mirror with a preset 45° tilted angle. The tilted MEMS mirror is directly integrated on a silicon optical bench (SiOB). The SiOB provides mechanical support and electrical wiring to the mirror plate via a set of bimorph flexure, enabling a compact probe mount design without the requirement of a 45° slope, which is capable to dramatically reduce the probe size and ease the assembly process. Additionally, the SiOB also provides trenches with properly-designed opening widths for automatic alignment of the MEMS mirror, GRIN lens and optical fiber. The 45°-tilted MEMS mirror plate is actuated by four electrothermal bimorph actuators. The packaged 2.7 mm-diameter probe offers 2-axis side-view optical scanning with a large optical scan range of 40° at a low drive voltage of 5.5 Vdc in both axes, allowing a lateral scan area of 2.2 mm × 2.2 mm at a 3 mm working distance. High-resolution 2D and 3D OCT images of the IR card, ex vivo imaging of meniscus specimens and rat brain slices, in vivo imaging of the human finger and nail have been obtained with a TDOCT system.

  15. Optical coherence tomography endoscopic probe based on a tilted MEMS mirror

    PubMed Central

    Duan, Can; Tanguy, Quentin; Pozzi, Antonio; Xie, Huikai

    2016-01-01

    This paper reports a compact microendoscopic OCT probe with an outer diameter of only 2.7 mm. The small diameter is enabled by a novel 2-axis scanning MEMS mirror with a preset 45° tilted angle. The tilted MEMS mirror is directly integrated on a silicon optical bench (SiOB). The SiOB provides mechanical support and electrical wiring to the mirror plate via a set of bimorph flexure, enabling a compact probe mount design without the requirement of a 45° slope, which is capable to dramatically reduce the probe size and ease the assembly process. Additionally, the SiOB also provides trenches with properly-designed opening widths for automatic alignment of the MEMS mirror, GRIN lens and optical fiber. The 45°-tilted MEMS mirror plate is actuated by four electrothermal bimorph actuators. The packaged 2.7 mm-diameter probe offers 2-axis side-view optical scanning with a large optical scan range of 40° at a low drive voltage of 5.5 Vdc in both axes, allowing a lateral scan area of 2.2 mm × 2.2 mm at a 3 mm working distance. High-resolution 2D and 3D OCT images of the IR card, ex vivo imaging of meniscus specimens and rat brain slices, in vivo imaging of the human finger and nail have been obtained with a TDOCT system. PMID:27699103

  16. Physical properties of the inner shocks in hot, tilted black hole accretion flows

    SciTech Connect

    Generozov, Aleksey; Blaes, Omer; Fragile, P. Chris; Henisey, Ken B.

    2014-01-01

    Simulations of hot, pressure-supported, tilted black hole accretion flows, in which the angular momentum of the flow is misaligned with the black hole spin axis, can exhibit two nonaxisymmetric shock structures in the inner regions of the flow. We analyze the strength and significance of these shock structures in simulations with tilt angles of 10° and 15°. By integrating fluid trajectories in the simulations through the shocks and tracking the variations of fluid quantities along these trajectories, we show that these shocks are strong, with substantial compression ratios, in contrast to earlier claims. However, they are only moderately relativistic. We also show that the two density enhancements resembling flow streams in their shape are in fact merely post-shock compressions, as fluid trajectories cut across, rather than flow along, them. The dissipation associated with the shocks is a substantial fraction (≅ 3%-12%) of the rest mass energy advected into the hole, and therefore comparable to the dissipation expected from turbulence. The shocks should therefore make order unity changes in the observed properties of black hole accretion flows that are tilted.

  17. Sensitivity improvement of reflective tilted FBGs.

    PubMed

    Elzahaby, Eman A; Kandas, Ishac; Aly, Moustafa H; Mahmoud, Kamal

    2016-04-20

    Tilted fiber Bragg gratings are used as energy couplers in which the core mode and cladding modes can be coupled together. Cladding modes have extensive importance in sensing applications due to their sensitive characteristics to the surrounding refractive index. The cladding modes are investigated theoretically by studying a three-layer model of optical fibers, whereas the core mode is investigated by studying a two-layer model of optical fibers. The analysis reveals that to increase the coupling of the energy transferred from the core mode to cladding modes, the cladding radius needs to be decreased. Such behavior is illustrated through studying the change in the electric field distribution and is used to improve the sensitivity of the sensing refractive index of the surrounding medium. PMID:27140103

  18. Viewing angle controllable liquid crystal display with high transmittance.

    PubMed

    Lim, Young Jin; Kim, Jin Ho; Her, Jung Hwa; Bhattacharyya, Surjya Sarathi; Park, Kyoung Ho; Lee, Joun Ho; Kim, Byeong Koo; Lee, Seung Hee

    2010-03-29

    All conventional viewing angle switchable liquid crystal displays with pixel division have drawback in light efficiency because the sub-pixel that controls viewing angle does not transmit the incident light at normal direction. In this paper, we propose new viewing angle controllable homogeneously aligned liquid crystal display in which the pixel is composed of red, green, blue, and white pixels. The colored pixels are driven by fringe-field switching and the white pixel is driven by complex field. In wide-viewing angle mode, the liquid crystal (LC) directors in all pixels rotate in plane, contributing to high transmittance. In narrow-viewing angle mode, the LC directors in color pixels rotate in plane for light transmission while the LC directors in white pixel can rotate or tilt upward by simultaneous fringe and vertical electric field. The high tilted LC directors generate light leakage in oblique directions which can be utilized for viewing angle control and also transmission at normal direction for image expression. The proposed device overcomes the long standing problem of transmittance sacrifice in the conventional devices.

  19. Tip-tilt compensation: Resolution limits for ground-based telescopes using laser guide star adaptive optics. Revision 2

    SciTech Connect

    Olivier, S.S.; Max, C.E.; Gavel, D.T.; Brase, J.M.

    1992-10-08

    The angular resolution of long-exposure images from ground-based telescopes equipped with laser guide star adaptive optics systems is fundamentally limited by the the accuracy with which the tip-tilt aberrations introduced by the atmosphere can be corrected. Assuming that a natural star is used as the tilt reference, the residual error due to tilt anisoplanatism can significantly degrade the long-exposure resolution even if the tilt reference star is separated from the object being imaged by a small angle. Given the observed distribution of stars in the sky, the need to find a tilt reference star quite close to the object restricts the fraction of the sky over which long-exposure images with diffraction limited resolution can be obtained. In this paper, the authors present a comprehensive performance analysis of tip-tilt compensation systems that use a natural star as a tilt reference, taking into account properties of the atmosphere and of the Galactic stellar populations, and optimizing over the system operating parameters to determine the fundamental limits to the long-exposure resolution. Their results show that for a ten meter telescope on Mauna Kea, if the image of the tilt reference star is uncorrected, about half the sky can be imaged in the V band with long-exposure resolution less than 60 milli-arc-seconds (mas), while if the image of the tilt reference star is fully corrected, about half the sky can be imaged in the V band with long-exposure resolution less than 16 mas. Furthermore, V band images long-exposure resolution of less than 16 mas may be obtained with a ten meter telescope on Mauna Kea for unresolved objects brighter than magnitude 22 that are fully corrected by a laser guide star adaptive optics system. This level of resolution represents about 70% of the diffraction limit of a ten meter telescope in the V band and is more than a factor of 45 better than the median seeing in the V band on Mauna Kea.

  20. TILTING ELECTRIC ARC FURNACE USED TO MELT BRONZE IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TILTING ELECTRIC ARC FURNACE USED TO MELT BRONZE IN THE BRASS FOUNDRY BY MEANS OF AN ARC CREATED BETWEEN TWO HORIZONTAL ELECTRODES. WHEN MELTED, THE FURNACE TILTS, FILLING MOBILE LADLES FROM THE SPOUT. - Stockham Pipe & Fittings Company, Brass Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  1. Bistable chiral tilted-homeotropic nematic liquid crystal cells

    NASA Astrophysics Data System (ADS)

    Hsu, Jy-Shan; Liang, Bau-Jy; Chen, Shu-Hsia

    2004-12-01

    A bistable chiral tilted-homeotropic nematic cell which uses dual-frequency liquid crystal is demonstrated. This cell can be switched between the tilted homeotropic state and the twisted state. The switching mechanisms are achieved by the backflow effect together with the anisotropic properties of the dual-frequency liquid crystal material. The experimental results of this bistable cell are described explicitly.

  2. V/STOL tilt rotor aircraft study. Volume 7: Tilt rotor flight control program feedback studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Eason, W.; Gillmore, K.; Morris, J.; Spittle, R.

    1973-01-01

    An exploratory study has been made of the use of feedback control in tilt rotor aircraft. This has included the use of swashplate cyclic and collective controls and direct lift control. Various sensor and feedback systems are evaluated in relation to blade loads alleviation, improvement in flying qualities, and modal suppression. Recommendations are made regarding additional analytical and wind tunnel investigations and development of feedback systems in the full scale flight vehicle. Estimated costs and schedules are given.

  3. Tilt Estimation in Moderate-to-Strong Scintillation.

    PubMed

    Burl, J B; Roggemann, M C; Welsh, B

    2001-06-20

    Adaptive optics systems are being applied in ever more challenging environments, for example, the projection of lasers over long horizontal paths through the atmosphere. These long atmospheric paths corrupt the signal received from the beacon and typically yield highly scintillated received wave fronts. Tilt estimation for controlling the fast steering mirror in these systems is complicated by the presence of branch points in the scintillated received wave fronts. In particular, correlation between the tilt and the projected beam's centroid error at the target has been observed in horizontal laser beam projection experiments. The presence of this correlation indicates that better tracking performance should be achievable. We compare the performance of four estimation schemes applied to tilt estimation in a horizontal laser projection system. It is demonstrated that all four schemes underestimate the tilt required to return the laser beam to a target in highly scintillated environments. A method of correcting this tilt is presented, and the expected performance improvement is quantified.

  4. Potential Applications of an Integrated Seismic, Tilt, and Temperature Instrument

    NASA Astrophysics Data System (ADS)

    Bainbridge, Geoffrey; Parker, Tim; Karimi, Sepideh; Devanney, Peter

    2016-04-01

    Force feedback seismometers provide mass position outputs which represent the time-averaged feedback force applied to each inertial mass, in order to cancel external forces and keep it balanced at its center point. These external forces are primarily due to tilt and temperature. In a symmetric triaxial seismometer, tilt and temperature effects can be distinguished because temperature affects all 3 axes equally whereas tilt causes a different force on each axis. This study analyzes the resolution of tilt and temperature signals that can be obtained from a force-feedback seismometer, and the potential applicability of this data to applications such as volcano monitoring and cap rock integrity monitoring. Also the synergy of a combined seismic, tilt, and temperature instrument is considered.

  5. Optimum viscous flow in pressure-swirl atomizers

    NASA Astrophysics Data System (ADS)

    Amini, Ghobad; Pereira, Aaron; Yun, Sangsig; Li, Xianguo

    2013-11-01

    Due to their simple configuration and reliable operation, pressure-swirl atomizers are widely used in applications such as combustion, painting, humidification, and sprinkling. The liquid is swirled by entering into the atomizer tangentially and its surface area is increased as discharges in a large spray angle. Understanding the effects of nozzle geometry and inlet flow condition on the discharge coefficient and spray angle is very important in nozzle design. To this end, the flow field inside a pressure-swirl atomizer has been studied theoretically. The main body of the liquid is taken to be moving in circles round the axis. Within the boundary layer, containing transverse and longitudinal velocity components, the retarded liquid is slowed down by viscosity and driven towards the exit orifice by pressure gradient. The swirling motion of liquid creates a low pressure zone near the nozzle axis and leads to the formation of a helical air-core. Through studying the growth of the boundary layer from nozzle entry to the orifice exit, the portions of the outflow exits the orifice from boundary layer current and also from the main body of the swirling liquid are specified. For a given range of pressure drop values, the optimum nozzle geometry and liquid flowrate are predicted. Additionally, the reason of increasing the flow by increasing liquid viscosity or decreasing orifice diameter is explained. A series of experiments and numerical modeling have also been carried out to support the theoretical results.

  6. How the Tilt of the Dipole Could Affect the Rate of Reconnection at the Earth's Magnetopause

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Raeder, J.; Wang, Y. L.; Luhmann, J. G.

    2002-12-01

    The semiannual variation of geomagnetic activity was attributed by Russell and McPherron (1973) to reconnection modulated by the varying angle of the magnetic field at the nose of the magnetosphere to the statistically Parker-spiral-oriented IMF. The division of the semiannual variation of geomagnetic activity into two annual variations according to the polarity of the IMF clearly demonstrates that reconnection is the cause of the semiannual variation. The so-called Russell-McPherron mechanism does not explain the diurnal variation of geomagnetic indices, albeit it does explain the annual variation of this diurnal variation. O'Brien and McPherron (2002) have recently demonstrated that if the reconnection rate depends on the tilt of the dipole an improved prediction of both the semiannual and diurnal variation results, but they do not provide a credible explanation for tilt dependence. Nevertheless, a very simple explanation does exist based on simple geometric arguments following those of Crooker (1979) and Luhmann et al (1984) who predicted the sites of reconnection for a dipole perpendicular to the solar wind flow. If reconnection is initiated where the IMF is antiparallel to the magnetospheric field and if the rate of reconnection depends on the solar wind pressure normal to the magnetopause, then the rate maximizes for the 0 deg. tilt (0 deg. magnetic latitude of the subsolar point) and lessens as either pole of the dipole tilts toward the Sun. In short, the simple merging law used by Russell and McPherron may need tuning, but the basic mechanism is valid as proposed.

  7. Dynamics of thin-skinned fold and thrust belts with a tilted detachment

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Kaus, Boris J. P.; Epard, Jean-Luc

    2014-05-01

    The formation of the Jura fold and thrust belt is linked to the Alpine orogeny. However, it is still a matter of debate why the Jura was formed tens of kilometres far away from the active deformation front while the Molasse basin that lies in between remained mostly undeformed. Progressive thickening of the Molasse basin due to its infill with sediments, and the existence of a tilted potential detachment level at the Triassic evaporitic units, have been pushed forward as the main causes for the detachment of the Molasse basin and the consequent jump of the deformation front from the Alpine front to the position of the Jura at around 22 Ma or later (e.g Willett and Schlunegger, 2010). In order to better understand the dynamics of a thin-skinned fold and thrust belt with a tilted detachment we have performed systematic forward numerical simulations with the 2D thermo-mechanical finite element code MILAMIN_VEP. The modelled setup consists of a tilted detachment, overlain by a sedimentary cover of constant thickness and a wedge shaped basin infill that makes the initial surface slope of the system to be zero. In this study we have tested the importance of the following factors in the dynamics of such a fold and thrust belt evolution: 1) the applied boundary conditions 2) the angle of a uniformly tilted detachment 3) the end displacement of a curved detachment with a flexural foreland basin profile. The implications of the studied factors are discussed for the case of the Jura-Molasse system. Acknowledgements Funding was provided by the European Research Council under the European Community's Seventh Framework program (FP7/2007-2013) ERC Grant agreement #258830. References Willett, S.D. and Schlunegger, F. 2010, The last phase of deposition in the Swiss Molasse Basin: from foredeep to negative-alpha basin. Basin Research 22, 623-639, doi: 10.1111/j.1365-2117.2009.00435.x

  8. A Feasibility Study of a Tilted Head Position in Helical Tomotherapy for Fractionated Stereotactic Radiotherapy of Intracranial Malignancies.

    PubMed

    Chung, Yoonsun; Yoon, Hong In; Ha, Jin Sook; Kim, Seijoon; Lee, Ik Jae

    2015-08-01

    Herein, we evaluated the feasibility of placing patients in a tilted head position as part of routine clinical practice for fractionated stereotactic radiotherapy (FSRT) of intracranial tumors using helical tomotherapy (HT), by assessing its dosimetric benefit and setup accuracy. We reviewed treatment plans of four cases that were to receive FSRT for brain lesions in normal and head-tilted positions. These patients underwent two computed tomography (CT) scans: first in the normal supine position and then in the supine position with the head tilted at a 458 angle. Two separate HT plans for each position were generated in these four patients, using the same planning parameters. Plans were compared for target conformity and dose homogeneity. Maximum and average doses to critical organs, including normal brain, brain stem, optic chiasm, optic nerves, and the eyes, were considered. To evaluate setup accuracy, patient movement during treatment was assessed by post-treatment megavoltage CT scans. Both HT plans achieved similar conformal and homogeneous dose coverage to the target. Head-tilted HT delivered lower average and maximum doses to critical organs in the cases where the tumor was located on the same plane with critical organs, particularly when they were not directly attached. Placement in the head-tilted position without a mouthpiece allowed for increased patient movement during treatment, while use of a mouthpiece reduced patient movement to even less than that observed for normal setup in the supine position. This pilot study showed that placement in a tilted head position for FSRT of intracranial tumors using HT may be of clinical use, but depends on the tumor location.

  9. OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS

    SciTech Connect

    LIN-LIU,YR; STAMBAUGH,RD

    2002-11-01

    OAK A271 OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS. The dependence of the ideal ballooning {beta} limit on aspect ratio, A, and elongation {kappa} is systematically explored for nearly 100% bootstrap current driven tokamak equilibria in a wide range of the shape parameters (A = 1.2-7.0, {kappa} = 1.5-6.0 with triangularity {delta} = 0.5). The critical {beta}{sub N} is shown to be optimal at {kappa} = 3.0-4.0 for all A studied and increases as A decreases with a dependence close to A{sup -0.5}. The results obtained can be used as a theoretical basis for the choice of optimum aspect ratio and elongation of next step burning plasma tokamaks or tokamak reactors.

  10. Active magnetic bearings for optimum turbomachinery design

    NASA Technical Reports Server (NTRS)

    Hustak, J.; Kirk, R. G.; Schoeneck, K. A.

    1985-01-01

    The design and shop test results are given for a high speed eight stage centrifugal compressor supported by active magnetic bearings. A brief summary of the rotor dynamics analysis is presented with specific attention given to design considerations for optimum rotor stability. The concerns for retrofit of magnetic bearings in existing machinery are discussed with supporting analysis of a four stage centrifugal compressor. Recommendations are given on design and analysis requirements for successful machinery operation of either retrofit or new design turbomachinery.

  11. Perception of Perspective Angles.

    PubMed

    Erkelens, Casper J

    2015-06-01

    We perceive perspective angles, that is, angles that have an orientation in depth, differently from what they are in physical space. Extreme examples are angles between rails of a railway line or between lane dividers of a long and straight road. In this study, subjects judged perspective angles between bars lying on the floor of the laboratory. Perspective angles were also estimated from pictures taken from the same point of view. Converging and diverging angles were judged to test three models of visual space. Four subjects evaluated the perspective angles by matching them to nonperspective angles, that is, angles between the legs of a compass oriented in the frontal plane. All subjects judged both converging and diverging angles larger than the physical angle and smaller than the angles in the proximal stimuli. A model of shallow visual space describes the results. According to the model, lines parallel to visual lines, vanishing at infinity in physical space, converge to visual lines in visual space. The perceived shape of perspective angles is incompatible with the perceived length and width of the bars. The results have significance for models of visual perception and practical implications for driving and flying in poor visibility conditions. PMID:27433312

  12. Doping induced modification in polyhedral tilt in hexagonal Ho1-xYxMnO3

    NASA Astrophysics Data System (ADS)

    Kaushik, S. D.; Rayaprol, S.

    2012-06-01

    We have studied the effect of systematic doping of Y at Ho site on the crystal structure of hexagonal HoMnO3 We have carried out room temperature neutron diffraction (ND) study on Ho1-xYxMnO3 (x = 0, 0.25, 0.50, 0.75), and by analyzing this ND data we have determined the cell parameters, Mn-O bond length, O-Mn-O bond angle. The variation in certain M-O bond length and O-Mn-O bond angles has been understood in terms of modifications in tilt of the MnO5 polyhedra due to Ho site Y doping in hexagonal HoMnO3.

  13. The influence of tilt grain boundaries on the mechanical properties of bicrystalline graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Xu, Na; Guo, Jian-Gang; Cui, Zhen

    2016-10-01

    The mechanical properties of bicrystalline graphene nanoribbons with various tilt grain boundaries (GBs) which typically consist of repeating pentagon-heptagon ring defects are investigated based on the method of molecular structural mechanics. The GB models are constructed via the theory of disclinations in crystals, and the elastic properties and ultimate strength of bicrystalline graphene nanoribbons are calculated under uniaxial tensile loads in perpendicular and parallel directions to grain boundaries. The dependence of mechanical properties is analyzed on the chirality and misorientation angles of graphene nanoribbons, and the experimental phenomena that Young's modulus and ultimate strength of bicrystalline graphene nanoribbons can either increase or decrease with the grain boundary angles are further verified and discussed. In addition, the influence of GB on the size effects of graphene Young's modulus is also analyzed.

  14. Influence of polarization-tilt coupling on the ferroelectric properties of smectic gels.

    PubMed

    Vimala, S; Nair, Geetha G; Prasad, S Krishna; Hiremath, Uma S; Yelamaggad, C V

    2014-08-28

    We have studied composites of a ferroelectric liquid crystal mixture with a simple organic gelating agent, employing structural, thermal, electrical and mechanical probes, investigating the influence of the coupling between the polarization and the tilt angle on the ferroelectric properties of smectic gels. The calorimetric data, presenting clear signatures of the gelation occurring in the smectic A (SmA) phase or the isotropic phase, depending on the concentration of the gelator, help in constructing a rich diagram in the temperature-gelator concentration phase space. The atomic force microscopy imaging brings out the interesting feature of the transfer of chirality from the ferroelectric liquid crystal (FLC) to the gel strands, as exemplified by the creation of nanorope structures which have attracted much attention in recent times. The influence of gelation on the magnitude of the tilt angle appears to be dependent on the probe employed: there is no change in the values obtained by X-ray diffraction, which looks at the projection of the entire molecular length onto the layer normal. In contrast, the value from the electro-optic method, wherein the molecular-core is responsible for the results, diminishes with gelator concentration. The latter feature is copied by the magnitude of the polarization also. Dielectric spectroscopy shows that gelation weakly influences the soft mode in the SmA phase. However, the Goldstone mode behaviour is strongly dependent on the gelator concentration, with the appearance of two modes in the smectic C* (SmC*) phase of higher gel concentrations. With information obtained upon application of DC bias, the origin of the two relaxations is discussed. These data are analyzed in terms of the predictions of the Landau model proposed for the ordinary (non-gel) SmA-SmC* transition showing that the gel network enhances the linear polarization-tilt coupling over the biquadratic one. Upon gelation the system becomes mechanically strong with a

  15. Study on Ply Orientation Optimum Design for Composite Material Structure Based on Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Ma, Ai-Jun

    2016-05-01

    To find the optimum design of ply orientation for composite material structure, we proposed a method based on genetic algorithm and executed on a composite frame case. Firstly we gave the descriptions of the structure including solid model and mechanical property of the material and then created the finite element model of composite frame and set a static load step to get the displacement of cared node. Then we created the optimization mathematical model and used genetic algorithm to find the global optimal solution of the optimization problem, and finally achieved the best layer angle of the composite material case. The ply orientation optimum design made a good performance as the results showed that the objective function dropped by 16.6%. This case can might provide a reference for ply orientation optimum design of similar composite structure.

  16. Tilt Error in Cryospheric Surface Radiation Measurements at High Latitudes: A Model Study

    NASA Astrophysics Data System (ADS)

    Bogren, W.; Kylling, A.; Burkhart, J. F.

    2015-12-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in-situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response foreoptic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250nm to 4500nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high latitude albedo measurement with a solar zenith angle of 60◦, a sensor tilted by 1, 3, and 5◦ can respectively introduce up to 2.6, 7.7, and 12.8% error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo.

  17. Dynamic calibration of pan-tilt-zoom cameras for traffic monitoring.

    PubMed

    Song, Kai-Tai; Tai, Jen-Chao

    2006-10-01

    Pan-tilt-zoom (PTZ) cameras have been widely used in recent years for monitoring and surveillance applications. These cameras provide flexible view selection as well as a wider observation range. This makes them suitable for vision-based traffic monitoring and enforcement systems. To employ PTZ cameras for image measurement applications, one first needs to calibrate the camera to obtain meaningful results. For instance, the accuracy of estimating vehicle speed depends on the accuracy of camera calibration and that of vehicle tracking results. This paper presents a novel calibration method for a PTZ camera overlooking a traffic scene. The proposed approach requires no manual operation to select the positions of special features. It automatically uses a set of parallel lane markings and the lane width to compute the camera parameters, namely, focal length, tilt angle, and pan angle. Image processing procedures have been developed for automatically finding parallel lane markings. Interesting experimental results are presented to validate the robustness and accuracy of the proposed method.

  18. A correlation polarimeter for noise-like signals. [optimum estimation of linearly polarized electromagnetic wave

    NASA Technical Reports Server (NTRS)

    Ohlson, J. E.

    1976-01-01

    Optimum estimation (tracking) of the polarization plane of a linearly polarized electromagnetic wave is determined when the signal is a narrow-band Gaussian random process with a polarization plane angle which is also a Gaussian random process. This model is compared to previous work and is applicable to space communication. The estimator performs a correlation operation similar to an amplitude-comparison monopulse angle tracker, giving the name correlation polarimeter. Under large signal-to-noise ratio (SNR), the estimator is causal. Performance of the causal correlation polarimeter is evaluated for arbitrary SNR. Optimum precorrelation filtering is determined. With low SNR, the performance of this system is far better than that of previously developed systems. Practical implementation is discussed. A scheme is given to reduce the effect of linearly polarized noise.

  19. Optimum design of composite laminates with thermal effects. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Markham, L. R.; Herakovich, C. T.

    1976-01-01

    An analytical approach to determine an optimum laminate for a variety of thermal and mechanical loading combinations is presented. The analysis is performed for a linear elastic material under static mechanical and uniform thermal loadings. The problem is restricted to a unit width and length laminate with angle orientations resulting in an orthotropic, symmetric, and balanced configuration. An objective function defining total strain energy, is formulated and an optimum laminate design determined subject to constraints on stiffness, average coefficient of thermal expansion, and strength. The objective function is formulated in terms of the orientation angles, number of plies, and material properties. The method presented has, in varying degrees, shown that the design of a laminate can be accomplished using strain energy minimization as the primary criteria. The results of various combinations of applied constraints in the optimized design process are presented and discussed.

  20. Motion perception during tilt and translation after space flight

    NASA Astrophysics Data System (ADS)

    Clément, Gilles; Wood, Scott J.

    2013-11-01

    Preliminary results of an ongoing study examining the effects of space flight on astronauts' motion perception induced by independent tilt and translation motions are presented. This experiment used a sled and a variable radius centrifuge that translated the subjects forward-backward or laterally, and simultaneously tilted them in pitch or roll, respectively. Tests were performed on the ground prior to and immediately after landing. The astronauts were asked to report about their perceived motion in response to different combinations of body tilt and translation in darkness. Their ability to manually control their own orientation was also evaluated using a joystick with which they nulled out the perceived tilt while the sled and centrifuge were in motion. Preliminary results confirm that the magnitude of perceived tilt increased during static tilt in roll after space flight. A deterioration in the crewmember to control tilt using non-visual inertial cues was also observed post-flight. However, the use of a tactile prosthesis indicating the direction of down on the subject's trunk improved manual control performance both before and after space flight.

  1. A strategy for advancing tilt-rotor technology

    NASA Technical Reports Server (NTRS)

    Morlok, Edward K.; Schoendorfer, David L.

    1985-01-01

    Tilt-rotor technology has many features which make it a very promising development in aviation which might have application to a wide variety of transportation and logistics situations. However, aside from military applications and rather specialized industrial applications, little is known regarding the potential of tilt-rotor for commercial transportation and hence it is difficult to plan a development program which would gain support and be likely to produce a stream of significant benefits. The purpose is to attempt to provide some of this information in a manner that would be useful for preparing a strategy for development of tilt-rotor aircraft technology. Specifically, the objectives were: to identify promising paths of development and deployment of tilt-rotor aircraft technology in the air transportation system considering both benefits and disbenefits, and to identify any particular groups that are likely to benefit significantly and propose plans for gaining their support of research and development of this technology. Potential advantages of the tilt-rotor technology in the context of air transportation as a door-to-door system were identified, and then promising paths of development of such tilt-rotor systems were analyzed. These then lead to recommendations for specific studies, information dissemination and development of awareness of the tilt-rotor among specific transport-related groups.

  2. Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.

    2011-01-01

    We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, <20 cm radius) in a darkened room is utilized to elicit otolith reflexes in the lateral plane without concordant canal or visual cues. A Tilt-Translation Sled (TTS) is capable of synchronizing pitch tilt with fore-aft translation to align the resultant gravitoinertial vector with the longitudinal body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a

  3. Tilt-Sensitivity Analysis for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Papalexandris, Miltiadis; Waluschka, Eugene

    2003-01-01

    A report discusses a computational-simulation study of phase-front propagation in the Laser Interferometer Space Antenna (LISA), in which space telescopes would transmit and receive metrological laser beams along 5-Gm interferometer arms. The main objective of the study was to determine the sensitivity of the average phase of a beam with respect to fluctuations in pointing of the beam. The simulations account for the effects of obscurations by a secondary mirror and its supporting struts in a telescope, and for the effects of optical imperfections (especially tilt) of a telescope. A significant innovation introduced in this study is a methodology, applicable to space telescopes in general, for predicting the effects of optical imperfections. This methodology involves a Monte Carlo simulation in which one generates many random wavefront distortions and studies their effects through computational simulations of propagation. Then one performs a statistical analysis of the results of the simulations and computes the functional relations among such important design parameters as the sizes of distortions and the mean value and the variance of the loss of performance. These functional relations provide information regarding position and orientation tolerances relevant to design and operation.

  4. Lattice mismatch and crystallographic tilt induced by high-dose ion-implantation into 4H-SiC

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Suda, J.; Kimoto, T.

    2012-05-01

    Lattice parameters of high-dose ion-implanted 4H-SiC were investigated with reciprocal space mapping (RSM). N, P, Al, or (C+Si) ions were implanted into lightly doped epilayers to form a (330-520) nm-deep box profile with concentrations of 1019-1020atoms/cm3. After activation annealing at 1800 °C, RSM measurements were conducted. The RSM images for (0008) reflection revealed that high-dose ion implantation causes c-lattice expansion in implanted layers, irrespective of ion species. In addition, crystallographic tilt was observed after high-dose ion implantation. The tilt direction is the same for all the samples investigated; the c-axis of the implanted layers is inclined toward the ascending direction of the off-cut. The c-lattice mismatch and the tilt angle increased as the implantation dose increases, indicating that the implantation damage is responsible for the lattice parameter change. From these results and transmission electron microscopy observation, the authors conclude that the c-lattice mismatch and the crystallographic tilt are mainly caused by secondary defects formed after the ion-implantation and activation-annealing process.

  5. Motion analysis of wheelchair propulsion movements in hemiplegic patients: effect of a wheelchair cushion on suppressing posterior pelvic tilt.

    PubMed

    Kawada, Kyohei; Matsuda, Tadamitsu; Takanashi, Akira; Miyazima, Shigeki; Yamamoto, Sumiko

    2015-03-01

    [Purpose] This study sought to ascertain whether, in hemiplegic patients, the effect of a wheelchair cushion to suppress pelvic posterior tilt when initiating wheelchair propulsion would continue in subsequent propulsions. [Subjects] Eighteen hemiplegic patients who were able to propel a wheelchair in a seated position participated in this study. [Methods] An adjustable wheelchair was fitted with a cushion that had an anchoring function, and a thigh pad on the propulsion side was removed. Propulsion movements from the seated position without moving through three propulsion cycles were measured using a three-dimensional motion analysis system, and electromyography was used to determine the angle of pelvic posterior tilt, muscle activity of the biceps femoris long head, and propulsion speed. [Results] Pelvic posterior tilt could be suppressed through the three propulsion cycles, which served to increase propulsion speed. Muscle activity of the biceps femoris long head was highest when initiating propulsion and decreased thereafter. [Conclusion] The effect of the wheelchair cushion on suppressing pelvic posterior tilt continued through three propulsion cycles.

  6. Fractional quantum Hall effect in a tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Papić, Z.

    2013-06-01

    We discuss the orbital effect of a tilted magnetic field on the quantum Hall effect in parabolic quantum wells. Many-body states realized at the fractional (1)/(3) and (1)/(2) filling of the second electronic subband are studied using finite-size exact diagonalization. In both cases, we obtain the phase diagram consisting of a fractional quantum Hall fluid phase that persists for moderate tilts, and eventually undergoes a direct transition to the stripe phase. It is shown that tilting of the field probes the geometrical degree of freedom of fractional quantum Hall fluids, and can be partly related to the effect of band-mass anisotropy.

  7. Roll-Tilt Perception Using a Somatosensory Bar Task

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Wade, S. W.; Arshi, A.

    1999-01-01

    Visual estimates of roll-tilt perception during static roll-tilt are confounded by an offset due to the ocular counterroll that simultaneously occurs. An alternative, non-visual ('somatosensory') measure of roll-tilt perception was developed which is not contaminated by this offset. The aims of this study were to determine: 1) inter-subject variability of somatosensory settings across test session in normal subjects and patients with unilateral or bilateral vestibular loss and 2) intra-subject variability of settings across test session in normal subjects.

  8. Evaluation of lesion distortion at various CT system tilts in the development of a hybrid system for dedicated mammotomography

    NASA Astrophysics Data System (ADS)

    Madhav, Priti; Crotty, Dominic J.; McKinley, Randolph L.; Tornai, Martin P.

    2007-03-01

    A hybrid SPECT-CT system for dedicated 3D breast imaging (mammotomography) is currently under development. Each imaging system will be placed on top of a single rotation stage and moved in unison azimuthally, with the SPECT system additionally capable of polar and radial motions. In this initial prototype, the CT system will initially be positioned at a fixed polar tilt. Using a phantom with three tungsten wires, the MTF of the CT system was measured in 3D for different CT system tilts. A phantom with uniformly arranged 0.5cm diameter acrylic spheres was suspended in air in the CT field of view, and also placed at multiple locations and orientations inside an oil-filled breast phantom to evaluate the effect of CT system tilt on lesion visibility and distortion. Projection images were collected using various simple circular orbits with fixed polar tilts ranging between +/-15°, and complex 3D saddle trajectories including combined polar and azimuthal motions at maximum polar tilt angles. Reconstructions were performed using an iterative reconstruction algorithm on 4x4 binned projection images with 0.508mm3 voxels. There was minor variation in the MTF in the imaged volume for the CT system at all trajectories, potentially due to the use of an iterative reconstruction algorithm. Results from the spherical cross phantoms indicated that there was more reconstruction inaccuracy and geometric distortion in the reconstructed slices with simple circular orbits with fixed tilt in contrast to complex 3D trajectories. Line profiles further showed a cupping artifact in planes farther away from the flat plane of the x-ray cone beam placed at different tilts. However, this cupping artifact was not seen for images acquired with complex 3D trajectories. This indicated that cupping artifacts can also be caused by undersampled cone beam data. These findings generally indicate that despite insufficient sampling with the cone beam imaging geometry, it is possible to place the CT system

  9. NASA Now: Engineering Design: Tilt Rotors, Aircraft of the Future

    NASA Video Gallery

    Meet Carl Russell, a research aerospace engineer who is working on developing new innovations for air travel. Russell discusses how tilt rotors work, including a demonstration on how rotors use Ber...

  10. The modified Thomas test is not a valid measure of hip extension unless pelvic tilt is controlled

    PubMed Central

    Lehman, Gregory J.; Beardsley, Chris; Contreras, Bret; Chung, Bryan; Feser, Erin H.

    2016-01-01

    The modified Thomas test was developed to assess the presence of hip flexion contracture and to measure hip extensibility. Despite its widespread use, to the authors’ knowledge, its criterion reference validity has not yet been investigated. The purpose of this study was to assess the criterion reference validity of the modified Thomas test for measuring peak hip extension angle and hip extension deficits, as defined by the hip not being able to extend to 0º, or neutral. Twenty-nine healthy college students (age = 22.00 ± 3.80 years; height = 1.71 ± 0.09 m; body mass = 70.00 ± 15.60 kg) were recruited for this study. Bland–Altman plots revealed poor validity for the modified Thomas test’s ability to measure hip extension, which could not be explained by differences in hip flexion ability alone. The modified Thomas test displayed a sensitivity of 31.82% (95% CI [13.86–54.87]) and a specificity of 57.14% (95% CI [18.41–90.10]) for testing hip extension deficits. It appears, however, that by controlling pelvic tilt, much of this variance can be accounted for (r = 0.98). When pelvic tilt is not controlled, the modified Thomas test displays poor criterion reference validity and, as per previous studies, poor reliability. However, when pelvic tilt is controlled, the modified Thomas test appears to be a valid test for evaluating peak hip extension angle.

  11. The modified Thomas test is not a valid measure of hip extension unless pelvic tilt is controlled.

    PubMed

    Vigotsky, Andrew D; Lehman, Gregory J; Beardsley, Chris; Contreras, Bret; Chung, Bryan; Feser, Erin H

    2016-01-01

    The modified Thomas test was developed to assess the presence of hip flexion contracture and to measure hip extensibility. Despite its widespread use, to the authors' knowledge, its criterion reference validity has not yet been investigated. The purpose of this study was to assess the criterion reference validity of the modified Thomas test for measuring peak hip extension angle and hip extension deficits, as defined by the hip not being able to extend to 0º, or neutral. Twenty-nine healthy college students (age = 22.00 ± 3.80 years; height = 1.71 ± 0.09 m; body mass = 70.00 ± 15.60 kg) were recruited for this study. Bland-Altman plots revealed poor validity for the modified Thomas test's ability to measure hip extension, which could not be explained by differences in hip flexion ability alone. The modified Thomas test displayed a sensitivity of 31.82% (95% CI [13.86-54.87]) and a specificity of 57.14% (95% CI [18.41-90.10]) for testing hip extension deficits. It appears, however, that by controlling pelvic tilt, much of this variance can be accounted for (r = 0.98). When pelvic tilt is not controlled, the modified Thomas test displays poor criterion reference validity and, as per previous studies, poor reliability. However, when pelvic tilt is controlled, the modified Thomas test appears to be a valid test for evaluating peak hip extension angle. PMID:27602291

  12. The modified Thomas test is not a valid measure of hip extension unless pelvic tilt is controlled.

    PubMed

    Vigotsky, Andrew D; Lehman, Gregory J; Beardsley, Chris; Contreras, Bret; Chung, Bryan; Feser, Erin H

    2016-01-01

    The modified Thomas test was developed to assess the presence of hip flexion contracture and to measure hip extensibility. Despite its widespread use, to the authors' knowledge, its criterion reference validity has not yet been investigated. The purpose of this study was to assess the criterion reference validity of the modified Thomas test for measuring peak hip extension angle and hip extension deficits, as defined by the hip not being able to extend to 0º, or neutral. Twenty-nine healthy college students (age = 22.00 ± 3.80 years; height = 1.71 ± 0.09 m; body mass = 70.00 ± 15.60 kg) were recruited for this study. Bland-Altman plots revealed poor validity for the modified Thomas test's ability to measure hip extension, which could not be explained by differences in hip flexion ability alone. The modified Thomas test displayed a sensitivity of 31.82% (95% CI [13.86-54.87]) and a specificity of 57.14% (95% CI [18.41-90.10]) for testing hip extension deficits. It appears, however, that by controlling pelvic tilt, much of this variance can be accounted for (r = 0.98). When pelvic tilt is not controlled, the modified Thomas test displays poor criterion reference validity and, as per previous studies, poor reliability. However, when pelvic tilt is controlled, the modified Thomas test appears to be a valid test for evaluating peak hip extension angle.

  13. The modified Thomas test is not a valid measure of hip extension unless pelvic tilt is controlled

    PubMed Central

    Lehman, Gregory J.; Beardsley, Chris; Contreras, Bret; Chung, Bryan; Feser, Erin H.

    2016-01-01

    The modified Thomas test was developed to assess the presence of hip flexion contracture and to measure hip extensibility. Despite its widespread use, to the authors’ knowledge, its criterion reference validity has not yet been investigated. The purpose of this study was to assess the criterion reference validity of the modified Thomas test for measuring peak hip extension angle and hip extension deficits, as defined by the hip not being able to extend to 0º, or neutral. Twenty-nine healthy college students (age = 22.00 ± 3.80 years; height = 1.71 ± 0.09 m; body mass = 70.00 ± 15.60 kg) were recruited for this study. Bland–Altman plots revealed poor validity for the modified Thomas test’s ability to measure hip extension, which could not be explained by differences in hip flexion ability alone. The modified Thomas test displayed a sensitivity of 31.82% (95% CI [13.86–54.87]) and a specificity of 57.14% (95% CI [18.41–90.10]) for testing hip extension deficits. It appears, however, that by controlling pelvic tilt, much of this variance can be accounted for (r = 0.98). When pelvic tilt is not controlled, the modified Thomas test displays poor criterion reference validity and, as per previous studies, poor reliability. However, when pelvic tilt is controlled, the modified Thomas test appears to be a valid test for evaluating peak hip extension angle. PMID:27602291

  14. Littrow angle method to remove alignment errors in grating pulse compressors.

    PubMed

    Guardalben, M J

    2008-09-20

    An alignment method for pulse-compression gratings that obviates the need to place the gratings at normal incidence to remove grating-tip error is proposed. Grating-tip and groove-orientation errors are removed using two alignment wavelengths in a manner analogous to a laser-beam pointing and centering procedure entirely at the respective Littrow angles for the two wavelengths. By choosing wavelengths with Littrow angles close to the use angle of the grating, the residual tip and groove-orientation errors that may be introduced when the grating mount is tilted to its use angle are reduced. This method has greatly facilitated the alignment of the OMEGA Extended Performance (EP) large-aperture pulse compressors, thereby reducing residual pulse-front tilt caused by nonparallel gratings. OMEGA EP is a high-energy, petawatt-class laser at the University of Rochester's Laboratory for Laser Energetics. A numerical simulation of the alignment procedure is presented. PMID:18806858

  15. Littrow Angle Method to Remove Alignment Errors in Grating Pulse Compressors

    SciTech Connect

    Guardalben, M.J.

    2008-09-16

    An alignment method for pulse-compression gratings that obviates the need to place the gratings at normal incidence to remove grating-tip error is proposed. Grating-tip and groove-orientation errors are removed using two alignment wavelengths in a manner analogous to a laser-beam pointing and centering procedure entirely at the respective Littrow angles for the two wavelengths. By choosing wavelengths with Littrow angles close to the use angle of the grating, the residual tip and groove-orientation errors that may be introduced when the grating mount is tilted to its use angle are reduced. This method has greatly facilitated the alignment of the OMEGA Extended Performance (EP) large-aperture pulse compressors, thereby reducing residual pulse-front tilt caused by nonparallel gratings. OMEGA EP is a highenergy, petawatt-class laser at the University of Rochester’s Laboratory for Laser Energetics. A numerical simulation of the alignment procedure is presented.

  16. Littrow angle method to remove alignment errors in grating pulse compressors

    SciTech Connect

    Guardalben, M. J

    2008-09-20

    An alignment method for pulse-compression gratings that obviates the need to place the gratings at normal incidence to remove grating-tip error is proposed. Grating-tip and groove-orientation errors are removed using two alignment wavelengths in a manner analogous to a laser-beam pointing and centering procedure entirely at the respective Littrow angles for the two wavelengths. By choosing wavelengths with Littrow angles close to the use angle of the grating, the residual tip and groove-orientation errors that may be introduced when the grating mount is tilted to its use angle are reduced. This method has greatly facilitated the alignment of the OMEGA Extended Performance (EP) large-aperture pulse compressors, thereby reducing residual pulse-front tilt caused by nonparallel gratings. OMEGA EP is a high-energy, petawatt-class laser at the University of Rochester's Laboratory for Laser Energetics. A numerical simulation of the alignment procedure is presented.

  17. Long Baseline Tilt Meter Array to Monitor Cascadia's Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Suszek, N.; Bilham, R.; Flake, R.; Melbourne, T. I.; Miller, M.

    2004-12-01

    Five biaxial Michelson tilt meters are currently being installed in the Puget Lowlands near Seattle to monitor dynamic tilt changes accompanying episodic slow earthquakes that occur at 20-40 km depth. Each tilt meter consists of a 1-2 m deep, 500-m-long, 15-cm diameter, horizontal, half-filled water-pipe, terminated by float sensors with sub-micron water-level resolution, similar to those that have operated unattended for the past decade within the Long Valley caldera. The sensors measure water height relative to the base of a pile driven to 10 m depth. A wide-body LVDT attached to this pile outside the reservoir, senses the motion of the core attached to the float within. The voltage indicating the position of the core is sampled 16 times a second, and digitally filtered before transmission via radio modem for storage as 1-minute samples in a remote computer. The computer gathers 16-bit water height, vault temperature, air pressure and various housekeeping data once per minute using remote telemetry. Installed during 2004, the first of the tilt meters, installed in 2004, float sensors at each end, and one in the center of each pipe, permit us to examine tilt signal coherence and local noise. Each adjacent pair of sensors has a tilt resolution of 2e-9 and a range of 8 microradians. We anticipate tilt signals with durations of 0.3-30 days, and amplitudes of less than 0.1 microradian associated with slow earthquakes. Anticipated noise levels in the tilt meters are 10-1000 times lower that these expected signals, similar to or better than signal-to-noise levels from planned strain meters of the PBO array.

  18. A New Higher-Order Composite Theory for Analysis and Design of High Speed Tilt-Rotor Blades

    NASA Technical Reports Server (NTRS)

    McCarthy, Thomas Robert

    1996-01-01

    A higher-order theory is developed to model composite box beams with arbitrary wall thicknesses. The theory, based on a refined displacement field, represents a three-dimensional model which approximates the elasticity solution. Therefore, the cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are automatically included in the formulation. The model accurately captures the transverse shear stresses through the thickness of each wall while satisfying all stress-free boundary conditions. Several numerical results are presented to validate the present theory. The developed theory is then used to model the load carrying member of a tilt-rotor blade which has thick-walled sections. The composite structural analysis is coupled with an aerodynamic analysis to compute the aeroelastic stability of the blade. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt-rotor aircraft. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem and a hybrid approximate analysis is used to reduce the computational effort. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt-rotor blade.

  19. Focusing a TM(01) beam with a slightly tilted parabolic mirror.

    PubMed

    April, Alexandre; Bilodeau, Pierrick; Piché, Michel

    2011-05-01

    A parabolic mirror illuminated with an incident collimated beam whose axis of propagation does not exactly coincide with the axis of revolution of the mirror shows distortion and strong coma. To understand the behavior of such a focused beam, a detailed description of the electric field in the focal region of a parabolic mirror illuminated with a beam having a nonzero angle of incidence is required. We use the Richards-Wolf vector field equation to investigate the electric energy density distribution of a beam focused with a parabolic mirror. The explicit aberration function of this focused field is provided along with numerically calculated electric energy densities in the focal region for different angles of incidence. The location of the peak intensity, the Strehl ratio and the full-width at half-maximum as a function of the angle of incidence are given and discussed. The results confirm that the focal spot of a strongly focused beam is affected by severe coma, even for very small tilting of the mirror. This analysis provides a clearer understanding of the effect of the angle of incidence on the focusing properties of a parabolic mirror as such a focusing device is of growing interest in microscopy.

  20. Age, splanchnic vasoconstriction, and heat stress during tilting

    NASA Technical Reports Server (NTRS)

    Minson, C. T.; Wladkowski, S. L.; Pawelczyk, J. A.; Kenney, W. L.

    1999-01-01

    During upright tilting, blood is translocated to the dependent veins of the legs and compensatory circulatory adjustments are necessary to maintain arterial pressure. For examination of the effect of age on these responses, seven young (23 +/- 1 yr) and seven older (70 +/- 3 yr) men were head-up tilted to 60 degrees in a thermoneutral condition and during passive heating with water-perfused suits. Measurements included heart rate (HR), cardiac output (Qc; acetylene rebreathing technique), central venous pressure (CVP), blood pressures, forearm blood flow (venous occlusion plethysmography), splanchnic and renal blood flows (indocyanine green and p-aminohippurate clearance), and esophageal and mean skin temperatures. In response to tilting in the thermoneutral condition, CVP and stroke volume decreased to a greater extent in the young men, but HR increased more, such that the fall in Qc was similar between the two groups in the upright posture. The rise in splanchnic vascular resistance (SVR) was greater in the older men, but the young men increased forearm vascular resistance (FVR) to a greater extent than the older men. The fall in Qc during combined heat stress and tilting was greater in the young compared with older men. Only four of the young men versus six of the older men were able to finish the second tilt without becoming presyncopal. In summary, the older men relied on a greater increase in SVR to compensate for a reduced ability to constrict the skin and muscle circulations (as determined by changes in FVR) during head-up tilting.

  1. Three dimensional eye movements of squirrel monkeys following postrotatory tilt

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Young, L. R.; Paige, G. D.; Tomko, D. L.

    1993-01-01

    Three-dimensional squirrel monkey eye movements were recorded during and immediately following rotation around an earth-vertical yaw axis (160 degrees/s steady state, 100 degrees/s2 acceleration and deceleration). To study interactions between the horizontal angular vestibulo-ocular reflex (VOR) and head orientation, postrotatory VOR alignment was changed relative to gravity by tilting the head out of the horizontal plane (pitch or roll tilt between 15 degrees and 90 degrees) immediately after cessation of motion. Results showed that in addition to post rotatory horizontal nystagmus, vertical nystagmus followed tilts to the left or right (roll), and torsional nystagmus followed forward or backward (pitch) tilts. When the time course and spatial orientation of eye velocity were considered in three dimensions, the axis of eye rotation always shifted toward alignment with gravity, and the postrotatory horizontal VOR decay was accelerated by the tilts. These phenomena may reflect a neural process that resolves the sensory conflict induced by this postrotatory tilt paradigm.

  2. Role of molecular tilt in thermal fluctuations of lipid membranes

    NASA Astrophysics Data System (ADS)

    May, Eric R.; Narang, Atul; Kopelevich, Dmitry I.

    2007-08-01

    Long-wavelength thermal fluctuations of lipid membranes are adequately described by the Helfrich elastic model. On the other hand, fluctuations of wavelengths comparable with bilayer thickness exhibit significant deviations from the prediction of the elastic model and are typically assumed to be dominated by microscopic surface tension due to protrusion of lipid molecules into the solvent. We present evidence that the short-wavelength modes of a lipid membrane are dominated by fluctuations of the tilt of lipid molecules with respect to the membrane normal rather than the microscopic surface tension. We obtain an expression for the spectral intensity of the thermal membrane fluctuations by appealing to the Hamm-Kozlov model, which accounts for both membrane bending and lipid tilt contributions to the total membrane energy but neglects the contributions of the microscopic surface tension. The tilt and the bending fluctuations obtained from our coarse-grained molecular dynamics simulations of a dipalmitoylphosphatidylcholine lipid bilayer show good agreement with the theory. Furthermore, the obtained tilt and bending moduli are in close agreement with experimentally determined values. The magnitude of the microscopic protrusion tension estimated from our simulations is significantly smaller than that of the tilt modulus. These results indicate that the membrane fluctuations can be adequately described by a macroscopic elastic model down to scales of interlipid distance provided one accounts for the tilt fluctuations.

  3. Angled Screw Channel: An Alternative to Cemented Single-Implant Restorations--Three Clinical Examples.

    PubMed

    Gjelvold, Björn; Sohrabi, Majid Melvin; Chrcanovic, Bruno Ramos

    2016-01-01

    This article presents three cases of single labially tilted implants restored with screw-retained single crowns. Individualized abutments with an angled screw channel were used to avoid an unesthetic vestibular access channel. This individualized abutment allows the dentist and dental technician to use the screw-retained restorations where a cemented reconstruction would otherwise have been needed. PMID:26757334

  4. Patellar Tendon–Trochlear Groove Angle Measurement

    PubMed Central

    Hinckel, Betina B.; Gobbi, Riccardo G.; Kihara Filho, Eduardo N.; Demange, Marco K.; Pécora, José Ricardo; Camanho, Gilberto Luis

    2015-01-01

    Background: The tibial tubercle–trochlear groove (TT-TG) is used as the gold standard for patellofemoral malalignment. Purpose: To assess 3 patellar tendon–trochlear groove (PT-TG) angle measurement techniques and the PT-TG distance measurement (tendinous cartilaginous TT-TG) as predictors of patellar instability. Study Design: Cohort study (diagnosis); Level of evidence, 3. Methods: Three PT-TG angle measurements and the PT-TG distance were measured in 82 participants with patellar instability and 100 controls using magnetic resonance imaging (MRI). Measurement landmarks were the line tangent to the posterior femoral condyles, the deepest point of the trochlea, the transepicondylar line, and the patellar tendon center. All measurements were recorded once by 1 examiner, and the measurements were recorded twice by 2 examiners in a random group of 100 knees. Mean values and standard deviations (SDs) were obtained. Normality cutoff values were defined as 2 and 3 SDs above the mean in the control group. The sensitivity, specificity, and positive likelihood ratio (LR+) were calculated. Inter- and intrarater reliability were assessed based on the intraclass correlation coefficient (ICC). Results: The measurements from the patellar instability and control groups, respectively, for angle 1 (16.4° and 8.4°), angle 2 (31° and 15.6°), angle 3 (30.8° and 15.7°), PT-TG distance (14.5 and 8.4 mm), and patellar tilt (21.1° and 7.5°) were significantly different (P < .05). The angle measurements showed greater sensitivity, specificity, and LR+ than the PT-TG distance. Inter- and intrarater ICC values were >0.95 for all measurements. Conclusion: The PT-TG angle and the PT-TG distance are reliable and are different between the patellar instability and control groups. PT-TG angles are more closely associated with patellar instability than PT-TG distance. Clinical Relevance: PT-TG angle measurements show high reliability and association with patellar instability and can

  5. Complete 360° circumferential SSOCT gonioscopy of the iridocorneal angle

    NASA Astrophysics Data System (ADS)

    McNabb, Ryan P.; Kuo, Anthony N.; Izatt, Joseph A.

    2014-02-01

    The ocular iridocorneal angle is generally an optically inaccessible area when viewed directly through the cornea due to the high angle of incidence required and the large index of refraction difference between air and cornea (nair = 1.000 and ncornea = 1.376) resulting in total internal reflection. Gonioscopy allows for viewing of the angle by removing the aircornea interface through the use of a special contact lens on the eye. Gonioscopy is used clinically to visualize the angle directly but only en face. Optical coherence tomography (OCT) has been used to image the angle and deeper structures via an external approach. Typically, this imaging technique is performed by utilizing a conventional anterior segment OCT scanning system. However, instead of imaging the apex of the cornea, either the scanner or the subject is tilted such that the corneoscleral limbus is orthogonal to the optical axis of the scanner requiring multiple volumes to obtain complete circumferential coverage of the ocular angle. We developed a novel gonioscopic OCT (GOCT) system that images the entire ocular angle within a single volume via an "internal" approach through the use of a custom radially symmetric gonioscopic contact lens. We present, to our knowledge, the first complete 360° circumferential volumes of the iridocorneal angle from a direct, internal approach.

  6. Reliable Angle Assessment During Periacetabular Osteotomy with a Novel Device

    PubMed Central

    Elmengaard, Brian; Rømer, Lone; Søballe, Kjeld

    2008-01-01

    We developed and assessed a measuring device for intraoperative assessment of the acetabular index and center edge angle during acetabular reorientation in periacetabular osteotomy. We asked whether reliable assessment of angles could be made using the device; to be reliable we presumed the variability of angle measurements should not exceed that of inherent variability when assessing angles on radiographs (± 5°). The device was mounted bilaterally on the pelvis, and using fluoroscopy, angle measurements were obtained with adjustable measuring discs. We conducted a cadaver study to assess intraobserver and interobserver variability of the device and to assess if pelvic positioning influenced variation of measurements. Intraoperative measurements of 35 consecutive patients were compared with measurements on postoperative radiographs. Intraoperatively obtained angle measurements differed less than ± 5° from measurements on postoperative radiographs and the intraobserver and interobserver variability of the device were confined within ± 5°. Positioning did not influence the variation of angle measurements beyond intraobserver variability of the device when applying arcs of tilt and rotation of ± 12.5°. We believe the device is a potentially helpful tool in the periacetabular osteotomy. It is simple to use and facilitates repeated reliable angle measurements during acetabular reorientation, making intraoperative radiographs unnecessary. PMID:18264742

  7. The optimum finger spacing in human swimming.

    PubMed

    Minetti, Alberto E; Machtsiras, Georgios; Masters, Jonathan C

    2009-09-18

    Competitive swimmers spread fingers during the propulsive stroke. Due to the inherent inefficiency of human swimming, the question is: does this strategy enhance performance or is it just a more comfortable hand posture? Here we show, through computational fluid dynamics (CFD) of a 3D model of the hand, that an optimal finger spacing (12 degrees , roughly corresponding to the resting hand posture) increases the drag coefficient (+8.8%), which is 'functionally equivalent' to a greater hand palm area, thus a lower stroke frequency can produce the same thrust, with benefits to muscle, hydraulic and propulsive efficiencies. CFD, through flow visualization, provides an explanation for the increased drag associated with the optimum finger spacing. PMID:19651409

  8. Optimum frequency assignment for satellite SCPC systems

    NASA Astrophysics Data System (ADS)

    Okinaka, H.; Yasuda, Y.; Hirata, Y.

    A technique for deriving a quasi-optimum solution for IM-minimum channel allocation for single-level SCPC systems is presented. Two types of IM products are considered as the dominant components in an RF band. The third order IM product is proportional to the product of the power of concerned carriers, allowing a weighting function to be defined for calculating the IM noise. An IM minimum channel allocation technique can then be used to reduce the IM noise occurring in the carrier slots through frequency assignment. The worst carrier is automatically deleted with an initial channel allocation and the process is iterated until the maximum noise reduction is obtained. The first two or three carriers are assigned to unused frequency slots with low noise. The method is also viable when dealing with a larger number of carriers.

  9. Skin cooling maintains cerebral blood flow velocity and orthostatic tolerance during tilting in heated humans

    NASA Technical Reports Server (NTRS)

    Wilson, Thad E.; Cui, Jian; Zhang, Rong; Witkowski, Sarah; Crandall, Craig G.

    2002-01-01

    Orthostatic tolerance is reduced in the heat-stressed human. The purpose of this project was to identify whether skin-surface cooling improves orthostatic tolerance. Nine subjects were exposed to 10 min of 60 degrees head-up tilting in each of four conditions: normothermia (NT-tilt), heat stress (HT-tilt), normothermia plus skin-surface cooling 1 min before and throughout tilting (NT-tilt(cool)), and heat stress plus skin-surface cooling 1 min before and throughout tilting (HT-tilt(cool)). Heating and cooling were accomplished by perfusing 46 and 15 degrees C water, respectively, though a tube-lined suit worn by each subject. During HT-tilt, four of nine subjects developed presyncopal symptoms resulting in the termination of the tilt test. In contrast, no subject experienced presyncopal symptoms during NT-tilt, NT-tilt(cool), or HT-tilt(cool). During the HT-tilt procedure, mean arterial blood pressure (MAP) and cerebral blood flow velocity (CBFV) decreased. However, during HT-tilt(cool), MAP, total peripheral resistance, and CBFV were significantly greater relative to HT-tilt (all P < 0.01). No differences were observed in calculated cerebral vascular resistance between the four conditions. These data suggest that skin-surface cooling prevents the fall in CBFV during upright tilting and improves orthostatic tolerance, presumably via maintenance of MAP. Hence, skin-surface cooling may be a potent countermeasure to protect against orthostatic intolerance observed in heat-stressed humans.

  10. Thermal measurements and flow visualization of heat convection in a tilted channel

    NASA Astrophysics Data System (ADS)

    Tisserand, Jean-Christophe; Creyssels, Mathieu; Riedinger, Xavier; Castaing, Bernard; Chillà, Francesca

    2010-05-01

    Convection is the most important heat transport mechanism. We can find it not only in many natural situations such as stars, planet's atmosphere but also in half-natural situations such as industrial plants. Furthermore, the Rayleigh-Benard system, in which a fluid is cooled from above and heated from below, is one of the most studied systems in thermal convection. Nevertheless, in this configuration, the neighborhood of the plates controls the heat transfer. Therefore, we have to make a system in which the flow forgets the cold and the hot plate. We have built a vertical long channel which links two chambers : the hot one at the lower end and the cold one at the upper end. Moreover, this channel, which is hanged to a structure, can be tilted from an angle of 0 degree to 90 degrees. The experimental facility used for this purpose is a square channel with an inner area of 5*5 cm² m and with a height of 20 cm. The cell is filled with water and is heated at the bottom by Joule effect. At the top, the temperature is regulated by a thermal bath and the mean temperature of the bulk is 25°C . It is worth noticing that this configuration could correspond to heat pipes (without phase transformation) used in thermalisation systems or could model a vertical access pit of an underground carry. In this paper, we want to highlight how the thermal convection in the bulk of the channel is. In the first part, the paper will be focused on the visualization of the flow into the channel thanks to particle image velocimetry (PIV) technique. We look at the mean velocity field (transverse and axial components) , the fluctuations of the mean velocity field and the shear Reynolds stress. Besides, we analyze how the influence of the power supply and the dependance of the tilt angle are. At last, we will interpret the PIV measurements in terms of turbulent viscosity and effective heat conduction and we will deduce from the PIV measurements the axial mean profile of temperature. Then, in a

  11. Tilted cone-beam reconstruction with row-wise fan-to-parallel rebinning.

    PubMed

    Hsieh, Jiang; Tang, Xiangyang

    2006-10-21

    Reconstruction algorithms for cone-beam CT have been the focus of many studies. Several exact and approximate reconstruction algorithms were proposed for step-and-shoot and helical scanning trajectories to combat cone-beam related artefacts. In this paper, we present a new closed-form cone-beam reconstruction formula for tilted gantry data acquisition. Although several algorithms were proposed in the past to combat errors induced by the gantry tilt, none of the algorithms addresses the scenario in which the cone-beam geometry is first rebinned to a set of parallel beams prior to the filtered backprojection. We show that the image quality advantages of the rebinned parallel-beam reconstruction are significant, which makes the development of such an algorithm necessary. Because of the rebinning process, the reconstruction algorithm becomes more complex and the amount of iso-centre adjustment depends not only on the projection and tilt angles, but also on the reconstructed pixel location. In this paper, we first demonstrate the advantages of the row-wise fan-to-parallel rebinning and derive a closed-form solution for the reconstruction algorithm for the step-and-shoot and constant-pitch helical scans. The proposed algorithm requires the 'warping' of the reconstruction matrix on a view-by-view basis prior to the backprojection step. We further extend the algorithm to the variable-pitch helical scans in which the patient table travels at non-constant speeds. The algorithm was tested extensively on both the 16- and 64-slice CT scanners. The efficacy of the algorithm is clearly demonstrated by multiple experiments.

  12. Reading Angles in Maps

    ERIC Educational Resources Information Center

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  13. Prior head-down tilt does not impair the cerebrovascular response to head-up tilt

    PubMed Central

    Yang, Changbin; Gao, Yuan; Greaves, Danielle K.; Villar, Rodrigo; Beltrame, Thomas; Fraser, Katelyn S.

    2015-01-01

    The hypothesis that cerebrovascular autoregulation was not impaired during head-up tilt (HUT) that followed brief exposures to varying degrees of prior head-down tilt (HDT) was tested in 10 healthy young men and women. Cerebral mean flow velocity (MFV) and cardiovascular responses were measured in transitions to a 60-s period of 75° HUT that followed supine rest (control) or 15 s HDT at −10°, −25°, and −55°. During HDT, heart rate (HR) was reduced for −25° and −55°, and cardiac output was lower at −55° HDT. MFV increased during −10° HDT, but not in the other conditions even though blood pressure at the middle cerebral artery (BPMCA) increased. On the transition to HUT, HR increased only for −55° condition, but stroke volume and cardiac output transiently increased for −25° and −55°. Total peripheral resistance index decreased in proportion to the magnitude of HDT and recovered over the first 20 s of HUT. MFV was significantly less in all HDT conditions compared with the control in the first 5-s period of HUT, but it recovered quickly. An autoregulation correction index derived from MFV recovery relative to BPMCA decline revealed a delay in the first 5 s for prior HDT compared with control but then a rapid increase to briefly exceed control after −55° HDT. This study showed that cerebrovascular autoregulation is modified by but not impaired by brief HDT prior to HUT and that cerebral MFV recovered quickly and more rapidly than arterial blood pressure to protect against cerebral hypoperfusion and potential syncope. PMID:25749443

  14. A high-accuracy roundness measurement for cylindrical components by a morphological filter considering eccentricity, probe offset, tip head radius and tilt error

    NASA Astrophysics Data System (ADS)

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Zhou, Tong; Kuang, Ye

    2016-08-01

    A morphological filter is proposed to obtain a high-accuracy roundness measurement based on the four-parameter roundness measurement model, which takes into account eccentricity, probe offset, probe tip head radius and tilt error. This paper analyses the sample angle deviations caused by the four systematic errors to design a morphological filter based on the distribution of the sample angle. The effectiveness of the proposed method is verified through simulations and experiments performed with a roundness measuring machine. Compared to the morphological filter with the uniform sample angle, the accuracy of the roundness measurement can be increased by approximately 0.09 μm using the morphological filter with a non-uniform sample angle based on the four-parameter roundness measurement model, when eccentricity is above 16 μm, probe offset is approximately 1000 μm, tilt error is approximately 1″, the probe tip head radius is 1 mm and the cylindrical component radius is approximately 37 mm. The accuracy and reliability of roundness measurements are improved by using the proposed method for cylindrical components with a small radius, especially if the eccentricity and probe offset are large, and the tilt error and probe tip head radius are small. The proposed morphological filter method can be used for precision and ultra-precision roundness measurements, especially for functional assessments of roundness profiles.

  15. Tilt measurement and compensation algorithm for holographic data storage with optimized quadratic windows

    NASA Astrophysics Data System (ADS)

    Son, Kyungchan; Lim, Sung-Yong; Lee, Jae-seong; Jeong, Wooyoung; Yang, Hyunseok

    2016-09-01

    In holographic data storage, tilt is one of the critical disturbances. There are two types of tilt: tangential and radial. In real systems, tangential and radial tilt occur simultaneously. Thus, it is difficult to measure and compensate for tilt. In this study, using a quadratic window, which compares the intensity of a certain area, a tilt error signal was generated and compensated for with the proposed algorithm. The compensated image obtained satisfied a 0.3 dB tolerance.

  16. Nutations of sunflower seedlings on tilted clinostats

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Chapman, D. K.

    1977-01-01

    The kinetics of hypocotyl nutations in Helianthus annuus L. were measured on plants which were rotated on clinostats with axes of rotation inclined at various angles, alpha, away from the vertical. The g-force component acting in the direction of the plant axis was taken as g cos alpha. The average period and average amplitude of nutation were constant for all such axially directed g-forces between 1.0 and 0.2 g (vertical to about 80 inclination). On the horizontal clinostat (90 inclination) nutation was neither initiated nor sustained. The g-force just sufficient fully to activate nutational oscillations should be sought for g-force parameter values ranging from 0 to 0.2.

  17. Irregularities in Pump-Induced Tilt Above Shallow Aquifers

    NASA Astrophysics Data System (ADS)

    Kuempel, H. J.; Fabian, M.

    2003-12-01

    Near surface ground tilt induced by the extraction of fluids from subsurface reservoirs has repeatedly been used to constrain reservoir parameters. In general, pump-induced tilt is found to be proportional in strength to the pore pressure gradient created by the pumping, to be a function of poroelastic rock parameters, and to depend on the geometric configuration of the tilt sensor and the productive sections of a well. Assuming radial flow, the strike of the tilt signal should point toward the productive well. However, inversion of near surface tilt can be hampered through irregularities in the pump-induced signal and suffer from insufficient knowledge of the influence of heterogeneities in the subsoil, either within or above the reservoir. We can learn more about the impact of such heterogeneities and reduce ambiguities by analyzing case studies. New observational data from 3 test sites in Germany confirm that a variety of causes can produce irregularities in pump-induced surface deformation, namely: (1) The strike of a tilt signal can considerably deviate from the direction toward the active well. A reason could be that the steepest effective pore pressure gradient builds up in another than radial direction (thereby generating anisotropic fluid flow). Accordingly, tilt hodographs for a complete pump cycle may be elliptic rather than follow a line. (2) The normal rule of how the signal strength depends on the horizontal and the vertical distance may be violated. Structural heterogeneities in the subsurface are the most likely cause for this behaviour. (3) Recovery of the induced tilt signal following the cessation of pumping can be incomplete. This could indicate a non-reversible compaction possibly due to overexploitation of a reservoir. (4) A transient sign reversal of ground tilt may occur during the build-up phase of the signal. This feature could be an analogue to the so-called Noordbergum effect occasionally seen in the response of well levels at locations

  18. Robust evaluation of 3D electron cryomicroscopy data using tilt-pairs

    PubMed Central

    Russo, Christopher J.; Passmore, Lori A.

    2014-01-01

    Determining the structure of a protein complex using electron microscopy requires the calculation of a 3D density map from 2D images of single particles. Since the individual images are taken at low electron dose to avoid radiation damage, they are noisy and difficult to align with each other. This can result in incorrect maps, making validation essential. Pairs of electron micrographs taken at known angles to each other (tilt-pairs) can be used to measure the accuracy of assigned projection orientations and verify the soundness of calculated maps. Here we establish a statistical framework for evaluating images and density maps using tilt-pairs. The directional distribution of such angular data is modelled using a Fisher distribution on the unit sphere. This provides a simple, quantitative and easily comparable metric, the concentration parameter κ, for evaluating the quality of datasets and density maps that is independent of the data collection and analysis methods. A large κ is indicative of good agreement between the particle images and the 3D density map. For structure validation, we recommend κ>10 and a p-value <0.01. The statistical framework herein allows one to objectively answer the question: Is a reconstructed density map correct within a particular confidence interval? PMID:25016098

  19. Proto-CIRCUS tilted-coil tokamak-torsatron hybrid: design and construction

    NASA Astrophysics Data System (ADS)

    Doumet, M.; Israeli, B. Y.; Hammond, K. C.; Sweeney, R. M.; Volpe, F. A.; Spong, D. A.; Clark, A. W.; Kornbluth, Y.

    2014-10-01

    An innovative magnetic confinement concept is based on a toroidal configuration in which the toroidal field coils are tilted and interlinked with each other. Field line tracing and equilibrium calculations suggest that this configuration can generate rotational transform with lower plasma current and exhibit less effective magnetic ripple than tokamaks of comparable size. These properties may have interesting implications for disruptions and steady-state operation. Proto-CIRCUS is a tabletop device recently constructed at Columbia University to test this concept. It features six interlocked coils with independently adjustable radial positions and tilt angles. Plasmas will have major and minor radii of approximately 16 cm and 5 cm, respectively. Start-up, heating and current drive will initially rely on 2.45 GHz electron cyclotron waves. Here we describe the design and construction of the device and present the results of numerical optimizations aimed at minimizing the required plasma current. Flux surface measurements will confirm whether this relatively simple concept can generate the expected rotational transform.

  20. Adapting Tilt Corrections and the Governing Flow Equations for Steep, Fully Three-Dimensional, Mountainous Terrain

    NASA Astrophysics Data System (ADS)

    Oldroyd, Holly J.; Pardyjak, Eric R.; Huwald, Hendrik; Parlange, Marc B.

    2016-06-01

    In recent studies of atmospheric turbulent surface exchange in complex terrain, questions arise concerning velocity-sensor tilt corrections and the governing flow equations for coordinate systems aligned with steep slopes. The standard planar-fit method, a popular tilt-correction technique, must be modified when applied to complex mountainous terrain. The ramifications of these adaptations have not previously been fully explored. Here, we carefully evaluate the impacts of the selection of sector size (the range of flow angles admitted for analysis) and planar-fit averaging time. We offer a methodology for determining an optimized sector-wise planar fit (SPF), and evaluate the sensitivity of momentum fluxes to varying these SPF input parameters. Additionally, we clarify discrepancies in the governing flow equations for slope-aligned coordinate systems that arise in the buoyancy terms due to the gravitational vector no longer acting along a coordinate axis. New adaptions to the momentum equations and turbulence kinetic energy budget equation allow for the proper treatment of the buoyancy terms for purely upslope or downslope flows, and for slope flows having a cross-slope component. Field data show that new terms in the slope-aligned forms of the governing flow equations can be significant and should not be omitted. Since the optimized SPF and the proper alignment of buoyancy terms in the governing flow equations both affect turbulent fluxes, these results hold implications for similarity theory or budget analyses for which accurate flux estimates are important.

  1. Digital holographic metrology based on multi-angle interferometry.

    PubMed

    Dong, Jun; Jiang, Chao; Jia, Shuhai

    2016-09-15

    We propose a multi-angle interferometry method for digital holographic metrology. In an application of three-dimensional (3D) reconstruction, the hologram corresponding to a different illumination angle is recorded as the illumination angle with a single wavelength tilted at regular intervals by an electronically controlled rotating stage. A Fourier-transform-based axial depth scanning algorithm formed by the reconstructed phase is used to obtain the height point by point over the whole field of view. Hence, the 3D reconstruction can be obtained effectively; even the object has large depth discontinuities resulting from the difficulty of the phase unwrapping. Due to a monochrome source only being used, the method is available for objects with wavelength-dependent reflectivity and those that are free of chromatic aberration caused by the different wavelengths. PMID:27628382

  2. Gaia: focus, straylight and basic angle

    NASA Astrophysics Data System (ADS)

    Mora, A.; Biermann, M.; Bombrun, A.; Boyadjian, J.; Chassat, F.; Corberand, P.; Davidson, M.; Doyle, D.; Escolar, D.; Gielesen, W. L. M.; Guilpain, T.; Hernandez, J.; Kirschner, V.; Klioner, S. A.; Koeck, C.; Laine, B.; Lindegren, L.; Serpell, E.; Tatry, P.; Thoral, P.

    2016-07-01

    The Gaia all-sky astrometric survey is challenged by several issues affecting the spacecraft stability. Amongst them, we find the focus evolution, straylight and basic angle variations Contrary to pre-launch expectations, the image quality is continuously evolving, during commissioning and the nominal mission. Payload decontaminations and wavefront sensor assisted refocuses have been carried out to recover optimum performance. An ESA-Airbus DS working group analysed the straylight and basic angle issues and worked on a detailed root cause analysis. In parallel, the Gaia scientists have also analysed the data, most notably comparing the BAM signal to global astrometric solutions, with remarkable agreement. In this contribution, a status review of these issues will be provided, with emphasis on the mitigation schemes and the lessons learned for future space missions where extreme stability is a key requirement.

  3. Optimum harvest maturity for Leymus chinensis seed.

    PubMed

    Lin, Jixiang; Wang, Yingnan; Qi, Mingming; Li, Xiaoyu; Yang, Chunxue; Wang, Yongcui; Mu, Chunsheng

    2016-01-01

    Timely harvest is critical to achieve maximum seed viability and vigour in agricultural production. However, little information exists concerning how to reap the best quality seeds of Leymus chinensis, which is the dominant and most promising grass species in the Songnen Grassland of Northern China. The objective of this study was to investigate and evaluate possible quality indices of the seeds at different days after peak anthesis. Seed quality at different development stages was assessed by the colours of the seed and lemmas, seed weight, moisture content, electrical conductivity of seed leachate and germination indices. Two consecutive years of experimental results showed that the maximum seed quality was recorded at 39 days after peak anthesis. At this date, the colours of the seed and lemmas reached heavy brown and yellow, respectively. The seed weight was highest and the moisture content and the electrical conductivity of seed leachate were lowest. In addition, the seed also reached its maximum germination percentage and energy at this stage, determined using a standard germination test (SGT) and accelerated ageing test (AAT). Thus, Leymus chinensis can be harvested at 39 days after peak anthesis based on the changes in parameters. Colour identification can be used as an additional indicator to provide a more rapid and reliable measure of optimum seed maturity; approximately 10 days after the colour of the lemmas reached yellow and the colour of the seed reached heavy brown, the seed of this species was suitable for harvest. PMID:27170257

  4. Optimum coding techniques for MST radars

    NASA Technical Reports Server (NTRS)

    Sulzer, M. P.; Woodman, R. F.

    1986-01-01

    The optimum coding technique for MST (mesosphere stratosphere troposphere) radars is that which gives the lowest possible sidelobes in practice and can be implemented without too much computing power. Coding techniques are described in Farley (1985). A technique mentioned briefly there but not fully developed and not in general use is discussed here. This is decoding by means of a filter which is not matched to the transmitted waveform, in order to reduce sidelobes below the level obtained with a matched filter. This is the first part of the technique discussed here; the second part consists of measuring the transmitted waveform and using it as the basis for the decoding filter, thus reducing errors due to imperfections in the transmitter. There are two limitations to this technique. The first is a small loss in signal to noise ratio (SNR), which usually is not significant. The second problem is related to incomplete information received at the lowest ranges. An appendix shows a technique for handling this problem. Finally, it is shown that the use of complementary codes on transmission and nonmatched decoding gives the lowest possible sidelobe level and the minimum loss in SNR due to mismatch.

  5. Optimum folding pathways for growing protein chains.

    PubMed

    Senturk, Serife; Baday, Sefer; Arkun, Yaman; Erman, Burak

    2007-11-26

    The folding of a protein is studied as it grows residue by residue from the N-terminus and enters an environment that stabilizes the folded state. This mode of folding of a growing chain is different from refolding where the full chain folds from a disordered initial configuration to the native state. We propose a sequential dynamic optimization method that computes the evolution of optimum folding pathways as amino acid residues are added to the peptide chain one by one. The dynamic optimization formulation is deterministic and uses Newton's equations of motion and a Go-type potential that establishes the native contacts and excluded volume effects. The method predicts the optimal energy-minimizing path among all the alternative feasible pathways. As two examples, the folding of the chicken villin headpiece, a 36-residue protein, and chymotrypsin inhibitor 2 (CI2), a 64-residue protein, are studied. Results on the villin headpiece show significant differences from the refolding of the same chain studied previously. Results on CI2 mostly agree with the results of refolding experiments and computational work.

  6. Improve filtration for optimum equipment reliability

    SciTech Connect

    Cervera, S.M.

    1996-01-01

    The introduction 20 years ago of the American Petroleum Institute Standard API-614 as a purchase specification for lubrication, shaft sealing and control oil systems, had a considerable impact and did much to improve system reliability at that time. Today, however, these recommendations regarding filter rating and flushing cleanliness are outdated. Much research in the tribology field correlates clearance size particulate contamination with accelerated component wear, fatigue and performance degradation. Some of these studies demonstrate that by decreasing the population of clearance size particulate in lubrication oils, component life increases exponentially. Knowing the dynamic clearances of a piece of machinery makes it possible, using the ISO 4406 Cleanliness Code, to determine what cleanliness level will minimize contamination-related component wear/fatigue and thus help optimize machinery performance and reliability. Data obtained by the author through random sampling of rotating equipment lube and seal oil systems indicate that the API-614 standard, as it pertains to filtration and flushing, is insufficient to ensure that particulate contamination is maintained to within the levels necessary to achieve optimum equipment reliability and safety, without increasing operating cost. Adopting and practicing the guidelines presented should result in the following benefits: (1) the frequency of bearing, oil pump, mechanical seal, fluid coupling, gearbox and hydraulic control valve failures would be minimized; (2) the mean time between planned maintenance (MTBPM) would be increased. The result will be a substantial increase in safety and cost savings to the operator.

  7. Optimum harvest maturity for Leymus chinensis seed

    PubMed Central

    Lin, Jixiang; Wang, Yingnan; Qi, Mingming; Li, Xiaoyu; Yang, Chunxue; Wang, Yongcui

    2016-01-01

    ABSTRACT Timely harvest is critical to achieve maximum seed viability and vigour in agricultural production. However, little information exists concerning how to reap the best quality seeds of Leymus chinensis, which is the dominant and most promising grass species in the Songnen Grassland of Northern China. The objective of this study was to investigate and evaluate possible quality indices of the seeds at different days after peak anthesis. Seed quality at different development stages was assessed by the colours of the seed and lemmas, seed weight, moisture content, electrical conductivity of seed leachate and germination indices. Two consecutive years of experimental results showed that the maximum seed quality was recorded at 39 days after peak anthesis. At this date, the colours of the seed and lemmas reached heavy brown and yellow, respectively. The seed weight was highest and the moisture content and the electrical conductivity of seed leachate were lowest. In addition, the seed also reached its maximum germination percentage and energy at this stage, determined using a standard germination test (SGT) and accelerated ageing test (AAT). Thus, Leymus chinensis can be harvested at 39 days after peak anthesis based on the changes in parameters. Colour identification can be used as an additional indicator to provide a more rapid and reliable measure of optimum seed maturity; approximately 10 days after the colour of the lemmas reached yellow and the colour of the seed reached heavy brown, the seed of this species was suitable for harvest. PMID:27170257

  8. Optimum color filters for CCD digital cameras.

    PubMed

    Engelhardt, K; Seitz, P

    1993-06-01

    A procedure for the definition of optimum spectral transmission curves for any solid-state (especially silicon-based CCD) color camera is presented. The design of the target curves is based on computer simulation of the camera system and on the use of test colors with known spectral reflectances. Color errors are measured in a uniform color space (CIELUV) and by application of the Commission Internationale de l'Eclairage color difference formula. Dielectric filter stacks were designed by simulated thermal annealing, and a stripe filter pattern was fabricated with transmission properties close to the specifications. Optimization of the color transformation minimizes the residual average color error and an average color error of ~1 just noticeable difference should be feasible. This means that color differences on a side-to-side comparison of original and reproduced color are practically imperceptible. In addition, electrical cross talk within the solid-state imager can be compensated by adapting the color matrixing coefficients. The theoretical findings of this work were employed for the design and fabrication of a high-resolution digital CCD color camera with high calorimetric accuracy. PMID:20829908

  9. Three-dimensional microelectromechanical tilting platform operated by gear-driven racks

    DOEpatents

    Klody, Kelly A.; Habbit, Jr., Robert D.

    2005-11-01

    A microelectromechanical (MEM) tiltable-platform apparatus is disclosed which utilizes a light-reflective platform (i.e. a micromirror) which is supported above a substrate by flexures which can be bent upwards to tilt the platform in any direction over an angle of generally .+-.10 degrees using a gear-driven rack attached to each flexure. Each rack is driven by a rotary microengine (i.e. a micromotor); and an optional thermal actuator can be used in combination with each microengine for initially an initial uplifting of the platform away from the substrate. The MEM apparatus has applications for optical switching (e.g. between a pair of optical fibers) or for optical beam scanning.

  10. Sample tilt effects on atom column position determination in ABF-STEM imaging.

    PubMed

    Zhou, Dan; Müller-Caspary, Knut; Sigle, Wilfried; Krause, Florian F; Rosenauer, Andreas; van Aken, Peter A

    2016-01-01

    The determination of atom positions from atomically resolved transmission electron micrographs is fundamental for the analysis of crystal defects and strain. In recent years annular bright-field (ABF) imaging has become a popular imaging technique owing to its ability to map both light and heavy elements. Contrast formation in ABF is partially governed by the phase of the electron wave, which renders the technique more sensitive to the tilt of the electron beam with respect to the crystal zone axis than high-angle annular dark-field imaging. Here we show this sensitivity experimentally and use image simulations to quantify this effect. This is essential for error estimation in future quantitative ABF studies.

  11. Valley splitting of Si/Si1-xGex heterostructures in tilted magnetic fields.

    SciTech Connect

    Pan, Wei; Schaffler, F.; Muhlberger, M.; Lyon, S.; Xie, Ya-Hong; Lai, K. W.; Tsuri, D.; Liu, J.; Lu, T.M.

    2006-01-01

    We have investigated the valley splitting of two-dimensional electrons in high-quality Si/Si{sub 1-x}Ge{sub x} heterostructures under tilted magnetic fields. For all the samples in our study, the valley splitting at filling factor {nu} = 3 ({Delta}{sub 3}) is significantly different before and after the coincidence angle, at which energy levels cross at the Fermi level. On both sides of the coincidence, a linear dependence of {Delta}{sub 3} on the electron density was observed, while the slope of these two configurations differs by more than a factor of 2. We argue that screening of the Coulomb interaction from the low-lying filled levels, which also explains the observed spin-dependent resistivity, is responsible for the large difference of {Delta}{sub 3} before and after the coincidence.

  12. Direct and Inverse Kinematics of a Novel Tip-Tilt-Piston Parallel Manipulator

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad

    2004-01-01

    Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is shown that the 16 solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.

  13. Determination of structure tilting in magnetized plasmas—Time delay estimation in two dimensions

    SciTech Connect

    Guszejnov, Dávid; Bencze, Attila; Zoletnik, Sándor; Krämer-Flecken, Andreas

    2013-06-15

    Time delay estimation (TDE) is a well-known technique to investigate poloidal flows in fusion plasmas. The present work is an extension of the earlier works of Bencze and Zoletnik [Phys. Plasmas 12, 052323 (2005)] and Tal et al.[Phys. Plasmas 18, 122304 (2011)]. From the prospective of the comparison of theory and experiment, it seems to be important to estimate the statistical properties of the TDE based on solid mathematical groundings. This paper provides analytic derivation of the variance of the TDE using a two-dimensional model for coherent turbulent structures in the plasma edge and also gives an explicit method for determination of the tilt angle of structures. As a demonstration, this method is then applied to the results of a quasi-2D Beam Emission Spectroscopy measurement performed at the TEXTOR tokamak.

  14. A novel deformable mirror with curvature and tip/tilt control based on the spider actuator concept

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanmartin, Daniel; Button, Tim; Meggs, Carl; Michette, Alan; Pfauntsch, Slawka; James, Ady; Willis, Graham; Dunare, Camelia; Stevenson, Tom; Parkes, William

    2012-06-01

    The Smart X-Ray Optics (SXO) project comprises a UK-based consortium developing active/adaptive micro-structured optical arrays (MOAs). MOA devices are designed to focus X-rays using grazing incidence reflection through consecutive aligned arrays of microscopic channels. Adaptability is achieved using a combination of piezoelectric actuators, which bend the edges of the silicon chip, and a spider structure, which forms a series of levers connecting the edges of the chip with the active area at the centre, effectively amplifying the bend radius. The spider actuation concept, in combination with deep silicon etching stopped close to the surface, can also be used to create deformable mirrors where the curvature and tip/tilt angles of the mirror can be controlled. Finite Element Analysis (FEA) modelling, carried out for the optimization of the spider MOA device, indicates that deformable mirrors with curvature varying from flat to 5cm ROC and control over the tip/tilt angles of the mirror of +/-3mrad could be achieved. Test spider structures, manufactured using a Viscous Plastic Processing Process for the PZT piezoelectric actuators and a single wet etch step using <111> planes in a (110) silicon wafer for both the silicon channels and the spider structure, have been bent to a radius of curvature smaller than 5 cm. This paper evaluates the spider MOA's concept as a means to achieve deformable mirrors with controllable ROC and control over the tip/tilt angles. FEA modelling results are compared with obtained characterization data of prototype structures. Finally, manufacturing and integration methods and design characteristics of the device, such its scalability, are also discussed.

  15. Inversion of Dynamical Scattering from Large-Angle Rocking-Beam Electron Diffraction Patterns

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Pennington, Robert S.; Koch, Christoph T.

    2016-07-01

    A method for ab initio structure factor retrieval from large-angle rocking-beam electron diffraction data of thin crystals is described and tested with experimental and simulated data. No additional information, such as atomicity or information about chemical composition, has been made use of. Our numerical experiments show that the inversion of dynamical scattering works best, if the beam tilt range is large and the specimen not too thick, because for moderate multiple scattering, the large tilt amplitude effectively removes local minima in this global optimization problem.

  16. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The

  17. Atomic structure of [110] tilt grain boundaries in FCC materials

    SciTech Connect

    Merkle, K.L.; Thompson, L.J.

    1997-04-01

    High-resolution electron microscopy (HREM) has been used to study the atomic-scale structure and localized relaxations at grain boundaries (GBs) in Au, Al, and MgO. The [110] tilt GBs play an important role in polycrystalline fcc metals since among all of the possible GB geometries this series of misorientations as a whole contains the lowest energies, including among others the two lowest energy GBs, the (111) and (113) twins. Therefore, studies of the atomic-scale structure of [110] tilt GBs in fcc metals and systematic investigations of their dependence on misorientation and GB plane is of considerable importance to materials science. [110] tilt GBs in ceramic oxides of the fcc structure are also of considerable interest, since in this misorientation range polar GBs exist, i.e. GBs in which crystallographic planes that are made up of complete layers of cations or anions can join to form a GB.

  18. State reversals of optically induced tilt and torsional eye movements

    NASA Technical Reports Server (NTRS)

    Finke, R. A.; Held, R.

    1978-01-01

    Alternations of the state of apparent self-motion during observation of a large visual display rotating about the line of sight are associated with alternations in the magnitude of induced tilt and torsional eye rotation. In one experiment, shifts in visually induced tilt during these state alternations are found to be in the opposite direction to corresponding shifts in induced ocular torsion. In a second experiment, the reversals of self-motion perception are shown to be an intravisual phenomenon, independent of competing inputs provided by the vestibular system. These results emphasize the importance of distinguishing between visual and vestibular processes in tilt perception and ocular rotation during human orientation to gravitational vertical.

  19. Effect of tilt on strong motion data processing

    USGS Publications Warehouse

    Graizer, V.M.

    2005-01-01

    In the near-field of an earthquake the effects of the rotational components of ground motion may not be negligible compared to the effects of translational motions. Analyses of the equations of motion of horizontal and vertical pendulums show that horizontal sensors are sensitive not only to translational motion but also to tilts. Ignoring this tilt sensitivity may produce unreliable results, especially in calculations of permanent displacements and long-period calculations. In contrast to horizontal sensors, vertical sensors do not have these limitations, since they are less sensitive to tilts. In general, only six-component systems measuring rotations and accelerations, or three-component systems similar to systems used in inertial navigation assuring purely translational motion of accelerometers can be used to calculate residual displacements. ?? 2004 Elsevier Ltd. All rights reserved.

  20. Cerebrospinal fluid pressure in conscious head-down tilted rats

    NASA Technical Reports Server (NTRS)

    Severs, Walter B.; Morrow, Bret A.; Keil, Lanny C.

    1991-01-01

    The acute effects of a 1-h -45 deg head-down tilt on continouously recorded cerebrospinal fluid pressure (PCSF) of conscious rats are studied in order to investigate the shift of blood volume into the thoracic cavity in microgravity. PCSF, evaluated in 15-min time blocks over a 3-h experiment, increased slightly (less than 0.05) during the first 30 min of a control hour at 0 deg. There was a transient increase for about 5 min immediately after tilt (-45 deg) that may have been due to head movement after the position change. PCSF was statistically unchanged (above 0.05) during the second (-45 deg) hour and the third (0 deg) recovery hour. It is shown that the dynamics of intracranial pressure regulation can accommodate the acute cephalad fluid shift after tilting.

  1. High-speed reference-beam-angle control technique for holographic memory drive

    NASA Astrophysics Data System (ADS)

    Yamada, Ken-ichiro; Ogata, Takeshi; Hosaka, Makoto; Fujita, Koji; Okuyama, Atsushi

    2016-09-01

    We developed a holographic memory drive for next-generation optical memory. In this study, we present the key technology for achieving a high-speed transfer rate for reproduction, that is, a high-speed control technique for the reference beam angle. In reproduction in a holographic memory drive, there is the issue that the optimum reference beam angle during reproduction varies owing to distortion of the medium. The distortion is caused by, for example, temperature variation, beam irradiation, and moisture absorption. Therefore, a reference-beam-angle control technique to position the reference beam at the optimum angle is crucial. We developed a new optical system that generates an angle-error-signal to detect the optimum reference beam angle. To achieve the high-speed control technique using the new optical system, we developed a new control technique called adaptive final-state control (AFSC) that adds a second control input to the first one derived from conventional final-state control (FSC) at the time of angle-error-signal detection. We established an actual experimental system employing AFSC to achieve moving control between each page (Page Seek) within 300 µs. In sequential multiple Page Seeks, we were able to realize positioning to the optimum angles of the reference beam that maximize the diffracted beam intensity. We expect that applying the new control technique to the holographic memory drive will enable a giga-bit/s-class transfer rate.

  2. Interacting Tilt and Kink Instabilities in Repelling Current Channels

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Porth, O.; Xia, C.

    2014-11-01

    We present a numerical study in resistive magnetohydrodynamics (MHD) where the initial equilibrium configuration contains adjacent, oppositely directed, parallel current channels. Since oppositely directed current channels repel, the equilibrium is liable to an ideal magnetohydrodynamic tilt instability. This tilt evolution, previously studied in planar settings, involves two magnetic islands or flux ropes, which on Alfvénic timescales undergo a combined rotation and separation. This in turn leads to the creation of (near) singular current layers, posing severe challenges to numerical approaches. Using our open-source grid-adaptive MPI-AMRVAC software, we revisit the planar evolution case in compressible MHD, as well as its extension to two-and-a-half-dimensional (2.5D) and full three-dimensional (3D) scenarios. As long as the third dimension can be ignored, pure tilt evolutions result that are hardly affected by out of plane magnetic field components. In all 2.5D runs, our simulations do show secondary tearing type disruptions throughout the near singular current sheets in the far nonlinear saturation regime. In full 3D runs, both current channels can be liable to additional ideal kink deformations. We discuss the effects of having both tilt and kink instabilities acting simultaneously in the violent, reconnection-dominated evolution. In 3D, both the tilt and the kink instabilities can be stabilized by tension forces. As a concrete space plasma application, we argue that interacting tilt-kink instabilities in repelling current channels provide a novel route to initiate solar coronal mass ejections, distinctly different from the currently favored pure kink or torus instability routes.

  3. Stereopsis, cyclovergence and the backwards tilt of the vertical horopter.

    PubMed

    Siderov, J; Harwerth, R S; Bedell, H E

    1999-04-01

    It is generally recognized that the vertical horopter has a backwards tilt such that it passes through the fixation point and a point near the feet of the observer. The basis of the tilt has been attributed to either a shear in binocular retinal correspondence along the vertical meridian or the presence of cyclovergence eye movements. In an attempt to determine empirically the mechanisms underlying the tilt of the vertical horopter, retinal correspondence along the vertical meridian was investigated as a function of viewing distance. In addition, binocular measurements of torsional eye position were made in the same observers under similar viewing conditions. The vertical horopter was determined using two criteria. In the first instance, increment depth discrimination thresholds for both crossed and uncrossed disparities were measured as a function of retinal eccentricity along the vertical meridian, up to 5 degrees superiorly and inferiorly, and the horopter was defined by the region in space which had the lowest stereo-threshold. Secondly, subjective alignment of dichoptically presented nonius lines defined the horopter by identical visual directions. Both criteria were used to determine the horopter at 2 m while only the criterion of identical visual direction was used at the nearer distance of 50 cm. The vertical horopter showed a backwards tilt that decreased from an average of about 12 degrees at 2 m to 3 degrees at 50 cm, with some variability between observers. Torsional eye position did not change significantly between fixation distances. These results confirmed the geometric relation between the backwards tilt in the vertical horopter and fixation distance and support Helmholtz's original contention that the tilt is a consequence of a shear in retinal correspondence in the vertical meridian.

  4. Prediction of noise constrained optimum takeoff procedures

    NASA Technical Reports Server (NTRS)

    Padula, S. L.

    1980-01-01

    An optimization method is used to predict safe, maximum-performance takeoff procedures which satisfy noise constraints at multiple observer locations. The takeoff flight is represented by two-degree-of-freedom dynamical equations with aircraft angle-of-attack and engine power setting as control functions. The engine thrust, mass flow and noise source parameters are assumed to be given functions of the engine power setting and aircraft Mach number. Effective Perceived Noise Levels at the observers are treated as functionals of the control functions. The method is demonstrated by applying it to an Advanced Supersonic Transport aircraft design. The results indicate that automated takeoff procedures (continuously varying controls) can be used to significantly reduce community and certification noise without jeopardizing safety or degrading performance.

  5. Angles, Time, and Proportion

    ERIC Educational Resources Information Center

    Pagni, David L.

    2005-01-01

    This article describes an investigation making connections between the time on an analog clock and the angle between the minute hand and the hour hand. It was posed by a middle school mathematics teacher. (Contains 8 tables and 6 figures.)

  6. Reading angles in maps.

    PubMed

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections appeared without any relevant length or distance information. Children were able to read these map fragments and compare two-dimensional to three-dimensional angles. However, this ability appeared both variable and fragile among the youngest children of the sample. These findings suggest that 4-year-old children begin to form an abstract concept of angle that applies both to two-dimensional and three-dimensional displays and that serves to interpret novel spatial symbols. PMID:23647223

  7. Magnetoresistivity in a tilted magnetic field in p-Si/SiGe/Si heterostructures with an anisotropic g-factor. Part II

    SciTech Connect

    Drichko, I. L.; Smirnov, I. Yu.; Suslov, A. V.; Mironov, O. A.; Leadley, D. R.

    2012-09-15

    The magnetoresistance components {rho}xx and {rho}xy are measured in two p-Si/SiGe/Si quantum wells that have an anisotropic g-factor in a tilted magnetic field as a function of the temperature, field, and tilt angle. Activation energy measurements demonstrate the existence of a ferromagnetic-paramagnetic (F-P) transition for the sample with the hole density p = 2 Multiplication-Sign 10{sup 11} cm{sup -2}. This transition is due to the crossing of the 0{up_arrow} and 1{down_arrow} Landau levels. However, in another sample with p = 7.2 Multiplication-Sign 10{sup 10} cm{sup -2}, the 0{up_arrow} and 1{down_arrow} Landau levels coincide for angles {theta} = 0-70 Degree-Sign . Only for {theta} > 70 Degree-Sign do the levels start to diverge which, in turn, results in the energy gap opening.

  8. Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth's surface for cloudless atmospheres

    SciTech Connect

    Bird, R.; Riordan, C.

    1984-12-01

    A new, simple model for calculating clear-sky direct and diffuse spectral irradiance on horizontal and tilted surfaces is presented. The model is based on previously reported simple algorithms and on comparisons with rigorous radiative transfer calculations and limited outdoor measurements. Equations for direct normal irradiance are outlined; and include: Raleigh scattering; aerosol scattering and absorption; water vapor absorption; and ozone and uniformly mixed gas absorption. Inputs to the model include solar zenith angle, collector tilt angle, atmospheric turbidity, amount of ozone and precipitable water vapor, surface pressure, and ground albedo. The model calculates terrestrial spectra from 0.3 to 4.0 ..mu..m with approximately 10 nm resolution. A major goal of this work is to provide researchers with the capability to calculate spectral irradiance for different atmospheric conditions and different collector geometries using microcomputers. A listing of the computer program is provided.

  9. Gating-by-Tilt of Mechanically Sensitive Membrane Channels

    NASA Astrophysics Data System (ADS)

    Turner, Matthew S.; Sens, Pierre

    2004-09-01

    We propose an alternative mechanism for the gating of biological membrane channels in response to membrane tension that involves a change in the slope of the membrane near the channel. Under biological membrane tensions we show that the energy difference between the closed (tilted) and open (untilted) states can far exceed kBT and is comparable to what is available under simple dilational gating. Recent experiments demonstrate that membrane leaflet asymmetries (spontaneous curvature) can strongly affect the gating of some channels. Such a phenomenon would be easier to explain under gating-by-tilt, given its novel intrinsic sensitivity to such asymmetry.

  10. Simultaneous measurement of translation and tilt using digital speckle photography

    SciTech Connect

    Bhaduri, Basanta; Quan, Chenggen; Tay, Cho Jui; Sjoedahl, Mikael

    2010-06-20

    A Michelson-type digital speckle photographic system has been proposed in which one light beam produces a Fourier transform and another beam produces an image at a recording plane, without interfering between themselves. Because the optical Fourier transform is insensitive to translation and the imaging technique is insensitive to tilt, the proposed system is able to simultaneously and independently determine both surface tilt and translation by two separate recordings, one before and another after the surface motion, without the need to obtain solutions for simultaneous equations. Experimental results are presented to verify the theoretical analysis.

  11. Sedimentary basins reconnaissance using the magnetic Tilt-Depth method

    NASA Astrophysics Data System (ADS)

    Salem, Ahmed; Williams, Simon; Samson, Esuene; Fairhead, Derek; Ravat, Dhananjay; Blakely, Richard J.

    2010-09-01

    We compute the depth to the top of magnetic basement using the Tilt-Depth method from the best available magnetic anomaly grids covering the continental USA and Australia. For the USA, the Tilt-Depth estimates were compared with sediment thicknesses based on drilling data and show a correlation of 0.86 between the datasets. If random data were used then the correlation value goes to virtually zero. There is little to no lateral offset of the depth of basinal features although there is a tendency for the Tilt-Depth results to be slightly shallower than the drill depths. We also applied the Tilt-Depth method to a local-scale, relatively high-resolution aeromagnetic survey over the Olympic Peninsula of Washington State. The Tilt-Depth method successfully identified a variety of important tectonic elements known from geological mapping. Of particular interest, the Tilt-Depth method illuminated deep (3km) contacts within the non-magnetic sedimentary core of the Olympic Mountains, where magnetic anomalies are subdued and low in amplitude. For Australia, the Tilt-Depth estimates also give a good correlation with known areas of shallow basement and sedimentary basins. Our estimates of basement depth are not restricted to regional analysis but work equally well at the micro scale (basin scale) with depth estimates agreeing well with drill hole and seismic data. We focus on the eastern Officer Basin as an example of basin scale studies and find a good level of agreement between previously-derived basin models. However, our study potentially reveals depocentres not previously mapped due to the sparse distribution of well data. This example thus shows the potential additional advantage of the method in geological interpretation. The success of this study suggests that the Tilt-Depth method is useful in estimating the depth to crystalline basement when appropriate quality aeromagnetic anomaly data are used (i.e. line spacing on the order of or less than the expected depth to

  12. Sedimentary basins reconnaissance using the magnetic Tilt-Depth method

    USGS Publications Warehouse

    Salem, A.; Williams, S.; Samson, E.; Fairhead, D.; Ravat, D.; Blakely, R.J.

    2010-01-01

    We compute the depth to the top of magnetic basement using the Tilt-Depth method from the best available magnetic anomaly grids covering the continental USA and Australia. For the USA, the Tilt-Depth estimates were compared with sediment thicknesses based on drilling data and show a correlation of 0.86 between the datasets. If random data were used then the correlation value goes to virtually zero. There is little to no lateral offset of the depth of basinal features although there is a tendency for the Tilt-Depth results to be slightly shallower than the drill depths. We also applied the Tilt-Depth method to a local-scale, relatively high-resolution aeromagnetic survey over the Olympic Peninsula of Washington State. The Tilt-Depth method successfully identified a variety of important tectonic elements known from geological mapping. Of particular interest, the Tilt-Depth method illuminated deep (3km) contacts within the non-magnetic sedimentary core of the Olympic Mountains, where magnetic anomalies are subdued and low in amplitude. For Australia, the Tilt-Depth estimates also give a good correlation with known areas of shallow basement and sedimentary basins. Our estimates of basement depth are not restricted to regional analysis but work equally well at the micro scale (basin scale) with depth estimates agreeing well with drill hole and seismic data. We focus on the eastern Officer Basin as an example of basin scale studies and find a good level of agreement between previously-derived basin models. However, our study potentially reveals depocentres not previously mapped due to the sparse distribution of well data. This example thus shows the potential additional advantage of the method in geological interpretation. The success of this study suggests that the Tilt-Depth method is useful in estimating the depth to crystalline basement when appropriate quality aeromagnetic anomaly data are used (i.e. line spacing on the order of or less than the expected depth to

  13. Guest-Activated Forbidden Tilts in a Molecular Perovskite Analogue.

    PubMed

    Duyker, Samuel G; Hill, Joshua A; Howard, Christopher J; Goodwin, Andrew L

    2016-09-01

    The manipulation of distortions in perovskite structures is critical to tailoring the properties of these materials for a variety of applications. Here we demonstrate a violation of established octahedral tilt rules in the double perovskite analogue (NH4)2SrFe(CN)6·2H2O. The forbidden tilt pattern we observe arises through coupling to hydration-driven Jahn-Teller-like distortions of the Sr coordination environment. Access to novel distortion mechanisms and the ability to switch these distortions on and off through chemical modification fundamentally expands the toolbox of techniques available for engineering symmetry-breaking processes in solid materials. PMID:27533044

  14. Pulse front tilt measurement of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Dimitrov, Nikolay; Stoyanov, Lyubomir; Stefanov, Ivan; Dreischuh, Alexander; Hansinger, Peter; Paulus, Gerhard G.

    2016-07-01

    In this work we report experimental investigations of an intentionally introduced pulse front tilt on femtosecond laser pulses by using an inverted field correlator/interferometer. A reliable criterion for the precision in aligning (in principle) dispersionless systems for manipulating ultrashort pulses is developed, specifically including cases when the pulse front tilt is a result of a desired spatio-temporal coupling. The results obtained using two low-dispersion diffraction gratings are in good qualitative agreement with the data from a previously developed analytical model and from an independent interferometric measurement.

  15. Diffraction patterns from multiple tilted laser apertures: numerical analysis

    NASA Astrophysics Data System (ADS)

    Kovalev, Anton V.; Polyakov, Vadim M.

    2016-03-01

    We propose a Rayleigh-Sommerfeld based method for numerical calculation of multiple tilted apertures near and far field diffraction patterns. Method is based on iterative procedure of fast Fourier transform based circular convolution of the initial field complex amplitudes distribution and impulse response function modified in order to account aperture and observation planes mutual tilt. The method is computationally efficient and has good accordance with the results of experimental diffraction patterns and can be applied for analysis of spatial noises occurring in master oscillator power amplifier laser systems. The example of diffraction simulation for a Phobos-Ground laser rangefinder amplifier is demonstrated.

  16. Optimum design of uncooled staring infrared camera

    NASA Astrophysics Data System (ADS)

    Li, Yingwen; Pan, Debin; Liu, Aidong; Geng, Anbing; Li, Yong; He, Jun

    2006-02-01

    Several models of target acquisition range prediction of the uncooled staring camera and their advantages are proposed in the paper. NVTherm is used to evaluate the modulation transfer function, minimum resolvable temperature difference and target acquisition range. The analysis result shows that the performance of the detector is the key factor to limit the performance of the uncooled staring camera. The target acquisition range of the uncooled infrared camera can be improved by increasing effective focus length (EFL) of optical component, decreasing its F/# or reducing the pixel pitch of the detector. The detection range of 1.09 km can be achieved under the condition of 75 mm EFL and F/0.8. When the EFL changes from 75mm to 150 mm under the condition of F/0.8 and 45μm pixel pitch, the detection range of 2.36 km, recognition range of 0.47 km and identification range of 0.24 km have been gotten. When the pixel pitch is reduced to 35μm, the detection range is 2.59 km. Furthermore, when 2 x 2 microscan is adopted in the camera design, then the pixel pitch will change from 35μm to 17.5μm. Although the infrared camera becomes an optical performance limited system, its performance improves a lot to get the detection range of 2.94 km. The field test shows that the detection range to a 1.7 m x 0.45 m target is 2.2 km under the condition of F/0.8, 150mm EFL and 45 μm pixel pitch, achieving good matches with the evaluation value of 2.36 km through NVTherm. An optimum uncooled infrared design is achieved using the NVTherm software which shortens the design cycle.

  17. Implementation of optimum solar electricity generating system

    SciTech Connect

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  18. Implementation of optimum solar electricity generating system

    NASA Astrophysics Data System (ADS)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  19. 'Magic Angle Precession'

    SciTech Connect

    Binder, Bernd

    2008-01-21

    An advanced and exact geometric description of nonlinear precession dynamics modeling very accurately natural and artificial couplings showing Lorentz symmetry is derived. In the linear description it is usually ignored that the geometric phase of relativistic motion couples back to the orbital motion providing for a non-linear recursive precession dynamics. The high coupling strength in the nonlinear case is found to be a gravitomagnetic charge proportional to the precession angle and angular velocity generated by geometric phases, which are induced by high-speed relativistic rotations and are relevant to propulsion technologies but also to basic interactions. In the quantum range some magic precession angles indicating strong coupling in a phase-locked chaotic system are identified, emerging from a discrete time dynamical system known as the cosine map showing bifurcations at special precession angles relevant to heavy nuclei stability. The 'Magic Angle Precession' (MAP) dynamics can be simulated and visualized by cones rolling in or on each other, where the apex and precession angles are indexed by spin, charge or precession quantum numbers, and corresponding magic angles. The most extreme relativistic warping and twisting effect is given by the Dirac spinor half spin constellation with 'Hyperdiamond' MAP, which resembles quark confinement.

  20. Optimum three-dimensional atmospheric entry from the analytical solution of Chapman's exact equations

    NASA Technical Reports Server (NTRS)

    Busemann, A.; Vinh, N. X.; Culp, R. D.

    1974-01-01

    The general solution for the optimum three-dimensional aerodynamic control of a lifting vehicle entering a planetary atmosphere is developed. A set of dimensionless variables, modified Chapman variables, is introduced. The resulting exact equations of motion, referred to as Chapman's exact equations, have the advantage that they are completely free of the physical characteristics of the vehicle. Furthermore, a completely general lift-drag relationship is used in the derivation. The results obtained apply to any type of vehicle of arbitrary weight, dimensions and shape, having an arbitrary drag polar, and entering any planetary atmosphere. The aerodynamic controls chosen are the lift coefficient and the bank angle. General optimum control laws for these controls are developed. Several earlier particular solutions are shown to be special cases of this general result. Results are valid for both free and constrained terminal position.

  1. Observation of the enhanced backscattering of light by the end of a tilted dielectric cylinder owing to the caustic merging transition.

    PubMed

    Marston, Philip L; Zhang, Yibing; Thiessen, David B

    2003-01-20

    The scattering of light by obliquely illuminated circular dielectric cylinders was previously demonstrated to be enhanced by a merger of Airy caustics at a critical tilt angle. [Appl. Opt. 37, 1534 (1998)]. A related enhancement is demonstrated here for backward and near-backward scattering for cylinders cut with a flat end perpendicular to the cylinder's axis. It is expected that merged caustics will enhance the backscattering by clouds of randomly oriented circular cylinders that have appropriately flat ends.

  2. Analysis of Head-tilt Strategy of Car Drivers and Its Application to Passenger's Posture Control Device

    NASA Astrophysics Data System (ADS)

    Fujisawa, Satoru; Wada, Takahiro; Konno, Hiroyuki; Doi, Shun'ichi

    The driver tilts his/her head to the direction of the curve center while the head movement of the passenger is opposite to the driver. Moreover, it is known that the driver does not get carsickness comparing with the passenger. Thus, we hypothesize that driver's head-tilt strategy has the effect to reduce motion sickness. So far, we proposed a mathematical model of the motion sickness incidence caused by the head movement in 3D space based on subjective vertical conflict theory. In this paper, we, thus, investigate motion sickness incidence of the head movements measured in the real car experiments using the proposed model. The results demonstrate that the head tilts against centrifugal acceleration have the effect to reduce motion sickness. Based on the results, we propose a novel posture control device for decreasing the passenger's head roll in curve driving. It is shown that the proposed device potentially has the effect to decrease the passenger's head roll angle, which is expected to reduce the motion sickness.

  3. Breaking the trade-off between thermal and electrical conductivities in the thermoelectric material of an artificially tilted multilayer

    NASA Astrophysics Data System (ADS)

    Sakai, Akihiro; Kanno, Tsutomu; Takahashi, Kouhei; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka; Abe, Hiroya

    2014-08-01

    Breaking the trade-off between thermoelectric (TE) parameters has long been demanded in order to highly enhance its performance. Here, we report the `trade-off-free' interdependence between thermal conductivity (κ) and resistivity (ρ) in a TE/metal tilted multilayer and significant enhancement of TE power generation based on the off-diagonal thermoelectric (ODTE) effect, which generates transverse electrical current in response to vertical thermal current. ρ and κ can be simultaneously decreased by setting charge flow along more-electrically conductive layer and thermal flow across less-thermally conductive perpendicular direction by decreasing the tilting angle. Moreover, introducing porosity in the metal layer enables to decrease in κ without changing ρ, because the macroscopic ρ and κ of the tilted multilayer is respectively governed by the properties of the TE material and the metal with large dissimilarity. The obtained results reveal new strategies for developing trade-off-free TE materials, which will stimulate practical use of TE conversion for waste-heat recovery.

  4. Breaking the trade-off between thermal and electrical conductivities in the thermoelectric material of an artificially tilted multilayer

    PubMed Central

    Sakai, Akihiro; Kanno, Tsutomu; Takahashi, Kouhei; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka; Abe, Hiroya

    2014-01-01

    Breaking the trade-off between thermoelectric (TE) parameters has long been demanded in order to highly enhance its performance. Here, we report the ‘trade-off-free’ interdependence between thermal conductivity (κ) and resistivity (ρ) in a TE/metal tilted multilayer and significant enhancement of TE power generation based on the off-diagonal thermoelectric (ODTE) effect, which generates transverse electrical current in response to vertical thermal current. ρ and κ can be simultaneously decreased by setting charge flow along more-electrically conductive layer and thermal flow across less-thermally conductive perpendicular direction by decreasing the tilting angle. Moreover, introducing porosity in the metal layer enables to decrease in κ without changing ρ, because the macroscopic ρ and κ of the tilted multilayer is respectively governed by the properties of the TE material and the metal with large dissimilarity. The obtained results reveal new strategies for developing trade-off-free TE materials, which will stimulate practical use of TE conversion for waste-heat recovery. PMID:25124989

  5. Breaking the trade-off between thermal and electrical conductivities in the thermoelectric material of an artificially tilted multilayer.

    PubMed

    Sakai, Akihiro; Kanno, Tsutomu; Takahashi, Kouhei; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka; Abe, Hiroya

    2014-08-15

    Breaking the trade-off between thermoelectric (TE) parameters has long been demanded in order to highly enhance its performance. Here, we report the 'trade-off-free' interdependence between thermal conductivity (κ) and resistivity (ρ) in a TE/metal tilted multilayer and significant enhancement of TE power generation based on the off-diagonal thermoelectric (ODTE) effect, which generates transverse electrical current in response to vertical thermal current. ρ and κ can be simultaneously decreased by setting charge flow along more-electrically conductive layer and thermal flow across less-thermally conductive perpendicular direction by decreasing the tilting angle. Moreover, introducing porosity in the metal layer enables to decrease in κ without changing ρ, because the macroscopic ρ and κ of the tilted multilayer is respectively governed by the properties of the TE material and the metal with large dissimilarity. The obtained results reveal new strategies for developing trade-off-free TE materials, which will stimulate practical use of TE conversion for waste-heat recovery.

  6. Measurement of intraocular pressure by both invasive and noninvasive techniques in rabbits exposed to head-down tilt.

    PubMed

    Setogawa, A; Kawai

    1998-02-01

    This study investigates changes in intraocular pressure (IOP) in rabbits during head-down tilt (HDT), which is commonly used as an experimental model to simulate microgravity. IOP was measured by the needle insertion technique (IOPNEEDLE) and Tono-pen tonometry (IOPTONO-PEN). Although the absolute value of the IOPTONO-PEN was significantly smaller than that of the IOPNEEDLE, a significant correlation (r = 0.99) was observed between them. A linear regression analysis yielded an equation as follows: IOPTONO-PEN = 0. 67 IOPNEEDLE - 0.67. Both the IOPNEEDLE and the IOPTONO-PEN changed depending on the tilt angle. Tilting from horizontal (0 degrees) to 75 degrees head-down increased the IOPNEEDLE and the IOPTONO-PEN by 7.3 +/- 0.8 (mean +/- SEM) mmHg and 4.4 +/- 1.3 mmHg. The IOPNEEDLE elevated from 13.1 +/- 1.3 to 16.9 +/- 1.0 mmHg immediately after the onset of 45 degrees HDT and then gradually declined. The value of the IOPNEEDLE during 8 h of HDT was significantly higher than the value in the control animals, which were kept at the horizontal prone position throughout the experiment. Similar findings were observed in the IOPTONO-PEN. These results suggest that the needle insertion technique and the Tono-pen tonometry are both useful for measuring IOP in rabbits.

  7. Tetrahedral tilting and ferroelectricity in Bi2AO5 (A=Si, Ge) from first principles calculations

    NASA Astrophysics Data System (ADS)

    Park, Janghee; Kim, Bog G.; Mori, Shigeo; Oguchi, Tamio

    2016-03-01

    The properties of a tetrahedron containing Bi2AO5 (A=Si, Ge) are examined using Ab initio calculations and symmetry mode analysis. Stabilization of the polar phase is observed in both compounds with a monoclinic Cc phase. In the monoclinic ground state, the tilting angle (ϕ1) of tetrahedron is 7.21° and 21.94° for the Si and Ge compound, respectively. The relationship between a primary order parameter and the tetrahedral tilting is identified and an analytical formula between them is proposed by analyzing the structure. The detailed layer-by-layer polarization calculations shows that the main polarization component originates from the tetrahedron tilting of the AO4 unit, and the analytical relationship between the primary order parameter and spontaneous polarization is also calculated. This B3LYP hybrid functional calculation provides a band gap of 4.44 eV and 4.18 eV for Bi2SiO5 and Bi2GeO5, respectively. The main difference between the two compounds is also analyzed based on the electronic structure and electron localization function analysis.

  8. A change in the radius of rotation of F1-ATPase indicates a tilting motion of the central shaft.

    PubMed

    Sugawa, Mitsuhiro; Okada, Kaoru A; Masaike, Tomoko; Nishizaka, Takayuki

    2011-11-01

    F(1)-ATPase is a water-soluble portion of F(o)F(1)-ATP synthase and rotary molecular motor that exhibits reversibility in chemical reactions. The rotational motion of the shaft subunit γ has been carefully scrutinized in previous studies, but a tilting motion of the shaft has never been explicitly postulated. Here we found a change in the radius of rotation of the probe attached to the shaft subunit γ between two different intermediate states in ATP hydrolysis: one waiting for ATP binding, and the other waiting for ATP hydrolysis and/or subsequent product release. Analysis of this radial difference indicates a ~4° outward tilting of the γ-subunit induced by ATP binding. The tilt angle is a new parameter, to our knowledge, representing the motion of the γ-subunit and provides a new constraint condition of the ATP-waiting conformation of F(1)-ATPase, which has not been determined as an atomic structure from x-ray crystallography.

  9. Breaking the trade-off between thermal and electrical conductivities in the thermoelectric material of an artificially tilted multilayer.

    PubMed

    Sakai, Akihiro; Kanno, Tsutomu; Takahashi, Kouhei; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka; Abe, Hiroya

    2014-01-01

    Breaking the trade-off between thermoelectric (TE) parameters has long been demanded in order to highly enhance its performance. Here, we report the 'trade-off-free' interdependence between thermal conductivity (κ) and resistivity (ρ) in a TE/metal tilted multilayer and significant enhancement of TE power generation based on the off-diagonal thermoelectric (ODTE) effect, which generates transverse electrical current in response to vertical thermal current. ρ and κ can be simultaneously decreased by setting charge flow along more-electrically conductive layer and thermal flow across less-thermally conductive perpendicular direction by decreasing the tilting angle. Moreover, introducing porosity in the metal layer enables to decrease in κ without changing ρ, because the macroscopic ρ and κ of the tilted multilayer is respectively governed by the properties of the TE material and the metal with large dissimilarity. The obtained results reveal new strategies for developing trade-off-free TE materials, which will stimulate practical use of TE conversion for waste-heat recovery. PMID:25124989

  10. Research on high precision equal-angle scanning method in rotary kiln temperature measurement system

    NASA Astrophysics Data System (ADS)

    Dai, Shaosheng; Guo, Zhongyuan; You, Changhui; Liu, Jinsong; Cheng, Yang; Tang, Huaming

    2016-05-01

    Aiming at traditional horizontal equal-angle scanning method's disadvantage of measurement error, a high precision equal-angle scanning method is proposed, the proposed method establishes a tilt scanning model by the following steps: introducing height variable, precisely calculating the viewing angle, building scanning model. The model is used to calculate scanning position on rotary kiln's surface, which helps to locate and track temperature variation. The experiment shows that the proposed method can effectively improve the precision of temperature spots' location on the rotary kiln surface.

  11. Optimum shape of a blunt forebody in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Ting, L.

    1989-01-01

    The optimum shape of a blunt forebody attached to a symmetric wedge or cone is determined. The length of the forebody, its semi-thickness or base radius, the nose radius and the radius of the fillet joining the forebody to the wedge or cone are specified. The optimum shape is composed of simple curves. Thus experimental models can be built readily to investigate the utilization of aerodynamic heating for boundary layer control. The optimum shape based on the modified Newtonian theory can also serve as the preliminary shape for the numerical solution of the optimum shape using the governing equations for a compressible inviscid or viscous flow.

  12. Uncertainties in Small-Angle Measurement Systems Used to Calibrate Angle Artifacts.

    PubMed

    Stone, Jack A; Amer, Mohamed; Faust, Bryon; Zimmerman, Jay

    2004-01-01

    We have studied a number of effects that can give rise to errors in small-angle measurement systems when they are used to calibrate artifacts such as optical polygons. Of these sources of uncertainty, the most difficult to quantify are errors associated with the measurement of imperfect, non-flat faces of the artifact, causing the instrument to misinterpret the average orientation of the surface. In an attempt to shed some light on these errors, we have compared autocollimator measurements to angle measurements made with a Fizeau phase-shifting interferometer. These two instruments have very different operating principles and implement different definitions of the orientation of a surface, but (surprisingly) we have not yet seen any clear differences between results obtained with the autocollimator and with the interferometer. The interferometer is in some respects an attractive alternative to an autocollimator for small-angle measurement; it implements an unambiguous and robust definition of surface orientation in terms of the tilt of a best-fit plane, and it is easier to quantify likely errors of the interferometer measurements than to evaluate autocollimator uncertainty.

  13. Uncertainties in Small-Angle Measurement Systems Used to Calibrate Angle Artifacts

    PubMed Central

    Stone, Jack A.; Amer, Mohamed; Faust, Bryon; Zimmerman, Jay

    2004-01-01

    We have studied a number of effects that can give rise to errors in small-angle measurement systems when they are used to calibrate artifacts such as optical polygons. Of these sources of uncertainty, the most difficult to quantify are errors associated with the measurement of imperfect, non-flat faces of the artifact, causing the instrument to misinterpret the average orientation of the surface. In an attempt to shed some light on these errors, we have compared autocollimator measurements to angle measurements made with a Fizeau phase-shifting interferometer. These two instruments have very different operating principles and implement different definitions of the orientation of a surface, but (surprisingly) we have not yet seen any clear differences between results obtained with the autocollimator and with the interferometer. The interferometer is in some respects an attractive alternative to an autocollimator for small-angle measurement; it implements an unambiguous and robust definition of surface orientation in terms of the tilt of a best-fit plane, and it is easier to quantify likely errors of the interferometer measurements than to evaluate autocollimator uncertainty. PMID:27366616

  14. Liquid-crystal prisms for tip-tilt adaptive optics.

    PubMed

    Love, G D; Major, J V; Purvis, A

    1994-08-01

    Results from an electrically addressed liquid-crystal cell producing continuous phase profiles are presented. The adaptive deflection of a beam of light for use in a tip-tilt adaptive optics system is demonstrated. We compare the optical performance of liquid-crystal prisms with experimental data on atmospheric seeing at the William Herschel Telescope.

  15. Liquid-crystal prisms for tip-tilt adaptive optics.

    PubMed

    Love, G D; Major, J V; Purvis, A

    1994-08-01

    Results from an electrically addressed liquid-crystal cell producing continuous phase profiles are presented. The adaptive deflection of a beam of light for use in a tip-tilt adaptive optics system is demonstrated. We compare the optical performance of liquid-crystal prisms with experimental data on atmospheric seeing at the William Herschel Telescope. PMID:19844566

  16. Correlation between length and tilt of lipid tails

    SciTech Connect

    Kopelevich, Dmitry I.; Nagle, John F.

    2015-10-21

    It is becoming recognized from simulations, and to a lesser extent from experiment, that the classical Helfrich-Canham membrane continuum mechanics model can be fruitfully enriched by the inclusion of molecular tilt, even in the fluid, chain disordered, biologically relevant phase of lipid bilayers. Enriched continuum theories then add a tilt modulus κ{sub θ} to accompany the well recognized bending modulus κ. Different enrichment theories largely agree for many properties, but it has been noticed that there is considerable disagreement in one prediction; one theory postulates that the average length of the hydrocarbon chain tails increases strongly with increasing tilt and another predicts no increase. Our analysis of an all-atom simulation favors the latter theory, but it also shows that the overall tail length decreases slightly with increasing tilt. We show that this deviation from continuum theory can be reconciled by consideration of the average shape of the tails, which is a descriptor not obviously includable in continuum theory.

  17. ELECTRIC FURNACES TILT AROUND A PIVOT UNDER THE SPOUT TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ELECTRIC FURNACES TILT AROUND A PIVOT UNDER THE SPOUT TO FILL BULL LADLES BELOW THE CHARGING DECK. THE REAR VIEW OF A POURING ELECTRIC FURNACE FROM THE CHARGING DECK IS SHOWN HERE. - Southern Ductile Casting Company, Melting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  18. Tilted axis rotation in odd-odd {sup 164}Tm

    SciTech Connect

    Reviol, W.; Riedinger, L.L.; Wang, X.Z.; Zhang, J.Y.

    1996-12-31

    Ten band structures are observed in {sup 164}Tm, among them sets of parallel and anti-parallel couplings of the proton and neutron spins. The Tilted Axis Cranking scheme is applied for the first time to an odd-odd nucleus in a prominent region of nuclear deformation.

  19. Fast auto-acquisition tomography tilt series by using HD video camera in ultra-high voltage electron microscope.

    PubMed

    Nishi, Ryuji; Cao, Meng; Kanaji, Atsuko; Nishida, Tomoki; Yoshida, Kiyokazu; Isakozawa, Shigeto

    2014-11-01

    series of 61 images within 30 minutes. Accuracy and repeatability were good enough to practical use (Figure 1). We successfully reduced the total acquisition time of a tomography tilt series in half than before.jmicro;63/suppl_1/i25/DFU066F1F1DFU066F1Fig. 1.Objective lens current change with a tilt angle during acquisition of tomography series (Sample: a rat hepatocyte, thickness: 2 m, magnification: 4k, acc. voltage: 2 MV). Tilt angle range is ±60 degree with 2 degree step angle. Two series were acquired in the same area. Both data were almost same and the deviation was smaller than the minimum step by manual, so auto-focus worked well. We also developed a computer-aided three dimensional (3D) visualization and analysis software for electron tomography "HawkC" which can sectionalize the 3D data semi-automatically[5,6]. If this auto-acquisition system is used with IMOD reconstruction software[7] and HawkC software, we will be able to do on-line UHVEM tomography. The system would help pathology examination in the future.This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, under a Grant-in-Aid for Scientific Research (Grant No. 23560024, 23560786), and SENTAN, Japan Science and Technology Agency, Japan.

  20. Peculiar velocity field: Constraining the tilt of the Universe

    SciTech Connect

    Ma Yinzhe; Gordon, Christopher; Feldman, Hume A.

    2011-05-15

    A large bulk flow, which is in tension with the Lambda cold dark matter ({Lambda}CDM) cosmological model, has been observed. In this paper, we provide a physically plausible explanation of this bulk flow, based on the assumption that some fraction of the observed dipole in the cosmic microwave background is due to an intrinsic fluctuation, so that the subtraction of the observed dipole leads to a mismatch between the cosmic microwave background defined rest frame and the matter rest frame. We investigate a model that takes into account the relative velocity (hereafter the tilted velocity) between the two frames, and develop a Bayesian statistic to explore the likelihood of this tilted velocity. By studying various independent peculiar velocity catalogs, we find that (1) the magnitude of the tilted velocity u is around 400 km/s, and its direction is close to what is found from previous bulk flow analyses; for most catalogs analyzed, u=0 is excluded at about the 2.5{sigma} level; (2) constraints on the magnitude of the tilted velocity can result in constraints on the duration of inflation, due to the fact that inflation can neither be too long (no dipole effect) nor too short (very large dipole effect); (3) under the assumption of a superhorizon isocurvature fluctuation, the constraints on the tilted velocity require that inflation lasts at least 6 e-folds longer (at the 95% confidence interval) than that required to solve the horizon problem. This opens a new window for testing inflation and models of the early universe from observations of large scale structure.

  1. Modeling Flow Past a Tilted Vena Cava Filter

    SciTech Connect

    Singer, M A; Wang, S L

    2009-06-29

    Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside a model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.

  2. Cross-Modal Transfer of the Tilt Aftereffect From Vision to Touch

    PubMed Central

    Krystallidou, Dafni

    2016-01-01

    Visual input powerfully modulates the dynamics of tactile orientation perception. This study investigated the transfer of the tilt aftereffect (TAE) from vision to somatosensation. In a visual tilt adaptation paradigm, participants were exposed to clockwise or anticlockwise visual tilt, followed by three brief tactile two-point stimuli delivered on their forehead. In a two-alternative forced choice task, participants had to indicate whether the haptic stimulus was tilted to the right or left. Repeated exposure to oriented visual gratings produced a tactile TAE, such that the subsequent tactile stimuli appeared tilted toward the opposite direction. To assess the origin of this effect, the experiment was repeated with the head tilted. Adaptation to a gravitationally tilted grating but with the head tilted so that the grating was retinally vertical induced a robust tactile aftereffect suggesting that the visuotactile TAE is due to spatiotopic rather than retinotopic adaptation. PMID:27757217

  3. TILTING TABLE AREA, PDP ROOM, LEVEL +27’, LOOKING SOUTHWEST, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TILTING TABLE AREA, PDP ROOM, LEVEL +27’, LOOKING SOUTHWEST, SHOWING TILTING TABLE, MARKED BY WHITE ELECTRICAL CORD - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  4. Optimum design of vortex generator elements using Kriging surrogate modelling and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Neelakantan, Rithwik; Balu, Raman; Saji, Abhinav

    Vortex Generators (VG's) are small angled plates located in a span wise fashion aft of the leading edge of an aircraft wing. They control airflow over the upper surface of the wing by creating vortices which energise the boundary layer. The parameters considered for the optimisation study of the VG's are its height, orientation angle and location along the chord in a low subsonic flow over a NACA0012 airfoil. The objective function to be maximised is the L/D ratio of the airfoil. The design data are generated using the commercially available ANSYS FLUENT software and are modelled using a Kriging based interpolator. This surrogate model is used along with a Generic Algorithm software to arrive at the optimum shape of the VG's. The results of this study will be confirmed with actual wind tunnel tests on scaled models.

  5. 50 CFR 600.310 - National Standard 1-Optimum Yield.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false National Standard 1-Optimum Yield. 600.310 Section 600.310 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS National Standards § 600.310 National Standard 1—Optimum Yield....

  6. 50 CFR 600.310 - National Standard 1-Optimum Yield.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false National Standard 1-Optimum Yield. 600.310 Section 600.310 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS National Standards § 600.310 National Standard 1—Optimum Yield....

  7. 50 CFR 600.310 - National Standard 1-Optimum Yield.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false National Standard 1-Optimum Yield. 600.310 Section 600.310 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS National Standards § 600.310 National Standard 1—Optimum Yield....

  8. 50 CFR 600.310 - National Standard 1-Optimum Yield.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false National Standard 1-Optimum Yield. 600.310 Section 600.310 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS National Standards § 600.310 National Standard 1—Optimum Yield....

  9. Casting and Angling.

    ERIC Educational Resources Information Center

    Smith, Julian W.

    As part of a series of books and pamphlets on outdoor education, this manual consists of easy-to-follow instructions for fishing activities dealing with casting and angling. The manual may be used as a part of the regular physical education program in schools and colleges or as a club activity for the accomplished weekend fisherman or the…

  10. An Iterative Angle Trisection

    ERIC Educational Resources Information Center

    Muench, Donald L.

    2007-01-01

    The problem of angle trisection continues to fascinate people even though it has long been known that it can't be done with straightedge and compass alone. However, for practical purposes, a good iterative procedure can get you as close as you want. In this note, we present such a procedure. Using only straightedge and compass, our procedure…

  11. Interferometric measurement of angles.

    PubMed

    Malacara, D; Harris, O

    1970-07-01

    A new interferometric device for measuring small angles or rotations with high accuracy is described. This instrument works by counting fringes formed by the rotation of a flat-parallel plate of glass illuminated with a collimated beam from a gas laser. Some possible applications are given.

  12. Multiple incidence angle SIR-B experiment over Argentina

    NASA Technical Reports Server (NTRS)

    Cimino, Jobea; Casey, Daren; Wall, Stephen; Brandani, Aldo; Domik, Gitta; Leberl, Franz

    1986-01-01

    The Shuttle Imaging Radar (SIR-B), the second synthetic aperture radar (SAR) to fly aboard a shuttle, was launched on October 5, 1984. One of the primary goals of the SIR-B experiment was to use multiple incidence angle radar images to distinguish different terrain types through the use of their characteristic backscatter curves. This goal was accomplished in several locations including the Chubut Province of southern Argentina. Four descending image acquisitions were collected providing a multiple incidence angle image set. The data were first used to assess stereo-radargrammetric techniques. A digital elevation model was produced using the optimum pair of multiple incidence angle images. This model was then used to determine the local incidence angle of each picture element to generate curves of relative brightness vs. incidence angle. Secondary image products were also generated using the multi-angle data. The results of this work indicate that: (1) various forest species and various structures of a single species may be discriminated using multiple incidence angle radar imagery, and (2) it is essential to consider the variation in backscatter due to a variable incidence angle when analyzing and comparing data collected at varying frequencies and polarizations.

  13. Kinetic small angle neutron scattering of the skyrmion lattice in MnSi

    NASA Astrophysics Data System (ADS)

    Mühlbauer, S.; Kindervater, J.; Adams, T.; Bauer, A.; Keiderling, U.; Pfleiderer, C.

    2016-07-01

    We report a kinetic small angle neutron scattering (SANS) study of the skyrmion lattice (SL) in MnSi. Induced by an oscillatory tilting of the magnetic field direction, the elasticity and relaxation of the SL along the magnetic field direction have been measured with microsecond resolution. For the excitation frequency of 325 {{Hz}} the SL begins to track the tilting motion of the applied magnetic field under tilting angles exceeding {α }{{c}}≳ 0.4^\\circ . Empirically the associated angular velocity of the tilting connects quantitatively with the critical charge carrier velocity of ∼ 0.1 {{mm}} {{{s}}}-1 under current driven spin transfer torques, for which the SL unpins. In addition, a pronounced temperature dependence of the skyrmion motion is attributed to the variation of the skyrmion stiffness. Taken together our study highlights the power of kinetic SANS as a new experimental tool to explore, in a rather general manner, the elasticity and impurity pinning of magnetic textures across a wide parameter space without parasitic signal interferences due to ohmic heating or Oersted magnetic fields.

  14. Optical mode engineering and high power density per facet length (>8.4 kW/cm) in tilted wave laser diodes

    NASA Astrophysics Data System (ADS)

    Ledentsov, N. N.; Shchukin, V. A.; Maximov, M. V.; Gordeev, N. Y.; Kaluzhniy, N. A.; Mintairov, S. A.; Payusov, A. S.; Shernyakov, Yu. M.

    2016-03-01

    Tilted Wave Lasers (TWLs) based on optically coupled thin active waveguide and thick passive waveguide offer an ultimate solution for thick-waveguide diode laser, preventing catastrophic optical mirror damage and thermal smile in laser bars, providing robust operation in external cavity modules thus enabling wavelength division multiplexing and further increase in brightness enabling direct applications of laser diodes in the mainstream material processing. We show that by proper engineering of the waveguide one can realize high performance laser diodes at different tilt angles of the vertical lobes. Two vertical lobes directed at various angles (namely, +/-27° or +/-9°) to the junction plane are experimentally realized by adjusting the compositions and the thicknesses of the active and the passive waveguide sections. The vertical far field of a TWL with the two +/-9° vertical beams allows above 95% of all the power to be concentrated within a vertical angle below 25°, the fact which is important for laser stack applications using conventional optical coupling schemes. The full width at half maximum of each beam of the value of 1.7° evidences diffraction- limited operation. The broad area (50 μm) TWL chips at the cavity length of 1.5 mm reveal a high differential efficiency ~90% and a current-source limited pulsed power >42W for as-cleaved TWL device. Thus the power per facet length in a laser bar in excess of 8.4 kW/cm can be realized. Further, an ultimate solution for the smallest tilt angle is that where the two vertical lobes merge forming a single lobe directed at the zero angle is proposed.

  15. A Different Angle on Perspective

    ERIC Educational Resources Information Center

    Frantz, Marc

    2012-01-01

    When a plane figure is photographed from different viewpoints, lengths and angles appear distorted. Hence it is often assumed that lengths, angles, protractors, and compasses have no place in projective geometry. Here we describe a sense in which certain angles are preserved by projective transformations. These angles can be constructed with…

  16. Angle Sense: A Valuable Connector.

    ERIC Educational Resources Information Center

    Rubenstein, Rheta N.; And Others

    1993-01-01

    Proposes angle sense as a fundamental connector between mathematical concepts for middle grade students. Introduces the use of pattern blocks and a goniometer, a tool to measure angles, to help students develop angle sense. Discusses connections between angle measurement and the concepts of rational numbers, circles, area, number theory,…

  17. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study

    NASA Astrophysics Data System (ADS)

    Xing, Hui; Dong, Xianglei; Wu, Hongjing; Hao, Guanhua; Wang, Jianyuan; Chen, Changle; Jin, Kexin

    2016-05-01

    We report the results of a phase-field study of degenerate seaweed to tilted dendrite transition and their growth dynamics during directional solidification of a binary alloy. Morphological selection maps in the planes of (G, Vp) and (ε4, Vp) show that lower pulling velocity, weaker anisotropic strength and higher thermal gradient can enhance the formation of the degenerate seaweed. The tip undercooling shows oscillations in seaweed growth, but it keeps at a constant value in dendritic growth. The M-S instability on the tips and the surface tension anisotropy of the solid-liquid interface are responsible for the formation of the degenerate seaweed. It is evidenced that the place where the interfacial instability occurs determines the morphological transition. The transient transition from degenerate seaweed to tilted dendrite shows that dendrites are dynamically preferred over seaweed. For the tilted dendritic arrays with a large tilted angle, primary spacing is investigated by comparing predicted results with the classical scaling power law, and the growth direction is found to be less sensitive to the pulling velocity and the primary spacing. Furthermore, the effect of the initial interface wavelength on the morphological transition is investigated to perform the history dependence of morphological selection.

  18. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study.

    PubMed

    Xing, Hui; Dong, Xianglei; Wu, Hongjing; Hao, Guanhua; Wang, Jianyuan; Chen, Changle; Jin, Kexin

    2016-05-23

    We report the results of a phase-field study of degenerate seaweed to tilted dendrite transition and their growth dynamics during directional solidification of a binary alloy. Morphological selection maps in the planes of (G, Vp) and (ε4, Vp) show that lower pulling velocity, weaker anisotropic strength and higher thermal gradient can enhance the formation of the degenerate seaweed. The tip undercooling shows oscillations in seaweed growth, but it keeps at a constant value in dendritic growth. The M-S instability on the tips and the surface tension anisotropy of the solid-liquid interface are responsible for the formation of the degenerate seaweed. It is evidenced that the place where the interfacial instability occurs determines the morphological transition. The transient transition from degenerate seaweed to tilted dendrite shows that dendrites are dynamically preferred over seaweed. For the tilted dendritic arrays with a large tilted angle, primary spacing is investigated by comparing predicted results with the classical scaling power law, and the growth direction is found to be less sensitive to the pulling velocity and the primary spacing. Furthermore, the effect of the initial interface wavelength on the morphological transition is investigated to perform the history dependence of morphological selection.

  19. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study.

    PubMed

    Xing, Hui; Dong, Xianglei; Wu, Hongjing; Hao, Guanhua; Wang, Jianyuan; Chen, Changle; Jin, Kexin

    2016-01-01

    We report the results of a phase-field study of degenerate seaweed to tilted dendrite transition and their growth dynamics during directional solidification of a binary alloy. Morphological selection maps in the planes of (G, Vp) and (ε4, Vp) show that lower pulling velocity, weaker anisotropic strength and higher thermal gradient can enhance the formation of the degenerate seaweed. The tip undercooling shows oscillations in seaweed growth, but it keeps at a constant value in dendritic growth. The M-S instability on the tips and the surface tension anisotropy of the solid-liquid interface are responsible for the formation of the degenerate seaweed. It is evidenced that the place where the interfacial instability occurs determines the morphological transition. The transient transition from degenerate seaweed to tilted dendrite shows that dendrites are dynamically preferred over seaweed. For the tilted dendritic arrays with a large tilted angle, primary spacing is investigated by comparing predicted results with the classical scaling power law, and the growth direction is found to be less sensitive to the pulling velocity and the primary spacing. Furthermore, the effect of the initial interface wavelength on the morphological transition is investigated to perform the history dependence of morphological selection. PMID:27210816

  20. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study

    PubMed Central

    Xing, Hui; Dong, Xianglei; Wu, Hongjing; Hao, Guanhua; Wang, Jianyuan; Chen, Changle; Jin, Kexin

    2016-01-01

    We report the results of a phase-field study of degenerate seaweed to tilted dendrite transition and their growth dynamics during directional solidification of a binary alloy. Morphological selection maps in the planes of (G, Vp) and (ε4, Vp) show that lower pulling velocity, weaker anisotropic strength and higher thermal gradient can enhance the formation of the degenerate seaweed. The tip undercooling shows oscillations in seaweed growth, but it keeps at a constant value in dendritic growth. The M-S instability on the tips and the surface tension anisotropy of the solid-liquid interface are responsible for the formation of the degenerate seaweed. It is evidenced that the place where the interfacial instability occurs determines the morphological transition. The transient transition from degenerate seaweed to tilted dendrite shows that dendrites are dynamically preferred over seaweed. For the tilted dendritic arrays with a large tilted angle, primary spacing is investigated by comparing predicted results with the classical scaling power law, and the growth direction is found to be less sensitive to the pulling velocity and the primary spacing. Furthermore, the effect of the initial interface wavelength on the morphological transition is investigated to perform the history dependence of morphological selection. PMID:27210816