Science.gov

Sample records for optimum tilt angle

  1. Modeling Spatio-Temporal Dynamics of Optimum Tilt Angles for Solar Collectors in Turkey

    PubMed Central

    Ertekin, Can; Evrendilek, Fatih; Kulcu, Recep

    2008-01-01

    Quantifying spatial and temporal variations in optimal tilt angle of a solar collector relative to a horizontal position assists in maximizing its performance for energy collection depending on changes in time and space. In this study, optimal tilt angles were quantified for solar collectors based on the monthly global and diffuse solar radiation on a horizontal surface across Turkey. The dataset of monthly average daily global solar radiation was obtained from 158 places, and monthly diffuse radiation data were estimated using an empirical model in the related literature. Our results showed that high tilt angles during the autumn (September to November) and winter (December to February) and low tilt angles during the summer (March to August) enabled the solar collector surface to absorb the maximum amount of solar radiation. Monthly optimum tilt angles were estimated devising a sinusoidal function of latitude and day of the year, and their validation resulted in a high R2 value of 98.8%, with root mean square error (RMSE) of 2.06°. PMID:27879857

  2. Study on the optimum tilted angle of solar panels in Hainan tropical photovoltaic facility agricultural system

    NASA Astrophysics Data System (ADS)

    Wang, Jingxuan; Ge, Zhiwu; Yang, Xiaoyan; Ye, Chunhua; Lin, Yanxia

    2017-04-01

    Photovoltaic facility agriculture system can effectively alleviate the contradiction between limited land and Photovoltaic power generation. It’s flexible to create suitable environment for crop growth, and generate electricity over the same land at the same time. It’s necessary to set appropriate solar panel angle to get more solar energy. Through detailed analysis and comparison, we chose the Hay’s model as solar radiation model. Based on the official meteorological data got from Haikou Meteorological Bureau, and by comparing the amount of radiation obtained at different tilted angles per month, the optimal placement angle of PV panels at different seasons in Haikou was obtained through calculation, and the optimal placement angle from April to October was also obtained. Through optimized angle and arrangement of solar photovoltaic panels, we can get greater power efficiency.

  3. Optimum Tilt Angle of Flow Guide in Steam Turbine Exhaust Hood Considering the Effect of Last Stage Flow Field

    NASA Astrophysics Data System (ADS)

    CAO, Lihua; LIN, Aqiang; LI, Yong; XIAO, Bin

    2017-07-01

    Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam turbine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal design of its structure without consideration of the wet steam condensing flow and the exhaust hood coupled with the front and rear parts. To better understand the aerodynamic performance influenced by the tilt angle of flow guide inside a diffuser, taking a 600 MW steam turbine as an example, a numerical simulator CFX is adopted to solve compressible three-dimensional (3D) Reynolds time-averaged N-S equations and standard k- ɛ turbulence model. And the exhaust hood flow field influenced by different tilt angles of flow guide is investigated with consideration of the wet steam condensing flow and the exhaust hood coupled with the last stage blades and the condenser throat. The result shows that the total pressure loss coefficient and the static pressure recovery coefficient of exhaust hood change regularly and monotonously with the gradual increase of tilt angle of flow guide. When the tilt angle of flow guide is within the range of 30° to 40°, the static pressure recovery coefficient is in the range of 15.27% to 17.03% and the total pressure loss coefficient drops to approximately 51%, the aerodynamic performance of exhaust hood is significantly improved. And the effective enthalpy drop in steam turbine increases by 0.228% to 0.274%. It is feasible to obtain a reasonable title angle of flow guide by the method of coupling the last stage and the condenser throat to exhaust hood in combination of the wet steam model, which provides a practical guidance to flow guide transformation and optimal design in exhaust hood.

  4. Optimum Tilt Angle of Flow Guide in Steam Turbine Exhaust Hood Considering the Effect of Last Stage Flow Field

    NASA Astrophysics Data System (ADS)

    CAO, Lihua; LIN, Aqiang; LI, Yong; XIAO, Bin

    2017-03-01

    Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam turbine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal design of its structure without consideration of the wet steam condensing flow and the exhaust hood coupled with the front and rear parts. To better understand the aerodynamic performance influenced by the tilt angle of flow guide inside a diffuser, taking a 600 MW steam turbine as an example, a numerical simulator CFX is adopted to solve compressible three-dimensional (3D) Reynolds time-averaged N-S equations and standard k-ɛ turbulence model. And the exhaust hood flow field influenced by different tilt angles of flow guide is investigated with consideration of the wet steam condensing flow and the exhaust hood coupled with the last stage blades and the condenser throat. The result shows that the total pressure loss coefficient and the static pressure recovery coefficient of exhaust hood change regularly and monotonously with the gradual increase of tilt angle of flow guide. When the tilt angle of flow guide is within the range of 30° to 40°, the static pressure recovery coefficient is in the range of 15.27% to 17.03% and the total pressure loss coefficient drops to approximately 51%, the aerodynamic performance of exhaust hood is significantly improved. And the effective enthalpy drop in steam turbine increases by 0.228% to 0.274%. It is feasible to obtain a reasonable title angle of flow guide by the method of coupling the last stage and the condenser throat to exhaust hood in combination of the wet steam model, which provides a practical guidance to flow guide transformation and optimal design in exhaust hood.

  5. Optimum orientation of tilting solar concentrator arrays

    NASA Astrophysics Data System (ADS)

    Harting, E.; Giutronich, J. E.

    1984-01-01

    This note shows that there is a considerable degree of freedom in selecting the orientation of a field of tilting solar concentrators, without changing the path of the sun across the concentrator acceptance angle, and hence without affecting performance. The orientation of a particular array may be chosen to more closely match the natural terrain, thus reducing site preparation costs. Further, a proper choice may improve overall performance in situations where the average daily insolation is asymmetrical about local noon.

  6. Behavior of Tilted Angle Shear Connectors

    PubMed Central

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  7. Rotation Angle for the Optimum Tracking of One-Axis Trackers

    SciTech Connect

    Marion, W. F.; Dobos, A. P.

    2013-07-01

    An equation for the rotation angle for optimum tracking of one-axis trackers is derived along with equations giving the relationships between the rotation angle and the surface tilt and azimuth angles. These equations are useful for improved modeling of the solar radiation available to a collector with tracking constraints and for determining the appropriate motor revolutions for optimum tracking.

  8. Calibration method of tilt and azimuth angles for alignment of TEM tomographic tilt series

    NASA Astrophysics Data System (ADS)

    Hayashida, Misa; Terauchi, Shinya; Fujimoto, Toshiyuki

    2011-10-01

    This paper describes the calibration method of the tilt and azimuth angles of specimen using a digital protractor and a laser autocollimator for alignment of electron tomography. It also suggests an easy method to check whether the specimen is tilted by 180.0°, and whether the azimuth angle is 0.0°; the method involves the use of two images of a rod-shaped specimen collected before and after a 180.0° tilt. The method is based on the assumption that these images are symmetric about the tilt axis when the azimuth angle is 0.0°. In addition, we used an experiment to demonstrate the effect of the incorrect angles on reconstructed images and simulated the image quality against distance away from tilt axis.

  9. LONG-TERM MEASUREMENTS OF SUNSPOT MAGNETIC TILT ANGLES

    SciTech Connect

    Li Jing; Ulrich, Roger K.

    2012-10-20

    Tilt angles of close to 30,600 sunspots are determined using Mount Wilson daily averaged magnetograms taken from 1974 to 2012, and SOHO/MDI magnetograms taken from 1996 to 2010. Within a cycle, more than 90% of sunspots have a normal polarity alignment along the east-west direction following Hale's law. The median tilts increase with increasing latitude (Joy's law) at a rate of {approx}0.{sup 0}5 per degree of latitude. Tilt angles of spots appear largely invariant with respect to time at a given latitude, but they decrease by {approx}0.{sup 0}9 per year on average, a trend that largely reflects Joy's law following the butterfly diagram. We find an asymmetry between the hemispheres in the mean tilt angles. On average, the tilts are greater in the Southern than in the Northern Hemisphere for all latitude zones, and the differences increase with increasing latitude.

  10. Photovoltaic Modules: Effect of Tilt Angle on Soiling

    NASA Astrophysics Data System (ADS)

    Cano, Jose

    2011-12-01

    Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted environments, over time, they will collect grime and dust. There are also limited field data studies about soiling losses on PV modules. The study showed how important it is to investigate the effect of tilt angle on soiling. The study includes two sets of mini-modules. Each set has 9 PV modules tilted at 0, 5, 10, 15, 20, 23, 30, 33 and 40°. The first set called "Cleaned" was cleaned every other day. The second set called "Soiled" was never cleaned after the first day. The short circuit current, a measure of irradiance, and module temperature was monitored and recorded every two minutes over three months (January-March 2011). The data were analyzed to investigate the effect of tilt angle on daily and monthly soiling, and hence transmitted solar insolation and energy production by PV modules. The study shows that during the period of January through March 2011 there was an average loss due to soiling of approximately 2.02% for 0° tilt angle. Modules at tilt angles 23° and 33° also have some insolation losses but do not come close to the module at 0° tilt angle. Tilt angle 23° has approximately 1.05% monthly insolation loss, and 33° tilt angle has an insolation loss of approximately 0.96%. The soiling effect is present at any tilt angle, but the magnitude is evident: the flatter the solar module is placed the more energy it will lose.

  11. Automated small tilt-angle measurement using Lau interferometry

    SciTech Connect

    Prakash, Shashi; Singh, Sumitra; Rana, Santosh

    2005-10-01

    A technique for a tilt-angle measurement of reflecting objects based on the Lau interferometry coupled with the moire readout has been proposed. A white-light incoherent source illuminates a set of two gratings, resulting in the generation of the Fresnel image due to the Lau effect. The Fresnel image is projected onto a reflecting object. The image reflected from the object is superimposed onto an identical grating, which results in the formation of a moire fringe pattern. The inclination angle of moire fringes is a function of tilt angle of the object. Theory and experimental arrangement of the proposed technique is presented and results of the investigation are reported.

  12. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong

    2015-10-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  13. On the determination of fiber tilt angles in fiber diffraction.

    PubMed

    Stribeck, Norbert

    2009-01-01

    The common digital method that is used to eliminate the effect of fiber tilt from fiber diffraction patterns is based on an approximation given by Franklin & Gosling [Acta Cryst. (1953), 6, 678-685]. The estimate of the tilt angle is iteratively optimized in the so-called ;Fraser correction'. Building on the fundamental work of Polanyi [Z. Phys. (1921), 7, 149-180], the exact solution is presented.

  14. Optimum take-off angle in the long jump.

    PubMed

    Linthorne, Nicholas P; Guzman, Maurice S; Bridgett, Lisa A

    2005-07-01

    In this study, we found that the optimum take-off angle for a long jumper may be predicted by combining the equation for the range of a projectile in free flight with the measured relations between take-off speed, take-off height and take-off angle for the athlete. The prediction method was evaluated using video measurements of three experienced male long jumpers who performed maximum-effort jumps over a wide range of take-off angles. To produce low take-off angles the athletes used a long and fast run-up, whereas higher take-off angles were produced using a progressively shorter and slower run-up. For all three athletes, the take-off speed decreased and the take-off height increased as the athlete jumped with a higher take-off angle. The calculated optimum take-off angles were in good agreement with the athletes' competition take-off angles.

  15. Tilt angle control of nanocolumns grown by glancing angle sputtering at variable argon pressures

    SciTech Connect

    Garcia-Martin, J. M.; Cebollada, A.; Alvarez, R.; Romero-Gomez, P.; Palmero, A.

    2010-10-25

    We show that the tilt angle of nanostructures obtained by glancing angle sputtering is finely tuned by selecting the adequate argon pressure. At low pressures, a ballistic deposition regime dominates, yielding high directional atoms that form tilted nanocolumns. High pressures lead to a diffusive regime which gives rise to vertical columnar growth. Monte Carlo simulations reproduce the experimental results indicating that the loss of directionality of the sputtered particles in the gas phase, together with the self-shadowing mechanism at the surface, are the main processes responsible for the development of the columns.

  16. The Aurora at Quiet Magnetospheric Conditions: Repeatability and Dipole Tilt Angle Dependence

    DTIC Science & Technology

    1993-03-01

    A tial to variation of the dipole tilt angle. Wu et al. [1991] images of the aurora borealis obtained by Polar BEAR at studied the substorm westward... Aurora at Quiet Magnetospheric Conditions: SRepeatability and Dipole Tilt Angle Dependence PE 62101F _PR 4643 6. AUTHCR(S) TA 11 I. Oznovich*, R.W...tilt angle at quiet magnetospheric conditions? In order to address these questions, northern hemisphere images of the aurora at 1356 A, obtained by

  17. Effect of polymer concentration on stabilized large-tilt-angle flexoelectro-optic switching

    NASA Astrophysics Data System (ADS)

    Broughton, B. J.; Clarke, M. J.; Morris, S. M.; Blatch, A. E.; Coles, H. J.

    2006-01-01

    In this letter, the uniform lying helix (ULH) liquid crystal texture, required for the flexoelectro-optic effect, is polymer stabilized by the addition of a small percentage of reactive mesogen to a high-tilt-angle (φ>60°) bimesogenic chiral nematic host. The electro-optic response is measured for a range of reactive mesogen concentration mixtures, and compared to the large-tilt-angle switch of the pure chiral nematic mixture. The optimum concentration of reactive mesogen, which is found to provide ample stabilization of the texture with minimal impact on the electro-optic response, is found to be approximately 3%. Our results indicate that polymer stabilization of the ULH texture using a very low concentration of reactive mesogen is a reliable way of ruggedizing flexoelectro-optic devices without interfering significantly with the electro-optics of the effect, negating the need for complicated surface alignment patterns or surface-only polymerization. The polymer stabilization is shown to reduce the temperature dependence of the flexoelectro-optic response due to ``pinning'' of the chiral nematic helical pitch. This is a restriction of the characteristic thermochromic behavior of the chiral nematic. Furthermore, selection of the temperature at which the sample is ultraviolet cured allows the tilt angle to be optimized for the entire chiral nematic temperature range. The response time, however, remains more sensitive to operating temperature than curing temperature. This allows the sample to be cured at low temperature and operated at high temperature, providing simultaneous optimization of these two previously antagonistic performance aspects.

  18. Tilt angle dependence of the modulated interference effects in photo-elastic modulators

    NASA Astrophysics Data System (ADS)

    Talukder, Md. Abdul Ahad; Geerts, Wilhelmus J.

    2017-05-01

    The effect of the PEM tilt angle and incident polarization on the PEM interference is studied for a single axis photo-elastic modulator. The dc, 1ω , and 2ω components of the detector signal vary periodically as a function of PEM tilt angle. Although it is possible to adjust the PEM tilt angle to minimize the 1ω or 2ω detector signal at small tilt angles, it is not possible to null both of them simultaneously. For the case where no analyzer is used, the ac detector signals can be minimized simultaneously by adjusting the polarization angle of the light incident on the PEM and the PEM tilt angle. Direct observations of the detector signal indicate that the effects of refraction index and thickness variations are opposite consistent with a lower polarizability for compressive strain of the modulator.

  19. Research in Varying Burner Tilt Angle to Reduce Rear Pass Temperature in Coal Fired Boiler

    NASA Astrophysics Data System (ADS)

    Thrangaraju, Savithry K.; Munisamy, Kannan M.; Baskaran, Saravanan

    2017-04-01

    This research shows the investigation conducted on one of techniques that is used in Manjung 700 MW tangentially fired coal power plant. The investigation conducted in this research is finding out the right tilt angle for the burners in the boiler that causes an efficient temperature distribution and combustion gas flow pattern in the boiler especially at the rear pass section. The main outcome of the project is to determine the right tilt angle for the burner to create an efficient temperature distribution and combustion gas flow pattern that able to increase the efficiency of the boiler. The investigation is carried out by using Computational Fluid Dynamics method to obtain the results by varying the burner tilt angle. The boiler model is drawn by using designing software which is called Solid Works and Fluent from Computational Fluid Dynamics is used to conduct the analysis on the boiler model. The analysis is to imitate the real combustion process in the real Manjung 700 MW boiler. The expected results are to determine the right burner tilt angle with a computational fluid analysis by obtaining the temperature distribution and combustion gas flow pattern for each of the three angles set for the burner tilt angle in FLUENT software. Three burner tilt angles are selected which are burner tilt angle at (0°) as test case 1, burner tilt angle at (+10°) as test case 2 and burner tilt angle at (-10°) as test case 3. These entire three cases were run in CFD software and the results of temperature distribution and velocity vector were obtained to find out the changes on the three cases at the furnace and rear pass section of the boiler. The results are being compared in analysis part by plotting graphs to determine the right tilting angle that reduces the rear pass temperature.

  20. Sunspot group tilt angles and the strength of the solar cycle

    NASA Astrophysics Data System (ADS)

    Dasi-Espuig, M.; Solanki, S. K.; Krivova, N. A.; Cameron, R.; Peñuela, T.

    2010-07-01

    Context. It is well known that the tilt angles of active regions increase with their latitude (Joy's law). It has never been checked before, however, whether the average tilt angles change from one cycle to the next. Flux transport models show the importance of tilt angles for the reversal and build up of magnetic flux at the poles, which is in turn correlated to the strength of the next cycle. Aims: Here we analyse time series of tilt angle measurements and look for a possible relationship of the tilt angles with other solar cycle parameters, in order to glean information on the solar dynamo and to estimate their potential for predicting solar activity. Methods: We employed tilt angle data from Mount Wilson and Kodaikanal observatories covering solar cycles 15 to 21. We analyse the latitudinal distribution of the tilt angles (Joy's law), their variation from cycle to cycle, and their relationship to other solar cycle parameters, such as the strength (or total area covered by sunspots in a cycle), amplitude, and length. Results: The two main results of our analysis follow. 1. We find an anti-correlation between the mean normalised tilt angle of a given cycle and the strength (or amplitude) of that cycle, with a correlation coefficient of rc = -0.95 (99.9% confidence level) and rc = -0.93 (99.76% confidence level) for Mount Wilson and Kodaikanal data, respectively. 2. The product of the cycle's averaged tilt angle and the strength of the same cycle displays a significant correlation with the strength of the next cycle (rc = 0.65 at 89% confidence level and rc = 0.70 at 92% confidence level for Mount Wilson and Kodaikanal data, respectively). An even better correlation is obtained between the source term of the poloidal flux in Babcock-Leighton-type dynamos (which contains the tilt angle) and the amplitude of the next cycle. Further we confirm the linear relationship (Joy's law) between the tilt angle and latitude with slopes of 0.26 and 0.28 for Mount Wilson and

  1. Thermal performance of a selected heat pipe at different tilt angles

    NASA Astrophysics Data System (ADS)

    Raghuram, Jasti; Phani Kumar, K. V. N. K.; Khiran, G. V.; Snehith, K.; Bhanu Prakash, S.

    2017-08-01

    An attempt is made to design, fabricate and test a copper heat pipe with 12 mm diameter, 300mm length and thickness of 1mm with a heat input of 7.29W. Experiments were conducted with and without working fluid for different inclinations to assess the thermal performance of heat pipe. The working fluids chosen for the study are acetone and distilled water and are compared. The thermal performance of the heat pipe was quantified in terms of thermal resistance and overall heat transfer coefficient by measuring temperature distribution across the heat pipe. The heat pipe was aligned for different inclinations and an optimum tilt angle was found experimentally, validated the same with simulation result obtained by computational fluid dynamics analysis and also with a reference paper. The copper heat pipe is found to be effective when acetone is used as working fluid. The optimum inclination angle of heat pipe for maximum rate of heat transfer is found to be 60° for both the working fluids tested. Even the cost of the heat pipe fabricated is very less compared to the commercial heat pipes available in the market.

  2. Identifying the tilt angle and correcting the orbital angular momentum spectrum dispersion of misaligned light beam.

    PubMed

    Zhao, Peng; Li, Shikang; Wang, Yu; Feng, Xue; Kaiyu, Cui; Fang, Liu; Zhang, Wei; Huang, Yidong

    2017-08-11

    The axis tilt of light beam in optical system would introduce the dispersion of orbital angular momentum (OAM) spectrum. To deal with it, a two-step method is proposed and demonstrated. First, the tilt angle of optical axis is identified with a deduced relation between the tilt angle and the variation of OAM topological charges with different reference axes, which is obtained with the help of a charge coupled device (CCD) camera. In our experiments, the precision of measured tilt angle is about 10(-4) rad with topological charges of -3~3. With the measured angle value, the additional phase delay due to axis tilt can be calculated so that the dispersion of OAM spectrum can be corrected with a simple formula while the optical axis is not aligned. The experimental results indicate that the original OAM spectrum has been successfully extracted for not only the pure state but also the superposed OAM states.

  3. Cell separation using tilted-angle standing surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-09-09

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.

  4. Sun angles and shading analysis for surfaces at any tilt or azimuth

    SciTech Connect

    Sharp, K.

    1981-01-01

    The solution of the geometric relationships pertinent to an analysis of the shading of a surface at any tilt or azimuth is presented. The approach taken was to use a rotational matrix to convert the solar position relative to the earth to solar position relative to the tilted surface. The derived sun angles are the three components of the angle of incidence of beam radiation in an orthogonal cartesian coordinate system relative to the normal to the tilted surface. Shading factors are developed from these angles for overhangs and side fins of restricted geometry. The algorithms are especially suited to programmable calculator use.

  5. Numerical study of the most stable contact angle of drops on tilted surfaces.

    PubMed

    White, J A; Santos, M J; Rodríguez-Valverde, M A; Velasco, S

    2015-05-19

    We present results for the most stable contact angle using a numerical implementation of the tilting plate method of Montes et al. (Montes Ruiz-Cabello, F. J.; Rodriguez-Valverde, M. A.; Cabrerizo-Vilchez, M. Soft Matter 2011, 7, 10457-10461). Comparison with the experimental results is made, obtaining a good agreement in most situations. In addition, the evolution of the contact angles of a tilted drop with a fixed circular line is analyzed. This analysis allows one to theoretically predict the most stable contact angle for tilted drops.

  6. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    SciTech Connect

    McClintock, B. H.; Norton, A. A.; Li, J. E-mail: aanorton@stanford.edu

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.

  7. The dipole tilt angle dependence of the bow shock for southward IMF: MHD results

    NASA Astrophysics Data System (ADS)

    Wang, M.; Lu, J. Y.; Yuan, H. Z.; Kabin, K.; Liu, Z.-Q.; Zhao, M. X.; Li, G.

    2015-02-01

    The location and shape of the Earth's bow shock depend on the properties of the upstream solar wind, as well as the size and shape of the downstream magnetopause. Many studies have suggested that the influence of the dipole tilt angle on the magnetopause is significant, especially at the high-latitude region, however, to date there is no bow shock model which depends on the dipole tilt angle. Using a physics-based global magnetohydrodynamic (MHD) model, the Space Weather Modeling Framework (SWMF), we investigate the effect of the dipole tilt angle on the location and shape of the bow shock, and our results show that (1) the subsolar standoff distance and the north-south asymmetry of bow shock increase with the increasing dipole tilt angle; (2) with the dipole tilt angle positively increasing, the flaring angle of the bow shock increases in the northern hemisphere but keeps almost unchanged in the southern hemisphere, and the rotational asymmetry slightly decreases in the northern hemisphere and rapidly decreases in the southern hemisphere; and (3) the influence of dipole tilt angle on the shape of the bow shock is north-south symmetric.

  8. A novel method of measuring spatial rotation angle using MEMS tilt sensors

    NASA Astrophysics Data System (ADS)

    Cao, Jian’an; Zhu, Xin; Wu, Hao; Zhang, Leping

    2017-10-01

    This paper presents a novel method of measuring spatial rotation angle with a dual-axis micro-electro-mechanical systems tilt sensor. When the sensor is randomly mounted on the surface of the rotating object, there are three unpredictable and unknown mounting position parameters: α, the sensor’s swing angle on the measuring plane; β, the angle between the rotation axis and the horizontal plane; and γ, the angle between the measuring plane and the rotation axis. Thus, the sensor’s spatial rotation model is established to describe the relationship between the measuring axis, rotation axis, and horizontal plane, and the corresponding analytical equations are derived. Furthermore, to eliminate the deviation caused by the uncertain direction of the rotation axis, an extra perpendicularly mounted, single-axis tilt sensor is combined with the dual-axis tilt sensor, forming a three-axis tilt sensor. Then, by measuring the sensors’ three tilts and solving the model’s equations, the object’s spatial rotation angle is obtained. Finally, experimental results show that the developed tilt sensor is capable of measuring spatial rotation angle in the range of  ±180° with an accuracy of 0.2° if the angle between the rotation axis and the horizontal plane is less than 75°.

  9. Sunspot areas and tilt angles for solar cycles 7-10

    NASA Astrophysics Data System (ADS)

    Senthamizh Pavai, V.; Arlt, R.; Dasi-Espuig, M.; Krivova, N. A.; Solanki, S. K.

    2015-12-01

    Aims: Extending the knowledge about the properties of solar cycles into the past is essential for understanding the solar dynamo. This paper aims to estimate areas of sunspots observed by Schwabe in 1825-1867 and to calculate the tilt angles of sunspot groups. Methods: The sunspot sizes in Schwabe's drawings are not to scale and need to be converted into physical sunspot areas. We employed a statistical approach assuming that the area distribution of sunspots was the same in the 19th century as it was in the 20th century. Results: Umbral areas for about 130 000 sunspots observed by Schwabe were obtained, as well as the tilt angles of sunspot groups assuming them to be bipolar. There is, of course, no polarity information in the observations. The annually averaged sunspot areas correlate reasonably with sunspot number. We derived an average tilt angle by attempting to exclude unipolar groups with a minimum separation of the two alleged polarities and an outlier rejection method which follows the evolution of each group and detects the moment it turns unipolar at its decay. As a result, the tilt angles, although displaying considerable scatter, average to 5̊.85 ± 0, with the leading polarity located closer to the equator, in good agreement with tilt angles obtained from 20th century data sets. Sources of uncertainties in the tilt angle determination are discussed and need to be addressed whenever different data sets are combined. The sunspot area and tilt angle data are provided at the CDS. The sunspot area and tilt angle data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A73

  10. Optimum Projection Angle for Attaining Maximum Distance in a Soccer Punt Kick

    PubMed Central

    Linthorne, Nicholas P.; Patel, Dipesh S.

    2011-01-01

    To produce the greatest horizontal distance in a punt kick the ball must be projected at an appropriate angle. Here, we investigated the optimum projection angle that maximises the distance attained in a punt kick by a soccer goalkeeper. Two male players performed many maximum-effort kicks using projection angles of between 10° and 90°. The kicks were recorded by a video camera at 100 Hz and a 2 D biomechanical analysis was conducted to obtain measures of the projection velocity, projection angle, projection height, ball spin rate, and foot velocity at impact. The player’s optimum projection angle was calculated by substituting mathematical equations for the relationships between the projection variables into the equations for the aerodynamic flight of a soccer ball. The calculated optimum projection angles were in agreement with the player’s preferred projection angles (40° and 44°). In projectile sports even a small dependence of projection velocity on projection angle is sufficient to produce a substantial shift in the optimum projection angle away from 45°. In the punt kicks studied here, the optimum projection angle was close to 45° because the projection velocity of the ball remained almost constant across all projection angles. This result is in contrast to throwing and jumping for maximum distance, where the projection velocity the athlete is able to achieve decreases substantially with increasing projection angle and so the optimum projection angle is well below 45°. Key points The optimum projection angle that maximizes the distance of a punt kick by a soccer goalkeeper is about 45°. The optimum projection angle is close to 45° because the projection velocity of the ball is almost the same at all projection angles. This result is in contrast to throwing and jumping for maximum distance, where the optimum projection angle is well below 45° because the projection velocity the athlete is able to achieve decreases substantially with increasing

  11. Optimum Projection Angle for Attaining Maximum Distance in a Rugby Place Kick

    PubMed Central

    Linthorne, Nicholas P.; Stokes, Thomas G.

    2014-01-01

    This study investigated the effect of projection angle on the distance attained in a rugby place kick. A male rugby player performed 49 maximum-effort kicks using projection angles of between 20 and 50°. The kicks were recorded by a video camera at 50 Hz and a 2 D biomechanical analysis was conducted to obtain measures of the projection velocity and projection angle of the ball. The player’s optimum projection angle was calculated by substituting a mathematical expression for the relationship between projection velocity and projection angle into the equations for the aerodynamic flight of a rugby ball. We found that the player’s calculated optimum projection angle (30.6°, 95% confidence limits ± 1.9°) was in close agreement with his preferred projection angle (mean value 30.8°, 95% confidence limits ± 2.1°). The player’s calculated optimum projection angle was also similar to projection angles previously reported for skilled rugby players. The optimum projection angle in a rugby place kick is considerably less than 45° because the projection velocity that a player can produce decreases substantially as projection angle is increased. Aerodynamic forces and the requirement to clear the crossbar have little effect on the optimum projection angle. Key Points The optimum projection angle in a rugby place kick is about 30°. The optimum projection angle is considerably less than 45° because the projection velocity that a player can produce decreases substantially as projection angle is increased. Aerodynamic forces and the requirement to clear the crossbar have little effect on the optimum projection angle. PMID:24570626

  12. Comparison of Debrecen and Mount Wilson/Kodaikanal sunspot group tilt angles and the Joy's law

    NASA Astrophysics Data System (ADS)

    Baranyi, T.

    2015-02-01

    The study of active region tilt angles and their variations in different time-scales plays an important role in revealing the subsurface dynamics of magnetic flux ropes and in understanding the dynamo mechanism. In order to reveal the exact characteristics of tilt angles, precise long-term tilt angle data bases are needed. However, there are only a few different data sets at present, which are difficult to be compared and cross-calibrate because of their substantial deviations. In this paper, we describe new tilt angle data bases derived from the Debrecen Photoheliographic Data (DPD) (1974-) and from the SOHO/MDI-Debrecen Data (SDD) (1996-2010) sunspot catalogues. We compare them with the traditional sunspot group tilt angle data bases of Mount Wilson Observatory (1917-85) and Kodaikanal Solar Observatory (1906-87) and we analyse the deviations. Various methods and filters are investigated which may improve the sample of data and may help in deriving better results based on combined data. As a demonstration of the enhanced quality of the improved data set a refined diagram of Joy's law is presented.

  13. TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI

    SciTech Connect

    McClintock, B. H.; Norton, A. A. E-mail: aanorton@stanford.edu

    2016-02-10

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations.

  14. Tilt Angle and Footpoint Separation of Small and Large Bipolar Sunspot Regions Observed with HMI

    NASA Astrophysics Data System (ADS)

    McClintock, B. H.; Norton, A. A.

    2016-02-01

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. (2015) results that the sunspots appear to be two distinct populations.

  15. Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock–Leighton Solar Dynamo Model

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Miesch, Mark

    2017-09-01

    We present results from a three-dimensional Babcock–Leighton (BL) dynamo model that is sustained by the emergence and dispersal of bipolar magnetic regions (BMRs). On average, each BMR has a systematic tilt given by Joy’s law. Randomness and nonlinearity in the BMR emergence of our model produce variable magnetic cycles. However, when we allow for a random scatter in the tilt angle to mimic the observed departures from Joy’s law, we find more variability in the magnetic cycles. We find that the observed standard deviation in Joy’s law of {σ }δ =15^\\circ produces a variability comparable to the observed solar cycle variability of ∼32%, as quantified by the sunspot number maxima between 1755 and 2008. We also find that tilt angle scatter can promote grand minima and grand maxima. The time spent in grand minima for {σ }δ =15^\\circ is somewhat less than that inferred for the Sun from cosmogenic isotopes (about 9% compared to 17%). However, when we double the tilt scatter to {σ }δ =30^\\circ , the simulation statistics are comparable to the Sun (∼18% of the time in grand minima and ∼10% in grand maxima). Though the BL mechanism is the only source of poloidal field, we find that our simulations always maintain magnetic cycles even at large fluctuations in the tilt angle. We also demonstrate that tilt quenching is a viable and efficient mechanism for dynamo saturation; a suppression of the tilt by only 1°–2° is sufficient to limit the dynamo growth. Thus, any potential observational signatures of tilt quenching in the Sun may be subtle.

  16. ACTIVE-REGION TILT ANGLES: MAGNETIC VERSUS WHITE-LIGHT DETERMINATIONS OF JOY'S LAW

    SciTech Connect

    Wang, Y.-M.; Colaninno, R. C.; Baranyi, T.; Li, J. E-mail: robin.colaninno@nrl.navy.mil E-mail: jli@igpp.ucla.edu

    2015-01-01

    The axes of solar active regions are inclined relative to the east-west direction, with the tilt angle tending to increase with latitude ({sup J}oy's law{sup )}. Observational determinations of Joy's law have been based either on white-light images of sunspot groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magnetic data. We confirm this effect by comparing sunspot-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21-23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light ''tilt angles'' refer to sunspots of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent sunspots. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16-23.

  17. Heliostat tilt and azimuth angle charts and the heliostat orientation protractor

    SciTech Connect

    Elsayed, M.M.; Al-Rabghi, O.M. )

    1992-02-01

    This paper reports that using cartesian heliostat field coordinates analytical expressions were derived for the heliostat tilt angle s, and heliostat azimuth angle {gamma} (clockwise from south). These expressions are dependent on the field cartesian coordinates of the center of the heliostat and the solar zenith and azimuth angles (clockwise from south), {theta}{sub z} and {Psi}, respectively. Here, cylindrical coordinates are conveniently used to derive the expressions for the heliostat angles s and {gamma}. The expression of {gamma}is used to construct the so-called heliostat orientation protractor. The protractor is a useful tool to determine the instantaneous heliostat azimuth angle as will be illustrated.

  18. 'Abnormal' angle response curves of TW/Rs for near zero tilt and high tilt channeling implants

    SciTech Connect

    Guo Baonian; Gossmann, Hans-Joachim; Toh, Terry; Colombeau, Benjamin; Todorov, Stan; Sinclair, Frank; Shim, Kyu-Ha; Henry, Todd

    2012-11-06

    Angle control has been widely accepted as the key requirement for ion implantation in semiconductor device processing. From an ion implanter point of view, the incident ion direction should be measured and corrected by suitable techniques, such as XP-VPS for the VIISta implanter platform, to ensure precision ion placement in device structures. So called V-curves have been adopted to generate the wafer-based calibration using channeling effects as the Si lattice steer ions into a channeling direction. Thermal Wave (TW) or sheet resistance (Rs) can be used to determine the minimum of the angle response curve. Normally it is expected that the TW and Rs have their respective minima at identical angles. However, the TW and Rs response to the angle variations does depend on factors such as implant species, dose, and wafer temperature. Implant damage accumulation effects have to be considered for data interpretation especially for some 'abnormal' V-curve data. In this paper we will discuss some observed 'abnormal' angle responses, such as a) TW/Rs reverse trend for Arsenic beam, 2) 'W' shape of Rs Boron, and 3) apparent TW/Rs minimum difference for high tilt characterization, along with experimental data and TCAD simulations.

  19. Active correction of the tilt angle of the surface plane with respect to the rotation axis during azimuthal scan

    NASA Astrophysics Data System (ADS)

    Sereno, M.; Lupone, S.; Debiossac, M.; Kalashnyk, N.; Roncin, P.

    2016-09-01

    A procedure to measure the residual tilt angle τ between a flat surface and the azimuthal rotation axis of the sample holder is described. When the incidence angle θ and readout of the azimuthal angle ϕ are controlled by motors, an active compensation mechanism can be implemented to reduce the effect of the tilt angle during azimuthal motion. After this correction, the effective angle of incidence is kept fixed, and only a small residual oscillation of the scattering plane remains.

  20. VizieR Online Data Catalog: Scheiner drawing sunspot areas and tilt angles (Arlt+, 2016)

    NASA Astrophysics Data System (ADS)

    Arlt, R.; Senthamizh Pavai, V.; Schmiel, C.; Spada, F.

    2016-09-01

    Christoph Scheiner and his collaborators observed the sunspots from 1611-1631 at five different locations of Rome in Italy, Ingolstadt in Germany, Douai (Duacum in Latin) in France, Freiburg im Breisgau, Germany and Vienna, Austria. However, most of his published drawings were made in Rome. These sunspot drawings are important because they can tell us how the solar activity declined to a very low-activity phase which lasted for nearly five decades. The three sources used for the sunspot data extraction are Scheiner (1630rour.book.....S, Rosa Ursina sive solis), Scheiner (1651ppsm.book.....S, Prodromus pro sole mobili et terra stabili contra Academicum Florentinum Galilaeum a Galilaeis), and Reeves & Van Helden (2010, On sunspots. Galileo Galilei and Christoph Scheiner (University of Chicago Press)). The suspot drawings show the sunspot groups traversing the solar disk in a single full-disk drawing. The positions and areas of the sunspots were measured using 13 circular cursor shapes with different diameters. Umbral areas for 8167 sunspots and tilt angles for 697 manually selected, supposedly bipolar groups were obtained from Scheiner's sunspot drawings. The database does not contain spotless days. There is, of course, no polarity information in the sunspot drawings, so the tilt angles are actually pseudo-tilt angles. Both an updated sunspot database and a tilt angle database may be available at http://www.aip.de/Members/rarlt/sunspots for further study. (2 data files).

  1. A field calibration method to eliminate the error caused by relative tilt on roll angle measurement

    NASA Astrophysics Data System (ADS)

    Qi, Jingya; Wang, Zhao; Huang, Junhui; Yu, Bao; Gao, Jianmin

    2016-11-01

    The roll angle measurement method based on a heterodyne interferometer is an efficient technique for its high precision and environmental noise immunity. The optical layout bases on a polarization-assisted conversion of the roll angle into an optical phase shift, read by a beam passing through the objective plate actuated by the roll rotation. The measurement sensitivity or the gain coefficient G is calibrated before. However, a relative tilt between the laser and objective plate always exist due to the tilt of the laser and the roll of the guide in the field long rail measurement. The relative tilt affect the value of G, thus result in the roll angle measurement error. In this paper, a method for field calibration of G is presented to eliminate the measurement error above. The field calibration layout turns the roll angle into an optical path change (OPC) by a rotary table. Thus, the roll angle can be obtained from the OPC read by a two-frequency interferometer. Together with the phase shift, an accurate G in field measurement can be obtained and the measurement error can be corrected. The optical system of the field calibration method is set up and the experiment results are given. Contrasted with the Renishaw XL-80 for calibration, the proposed field calibration method can obtain the accurate G in the field rail roll angle measurement.

  2. Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins.

    PubMed Central

    Tristram-Nagle, S; Zhang, R; Suter, R M; Worthington, C R; Sun, W J; Nagle, J F

    1993-01-01

    The tilt angle theta tilt of the hydrocarbon chains has been determined for fully hydrated gel phase of a series of saturated lecithins. Oriented samples were prepared on glass substrates and hydrated with supersaturated water vapor. Evidence for full hydration was the same intensity pattern of the low angle lamellar peaks and the same lamellar repeat D as unoriented multilamellar vesicles. Tilting the sample permitted observation of all the wide angle arcs necessary to verify the theoretical diffraction pattern corresponding to tilting of the chains towards nearest neighbors. The length of the scattering unit corresponds to two hydrocarbon chains, requiring each bilayer to scatter coherently rather than each monolayer. For DPPC, theta tilt was determined to be 32.0 +/- 0.5 degrees at 19 degrees C, slightly larger than previous direct determinations and considerably smaller than the value required by recent gravimetric measurements. This new value allows more accurate determinations of a variety of structural parameters, such as area per lipid molecule, A = 47.2 +/- 0.5 A2, and number of water molecules of hydration, nw = 11.8 +/- 0.7. As the chain length n of the lipids was increased from 16 to 20 carbons, the parameters A and nw remained constant, suggesting that the headgroup packing is at its excluded volume limit for this range. However, theta tilt increased by 3 degrees and the chain area Ac decreased by 0.5 A2. This behavior is explained in terms of a competition between a bulk free energy term and a finite or end effect term. Images FIGURE 6 FIGURE 7 PMID:8494973

  3. Optimum Strategies for Selecting Descent Flight-Path Angles

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)

    2016-01-01

    An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.

  4. Evaluation of electrolytic tilt sensors for measuring model angle of attack in wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    1992-01-01

    The results of a laboratory evaluation of electrolytic tilt sensors as potential candidates for measuring model attitude or angle of attack in wind tunnel tests are presented. The performance of eight electrolytic tilt sensors was compared with that of typical servo accelerometers used for angle-of-attack measurements. The areas evaluated included linearity, hysteresis, repeatability, temperature characteristics, roll-on-pitch interaction, sensitivity to lead-wire resistance, step response time, and rectification. Among the sensors being evaluated, the Spectron model RG-37 electrolytic tilt sensors have the highest overall accuracy in terms of linearity, hysteresis, repeatability, temperature sensitivity, and roll sensitivity. A comparison of the sensors with the servo accelerometers revealed that the accuracy of the RG-37 sensors was on the average about one order of magnitude worse. Even though a comparison indicates that the cost of each tilt sensor is about one-third the cost of each servo accelerometer, the sensors are considered unsuitable for angle-of-attack measurements. However, the potential exists for other applications such as wind tunnel wall-attitude measurements where the errors resulting from roll interaction, vibration, and response time are less and sensor temperature can be controlled.

  5. Study of energy transfer by different light curing units into a class III restoration as a function of tilt angle and distance, using a MARC Patient Simulator (PS).

    PubMed

    Konerding, Katharina L; Heyder, Markus; Kranz, Stefan; Guellmar, Andre; Voelpel, Andrea; Watts, David C; Jandt, Klaus D; Sigusch, Bernd W

    2016-05-01

    The MARC Patient Simulator (MARC PS) enables researchers to observe the influence of handling errors on the radiant exposure that is delivered by light curing units (LCUs). Changes in the tilt angle and distance of the light guide exit face in relation to the surface of the composite increment have a distinct effect on the total amount of light delivered during polymerization and may cause insufficient conversion of the material. Therefore, the aim of the present study was to determine the influence of the tilt angle and distance of irradiance on the efficiency of light application by recording the total amount of energy using the anterior tooth sensor of the MARC PS. The influence of the tilt angle and distance of the light guide to the sensor surface on the delivered radiant exposure was examined for three different LCUs (Celalux 2 [C2], Bluephase [BP] and Translux Powerblue [TPB]). The measurements were performed for 20 s each with five different tilt angles (α=0°, 5°, 10°, 15°, 20°) and nine different distances (L=1, 2, 3, 4, 5, 6, 7, 8, 9 mm). For all LCUs, a distinct influence of the tilt angle on the delivered amount of fluence was found. At 0° tilt the C2 delivered a total light energy of 38.55 J/cm(2). By increasing the tilt of the light guide the amount of energy applied significantly decreased. At 20° tilt a reduction by 31.2% of the original light fluence was recorded. However, the C2 was the most powerful LCU measured. Even under optimum measurement conditions, the BP delivered a fluence of only 14.8 J/cm(2). At a tilt angle of 20°, though, the light sensor still registered 92.7% of the original output power. Under the same conditions, the TPB delivered 81.4%. With increasing distance of the light guide exit face to the surface of the sensor all LCUs showed a significant loss in delivered light energy. At a distance of 2mm the C2 showed a reduction by 46.7%, whereas total fluence of BP and TPB were reduced by 3.8% and 4.8%, respectively. The

  6. A comparison of the pelvic angle applied using lateral table tilt or a pelvic wedge at elective caesarean section.

    PubMed

    Kinsella, S M; Harvey, N L

    2012-12-01

    Lateral table tilt or a pelvic wedge are commonly used to reduce inferior vena cava compression during obstetric anaesthesia in the supine position. Direct measurement of pelvic angle allows individual assessment of the effectiveness of these manoeuvres in achieving a tilted position. We observed routine practice during caesarean section after random allocation to one or other of these methods. The anaesthetist managing the case was asked to position the women after induction of spinal anaesthesia using either left table tilt or a wedge under the right hip. We then measured pelvic angle in all women, and the table angle in women who had table tilt. The mean (SD [range]) pelvic angle was 20.2° (8.1° [9°-37°]) in 18 women with table tilt and 21.0° (7.5° [10°-36°]) in 17 women with a wedge. The mean (SD [range]) table angle was 12.4° (3.1° [8°-21°]) in the women with table tilt. There was a significant difference between table angle and pelvic angle in the women with table tilt (p = 0.0003), but no significant difference in pelvic angle between the table tilt and wedge groups. Measurement of table angle does not represent pelvic position adequately in the majority of women. However, this study showed that lateral table tilt and a pelvic wedge were equally effective in producing tilt of the pelvis. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  7. Tilted angle CZT detector for photon counting/energy weighting x-ray and CT imaging.

    PubMed

    Shikhaliev, Polad M

    2006-09-07

    X-ray imaging with a photon counting/energy weighting detector can provide the highest signal to noise ratio (SNR). Scanning slit/multi-slit x-ray image acquisition can provide a dose-efficient scatter rejection, which increases SNR. Use of a photon counting/energy weighting detector in a scanning slit/multi-slit acquisition geometry could provide highest possible dose efficiency in x-ray and CT imaging. Currently, the most advanced photon counting detector is the cadmium zinc telluride (CZT) detector, which, however, is suboptimal for energy resolved x-ray imaging. A tilted angle CZT detector is proposed in this work for applications in photon counting/energy weighting x-ray and CT imaging. In tilted angle configuration, the x-ray beam hits the surface of the linear array of CZT crystals at a small angle. This allows the use of CZT crystals of a small thickness while maintaining the high photon absorption. Small thickness CZT detectors allow for a significant decrease in the polarization effect in the CZT volume and an increase in count rate. The tilted angle CZT with a small thickness also provides higher spatial and energy resolution, and shorter charge collection time, which potentially enables fast energy resolving x-ray image acquisition. In this work, the major performance parameters of the tilted angle CZT detector, including its count rate, spatial resolution and energy resolution, were evaluated. It was shown that for a CZT detector with a 0.7 mm thickness and 13 degrees tilting angle, the maximum count rate can be increased by 10.7 times, while photon absorption remains >90% at photon energies up to 120 keV. Photon counting/energy weighting x-ray imaging using a tilted angle CZT detector was simulated. SNR improvement due to optimal photon energy weighting was 23% and 14% when adipose contrast element, inserted in soft tissue with 10 cm and 20 cm thickness, respectively, was imaged using 5 energy bins and weighting factors optimized for the adipose. SNR

  8. Tilted angle CZT detector for photon counting/energy weighting x-ray and CT imaging

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2006-09-01

    X-ray imaging with a photon counting/energy weighting detector can provide the highest signal to noise ratio (SNR). Scanning slit/multi-slit x-ray image acquisition can provide a dose-efficient scatter rejection, which increases SNR. Use of a photon counting/energy weighting detector in a scanning slit/multi-slit acquisition geometry could provide highest possible dose efficiency in x-ray and CT imaging. Currently, the most advanced photon counting detector is the cadmium zinc telluride (CZT) detector, which, however, is suboptimal for energy resolved x-ray imaging. A tilted angle CZT detector is proposed in this work for applications in photon counting/energy weighting x-ray and CT imaging. In tilted angle configuration, the x-ray beam hits the surface of the linear array of CZT crystals at a small angle. This allows the use of CZT crystals of a small thickness while maintaining the high photon absorption. Small thickness CZT detectors allow for a significant decrease in the polarization effect in the CZT volume and an increase in count rate. The tilted angle CZT with a small thickness also provides higher spatial and energy resolution, and shorter charge collection time, which potentially enables fast energy resolving x-ray image acquisition. In this work, the major performance parameters of the tilted angle CZT detector, including its count rate, spatial resolution and energy resolution, were evaluated. It was shown that for a CZT detector with a 0.7 mm thickness and 13° tilting angle, the maximum count rate can be increased by 10.7 times, while photon absorption remains >90% at photon energies up to 120 keV. Photon counting/energy weighting x-ray imaging using a tilted angle CZT detector was simulated. SNR improvement due to optimal photon energy weighting was 23% and 14% when adipose contrast element, inserted in soft tissue with 10 cm and 20 cm thickness, respectively, was imaged using 5 energy bins and weighting factors optimized for the adipose. SNR

  9. Development of empirical correlation of peak friction angle with surface roughness of discontinuities using tilt test

    NASA Astrophysics Data System (ADS)

    Serasa, Ailie Sofyiana; Lai, Goh Thian; Rafek, Abdul Ghani; Simon, Norbert; Hussein, Azimah; Ern, Lee Khai; Surip, Noraini; Mohamed, Tuan Rusli

    2016-11-01

    The significant influence of surface roughness of discontinuity surfaces is a quantity that is fundamental to the understanding of shear strength of geological discontinuities. This is due to reason that the shear strength of geological discontinuities greatly influenced the mechanical behavior of a rock mass especially in stability evaluation of tunnel, foundation, and natural slopes. In evaluating the stability of these structures, the study of peak friction angle (Φpeak) of rough discontinuity surfaces has become more prominent seeing that the shear strength is a pivotal factor causing failures. The measurement of peak friction angle however, requires an extensive series of laboratory tests which are both time and cost demanding. With that in mind, this publication presents an approach in the form of an experimentally determined polynomial equation to estimate peak friction angle of limestone discontinuity surfaces by measuring the Joint Roughness Coefficient (JRC) values from tilt tests, and applying the fore mentioned empirical correlation. A total of 1967 tilt tests and JRC measurements were conducted in the laboratory to determine the peak friction angles of rough limestone discontinuity surfaces. A polynomial equation of ɸpeak = -0.0635JRC2 + 3.95JRC + 25.2 that exhibited 0.99 coefficient of determination (R2) were obtained from the correlation of JRC and peak friction angles. The proposed correlation offers a practical method for estimation of peak friction angles of rough discontinuity surfaces of limestone from measurement of JRC in the field.

  10. Unique determination of the -CN group tilt angle in Langmuir monolayers using sum-frequency polarization null angle and phase

    NASA Astrophysics Data System (ADS)

    Velarde, Luis; Wang, Hong-fei

    2013-10-01

    The relative phase and amplitude ratio between the ssp and ppp polarization combinations of the vibrational sum-frequency generation (SFG) response can be uniquely and accurately determined by the polarization null angle (PNA) method for orientational analysis. With PNA measurement we show that the -CN group in the 4-n-pentyl-4‧-cyanoterphenyl (5CT) Langmuir monolayer is tilted around 25° ± 2° from the interface normal, while that in the 4-n-octyl-4‧-cyanobiphenyl (8CB) is tilted around 57° ± 2°, consistent with the significant differences in the phase diagrams and hydrogen bonding SFG spectra of the two Langmuir monolayers reported in the literature.

  11. Dislocation structures and electrical conduction properties of low angle tilt grain boundaries in LiNbO{sub 3}

    SciTech Connect

    Furushima, Yuho; Nakamura, Atsutomo Toyoura, Kazuaki; Tochigi, Eita; Ikuhara, Yuichi; Matsunaga, Katsuyuki

    2016-10-14

    Dislocations in crystalline materials constitute unique, atomic-scale, one-dimensional structure and have a potential to induce peculiar physical properties that are not found in the bulk. In this study, we fabricated LiNbO{sub 3} bicrystals with low angle tilt grain boundaries and investigated the relationship between the atomic structure of the boundary dislocations and their electrical conduction properties. Observations by using transmission electron microscopy revealed that dislocation structures at the (0001) low angle tilt grain boundaries depend on the tilt angle of the boundaries. Specifically, the characteristic dislocation structures with a large Burgers vector were formed in the boundary with the tilt angle of 2°. It is noteworthy that only the grain boundary of 2° exhibits distinct electrical conductivity after reduction treatment, although LiNbO{sub 3} is originally insulating. This unique electrical conductivity is suggested to be due to the characteristic dislocation structures with a large Burgers vector.

  12. Dislocation structures and electrical conduction properties of low angle tilt grain boundaries in LiNbO3

    NASA Astrophysics Data System (ADS)

    Furushima, Yuho; Nakamura, Atsutomo; Tochigi, Eita; Ikuhara, Yuichi; Toyoura, Kazuaki; Matsunaga, Katsuyuki

    2016-10-01

    Dislocations in crystalline materials constitute unique, atomic-scale, one-dimensional structure and have a potential to induce peculiar physical properties that are not found in the bulk. In this study, we fabricated LiNbO3 bicrystals with low angle tilt grain boundaries and investigated the relationship between the atomic structure of the boundary dislocations and their electrical conduction properties. Observations by using transmission electron microscopy revealed that dislocation structures at the (0001) low angle tilt grain boundaries depend on the tilt angle of the boundaries. Specifically, the characteristic dislocation structures with a large Burgers vector were formed in the boundary with the tilt angle of 2°. It is noteworthy that only the grain boundary of 2° exhibits distinct electrical conductivity after reduction treatment, although LiNbO3 is originally insulating. This unique electrical conductivity is suggested to be due to the characteristic dislocation structures with a large Burgers vector.

  13. Evaluation of electrolytic tilt sensors for wind tunnel model angle-of-attack (AOA) measurements

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    1991-01-01

    The results of a laboratory evaluation of three types of electrolytic tilt sensors as potential candidates for model attitude or angle of attack (AOA) measurements in wind tunnel tests are presented. Their performance was also compared with that from typical servo accelerometers used for AOA measurements. Model RG-37 electrolytic tilt sensors were found to have the highest overall accuracy among the three types. Compared with the servo accelerometer, their accuracies are about one order of magnitude worse and each of them cost about two-thirds less. Therefore, the sensors are unsuitable for AOA measurements although they are less expensive. However, the potential for other applications exists where the errors resulting from roll interaction, vibration, and response time are less, and sensor temperature can be controlled.

  14. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    SciTech Connect

    Jiang, J.; Cameron, R. H.; Schüssler, M.

    2014-08-10

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input based upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.

  15. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    PubMed

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  16. Point defect sink efficiency of low-angle tilt grain boundaries

    NASA Astrophysics Data System (ADS)

    Gu, Yejun; Han, Jian; Dai, Shuyang; Zhu, Yichao; Xiang, Yang; Srolovitz, David J.

    We examine the common assumption that grain boundaries (GBs) are ideal (or perfect) sinks for point defects by comparing and contrasting its implications with an explicit model of a low-angle tilt GB described by an array of edge dislocations which annihilate point defects by climbing. We solve the resultant diffusion equation in the absence and presence of irradiation-induced point defects. The GB sink efficiency depends on the physical parameters describing the boundary geometry (i.e., misorientation), material properties, and/or irradiation conditions (point defect generation and annihilation within the interior of grains). When the constituent dislocation spacing is small (large misorientation), the GB sink efficiency approaches that of the ideal sink. However, for small misorientations, the GB sink efficiency drops rapidly to zero and the ideal sink assumption for the GB fails dramatically. We derive a reduced dimension description of GBs where the influence of GB structure is captured in a single parameter in a Robin boundary condition for the diffusion equation. For the case of a low-angle tilt GB, we explicitly relate this parameter to the GB structure. We discuss the generality of this approach for cases where the low-angle GB model applies and parameterize the model so that it accurately reproduces the results of the two-dimensional dislocation model. The applicability of the approach to more general GBs is discussed as well as the implication of these results for predicting grain size effects under irradiation conditions.

  17. The effects of different types of automated inclining bed and tilt angle on body-pressure redistribution.

    PubMed

    Yi, Chung-Hwi; Kim, Han-Sung; Yoo, Won-Gyu; Kim, Min-Hee; Kwon, Oh-Yun

    2009-06-01

    The damage caused by pressure in bedridden hospitalized patients is attributable to the body tissues becoming compressed against bony prominences, which results in poor capillary perfusion. Automated inclining beds were developed in this study to assist patients in repositioning, with the aim of quantifying the effects of 3 types of bed (bed 1, 1-axis tilting; bed 2, 1-axis and 2-segment tilting; and bed 3, 2-axis and 3-segment tilting) and 3 tilt angles (10, 15, and 20 degrees upward from the horizontal) on body-pressure redistribution. Twenty healthy subjects (14 men and 6 women) aged 21 to 26 years were recruited from the Yonsei University student population (mean [SD]: height, 164.0 cm [5.5 cm]; weight, 58.7 kg [7.3 kg]). A body-pressure measurement system was used to analyze the pressure distributions of the human body for the different bed types and tilt angles. The results showed that pressure reduction was significantly greater for bed 2 than for beds 1 and 3, and for tilt angles of 15 and 20 degrees upward. The highest pressure reduction was found for bed 2, with a tilt angle of 20 degrees upward from the horizontal.

  18. Solar heat gain coefficient of complex fenestrations with a venetian blind for differing slat tilt angles

    SciTech Connect

    Klems, J.H.; Warner, J.L.

    1996-08-01

    Measured bidirectional transmittances and reflectances of a buff-colored venetian blind together with a layer calculation scheme developed in previous publications are utilized to produce directional-hemispherical properties for the venetian blind layer and solar heat gain coefficients for the blind in combination with clear double glazing. Results are presented for three blind slat tilt angles and for the blind mounted either interior to the double glazing or between the glass panes. Implications of the results for solar heat gain calculations are discussed in the context of sun positions for St. Louis, MO.

  19. A refractive tilting-plate technique for measurement of dynamic contact angles.

    PubMed

    Smedley, Gregory T; Coles, Donald E

    2005-06-01

    The contact angle is a critical parameter in liquid interface dynamics ranging from liquid spreading on a solid surface on earth to liquid motion in partially filled containers in space. A refractive tilting-plate technique employing a scanning laser beam is developed to conduct an experimental study of a moving contact line, with the intention of making accurate measurements of the contact angle. The technique shows promise as an accurate and potentially fully automated means to determine the velocity dependence of the contact angle at the intersection of the interface between two transparent fluids with a transparent solid surface. Ray tracing calculations are included to reinforce the measurement concept. The principal experiments were conducted at speeds ranging from 0.05 to 1.00 mm/s, both advancing and receding, using an immiscible liquid pair (nonane/formamide) in contact with glass. The contact angle was found to depend for practical purposes only on the sign of the velocity and not on its magnitude for the range of velocities studied. Other observations revealed a bimodal behavior of the contact line that depends on which liquid first contacts the glass, with resulting drift in the dynamic contact angle with time.

  20. VizieR Online Data Catalog: Sunspot areas and tilt angles (Senthamizh Pavai+, 2015)

    NASA Astrophysics Data System (ADS)

    Senthamizh Pavai, V.; Arlt, R.; Dasi-Espuig, M.; Krivova, N.; Solanki, S.

    2015-11-01

    We present sunspot positions and areas from historical observations of sunspots by Samuel Heinrich Schwabe from Dessau, Germany. He has recorded his observations of sunspots from 1825-1867 as drawings in small circles of about 5cm diameter (representing the solar disk). Even though he has used quite a number of telescopes for his observations, the majority of the full-disk drawings were made with a 3-1/2-foot telescope from Fraunhofer. His observing log books are stored in the library of the Royal Astronomical Society in London. Those drawings were digitized photographically with a resolution of 2912x4378 pixels per page. The sizes and positions of the sunspots were measured using a dozen of circular mouse cursor shapes with different diameters. The sunspot sizes in Schwabe's drawings are not to scale and need to be converted into physical sunspot areas. We employed a statistical approach assuming that the area distribution of sunspots was the same in the 19th century as it was in the 20th century. Umbral areas for about 130,000 sunspots observed by Schwabe were obtained, as well as the tilt angles of sunspot groups assuming them to be bipolar (two or more spots). There is, of course, no polarity information in the observations. Both an updated sunspot database and a tilt angle database are available at http://www.aip.de/Members/rarlt/ sunspots for further study. (2 data files).

  1. Emission angle dependence of fission fragment spin: Effects of single particle spin and tilting mode

    NASA Astrophysics Data System (ADS)

    Datta, T.; Naik, H.; Dange, S. P.

    1995-06-01

    The high-spin yield fraction (HSF) for the fission product 132Im,g has been measured as a function of fragment emission angle (90° >=Θ>=10°) in the 237Np(α29 MeV,f) system. It was seen that the HSF for 132I or corresponding fragment (~=134I) spin initially decreases as emission angle decreases from 90° to ~=45° and then steadily increases at lower angles (Θ<45°). Contrary to the present observation in odd-Z 241Am fission, earlier we had observed that fragment spin continuously decreases to a limit with decrease in emission angle from 90° to 20° in even-even 242Pu fission. These data have been analyzed in the framework of the collective mode model invoking the effect of single particle spin. It is seen that for an odd-Z or A fissioning nucleus, angular variation of fragment spin could be accounted for on the basis of coupling between the odd nucleon spin (j>=k~=4ħ) projections and spin due to the collective rotational (tilting) degrees. Collective rotational degrees govern fragment spin for even-even fissioning nucleus.

  2. A literature review on optimum and preferred joint angles in automotive sitting posture.

    PubMed

    Schmidt, Susanne; Amereller, Maximilian; Franz, Matthias; Kaiser, Ralf; Schwirtz, Ansgar

    2014-03-01

    In this study, a survey of the scientific literature in the field of optimum and preferred human joint angles in automotive sitting posture was conducted by referring to thirty different sources published between 1940 and today. The strategy was to use only sources with numerical angle data in combination with keywords. The aim of the research was to detect commonly used joint angles in interior car design. The main analysis was on data measurement, usability and comparability of the different studies. In addition, the focus was on the reasons for the differently described results. It was found that there is still a lack of information in methodology and description of background. Due to these reasons published data is not always usable to design a modern ergonomic car environment. As a main result of our literature analysis we suggest undertaking further research in the field of biomechanics and ergonomics to work out scientific based and objectively determined "optimum" joint angles in automotive sitting position. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. Accurate measurement of relative tilt and azimuth angles in electron tomography: A comparison of fiducial marker method with electron diffraction

    SciTech Connect

    Hayashida, Misa; Malac, Marek; Egerton, Ray F.; Bergen, Michael; Li, Peng

    2014-08-15

    Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy of the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.

  4. Accurate measurement of relative tilt and azimuth angles in electron tomography: a comparison of fiducial marker method with electron diffraction.

    PubMed

    Hayashida, Misa; Malac, Marek; Bergen, Michael; Egerton, Ray F; Li, Peng

    2014-08-01

    Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy of the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.

  5. Response properties of gerbil otolith afferents to small angle pitch and roll tilts

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Angelaki, D. E.; Correia, M. J.

    1991-01-01

    The responses from isolated single otolith afferent fibers were obtained to small angle sinusoidal pitch and roll tilts in anesthetized gerbils. The stimulus directions that produced the maximum (response vector) and minimum response sensitivities were determined for each otolith afferent, with response vectors for the units being spread throughout the horizontal plane, similar to those reported for other species. A breadth of tuning measure was derived, with narrowly tuned neurons responding maximally to stimulation in one direction and minimally along an orthogonal ('null') direction. Most (approximately 80%) otolith afferents are narrowly tuned, however, some fibers were broadly tuned responding significantly to stimulations in any direction in the horizontal plane. The number of broadly tuned otolith afferents (approximately 20%) differs significantly from the more substantial number of broadly tuned vestibular nuclei neurons (88%) recently reported in rats.

  6. Nanoscopic mechanism of Cu precipitation at small-angle tilt boundaries in Si

    NASA Astrophysics Data System (ADS)

    Ohno, Yutaka; Inoue, Kaihei; Kutsukake, Kentaro; Deura, Momoko; Ohsawa, Takayuki; Yonenaga, Ichiro; Yoshida, Hideto; Takeda, Seiji; Taniguchi, Ryo; Otubo, Hideki; Nishitani, Sigeto R.; Ebisawa, Naoki; Shimizu, Yasuo; Takamizawa, Hisashi; Inoue, Koji; Nagai, Yasuyoshi

    2015-06-01

    We investigate copper (Cu) precipitation at small-angle tilt boundaries on (220) in Czochralski-grown p-type silicon (Si) ingots using transmission electron microscopy, atom probe tomography, and ab initio calculations. In the initial stage of precipitation, Cu atoms agglomerate along the boundaries, forming coherent layers (less than about 2 nm thick) of Cu3Si with a body-centered-cubic structure in a metastable state (a =0.285 nm). As the layers thicken, they become semicoherent with misfit dislocations on the (220) interphase boundaries, reducing coherency strains. Subsequently, the metastable layers convert into incoherent polyhedrons of orthorhombic η''-Cu3Si in the equilibrium state, forming interphase boundaries on {112} in Si. These results are similar to the Cu precipitation processes found in metallic alloys: the formation of Guinier-Preston zones followed by a conversion into the equilibrium θ phase.

  7. Sunspot positions, areas, and group tilt angles for 1611-1631 from observations by Christoph Scheiner

    NASA Astrophysics Data System (ADS)

    Arlt, R.; Senthamizh Pavai, V.; Schmiel, C.; Spada, F.

    2016-11-01

    Aims: Digital images of observations printed in the books Rosa Ursina sive solis and Prodromus pro sole mobili by Christoph Scheiner, as well as the drawings from Scheiner's letters to Marcus Welser, are analysed to obtain information on the positions and sizes of sunspots that appeared before the Maunder minimum. Methods: In most cases, the given orientation of the ecliptic is used to set up the heliographic coordinate system for the drawings. Positions and sizes are measured manually on screen. Very early drawings have no indication of their orientation. A rotational matching using common spots of adjacent days is used in some cases, while in other cases, the assumption that images were aligned with a zenith-horizon coordinate system appeared to be the most probable. Results: In total, 8167 sunspots were measured. A distribution of sunspot latitudes versus time (butterfly diagram) is obtained for Scheiner's observations. The observations of 1611 are very inaccurate, the drawings of 1612 have at least an indication of their orientation, while the remaining part of the spot positions from 1618-1631 have good to very good accuracy. We also computed 697 tilt angles of apparently bipolar sunspot groups observed in the period 1618-1631. We find that the average tilt angle of nearly 4 degrees is not significantly different from 20th-century values. Data on the sunspot position and area are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A104

  8. Using Ultrasonography to Determine Optimal Head-down Tilt Position Angle in Patients before Catheterization of the Internal Jugular Vein

    PubMed Central

    Kasatkin, Anton A.; Urakov, Aleksandr L.; Nigmatullina, Anna R.

    2017-01-01

    Context: It is believed that 15°–25° head-down tilt position increases the internal jugular vein cross-sectional area (IJV CSA). The increase in IJV CSA before puncture reduces the risk of its perforation. This pattern was not observed in all patients. We assumed that the absence of respiratory-based IJV excursion is one of the criteria of head-down tilt position effectiveness. Aims: The aim of this study is to determine the head-down tilt angle, which ensures the absence of the respiratory-based IJV excursion. Subjects and Methods: Prospective study included twenty adult patients. The IJVs scanning was carried out in 1 min after placing the patients in a horizontal position on their back and in 1 min after placing them in the head-down tilt position at 5°, 10°, 15°, and 20° tilt angles. Results: We found that collapsibility index of <9% indicating the absence of respiratory-based IJV excursion was recorded in 25% of patients in the horizontal supine position. In this case, placing the patients in the Trendelenburg position for IJV catheterization may not be indicated. In 65% of the patients, the respiratory-based excursion was not observed at 10° head-down tilt position. Only 35% of the patients required 15° head-down tilt position. Conclusions: In clinical settings, the disappearance of respiratory-based vein excursion on the ultrasound scanner screen can be considered as criteria of the head-down tilt position effectiveness. PMID:28400687

  9. Altitude and airspeed effects on the optimum synchrophase angles for a four-engine propeller aircraft

    NASA Astrophysics Data System (ADS)

    Blunt, David M.

    2014-08-01

    Noise and vibration is a serious problem in all types of aircraft. Any techniques that lower cabin noise and vibration levels by even a few decibels with little or no weight or performance penalties are worth pursuing. Propeller synchrophasing is one such technique that has shown potential in aircraft with two or more propellers; however this technique is not being used to its full potential because the synchrophase angles are typically fixed. This paper provides a detailed examination of how the optimum synchrophase angles in a typical four-engine propeller aircraft vary with different altitudes and airspeeds, and how this information could lead to the design of new adaptive propeller synchrophasing systems and potentially yield improvements to other active noise control measures in propeller aircraft.

  10. Simultaneous piston position and tilt angle sensing for large vertical displacement micromirrors by frequency detection inductive sensing

    NASA Astrophysics Data System (ADS)

    Tseng, V. F.-G.; Xie, H.

    2015-11-01

    This paper presents a frequency detection based inductive eddy current sensing mechanism to simultaneously sense the piston position and tilt angle of the mirror plate of large vertical displacement micromirrors that exhibit piston scan ranges above 100 μm. This is accomplished by sensing the inductance change, and thus resonant frequency shift, of two microfabricated sensing coils packaged underneath the mirror plate. For demonstration purpose, the coils were paired with discrete circuit components to oscillate at 11.9 MHz and 12.5 MHz, respectively. The piston position and tilt angle of the mirror plate could be simultaneously monitored over a 500 μm piston scan range, achieving a maximum piston sensitivity of 4.15 kHz/μm with a piston sensing resolution of 96 nm and a maximum tilt angle sensitivity of 60.5 kHz/° with a tilt angle sensing resolution of 0.0013°. Analytical modeling of the coil inductance change via image theory was also conducted, showing that the sensor sensitivity and resolution could be improved by increasing the coil oscillation frequency and decreasing the coil size.

  11. The impact of office chair features on lumbar lordosis, intervertebral joint and sacral tilt angles: a radiographic assessment.

    PubMed

    De Carvalho, Diana; Grondin, Diane; Callaghan, Jack

    2017-10-01

    The purpose of this study was to determine which office chair feature is better at improving spine posture in sitting. Participants (n = 28) were radiographed in standing, maximum flexion and seated in four chair conditions: control, lumbar support, seat pan tilt and backrest with scapular relief. Measures of lumbar lordosis, intervertebral joint angles and sacral tilt were compared between conditions and sex. Sitting consisted of approximately 70% of maximum range of spine flexion. No differences in lumbar flexion were found between the chair features or control. Significantly more anterior pelvic rotation was found with the lumbar support (p = 0.0028) and seat pan tilt (p < 0.0001). Males had significantly more anterior pelvic rotation and extended intervertebral joint angles through L1-L3 in all conditions (p < 0.0001). No one feature was statistically superior with respect to minimising spine flexion, however, seat pan tilt resulted in significantly improved pelvic posture. Practitioner Summary: Seat pan tilt, and to some extent lumbar supports, appear to improve seated postures. However, sitting, regardless of chair features used, still involves near end range flexion of the spine. This will increase stresses to the spine and could be a potential injury generator during prolonged seated exposures.

  12. Development of intelligent model to determine favorable wheelchair tilt and recline angles for people with spinal cord injury.

    PubMed

    Fu, Jicheng; Jan, Yih-Kuen; Jones, Maria

    2011-01-01

    Machine-learning techniques have found widespread applications in bioinformatics. Such techniques provide invaluable insight on understanding the complex biomedical mechanisms and predicting the optimal individualized intervention for patients. In our case, we are particularly interested in developing an individualized clinical guideline on wheelchair tilt and recline usage for people with spinal cord injury (SCI). The current clinical practice suggests uniform settings to all patients. However, our previous study revealed that the response of skin blood flow to wheelchair tilt and recline settings varied largely among patients. Our finding suggests that an individualized setting is needed for people with SCI to maximally utilize the residual neurological function to reduce pressure ulcer risk. In order to achieve this goal, we intend to develop an intelligent model to determine the favorable wheelchair usage to reduce pressure ulcers risk for wheelchair users with SCI. In this study, we use artificial neural networks (ANNs) to construct an intelligent model that can predict whether a given tilt and recline setting will be favorable to people with SCI based on neurological functions and SCI injury history. Our results indicate that the intelligent model significantly outperforms the traditional statistical approach in accurately classifying favorable wheelchair tilt and recline settings. To the best of our knowledge, this is the first study using intelligent models to predict the favorable wheelchair tilt and recline angles. Our methods demonstrate the feasibility of using ANN to develop individualized wheelchair tilt and recline guidance for people with SCI.

  13. Notebook computer use with different monitor tilt angle: effects on posture, muscle activity and discomfort of neck pain users.

    PubMed

    Chiou, Wen-Ko; Chou, Wei-Ying; Chen, Bi-Hui

    2012-01-01

    This study aimed to evaluate the posture, muscle activities, and self reported discomforts of neck pain notebook computer users on three monitor tilt conditions: 100°, 115°, and 130°. Six subjects were recruited in this study to completed typing tasks. Results showed subjects have a trend to show the forward head posture in the condition that monitor was set at 100°, and the significant less neck and shoulder discomfort were noted in the condition that monitor was set at 130°. These result suggested neck pain notebook user to set their monitor tilt angle at 130°.

  14. Determination of optimum viewing angles for the angular normalization of land surface temperature over vegetated surface.

    PubMed

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-03-27

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.

  15. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    PubMed Central

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-01-01

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975

  16. Eye movements and motion perception induced by off-vertical axis rotation (OVAR) at small angles of tilt after spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Darlot, C.; Petropoulos, A.; Berthoz, A.

    1995-01-01

    The nystagmus and motion perception of two astronauts were recorded during Earth-vertical axis rotation and during off-vertical axis rotation (OVAR) before and after 7 days of spaceflight. Postflight, the peak velocity and duration of per- and postrotatory nystagmus during velocity steps about the Earth-vertical axis were the same as preflight values. During OVAR at constant velocity (45/s, tilt angles successively 5, 10, and 15 degrees), the mean horizontal slow-phase eye velocity (bias), produced by the 'velocity storage mechanism' in the vestibular system, and the peak-to-peak amplitude (modulation) in horizontal eye velocity and position, generated from the output of otolith afferents, were also the same before as after flight. There were, however, changes in the vertical eve position and in the perceived body motion during OVAR. The angle of the perceived body path described as a cone was larger in both astronauts postflight. One astronaut experienced either a large cone angle with its axis upright, or a smaller cone angle with its axis tilted backwards, accompanied by an upward vertical eye drift. These results suggest an increase in the sensitivity of the otolithic system after spaceflight and a longer period of readaptation to Earth's gravity for otolith-induced responses than for canal-induced responses. Our data support the hypothesis that just after spaceflight the CNS generally interprets changes in the otolith signals to be due to translation rather than to tilt.

  17. Eye movements and motion perception induced by off-vertical axis rotation (OVAR) at small angles of tilt after spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Darlot, C.; Petropoulos, A.; Berthoz, A.

    1995-01-01

    The nystagmus and motion perception of two astronauts were recorded during Earth-vertical axis rotation and during off-vertical axis rotation (OVAR) before and after 7 days of spaceflight. Postflight, the peak velocity and duration of per- and postrotatory nystagmus during velocity steps about the Earth-vertical axis were the same as preflight values. During OVAR at constant velocity (45/s, tilt angles successively 5, 10, and 15 degrees), the mean horizontal slow-phase eye velocity (bias), produced by the 'velocity storage mechanism' in the vestibular system, and the peak-to-peak amplitude (modulation) in horizontal eye velocity and position, generated from the output of otolith afferents, were also the same before as after flight. There were, however, changes in the vertical eve position and in the perceived body motion during OVAR. The angle of the perceived body path described as a cone was larger in both astronauts postflight. One astronaut experienced either a large cone angle with its axis upright, or a smaller cone angle with its axis tilted backwards, accompanied by an upward vertical eye drift. These results suggest an increase in the sensitivity of the otolithic system after spaceflight and a longer period of readaptation to Earth's gravity for otolith-induced responses than for canal-induced responses. Our data support the hypothesis that just after spaceflight the CNS generally interprets changes in the otolith signals to be due to translation rather than to tilt.

  18. Action potentials and twitch forces of rabbit masseter motor units at optimum jaw angle.

    PubMed

    van Eijden, T M G J; Turkawski, S J J

    2002-08-01

    This study examines mutual correlations between electrical and contractile motor-unit properties. Action potentials and twitch force responses of 42 masseter motor units were recorded in 14 rabbits. Motor units were excited by stimulating motoneurones in the trigeminal motor nucleus. Action potentials and twitches were measured at different jaw gapes between 0 and 21 degrees, in steps of 3 degrees. For each motor unit, the jaw angle-active force interrelation was determined and variables for action potential and force were compared at the jaw angle at which the motor unit produced the largest force. The results showed a large variation in variables for action potential and force, possibly related to the variation in motor-unit morphology. A weak correlation was found between the variables for action-potential amplitude and the magnitude of optimum force, indicating that motor units producing larger forces tended to have action potentials with larger amplitudes. Twitch-contraction time and the moment arm of the motor unit correlated positively with both the median frequency and the duration of the action potential. This indicates that slower contracting motor units had longer action potentials and is in accord with the earlier observation that slower motor units are preferentially located in the anterior regions of the masseter.

  19. Measurement of multi-directional azimuth and tilt angles using an improved DVD pickup head with a CMOS sensor: A simulation design study

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Shing; Lin, Yan-Nan; Tien, Chuen-Lin; Chang, Jenq-Yang

    2013-06-01

    We present a new detection method for an improved DVD pickup head system capable of measuring the multidirectional azimuth and small tilt angles. A complementary metal-oxide semiconductor (CMOS) sensor is used to capture images and analyze the slight shift of the central position of the beam shape when the test plane rotates to create a tilt angle and angular signal. The proposed detection method can determine the azimuth angle of the test plane from 0° to 360° at intervals of 5°. The tilt angle measurement is varied from 0° to 4.2° at intervals of 0.3°. The simulation results show that the improved DVD pickup head system can recognize multi-directional azimuth angles of the test plane under a small tilt.

  20. Effects of Tilt Angle, DNA Concentration, and Surface Potential on Directed Alignment of DNA Molecule for the Application to Nanodevices

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jin; Hong, Byungyou

    2013-03-01

    This paper reports an efficient approach to control both the density and direction of highly aligned DNA molecules and thus DNA-templated gold nanowires (AuNWs) on Si chips. We utilized tilting method to prepare stretched DNA structures on SiO2/Si substrate and found important parameters in the alignment process that tilt angle, DNA concentration, and surface potential are controlled the density and structure of DNA aligned on the surface. In additional, we also can be directly connected DNA-templated AuNWs between two terminal electrodes on Si chips. This method also describes a simple way to form singled, bundled and networked DNA arrays on Si substrates.

  1. Effect of Individual Strengthening Exercises for Anterior Pelvic Tilt Muscles on Back Pain, Pelvic Angle, and Lumbar ROMs of a LBP Patient with Flat Back.

    PubMed

    Yoo, Won-Gyu

    2013-10-01

    [Purpose] The purpose of this paper is to report the effect of individual strengthening exercises for the anterior pelvic tilt muscles on back pain, pelvic tilt angle, and lumbar ROM of a low back pain (LBP) patient with flat back. [Subject] A 37 year-old male, who complained of LBP pain at L3-5 levels with flat back, participated. [Methods] He performed the individual strengthening exercises for anterior pelvic tilt muscles (erector spinae,iliopsoas, rectus femoris). [Results] Pelvic tilt angles of the right and left sides were recovered to normal ranges. His lumbar ROMs increased, and low back pain decreased. [Conclusion] We suggest that individual resistance exercises are a necessary approach for effective and fast strengthening of pelvic anterior tilt muscles in LBP with flat back.

  2. Comparative analysis on viewing angle change in Fresnel and Fourier holographic images reconstructed by a tilted plane wave.

    PubMed

    Chae, Byung Gyu

    2014-05-20

    We carry out a comparative analysis on a viewing angle change in Fresnel and Fourier holographic images reconstructed by a tilted plane wave. A tilted plane wave illuminating an on-axis hologram generates a diffractive wave carrying the holographic image in a paraxial region of a new diffraction axis. The reconstructed image in the Fresnel hologram is deformed along the new viewing direction, which is well described as Affine transformation. In the Fourier holographic image, the replica of the image is formed without its deformation when the hologram is placed in the front focal plane of the lens, whereas in the case of a hologram that is located at a distance different from a focal length, image deformation arises. This property is investigated through numerical simulation based on a wide-angle diffraction phenomenon. We also perform a similar interpretation for high-order diffraction images appearing in the sampled Fourier hologram and discuss a method for enlarging the viewing angle of the holographic image.

  3. Comparison of muscle and skin perfusion over the ischial tuberosities in response to wheelchair tilt-in-space and recline angles in people with spinal cord injury

    PubMed Central

    Jan, Yih-Kuen; Crane, Barbara A.; Liao, Fuyuan; Woods, Jeffrey A.; Ennis, William J.

    2013-01-01

    Objective To compare the efficacy of wheelchair tilt-in-space and recline on enhancing muscle and skin perfusion over the ischial tuberosities in people with spinal cord injury (SCI). Design Repeated measures and before-after trial design. Setting University research laboratory. Participants Power wheelchair users with SCI (N=20). Interventions Six combinations of wheelchair tilt-in-space and recline angles were presented to participants in a random order. The testing protocol consisted of a baseline 5 min sitting with no tilt/recline and 5 min positioned in tilted and reclined position at each of 6 conditions, including: (1) 15° tilt-in-space and 100° recline, (2) 25° tilt-in-space and 100° recline, (3) 35° tilt-in-space and 100° recline, (4) 15° tilt-in-space and 120° recline, (5) 25° tilt-in-space and 120° recline, and (6) 35° tilt-in-space and 120° recline. Main Outcome Measures Muscle and skin perfusion was assessed by near-infrared spectroscopy and laser Doppler flowmetry, respectively. Results Muscle perfusion was significantly increased at 25° and 35° tilt-in-space when combined with 120° recline and skin perfusion was significantly increased at 3 tilt-in-space angles (15°, 25°, 35°) when combined with 120° recline and at 35° tilt-in-space when combined with 100° recline (P<.05). Even in the positions of increased muscle perfusion and skin perfusion (25° and 35° of tilt-in-space combined with 120° of recline), the amount of muscle perfusion change was significantly lower than the amount of skin perfusion change (P<.05). Conclusions Our results indicate that a larger angle of tilt-in-space and recline is needed to improve muscle perfusion compared to skin perfusion. A position of 25° tilt-in-space combined with 120° recline is effective in enhancing muscle and skin perfusion of weight-bearing soft tissues at the ischial tuberosities. PMID:23602880

  4. Monitoring and dynamic control of distance and tilt angle measurements in micro-alignment instrument using an imaging approach.

    PubMed

    Jeng, C C; Wu, C H; Li, C Z; Chen, J H

    2009-08-17

    An accurate and simple optical triangulation method is proposed for determining the distance and the tilt angle between the window and the SQUID sensor in a scanning SQUID microscope (SSM) system. The surface of window near the sensor plane is roughened with Alumina powder so that the incident and reflected traces of the laser beam passing the window surface become visible and can be measured precisely with a normal optical microscope. Using the proposed approach, the distance between the sensor and the sample can be reproducibly adjusted to 30 microm or less. This method can also be applied to photolithography apparatus to detect the relative positions of the mask and the wafer.

  5. {l_angle}110{r_angle} symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies

    SciTech Connect

    Rittner, J.D.; Seidman, D.N.

    1996-09-01

    Twenty-one {l_angle}110{r_angle} symmetric tilt grain boundaries (GB{close_quote}s) are investigated with atomistic simulations, using an embedded-atom method (EAM) potential for a low stacking-fault energy fcc metal. Lattice statics simulations with a large number of initial configurations are used to identify both the equilibrium and metastable structures at 0 K. The level of difficulty in finding the equilibrium structures is quantitatively assessed. The stability of the structures at an elevated temperature is investigated by Monte Carlo annealing. A form of GB dissociation is identified in a number of the boundaries. These structures are used to develop a dislocation model of GB dissociation by stacking-fault emission. Also, an attempt is made to apply the structural unit model (SUM) to the simulated boundaries and problems that are encountered for GB structures in low stacking-fault energy metals are enumerated and discussed. {copyright} {ital 1996 The American Physical Society.}

  6. Precipitation of low energy electrons at high latitudes: Effects of substorms, interplanetary magnetic field and dipole tilt angle

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1972-01-01

    Data from the auroral particles experiment on OGO-4 were used to study effects of substorm activity, interplanetary magnetic field latitutde, and dipole tilt angle on high-latitude precipitation of 700 eV electrons. It was found that: (1) The high-latitude zone of 700 eV electron precipitation in late evening and early morning hours moves equatorward by 5 to 10 deg during substorms. (2) The low-latitude boundary of polar cusp electron precipitation at 9 to 15 hours MLT also moves equatorward by several degrees during substorms and, in the absence of significant substorm activity, after a period of southward interplanetary magnetic field. (3) With times containing substorm activity or a southward interplanetary magnetic field eliminated, the low-latitude boundary of polar cusp electron precipitation is found to move by approximately 4 deg over the total yearly range of tilt angles. At maximum winter and summer conditions the invariant latitude of the boundary is shown to shift by approximately -3 deg and +1 deg respectively from its equinox location.

  7. Impact of the dipole tilt angle on the ionospheric plasma in the outer plasmasphere

    NASA Astrophysics Data System (ADS)

    Marchaudon, Aurelie; Blelly, Pierre-Louis

    2015-04-01

    We have developed a new interhemispheric 16-moment based ionosphere model. This model describes the field-aligned transport of the multi-species ionospheric plasma (6 ions) from one hemisphere to the other, taking into account source processes at low altitudes (photoionization, chemistry) and coupling with suprathermal electrons. We simulate the convection and corotation transport of closed flux tubes in the outer plasmasphere for tilted/eccentric dipolar magnetic field configuration. We ran the model in solstice and equinox conditions and for two plasmapause boundary conditions: one corresponding to standard conditions with a stagnation point at 4.5 Earth radii (RE) and 15h Magnetic Local Time (MLT) and one corresponding to very quiet conditions with a stagnation point at 6 RE and 15h MLT. For each season/stagnation simulation, the model is run for 30 days before the equinox/solstice date in order to eliminate the transients. The goal is to study the combined effect of the tilt of the magnetic field and the rotation axis on the field-aligned dynamics and overall equilibrium of the subauroral ionosphere. In the classical representation of the plasmasphere, the ionosphere only depends on angular MLT sector. We will show that due to the tilt effect, this view is erroneous and no real dynamic equilibrium is reached, in particular close to the stagnation point where we can observe large day-to-day variations in the ionospheric parameters. Finally, we will present the temperatures anisotropy development along the flux tube for different positions of the stagnation point.

  8. Stable dual-wavelength microlaser controlled by the output mirror tilt angle

    NASA Astrophysics Data System (ADS)

    Pallas, Florent; Herault, Emilie; Zhou, Jie; Roux, Jean-Francois; Vitrant, Guy

    2011-12-01

    A continuous-wave dual-wavelength solid-state microlaser is presented and a technique for regulating the gain competition between the two wavelengths is proposed, based on the angular tilt of the laser cavity output mirror. Laser behavior is studied and balanced dual-wavelength emission is obtained with output power levels as high as 200 mW for 2 W pump power. Sum frequency mixing is demonstrated making the source promising for Terahertz generation in the 0.5-0.7 THz range through difference frequency generation.

  9. A case study on optimum tip speed ratio and pitch angle laws for wind turbine rotors operating in yawed conditions

    NASA Astrophysics Data System (ADS)

    Cuerva-Tejero, A.; Lopez-Garcia, O.; Marangoni, D.; González-Meruelo, F.

    2014-12-01

    The values of the tip speed ratio and blade pitch angle that yield maximum power coefficient are calculated for a rotor operating in yawed conditions. In a first step, the power coefficient is determined using a model based on the blade element momentum theory (BEMT) which includes a Prandtl-Glauert root-tip losses correction, a non-uniform model for the axial and tangential induction factors, and a model of the rotational augmentation effects. The BEMT model is validated with the experimental data from the NREL-UAE. The maximum values of the power coefficient are determined for different yaw angles and the corresponding values of the tip speed ratio and blade control angle are obtained. The maximum power coefficient using these optimum laws is compared to the maximum power coefficient using the optimum laws of the non-yawed case and it is shown that there is a gain in the power coefficient. For the case study presented in this paper it has been found that for yaw angles of 30° about 10% of the power coefficient can be recovered.

  10. Note: effect of the tilting angle of the wire on the onset of natural convection in the transient hot wire method.

    PubMed

    Lee, Seung-Hyun; Jang, Seok Pil

    2012-07-01

    In this paper, numerical and experimental investigations are systematically performed to identify the effect of the tilting angle of the wire on the onset of natural convection in the transient hot wire method (THWM), a widely accepted technique for measuring the thermal conductivity of various media, especially nanofluids. To validate our numerical simulation code, the numerical results are compared with theoretical solutions as well as with experimental results. Based on the results, we show that the onset time of natural convection in THWM decreases rapidly with the increase of the wire's tilting angle from vertical position. Also, we systematically show the effect of the wire's tilting angle on the linear region, which is a suitable measurement interval, and on the measurement error of THWM.

  11. Relationship between the contact angle and the tilt angle on the vertical polymer layer of NLC using various ion beam exposure energy

    NASA Astrophysics Data System (ADS)

    Lim, Ji-Hun; Kim, Young-Hwan; Oh, Byeong-Yun; Kim, Byoung-Yong; Han, Jeong-Min; Hwang, Jeong-Yeon; Seo, Dae-Shik

    2009-08-01

    Recently, the relationship between surface energy and tilt angle on vertical polyimide (PI) was studied. The study showed that ion beam (IB) exposure using argon gas changes the surface energy of vertical PI as a function of exposure time. This characteristic induces the transition of vertical liquid crystal (LC) orientation from vertical to homogeneous. In this study, we applied the property to fabricate liquid crystal displays (LCD) with both vertical alignment (VA) and twisted nematic (TN) LCDs on vertical PI. The study revealed correlations between various IB exposure energies and surface energies with the same exposure time on vertical PI. X-ray photoelectron spectroscopic spectra were analyzed to prove the correlations and transmittance curves via applied voltage to VA, and TN LCDs were evaluated to observe the LC driving performance on IB-irradiated vertical PI.

  12. Capacitance of single crystal and low-angle tilt bicrystals of Fe-doped SrTiO3.

    PubMed

    De Souza, R A; Maier, J

    2007-01-01

    We used a.c. impedance spectroscopy to study the capacitance of single crystal and bicrystal Fe-doped SrTiO3. Measurements performed on a single crystal sample indicate unequivocally that the bulk dielectric permittivity is dependent on defect concentration. Three symmetrical [001] tilt bicrystals with misorientation angles theta = 2.3, 5.4 and 7.8 degrees were examined. The area specific capacitances obtained for the 5.4 and 7.8 degrees boundaries are consistent with values predicted from a one-dimensional double-Schottky-barrier model. For the 2.3 degrees boundary, more complex behaviour was observed. This is attributed to the electrical non-uniformity of the interface becoming significant at large dislocation separation. The effects of a d.c. bias on the impedance of the bicrystals was also investigated.

  13. Calculation of the Target Lumbar Lordosis Angle for Restoring an Optimal Pelvic Tilt in Elderly Patients With Adult Spinal Deformity.

    PubMed

    Yamato, Yu; Hasegawa, Tomohiko; Kobayashi, Sho; Yasuda, Tatsuya; Togawa, Daisuke; Arima, Hideyuki; Oe, Shin; Iida, Takahiro; Matsumura, Akira; Hosogane, Naobumi; Matsumoto, Morio; Matsuyama, Yukihiro

    2016-02-01

    This investigation consisted of a cross-sectional study and a retrospective multicenter case series. This investigation sought to identify the ideal lumbar lordosis (LL) angle for restoring an optimal pelvic tilt (PT) in patients with adult spinal deformity (ASD). To achieve successful corrective fusion in ASD patients with sagittal imbalance, it is essential to correct the sagittal spinal alignment and obtain a suitable pelvic inclination. We determined the LL angle that would restore the optimal PT following ASD surgery. The cross-sectional study included 184 elderly volunteers (mean age 64 years) with an Oswestry Disability Index score less than 20%. The relationship between PT or LL and the pelvic incidence (PI) in normal individuals was investigated. The second study included 116 ASD patients (mean age 66 years) who underwent thoracolumbar corrective fusion at 1 of 4 spine centers. The postoperative PT values were calculated using the parameters measured. On the basis of these studies, an ideal LL angle was determined. In the cross-sectional study, the linear regression equation for the optimal PT as a function of PI was "optimal PT = 0.47 × PI - 7.5." In the second study, the postoperative PT was determined as a function of PI and corrected LL, using the equation "postoperative PT = 0.7 × PI - 0.5 × corrected LL + 8.1." The target LL angle was determined by mathematically equalizing the PTs of these 2 equations: "target LL = 0.45 × PI + 31.8." The ideal LL angle can be determined using the equation "LL = 0.45 × PI + 31.8," which can be used as a reference during surgical planning in ASD cases. 4.

  14. Deposition temperature mediated tunable tilt angle magnetization in Co-Pt/Ni81Fe19 exchange springs

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Hsu, Jen-Hwa; Tsai, C. L.; Lee, C.-M.

    2015-05-01

    In this study, we investigate the effect of deposition temperature of Co-Pt fixed layer, Td,CoPt (150, 250 and 350 °C) on the tilt angle magnetization (θM) of Ni81Fe19-layer grown at room temperature (RT) and at different thicknesses (tNiFe=0, 1.0, 2.5 and 4.0 nm) in Co-Pt(Td,CoPt)/NiFe(tNiFe) exchange springs. The magnetic studies demonstrated a strong perpendicular magnetic anisotropy (PMA) for the equi-compositional ordered Co-Pt layer grown on glass substrate using the film sequence: Ta(20 nm)/Pt(20 nm)/CoPt(5 nm), regardless of Td,CoPt. The PMA can be retained with the addition of a 4-nm NiFe layer on the top when Td,CoPt≥250 °C. In contrast, relatively a thin layer of Ni-Fe (2.5 nm) can destroy the perpendicular exchange-spring behavior if the Co-Pt layer is deposited at RT. Using 3-D micromagnetic simulation, the interfacial exchange coupling strength (Aij) between the Co-Pt and NiFe-layers was estimated and the Aij value is found to increase rapidly when Td,CoPt is increased from RT to 300 °C. Besides, the magnetization tilted angle (θM) of NiFe can be easily tuned from completely out-of-plane to almost 60° when tNiFe=4.0 nm. Through this study, it is demonstrated that the θM of NiFe-layer can be tuned by not only altering the tNiFe; but also by varying the Td,CoPt.

  15. Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in Czochralski-grown silicon crystals

    SciTech Connect

    Ohno, Yutaka Inoue, Kaihei; Fujiwara, Kozo; Deura, Momoko; Kutsukake, Kentaro; Yonenaga, Ichiro; Shimizu, Yasuo; Inoue, Koji; Ebisawa, Naoki; Nagai, Yasuyoshi

    2015-06-22

    Three-dimensional distribution of oxygen atoms at small-angle tilt boundaries (SATBs) in Czochralski-grown p-type silicon ingots was investigated by atom probe tomography combined with transmission electron microscopy. Oxygen gettering along edge dislocations composing SATBs, post crystal growth, was observed. The gettering ability of SATBs would depend both on the dislocation strain and on the dislocation density. Oxygen atoms would agglomerate in the atomic sites under the tensile hydrostatic stress larger than about 2.0 GPa induced by the dislocations. It was suggested that the density of the atomic sites, depending on the tilt angle of SATBs, determined the gettering ability of SATBs.

  16. Influence of the tilt angle of Percutaneous Aortic Prosthesis on Velocity and Shear Stress Fields.

    PubMed

    Gomes, Bruno Alvares de Azevedo; Camargo, Gabriel Cordeiro; Santos, Jorge Roberto Lopes Dos; Azevedo, Luis Fernando Alzuguir; Nieckele, Ângela Ourivio; Siqueira-Filho, Aristarco Gonçalves; Oliveira, Glaucia Maria Moraes de

    2017-08-07

    Due to the nature of the percutaneous prosthesis deployment process, a variation in its final position is expected. Prosthetic valve placement will define the spatial location of its effective orifice in relation to the aortic annulus. The blood flow pattern in the ascending aorta is related to the aortic remodeling process, and depends on the spatial location of the effective orifice. The hemodynamic effect of small variations in the angle of inclination of the effective orifice has not been studied in detail. To implement an in vitro simulation to characterize the hydrodynamic blood flow pattern associated with small variations in the effective orifice inclination. A three-dimensional aortic phantom was constructed, reproducing the anatomy of one patient submitted to percutaneous aortic valve implantation. Flow analysis was performed by use of the Particle Image Velocimetry technique. The flow pattern in the ascending aorta was characterized for six flow rate levels. In addition, six angles of inclination of the effective orifice were assessed. The effective orifice at the -4° and -2° angles directed the main flow towards the anterior wall of the aortic model, inducing asymmetric and high shear stress in that region. However, the effective orifice at the +3° and +5° angles mimics the physiological pattern, centralizing the main flow and promoting a symmetric distribution of shear stress. The measurements performed suggest that small changes in the angle of inclination of the percutaneous prosthesis aid in the generation of a physiological hemodynamic pattern, and can contribute to reduce aortic remodeling. Devido à natureza do processo de liberação da prótese percutânea, é esperada uma variabilidade do posicionamento final da válvula. A localização da prótese irá definir a posição espacial do seu orifício efetivo em relação ao ânulo aórtico. O padrão do fluxo sanguíneo em aorta ascendente está relacionado ao processo de remodelamento a

  17. Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Forrest, Stephen R.

    2009-09-01

    We demonstrate small molecule bulk heterojunction organic photovoltaic cells using oblique angle vacuum deposition. Obliquely deposited donor chloroaluminum phthalocyanine (ClAlPc) films on indium tin oxide have surface feature sizes of ˜30 nm, resulting in ClAlPc/C60 donor-acceptor heterojunctions (HJs) with approximately twice the interface area of HJs grown at normal incidence. This results in nearly twice the external quantum efficiency in the ClAlPc absorption band compared with analogous, planar HJs. The efficiency increase is attributed to the increased surface area presented by the donor-acceptor junction to the incident illumination by ClAlPc protrusions lying obliquely to the substrate plane formed during deposition. The power conversion efficiency improves from (2.0±0.1)% to (2.8±0.1)% under 1 sun, AM 1.5G simulated solar illumination. Similarly, the power efficiency of copper phthalocyanine/C60 organic photovoltaic cells is increased from (1.3±0.1)% to (1.7±0.1)%.

  18. High efficiency ring-lens supercritical angle fluorescence (SAF) detection for optimum bioassay performance.

    PubMed

    Kurzbuch, Dirk; Somers, Martin; McDonagh, Colette

    2013-09-23

    We present a polymer biochip with embedded optics which allows the detection of supercritical angle fluorescence (SAF) without losses due to total internal reflection within the substrate. The chip design comprises structured spherical and aspherical optical elements on the bottom, while the top is chemically functionalized for direct binding of biomolecules. Furthermore, this design facilitates integration in lab-on-a-chip systems with appropriate microfluidics. In the confocal optical setup an ellipsoidal mirror is used for collection of SAF light above the critical angle of the water-polymer interface, which is detected by a photon-counting detector. The work presented here represents a proof of concept for performing sensitive and rapid point-of-care testing, using this low-cost, robust and disposable optical biochip platform. The performance of the platform was validated using direct binding DNA and human IgG assays which yielded low limits of detection 10 pM for DNA and 10 pg/ml for human IgG.

  19. Electro-optic response of the anticlinic, antiferroelectric liquid-crystal phase of a biaxial bent-core molecule with tilt angle near 45∘

    NASA Astrophysics Data System (ADS)

    Nakata, Michi; Chen, Dong; Shao, Renfan; Korblova, Eva; Maclennan, Joseph E.; Walba, David M.; Clark, Noel A.

    2012-03-01

    We describe the unusual electro-optic response of a biaxial bent-core liquid crystal molecule that exhibits an anticlinic, antiferroelectric smectic phase (Sm-CAPA) with a molecular tilt angle close to 45°. In the ground state, the sample shows very low birefringence. A weak applied electric field distorts the antiferroelectric ground state, inducing a small azimuthal reorientation of the molecules on the tilt cone. This results in only a modest increase in the birefringence but an anomalously large (˜40°) analog rotation of the extinction direction. This unusual electro-optic response is shown to be a consequence of the molecular biaxiality.

  20. Bioinspired tilt-angle fabricated structure gradient fibers: micro-drops fast transport in a long-distance

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Wang, Lin; Xue, Yan; Jiang, Lei; Zheng, Yongmei

    2013-10-01

    Issues of surfaces, e.g., inspired from beetle's back, spider silk, cactus stem, etc., become the active area of research on designing novel materials in need of human beings to acquire fresh water resource from air. However, the design of materials on surface structure is little achieved on controlling of micro-scale drop transport in a long distance. Here, we report the ability of micro-drop transport in a long distance on a bioinspired Fibers with Gradient Spindle-knots (BFGS), which are fabricated by tilt angle dip-coating method. The micro-drop of ~0.25 μL transports in distance of ~5.00 mm, with velocity of 0.10-0.22 m s-1 on BFGS. It is attributed to the multi-level cooperation of the release energy of drop coalescence along the gradient spindle-knots, in addition to capillary adhesion force and continuous difference of Laplace pressure, accordingly, water drops are driven to move fast directionally in a long distance on BFGS.

  1. The Multiple Roles of Small-Angle Tilt Grain Boundaries in Annihilating Radiation Damage in SiC

    PubMed Central

    Jiang, Hao; Wang, Xing; Szlufarska, Izabela

    2017-01-01

    Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled and can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. When defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb. PMID:28181488

  2. Dynamics of formation of low-angle tilt boundaries in metals and alloys at high loading rates

    NASA Astrophysics Data System (ADS)

    Gutkin, M. Yu.; Rzhavtsev, E. A.

    2015-12-01

    A computer model has been developed in which the process of formation of low-angle tilt boundaries and fragmentation of initial subgrains during shock loading of metals and alloys is clearly demonstrated by the of two-dimensional discrete dislocation-disclination dynamics method. The formation and evolution of such grains proceeds under the action of an external stress and the stress field of grain boundary disclinations distributed on the subgrain boundaries. With the D16 aluminum alloy as an example, three cases of fragmented structures formed in accordance with the initial configuration of the disclination ensemble have been considered for a dipole, quadrupole, and arbitrary octupole of wedge disclinations. It has been shown that, in all these cases, the formation of a stable fragmented structure requires a stress of ~0.5 GPa and time of 10 ns. The main results of computer simulation (the finite form of a fragmented structure, typical level of applied stress, and small fragmentation time) agree well with known experimental results on shock compression of the D16 aluminum alloy.

  3. The Multiple Roles of Small-Angle Tilt Grain Boundaries in Annihilating Radiation Damage in SiC

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Wang, Xing; Szlufarska, Izabela

    2017-02-01

    Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled and can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. When defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.

  4. The multiple roles of small-angle tilt grain boundaries in annihilating radiation damage in SiC

    DOE PAGES

    Jiang, Hao; Wang, Xing; Szlufarska, Izabela

    2017-02-09

    Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled andmore » can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. As a result, when defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.« less

  5. Vortex flow structures and interactions for the optimum thrust efficiency of a heaving airfoil at different mean angles of attack

    SciTech Connect

    Martín-Alcántara, A.; Fernandez-Feria, R.

    2015-07-15

    The thrust efficiency of a two-dimensional heaving airfoil is studied computationally for a low Reynolds number using a vortex force decomposition. The auxiliary potentials that separate the total vortex force into lift and drag (or thrust) are obtained analytically by using an elliptic airfoil. With these auxiliary potentials, the added-mass components of the lift and drag (or thrust) coefficients are also obtained analytically for any heaving motion of the airfoil and for any value of the mean angle of attack α. The contributions of the leading- and trailing-edge vortices to the thrust during their down- and up-stroke evolutions are computed quantitatively with this formulation for different dimensionless frequencies and heave amplitudes (St{sub c} and St{sub a}) and for several values of α. Very different types of flows, periodic, quasi-periodic, and chaotic described as St{sub c}, St{sub a}, and α, are varied. The optimum values of these parameters for maximum thrust efficiency are obtained and explained in terms of the interactions between the vortices and the forces exerted by them on the airfoil. As in previous numerical and experimental studies on flapping flight at low Reynolds numbers, the optimum thrust efficiency is reached for intermediate frequencies (St{sub c} slightly smaller than one) and a heave amplitude corresponding to an advance ratio close to unity. The optimal mean angle of attack found is zero. The corresponding flow is periodic, but it becomes chaotic and with smaller average thrust efficiency as |α| becomes slightly different from zero.

  6. Prediction of the optimum surface orientation angles to achieve maximum solar radiation using Particle Swarm Optimization in Sabha City Libya

    NASA Astrophysics Data System (ADS)

    Mansour, F. A.; Nizam, M.; Anwar, M.

    2017-02-01

    This research aims to predict the optimum surface orientation angles in solar panel installation to achieve maximum solar radiation. Incident solar radiation is calculated using koronakis mathematical model. Particle Swarm Optimization (PSO) is used as computational method to find optimum angle orientation for solar panel installation in order to get maximum solar radiation. A series of simulation has been carried out to calculate solar radiation based on monthly, seasonally, semi-yearly and yearly period. South-facing was calculated also as comparison of proposed method. South-facing considers azimuth of 0°. Proposed method attains higher incident predictions than South-facing that recorded 2511.03 kWh/m2for monthly. It were about 2486.49 kWh/m2, 2482.13 kWh/m2and 2367.68 kWh/m2 for seasonally, semi-yearly and yearly. South-facing predicted approximately 2496.89 kWh/m2, 2472.40 kWh/m2, 2468.96 kWh/m2, 2356.09 kWh/m2for monthly, seasonally, semi-yearly and yearly periods respectively. Semi-yearly is the best choice because it needs twice adjustments of solar panel in a year. Yet it considers inefficient to adjust solar panel position in every season or monthly with no significant solar radiation increase than semi-yearly and solar tracking device still considers costly in solar energy system. PSO was able to predict accurately with simple concept, easy and computationally efficient. It has been proven by finding the best fitness faster.

  7. Does matching relation exist between the length and the tilting angle of terminal implants in the all-on-four protocol? stress distributions by 3D finite element analysis

    PubMed Central

    Li, Xiaomei; Cao, Zhizhong; Qiu, Xiaoqian; Tang, Zhen; Gong, Lulu

    2015-01-01

    PURPOSE To explore whether there is matching relation between the length and the tilting angle of terminal implants in the All-on-Four protocol by studying the effects of different implant configurations on stress distributions of implant, bone, and framework. MATERIALS AND METHODS Four implants were employed to support a full-arch fixed prosthesis and five three-dimensional finite element models were established with CT images, based on the length (S and L) and distal tilt angle (0°, 30° and 45°) of terminal implants for an edentulous mandible, which named: Tilt0-S, Tilt30-S, Tilt30-L, Tilt45-S and Tilt45-L. An oblique 240 N was loaded at second molar. The von Mises Stresses were analyzed. The implants were consecutively named #1 to #4 from the loading point. RESULTS 1) Tilt0-S had the greatest stress on the implants, with the other groups exhibiting variable reductions; the four implants of Tilt45-L demonstrated the greatest reduction in stress. 2) Tilt0-S had the greatest stress at bone around #1 implant neck, and Tilt45-L exhibited the least stress, which was a 36.3% reduction compared to Tilt0-S. 3) The greatest stress in the framework was found on the cantilevers distal to #1 implant. Tilt45-S exhibited the least stress. CONCLUSION Matching different length and tilting angle of the terminal implants led to variable stress reductions on implants, bone and the superstructure. By optimizing implant configuration, the reduction of stress on implants and surrounding bone could be maximized. Under the present condition, Tilt45-L was the preferred configuration. Further clinical testings are required. PMID:26140176

  8. Electron-beam transmission through a micrometer-sized tapered-glass capillary: Dependence on incident energy and angular tilt angle

    NASA Astrophysics Data System (ADS)

    Wickramarachchi, S. J.; Ikeda, T.; Dassanayake, B. S.; Keerthisinghe, D.; Tanis, J. A.

    2016-08-01

    An experimental study of 500- and 1000-eV incident electrons transmitted through a micrometer-sized funnel-shaped (tapered) glass capillary with inlet diameter 0.80 mm, outlet diameter 0.10 mm, and a length of 35 mm is reported. The properties of the electron beam transmitted were measured as a function of the emerging angle and the incident energy dependence. The angular profiles were found to be comprised of up to three peaks for both 500 and 1000 eV showing evidence for transmission going straight through the capillary without interacting with the walls (direct), as well as transmission resulting from Coulomb deflection of the electrons from a negative charge patch or by scattering from nuclei close to the surface of the capillary (indirect). The energy spectra show that elastically transmitted electrons dominate at 500 eV for increasing sample tilt angles up to ˜5.0°, while inelastic processes dominate for 1000 eV already at tilt angles of ˜1.0°. The angular width of the emitted electrons was found to constitute a narrow beam for direct (˜0.4°) and indirect (<0.6° for 500 eV and <1.0° for 1000 eV) transmission for both energies with the widths decreasing for the largest tilt angles measured and approaching the inherent resolution (˜0.3°) of the electron analyzer.

  9. Correlation between pelvic tilt and the sacro-femoral-pubic angle in patients with adolescent idiopathic scoliosis, patients with congenital scoliosis, and healthy individuals.

    PubMed

    Ghandhari, Hassan; Fouladi, Daniel Fadaei; Safari, Mir Bahram; Ameri, Ebrahim

    2016-02-01

    To examine whether the sacro-femoral-pubic (SFP) angle could estimate pelvic tilt (PT) in scoliotic and normal subjects. One hundred nine subjects including 38 patients with adolescent idiopathic scoliosis (AIS), 35 patients with congenital scoliosis (CS), and 36 healthy individuals were studied. PT, as the angle between the lines connecting the midpoint of the sacral plate to the centroid of one acetabulum and the vertical plane, and the SFP angle, as the angle between the midpoint of the upper sacral endplate, the centroid of one acetabulum, and the upper midpoint of the pubic symphysis, were calculated on full-length lateral and anteroposterior radiographs, respectively. Correlations between PT and the SFP angle were investigated in each group. The three groups were comparable in terms of age, sex, and the mean SFP angle. The mean PT, however, was significantly lower in healthy subjects compared to that in patients with AIS and CS. Significant and reverse correlations were present between PT and the SFP angle in all three groups (AIS: r = -0.32, p = 0.04, PT = 82.5 - average SFP angle; CS: r = -0.48, p = 0.003, PT = 95.41 - average SFP angle; healthy: r = -0.33, p = 0.04, PT = 88.95 - average SFP angle). Unlike two previous reports, the SFP angle correlated poorly to PT in this study, limiting its use as a suitable surrogate for PT in scoliotic and healthy subjects.

  10. Application of posterior pelvic tilt taping for the treatment of chronic low back pain with sacroiliac joint dysfunction and increased sacral horizontal angle.

    PubMed

    Lee, Jung-hoon; Yoo, Won-gyu

    2012-11-01

    Kinesio Taping (KT) is a therapeutic method used by physical therapists and athletic trainers in combination with other treatment techniques for various musculoskeletal and neuromuscular problems. However, no research has evaluated the effect of KT in patients with low back pain (LBP). The purpose of this case was to describe the application of posterior pelvic tilt taping (PPTT) with Kinesio tape as a treatment for chronic LBP and to reduce the anterior pelvic tilt angle. Case report. The patien was a 20-year-old female amateur swimmer with a Cobb's angle (L1-S1) of 68°, a sacral horizontal angle of 45°, and pain in both medial buttock areas and sacroiliac joints. We performed PPTT with Kinesio tape for 2 weeks (six times per week for an average of 9 h each time). The patient’s radiographs showed that the Cobb's angle (L1-S1) had decreased from 68° to 47° and that the sacral horizontal angle had decreased from 45° to 31°. Reductions in hypomobility or motion asymmetry, as assessed by the motion palpation test, and in pain, as measured by the pain-provocation tests, were observed. On palpation for both medial buttock areas in the prone position, the patient felt no pain. The patient experienced no pain or stiffness in the low back area while performing forward flexion in the standing position with knees fully extended when washing dishes in the sink. The case study demonstrated that PPTT intervention favourably affected the pelvic inclination and sacral horizontal angle, leading to beneficial effects on sacroiliac joint dysfunction (SIJD) and medial buttock pain. Additional research on the clinical effects of this taping procedure requires greater numbers of athletes with SIJD or LBP who have inappropriate anterior pelvic tilt angles and hyperlordosis.

  11. Hot-carrier degradation in deep-submicrometer nMOSFETs: lightly doped drain vs. large angle tilt implanted drain

    NASA Astrophysics Data System (ADS)

    Rafí, J. M.; Campabadal, F.

    2001-08-01

    The hot-carrier degradation of lightly doped drain (LDD) and large angle tilt implanted drain (LATID) nMOSFETs of a 0.35 μm CMOS technology is analysed and compared by means of I-V characterisation and charge pumping current measurements. LATID nMOSFETs are found to exhibit a significant improvement in terms of both, current drivability and hot-carrier immunity at maximum substrate current condition. The different factors which can be responsible for this improved hot-carrier resistance are investigated. It is shown that this must be attributed to a reduction of the maximum lateral electric field along the channel, but not to a minor generation of physical damage for a given electric field or to a reduced I-V susceptibility to a given amount of generated damage. Further to this analysis, the hot-carrier degradation comparison between LDD and LATID devices is extended to the whole range of gate-stress regimes and the effects of short electron injection (SEI) and short hole injection (SHI) phases on hot-carrier-stressed devices are analysed. Apart from a significant improved resistance to hot-carrier effects registered for LATID devices, a similar behaviour is observed for the two types of architectures. In this way, SEI phases are found to be an efficient tool for revealing part of the damage generated in stresses at low gate voltages, whereas the performance of a first SHI phase after stress at high gate bias is found to result in a significant additional degradation of the devices. This enhanced degradation is attributed to a sudden interface states build-up occurring in both, LDD and LATID devices, near the Si/spacer interface only under the first hot-hole injection condition.

  12. Switchable dual-wavelength Q-switched and mode-locked fiber lasers using a large-angle tilted fiber grating.

    PubMed

    Zhang, Zuxing; Mou, Chengbo; Yan, Zhijun; Wang, Yongjin; Zhou, Kaiming; Zhang, Lin

    2015-01-26

    We proposed and demonstrated pulsed fiber lasers Q-switched and mode-locked by using a large-angle tilted fiber grating, for the first time to our best knowledge. Owing to the unique polarization properties of the large-angle tilted fiber grating (LA-TFG), i.e. polarization-dependent loss and polarization-mode splitting, switchable dual-wavelength Q-switched and mode-locked pulses have been achieved with short and long cavities, respectively. For the mode-locking case, the laser was under the operation of nanosecond rectangular pulses, due to the peak-power clamping effect. With the increasing pump power, the durations of both single- and dual-wavelength rectangular pulses increase. It was also found that each filtered wavelength of the dual-wavelength rectangular pulse corresponds to an individual nanosecond rectangular pulse by employing a tunable bandpass filter.

  13. Effects of the aspect ratio on the optimal tilting angle for maximum convection heat transfer across air-filled rectangular enclosures differentially heated at sides

    NASA Astrophysics Data System (ADS)

    Cianfrini, C.; Corcione, M.; Habib, E.; Quintino, A.

    2017-06-01

    Natural convection in air-filled rectangular cavities inclined with respect to gravity, so that the heated wall is facing upwards, is studied numerically under the assumption of two-dimensional laminar flow. A computational code based on the SIMPLE-C algorithm is used for the solution of the system of the mass, momentum and energy transfer governing equations. Simulations are performed for height-to-width aspect ratios of the enclosure from 0.25 to 8, Rayleigh numbers based on the length of the heated and cooled walls from 102 to 107, and tilting angles of the enclosure from 0° to 75°. The existence of an optimal tilting angle is confirmed for any investigated configuration, at a location that increases as the Rayleigh number is decreased, and the height-to-width aspect ratio of the cavity are increased, unless the value of the Rayleigh number is that corresponding to the onset of convection or just higher. Dimensionless correlating equations are developed to predict the optimal tilting angle and the heat transfer performance of the enclosure.

  14. Perception of the upright and susceptibility to motion sickness as functions of angle of tilt and angular velocity in off-vertical rotation. [human tolerance to angular accelerations

    NASA Technical Reports Server (NTRS)

    Miller, E. F., II; Graybiel, A.

    1973-01-01

    Motion sickness susceptibility of four normal subjects was measured in terms of duration of exposure necessary to evoke moderate malaise (MIIA) as a function of velocity in a chair rotated about a central axis tilted 10 deg with respect to gravitational upright. The subjects had little or no susceptibility to this type of rotation at 2.5 and 5.0 rpm, but with further increases in rate, the MIIA endpoint was always reached and with ever shorter test durations. Minimal provocative periods for all subjects were found at 15 or 20 rpm. Higher rotational rates dramatically reversed the vestibular stressor effect, and the subjects as a group tended to reach a plateau of relatively low susceptibility at 40 and 45 rpm. At these higher velocities, furthermore, the subjects essentially lost their sensation of being tilted off vertical. In the second half of the study, the effect of tilt angle was varied while the rotation rate was maintained at a constant 17.5 rpm. Two subjects were completely resistant to symptoms of motion sickness when rotated at 2.5 deg off vertical; with greater off-vertical angles, the susceptibility of all subjects increased sharply at first, then tapered off in a manner reflecting a Fechnerian function.

  15. The effect of inclination angle on the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries

    NASA Astrophysics Data System (ADS)

    Yuan, Lin; Jing, Peng; Shan, Debin; Guo, Bin

    2017-01-01

    Atomistic simulations were used to investigate the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries at 0.1 K. The calculated grain boundary energies of Σ3 asymmetric tilt grain boundaries corresponded well with the energies measured in experiments and predicted by the theoretical description. The Σ3 asymmetric tilt grain boundaries with low inclination angles were composed of a replication of twin boundary segments separated by small ledges. The results demonstrated that the combination effect of Schmid factor and non-Schmid factors could explain dislocations emission into grain 1 only in models with low inclination angles (Ф < 64.76°). At the latter stage of plastic deformation, free surfaces served as additional dislocation sources. Parallelly arranged operative slip systems were the fundamental features of plastic deformation. In addition, a number of stacking faults and multiple stacking faults were formed during plastic deformation. The hindrance of stacking faults to dislocation motion and the interactions between dislocations leaded to the observed strain hardening in nanowires with inclination angles at and above 29.50°. The low stacking fault energy of silver was responsible for the appearance of strain hardening. Dislocations emitted from grain 2 interacted with each other contributing to the observed strain hardening. Grain boundaries were completely eliminated by successive emission of dislocations from grain boundaries in nanowires with an inclination angle of 35.26° and 54.74°. A detailed understanding of the relationship between strength and grain boundary structures as well as specific plastic deformation would push forward the application of nanocrystalline materials and provide insights into the synthesis of nanocrystalline materials with superior strength and ductility.

  16. Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plate.

    PubMed

    Krasovitski, Boris; Marmur, Abraham

    2005-04-26

    The limiting inclination angle (slip angle), for which a two-dimensional water drop may be at equilibrium on a chemically heterogeneous surface, is exactly calculated for a variety of cases. The main conclusion is that, in the cases studied, the contact angles at the upper and lower contact line do not always simultaneously equal the receding and advancing contact angles, respectively. On a hydrophobic surface, the lowest contact angle (at the upper contact line) tends to be approximately equal to the receding contact angle, while the highest contact angle (at the lower contact line) may be much lower than the advancing contact angle. For hydrophilic surfaces, the opposite is true. These conclusions imply that the hysteresis range cannot in general be measured by analyzing the shape of a drop on an inclined plane. Also, the limiting inclination angle cannot in general be calculated from the classical equation based only on the advancing and receding contact angles.

  17. Role of Ta-spacer layer on tuning the tilt angle magnetic anisotropy of L11-CoPt/Ta/NiFe exchange springs

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Talapatra, A.; Mohanty, J.; Hsu, Jen-Hwa; Kamat, S. V.

    2017-06-01

    L11-CoPt/Ta/NiFe trilayers are chosen as model films for probing the role of spacer layer on tuning the tilt angle magnetization (θM) in such exchange springs. For this purpose, a non-magnetic layer (Ta) with varying thickness (tTa) from 0 to 2.5 nm was inserted between 10-nm thick CoPt film exhibiting strong perpendicular magnetic anisotropy (PMA) and 4-nm thick NiFe film having in-plane magnetic anisotropy (IMA). With the insertion of Ta-spacer, the magnetic hysteresis loops become more and more tilted as tTa increases. Upon increasing the tTa from 0 to 2.5 nm, the estimated SQR⊥ (=Mr⊥/Ms⊥) from the M-H loops is found to decrease moderately; while the θM increases significantly from 43° to 77°. MFM images revealed maze-like domain patterns and the domain size tends to increase at the expense of magnetic phase contrast with increasing tTa. Micro-magnetic simulation of tilt in the anisotropy axis with respect to the bare CoPt-layer showed a trend similar to that of those observed with the M-H loops obtained by VSM measurements. The results of present study suggest that the insertion of Ta-spacer is not only beneficial in terms of preserving the competing anisotropies such as PMA and IMA of CoPt and NiFe-layers respectively through weakened exchange coupling; but also, act as an appropriate means for realizing tunable tilted magnetic anisotropy in the L11-CoPt/NiFe exchange springs.

  18. Tilt and Azimuthal Angles of a Transmembrane Peptide: A Comparison between Molecular Dynamics Calculations and Solid-State NMR Data of Sarcolipin in Lipid Membranes

    PubMed Central

    Shi, Lei; Cembran, Alessandro; Gao, Jiali; Veglia, Gianluigi

    2009-01-01

    We report molecular dynamics simulations in the explicit membrane environment of a small membrane-embedded protein, sarcolipin, which regulates the sarcoplasmic reticulum Ca-ATPase activity in both cardiac and skeletal muscle. In its monomeric form, we found that sarcolipin adopts a helical conformation, with a computed average tilt angle of 28 ± 6° and azymuthal angles of 66 ± 22°, in reasonable accord with angles determined experimentally (23 ± 2° and 50 ± 4°, respectively) using solid-state NMR with separated-local-field experiments. The effects of time and spatial averaging on both 15N chemical shift anisotropy and 1H/15N dipolar couplings have been analyzed using short-time averages of fast amide out-of-plane motions and following principal component dynamic trajectories. We found that it is possible to reproduce the regular oscillatory patterns observed for the anisotropic NMR parameters (i.e., PISA wheels) employing average amide vectors. This work highlights the role of molecular dynamics simulations as a tool for the analysis and interpretation of solid-state NMR data. PMID:19413970

  19. Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)

    2014-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.

  20. Optimum divergence angle of a Gaussian beam wave in the presence of random jitter in free-space laser communication systems.

    PubMed

    Toyoshima, Morio; Jono, Takashi; Nakagawa, Keizo; Yamamoto, Akio

    2002-03-01

    The average bit error rate (BER) of optical communication systems is considered in the presence of random angular jitter. First, the received power and the BER in the absence of jitter are reviewed. Then the average BER is obtained in the presence of circularly symmetric, normally distributed jitter by using the probability density function of the optical signal. By minimizing the power penalty for average BER, the optimum ratio of the divergence angle of the laser beam to the random angular jitter at the desired BER is obtained. An analytic approximation of the optimum ratio is derived as a function of the desired average BER. The results can be used for designing the link budget of optical communication and tracking channels in the presence of jitter.

  1. High-sensitivity refractive index sensor based on large-angle tilted fiber grating with carbon nanotube deposition

    NASA Astrophysics Data System (ADS)

    Badmos, Abdulyezir A.; Sun, Qizhen; Yan, Zhijun; Arif, Raz N.; Zhang, Junxi; Rozhin, Alex; Zhang, Lin

    2016-04-01

    This paper presents a highly sensitive ambient refractive index (RI) sensor based on 81° tilted fiber grating (81°-TFG) structure UV-inscribed in standard telecom fiber (62.5μm cladding radius) with carbon nanotube (CNT) overlay deposition. The sensing mechanism is based on the ability of CNT to induce change in transmitted optical power and the high sensitivity of 81°-TFG to ambient refractive index. The thin CNT film with high refractive index enhances the cladding modes of the TFG, resulting in the significant interaction between the propagating light and the surrounding medium. Consequently, the surrounding RI change will induce not only the resonant wavelength shift but also the power intensity change of the attenuation band in the transmission spectrum. Result shows that the change in transmitted optical power produces a corresponding linear reduction in intensity with increment in RI values. The sample shows high sensitivities of 207.38nm/RIU, 241.79nm/RIU at RI range 1.344-1.374 and 113.09nm/RIU, 144.40nm/RIU at RI range 1.374-1.392 (for X-pol and Y-pol respectively). It also shows power intensity sensitivity of 65.728dBm/RIU and 45.898 (for X-pol and Y-pol respectively). The low thermal sensitivity property of the 81°-TFG offers reduction in thermal cross-sensitivity and enhances specificity of the sensor.

  2. Relationship among the variables of kinematic and tilt angle of whole body according to the foot trip during gait

    PubMed Central

    Ko, Young-Churl; Ryew, Che-Cheong; Hyun, Seung-Hyun

    2017-01-01

    The aim of this study was to analyze the relation between incline angle of whole body and kinematic variables at tripping during gait. The participants consisted of healthy adult female (n=6). The three-dimensional (3D) motion analysis of posture restoring after inducing tripping of right foot at supporting phase of left foot was performed. As a result, supporting time elapsed of one stride and one foot at tripping showed longer than that of normal gait. The length of one stride showed longer at tripping than that of normal gait, and velocity of center of gravity (COG) showed faster at tripping than that of normal gait. Anteriorposterior incline angle of whole body showed more forwarded incline at tripping than that of normal gait. As a result of correlation among variables, one stride and supporting time elapsed showed positive relation r=0.973 (R2=0.947, P<0.001), also r=0.920 (R2=0.846, P<0.001) relative to velocity of COG, r=0.970 (R2=0.941, P<0.001) of 1-stride time elapsed relative to velocity of COG and r=0.833 (R2=0.613, P<0.05) of velocity of COG relative to anteriorposterior incline angle respectively. Therefore instantaneous stoppage of gait posture when tripped at supporting phase of one leg during gait may be impossible and rather may cause a recovery of gait pattern when secured the faster velocity of COG and the longer of supporting time elapsed of one leg. PMID:28349043

  3. Relationship among the variables of kinematic and tilt angle of whole body according to the foot trip during gait.

    PubMed

    Ko, Young-Churl; Ryew, Che-Cheong; Hyun, Seung-Hyun

    2017-02-01

    The aim of this study was to analyze the relation between incline angle of whole body and kinematic variables at tripping during gait. The participants consisted of healthy adult female (n=6). The three-dimensional (3D) motion analysis of posture restoring after inducing tripping of right foot at supporting phase of left foot was performed. As a result, supporting time elapsed of one stride and one foot at tripping showed longer than that of normal gait. The length of one stride showed longer at tripping than that of normal gait, and velocity of center of gravity (COG) showed faster at tripping than that of normal gait. Anteriorposterior incline angle of whole body showed more forwarded incline at tripping than that of normal gait. As a result of correlation among variables, one stride and supporting time elapsed showed positive relation r=0.973 (R(2) =0.947, P<0.001), also r=0.920 (R(2) =0.846, P<0.001) relative to velocity of COG, r=0.970 (R(2) =0.941, P<0.001) of 1-stride time elapsed relative to velocity of COG and r=0.833 (R(2) =0.613, P<0.05) of velocity of COG relative to anteriorposterior incline angle respectively. Therefore instantaneous stoppage of gait posture when tripped at supporting phase of one leg during gait may be impossible and rather may cause a recovery of gait pattern when secured the faster velocity of COG and the longer of supporting time elapsed of one leg.

  4. Role of polarizer-tilting-angle in zero-field spin-transfer nano-oscillators with perpendicular anisotropy

    SciTech Connect

    Gonzalez-Fuentes, C.; Gallardo, R. A. Landeros, P.

    2015-10-05

    An analytical model for studying the stability of a single domain ferromagnetic layer under the influence of a spin-polarized current is presented. The theory is applied to bias-field-free nano-oscillators with perpendicular anisotropy, which allows to obtain a polarizer-angle vs. current phase diagram that describes the stability of magnetic states. Explicit formulae for the critical current densities unveil the influence of the relative orientation between free and polarizer layers, allowing the emergence of precessional steady-states, and also the possibility to reduce the magnitude of the threshold current density to produce microwave oscillations. It is shown that oscillating steady-states arise in a broad angular region, and the dependence of their boundaries is fully specified by the model. The reliability of the analytical results has been corroborated by comparison to numerical calculations. Such structures are currently under intense research because of remarkable properties offering new prospects for microwave applications in communication technologies.

  5. Experimental study on bank erosion and protection using submerged vane placed at an optimum angle in a 180° laboratory channel bend

    NASA Astrophysics Data System (ADS)

    Dey, Litan; Barbhuiya, Abdul Karim; Biswas, Piya

    2017-04-01

    Unsteadiness of the vertical velocity profile and secondary flow in open channel bends poses serious problems in hydraulic engineering design. Insertion of vertical submerged vanes in the channel bend at an optimum angle with the tangential component of flow can minimize the unsteadiness and generation of secondary flow resulting in the reduction of scour depth at the outer bank. A series of experiments were conducted in a 180° bend laboratory channel to study flow erosion and effective ness of the submerged vane in reducing scour depth. The average approach to flow velocity at 0.20 m flow depth above the lowest initial bed level was 25 cm/s. An Acoustic Doppler Velocimeter (ADV) was used to measure the three-dimensional time-averaged velocity components at different azimuthal sections on stabilized nonscoured beds without vane. Scour bed profile without vanes shows that bank erosion in a 180° parabolic-shaped bed channel occurs mostly at the zone from bend angles 120° to 140°. Vanes were installed at angles of 10°, 15°, 20°, 30°, and 40° to the tangential flow component maintaining a spacingof 75 cm distance from one vane to another. Experimental results show that a 15° vane angle produces best result in reducing outer bank scour in a parabolic-shaped channel. The data presented in this paper can also be used for validating three-dimensional turbulence models for simulating flows in a curved channel.

  6. Determination of basic friction angle using various laboratory tests.

    NASA Astrophysics Data System (ADS)

    Jang, Bo-An

    2016-04-01

    The basic friction angle of rock is an important factor of joint shear strength and is included within most shear strength criteria. It can be measured by direct shear test, triaxial compression test and tilt test. Tilt test is mostly used because it is the simplest method. However, basic friction angles measured using tilt test for same rock type or for one sample are widely distributed and often do not show normal distribution. In this research, the basic friction angles for the Hangdeung granite form Korea and Berea sandstone from USA are measured accurately using direct shear test and triaxial compression test. Then basic friction angles are again measured using tilt tests with various conditions and are compared with those measured using direct shear test and triaxial compression test to determine the optimum condition of tilt test. Three types of sliding planes, such as planes cut by saw and planes polished by #100 and #600 grinding powders, are prepared. When planes are polished by #100 grinding powder, the basic friction angles measured using direct shear test and triaxial compression test are very consistent and show narrow ranges. However, basic friction angles show wide ranges when planes are cut by saw and are polished by #600 grinding powder. The basic friction angle measured using tilt test are very close to those measured using direct shear test and triaxial compression test when plane is polished by #100 grinding powder. When planes are cut by saw and are polished by #600 grinding powder, basic friction angles measured using tilt test are slightly different. This indicates that tilt test with plane polished by #100 grinding powder can yield an accurate basic friction angle. In addition, the accurate values are obtained not only when planes are polished again after 10 times of tilt test, but values are averaged by more 30 times of tests.

  7. Influence of forming conditions on fiber tilt

    Treesearch

    David W. Vahey; John M. Considine; Michael A. and MacGregor

    2013-01-01

    Fiber tilt describes the projection of fiber length in the thickness direction of paper. The projection is described by the tilt angle of fibers with respect to the plane of the sheet. A simple model for fiber tilt is based on jet-to-wire velocity differential in combination with cross-flows on the wire. The tilt angle of a fiber is found to vary as the sine of its in-...

  8. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics.

    PubMed

    Kayes, Md Imrul; Leu, Paul W

    2014-01-01

    Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°).

  9. Do Intraoperative LIV-Tilt and Disk Angle Remain Stable at 2-year Follow-up Compared With Upright Radiographs in Patients With Idiopathic Scoliosis?: A Retrospective Cohort Study.

    PubMed

    Barsi, James; Caprio, Brendan; Garg, Sumeet; Baulesh, David; Erickson, Mark

    2015-08-01

    This study was a retrospective chart and radiographic review. The aim of this study was to determine if lowest instrumented vertebra (LIV) tilt and disk wedging measured intraoperatively correlated to their respective values on standing radiographs at intermediate follow-up. No guidelines exist regarding an acceptable intraoperative LIV-tilt. After IRB approval, a consecutive series of patients with adolescent idiopathic scoliosis (AIS) and structural lumbar curves treated with posterior spinal fusion (PSF) at a single institution between 2007 and 2010 was identified. A total of 163 patients with AIS underwent PSF during this time period. Seventeen patients had fusion of structural lumbar curves with adequate imaging and a minimum 2-year follow-up. The LIV-tilt and disk angle below the LIV was measured on the preoperative standing, intraoperative supine fluoroscopy and postoperative standing radiographs, and coronal balance was measured on the preoperative and postoperative standing radiographs using a standardized method separately by 2 authors. The curve distribution was as follows: Lenke 3 (29%), Lenke 5 (47%), and Lenke 6 (24%). There was agreement on radiographic measurements between the 2 authors with a correlation coefficient of 0.98 for coronal balance, 0.91 for LIV-tilt, and 0.65 for disk angle. LIV-tilt improved from 19.4 degrees preoperatively to 3.6 degrees intraoperatively. At minimum 2-year follow-up, LIV had on average progressed to 8.6 degrees. The disk angle improved from 5.4 degrees preoperatively to 2.5 degrees intraoperatively. This improvement was maintained at 2 years (2.8 degrees). Coronal balance also improved during the postoperative period from 17.9 mm immediately following surgery to 11.1 mm at the last follow-up. Compared with prone intraoperative fluoroscopic images, disk wedging below LIV remains stable at 2 years postsurgery on standing radiographs in patients with AISundergoing PSF, including structural lumbar curves, whereas LIV-tilt

  10. View-Angle Tilting and Slice-Encoding Metal Artifact Correction for Artifact Reduction in MRI: Experimental Sequence Optimization for Orthopaedic Tumor Endoprostheses and Clinical Application.

    PubMed

    Jungmann, Pia M; Ganter, Carl; Schaeffeler, Christoph J; Bauer, Jan S; Baum, Thomas; Meier, Reinhard; Nittka, Mathias; Pohlig, Florian; Rechl, Hans; von Eisenhart-Rothe, Ruediger; Rummeny, Ernst J; Woertler, Klaus

    2015-01-01

    MRI plays a major role in follow-up of patients with malignant bone tumors. However, after limb salvage surgery, orthopaedic tumor endoprostheses might cause significant metal-induced susceptibility artifacts. To evaluate the benefit of view-angle tilting (VAT) and slice-encoding metal artifact correction (SEMAC) for MRI of large-sized orthopaedic tumor endoprostheses in an experimental model and to demonstrate clinical benefits for assessment of periprosthetic soft tissue abnormalities. In an experimental setting, tumor endoprostheses (n=4) were scanned at 1.5T with three versions of optimized high-bandwidth turbo-spin-echo pulse sequences: (i) standard, (ii) VAT and (iii) combined VAT and SEMAC (VAT&SEMAC). Pulse sequences included coronal short-tau-inversion-recovery (STIR), coronal T1-weighted (w), transverse T1-w and T2-w TSE sequences. For clinical evaluation, VAT&SEMAC was compared to conventional metal artifact-reducing MR sequences (conventional MR) in n=25 patients with metal implants and clinical suspicion of tumor recurrence or infection. Diameters of artifacts were measured quantitatively. Qualitative parameters were assessed on a five-point scale (1=best, 5=worst): "image distortion", "artificial signal changes at the edges" and "diagnostic confidence". Imaging findings were correlated with pathology. T-tests and Wilcoxon-signed rank tests were used for statistical analyses. The true size of the prostheses was overestimated on MRI (P<0.05). A significant reduction of artifacts was achieved by VAT (P<0.001) and VAT&SEMAC (P=0.003) compared to the standard group. Quantitative scores improved in the VAT and VAT&SEMAC group (P<0.05). On clinical MR images, artifact diameters were significantly reduced in the VAT&SEMAC-group as compared with the conventional-group (P<0.001). Distortion and artificial signal changes were reduced and diagnostic confidence improved (P<0.05). In two cases, tumor-recurrence, in ten cases infection and in thirteen cases other

  11. Repetitive experiments of one or two-pulse sequences in NQR of spins I=3/2: Liouville space, steady-state, Ernst angle and optimum signal.

    PubMed

    Odin, Christophe

    2017-09-01

    In NMR, the repetition of pulse sequences with a recycle time that does not allow the spin system to completely relax back to equilibrium is a well known and often used method to increase the signal to noise ratio at given total measuring time. For isolated spins I=1/2, the steady-state of a train of strictly identical pulse sequences separated by free evolution periods of same duration is described by the well known Ernst-Anderson model, and the optimum pulse angle is given by the Ernst angle. We showed recently that equivalent formula, but with super-operators in the Liouville space, can be obtained for general spins I. In this article, this formalism is generalized to pure NQR of spins I=3/2, and applied to calculate the signal resulting from single and solid-echo sequences, in the limit when the recycle time T>5T2q, where T2q is the transverse (coherence) quadrupolar relaxation time. In particular, we show that powder samples have a behaviour that is very close to NMR of spins I=1/2. For instance, the generalized Ernst angle βM that maximizes the signal amplitude for a single pulse train is well described by the simple formula cos(1.52βM)≈exp(-T/T1q), whatever the quadrupolar asymmetry parameter η, T1q being the longitudinal (population) quadrupolar relaxation time. Moreover, a simplified NMR-like formula that describes the overall behaviour of nutation curves is proposed, and it is shown that the signal to noise ratio (SNR) at given experimental time is exactly the same as in NMR of spins I=1/2 as a function of recycle time, when properly normalized. Some theoretical predictions for the single pulse and solid-echo sequence were compared to experiments, and validated, by performing (35)Cl pure NQR experiment on chloranil (C6Cl4O2 tetrachloro-1,4-benzoquinone) powder. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Biomechanical evaluation of implant-supported prosthesis with various tilting implant angles and bone types in atrophic maxilla: A finite element study.

    PubMed

    Gümrükçü, Zeynep; Korkmaz, Yavuz Tolga; Korkmaz, Fatih Mehmet

    2017-07-01

    The purpose of this study is to evaluate and compare bone stress that occurs as a result of using vertical implants with simultaneous sinus augmentation with bone stress generated from oblique implants without sinus augmentation in atrophic maxilla. Six, three-dimensional (3D) finite element (FE) models of atrophic maxilla were generated with SolidWorks software. The maxilla models were varied for two different bone types. Models 2a, 2b and 2c represent maxilla models with D2 bone type. Models 3a, 3b and 3c represent maxilla models with D3 bone type. Five implants were embedded in each model with different configurations for vertical implant insertion with sinus augmentation: Model 2a/Model 3a, 30° tilted insertion; Model 2b/Model 3b and 45° tilted insertion; Model 2c/Model 3c. A 150 N load was applied obliquely on the hybrid prosthesis. The maximum von Mises stress values were comparatively evaluated using color scales. The von Mises stress values predicted by the FE models were higher for all D3 bone models in both cortical and cancellous bone. For the vertical implant models, lower stress values were found in cortical bone. Tilting of the distal implants by 30° increased the stress in the cortical layer compared to vertical implant models. Tilting of the distal implant by 45° decreased the stress in the cortical bone compared to the 30° models, but higher stress values were detected in the 45° models compared to the vertical implant models. Augmentation should be the first treatment option in atrophic maxilla in terms of biomechanics. Tilted posterior implants can create higher stress values than vertical posterior implants. During tilting implant planning, the use of a 45° tilted implant results in better biomechanical performance in peri-implant bone than 30° tilted implant due to the decrease in cantilever length. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Patellar tilt: the physical examination correlates with MR imaging.

    PubMed

    Grelsamer, Ronald P; Weinstein, Craig H; Gould, Jason; Dubey, Ashok

    2008-01-01

    Patella malalignment is a recognized cause of knee pain, tilt being one of its more common forms. Although patellar tilt has been described both on the physical examination and on computerized imaging, to date the correlation between the two has not been established. A strong correlation would strengthen the value of each. Moreover, in situations where tilt cannot be clinically assessed (e.g. obesity), CT or MR imaging could be an adequate substitute for the clinical determination of tilt. We propose to correlate the physical examination with the magnetic resonance examination by way of an MR Tilt Angle. This angle is measured in a manner similar to the assessment of tilt on the physical examination, in that a line is drawn across the medial and lateral borders of the patella and referenced off the posterior femoral condyles. Most tilt angles use the slope of the lateral facet as a measure of tilt. These tilt angles paradoxically diminish as patellar tilt increases, a potential source of confusion. In this study, we use an MRI tilt angle that increases in the same direction as the actual tilt, which is more intuitive. We examined 30 patients with tilt and 51 patients without tilt. Patients with significant tilt on the physical examination can be expected to have an MRI Tilt Angle that is 10 degrees or greater whereas an angle of less than 10 degrees is associated with the absence of significant tilt on the physical examination. This MRI Tilt Angle fills the need for an easy, objective, intuitive measure of tilt and is an excellent adjunct to the physical examination.

  14. Cardiopulmonary readjustments in passive tilt

    NASA Technical Reports Server (NTRS)

    Matalon, S. V.; Farhi, L. E.

    1979-01-01

    The readjustment of cardiopulmonary variables in human volunteers at various tilt angles on a tilt board is studied. Five healthy subjects (18-31 yr) with thorough knowledge of the experimental protocol are tested, passively tilted from the supine to the upright position in 15-deg increments in random sequence. The parameters measured are cardiac output (Q), heart rate (HR), stroke volume (SV), minute and alveolar ventilation /V(E) and V(A)/, functional residual capacity (FRC), and arterial-end-tidal P(CO2) pressure difference. It is found that changes in Q and FRC are linearly related to the sine of the tilt angle, indicating that either reflexes are absent or their net effect is proportional to the effects of gravity. This is clearly not the case for other variables /HR, SV, V(E), V(A)/, where it is possible to demonstrate threshold values for the appearance of secondary changes.

  15. Effects of small specimen tilt and probe convergence angle on ADF-STEM image contrast of Si(0.8)Ge(0.2) epitaxial strained layers on (100) Si.

    PubMed

    Wu, X; Robertson, M D; Kawasaki, M; Baribeau, J M

    2012-03-01

    The effects of specimen tilt and probe convergence angle on annular dark field (ADF) image contrast of Si(0.8)Ge(0.2) heteroepitaxial strained layers on (100) Si were investigated in a 200 kV scanning transmission electron microscope (STEM) for a TEM specimen thickness of 195 nm. With 0.5 degrees of specimen tilt away from the exact <011> zone-axis orientation, the signal-to-noise level of atomic columns was significantly reduced for both Si(0.8)Ge(0.2) and Si in high resolution ADF-STEM lattice images. When the specimen was tilted 0.5 degrees around the <011> axis, or the STEM probe convergence semiangle was reduced from 14.3 to 3.6 mrad, the ADF-STEM image intensity profiles across the Si(0.8)Ge(0.2) and Si layers changed significantly as compared to those obtained at the exact <011> zone axis orientation, and no longer reflected the composition changes occurring across the layer structure. Multislice image simulation results revealed that the misfit strain between the Si(0.8)Ge(0.2) and Si layers, and strain relaxation near the surface of the TEM specimen, were responsible for the observed changes in image intensity. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  16. L-tryptophan-induced electron transport across supported lipid bilayers: an alkyl-chain tilt-angle, and bilayer-symmetry dependence.

    PubMed

    Sarangi, Nirod Kumar; Patnaik, Archita

    2012-12-21

    Molecular orientation-dependent electron transport across supported 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers (SLBs) on semiconducting indium tin oxide (ITO) is reported with an aim towards potential nanobiotechnological applications. A bifunctional strategy is adopted to form symmetric and asymmetric bilayers of DPPC that interact with L-tryptophan, and are analyzed by surface manometry and atomic force microscopy. Polarization-dependent real-time Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) analysis of these SLBs reveals electrostatic, hydrogen-bonding, and cation-π interactions between the polar head groups of the lipid and the indole side chains. Consequently, a molecular tilt arises from the effective interface dipole, facilitating electron transport across the ITO-anchored SLBs in the presence of an internal Fe(CN)(6)(4-/3-) redox probe. The incorporation of tryptophan enhances the voltammetric features of the SLBs. The estimated electron-transfer rate constants for symmetric and asymmetric bilayers (k(s) = 2.0×10(-2) and 2.8×10(-2) s(-1)) across the two-dimensional (2D) ordered DPPC/tryptophan SLBs are higher compared to pure DPPC SLBs (k(s) = 3.2×10(-3) and 3.9×10(-3) s(-1)). In addition, they are molecular tilt-dependent, as it is the case with the standard apparent rate constants k(app)(0), estimated from electrochemical impedance spectroscopy and bipotentiostatic experiments with a Pt ultramicroelectrode. Lower magnitudes of k(s) and k(app)(0) imply that electrochemical reactions across the ITO-SLB electrodes are kinetically limited and consequently governed by electron tunneling across the SLBs. Standard theoretical rate constants (k(th)(0)) accrued upon electron tunneling comply with the potential-independent electron-tunneling coefficient β = 0.15 Å(-1). Insulator-semiconductor transitions moving from a liquid-expanded to a condensed 2D-phase state of the SLBs are noted, adding a new dimension

  17. Tilted Giant

    NASA Image and Video Library

    2006-01-12

    This moody portrait of Saturn captures a razor-thin ringplane bisecting the clouds of the bright equatorial region. The rings cast dark, shadowy bands onto the planet's northern latitudes. At left, Dione (1,126 kilometers, or 700 miles across) is a tiny sunlit orb against the planet's dark side. The image was taken in polarized infrared light with the Cassini spacecraft wide-angle camera on Dec. 7, 2005 at a distance of approximately 3.1 million kilometers (1.9 million miles) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 96 degrees. Image scale is 179 kilometers (111 miles) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA07673

  18. Ultraviolet fast-response photoelectric effect in tilted orientation SrTiO{sub 3} single crystals

    SciTech Connect

    Zhao Kun; Jin Kuijuan; Huang Yanhong; Zhao Songqing; Lu Huibin; He Meng; Chen Zhenghao; Zhou Yueliang; Yang Guozhen

    2006-10-23

    Ultraviolet photoelectricity based on the vicinal cut as-supplied SrTiO{sub 3} single crystals has been experimentally studied in the absence of an applied bias at room temperature. An open-circuit photovoltage of 130 ps rise time and 230 ps full width at half maximum was observed under the irradiation of a 355 nm pulsed laser of 25 ps in duration. The dependence of the photoelectric effect on the tilting angles was studied, and the optimum angle is 20.9 deg. . Seebeck effect is proposed to elucidate the tilting angle dependence of laser-induced photovoltage. This work demonstrates the potential of SrTiO{sub 3} single crystals in ultraviolet detection.

  19. Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series

    SciTech Connect

    Dahmen, Tim; Baudoin, Jean-Pierre G; Lupini, Andrew R; Kubel, Christian; Slusallek, Phillip; De Jonge, Niels

    2014-01-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  20. Rocket rendezvous at preassigned destinations with optimum entry trajectories

    NASA Astrophysics Data System (ADS)

    Nangia, A. K.

    Optimum entry rendezvous trajectories of commuter rockets between initial noncoaxial coplanar elliptic orbits and destination orbits in an inverse square gravitational field have been determined. Results are presented for an optimum entry rendezvous between earth and Mars. For a given interception angle, the results show that the launch angle for optimum entry rendezvous is smaller than that for the optimum exit rendezvous.

  1. Two-dimensional dipolar scattering with a tilt

    SciTech Connect

    Ticknor, Christopher

    2011-09-15

    We study two-body dipolar scattering in two dimensions with a tilted polarization axis. This tilt reintroduces the anisotropic interaction in a controllable manner. As a function of this polarization angle, we present the scattering rates in both the threshold and semiclassical regimes. Additionally, we study the properties of the molecular bound states as a function of the polarization angle.

  2. Anisotropic superconductors in tilted magnetic fields

    SciTech Connect

    Vlasko-Vlasov, V. K.; Glatz, A.; Koshelev, A. E.; Welp, U.; Kwok, W. K.

    2015-06-01

    We present images of magnetic flux structures in a single crystal of YBa2Cu3O7-d during remagnetization by fields tilted from the basal plane of the crystal. Depending on the magnitude and angle of the applied field we observe anisotropic flux penetration along and across the in-plane field component and emergence of vortex instabilities resulting in modulated flux distributions. We associate the observed patterns with flux cutting effects and with tilted vortex structures intrinsic for layered superconductors. Time dependent Ginzburg-Landau simulations show preferential vortex motion across the c-axis and reveal the flux structure evolution in anisotropic superconductors under tilted magnetic fields.

  3. Tilted fuel cell apparatus

    DOEpatents

    Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.

    2005-04-12

    Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.

  4. Roll tracking effects of G-vector tilt and various types of motion washout

    NASA Technical Reports Server (NTRS)

    Jex, H. R.; Magdaleno, R. E.; Junker, A. M.

    1978-01-01

    In a dogfight scenario, the task was to follow the target's roll angle while suppressing gust disturbances. All subjects adopted the same behavioral strategies in following the target while suppressing the gusts, and the MFP-fitted math model response was generally within one data symbol width. The results include the following: (1) comparisons of full roll motion (both with and without the spurious gravity tilt cue) with the static case. These motion cues help suppress disturbances with little net effect on the visual performance. Tilt cues were clearly used by the pilots but gave only small improvement in tracking errors. (2) The optimum washout (in terms of performance close to real world, similar behavioral parameters, significant motion attenuation (60 percent), and acceptable motion fidelity) was the combined attenuation and first-order washout. (3) Various trends in parameters across the motion conditions were apparent, and are discussed with respect to a comprehensive model for predicting adaptation to various roll motion cues.

  5. Resolution enhancement in tilted coordinates

    NASA Astrophysics Data System (ADS)

    Hariri Naghadeh, Diako; Keith Morley, Christopher

    2016-11-01

    Deconvolution is applied to remove source wavelet effects from seismograms. The results are resolution enhancement that enables detection of thin layers. Following enhancement of resolution, low frequency and high angle reflectors, particularly at great depth, appear as low amplitude and semi-invisible reflectors that are difficult to track and pick. A new approach to enhance resolution is introduced that estimates a derivative using continuous wavelet transform in tilted coordinates. The results are compared with sparse spike deconvolution, curvelet deconvolution and inverse quality filtering in wavelet domain. The positive consequence of the new method is to increase sampling of high dip features by changing the coordinate system from Cartesian to tilted. To compare those methods a complex data set was chosen that includes high angle faults and chaotic mass transport complex. Image enhancement using curvelet deconvolution shows a chaotic system as a non-chaotic one. The results show that sparse spike deconvolution and inverse quality filtering in wavelet domain are able to enhance resolution more than curvelet deconvolution especially at great depth but it is impossible to follow steep dip reflectors after resolution enhancement using these methods, especially when their apparent dips are more than 45°. By estimating derivatives in a continuous wavelet transform from tilted data sets similar resolution enhancement as the other deconvolution methods is achieved but additionally steep dipping reflectors are imaged much better than others. Subtracted results of the enhanced resolution data set using new method and the other introduced methods show that steeply dipping reflectors are highlighted as a particular ability of the new method. The results show that high frequency recovery in Cartesian co-ordinate is accompanied by inability to image steeply dipping reflectors especially at great depths. Conversely recovery of high frequency data and imaging of the data

  6. Correcting the vertical component of ocean bottom seismometers for the effects of tilt and compliance

    NASA Astrophysics Data System (ADS)

    Bell, S. W.; Forsyth, D. W.

    2013-12-01

    constant, but we observe significant day-to-day variation in tilt angle, requiring the calculation of a tilt transfer function for each individual day for optimum removal of bottom current noise. In removing the compliance noise, there is some distortion of the signal. We show how to correct for this distortion using theoretical and empirical transfer functions between pressure and displacement records for seismic signals.

  7. OPTIMUM SYSTEMS CONTROL,

    DTIC Science & Technology

    Variational calculus and continuous optimal control, (4) The maximum principle and Hamilton Jacobi theory, (5) Optimum systems control examples, (6...Discrete variational calculus and the discrete maximum principle, (7) Optimum control of distributed parameter systems, (8) Optimum state estimation in

  8. Tilted cone beam VCT reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Hsieh, Jiang; Tang, Xiangyang

    2005-04-01

    Reconstruction algorithms for volumetric CT have been the focus of many studies. Several exact and approximate reconstruction algorithms have been proposed for step-and-shoot and helical scanning trajectories to combat cone beam related artifacts. In this paper, we present a closed form cone beam reconstruction formula for tilted gantry data acquisition. Although several algorithms were proposed to compensate for errors induced by the gantry tilt, none of the algorithms addresses the case in which the cone beam geometry is first rebinned to a set of parallel beams prior to the filtered backprojection. Because of the rebinning process, the amount of iso-center adjustment depends not only on the projection angle and tilt angle, but also on the reconstructed pixel location. The proposed algorithm has been tested extensively on both 16 and 64 slice VCT with phantoms and clinical data. The efficacy of the algorithm is clearly demonstrated by the experiments.

  9. Microwave Brightness Temperatures of Tilted Convective Systems

    NASA Technical Reports Server (NTRS)

    Hong, Ye; Haferman, Jeffrey L.; Olson, William S.; Kummerow, Christian D.

    1998-01-01

    Aircraft and ground-based radar data from the Tropical Ocean and Global Atmosphere Coupled-Ocean Atmosphere Response Experiment (TOGA COARE) show that convective systems are not always vertical. Instead, many are tilted from vertical. Satellite passive microwave radiometers observe the atmosphere at a viewing angle. For example, the Special Sensor Microwave/Imager (SSM/I) on Defense Meteorological Satellite Program (DMSP) satellites and the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) on the TRMM satellite have an incident angle of about 50deg. Thus, the brightness temperature measured from one direction of tilt may be different than that viewed from the opposite direction due to the different optical depth. This paper presents the investigation of passive microwave brightness temperatures of tilted convective systems. To account for the effect of tilt, a 3-D backward Monte Carlo radiative transfer model has been applied to a simple tilted cloud model and a dynamically evolving cloud model to derive the brightness temperature. The radiative transfer results indicate that brightness temperature varies when the viewing angle changes because of the different optical depth. The tilt increases the displacements between high 19 GHz brightness temperature (Tb(sub 19)) due to liquid emission from lower level of cloud and the low 85 GHz brightness temperature (Tb(sub 85)) due to ice scattering from upper level of cloud. As the resolution degrades, the difference of brightness temperature due to the change of viewing angle decreases dramatically. The dislocation between Tb(sub 19) and Tb(sub 85), however, remains prominent.

  10. Tilting a wobbly chair

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2017-03-01

    If a small object is placed under the front leg of a chair, the chair tilts backwards. If the object is placed under a rear leg, the chair tilts sideways. The effect is surprising but can be analysed in terms of elementary physics.

  11. Tilting a Wobbly Chair

    ERIC Educational Resources Information Center

    Cross, Rod

    2017-01-01

    If a small object is placed under the front leg of a chair, the chair tilts backwards. If the object is placed under a rear leg, the chair tilts sideways. The effect is surprising but can be analysed in terms of elementary physics.

  12. Anisotropic chiral magnetic effect from tilted Weyl cones

    NASA Astrophysics Data System (ADS)

    van der Wurff, E. C. I.; Stoof, H. T. C.

    2017-09-01

    We determine the antisymmetric current-current response for a pair of (type-I) tilted Weyl cones with opposite chirality. We find that the dynamical chiral magnetic effect depends on the magnitude of the tilt and on the angle between the tilting direction and the wave vector of the magnetic field. Additionally, the chiral magnetic effect is shown to be closely related to the presence of an intrinsic anomalous Hall effect with a current perpendicular to the tilting direction and the electric field. We investigate the nonanalytic long-wavelength limit of the corresponding transport coefficients.

  13. Tilted disordered Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Trescher, Maximilian; Sbierski, Björn; Brouwer, Piet W.; Bergholtz, Emil J.

    2017-01-01

    Although Lorentz invariance forbids the presence of a term that tilts the energy-momentum relation in the Weyl Hamiltonian, a tilted dispersion is not forbidden and, in fact, generic for condensed matter realizations of Weyl semimetals. We here investigate the combined effect of such a tilted Weyl dispersion and the presence of potential disorder. In particular, we address the influence of a tilt on the disorder-induced phase transition between a quasiballistic phase at weak disorder, in which the disorder is an irrelevant perturbation, and a diffusive phase at strong disorder. Our main result is that the presence of a tilt leads to a reduction of the critical disorder strength for this transition or, equivalently, that increasing the tilt at fixed disorder strength drives the system through the phase transition to the diffusive strong-disorder phase. Notably this obscures the tilt-induced Lifshitz transition to an overtilted type II Weyl phase at any finite disorder strength. Our results are supported by analytical calculations using the self-consistent Born approximation and numerical calculations of the density of states and of transport properties.

  14. Whirl plus tilt

    SciTech Connect

    Fowler, T.K.

    1994-10-12

    It is shown that, for an idealized rotor with identical magnetic bearings of negligible mass, precession and rotation are decoupled from the center-of-mass motion so that stabilization of whirl instabilities can be designed independent of tilt. The bearing torques that cause whirl also apply torques on the free-body- rotational motion in a tilted state. The rotational equations of motion including these torques are given in the paper. An approximate solution for a special case suggests the possibility of tilt instability above a critical frequency.

  15. Tilt displacement range testing for a piezoelectric deformable mirror

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Hao, Qun; Song, Yong; Cheng, Xuemin; Fan, Fan; Li, Heng

    2016-10-01

    In our previous works, we presented a zoom system and image stabilization design based on deformable mirrors (DMs). According to the high bandwidth and free edge characteristics of the piezoelectric deformable mirror (PDM), we tested the system's image-stable capability. We found the PDM could realize some tilt displacements while keeping a certain stable surface shape, it could obtain higher image stabilizing precision when integrated with the traditional mechanical image stabilization systems. In the design of the image stabilization system, the PDM's tilt displacement range is a key factor for consideration. So in this paper, we carried out a tilt displacement range testing experiment by using the OKO's 37-channel PDM. We measured and analyzed the variation of the tilt displacements in optical image stabilization process, and calculated the maximum tilt angle as the PDM surface shape was stabilized. We built an experimental platform consisting of a fixed target, an imaging system based on PDM, and a CCD camera. We used the ZYGO interferometer as an evaluation instrument to measure the surface shape stability. When the PDM surface had a tilt displacement, the image point of the fixed target on the camera sensor shifted correspondingly. The tilt angle of the PDM could be obtained by calculating this shift. The results showed that the maximum tilt angle of the PDM was 0.2mrad. The paper also analyzed the experiment errors when concerning about the off-axis error of the PDM deflection center.

  16. Optimal angle of polycrystalline silicon solar panels placed in a building using the ant colony optimization algorithm

    NASA Astrophysics Data System (ADS)

    Saouane, I.; Chaker, A.; Zaidi, B.; Shekhar, C.

    2017-03-01

    This paper describes the mathematical model used to determine the amount of solar radiation received on an inclined solar photovoltaic panel. The optimum slope angles for each month, season, and year have also been calculated for a solar photovoltaic panel. The optimization of the procedure to maximize the solar energy collected by the solar panel by varying the tilt angle is also presented. As a first step, the global solar radiation on the horizontal surface of a thermal photovoltaic panel during clear sky is estimated. Thereafter, the Muneer model, which provides the most accurate estimation of the total solar radiation at a given geographical point has been used to determine the optimum collector slope. Also, the Ant Colony Optimization (ACO) algorithm was applied to obtain the optimum tilt angle settings for PV collector to improve the PV collector efficiency. The results show good agreement between calculated and predicted results. Additionally, this paper presents studies carried out on the polycrystalline silicon solar panels for electrical energy generation in the city of Ghardaia. The electrical energy generation has been studied as a function of amount of irradiation received and the angle of optimum orientation of the solar panels.

  17. Computer simulations of effects of disk tilt and lens tilt on push-pull tracking error signal in an optical disk drive.

    PubMed

    Bartlett, C L; Kay, D; Mansuripur, M

    1997-11-10

    We quantify the effects of disk tilt and objective lens tilt on the push-pull tracking error signal of an optical disk data storage system. For a grooved disk, such as a recordable compact disk that operates at a laser wavelength of lambda, it is found that disk tilt produces a tracking offset of 0.05lambda per degree of tilt, whereas objective lens tilt produces an offset of 0.012lambda per degree of tilt. The amplitude of the tracking error signal decreases by 2.5% at the disk tilt angle of 0.3 degrees and by 5% at the objective lens tilt of 0.3 degrees . We achieved these simulations with the computer program Diffract, which performs a combination of diffraction and ray-tracing calculations through the entire optical path, from the light source to the detectors.

  18. Tilt rotor aircraft aeroacoustics

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Smith, Charles A.; Maisel, Martin D.; Brieger, John T.

    1989-01-01

    This paper studies the state of knowledge and the needed improvement in noise methodology and measurements for tilt rotor aircraft. Similarities and differences between tilt rotor aeroacoustic conditions and helicopter and propeller experience are identified. A discussion of the possible principal noise mechanisms throughout the flight envelope shows a need for further experimental and analytical investigations to develop an adequate understanding of the important sources and influencing factors. Existing experimental data from flight tests suggest terminal area noise reduction by operating within certain portions of the conversion flight envelope. Prediction methods are found to provide approximate indications only for low frequency harmonic and broadband noise for several of the tilt rotor's operating conditions. The acoustic effects of the hover case 'fountain' flow are pronounced and need further research. Impulsive noise and high frequency harmonic noise remain problems, as on helicopters, pending major improvements in wake, unsteady aerodynamics, and acoustics methodology.

  19. Tilt rotor aircraft aeroacoustics

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Smith, Charles A.; Maisel, Martin D.; Brieger, John T.

    1989-01-01

    This paper studies the state of knowledge and the needed improvement in noise methodology and measurements for tilt rotor aircraft. Similarities and differences between tilt rotor aeroacoustic conditions and helicopter and propeller experience are identified. A discussion of the possible principal noise mechanisms throughout the flight envelope shows a need for further experimental and analytical investigations to develop an adequate understanding of the important sources and influencing factors. Existing experimental data from flight tests suggest terminal area noise reduction by operating within certain portions of the conversion flight envelope. Prediction methods are found to provide approximate indications only for low frequency harmonic and broadband noise for several of the tilt rotor's operating conditions. The acoustic effects of the hover case 'fountain' flow are pronounced and need further research. Impulsive noise and high frequency harmonic noise remain problems, as on helicopters, pending major improvements in wake, unsteady aerodynamics, and acoustics methodology.

  20. Combined scanning transmission electron microscopy tilt- and focal series.

    PubMed

    Dahmen, Tim; Baudoin, Jean-Pierre; Lupini, Andrew R; Kübel, Christian; Slusallek, Philipp; de Jonge, Niels

    2014-04-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt-focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller "missing wedge" artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  1. Tilt sensitivity of the two-grating interferometer

    SciTech Connect

    Anderson, Christopher N.; Naulleau, Patrick P.

    2008-01-30

    Fringe formation in the two-grating interferometer is analyzed in the presence of a small parallelism error between the diffraction gratings assumed in the direction of grating shear. Our analysis shows that with partially coherent illumination, fringe contrast in the interference plane is reduced in the presence of nonzero grating tilt with the effect proportional to the grating tilt angle and the grating spatial frequencies. Our analysis also shows that for a given angle between the gratings there is an angle between the final grating and the interference plane that optimizes fringe contrast across the field.

  2. Tilt rotor hover aeroacoustics

    NASA Technical Reports Server (NTRS)

    Coffen, Charles David

    1992-01-01

    The methodology, results, and conclusions of a study of tilt rotor hover aeroacoustics and aerodynamics are presented. Flow visualization and hot wire velocity measurement were performed on a 1/12-scale model of the XV-15 Tilt Rotor Aircraft in hover. The wing and fuselage below the rotor cause a complex recirculating flow. Results indicate the physical dimensions and details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Discrete frequency harmonic thickness and the loading noise mechanism were predicted using WOPWOP for the standard metal blades and the Advanced Technology Blades. The recirculating flow created by the wing below the rotor is a primary sound mechanism for a hovering tilt rotor. The effects of dynamic blade response should be included for fountain flow conditions which produce impulsive blade loading. Broadband noise mechanisms were studied using Amiet's method with azimuthally varying turbulence characteristics derived from the measurements. The recirculating fountain flow with high turbulence levels in the recirculating zone is the dominant source of broadband noise for a hovering rotor. It is shown that tilt rotor hover aeroacoustic noise mechanisms are now understood. Noise predictions can be made based on reasonably accurate aerodynamic models developed here.

  3. Tilt Rotor Aircraft Aeroacoustics

    NASA Technical Reports Server (NTRS)

    George, Albert R.

    1996-01-01

    A fleet of civil tilt rotor transports offers a means of reducing airport congestion and point-to-point travel time. The speed, range, and fuel economy of these aircraft, along with their efficient use of vertiport area, make them good candidates for short-to-medium range civil transport. However, to be successfully integrated into the civilian community, the tilt rotor must be perceived as a quiet, safe, and economical mode of transportation that does not harm the environment. In particular, noise impact has been identified as a possible barrier to the civil tilt rotor. Along with rotor conversion-mode flight, and blade-vortex interaction noise during descent, hover mode is a noise problem for tilt rotor operations. In the present research, tilt rotor hover aeroacoustics have been studied analytically, experimentally, and computationally. Various papers on the subject were published as noted in the list of publications. More recently, experimental measurements were made on a 1/12.5 scale model of the XV-15 in hover and analyses of this data and extrapolations to full scale were also carried out. A dimensional analysis showed that the model was a good aeroacoustic approximation to the full-scale aircraft, and scale factors were derived to extrapolate the model measurements to the full-scale XV-15. The experimental measurements included helium bubble flow visualization, silk tuft flow visualization, 2-component hot wire anemometry, 7-hole pressure probe measurements, vorticity measurements, and outdoor far field acoustic measurements. The hot wire measurements were used to estimate the turbulence statistics of the flow field into the rotors, such as length scales, velocity scales, dissipation, and turbulence intermittency. Several different configurations of the model were tested: (1) standard configurations (single isolated rotor, two rotors without the aircraft, standard tilt rotor configuration); (2) flow control devices (the 'plate', the 'diagonal fences'); (3

  4. Evaluation of models to predict insolation on tilted surfaces

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.

    1979-01-01

    An empirical study was performed to evaluate the validity of various insolation models which employ either an isotropic or an anisotropic distribution approximation for sky light when predicting insolation on tilted surfaces. Data sets of measured hourly insolation values were obtained over a 6-month period using pyranometers which received diffuse and total solar radiation on a horizontal plane and total radiation on surfaces tilted toward the equator at 37 degrees and 60 degrees angles above the horizon. Data on the horizontal surfaces were used in the insolation models to predict insolation on the tilted surface; comparisons of measured vs calculated insolation on the tilted surface were examined to test the validity of the sky light approximations. It was found that the Liu-Jordan isotropic distribution model provides a good fit to empirical data under overcast skies but underestimates the amount of solar radiation incident on tilted surfaces under clear and partly cloudy conditions.

  5. Tilt of Emerging Bipolar Magnetic Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Kosovichev, A. G.; Stenflo, J. O.

    2008-12-01

    Magnetic fields emerging from the Sun's interior carry information about the physical processes of magnetic field generation and transport in the convection zone. A statistical analysis of variations of the tilt angle of bipolar magnetic regions during the emergence, observed from SOHO MDI, shows that the systematic tilt with respect to the equator (Joy's law) is established by the middle of the emergence period. This suggests that the tilt is most likely generated below the surface. However, the data do not show evidence of a dependence of the tilt angle on the amount of flux or a relaxation of the bipolar orientation toward the east-west direction, in contrast to the predictions of the rising magnetic flux rope theories.

  6. The Seasonal Variations of Saturn's Current Sheet Tilt

    NASA Astrophysics Data System (ADS)

    Khurana, K. K.; Dougherty, M. K.; Russell, C. T.

    2012-09-01

    The location of a planetary current sheet, where most of the magnetospheric plasma resides, is determined by the effects of centrifugal, solar wind and Lorentz forces on the plasma. It is well known that at any local time, Saturn's current sheet develops a static tilt from solar wind forcing which gives it a global shape of a shallow bowl [1]. However, less appreciated is the fact that the current sheet also develops a dynamic tilt which moves the current sheet up and down at any local time during a Saturnian day [2]. Khurana et al. (2009) suggested that the dynamic tilt results from the asymmetric lift of the magnetosphere in the presence of ring current asymmetries which rotate with the planet [3]. Khurana et al. (2009) examined Cassini data from the period of 2004-2006, when the solar elevation angle was > 14 degrees. They showed that during this time, the dynamic tilt was > 10 degrees. Saturn passed through its equinox during July 2009. The solar elevation angle during 2009 was between -3.4 and 2.2 degrees. Using magnetic field observations from this period, we now show that the dynamic current sheet tilt was also extremely small (< 5 degrees). We further show that the current sheet's dynamic tilt is governed largely by the solar elevation angle. The variability of Saturn's current sheet's dynamic tilt has implications for the models of spin periodicity in Saturn's magnetosphere. Two types of models have been proposed to explain the spin periodicities in the magnetosphere. In the magnetospheric driven models, an inner magnetospheric vortex drives cyclical convection in the magnetosphere and creates periodicities in the observed field and plasma parameters. In the ionospheric driven models, a vortex in the ionosphere imposes magnetospheric periodicities including dynamic tilt in Saturn's current sheet. We show that the seasonal variations of Saturn's current sheet tilt is consistent with the magnetospheric driven models but cannot be

  7. Classical and quantum mechanics of diatomic molecules in tilted fields

    NASA Astrophysics Data System (ADS)

    Arango, Carlos A.; Kennerly, William W.; Ezra, Gregory S.

    2005-05-01

    We investigate the classical and quantum mechanics of diatomic molecules in noncollinear (tilted) static electric and nonresonant linearly polarized laser fields. The classical diatomic in tilted fields is a nonintegrable system, and we study the phase space structure for physically relevant parameter regimes for the molecule KCl. While exhibiting low-energy (pendular) and high-energy (free-rotor) integrable limits, the rotor in tilted fields shows chaotic dynamics at intermediate energies, and the degree of classical chaos can be tuned by changing the tilt angle. We examine the quantum mechanics of rotors in tilted fields. Energy-level correlation diagrams are computed, and the presence of avoided crossings quantified by the study of nearest-neighbor spacing distributions as a function of energy and tilting angle. Finally, we examine the influence of classical periodic orbits on rotor wave functions. Many wave functions in the tilted field case are found to be highly nonseparable in spherical polar coordinates. Localization of wave functions in the vicinity of classical periodic orbits, both stable and unstable, is observed for many states.

  8. Classical and quantum mechanics of diatomic molecules in tilted fields.

    PubMed

    Arango, Carlos A; Kennerly, William W; Ezra, Gregory S

    2005-05-08

    We investigate the classical and quantum mechanics of diatomic molecules in noncollinear (tilted) static electric and nonresonant linearly polarized laser fields. The classical diatomic in tilted fields is a nonintegrable system, and we study the phase space structure for physically relevant parameter regimes for the molecule KCl. While exhibiting low-energy (pendular) and high-energy (free-rotor) integrable limits, the rotor in tilted fields shows chaotic dynamics at intermediate energies, and the degree of classical chaos can be tuned by changing the tilt angle. We examine the quantum mechanics of rotors in tilted fields. Energy-level correlation diagrams are computed, and the presence of avoided crossings quantified by the study of nearest-neighbor spacing distributions as a function of energy and tilting angle. Finally, we examine the influence of classical periodic orbits on rotor wave functions. Many wave functions in the tilted field case are found to be highly nonseparable in spherical polar coordinates. Localization of wave functions in the vicinity of classical periodic orbits, both stable and unstable, is observed for many states.

  9. Nondissipative optimum charge regulator

    NASA Technical Reports Server (NTRS)

    Rosen, R.; Vitebsky, J. N.

    1970-01-01

    Optimum charge regulator provides constant level charge/discharge control of storage batteries. Basic power transfer and control is performed by solar panel coupled to battery through power switching circuit. Optimum controller senses battery current and modifies duty cycle of switching circuit to maximize current available to battery.

  10. Tilt changes of short duration

    USGS Publications Warehouse

    McHugh, Stuart

    1976-01-01

    Section I of this report contains a classification scheme for short period tilt data. For convenience, all fluctuations in the local tilt field of less than 24 hours duration will be designated SP (i.e., short period) tilt events. Three basic categories of waveshape appearance are defined, and the rules for naming the waveforms are outlined. Examples from tilt observations at four central California sites are provided. Section II contains some coseismic tilt data. Fourteen earthquakes in central California, ranging in magnitude from 2.9 to 5.2, were chosen for study on four tiltmeters within 10 source dimensions of the epicenters. The raw records from each of the four tiltmeters at the times of the earthquakes were photographed and are presented in this section. Section III contains documentation of computer programs used in the analysis of the short period tilt data. Program VECTOR computes the difference vector of a tilt event and displays the sequence of events as a head-to-tail vector plot. Program ONSTSP 1) requires two component digitized tilt data as input, 2) scales and plots the data, and 3) computes and displays the amplitude, azimuth, and normalized derivative of the tilt amplitude. Program SHARPS computes the onset sharpness, (i.e., the normalized derivative of the tilt amplitude at the onset of the tilt event) as a function of source-station distance from a model of creep-related tilt changes. Program DSPLAY plots the digitized data.

  11. Oral rehabilitation with tilted dental implants: A metaanalysis

    PubMed Central

    Peñarrocha-Oltra, David; Candel-Marti, Eugenia; Peñarrocha-Diago, Maria

    2012-01-01

    Objective: To compare the course of patients treated with tilted implants versus those treated conventionally with axial implants, analyzing the success rate and marginal bone loss. Material and Methods: A PubMed search was made using the key words “tilted implants”, “angled implants”, “angulated implants”, “inclined implants” and “maxillary atrophy.” A review was made of the articles published between 1999-2010. The inclusion criteria were the use of tilted implants, clinical series involving at least 10 patients, and a minimum follow-up of 12 months after prosthetic loading. The exclusion criteria were isolated clinical cases, studies with missing data, and publications in languages other than English or Spanish. The metaanalysis finally included 13 articles: 7 retrospective studies and 6 prospective studies. Results: On analyzing the success rate in the retrospective studies, two reported a higher success rate with tilted implants; one a higher success rate with axial implants; and two reported similar success rates with both implants. On analyzing the success rate in the prospective studies, two reported a higher success rate with tilted implants; two a higher success rate with axial implants; and two reported similar success rates with both implants. On examining marginal bone loss, three studies reported greater bone loss with axial implants and one with tilted implants. Conclusions: There was no evidence of differences in success rate between tilted and axial implants in either the prospective or retrospective studies subjected to review. The marginal bone loss observed with the tilted and axial implants likewise proved very similar. It thus can be deduced that tilted implants exhibit the same evolutive behavior as axial implants. Key words:Axial implants, tilted implants, maxillary atrophy, tilted implants. PMID:22322494

  12. Tilt optimization of a building integrated solar concentrating unit

    NASA Astrophysics Data System (ADS)

    Chemisana, D.; Tripanagnostopoulos, Y.; Lamnatou, Chr.; Souliotis, M.; Rosell, J. I.; Barrau, J.

    2012-10-01

    The concept of a static linear Fresnel concentrator with a tracking absorber has been simulated and well understood in the past. This paper bridges the gap between theoretical optical performances and operation in outdoor conditions. The effort focuses on the characterization of weather and tilt angle effects on the solar concentrator annual performance. Useful mathematical expressions are derived to show the dependence of the annual concentrated energy on latitude, global radiation, mean clearness index and tilt angle. An equation for the optimization of the annual yield is also proposed. The results are applied to a PVT generator and the annual production of thermal and electrical output energy is evaluated for an installation in Barcelona (Spain). A performance improvement above 5% is reached when the optimized tilt angle is used.

  13. Paleocene arc-continent collision in southeastern Papua New Guinea was followed in the Neogene by 50 km of extension on low-angle faults, emplacement of intrusive rocks, uplift and tilting and erosion to reveal the PUB ophiolite

    NASA Astrophysics Data System (ADS)

    Davies, H. L.; Jonda, L.

    2012-12-01

    The geology of the Owen Stanley Range in southeastern Papua New Guinea was mapped at reconnaissance scale in 1960-1980. The range comprises a core of mostly felsic greenschist-facies metamorphics (Kagi Metamorphics) that is structurally overlain on the northeast side by a fault-bounded partial carapace of mafic partly-blueschist-facies metamorphics (Emo Metamorphics). Metamorphism was by arc-continent collision in the Paleocene (cooling age 58.3 Ma). Subsequently there has been 50 km or more of NE-SW extension of the crust allowing emergence and uplift of the metamorphic rocks and tilting and erosion of the arc to reveal the PUB ophiolite. In 2010-2011 we reviewed the existing field and petrologic data and more recent satellite imagery, and followed up with several days of reconnaissance mapping. We were particularly interested to find and explanation for the interruption of the Owen Stanley Range at 148.4E to 148.8 E. Our preliminary conclusions include (a) there is evidence of a second metamorphic event (a second collision perhaps) in the Eocene; (b) it is likely that the range developed as a series of sub-horizontal thrust sheets; and (c) the thrust sheets were reactivated in the Late Miocene-to-Quaternary as extensional duplexes. Extension was accompanied by emplacement of diorite-granodiorite and K-rich hypabyssal rocks some of which are localised along the former leading edge (the SW front) of the Emo metamorphic carapace.

  14. Inverse solutions for tilting orthogonal double prisms.

    PubMed

    Li, Anhu; Ding, Ye; Bian, Yongming; Liu, Liren

    2014-06-10

    An analytical reverse solution and actual examples are given to show how to direct a laser beam from a pair of orthogonal prisms to given targets in free space. Considering the influences of double-prism structural parameters, a lookup table method to seek the numerical reverse solution of each prism's tilting angle is also proposed for steering the double-prism orientation to track a target position located in the near field. Some case studies, as well as a specified elliptical target trajectory scanned by the cam-based driving double prisms, exhibit the significant application values of the theoretical derivation. The analytic reverse and numerical solutions can be generalized to investigate the synthesis of scanning patterns and the controlling strategy of double-prism tilting motion, the potentials of which can be explored to perform the orientation and position tracking functions in applications of precision engineering fields.

  15. Tilted Liquid Crystal Alignment on Asymmetrically Grooved Porous Alumina Film

    NASA Astrophysics Data System (ADS)

    Maeda, Tsuyoshi; Hiroshima, Kohki

    2005-06-01

    This paper reports the achievement of tilted liquid crystal (LC) alignment on an anodic porous alumina (APA) film using microgrooves with asymmetric shapes and dozens of minute pores. The microgrooves with asymmetric shapes were formed by a rubbing technique. The minute pores were then produced by anodization. The LC pretilt angle was controlled by the shapes of the microgrooves and pores. The LC director was orientated in the same inclining direction as that of a rubbed polyimide (PI) film. The pretilt angle was in the range of 20 to 90°. This tilted LC alignment remains very stable against external forces such as thermal shock and intense light.

  16. Tilted string cosmologies

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-04-01

    Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.

  17. Perception of self-tilt in a true and illusory vertical plane

    NASA Technical Reports Server (NTRS)

    Groen, Eric L.; Jenkin, Heather L.; Howard, Ian P.; Oman, C. M. (Principal Investigator)

    2002-01-01

    A tilted furnished room can induce strong visual reorientation illusions in stationary subjects. Supine subjects may perceive themselves upright when the room is tilted 90 degrees so that the visual polarity axis is kept aligned with the subject. This 'upright illusion' was used to induce roll tilt in a truly horizontal, but perceptually vertical, plane. A semistatic tilt profile was applied, in which the tilt angle gradually changed from 0 degrees to 90 degrees, and vice versa. This method produced larger illusory self-tilt than usually found with static tilt of a visual scene. Ten subjects indicated self-tilt by setting a tactile rod to perceived vertical. Six of them experienced the upright illusion and indicated illusory self-tilt with an average gain of about 0.5. This value is smaller than with true self-tilt (0.8), but comparable to the gain of visually induced self-tilt in erect subjects. Apparently, the contribution of nonvisual cues to gravity was independent of the subject's orientation to gravity itself. It therefore seems that the gain of visually induced self-tilt is smaller because of lacking, rather than conflicting, nonvisual cues. A vector analysis is used to discuss the results in terms of relative sensory weightings.

  18. Data Correction for Gantry-tilted Local CT.

    PubMed

    Liang, Hongzhu; Zhang, Cishen; Yan, Ming; Zhou, Jiayin

    2005-01-01

    Gantry-tilted helical multi-slice computed tomography (CT) refers to the helical scanning CT system equipped with multi-row detector operating at some gantry tilting angle. Its purpose is to avoid the area which is vulnerable to the X-ray radiation. The local tomography is to reduce the total radiation dose by only scanning the region of interest for image reconstruction. In this paper we consider the scanning scheme, and incorporate the local tomography technique with the gantry-tilted helical multi-slice CT. The image degradation problem caused by gantry tilting is studied, and a new error correction method is proposed to deal with this problem in the local CT. Computer simulation shows that the proposed method can enhance the local imaging performance in terms of image sharpness and artifacts reduction.

  19. Effect of beam quality on tilt measurement using cyclic interferometer

    NASA Astrophysics Data System (ADS)

    Pretheesh Kumar, V. C.; Ganesan, A. R.; Joenathan, C.; Somasundaram, U.

    2016-08-01

    Accurate measurement of angles is extremely important in various metrological applications. Interferometry has always been an excellent technique for accurate measurements. Several methods have been proposed for accurate tilt measurement using interferometric techniques. Almost all of them use the Michelson configuration which is extremely sensitive to environmental vibrations and turbulences. We know that a cyclic interferometer is extremely stable. Even though it is not sensitive to displacement changes, it is twice sensitive to tilt compared to that of a Michelson interferometer. We have enhanced the sensitivity to measure tilt using multiple reflections in a cyclic interferometer. Since the input beam is collimated, we have studied the effect of aberration of the input beam on the accuracy of tilt measurement. Experimental results on this study are presented in this paper.

  20. Aberration and boresight error correction for conformal aircraft windows using the inner window surface and tilted fixed correctors.

    PubMed

    Zhao, Chunzhu; Cui, Qingfeng; Mao, Shan

    2016-04-01

    A static solution to aberrations and boresight error for tilted conformal aircraft windows at different look angles is reported. The solution uses the inner window surface to correct the window aberrations at a 0° look angle and uses fixed correctors behind the window to correct the residual window aberrations at other look angles. Then, the boresight error for the window at different look angles is corrected by tilting the fixed correctors. The principle of the solution is discussed, and a design example shows that the solution is effective in correcting the aberrations and boresight error for a tilted conformal aircraft window at different look angles.

  1. Human perceptual overestimation of whole body roll tilt in hypergravity

    PubMed Central

    Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2014-01-01

    Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally. PMID:25540216

  2. Experiment research on orthogonal tilting scanner

    NASA Astrophysics Data System (ADS)

    Li, Anhu; Liu, Liren; Sun, Jianfeng; Zhong, Xianghong; Luan, Zhu

    2007-09-01

    The original scanner of tilting orthogonal double prisms is studied for testing the tracking performance in inter-satellite laser communications. Two prisms respectively rotate around the horizontal axle and the vertical one within the admissible range to determine the corresponding orientation and position of the passing beam, therefore the high accuracy deviation angle of passing beam can be performed. The test experiments performed with autocollimator and interferometer, as well as the theoretical analysis, indicates that the scanner can meet the requirements of the deviation accuracy superior to 0.5 μrad with the deviation range greater than 500 μrad, which accords to our design requirements.

  3. Method to fabricate a tilted logpile photonic crystal

    DOEpatents

    Williams, John D.; Sweatt, William C.

    2010-10-26

    A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.

  4. Numerical simulation about orthogonal single frequency dithering technique used in tilt control of fiber laser array

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixin; Zhi, Dong; Ma, Yanxing; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2017-01-01

    Beam combination of fiber laser array is an effective technique contributed to improve the brightness of fiber lasers. In order to realize high-efficiency CBC, challenges like phase distortion (mainly including piston and tilt phase aberrations) should be taken into consideration. Resent years, tilt phase aberrations control has been come true by adaptive fiber optics collimator using the stochastic parallel gradient descent (SPGD) algorithm. However, the convergence rate of tilt control system still cannot satisfy the needs of practical application. In order to increase the tilt control bandwidth, a new idea is put forward that applying the orthogonal single frequency dithering (OSFD) technique into tilt control, and numerical simulation has been completed. A hexagonal laser array with 7 elements has been simulated, and each element has a pair of initial tilt angles in horizontal and vertical direction. The initial tilt angles comply with normal distribution. In the same condition, tilt phase control has been realized through SPGD and OSFD individually, and the convergence steps (defined as the iteration steps that improve the normalized PIB above 0.9) with appropriate parameters are respectively about 20 (SPGD) and 7 (OSFD). Furthermore, tilt phase control of large number hexagonal array is simulated, and the results are as follows: for 19/37 elements, the least convergence steps are about 80/160(SPGD) and 19/55(OSFD). Comparing with SPGD algorithm, it is obvious that the OSFD has higher convergence rate and greater potential for tilt control application in large number coherent fiber laser array.

  5. Modelling of the UV Index on vertical and 40° tilted planes for different orientations.

    PubMed

    Serrano, D; Marín, M J; Utrillas, M P; Tena, F; Martínez-Lozano, J A

    2012-02-01

    In this study, estimated data of the UV Index on vertical planes are presented for the latitude of Valencia, Spain. For that purpose, the UVER values have been generated on vertical planes by means of four different geometrical models a) isotropic, b) Perez, c) Gueymard, d) Muneer, based on values of the global horizontal UVER and the diffuse horizontal UVER, measured experimentally. The UVER values, obtained by any model, overestimate the experimental values for all orientations, with the exception of the Perez model for the East plane. The results show statistical values of the MAD parameter (Mean Absolute Deviation) between 10% and 25%, the Perez model being the one that obtained a lower MAD for all levels. As for the statistic RMSD parameter (Root Mean Square Deviation), the results show values between 17% and 32%, and again the Perez model provides the best results in all vertical planes. The difference between the estimated UV Index and the experimental UV Index, for vertical and 40° tilted planes, was also calculated. 40° is an angle close to the latitude of Burjassot, Valencia, (39.5°), which, according to various studies, is the optimum angle to capture maximum radiation on tilted planes. We conclude that the models provide a good estimate of the UV Index, as they coincide or differ in one unit compared to the experimental values in 99% of cases, and this is valid for all orientations. Finally, we examined the relation between the UV Index on vertical and 40° tilted planes, both the experimental and estimated by the Perez model, and the experimental UV Index on a horizontal plane at 12 GMT. Based on the results, we can conclude that it is possible to estimate with a good approximation the UV Index on vertical and 40° tilted planes in different directions on the basis of the experimental horizontal UVI value, thus justifying the interest of this study. This journal is © The Royal Society of Chemistry and Owner Societies 2012

  6. Tilt compensated MOEMS projector as input device

    NASA Astrophysics Data System (ADS)

    Grüger, Heinrich; Heberer, Andreas; Gerwig, Christian; Nauber, Petra; Scholles, Michael; Lakner, Hubert

    2007-02-01

    Silicon micro machining once headed into two directions: MEMS (micro electro mechanical systems) based sensors like accelerometers and gyroscopes on the one hand, MOEMS (micro opto electro mechanical systems) based actuators like scanner mirrors on the other hand. Now both directions meet again: A tilt compensated projector module uses a two dimensional excited scanner mirror as well as accelerometers and gyroscopes. The projector module can have a minimum size of 30 x 15 x 15 mm 3 with a monochrome red laser source (λ = 635 nm). It reaches a resolution of 640 x 480 pixels (VGA) and a frame rate of 50fps. Colour projection requires lager size due to the lack of compact green laser sources. The tilt and roll angles are measured statically by a three axes accelerometer, fast movement is detected dynamically by three single axis gyroscopes. Thus tilt of the projection systems was compensated successfully. The dynamic range was set to 300 x 300 pixels for sufficient system dynamic. Furthermore the motion detection was used to achieve control and input device functions. The first demonstration and test system consists of a projector mounted at the axis of a PC racing wheel together with the additional inertial measurement unit (IMU) system. It was shown that projection and input function work well together. Using this approach, new possibilities for hand-held devices arise in the close future.

  7. Method for Determining Optimum Injector Inlet Geometry

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, W. Neill (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  8. Tilted dipole model for bias-dependent photoluminescence pattern

    SciTech Connect

    Fujieda, Ichiro Suzuki, Daisuke; Masuda, Taishi

    2014-12-14

    In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5 wt. % coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission.

  9. Passive tilt compensation in an FTS using a double-sided flat retroflector

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.

    1988-01-01

    An optical configuration for a tilt-compensated Fourier transform spectrometer is presented. An expanded and collimated He-Ne laser beam was passed through the interferometer and the collimated output was observed visually. The double-sided mirror was tilted through angles approaching 1 deg with no apparent degradation in the interference quality.

  10. Distinguishable circumferential inclined direction tilt sensor based on fiber Bragg grating with wide measuring range and high accuracy

    NASA Astrophysics Data System (ADS)

    Jiang, Shanchao; Wang, Jing; Sui, Qingmei

    2015-11-01

    One novel distinguishable circumferential inclined direction tilt sensor is demonstrated by incorporating two strain sensitivity fiber Bragg gratings (FBGs) with two orthogonal triangular cantilever beam and using one fiber Bragg grating (FBG) as temperature compensation element. According to spatial vector and space geometry, theory calculation model of the proposed FBG tilt sensor which can be used to obtain the azimuth and tile angle of the inclined direction is established. To obtain its measuring characteristics, calibration experiment on one prototype of the proposed FBG tilt sensor is carried out. After temperature sensitivity experiment data analysis, the proposed FBG tilt sensor exhibits excellent temperature compensation characteristics. In 2-D tilt angle experiment, tilt measurement sensitivities of these two strain sensitivity FBGs are 140.85°/nm and 101.01°/nm over a wide range of 60º. Further, azimuth and tile angle of the inclined direction can be obtained by the proposed FBG tilt sensor which is verified in circumferential angle experiment. Experiment data show that relative errors of azimuth are 0.55% (positive direction) and 1.14% (negative direction), respectively, and relative errors of tilt angle are all less than 3%. Experiment results confirm that the proposed distinguishable circumferential inclined direction tilt sensor based on FBG can achieve azimuth and tile angle measurement with wide measuring range and high accuracy.

  11. Imaging tilted transversely isotropic media with a generalised screen propagator

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Il; Byun, Joongmoo; Seol, Soon Jee

    2015-01-01

    One-way wave equation migration is computationally efficient compared with reverse time migration, and it provides a better subsurface image than ray-based migration algorithms when imaging complex structures. Among many one-way wave-based migration algorithms, we adopted the generalised screen propagator (GSP) to build the migration algorithm. When the wavefield propagates through the large velocity variation in lateral or steeply dipping structures, GSP increases the accuracy of the wavefield in wide angle by adopting higher-order terms induced from expansion of the vertical slowness in Taylor series with each perturbation term. To apply the migration algorithm to a more realistic geological structure, we considered tilted transversely isotropic (TTI) media. The new GSP, which contains the tilting angle as a symmetric axis of the anisotropic media, was derived by modifying the GSP designed for vertical transversely isotropic (VTI) media. To verify the developed TTI-GSP, we analysed the accuracy of wave propagation, especially for the new perturbation parameters and the tilting angle; the results clearly showed that the perturbation term of the tilting angle in TTI media has considerable effects on proper propagation. In addition, through numerical tests, we demonstrated that the developed TTI-GS migration algorithm could successfully image a steeply dipping salt flank with high velocity variation around anisotropic layers.

  12. Tilts in strong ground motion

    USGS Publications Warehouse

    Graizer, V.

    2006-01-01

    Most instruments used in seismological practice to record ground motion are pendulum seismographs, velocigraphs, or accelerographs. In most cases it is assumed that seismic instruments are only sensitive to the translational motion of the instrument's base. In this study the full equation of pendulum motion, including the inputs of rotations and tilts, is considered. It is shown that tilting the accelerograph's base can severely impact its response to the ground motion. The method of tilt evaluation using uncorrected strong-motion accelerograms was first suggested by Graizer (1989), and later tested in several laboratory experiments with different strong-motion instruments. The method is based on the difference in the tilt sensitivity of the horizontal and vertical pendulums. The method was applied to many of the strongest records of the Mw 6.7 Northridge earthquake of 1994. Examples are shown when relatively large tilts of up to a few degrees occurred during strong earthquake ground motion. Residual tilt extracted from the strong-motion record at the Pacoima Dam-Upper Left Abutment reached 3.1?? in N45??E direction, and was a result of local earthquake-induced tilting due to high-amplitude shaking. This value is in agreement with the residual tilt measured by using electronic level a few days after the earthquake. The method was applied to the building records from the Northridge earthquake. According to the estimates, residual tilt reached 2.6?? on the ground floor of the 12-story Hotel in Ventura. Processing of most of the strongest records of the Northridge earthquake shows that tilts, if happened, were within the error of the method, or less than about 0.5??.

  13. Optimum connection management scheduling

    NASA Astrophysics Data System (ADS)

    Kadar, Ivan

    2000-08-01

    Connection Management plays a key role in both distributed 'local' network-centric and 'globally' connected info- centric systems. The role of Connection Management is to provide seamless demand-based sharing of the information products. For optimum distributed information fusion performance, these systems must minimize communications delays and maximize message throughput, and at the same time take into account relative-sensors-targets geometrical constraints and data pedigree. In order to achieve overall distributed 'network' effectiveness, these systems must be adaptive, and be able to distribute data s needed in real- time. A system concept will be described which provides optimum capacity-based information scheduling. A specific example, based on a satellite channel, is used to illustrate simulated performance results and their effects on fusion systems performance.

  14. Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter

    SciTech Connect

    Meot, F.; Huang, H.

    2015-06-15

    A possible origin of a 14 deg y-normal spin n0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.

  15. Random Vibration Analysis of the Tip-tilt System in the GMT Fast Steering Secondary Mirror

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Don; Kim, Young-Soo; Kim, Ho-Sang; Lee, Chan-Hee; Lee, Won Gi

    2017-09-01

    A random vibration analysis was accomplished on the tip-tilt system of the fast steering secondary mirror (FSM) for the Giant Magellan Telescope (GMT). As the FSM was to be mounted on the top end of the secondary truss and disturbed by the winds, dynamic effects of the FSM disturbances on the tip-tilt correction performance was studied. The coupled dynamic responses of the FSM segments were evaluated with a suggested tip-tilt correction modeling. Dynamic equations for the tip-tilt system were derived from the force and moment equilibrium on the segment mirror and the geometric compatibility conditions with four design parameters. Statically stationary responses for the tip-tilt actuations to correct the wind-induced disturbances were studied with two design parameters based on the spectral density function of the star image errors in the frequency domain. Frequency response functions and root mean square values of the dynamic responses and the residual star image errors were numerically calculated for the off-axis and on-axis segments of the FSM. A prototype of on-axis segment of the FSM was developed for tip-tilt actuation tests to confirm the ratio of tip-tilt force to tip-tilt angle calculated from the suggested dynamic equations of the tip-tilt system. Tip-tilt actuation tests were executed at 4, 8 and 12 Hz by measuring displacements of piezoelectric actuators and reaction forces acting on the axial supports. The derived ratios of rms tip-tilt force to rms tip-tilt angle from tests showed a good correlation with the numerical results. The suggested process of random vibration analysis on the tip-tilt system to correct the wind-induced disturbances of the FSM segments would be useful to advance the FSM design and upgrade the capability to achieve the least residual star image errors by understanding the details of dynamics.

  16. Tilt anisoplanatism in extended turbulence propagation

    NASA Astrophysics Data System (ADS)

    Magee, Eric P.; Whiteley, Matthew R.; Das, Shashikala T.; Welsh, Byron M.

    2003-04-01

    The use of high-energy laser (HEL) weapon systems in tactical air-to-ground target engagements offers great promise for revolutionizing the USAF's war-fighting capabilities. Laser directed-energy systems will enable ultra-precision strike with minimal collateral damage and significant stand-off range for the aerial platform. The tactical directed energy application differs in many crucial ways from the conventional approach used in missile defense. Tactical missions occur at much lower altitudes and involve look-down to low-contrast ground targets instead of a high-contrast boosting missile. At these lower altitudes, the strength of atmospheric turbulence is greatly enhanced. Although the target slant ranges are much shorter, tactical missions may still involve moderate values of the Rytov number (0.1-0.5), and small isoplanatic angles compared to the diffraction angle. With increased density of air in the propagation path, and the potential for slow-moving or stationary ground targets, HEL-induced thermal blooming will certainly be a concern. In order to minimize the errors induced by tracking through thermal blooming, offset aimpoint tracking can be used. However, this will result in significant tilt anisoplanatism, thus degrading beam stabilization on target. In this paper we investigate the effects of extended turbulence on tracking (or tilt) anisoplanatism using theory and wave optics simulations. The simulations show good agreement with geometric optics predictions at angles larger than about 5 micro-radians (asymptotic regime) while at smaller angles the agreement is poor. We present a theoretical basis for this observation.

  17. Motion sickness on tilting trains

    PubMed Central

    Cohen, Bernard; Dai, Mingjia; Ogorodnikov, Dmitri; Laurens, Jean; Raphan, Theodore; Müller, Philippe; Athanasios, Alexiou; Edmaier, Jürgen; Grossenbacher, Thomas; Stadtmüller, Klaus; Brugger, Ueli; Hauser, Gerald; Straumann, Dominik

    2011-01-01

    Trains that tilt on curves can go faster, but passengers complain of motion sickness. We studied the control signals and tilts to determine why this occurs and how to maintain speed while eliminating motion sickness. Accelerometers and gyros monitored train and passenger yaw and roll, and a survey evaluated motion sickness. The experimental train had 3 control configurations: an untilted mode, a reactive mode that detected curves from sensors on the front wheel set, and a predictive mode that determined curves from the train's position on the tracks. No motion sickness was induced in the untilted mode, but the train ran 21% slower than when it tilted 8° in either the reactive or predictive modes (113 vs. 137 km/h). Roll velocities rose and fell faster in the predictive than the reactive mode when entering and leaving turns (0.4 vs. 0.8 s for a 4°/s roll tilt, P<0.001). Concurrently, motion sickness was greater (P<0.001) in the reactive mode. We conclude that the slower rise in roll velocity during yaw rotations on entering and leaving curves had induced the motion sickness. Adequate synchronization of roll tilt with yaw velocity on curves will reduce motion sickness and improve passenger comfort on tilting trains.—Cohen, B., Dai, M., Ogorodnikov, D., Laurens, J., Raphan, T., Müller, P., Athanasios, A., Edmaier, J., Grossenbacher, T., Stadtmüller, K., Brugger, U., Hauser, G., Straumann, D. Motion sickness on tilting trains. PMID:21788449

  18. Measuring Low Frequency Tilts

    PubMed Central

    Kohl, M. L.; Levine, J.

    1993-01-01

    A borehole tiltmeter with a sensitivity of a few nanoradians is described. It is composed of two orthogonal horizontal pendulums with free periods of 1 s. The pendulums are insensitive to barometric pressure fluctuations, and the measured temperature coefficient is less than 30 nrad/°C. The range of the pendulums is about ±5 μ rad, and their response is linear within 1% and stable over several years. The performance of the tiltmeter in the field was evaluated using tidal data obtained from a closely spaced array of boreholes in Southern California. The long-term stability of the tiltmeter is generally better than 1 μ rad/yr. The data also indicate that instruments in boreholes at least 24 m deepare independent of surface effects. Several different capsules designed to couple the instrument to the surrounding material have been tested. In addition, an experimental method for estimating the magnitudes of local perturbation in the regional tilt field is described. PMID:28053466

  19. Integrated polymer polarization rotator based on tilted laser ablation

    NASA Astrophysics Data System (ADS)

    Poulopoulos, Giannis; Kalavrouziotis, Dimitrios; Missinne, Jeroen; Bosman, Erwin; Van Steenberge, Geert; Apostolopoulos, Dimitrios; Avramopoulos, Hercules

    2017-02-01

    The ubiquitous need for compact, low-cost and mass production photonic devices, for next generation photonic enabled applications, necessitates the development of integrated components exhibiting functionalities that are, to date, carried out by free space elements or standard fiber equipment. The polarization rotator is a typical example of such tendency, as it is a crucial part of the PBS operation of future transceiver modules that leverage polarization multiplexing schemes for increasing the optical network capacity. Up to now, a variety of integrated polarization rotating concepts has been proposed and reported, relying, mainly, on special waveguide crossection configurations for achieving the rotation. Nevertheless, most of those concepts employ SiPh or III-V integration platforms, significantly increasing the fabrication complexity required for customizing the waveguide crossection, which in turn leads to either prohibitively increased cost or compromised quality and performance. In this manuscript we demonstrate the extensive design of a low-cost integrated polymer polarization rotator employing a right-trapezoidal waveguide interfaced to standard square polymer waveguides. First the crossection of the waveguide is defined by calculating and analyzing the components of the hybrid modes excited in the waveguide structure, using a Finite Difference mode solver. Mode overlaps between the fundamental polymer mode and each hybrid mode reveal the optimum lateral offset between the square polymer and the trapezoidal waveguide that ensures both minimum interface loss and maximized polarization rotation performance. The required trapezoidal waveguide length is obtained through EigenMode Expansion (EME) propagation simulations, while more than 95% maximum theoretical conversion efficiency is reported over the entire C-band, resulting to more than 13dB polarization extinction ratio. The polarization rotator design relies on the development of angled polymer waveguide

  20. Clinical measurement of compensatory torsional eye movement during head tilt.

    PubMed

    Lim, Han Woong; Kim, Ji Hong; Park, Seung Hun; Oh, Sei Yeul

    2017-03-01

    To measure the degree of compensatory torsional eye movement during head tilt using a fundus photography method. We enrolled 55 healthy subjects who were 20-66 years of age. Fundus photographs were obtained in the presumed baseline position and in stepwise head tilt positions to evaluate ocular torsion using a non-mydriatic fundus camera. Horizontal marks on the nose were photographed simultaneously to evaluate head tilt. Images were analysed using Photoshop to measure the degree of ocular torsion and head tilt. A consistent compensatory torsional eye movement was observed in all subjects during head tilt. The degree of compensatory torsional eye movement showed a positive correlation with the angle of head tilt. Ocular torsional disconjugacy was observed during head tilt, with larger excycloductional eye movement than incycloductional eye movement (4.88 ± 2.91° versus 4.50 ± 2.76°, p < 0.001). In multiple linear regression analysis, the degree of compensatory torsional eye movement was significantly associated with the degree of head tilt (β = 0.191, p < 0.001), and the direction of cycloduction (β = -0.548, p < 0.001). The fundus photography method is a non-invasive, accurate and objective tool for measuring compensatory torsional eye movement. Considering the availability of fundus photography in clinical ophthalmology practice, the proposed method can be used as a clinical tool to measure compensatory torsional eye movement. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. A tilted and warped inner accretion disc around a spinning black hole: an analytical solution

    NASA Astrophysics Data System (ADS)

    Chakraborty, Chandrachur; Bhattacharyya, Sudip

    2017-08-01

    Inner accretion disc around a black hole provides a rare, natural probe to understand the fundamental physics of the strong gravity regime. A possible tilt of such a disc, with respect to the black hole spin equator, is important. This is because such a tilt affects the observed spectral and timing properties of the disc X-ray emission via Lense-Thirring precession, which could be used to test the theoretical predictions regarding the strong gravity. Here, we analytically solve the steady, warped accretion disc equation of Scheurer and Feiler, and find an expression of the radial profile of the disc tilt angle. In our exact solution, considering a prograde disc around a slowly spinning black hole, we include the inner part of the disc, which was not done earlier in this formalism. Such a solution is timely, as a tilted inner disc has recently been inferred from X-ray spectral and timing features of the accreting black hole H1743-322. Our tilt angle radial profile expression includes observationally measurable parameters, such as black hole mass and Kerr parameter, and the disc inner edge tilt angle Win, and hence can be ideal to confront observations. Our solution shows that the disc tilt angle in 10-100 gravitational radii is a significant fraction of the disc outer edge tilt angle, even for Win = 0. Moreover, tilt angle radial profiles have humps in ∼10-1000 gravitational radii for some sets of parameter values, which should have implications for observed X-ray features.

  2. A blended wing body airplane with a close-coupled, tilting tail

    NASA Astrophysics Data System (ADS)

    Nasir, R. E. M.; Mazlan, N. S. C.; Ali, Z. M.; Wisnoe, W.; Kuntjoro, W.

    2016-10-01

    This paper highlights a novel approach to stabilizing and controlling pitch and yaw motion via a set of horizontal tail that can act as elevator and rudder. The tail is incorporated into a new design of blended wing body (BWB) aircraft, known as Baseline-V, located just aft of the trailing edge of its inboard wing. The proposed close-coupled tail is equipped with elevators that deflect in unison, and can tilt - an unusual means of tilting where if starboard side is tilted downward at k degree, and then the portside must be tilted upward at k degree too. A wind tunnel experiment is conducted to investigate aerodynamics and static stability of Baseline-V BWB aircraft. The model is being tested at actual flight speed of 15 m/s (54 km/h) with varying angle of attack for five elevator angle cases at zero tilt angle and varying sideslip angle for four tilt angle cases at one fixed elevator angle. The result shows that the aircraft's highest lift-to-drag ratio is 32. It is also found that Baseline-V is statically stable in pitch and yaw but has no clear indication in terms of roll stability.

  3. Increasing the sensitivity for tilt measurement using a cyclic interferometer with multiple reflections

    NASA Astrophysics Data System (ADS)

    Pretheesh Kumar, Valiyaparambil Chacko; Joenathan, Charles; Ganesan, Angarai; Somasundram, Umapathy

    2016-08-01

    Measurement of tilt plays an important role in metrological applications and consequently, several methods have been proposed in the recent past. Classical interferometric methods can measure angles with high accuracy but are easily susceptible to external turbulences. We propose to use a cyclic interferometer to measure tilt in which the sensitivity to tilt measurement is double when compared with that of the classical Michelson interferometer. Since the counter propagating beams travel identical paths, the interferometer is insensitive to external vibrations and turbulence and thus can be used under harsh environmental conditions. The novelty in the technique lies in creating multiple reflections in the tilt mirror to enhance the measurement accuracy by the way of increasing the sensitivity. This paper presents the basics of the interferometer and experimental results to quantify the increase in sensitivity. By increasing the number of reflections, it is shown that sensitivity can be further improved to measure tilt angles below 5 μrad.

  4. XV-15 tilt rotor

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This photo shows the unique XV-15 Tiltrotor aircraft in vertical flight at the NASA Dryden Flight Research Center. The XV-15s, manufactured by Bell, were involved in limited research at NASA/Dryden in 1980 and 1981. The development of the XV-15 Tiltrotor research aircraft was initiated in 1973 with joint Army/NASA funding as a 'proof of concept', or 'technology demonstrator' program, with two aircraft being built by Bell Helicopter Textron (BHT) in 1977. NASA Ames Research Center, where most of the NASA research is conducted, continues to be in charge of the joint NASA/Army/Bell program. The aircraft are powered by twin Lycoming T-53 turboshaft engines that are connected by a cross-shaft and drive three-bladed, 25 ft diameter metal rotors (the size extensively tested in a wind tunnel). The engines and main transmissions are located in wingtip nacelles to minimize the operational loads on the cross-shaft system and, with the rotors, tilt as a single unit. For takeoff, the proprotors and their engines are used in the straight-up position where the thrust is directed downward. The XV-15 then climbs vertically into the air like a helicopter. In this VTOL mode, the vehicle can lift off and hover for approximately one hour. Once off the ground, the XV-15 has the ability to fly in one of two different modes. It can fly as a helicopter, in the partially converted airplane mode. The XV-15 can also then convert from the helicopter mode to the airplane mode. This is accomplished by continuous rotation of the proprotors from the helicopter rotor position to the conventional airplane propeller position. During the ten to fifteen second conversion period, the aircraft speed increases and lift is transferred from the rotors to the wing. To land, the proprotors are rotated up to the helicopter rotor position and flown as a helicopter to a vertical landing.

  5. Optimal ADF STEM imaging parameters for tilt-robust image quantification.

    PubMed

    MacArthur, K E; D'Alfonso, A J; Ozkaya, D; Allen, L J; Nellist, P D

    2015-09-01

    An approach towards experiment design and optimisation is proposed for achieving improved accuracy of ADF STEM quantification. In particular, improved robustness to small sample mis-tilts can be achieved by optimising detector collection and probe convergence angles. A decrease in cross section is seen for tilted samples due to the reduction in channelling, resulting in a quantification error, if this is not taken into account. At a smaller detector collection angle the increased contribution from elastic scattering, which initially increases with tilt, can be used to offset the decrease in the TDS signal. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A tilt-pair based method for assigning the projection directions of randomly oriented single-particle molecules.

    PubMed

    Ueno, Yutaka; Mine, Shouhei; Kawasaki, Kazunori

    2015-04-01

    In this article, we describe an improved method to assign the projection angle for averaged images using tilt-pair images for three-dimensional reconstructions from randomly oriented single-particle molecular images. Our study addressed the so-called 'initial volume problem' in the single-particle reconstruction, which involves estimation of projection angles of the particle images. The projected images of the particles in different tilt observations were mixed and averaged for the characteristic views. After the ranking of these group average images in terms of reliable tilt angle information, mutual tilt angles between images are assigned from the constituent tilt-pair information. Then, multiples of the conical tilt series are made and merged to construct a network graph of the particle images in terms of projection angles, which are optimized for the three-dimensional reconstruction. We developed the method with images of a synthetic object and applied it to a single-particle image data set of the purified deacetylase from archaea. With the introduction of low-angle tilt observations to minimize unfavorable imaging conditions due to tilting, the results demonstrated reasonable reconstruction models without imposing symmetry to the structure. This method also guides its users to discriminate particle images of different conformational state of the molecule.

  7. Numerical study of natural convection in fully open tilted cavities

    SciTech Connect

    Elsayed, M.M.; Al-Najem, N.M.; El-Refaee, M.M.; Noor, A.A.

    1999-09-01

    A numerical simulation of two-dimensional laminar natural convection in a fully open tilted square cavity with an isothermally heated back wall is conducted. The remaining two walls of the cavity are adiabatic. Steady-state solutions are presented for Grashof numbers between 10{sup 2} and 10{sup 5} and for tilt angles ranging from {minus}60{degree} to 90{degree} (where 90{degree} represents a cavity with the opening facing down). The fluid properties are assumed to be constant except for the density variation with temperature that gives rise to the buoyancy forces, which is treated by the Boussinesq approximation. The fluid concerned is air with Prandtl number fixed at 0.71. The governing equations are expressed in a normalized primitive variables formulation. Numerical predictions of the velocity and temperature fields are obtained using the finite-volume-based power law (SIMPLER: Semi-Implicit Method for Pressure-Linked Equations Revised) algorithm. For a vertical open cavity ({alpha} = 0{degree}), the algorithm generated results that were in good agreement with those previously published. Flow patterns and isotherms are shown in order to give a better understanding of the heat transfer and flow mechanisms inside the cavity. Effects of the controlling parameters-Grashof number and tilt angle-on the heat transfer (average Nusselt number) are presented and analyzed. The results also revealed that the open-cavity Nusselt number approaches the flat-plate solution when either Grashof number or tilt angle increases. In addition, a correlation of the Nusselt number in terms of the Grashof number and tilt angle is developed and presented; a comparison is made with available data from other literature.

  8. Find optimum pipe size

    SciTech Connect

    Fastenakels, M.; Campana, H.

    1984-09-01

    For decades, chemical engineers have used various rules of thumb for selecting the size of pipe in continuousprocess plants. Often these methods result in sizes that are not the correct selection for the operating conditions. This causes the plant to be less efficient to operate or more costly to erect. The optimum size is controlled by one of three modes of selection: the least annual cost (energy external source), the pressure drop available or the velocity allowable (often is two-phase flow)./sup 3/ Pressure drop available applies when a pressure loss may be (or must be) absorbed by the pipe. The optimum size then becomes the smallest and the least expensive that permits the flow to take place with no undesirable side effects. Except for very special cases, this would not be used in conjunction with a pumped or compressed fluid. This mode requires at least an approximation of the length of the pipe and the quantity and nature of the fittings in the system before the selection can be made. It can also apply under some conditions to the suction piping for pumps or compressors, to the lines conducting steam to and from reciprocating pumps and to heating equipment.

  9. Study on angle of immediate loading of immediate implant placement.

    PubMed

    Luo, Sheng-Lei; Yuan, Kui-Feng; Lai, Qing-Guo; Yang, Zhong-Jun; Tang, Xiao-Peng; Xu, Xin

    2015-05-01

    To investigate the clinical immediate load at an angle after immediate placement of the implant. Select 4 adult dogs; through establishing the angle loading animal experiment model, perform lateral loading on 32 implants respectively at vertical and 0°, 10°, and 20°, with which as a basis for grouping, determine the osseointegration index and new bone growth rate; and observe the peri-implant bone remodeling conditions. The 20° group is found with the most obvious bone absorption, and compared with other groups, its osseointegration index and new bone growth rate are statistically significant (P < 0.01); bone remodeling under 0° load stress is the best, with the formation of new bone and the highest bone contact ratio, which is the most reasonable under this the stress distribution compared with other angles. The implant stress distribution at 0° against the occlusal force direction is closer to physiologic optimum stress on the implant bone interface, and it is permitted for the long axis of the immediately implanted and immediately loaded implant to be tilted within about 10° against the load angle.

  10. A research on the application of Tilt-depth method

    NASA Astrophysics Data System (ADS)

    Liu, P.; Liu, T.; Zhu, P.

    2016-12-01

    Tilt-depth has been widely applied in magnetic exploration all over the world. Previous theoretical researches indicate magnetic Tilt-depth method possesses lower first-order than the Tilt-depth method in gravity field. Via models experiment, we do further comparative study and analysis on Tilt-depth method both in magnetic and gravity field. Both the mathematic study and model test demonstrate that Tilt-depth works better on shallow source exploration than deep source. The reason is that Tilt-depth methods, both in magnetic and gravity, are derived from contact model which is applicable for the shallow source in application. We show that such methods results in large error or incorrect depth estimation for deep geologic sources. The study combined several numerical models at different depths, the results indicate that the deeper the top depth of the sources, the larger error of the estimated depth. Subsequently, we process field magnetic data over Weigang Mine in Jiangsu province, south China. We also make comparison between our processing results with previous drill information. It shows that we use the method to calculate correct depth in shallowest magnetite south part of the studied area. The method, however, generates huge error in determining the depth in the deepest magnetite north part of the studied area. In this study, our research results reveal that the top depth estimation, from the distance between the +45° and -45° contours from the Tilt angle, are only suit for shallow exploration and can't be popularized simply. Hence, it is very necessary to work more for the new methods which are suitable for deep sources in the future research.

  11. Low tilt angle photometry and the thickness of Saturn's rings

    NASA Technical Reports Server (NTRS)

    Lumme, K.; Irvine, W. M.

    1979-01-01

    Nine photographic plates taken by Focas and Dollfus (1969) at the moment of the 1966 passage of the earth through the ring plane of Saturn have been remeasured. The value 0.8 (+2.3, -0.8) km is obtained for the ring thickness. The observed transmitted radiation through the rings at two distances from the planet suggests that there are density fluctuations in Ring A with the low density areas having an optical thickness less than 0.13. The radiation reflected by the outermost part of the ring layer can be explained in terms of particles similar to those in the bulk of the rings. The time of the passage of the earth through the ring plane was found to be December 18 at 07h plus or minus 4h UT in 1966.

  12. Improvements to tilt rotor performance through passive blade twist control

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.

    1988-01-01

    A passive blade twist control is presented in which the twist distribution of a tilt rotor blade is elastically changed as a function of rotor speed. The elastic twist deformation is used to achieve two different blade twist distributions corresponding to the two rotor speeds used on conventional tilt rotors in hover and forward flight. By changing the blade twist distribution, the aerodynamic performance can be improved in both modes of flight. The concept presented obtains a change in twist distribution with extension-twist-coupled composite blade structure. This investigation first determines the linear twists which are optimum for each flight mode. Based on the optimum linear twist distributions, three extension-twist-coupled blade designs are developed using coupled-beam and laminate analyses integrated with an optimization analysis. The designs are optimized for maximum twist deformation subject to material strength limitations. The aerodynamic performances of the final designs are determined which show that the passive blade twist control concept is viable, and can enhance conventional tilt rotor performance.

  13. Conservative GRMHD simulations of moderately thin, tilted accretion disks

    SciTech Connect

    Teixeira, Danilo Morales; Fragile, P. Chris; Zhuravlev, Viacheslav V.; Ivanov, Pavel B.

    2014-12-01

    This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work, we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for both prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bardeen-Petterson alignment for prograde disks may be rather small, only including very thin disks. Unlike our previous work, we find no evidence for standing shocks in our simulated tilted disks. We ascribe this to the black hole spin, tilt angle, and disk scale height all being small in these simulations. We also add to the growing body of literature pointing out that the turbulence driven by the magnetorotational instability in global simulations of accretion disks is not isotropic. Finally, we provide a comparison between our moderately thin, untilted reference simulation and other numerical simulations of thin disks in the literature.

  14. High tilt susceptibility of the Scintrex CG-5 relative gravimeters

    NASA Astrophysics Data System (ADS)

    Reudink, R.; Klees, R.; Francis, O.; Kusche, J.; Schlesinger, R.; Shabanloui, A.; Sneeuw, N.; Timmen, L.

    2014-06-01

    We report on the susceptibility of the Scintrex CG-5 relative gravimeters to tilting, that is the tendency of the instrument of providing incorrect readings after being tilted (even by small angles) for a moderate period of time. Tilting of the instrument can occur when in transit between sites usually on the backseat of a car even using the specially designed transport case. Based on a series of experiments with different instruments, we demonstrate that the readings may be offset by tens of Gal. In addition, it may take hours before the first reliable readings can be taken, with the actual time depending on how long the instrument had been tilted. This sensitivity to tilt in combination with the long time required for the instrument to provide reliable readings has not yet been reported in the literature and is not addressed adequately in the Scintrex CG-5 user manual. In particular, the inadequate instrument state cannot easily be detected by checking the readings during the observation or by reviewing the final data before leaving a site, precautions suggested by Scintrex Ltd. In regional surveys with car transportation over periods of tens of minutes to hours, the gravity measurements can be degraded by some 10 Gal. To obtain high-quality results in line with the CG-5 specifications, the gravimeters must remain in upright position to within a few degrees during transits. This requirement may often be unrealistic during field observations, particularly when observing in hilly terrain or when walking with the instrument in a backpack.

  15. The Application of Normal Stress Reduction Function in Tilt Tests for Different Block Shapes

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hyun; Gratchev, Ivan; Hein, Maw; Balasubramaniam, Arumugam

    2016-08-01

    This paper focuses on the influence of the shapes of rock cores, which control the sliding or toppling behaviours in tilt tests for the estimation of rock joint roughness coefficients (JRC). When the JRC values are estimated by performing tilt tests, the values are directly proportional to the basic friction of the rock material and the applied normal stress on the sliding planes. Normal stress obviously varies with the shape of the sliding block, and the basic friction angle is also affected by the sample shapes in tilt tests. In this study, the shapes of core blocks are classified into three representative shapes and those are created using plaster. Using the various shaped artificial cores, a set of tilt tests is carried out to identify the shape influences on the normal stress and the basic friction angle in tilt tests. The test results propose a normal stress reduction function to estimate the normal stress for tilt tests according to the sample shapes based on Barton's empirical equation. The proposed normal stress reduction functions are verified by tilt tests using artificial plaster joints and real rock joint sets. The plaster joint sets are well matched and cast in detailed printed moulds using a 3D printing technique. With the application of the functions, the obtained JRC values from the tilt tests using the plaster samples and the natural rock samples are distributed within a reasonable JRC range when compared with the measured values.

  16. The Günther-Tulip retrievable filter: a method for assessing tilting of the filter.

    PubMed

    Semiz-Oysu, Aslihan; Cho, Kyung J

    2010-04-01

    Tilting of the Günther-Tulip filter may be responsible for failure or difficulty to retrieve. Assessment of the filter tilt can be difficult when only AP imaging is available. This study is performed in vitro to develop a simple method to assess the Günther-Tulip filter for tilting. A model consisting of a plastic tube was used to simulate vena cava. A Günther-Tulip filter was placed centred or tilted within the tube at various positions and radiograms were taken in AP, lateral, and craniocaudally angled projections. The images were analysed to determine the actual degree of tilt, the distance between the limb hooks on AP radiograms and the craniocaudal angulation degree needed to align the limb hooks linearly. When the filter was centred or tilted laterally, all limb hooks of the filter were aligned linearly on AP radiograms. When the filter was tilted in AP or oblique direction, linear alignment of the limb hooks was lost and the ventral and dorsal limb hooks showed separation on AP projection. The amount of separation and the craniocaudal angles to align the filter hooks corresponded to actual tilt angles. Loss of linear alignment of limb hooks in AP radiograms may suggest the presence of tilt in the AP plane. Significant separation of limb hooks should be alarming for significant filter tilt, and further evaluation of the filter position by CT scan or lateral cavogram should be obtained prior to planning of the retrieval. Copyright 2009 Australasian Society of Cardiac and Thoracic Surgeons and the Cardiac Society of Australia and New Zealand. Published by Elsevier B.V. All rights reserved.

  17. Magnetotransport across the artificially designed tilted grain boundaries

    NASA Astrophysics Data System (ADS)

    Chen, Aiping; Bi, Zhenxing; Tsai, Chen-Fong; Chen, Li; Su, Qing; Zhang, Xinghang; Wang, Haiyan; Texas A&M University Collaboration; Texas A&M University Team; Los Alamos National Lab Team

    2014-03-01

    Single-phase epitaxial La0.7Sr0.3MnO3 (LSMO) thin films with significantly enhanced low-field magnetoresistance (LFMR) properties are demonstrated in this work. The LSMO films on SrTiO3 (001) substrates exhibit tilted and well-aligned nanocolumn structure achieved by pulsed laser oblique-angle deposition (PLOAD) followed by subsequent postannealing. The tilted aligned nanocolumnar (TAN) arrays have been achieved at relative high deposition angles (>=30°) and low deposition temperatures (<=450 °C). More attractively, the tilted grain boundaries (GBs) can be systematically manipulated by the postannealing process and so can the LFMR values of the LSMO TAN films. These results demonstrate that the tilted nanocolumnar films achieved by PLOAD and the GB tailoring by postannealing may provide a new approach to control and manipulate the magnetotransport properties of single-phase manganite perovskite films for device applications that require large LFMR effects, high epitaxial quality, and low resistivity.

  18. Crystal lattice tilting in prismatic calcite.

    PubMed

    Olson, Ian C; Metzler, Rebecca A; Tamura, Nobumichi; Kunz, Martin; Killian, Christopher E; Gilbert, Pupa U P A

    2013-08-01

    We analyzed the calcitic prismatic layers in Atrina rigida (Ar), Haliotis iris (Hi), Haliotis laevigata (HL), Haliotis rufescens (Hrf), Mytilus californianus (Mc), Pinctada fucata (Pf), Pinctada margaritifera (Pm) shells, and the aragonitic prismatic layer in the Nautilus pompilius (Np) shell. Dramatic structural differences were observed across species, with 100-μm wide single-crystalline prisms in Hi, HL and Hrf, 1-μm wide needle-shaped calcite prisms in Mc, 1-μm wide spherulitic aragonite prisms in Np, 20-μm wide single-crystalline calcite prisms in Ar, and 20-μm wide polycrystalline calcite prisms in Pf and Pm. The calcite prisms in Pf and Pm are subdivided into sub-prismatic domains of orientations, and within each of these domains the calcite crystal lattice tilts gradually over long distances, on the order of 100 μm, with an angle spread of crystal orientation of 10-20°. Furthermore, prisms in Pf and Pm are harder than in any other calcite prisms analyzed, their nanoparticles are smaller, and the angle spread is strongly correlated with hardness in all shells that form calcitic prismatic layers. One can hypothesize a causal relationship of these correlated parameters: greater angle spread may confer greater hardness and resistance to wear, thus providing Pf and Pm with a structural advantage in their environment. This is the first structure-property relationship thus far hypothesized in mollusk shell prisms.

  19. Gender and line size factors modulate the deviations of the subjective visual vertical induced by head tilt

    PubMed Central

    2012-01-01

    Background The subjective visual vertical (SVV, the visual estimation of gravitational direction) is commonly considered as an indicator of the sense of orientation. The present study examined the impact of two methodological factors (the angle size of the stimulus and the participant's gender) on deviations of the SVV caused by head tilt. Forty healthy participants (20 men and 20 women) were asked to make visual vertical adjustments of a light bar with their head held vertically or roll-tilted by 30° to the left or to the right. Line angle sizes of 0.95° and 18.92° were presented. Results The SVV tended to move in the direction of head tilt in women but away from the direction of head tilt in men. Moreover, the head-tilt effect was also modulated by the stimulus' angle size. The large angle size led to deviations in the direction of head-tilt, whereas the small angle size had the opposite effect. Conclusions Our results showed that gender and line angle size have an impact on the evaluation of the SVV. These findings must be taken into account in the growing body of research that uses the SVV paradigm in disease settings. Moreover, this methodological issue may explain (at least in part) the discrepancies found in the literature on the head-tilt effect. PMID:22420467

  20. Development of a high resolution optical-fiber tilt sensor by F-P filter

    NASA Astrophysics Data System (ADS)

    Pan, Jianjun; Nan, Qiuming; Li, Shujie; Hao, Zhonghua

    2017-04-01

    A high-resolution tilt sensor is developed, which is composed of a pair of optical fiber collimators and a simple pendulum with an F-P filter. The tilt angle is measured by demodulating the shift of center wavelength of F-P filter, which is caused by incidence angle changing. The relationship between tilted angle and the center wavelength is deduced. Calibration experiment results also confirm the deduction, and show that it is easy to obtain a high resolution. Setting the initial angle to 6degree, the measurement range is ±3degree, its average sensitivity is 1104pm/degree, and its average resolution is as high as 0.0009degree.

  1. Tilt and Translation Motion Perception during Off Vertical Axis Rotation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Reschke, Millard F.; Clement, Gilles

    2006-01-01

    The effect of stimulus frequency on tilt and translation motion perception was studied during constant velocity off-vertical axis rotation (OVAR), and compared to the effect of stimulus frequency on eye movements. Fourteen healthy subjects were rotated in darkness about their longitudinal axis 10deg and 20deg off-vertical at 0.125 Hz, and 20deg offvertical at 0.5 Hz. Oculomotor responses were recorded using videography, and perceived motion was evaluated using verbal reports and a joystick with four degrees of freedom (pitch and roll tilt, mediallateral and anteriorposterior translation). During the lower frequency OVAR, subjects reported the perception of progressing along the edge of a cone. During higher frequency OVAR, subjects reported the perception of progressing along the edge of an upright cylinder. The modulation of both tilt recorded from the joystick and ocular torsion significantly increased as the tilt angle increased from 10deg to 20deg at 0.125 Hz, and then decreased at 0.5 Hz. Both tilt perception and torsion slightly lagged head orientation at 0.125 Hz. The phase lag of torsion increased at 0.5 Hz, while the phase of tilt perception did not change as a function of frequency. The amplitude of both translation perception recorded from the joystick and horizontal eye movements was negligible at 0.125 Hz and increased as a function of stimulus frequency. While the phase lead of horizontal eye movements decreased at 0.5 Hz, the phase of translation perception did not vary with stimulus frequency and was similar to the phase of tilt perception during all conditions. During dynamic linear acceleration in the absence of other sensory input (canal, vision) a change in stimulus frequency alone elicits similar changes in the amplitude of both self motion perception and eye movements. However, in contrast to the eye movements, the phase of both perceived tilt and translation motion is not altered by stimulus frequency. We conclude that the neural processing

  2. Fabrication and Characteristics of Micro-Electro-Mechanical-System-Based Tilt Sensor

    NASA Astrophysics Data System (ADS)

    Choi, Ju Chan; Kong, Seong Ho

    2009-06-01

    A miniaturized tilt sensor using air medium, which is measurable on a two-axis inclination angle, is fabricated and its output characteristics are evaluated. The proposed tilt sensor consists of a central microheater surrounded by four temperature sensors. Without an inclination, the microheater creates a symmetric temperature profile in an encapsulated microchamber filled with air medium. When the device is tilted, the temperature sensors formed around the central heater measure the asymmetric temperature profile, caused by the effect of convection. The proposed tilt sensor covers a measurement range of ±90° on two axes with excellent linearity and symmetric sensitivity. Furthermore, the structure and fabrication sequence of the proposed sensor are quite simple; that is, the microheater and temperature sensors can be simultaneously formed because they are made of the same material. Several issues, confronting the previously reported electrolytic tilt sensor, such as metal electrode corrosion, electrolyte deterioration, surface tension of the electrolyte, and difficulty in packaging, were avoided.

  3. Human responses to upright tilt: a window on central autonomic integration

    NASA Technical Reports Server (NTRS)

    Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.

    1999-01-01

    1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low

  4. Human responses to upright tilt: a window on central autonomic integration

    NASA Technical Reports Server (NTRS)

    Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.

    1999-01-01

    1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low

  5. Mechanisms of Günther Tulip filter tilting during transfemoral placement.

    PubMed

    Matsui, Y; Horikawa, M; Ohta, K; Jahangiri Noudeh, Y; Kaufman, J A; Farsad, K

    The purpose of this study was to characterize the mechanisms of Günther Tulip filter (GTF) tilting during transfemoral placement in an experimental model with further validation in a clinical series. In an experimental study, 120 GTF placements in an inferior vena cava (IVC) model were performed using 6 configurations of pre-deployment filter position. The angle between the pre-deployment filter axis and IVC axis, and the proximity of the constrained filter legs to IVC wall prior to deployment were evaluated. The association of those pre-deployment factors with post-deployment filter tilting was analyzed. The association noted in the experimental study was then evaluated in a retrospective clinical series of 21 patients. In the experimental study, there was a significant association between the pre-deployment angle and post-deployment filter tilting (P<0.0001). With a low pre-deployment angle (≤5°), a significant association was noted between filter tilting and the proximity of the constrained filter legs to the far IVC wall (P=0.001). In a retrospective clinical study, a significant association between the pre-deployment angle and post-deployment filter tilting was also noted with a linear regression model (P=0.026). Significant association of the pre-deployment angle with post-deployment GTF tilting was shown in both the experimental and clinical studies. The experimental study also showed that proximity of filter legs is relevant when pre-deployment angle is small. Addressing these factors may result in a lower incidence of filter tilting. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  6. Welfare support-equipment for character input with head tilting and breathing

    NASA Astrophysics Data System (ADS)

    Nakazawa, Nobuaki; Yamada, Kou; Matsui, Toshikazu; Itoh, Isao

    2005-12-01

    This paper describes support-equipment of operating a personal computer for users who have an obstacle on the regions of upper limb. The user wears a head set device with an angle sensor, and holds a plastic pipe connected to a pressure sensor in his or her mouth. Tilting his or her head and breathing are used for mouse cursor operation and characters input. Considering user's body conditions, the voluntary angle range of head tilting and strength of breathing are memorized to the controller beforehand, and obtained information is reflected for operations without fatigue. The character display board is used to indicate the Japanese characters and input options such as Back Space or Enter. Tilting motions change the indicated character and breathing actions can select and input the illuminated functions on the character display board. In test trial, it is confirmed that Japanese characters including Kanji and Katakana can be input with head tilting and breathing, instead of a general keyboard.

  7. Tilted microstrip phased arrays with improved electromagnetic decoupling for ultrahigh-field magnetic resonance imaging.

    PubMed

    Pang, Yong; Wu, Bing; Jiang, Xiaohua; Vigneron, Daniel B; Zhang, Xiaoliang

    2014-12-01

    One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T.

  8. Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Carbone, Giuseppe; Pierro, Elena; Kovalev, Alexander E.; Gorb, Stanislav N.

    2014-01-01

    We studied experimentally and theoretically the effect of different tilt angles on the adhesion of mushroom-shaped adhesive microstructures. The marginal measured influence of tilting on pull-off forces is quantitatively well confirmed by numerical and theoretical calculations and was shown to be a direct consequence of an optimized stress distribution. In addition, the presence of a joint-like narrowing under the contact elements, as found in some biological attachment systems, was shown to further contribute to the tilt-tolerance. The results obtained allow us to explain the advantage of the widely observed mushroom-shaped contact geometry in nature for long-term and permanent adhesion.

  9. Simple model for surface-enhanced Raman scattering from tilted silver nanorod array substrates

    NASA Astrophysics Data System (ADS)

    Liu, Y.-J.; Zhao, Y.-P.

    2008-08-01

    A modified Greenler’s model is proposed to interpret surface enhanced Raman scattering (SERS) for molecules adsorbed onto a tilted and aligned Ag nanorod array substrate. This model only considers molecules absorbed on the side walls of the nanorods and the Raman incident and collection configurations. It reveals that when the incident angle increases to an optimal angle, the SERS intensity reaches a maximum. With the increase in the nanorod tilting angles, the maximum SERS intensity almost does not change, but the optimal incident angle increases linearly. The underlayer thin film also plays an important role for SERS enhancement. In addition, the SERS intensity is closely related to the polarization of the excitation light. When the incident angle is smaller than 15° , s polarization excites stronger Raman signals; at other incident angles, p -polarization excitation contributes more Raman intensity. Those theoretical predictions are qualitatively consistent with our experimental observations.

  10. SYSTEMATIC ERROR REDUCTION: NON-TILTED REFERENCE BEAM METHOD FOR LONG TRACE PROFILER.

    SciTech Connect

    QIAN,S.; QIAN, K.; HONG, Y.; SENG, L.; HO, T.; TAKACS, P.

    2007-08-25

    Systematic error in the Long Trace Profiler (LTP) has become the major error source as measurement accuracy enters the nanoradian and nanometer regime. Great efforts have been made to reduce the systematic error at a number of synchrotron radiation laboratories around the world. Generally, the LTP reference beam has to be tilted away from the optical axis in order to avoid fringe overlap between the sample and reference beams. However, a tilted reference beam will result in considerable systematic error due to optical system imperfections, which is difficult to correct. Six methods of implementing a non-tilted reference beam in the LTP are introduced: (1) application of an external precision angle device to measure and remove slide pitch error without a reference beam, (2) independent slide pitch test by use of not tilted reference beam, (3) non-tilted reference test combined with tilted sample, (4) penta-prism scanning mode without a reference beam correction, (5) non-tilted reference using a second optical head, and (6) alternate switching of data acquisition between the sample and reference beams. With a non-tilted reference method, the measurement accuracy can be improved significantly. Some measurement results are presented. Systematic error in the sample beam arm is not addressed in this paper and should be treated separately.

  11. Tilted Thick-Disk Accretion onto a Kerr Black Hole

    SciTech Connect

    Fragile, P C; Anninos, P

    2003-12-12

    We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M{sup 2} = +0.9 (prograde disk). The black hole is then instantaneously tilted, through a change in the metric, by an angle {beta}{sub 0}. In this Letter we report results with {beta}{sub 0} = 0, 15, and 30{sup o}. The disk is allowed to respond to the Lense-Thirring precession of the tilted black hole. We find that the disk settles into a quasi-static, twisted, warped configuration with Lense-Thirring precession dominating out to a radius analogous to the Bardeen-Petterson transition in tilted Keplerian disks.

  12. Experimental determination of optimum gutter brush parameters and road sweeping criteria for different types of waste.

    PubMed

    Abdel-Wahab, Magd M; Wang, Chong; Vanegas-Useche, Libardo V; Parker, Graham A

    2011-06-01

    The removal ability of gutter brushes for road sweeping for various debris types and different sweeping parameters is studied through experimental tests. The brushing test rig used comprises two commercial gutter brushes, a concrete test bed, and an asphalt test road with a gutter of 0.25 cm width and 10° slope. The brush-surface contact area is determined by sweeping sand on the concrete test bed. Sweeping problems are identified and discussed, and sweeping criteria for the different debris types are suggested. Also, optimum sweeping parameters are proposed for each debris type. In addition, debris removal mechanisms are discussed and analysed. The results indicate that for large heavy debris such as stones and gravel, it is not difficult to achieve large removal forces, because the steel bristles are relatively stiff. Conversely, high removal forces are not needed for particles of millimetre or micron sizes, but bristle curvature has to be appropriate to remove particles from road concavities. Finally, it is found that mud, especially dry mud on a rough surface, is the hardest debris to sweep, requiring a brush with a large tilt angle and a very large penetration to produce large removal forces.

  13. Analysis of spent beam refocusing to achieve optimum collector efficiency

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1977-01-01

    A reasonable criterion for evaluating the effectiveness of spent beam refocusing is the reduction of spent beam turbulence. The rms deviation of particle angles where the angles are calculated from the ratio of radial velocity to axial velocity is one measure of beam turbulence. It is demonstrated that the angular deviation can be reduced by almost half in some magnetic field configurations. Experimental evidence indicates that beam processing of this type is most likely to yield an optimum collector efficiency.

  14. Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability.

    PubMed

    Morrison, Jessica; Imboden, Matthias; Little, Thomas D C; Bishop, D J

    2015-04-06

    MEMS micromirrors have proven to be very important optical devices with applications ranging from steerable mirrors for switches and cross-connects to spatial light modulators for correcting optical distortions. Usually beam steering and focusing are done with different MEMS devices and tilt angles in excess of 10 degrees are seldom obtained. Here we describe a single MEMS device that combines tip/tilt, piston mode and varifocal capability into a single, low cost device with very large tilt angles. Our device consists of a 400 micron diameter mirror driven with thermal bimorphs. We have demonstrated deflection angles of ± 40 degrees along both axes, a tunable focal length which varies between -0.48 mm to + 20.5 mm and a piston mode range of 300 microns - four separately controllable degrees of freedom in a single device. Potential applications range from smart lighting to optical switches and devices for telecom systems.

  15. Field induced UV-alignment method for a zero pre-tilt liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Won; Park, Jun-Hee; Yoon, Tae-Hoon

    2016-09-01

    Recently, photo-alignment technology has been the focus of research efforts because lowering the pre-tilt angle is essential for complete elimination of the off-axis light leakage. However, even though photo-alignment can provide zero pre-tilt angle, it has not yet been widely applied in mass production because of its weak surface anchoring, high curing energy, and strong image sticking. In this paper, we demonstrate that the zero pre-tilt angle can be obtained by employing the field-induced UV-alignment method. We have shown electro-optical characteristics and parameters related to the image quality of a fringe-field switching cell fabricated using the proposed method as functions of the monomer concentration and the UV irradiation time.

  16. Equilibrium contact angle or the most-stable contact angle?

    PubMed

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation.

  17. Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability.

    PubMed

    Porta, Alberto; Tobaldini, Eleonora; Guzzetti, Stefano; Furlan, Raffaello; Montano, Nicola; Gnecchi-Ruscone, Tomaso

    2007-07-01

    Two symbolic indexes, the percentage of sequences characterized by three heart periods with no significant variations (0V%) and that with two significant unlike variations (2UV%), have been found to reflect changes in sympathetic and vagal modulations, respectively. We tested the hypothesis that symbolic indexes may track the gradual shift of the cardiac autonomic modulation during an incremental head-up tilt test. Symbolic analysis was carried out over heart period variability series (250 cardiac beats) derived from ECG recordings during a graded head-up tilt test (0, 15, 30, 45, 60, 75, and 90 degrees ) in 17 healthy subjects. The percentage of subjects showing a significant linear correlation (Spearman rank-order correlation) with tilt angles was utilized to evaluate the performance of symbolic analysis. Spectral analysis was carried out for comparison over the same series. 0V% progressively increased with tilt angles, whereas 2UV% gradually decreased. The decline of 2UV% was greater than the increase of 0V% at low tilt angles. Linear correlation with tilt angles was exhibited in a greater percentage of subjects for 0V% and 2UV% than for any spectral index. Our findings suggest that symbolic analysis performed better than spectral analysis and, thus, is a suitable methodology for assessment of the subtle changes of cardiac autonomic modulation induced by a graded head-up tilt test. Moreover, symbolic analysis indicates that the changes of cardiac sympathetic and vagal modulations observed during this protocol were reciprocal but characterized by different absolute magnitudes.

  18. Theoretical analysis of interferometer wave front tilt and fringe radiant flux on a rectangular photodetector.

    PubMed

    Smith, Robert; Fuss, Franz Konstantin

    2013-09-06

    This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector for variable location within the fringe pattern and with varying wave front angle. The results indicate that the flux is a damped sine function of the wave front angle, with a decay constant of the ratio of wavelength to detector width. The modulation amplitude of the dynamic fringe pattern reduces to zero at wave front angles that are an integer multiple of this ratio and the results show that the polarity of the radiant flux changes exclusively at these multiples. Varying tilt angle causes radiant flux oscillations under an envelope curve, the frequency of which is dependent on the location of the detector with the fringe pattern. It is also shown that a fringe count of zero can be obtained for specific photodetector locations and wave front angles where the combined effect of fringe contraction and fringe tilt can have equal and opposite effects. Fringe tilt as a result of a wave front angle of 0.05° can introduce a phase measurement difference of 16° between a photodetector/pixel located 20 mm and one located 100 mm from the optical origin.

  19. Defining Optimal Head-Tilt Position of Resuscitation in Neonates and Young Infants Using Magnetic Resonance Imaging Data

    PubMed Central

    Bhalala, Utpal S.; Hemani, Malvi; Shah, Meehir; Kim, Barbara; Gu, Brian; Cruz, Angelo; Arunachalam, Priya; Tian, Elli; Yu, Christine; Punnoose, Joshua; Chen, Steven; Petrillo, Christopher; Brown, Alisa; Munoz, Karina; Kitchen, Grant; Lam, Taylor; Bosemani, Thangamadhan; Huisman, Thierry A. G. M.; Allen, Robert H.; Acharya, Soumyadipta

    2016-01-01

    Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0–28 days) and young infants (age: 29 days–4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144–150°. PMID:27003759

  20. Logic circuit exhibits optimum performance

    NASA Technical Reports Server (NTRS)

    Husson, C.

    1965-01-01

    Performance of circuits are compared to determine the optimum circuit configuration for implementation into microelectronic functions. Comparison is made in terms of power drain, propagation time, and component variations with temperature and load.

  1. Effect of lens tilt on SCE and filamentation characteristics of femtosecond pulses in air

    NASA Astrophysics Data System (ADS)

    Sreeja, S.; Prashant, T. Shuvan; Leela, Ch.; Kumar, V. Rakesh; Tewari, Surya P.; Venugopal Rao, S.; Kiran, P. Prem

    2012-06-01

    We present the evolution of SCE associated with filaments due to the tilt of focusing lens under tight focusing geometries. Transform limited femtosecond (fs) pulses (800 nm, 45 fs, 1 kHz repetition rate) were focused in ambient air using three different focusing geometries f/#6, f/#7.5, and f/#12 corresponding to numerical apertures (NA) of 0.08, 0.06, and 0.04, respectively. The focusing lens was tilted from zero up to 20 degrees. The filaments decayed into two shorter parts through tilting of the lens and the separation between shorter filaments increased with increasing lens tilt, in tune with earlier reports [Kamali et al., Opt. Commun. 282, 950-954 (2009)]. The separation between the filaments matched well with the predicted distances due to astigmatism induced in loose focusing geometries. However the deviation increased as we moved to the tighter focusing geometries. The SCE spectrum demonstrated an anomalous behaviour. The SCE spectrum was suppressed at larger tilt angles of 12 - 20°. However at lower tilt angles, up to 8°, the SCE was observed to be same to that measured without any tilt of the focusing lens. This behaviour is predominant with tighter focusing geometries of f/#6 and f/#7.5, wherein the SCE was observed to be higher at 4° and 8° in comparison with that observed at an angle of 0°. Systematic study of the focusing lens tilt on anomalous SCE spectra and filament characteristics in the tight focusing geometry are presented.

  2. [Evaluation of psychological fear in children undergoing head-up tilt test].

    PubMed

    Chu, Wei-Hong; Wu, Li-Jia; Wang, Cheng; Lin, Ping; Li, Fang; Zhu, Li-Ping; Ran, Jing; Zou, Run-Mei; Liu, De-Yu

    2014-03-01

    To investigate the effects of different tilt angles of head-up tilt test (HUTT) and different responses to HUTT on the psychological fear in children undergoing the test. HUTT was performed on children with unexplained syncope or pre-syncope (107 cases: 52 males and 55 females), aged 5.5-17.8 years (mean 12.0±2.8 years). All subjects were randomly assigned to undergo HUTT at an angle of 60°, 70° or 80°; the negative cases underwent sublingual nitroglycerin-provocation HUTT at the same tilt angle. The Wong-Baker Faces Pain Rating Scale was used for self-assessment of psychological fear in subjects during HUTT at the end point of the test. The positive rate, hemodynamic changes and distribution of response types showed no significant differences between children at tilt angles of 60°, 70° and 80° (P>0.05). The greater the tilt angle, the higher the degree of psychological fear in children undergoing the test, but there were no significant differences between them (P>0.05). The degree of psychological fear in children who showed a positive response to HUTT (n=76) was significantly higher than that in children who showed a negative response (n=31) (P<0.01). HUTT can cause psychological fear in children undergoing the test, and the degree of psychological fear increases in children tested at tilt angles from 60° to 80°, but the differences have no statistical significance. A positive response to HUTT can significantly increase the psychological fear in children.

  3. ''Optimum productivity'': a geneticist's view

    SciTech Connect

    Libby, W.J.

    1980-01-01

    Both ''optimum'' and ''productivity'' are explored in a social context with a long time dimension. Renewability, flexibility, and diversity are important concepts in long-term planning to achieve optimum productivity. Various possible genetic contributions, including complementary clones, quantitative genetic engineering, resistant trees and plantations, elimination of inbreeding, single-gene genetic engineering, and agri-forestry, are suggested for long-term sustained or increased productivity.

  4. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this…

  5. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this…

  6. The tilt rotor research aircraft (XV-15) program

    NASA Technical Reports Server (NTRS)

    Magee, J. P.

    1983-01-01

    The tilt rotor concept is introduced and the performance capabilities and noise characteristics of the XV-15 aircraft are discussed. In hover, the aircraft is lifted by the two wing tip mounted rotors with the nacelles in the vertical position. In this flight mode, the vehicle is a twin rotor helicopter and is controlled by rotor cyclic and collective controls. The aircraft can fly as a helicopter or tilt the nacelle to the propeller mode and operate as a fixed-wing twin turboprop airplane. It is also possible to stop the conversion at any intermediate angle and fly continuously or reconvert. The rotors are powered by two modified T-53 engines and the power train includes a cross shaft located in the wing, to allow for the engine failure case and still retain power to both rotors.

  7. Resolution enhancement of computed radiography images using two orthogonal tilts

    NASA Astrophysics Data System (ADS)

    Pollmann, Steven I.; Norley, Chris J. D.; Yuan, Xunhua; Holdsworth, David W.

    2012-03-01

    Limitations to the spatial resolution of current digital x-ray systems are bounded by the physical characteristics of the xray detector. However, the need to image smaller structures provides motivation to develop high-resolution x-ray detector systems for use with computed radiographic, and tomographic x-ray systems. We report the implementation of a tilted detector technique (TDT) to attain near isotropic resolution enhancement by combining two orthogonal image views, acquired with existing detector hardware tilted at a fixed angle. Images were acquired using a ceiling-mounted x-ray unit (Proteus XR/a, GE Medical Systems, 50kVp, 250mAs). Images were digitized using a Fujifilm Capsula X CR system, from a 35×43cm detector cassette placed on an angulated stand, featuring a 3520×4280 image matrix with an in-plane pixel spacing of 0.1mm. Three images were acquired: two for use with our TDT; and one for comparison, with no detector tilt. Performance was determined by using two line-pair phantoms (Models 07-521 and 07-533, Nuclear Associates) placed orthogonally to each other in the field of view. Custom software corrected for perspective distortion, co-registered and combined the tilted-detector images into a single higher-resolution image. Following unwarping and co-registration, the limiting spatial resolution of an image obtained via the weighted combination of the two orthogonal views (8 lp/mm) is found to be superior to that of a single view acquired with no detector tilt (5 lp/mm). This novel technique shows significant improvement in the spatial resolution of x-ray image acquisitions, using existing x-ray components and detector hardware.

  8. Earthquake prediction: Criterion for a tilt anomaly

    SciTech Connect

    Buckley, C.P.; Kohlenberger, C.W.

    1980-07-10

    A current approach to the problem of defining and detecting anomalous tilt behavior is presented. To establish what is considered to be normal tilt behavior, we isolate systematic signals such as hydrologic, thermal, tidal, cultural, and equipment-related effects from the tilt data. The kinds of tilt signals which remain after rejection of the systematic signals are designated by ourselves as residual tilt. Residual tilt consists of asystematic random noise and anomalous tilts. To affirm or deny the contention that an anomalous tilt is present in the data requires the formulation of a statistically valid judgment criteria. Our approach adopts the hypothesis that the random walk model is not significantly different from the residual tilt and allows the application of standard statistical tests to the problem of detecting anomalous varia ions in random noise. In our study of the data analyzed so far, we find that the boundary for detectability is inverse frequency dependent, and this limits the way in which anomalies can be treated. The fact that the magnitude of the anomaly decreases as the tilt data span increases suggests that further criterion development is necessary and tends to imply that longer anomalies will not be detected unless there is a correspondingly larger amplitude. From our studies of three earthquake-association anomalies this does not appear to be the case.

  9. Extension-twist coupling of composite circular tubes with application to tilt rotor blade design

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.

    1987-01-01

    This investigation was conducted to determine if twist deformation required for the design of full-scale extension-twist-coupled tilt-rotor blades can be achieved within material design limit loads, and to demonstrate the accuracy of a coupled-beam analysis in predicting twist deformations. Two extension-twist-coupled tilt-rotor blade designs were developed based on theoretically optimum aerodynamic twist distributions. The designs indicated a twist rate requirement of between .216 and .333 deg/in. Agreement between axial tests and analytical predictions was within 10 percent at design limit loads. Agreement between the torsion tests and predictions was within 11 percent.

  10. Gravito-Inertial Force Resolution in Perception of Synchronized Tilt and Translation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Holly, Jan; Zhang, Guen-Lu

    2011-01-01

    the GIF-resolution hypothesis even when the gravito-inertial force vector remains aligned with the body during periodic motion. Perception is also consistent with GIF-resolution in the opposite condition, when the gravito-inertial force vector angle is enhanced by synchronized tilt and translation.

  11. MIMO decorrelation for visible light communication based on angle optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyong; Zhu, Yijun

    2017-03-01

    Recently, many researchers have used the normal vector tilting to solve the problems about low rate of multiplexing and channel strong correlation in Visible Light Communication Multiple-Input Multiple-Output (VLC-MIMO) system, but they all lack of the theoretical support. In this paper, we establish a channel model about 2×2 VLC-MIMO, then translate the communication problem about vector tilting optimal angle in a certain range into a mathematical problem about seeking the minimum value of function. Finally, we deduced the mathematic expressions about the optimal tilting angles of corresponding LEDs and PDs, and these expressions will provide a theoretical basis for the further study.

  12. Paleomagnetic vectors and tilted dikes

    NASA Astrophysics Data System (ADS)

    Borradaile, G. J.

    2001-04-01

    Where tectonic deformation reorients rocks without penetrative strain, their paleomagnetic vectors may be restored to their original attitudes by untilting. For strata, paleomagnetic inclination is readily restored but the tilt axis must be precisely known if paleodeclination is required. For dikes, without the knowledge of the rotation(s), neither declination nor inclination of the paleomagnetic vector can be uniquely defined. Furthermore, back-rotating dike orientations to an upright attitude assumes primary verticality whereas primary dike dips are bimodal across the spreading axes (e.g. Troodos ophiolite, Cyprus). In the Cyprus ophiolite, the dikes of the Limassol Forest Transform Zone are tilted due to uplift of the mantle-sequence rocks and deflected against the Arakapas Fault. Their paleomagnetic vectors may be restored rotating about the two axes defined by the strike and the vertical, or about a net axis that is possibly the actual tectonic rotation axis. This net axis is determined from the tectonic regional dispersion of the dike orientations. In this test case, the results of the restorations differ slightly but underline the difficulty in selecting the best restoration procedure and the greater difficulty of restoring the paleomagnetic data from dikes vis à vis strata. For dikes, it is recommended that the paleomagnetic vectors are restored using average dike orientations to minimize the inaccuracies due to the large primary variation in dike orientation.

  13. Angle Performance on Optima XE

    SciTech Connect

    David, Jonathan; Satoh, Shu

    2011-01-07

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1{sigma}). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.

  14. Tilting and moving-object lens for a 3D electron microscope.

    PubMed

    Ura, Katsumi

    2016-10-01

    I investigated the tilting and movement of the objective lens of a 3D electron microscope electrically as an extension of the moving-objective lens concept. The electric or magnetic potential along the tilted optical axis is analytically expressed by a multipole potential expansion about the fixed central axis. The field distributions for axially symmetric dipole and quadrupole components are numerically shown, where the optical axis of a bell-shaped magnetic lens is tilted around the lens center by up to 60°. The hexapole and octapole components are also shown at a tilt angle of 45°. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy

    SciTech Connect

    Bell, Linda J.; Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2014-10-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle change between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1 cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more

  16. Modulation of internal estimates of gravity during and after prolonged roll-tilts.

    PubMed

    Tarnutzer, Alexander A; Bertolini, Giovanni; Bockisch, Christopher J; Straumann, Dominik; Marti, Sarah

    2013-01-01

    Perceived direction of gravity, as assessed by the subjective visual vertical (SVV), shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56 yo) repetitively adjusted a luminous arrow to the SVV over periods of 5 min while upright, roll-tilted (± 45°, ± 90°), and immediately after returning to upright. Significant (p<0.05) drifts (median absolute drift-amplitude: 10°/5 min) were found in 71% (± 45°) and 78% (± 90°) of runs. At ± 90° roll-tilt significant increases in absolute adjustment errors were more likely (76%), whereas significant increases (56%) and decreases (44%) were about equally frequent at ± 45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71 sec) was noted in 47% of all runs (all subjects pooled). No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central

  17. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy.

    PubMed

    Bell, Linda J; Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2014-01-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle change between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more

  18. Optimum Solar Conversion Cell Configurations

    NASA Technical Reports Server (NTRS)

    Chen, Bin (Inventor)

    2015-01-01

    Methods for maximizing a fraction of light energy absorbed in each of three classes of light concentrators (rectangular parallelepipeds, paraboloids and prisms) by choice of incident angle of radiation and of one or more geometrical or physical parameters (absorber thickness, paraboloid dimensions, location of paraboloid focus, prism angles, concentrator material, cladding, prism angles, etc.). Alternatively, the light energy absorbed plus the light energy that escapes through non-total internal reflection within the light concentrator can be minimized.

  19. A simple method to obtain consistent and clinically meaningful pelvic angles from euler angles during gait analysis.

    PubMed

    Wren, Tishya A L; Mitiguy, Paul C

    2007-08-01

    Clinical gait analysis usually describes joint kinematics using Euler angles, which depend on the sequence of rotation. Studies have shown that pelvic obliquity angles from the traditional tilt-obliquity-rotation (TOR) Euler angle sequence can deviate considerably from clinical expectations and have suggested that a rotation-obliquity-tilt (ROT) Euler angle sequence be used instead. We propose a simple alternate approach in which clinical joint angles are defined and exactly calculated in terms of Euler angles from any rotation sequence. Equations were derived to calculate clinical pelvic elevation, progression, and lean angles from TOR and ROT Euler angles. For the ROT Euler angles, obliquity was exactly the same as the clinical elevation angle, rotation was similar to the clinical progression angle, and tilt was similar to the clinical lean angle. Greater differences were observed for TOR. These results support previous findings that ROT is preferable to TOR for calculating pelvic Euler angles for clinical interpretation. However, we suggest that exact clinical angles can and should be obtained through a few extra calculations as demonstrated in this technical note.

  20. Geometry dependence of the clogging transition in tilted hoppers

    NASA Astrophysics Data System (ADS)

    Thomas, C. C.; Durian, D. J.

    2013-05-01

    We report the effects of system geometry on the clogging of granular material flowing out of flat-bottomed hoppers with variable aperture size D and with variable angle θ of tilt of the hopper away from horizontal. In general, larger tilt angles make the system more susceptible to clogging. To quantify this effect for a given θ, we measure the distribution of mass discharged between clogging events as a function of aperture size and extrapolate to the critical size at which the average mass diverges. By repeating for different angles, we map out a clogging phase diagram as a function of D and θ that demarcates the regimes of free flow (large D, small θ) and clogging (small D, large θ). We do this for both circular holes and long rectangular slits. Additionally, we measure four types of grain: smooth spheres (glass beads), compact angular grains (beach sand), disklike grains (lentils), and rodlike grains (rice). For circular apertures, the clogging phase diagram is found to be the same for all grain types. For narrow slit apertures and compact grains, the shape is also the same as for circular holes when expressed in terms of projected area of the aperture against the average flow direction. For lentils and rice discharged from slits, the behavior differs and may be due to alignment between grain and slit axes.

  1. TILTING TABLE AREA, PDP ROOM, LEVEL +27’, LOOKING NORTHWEST. TILTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TILTING TABLE AREA, PDP ROOM, LEVEL +27’, LOOKING NORTHWEST. TILTING TABLE MARKED BY WHITE ELECTRICAL CORD IN LOWER LEFT CENTER - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  2. Focus variation microscope: linear theory and surface tilt sensitivity.

    PubMed

    Nikolaev, Nikolay; Petzing, Jon; Coupland, Jeremy

    2016-05-01

    In a recent publication [3rd International Conference on Surface Metrology, Annecy, France, 2012, p. 1] it was shown that surface roughness measurements made using a focus variation microscope (FVM) are influenced by surface tilt. The effect appears to be most significant when the surface has microscale roughness (Ra≈50  nm) that is sufficient to provide a diffusely scattered signal that is comparable in magnitude to the specular component. This paper explores, from first principles, image formation using the focus variation method. With the assumption of incoherent scattering, it is shown that the process is linear and the 3D point spread characteristics and transfer characteristics of the instrument are well defined. It is argued that for the case of microscale roughness and through the objective illumination, the assumption of incoherence cannot be justified and more rigorous analysis is required. Using a foil model of surface scattering, the images that are recorded by a FVM have been calculated. It is shown that for the case of through-the-objective illumination at small tilt angles, the signal quality is degraded in a systematic manner. This is attributed to the mixing of specular and diffusely reflected components and leads to an asymmetry in the k-space representation of the output signals. It is shown that by using extra-aperture illumination or tilt angles greater than the acceptance angle of aperture (such that the specular component is lost), the incoherent assumption can be justified once again. The work highlights the importance of using ring-light illumination and/or polarizing optics, which are often available as options on commercial instruments, as a means to mitigate or prevent these effects.

  3. RF CAVITY BPM'S AS BEAM ANGLE AND BEAM CORRELATION MONITORS

    SciTech Connect

    Ross, Marc C

    2003-05-27

    It has been shown that high performance cavity BPM's are capable of accurate beam trajectory angle and beam ''tilt'', (x-z or y-z correlation) measurements [1],[2]. Such a device will be very useful for the optimization of a variety of beamlines, such as high current linacs, bunch rotators and storage rings. The signal from a non-axial trajectory or a tilted beam is in quadrature to that observed from a simple displacement of a very short bunch. Using in-phase/quadrature-phase (I/Q) demodulation of the cavity BPM signal, it is possible to separate position and angle/tilt. In this paper, we present results of beam angle and tilt monitor tests carried out in the KEK Accelerator Test Facility (ATF) extraction line.

  4. Tilting Uranus without a Collision

    NASA Astrophysics Data System (ADS)

    Rogoszinski, Zeeve; Hamilton, Douglas P.

    2016-10-01

    The most accepted hypothesis for the origin of Uranus' 98° obliquity is a giant collision during the late stages of planetary accretion. This model requires a single Earth mass object striking Uranus at high latitudes; such events occur with a probability of about 10%. Alternatively, Uranus' obliquity may have arisen from a sequence of smaller impactors which lead to a uniform distribution of obliquities. Here we explore a third model for tilting Uranus using secular spin-orbit resonance theory. We investigate early Solar System configurations in which a secular resonance between Uranus' axial precession frequency and another planet's orbital node precession frequency might occur.Thommes et al. (1999) hypothesized that Uranus and Neptune initially formed between Jupiter and Saturn, and were then kicked outward. In our scenario, Neptune leaves first while Uranus remains behind. As an exterior Neptune slowly migrates outward, it picks up both Uranus and Saturn in spin-orbit resonances (Ward and Hamilton 2004; Hamilton and Ward 2004). Only a distant Neptune has a nodal frequency slow enough to resonate with Uranus' axial precession.This scenario, with diverging orbits, results in resonance capture. As Neptune migrates outward its nodal precession slows. While in resonance, Uranus and Saturn each tilt a bit further, slowing their axial precession rates to continually match Neptune's nodal precession rate. Tilting Uranus to high obliquities takes a few 100 Myrs. This timescale may be too long to hold Uranus captive between Jupiter and Saturn, and we are investigating how to reduce it. We also find that resonance capture is rare if Uranus' initial obliquity is greater than about 10°, as the probability of capture decreases as the planet's initial obliquity increases. We will refine this estimate by quantifying capture statistics, and running accretion simulations to test the likelihood of a low early obliquity. Our preliminary findings show that most assumptions about

  5. Dynamics in a Spiral FFAG with Tilted Cavities.

    SciTech Connect

    BERG,J.S.

    2007-12-20

    I develop a formulation for Hamiltonian dynamics in an accelerator with magnets whose edges follow a spiral. I demonstrate using this Hamiltonian that a spiral FFAG can be made perfectly 'scaling'. I describe how one computes the RF phase during a rapid acceleration cycle to keep the beam at the appropriate RF phase. I examine the effect of tilting an RF cavity with respect a radial line from the center of the machine, potentially with a different angle than the spiral of the magnets. I discuss partially the effects of the finite energy jumps on the dynamics. This is a status report of work that is still incomplete.

  6. Numerical aperture characteristics of angle-ended plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Farrell, Gerard

    2003-03-01

    With the increasing information rates demanded in consumer, automotive and aeronautical applications, a low cost and high performance physical transmission medium is required. Compared with Silica Optical Fiber, Plastic Optical Fiber (POF) offers an economic solution for a range of high-capacity, short-haul applications in industrial and military environments. Recently, a new type of POF, the perfluorinated graded-index plastic optical fiber (PF GI-POF), has been introduced that has low losses and high bandwidth at the communication wavelengths 850 nm and 1300nm. POF is normally terminated perpendicular to the fiber axis. We propose an angle-ended POF, which is terminated at non-perpendicular angles to the fiber axis. The aim of the research is to investigate the numerical aperture (NA) characteristics of angle-ended POF along the major axis of the elliptical endface. A theoretical model indicates that the NA of the angle-ended POF will increase nonlinearly with tilt-angle and the acceptance cone will be deflected with the angle of the deflection increasing nonlinearly with tilt-angle. We present results for the measured NA and the measured deflection angle using the far-field radiation method. Results are presented for 13 angle-ended SI-POF tilt-angles. We also present results for theoretical value of NA and deflection angle as a function of tilt-angle. The agreement between the measured and theoretical value is good up to tilt-angles of about 15 degrees, beyond which deviation occurs.

  7. A tilt sensor with a compact dimension based on a long-period fiber grating.

    PubMed

    Wang, Yunpeng; Zhao, Chun-Liu; Hu, Limin; Dong, Xinyong; Jin, Yongxing; Shen, Changyu; Jin, Shangzhong

    2011-09-01

    A tilt sensor with a compact dimension based on a long-period fiber grating (LPG) is proposed and experimentally demonstrated. The LPG is fixed in a rigid Plexi-glass tubular with a slant orientation and half of the LPG is immersed into the NaCl aqueous solutions, whereas the other half is exposed in air. The tilt angle is obtained by monitoring the dip wavelength shift of the LPG, which changes gradually when the immersed length of the LPG varies with the tilt angle. Experimental results show that the average sensitivity 0.077 nm/° is achieved within the measurement range from -30° to 30° at the static measurement.

  8. A tilt sensor with a compact dimension based on a long-period fiber grating

    NASA Astrophysics Data System (ADS)

    Wang, Yunpeng; Zhao, Chun-Liu; Hu, Limin; Dong, Xinyong; Jin, Yongxing; Shen, Changyu; Jin, Shangzhong

    2011-09-01

    A tilt sensor with a compact dimension based on a long-period fiber grating (LPG) is proposed and experimentally demonstrated. The LPG is fixed in a rigid Plexi-glass tubular with a slant orientation and half of the LPG is immersed into the NaCl aqueous solutions, whereas the other half is exposed in air. The tilt angle is obtained by monitoring the dip wavelength shift of the LPG, which changes gradually when the immersed length of the LPG varies with the tilt angle. Experimental results show that the average sensitivity 0.077 nm/° is achieved within the measurement range from -30° to 30° at the static measurement.

  9. Tilted resonators in a triangular elastic lattice: Chirality, Bloch waves and negative refraction

    NASA Astrophysics Data System (ADS)

    Tallarico, Domenico; Movchan, Natalia V.; Movchan, Alexander B.; Colquitt, Daniel J.

    2017-06-01

    We consider a vibrating triangular mass-truss lattice whose unit cell contains a resonator of triangular shape. The resonators are connected to the ambient lattice by trusses. Each resonator is tilted, i.e. it is rotated with respect to the ambient lattice's unit cell through an angle ϑ0. This geometrical parameter is responsible for the emergence of a resonant mode in the Bloch spectrum for elastic waves and strongly affects the dispersive properties of the lattice. Additionally, the tilting angle ϑ0 triggers the opening of a band gap at a Dirac-like point. We provide a physical interpretation of these phenomena and discuss the dynamical implications on elastic Bloch waves. The dispersive properties are used to design a structured interface containing tilted resonators which exhibit negative refraction and focussing, as in a ;flat elastic lens;.

  10. A Cardiovascular Mathematical Model of Graded Head-Up Tilt

    PubMed Central

    Lim, Einly; Chan, Gregory S. H.; Dokos, Socrates; Ng, Siew C.; Latif, Lydia A.; Vandenberghe, Stijn; Karunanithi, Mohan; Lovell, Nigel H.

    2013-01-01

    A lumped parameter model of the cardiovascular system has been developed and optimized using experimental data obtained from 13 healthy subjects during graded head-up tilt (HUT) from the supine position to . The model includes descriptions of the left and right heart, direct ventricular interaction through the septum and pericardium, the systemic and pulmonary circulations, nonlinear pressure volume relationship of the lower body compartment, arterial and cardiopulmonary baroreceptors, as well as autoregulatory mechanisms. A number of important features, including the separate effects of arterial and cardiopulmonary baroreflexes, and autoregulation in the lower body, as well as diastolic ventricular interaction through the pericardium have been included and tested for their significance. Furthermore, the individual effect of parameter associated with heart failure, including LV and RV contractility, baseline systemic vascular resistance, pulmonary vascular resistance, total blood volume, LV diastolic stiffness and reflex gain on HUT response have also been investigated. Our fitted model compares favorably with our experimental measurements and published literature at a range of tilt angles, in terms of both global and regional hemodynamic variables. Compared to the normal condition, a simulated congestive heart failure condition produced a blunted response to HUT with regards to the percentage changes in cardiac output, stroke volume, end diastolic volume and effector response (i.e., heart contractility, venous unstressed volume, systemic vascular resistance and heart rate) with progressive tilting. PMID:24204817

  11. A study of the cornering forces generated by aircraft tires on a tilted, free-swiveling nose gear

    NASA Technical Reports Server (NTRS)

    Daugherty, R. H.; Stubbs, S. M.

    1985-01-01

    An experimental investigation was conducted to study the effect of various parameters on the cornering forces produced by a rolling aircraft tire installed on a tilted, free-swiveling nose gear. The parameters studied included tilt angle, trial, tire inflation pressure, rake angle, vertical load, and whether or not a twin tire configuration corotates. These parameters were evaluated by measuring the cornering force produced by an aircraft tire installed on the nose gear of a modified vehicle as it was towed slowly. Cornering force coefficient increased with increasing tilt angle. Increasing trial or rake angle decreased the magnitude of the cornering force coefficient. Tire inflation pressure had no effect on the cornering force coefficient. Increasing vertical load decreased the cornering force coefficient. When the tires of a twin tire system rotated independently, the cornering force coefficients were the same as those for the single-tire configuration. When the twin tire system was made to corotate, however, the cornering force coefficients increased significantly.

  12. Variable-Tilt Helicopter Rotor Mast

    NASA Technical Reports Server (NTRS)

    Kelley, Henry L.

    1995-01-01

    Variable-tilt helicopter rotor mast proposed to improve helicopter performance and reduce vibration, especially at upper end of forward-speed range of helicopters. Achieved by use of universal coupling in main rotor mast or by tilting entire engine-and-transmission platform. Performance, energy efficiency, and safety enhanced.

  13. Tip--tilt compensation for astronomical imaging

    SciTech Connect

    Olivier, S.S. ); Gavel, D.T. )

    1994-01-01

    We present a performance analysis of tip--tilt-compensation systems that use natural stars as tilt references. Taking into account properties of the atmosphere and of the galactic stellar populations, we optimize operating parameters over the system to determine performance limits for several varieties of tip--tilt-compensation system operating on a 10-m telescope on Mauna Kea, Hawaii. We find that, for systems that use a single tilt reference star, if the image of the star is uncorrected, a one-axis root-mean-square tilt residual of less than 190 nrad can be obtained for at least 99% of all astronomical objects, whereas if the image of the tilt reference star is fully corrected this limit drops to 90 nrad. For systems that use two tilt reference stars the limits drop to 160 nrad if the images of the stars are uncorrected and to 60 nrad if the images of the stars are fully corrected. These residual tilt levels would permit [ital V]-band images with long-exposure resolution of 8.5, 4.2, 7.3, and 2.9 times the diffraction limit, respectively, where the diffraction-limited resolution in the [ital V] band is 0.011 arcsec. These results may be compared with the typical seeing of 0.75 arcsec.

  14. Investigation of fiber tilt in paperboard

    Treesearch

    John M. Considine; David W. Vahey

    2008-01-01

    The introduction of short, tilted rods to reinforce polymer composite laminates has resulted in near doubling the strength of lap shear specimens. Paperboard is predominantly a multi-layered structure, similar to composite laminates in many ways. Improved bonding between layers should have a positive influence on mechanical performance. Tilted fibers, or z-direction...

  15. Strong tilt illusions always reduce orientation acuity.

    PubMed

    Solomon, Joshua A; Morgan, Michael J

    2009-03-01

    The apparent spatial orientation of an object can differ from its physical orientation when differently oriented objects surround it. This is the "tilt illusion". Previously [Solomon, J. A., & Morgan, M. J. (2006). Stochastic re-calibration: Contextual effects on perceived tilt. Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 2681-2686], we reported a loss of orientation acuity whenever a large physical tilt was required to compensate for the tilt illusion and make a target appear horizontal. Since all of those targets appeared to be at least approximately horizontal, we concluded that orientation acuity was not wholly determined by the target's apparent orientation. In the present study, we used oblique (i.e. neither horizontal nor vertical) reference orientations to more directly examine the effect of perceived orientation on orientation acuity. The results show that when surround and reference were parallel, there was no tilt illusion and acuity was high. Acuity suffered whenever the tilt illusion caused a large discrepancy between the target's physical and perceived tilts. Since this was true even for tilted references, context-induced acuity loss cannot be simply an "oblique effect" of the target's physical orientation.

  16. Large optics inspection, tilting, and washing stand

    SciTech Connect

    Ayers, Marion Jay; Ayers, Shannon Lee

    2012-10-09

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  17. Large optics inspection, tilting, and washing stand

    DOEpatents

    Ayers, Marion Jay [Brentwood, CA; Ayers, Shannon Lee [Brentwood, CA

    2010-08-24

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  18. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    NASA Astrophysics Data System (ADS)

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-04-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.

  19. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    PubMed Central

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-01-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems. PMID:24770490

  20. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system.

    PubMed

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-04-28

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m(2) is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m(2) at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.

  1. Detection and correction of wavefront errors caused by slight reference tilt in two-step phase-shifting digital holography.

    PubMed

    Xu, Xianfeng; Cai, Luzhong; Gao, Fei; Jia, Yulei; Zhang, Hui

    2015-11-10

    A simple and convenient method, without the need for any additional optical devices and measurements, is suggested to improve the quality of the reconstructed object wavefront in two-step phase-shifting digital holography by decreasing the errors caused by reference beam tilt, which often occurs in practice and subsequently introduces phase distortion in the reconstructed wave. The effects of reference beam tilt in two-step generalized interferometry is analyzed theoretically, showing that this tilt incurs no error either on the extracted phase shift or on the retrieved real object wave amplitude on the recording plane, but causes great deformation of the recovered object wavefront. A corresponding error detection and correction approach is proposed, and the formulas to calculate the tilt angle and correct the wavefront are deduced. A series of computer simulations to find and remove the wavefront errors caused by reference beam tilt demonstrate the effectiveness of this method.

  2. Classical and semiclassical mechanics of molecular rotors in tilted fields

    NASA Astrophysics Data System (ADS)

    Arango, Carlos Alberto

    We investigate the classical mechanics of diatomic and symmetric top molecules in tilted fields. These molecules exhibit regular, chaotic or mixed phase space depending on the tilt angle beta, the energy E, and the relative intensity of the fields o/Deltao. In the integrable collinear problem the projection of the angular momentum into the spatial z axis is a constant of motion, m, which allows us to use energy momentum diagrams to classify the motions of the rotor. For beta ≠ 0 the system is non-integrable showing mostly regular dynamics in the high-energy (free-rotor) and low-energy (pendular) limits; for energy near the tilted fields barrier the phase space is highly chaotic with degree of chaos increasing with beta between 0 and pi/2. Periodic orbits and bifurcation diagrams are obtained from symmetry lines and their iterations under the Poincare map. Some quantum eigenstates are localized near stable or unstable periodic orbits showing tori quantization or scarring respectively. For asymmetric top molecules in parallel fields m is a constant of the motion and it is possible to define an effective potential Vm(theta, psi). In an E-m diagram the equilibrium solutions of Vm(theta, psi) are curves that enclose regions of qualitatively different accessible theta-psi configuration space; these regions can be used to classify the quantum eigenstates. For plane rotors several primitive semiclassical methods are used to calculate the rotational excitation caused by laser pulses. In the case of plane rotors in electric fields we calculate energy spectra, orientation (), and alignment (), using the Herman-Kluk propagator in terms of periodic coherent states. For diatomic rotors in tilted fields, the HK propagator was used to calculate energy spectra with good agreement for high-energy and not very dense eigenspectra. Some steps are taken towards the development of HK-type propagator for rotational coherent states.

  3. Blade-Pitch Control for Quieting Tilt-Rotor Aircraft

    NASA Technical Reports Server (NTRS)

    Betzina, Mark D.; Nguyen, Khanh Q.

    2004-01-01

    A method of reducing the noise generated by a tilt-rotor aircraft during descent involves active control of the blade pitch of the rotors. This method is related to prior such noise-reduction methods, of a type denoted generally as higher-harmonic control (HHC), in which the blade pitch is made to oscillate at a harmonic of the frequency of rotation of the rotor. A tilt-rotor aircraft is so named because mounted at its wing tips are motors that can be pivoted to enable the aircraft to take off and land like a helicopter or to fly like a propeller airplane. When the aircraft is operating in its helicopter mode, the rotors generate more thrust per unit rotor-disk area than helicopter rotors do, thus producing more blade-vortex interaction (BVI) noise. BVI is a major source of noise produced by helicopters and tilt-rotor aircraft during descent: When a rotor descends into its own wake, the interaction of each blade with the blade-tip vortices generated previously gives rise to large air-pressure fluctuations. These pressure fluctuations radiate as distinct, impulsive noise. In general, the pitch angle of the rotor blades of a tilt-rotor aircraft is controlled by use of a swash plate connected to the rotor blades by pitch links. In both prior HHC methods and the present method, HHC control signals are fed as input to swash-plate control actuators, causing the rotor-blade pitch to oscillate. The amplitude, frequency, and phase of the control signal can be chosen to minimize BVI noise.

  4. Globally optimum multiple object tracking

    NASA Astrophysics Data System (ADS)

    Sebe, Ismail O.; You, Suya; Neumann, Ulrich

    2005-05-01

    Robust and accurate tracking of multiple objects is a key challenge in video surveillance. Tracking algorithms generally suffer from either one or more of the following problems, excluding detection errors. First, objects can be incorrectly interpreted as one of the other objects in the scene. Second, interactions between objects, such as occlusions, may cause tracking errors. Third, globally-optimum tracking is hard to achieve since the combinatorial assignment problem is NP-Complete. We present a modified Multiple-Hypothesis Tracking algorithm, MHT, for globally optimum tracking of moving objects. The system defines five states for tracked objects: appear, disappear, track, split, and merge, and these states cover all the interactions of object pairs. After the detection of objects in the current frame, a resemblance matrix is computed for every object pair. We convert the two-dimensional resemblance matrix into a three-dimensional state-likelihood structure and use a MHT technique to solve the state-assignment problem in 3D. This prevents incorrect assignments due to local minima in the assignment process. Moreover, the method models occlusion cases with the split and merge states. Finally, this method approximates a globally optimum state assignment in polynomial time complexity.

  5. Change in the direction of electric wind from a wire electrode tilted relative to a grounded plane

    NASA Astrophysics Data System (ADS)

    Elagin, I. A.; Begal', D. I.; Ashikhmin, I. A.; Stishkov, Yu. K.

    2017-01-01

    We report on experimental investigations of the structure of electric (ionic) wind in the wire-versus-plane electrode system with a constant interelectrode gap and variable wire tilt angle relative to the plane. Characteristic wind velocity distributions were determined using a laser Doppler anemometry technique. It is established that the position of the narrow central jet of the wind significantly changes depending on the tilt of the corona-forming electrode.

  6. Tilting double-prism scanner driven by cam-based mechanism.

    PubMed

    Li, Anhu; Yi, Wanli; Sun, Wansong; Liu, Liren

    2015-06-20

    A pair of orthogonal tilting prisms has been explored in our previous work to perform the orientation and position tracking function with tracking accuracy better than submicroradian order. Crucial to the function implementation, however, is the real-time nonlinear control of the tilting angles of double prisms for tracking a given target trajectory. In previous papers [Proc. SPIE5892, 1-5 (2005).PSISDG0277-786X; Appl. Opt.45, 8063 (2006).PSISDG0277-786X; Proc. SPIE6709, 41 (2007).PSISDG0277-786X; Appl. Opt.51, 356 (2011).10.1364/AO.51.000356APOPAI1559-128X; Appl. Opt.53, 3712 (2014).10.1364/AO.53.003712APOPAI1559-128X], a new driving method by a cam-based mechanism, which can transfer the control problem to the design of corresponding cam configuration, is investigated. The design process of a cam-based mechanism is explained from the mapping relation between the tilting angles of a prism and the configuration curve of a corresponding cam. Based on the designed cam-based mechanism, a tracking error less than 0.375% is depicted between the tracking trajectory and the original one. Moreover, the dynamic characteristic of the tracking mechanism is discussed in detail as well as the impacts of different tilting speeds on the tracking trajectory. The proposed tracking mechanism of a tilting double-prism scanner can create a new avenue for passively tracking a given target.

  7. Tilted wheel satellite attitude control with air-bearing table experimental results

    NASA Astrophysics Data System (ADS)

    Inumoh, Lawrence O.; Forshaw, Jason L.; Horri, Nadjim M.

    2015-12-01

    Gyroscopic actuators for satellite control have attracted significant research interest over the years, but their viability for the control of small satellites has only recently started to become clear. Research on variable speed gyroscopic actuators has long been focused on single gimbal actuators; double gimbal actuators typically operate at constant wheel spin rate and allow tilt angle ranges far larger than the ranges needed to operate most satellite missions. This research examines a tilted wheel, a newly proposed type of inertial actuator that can generate torques in all three principal axes of a rigid satellite using a spinning wheel and a double tilt mechanism. The tilt mechanism tilts the angular momentum vector about two axes providing two degree of freedom control, while variation of the wheel speed provides the third. The equations of motion of the system lead to a singularity-free system during nominal operation avoiding the need for complex steering logic. This paper describes the hardware design of the tilted wheel and the experimental setup behind both standalone and spherical air-bearing tables used to test it. Experimental results from the air bearing table are provided with the results depicting the high performance capabilities of the proposed actuator in torque generation.

  8. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis.

    PubMed

    Kota, Arun K; Li, Yongxin; Mabry, Joseph M; Tuteja, Anish

    2012-11-14

    Hierarchically structured, superoleophobic surfaces are demonstrated that display one of the lowest contact angle hysteresis values ever reported - even with extremely low-surface-tension liquids such as n-heptane. Consequently, these surfaces allow, for the first time, even ≈2 μL n-heptane droplets to bounce and roll-off at tilt angles. ≤ 2°.

  9. Variability of Retinal Thickness Measurements in Tilted or Stretched Optical Coherence Tomography Images

    PubMed Central

    Uji, Akihito; Abdelfattah, Nizar Saleh; Boyer, David S.; Balasubramanian, Siva; Lei, Jianqin; Sadda, SriniVas R.

    2017-01-01

    Purpose To investigate the level of inaccuracy of retinal thickness measurements in tilted and axially stretched optical coherence tomography (OCT) images. Methods A consecutive series of 50 eyes of 50 patients with age-related macular degeneration were included in this study, and Cirrus HD-OCT images through the foveal center were used for the analysis. The foveal thickness was measured in three ways: (1) parallel to the orientation of the A-scan (Tx), (2) perpendicular to the retinal pigment epithelium (RPE) surface in the instrument-displayed aspect ratio image (Ty), and (3) thickness measured perpendicular to the RPE surface in a native aspect ratio image (Tz). Mathematical modeling was performed to estimate the measurement error. Results The measurement error was larger in tilted images with a greater angle of tilt. In the simulation, with axial stretching by a factor of 2, Ty/Tz ratio was > 1.05 at a tilt angle between 13° to 18° and 72° to 77°, > 1.10 at a tilt angle between 19° to 31° and 59° to 71°, and > 1.20 at an angle ranging from 32° to 58°. Of note with even more axial stretching, the Ty/Tz ratio is even larger. Tx/Tz ratio was smaller than the Ty/Tz ratio at angles ranging from 0° to 54°. The actual patient data showed good agreement with the simulation. The Ty/Tz ratio was greater than 1.05 (5% error) at angles ranging from 13° to 18° and 72° to 77°, greater than 1.10 (10% error) angles ranging from 19° to 31° and 59° to 71°, and greater than 1.20 (20% error) angles ranging from 32° to 58° in the images axially stretched by a factor of 2 (b/a = 2), which is typical of most OCT instrument displays. Conclusions Retinal thickness measurements obtained perpendicular to the RPE surface were overestimated when using tilted and axially stretched OCT images. Translational Relevance If accurate measurements are to be obtained, images with a native aspect ratio similar to microscopy must be used. PMID:28299239

  10. Sensor fusion for structural tilt estimation using an acceleration-based tilt sensor and a gyroscope

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Park, Jong-Woong; Spencer, B. F., Jr.; Moon, Do-Soo; Fan, Jiansheng

    2017-10-01

    A tilt sensor can provide useful information regarding the health of structural systems. Most existing tilt sensors are gravity/acceleration based and can provide accurate measurements of static responses. However, for dynamic tilt, acceleration can dramatically affect the measured responses due to crosstalk. Thus, dynamic tilt measurement is still a challenging problem. One option is to integrate the output of a gyroscope sensor, which measures the angular velocity, to obtain the tilt; however, problems arise because the low-frequency sensitivity of the gyroscope is poor. This paper proposes a new approach to dynamic tilt measurements, fusing together information from a MEMS-based gyroscope and an acceleration-based tilt sensor. The gyroscope provides good estimates of the tilt at higher frequencies, whereas the acceleration measurements are used to estimate the tilt at lower frequencies. The Tikhonov regularization approach is employed to fuse these measurements together and overcome the ill-posed nature of the problem. The solution is carried out in the frequency domain and then implemented in the time domain using FIR filters to ensure stability. The proposed method is validated numerically and experimentally to show that it performs well in estimating both the pseudo-static and dynamic tilt measurements.

  11. Spin transport in tilted electron vortex beams

    SciTech Connect

    Basu, Banasri; Chowdhury, Debashree

    2014-12-10

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  12. V-22 Osprey Tilt-Rotor Aircraft

    DTIC Science & Technology

    2002-01-14

    Congressional Research Service ˜ The Library of Congress CRS Issue Brief for Congress Received through the CRS Web Order Code IB86103 V-22 Osprey ...00-00-2002 to 00-00-2002 4. TITLE AND SUBTITLE V-22 Osprey Tilt-Rotor Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Congress V-22 Osprey Tilt-Rotor Aircraft SUMMARY The V-22 Osprey is a tilt-rotor aircraft that takes off and lands vertically like a heli- copter and

  13. V-22 Osprey Tilt-Rotor Aircraft

    DTIC Science & Technology

    2004-04-23

    Order Code RL31384 CRS Report for Congress V-22 Osprey Tilt-Rotor Aircraft Updated April 23, 2004 Christopher Bolkcom Specialist in National Defense...2004 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE V-22 Osprey Tilt-Rotor Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 V-22 Osprey Tilt-Rotor Aircraft Summary The V-22 Osprey is a

  14. Optimum design charts for a piston-displacer Stirling cryocooler

    NASA Astrophysics Data System (ADS)

    Taylor, P. R.; Narayankhedkar, K. G.

    The design charts for maximum refrigerating capacity of a piston-displacer cryocooler are presented. Various design parameters including swept volume ratio, angle of the phase shift between piston and displacer, temperature ratio, and dead volume ratio have been studied. Data obtained reveal that, for imperfect regenerative cycle, it is possible to prepare the optimum design charts not only for maximum refrigerating capacity but also for maximum coefficient of performance.

  15. Echocardiograms during six hours of bedrest at head-down and head-up tilt and during space flight

    NASA Technical Reports Server (NTRS)

    Lathers, C. M.; Riddle, J. M.; Mulvagh, S. L.; Mukai, C.; Diamandis, P. H.; Dussack, L. G.; Bungo, M. W.; Charles, J. B.

    1993-01-01

    Left ventricular end-diastolic volume increased after 4 1/2 to 6 hours of space flight, but was significantly decreased after 5 to 6 days of space flight. To determine the role of acute gravitational effects in this phenomenon, responses to a 6-hour bedrest model of 0 gravity (G; 5 degrees head-down tilt) were compared with those of fractional gravity loads of 1/6 G, 1/3 G, and 2/3 G by using head-up tilts of 10 degrees, 20 degrees, and 42 degrees, respectively. On 4 different days, six healthy male subjects were tilted at one of the four angles for 6 hours. Cardiac dimensions and volumes were determined from two-dimensional and M-mode echocardiograms in the left lateral decubitus position at control (0), 2, 4, and 6 hours. Stroke volume decreased with time (P < .05) for all tilt angles when compared with control. Ejection fraction (EF) at -5 degrees was greater than at +20 degrees and +42 degrees (not significant); EF at +10 degrees was greater than at +42 degrees (not significant). For the tilt angles of -5 degrees, +10 degrees, and +20 degrees, mean heart rate decreased during the first 2 hours, and returned to control or was slightly elevated above control (+20 degrees) by 6 hours (not significant). At the +42 degrees angle of tilt, heart rate was increased above control at hours 2, 4, and 6. There were no significant differences in cardiac output at any time point for any tilt angle.(ABSTRACT TRUNCATED AT 250 WORDS).

  16. Evidence from infrared dichroism, x-ray diffraction, and atomistic computer simulation for a ``zigzag'' molecular shape in tilted smectic liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Jang, W. G.; Glaser, M. A.; Park, C. S.; Kim, K. H.; Lansac, Y.; Clark, N. A.

    2001-11-01

    Infrared dichroism (IR) and atomistic computer simulation are employed to probe molecular shape in smectic liquid crystal phases where the optic axis is tilted relative to the layer normal. Polar plots of absorption profiles due to core (phenyl, C-C) and tail (alkyl or methylene, CH2) vibrations in the tilted synclinic (smectic-C) phase of a variety of materials show the phenyl (core) IR absorbance symmetry axes to be consistently tilted at larger angle from the layer normal than the alkyl or methylene (tail). This suggests that, on average, the tails are less tilted than the cores. Furthermore, we find that optic axis tilt angle is close to the core tilt angle measured by IR dichroism, as expected, since liquid crystal birefringence arises primarily from the cores. These results are in accord with the ``zigzag'' model of Bartolino, Doucet, and Durand. However, we find that only a small fraction of the tail, the part nearest the core, is tilted, and only this part contributes significantly to layer contraction upon molecular tilt.

  17. The benefit of thresholding carbon layers in electron tomographic tilt series by intensity downshifting.

    PubMed

    Gontard, Lionel C; Cintas, Jesús; Borkowski, Rafal E Dunin

    2017-03-01

    When performing electron tomography, tilt series of images are often acquired from samples that contain unwanted carbonaceous material, such as an embedding resin, a thin carbon support film or hydrocarbon contamination. The presence of such layers can introduce artefacts in reconstructions, obscuring features of interest. Here, we illustrate the benefit of preprocessing a high-angle annular dark-field tomographic tilt series by thresholding unwanted low-density materials using a simple intensity downshifting procedure. The resulting tomograms have fewer artefacts and segmentation can be performed more accurately. We present two representative examples taken from studies of catalyst nanoparticles and amyloid plaque core material from the human brain.

  18. An analysis of temperature effect in a finite journal bearing with spatial tilt and viscous dissipation

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Mullen, R. L.; Hendricks, R. C.

    1984-01-01

    The analysis presented herein deals with the evaluation of the pressure, velocity, and temperature profiles in a finite-length plane journal bearing. The geometry of the case under study consists of a spatially tilted shaft. The two-dimensional Reynolds equation accounts for the variation of the clearance gap h with x and z and is used to model the pressure field. The latter is solved for a variety of shaft tilt angles and then used to calculate the two-dimensional flow field. Finally, the flow field is used in the energy equation to solve for the film temperature profile, when the effect of viscous dissipation is taken into account.

  19. An analysis of temperature effect in a finite journal bearing with spatial tilt and viscous dissipation

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Mullen, R. L.; Hendricks, R. C.

    1984-01-01

    The analysis presented herein deals with the evaluation of the pressure, velocity, and temperature profiles in a finite-length plane journal bearing. The geometry of the case under study consists of a spatially tilted shaft. The two-dimensional Reynolds equation accounts for the variation of the clearance gap h with x and z and is used to model the pressure field. The latter is solved for a variety of shaft tilt angles and then used to calculate the two-dimensional flow field. Finally, the flow field is used in the energy equation to solve for the film temperature profile, when the effect of viscous dissipation is taken into account.

  20. Modeling of magnetization precession in spin-torque nano-oscillators with a tilted polarizer

    SciTech Connect

    Lv, Gang; Zhang, Hong E-mail: yaowen@tongji.edu.cn; Cao, Xuecheng; Qin, Yufeng; Li, Guihua; Wang, Linhui; Liu, Yaowen E-mail: yaowen@tongji.edu.cn; Hou, Zhiwei

    2015-07-15

    The spin-torque induced magnetization precession dynamics are studied in a spin-valve with a tilted spin polarizer. Macrospin simulations demonstrate that the frequency of precession state depends both on the external DC current and the intrinsic parameters of devices such as the tilted angle of spin polarizer, the damping factor and saturation magnetization of the free layer. The dependence role of those parameters is characterized by phase diagrams. An analytical model is presented, which can successfully interpret the features of precession frequency.

  1. Orbital angular momentum of the vortex beams through a tilted lens

    NASA Astrophysics Data System (ADS)

    Luo, Meilan; Zhang, Zhaohui; Shen, Donghui; Zhao, Daomu

    2017-08-01

    Properties of orbital angular momentum (OAM) of a linearly polarized vortex beam traversing a tilted lens is investigated in detail, where the influences stemming from the tilted angle of the lens and the separation between the beam and the lens are mainly focused on. It was shown that such an optical system can invert the sign of the topological charge of the incident vortex beam. The possibility of reversing the sign of OAM was discussed and it was found that it only depends on the elements of the ray transfer matrix of this optical system. Finally, a simple experiment was carried out to verify the theoretical results.

  2. Aberration and boresight error correction for conformal windows using tilted and decentered fixed correctors

    NASA Astrophysics Data System (ADS)

    Zhao, Chunzhu; Mao, Shan

    2016-10-01

    A static solution to aberrations and boresight error for tilted conformal aircraft windows at different look angles is reported, which is the use of tilted and decentered fixed correctors. The principle of the static solution is discussed, and three tilted and decentered fixed correctors are designed to correct the aberrations and boresight error for a conformal window. The correctors are fixed in position between the conformal window and the gimbaled imaging system, thus requiring no moving parts. The design result shows that the predominant astigmatism introduced by the conformal window is corrected by the tilted and decentered fixed correctors at different look angles. Moreover, the boresight error for the conformal window, as a function of look angle, is also corrected by the correctors. The root mean square wavefront aberration for the final conformal window imaging system is less than 0.2 wave across the full field of regard on the visible spectrum, and the boresight error is less than 0.5' across the full field of regard.

  3. Scanning transmission electron microscopy through-focal tilt-series on biological specimens.

    PubMed

    Trepout, Sylvain; Messaoudi, Cédric; Perrot, Sylvie; Bastin, Philippe; Marco, Sergio

    2015-10-01

    Since scanning transmission electron microscopy can produce high signal-to-noise ratio bright-field images of thick (≥500 nm) specimens, this tool is emerging as the method of choice to study thick biological samples via tomographic approaches. However, in a convergent-beam configuration, the depth of field is limited because only a thin portion of the specimen (from a few nanometres to tens of nanometres depending on the convergence angle) can be imaged in focus. A method known as through-focal imaging enables recovery of the full depth of information by combining images acquired at different levels of focus. In this work, we compare tomographic reconstruction with the through-focal tilt-series approach (a multifocal series of images per tilt angle) with reconstruction with the classic tilt-series acquisition scheme (one single-focus image per tilt angle). We visualised the base of the flagellum in the protist Trypanosoma brucei via an acquisition and image-processing method tailored to obtain quantitative and qualitative descriptors of reconstruction volumes. Reconstructions using through-focal imaging contained more contrast and more details for thick (≥500 nm) biological samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. An Approximate Cone Beam Reconstruction Algorithm for Gantry-Tilted CT Using Tangential Filtering

    PubMed Central

    Zhang, Cishen; Liang, Hongzhu

    2006-01-01

    FDK algorithm is a well-known 3D (three-dimensional) approximate algorithm for CT (computed tomography) image reconstruction and is also known to suffer from considerable artifacts when the scanning cone angle is large. Recently, it has been improved by performing the ramp filtering along the tangential direction of the X-ray source helix for dealing with the large cone angle problem. In this paper, we present an FDK-type approximate reconstruction algorithm for gantry-tilted CT imaging. The proposed method improves the image reconstruction by filtering the projection data along a proper direction which is determined by CT parameters and gantry-tilted angle. As a result, the proposed algorithm for gantry-tilted CT reconstruction can provide more scanning flexibilities in clinical CT scanning and is efficient in computation. The performance of the proposed algorithm is evaluated with turbell clock phantom and thorax phantom and compared with FDK algorithm and a popular 2D (two-dimensional) approximate algorithm. The results show that the proposed algorithm can achieve better image quality for gantry-tilted CT image reconstruction. PMID:23165022

  5. Capillary force on a tilted cylinder: Atomic Force Microscope (AFM) measurements.

    PubMed

    Kosgodagan Acharige, Sébastien; Laurent, Justine; Steinberger, Audrey

    2017-11-01

    The capillary force in situations where the liquid meniscus is asymmetric, such as the one around a tilted object, has been hitherto barely investigated even though these situations are very common in practice. In particular, the capillary force exerted on a tilted object may depend on the dipping angle i. We investigate experimentally the capillary force that applies on a tilted cylinder as a function of its dipping angle i, using a home-built tilting Atomic Force Microscope (AFM) with custom made probes. A micrometric-size rod is glued at the end of an AFM cantilever of known stiffness, whose deflection is measured when the cylindrical probe is dipped in and retracted from reference liquids. We show that a torque correction is necessary to understand the measured deflection. We give the explicit expression of this correction as a function of the probes' geometrical parameters, so that its magnitude can be readily evaluated. The results are compatible with a vertical capillary force varying as 1/cosi, in agreement with a recent theoretical prediction. Finally, we discuss the accuracy of the method for measuring the surface tension times the cosine of the contact angle of the liquid on the probe. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Aerodynamic characteristics of a powered tilt-proprotor wind tunnel model

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Mineck, R. E.; Freeman, C. E.

    1976-01-01

    An investigation was conducted in the Langley V/STOL tunnel to determine the performance, stability and control, and rotor-wake interaction effects of a powered tilt-proprotor aircraft model with gimbal-hub rotors. Tests were conducted at representative flight conditions for hover, helicopter, transition, and airplane flight. Force and moment data were obtained for the complete model and for each of the two rotors. In addition to wind-speed variation, the angle of attack, angle of sideslip, rotor speed, rotor collective pitch, longitudinal cyclic pitch, rotor pylon angle, and configuration geometry were varied. The results, presented in graphical form, are available in tabular form to facilitate the validation of analytical methods of defining the aerodynamic characteristics of tilt-proprotor configurations.

  7. Dynamic of charged planar geometry in tilted and non-tilted frames

    SciTech Connect

    Sharif, M. Zaeem Ul Haq Bhatti, M.

    2015-05-15

    We investigate the dynamics of charged planar symmetry with an anisotropic matter field subject to a radially moving observer called a tilted observer. The Einstein-Maxwell field equations are used to obtain a relation between non-tilted and tilted frames and between kinematical and dynamical quantities. Using the Taub mass formalism and conservation laws, two evolution equations are developed to analyze the inhomogeneities in the tilted congruence. It is found that the radial velocity (due to the tilted observer) and the electric charge have a crucial effect on the inhomogeneity factor. Finally, we discuss the stability in the non-tilted frame in the pure diffusion case and examine the effects of the electromagnetic field.

  8. Aurelia aurita bio-inspired tilt sensor

    NASA Astrophysics Data System (ADS)

    Smith, Colin; Villanueva, Alex; Priya, Shashank

    2012-10-01

    The quickly expanding field of mobile robots, unmanned underwater vehicles, and micro-air vehicles urgently needs a cheap and effective means for measuring vehicle inclination. Commonly, tilt or inclination has been mathematically derived from accelerometers; however, there is inherent error in any indirect measurement. This paper reports a bio-inspired tilt sensor that mimics the natural balance organ of jellyfish, called the ‘statocyst’. Biological statocysts from the species Aurelia aurita were characterized by scanning electron microscopy to investigate the morphology and size of the natural sensor. An artificial tilt sensor was then developed by using printed electronics that incorporates a novel voltage divider concept in conjunction with small surface mount devices. This sensor was found to have minimum sensitivity of 4.21° with a standard deviation of 1.77°. These results open the possibility of developing elegant tilt sensor architecture for both air and water based platforms.

  9. Changes in Tilt of Mars Axis

    NASA Image and Video Library

    2011-11-21

    Modern-day Mars experiences cyclical changes in climate and, consequently, ice distribution. Unlike Earth, the obliquity or tilt of Mars changes substantially on timescales of hundreds of thousands to millions of years.

  10. Curiosity on Tilt Table with Mast Up

    NASA Image and Video Library

    2011-03-25

    The Mast Camera Mastcam on NASA Mars rover Curiosity has two rectangular eyes near the top of the rover remote sensing mast. This image shows Curiosity on a tilt table NASA Jet Propulsion Laboratory, Pasadena, California.

  11. V-22 Osprey Tilt-Rotor Aircraft

    DTIC Science & Technology

    2005-01-07

    U.S. tactical transport aircraft with designed -in radiological, biological, and chemical warfare protection. CRS-11 Figure 1. V-22 Osprey in Flight Key...Congressional Research Service ˜ The Library of Congress CRS Report for Congress Received through the CRS Web Order Code RL31384 V-22 Osprey Tilt...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE V-22 Osprey Tilt-Rotor Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  12. Tilted versus axially placed dental implants: a meta-analysis.

    PubMed

    Chrcanovic, Bruno Ramos; Albrektsson, Tomas; Wennerberg, Ann

    2015-02-01

    The purpose of the present review was to test the null hypothesis of no difference in the implant failure rate, marginal bone loss, and postoperative infection for patients being rehabilitated by tilted or by axially placed dental implants, against the alternative hypothesis of a difference. An electronic search without time or language restrictions was undertaken in July 2014. Eligibility criteria included clinical human studies, either randomised or not, interventional or observational. The estimates of an intervention were expressed in risk ratio (RR) and mean difference (MD) in millimetres. The search strategy resulted in 44 publications. A total of 5029 dental implants were tilted (82 failures; 1.63%), and 5732 implants were axially placed (104 failures; 1.81%). The difference between the procedures did not significantly affect the implant failure rates (P=0.40), with a RR of 1.14 (95% CI 0.84-1.56). A statistically significant difference was found for implant failures when studies evaluating implants inserted in maxillae only were pooled (RR 1.70, 95% CI 1.05-2.74; P=0.03), the same not happening for the mandible (RR 0.77, 95% CI 0.39-1.52; P=0.45). There were no apparent significant effects of tilted dental implants on the occurrence of marginal bone loss (MD 0.03, 95% CI -0.03 to 0.08; P=0.32). Due to lack of satisfactory information, meta-analysis for the outcome 'postoperative infection' was not performed. It is suggested that the differences in angulation of dental implants might not affect the implant survival or the marginal bone loss. The reliability and validity of the data collected and the potential for biases and confounding factors are some of the shortcomings of the present study. The question whether tilted implants are more at risk for failure than axially placed implants has received increasing attention in the last years. As the philosophies of treatment alter over time, a periodic review of the different concepts is necessary to refine

  13. The tilt illusion: phenomenology and functional implications.

    PubMed

    Clifford, Colin W G

    2014-11-01

    The perceived orientation of a line or grating is affected by the orientation structure of the surrounding image: the tilt illusion. Here, I offer a selective review of the literature on the tilt illusion, focusing on functional aspects. The review explores the merits of mechanistic accounts of the tilt illusion based upon sensory gain control in which neuronal responses are normalized by the pooled activity of other units. The role of inhibition between orientation-selective neurons is discussed, and it is argued that their associated disinhibition must also be taken into account in order to model the full angular dependence of the tilt illusion on surround orientation. Parallels are drawn with adaptation as modulation by the temporal rather than spatial context within which an image fragment is processed. The chromatic selectivity of the tilt illusion and the extent of its dependence on the visibility of the surround are used to infer characteristics of the neuronal normalization pools and the loci in the cortical processing hierarchy at which gain control operates. Finally, recent evidence is discussed as to the possible clinical relevance of the tilt illusion as a biomarker for schizophrenia.

  14. Tilted planes in 3D image analysis

    NASA Astrophysics Data System (ADS)

    Pargas, Roy P.; Staples, Nancy J.; Malloy, Brian F.; Cantrell, Ken; Chhatriwala, Murtuza

    1998-03-01

    Reliable 3D wholebody scanners which output digitized 3D images of a complete human body are now commercially available. This paper describes a software package, called 3DM, being developed by researchers at Clemson University and which manipulates and extracts measurements from such images. The focus of this paper is on tilted planes, a 3DM tool which allows a user to define a plane through a scanned image, tilt it in any direction, and effectively define three disjoint regions on the image: the points on the plane and the points on either side of the plane. With tilted planes, the user can accurately take measurements required in applications such as apparel manufacturing. The user can manually segment the body rather precisely. Tilted planes assist the user in analyzing the form of the body and classifying the body in terms of body shape. Finally, titled planes allow the user to eliminate extraneous and unwanted points often generated by a 3D scanner. This paper describes the user interface for tilted planes, the equations defining the plane as the user moves it through the scanned image, an overview of the algorithms, and the interaction of the tilted plane feature with other tools in 3DM.

  15. General Relativistic Magnetohydrodynamics Simulations of Tilted Black Hole Accretion Flows and Their Radiative Properties

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Gammie, C. F.; Dolence, J.; Noble, S. C.

    2013-01-01

    We perform global General Relativistic Magnetohydrodynamics (GRMHD) simulations of non-radiative, magnetized disks that are initially tilted with respect to the black hole's spin axis. We run the simulations with different size and tilt angle of the tori for 2 different resolutions. We also perform radiative transfer using Monte Carlo based code that includes synchrotron emission, absorption and Compton scattering to obtain spectral energy distribution and light curves. Similar work was done by Fragile et al. (2007) and Dexter & Fragile (2012) to model the super massive black hole SgrA* with tilted accretion disks. We compare our results of fully conservative hydrodynamic code and spectra that include X-ray, with their results.

  16. Effect of long-range structural corrugations on magnetotransport properties of phosphorene in tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Mogulkoc, A.; Modarresi, M.; Rudenko, A. N.

    2017-08-01

    Rippling is an inherent quality of two-dimensional materials playing an important role in determining their properties. Here, we study the effect of structural corrugations on the electronic and transport properties of monolayer black phosphorus (phosphorene) in the presence of tilted magnetic field. We follow a perturbative approach to obtain analytical corrections to the spectrum of Landau levels induced by a long-wavelength corrugation potential. We show that surface corrugations have a non-negligible effect on the electronic spectrum of phosphorene in tilted magnetic field. Particularly, the Landau levels are shown to exhibit deviations from the linear field dependence. The observed effect become especially pronounced at large tilt angles and corrugation amplitudes. Magnetotransport properties are further examined in the low temperature regime taking into account impurity scattering. We calculate magnetic field dependence of the longitudinal and Hall resistivities and find that the nonlinear effects reflecting the corrugation might be observed even in moderate fields (B <10 T).

  17. Optimum Designs for Superpressure Balloons

    NASA Astrophysics Data System (ADS)

    Smith, M.; Rainwater, E.

    Natural shape balloons have been employed for minimum stress envelope design in zero pressure scientific balloons since the 1940's. Superpressure balloons, on the other hand, have traditionally been spheres with tangential load attachment points. Application of natural shape design principles to superpressure balloons is relatively new. The resulting natural shape superpressure balloon shape generally fits Euler's Elastica. There are numerous examples of superpressure cylinder balloons which take on the elastica shape when pressurized. Techniques tried for reducing circumferential stresses in the NASA ULDB natural shape superpressure balloons have revealed new challenges both for design and manufacture. This paper will present a thorough background in the development of the current design concept as well as a review of the current challenges associated with manufacturing these envelopes. Approaches for achieving an optimum design will be presented along with ground and flight test data.

  18. Optimum constrained image restoration filters

    NASA Technical Reports Server (NTRS)

    Riemer, T. E.; Mcgillem, C. D.

    1974-01-01

    The filter was developed in Hilbert space by minimizing the radius of gyration of the overall or composite system point-spread function subject to constraints on the radius of gyration of the restoration filter point-spread function, the total noise power in the restored image, and the shape of the composite system frequency spectrum. An iterative technique is introduced which alters the shape of the optimum composite system point-spread function, producing a suboptimal restoration filter which suppresses undesirable secondary oscillations. Finally this technique is applied to multispectral scanner data obtained from the Earth Resources Technology Satellite to provide resolution enhancement. An experimental approach to the problems involving estimation of the effective scanner aperture and matching the ERTS data to available restoration functions is presented.

  19. Swarms: Optimum aggregations of spacecraft

    NASA Technical Reports Server (NTRS)

    Mayer, H. L.

    1980-01-01

    Swarms are aggregations of spacecraft or elements of a space system which are cooperative in function, but physically isolated or only loosely connected. For some missions the swarm configuration may be optimum compared to a group of completely independent spacecraft or a complex rigidly integrated spacecraft or space platform. General features of swarms are induced by considering an ensemble of 26 swarms, examples ranging from Earth centered swarms for commercial application to swarms for exploring minor planets. A concept for a low altitude swarm as a substitute for a space platform is proposed and a preliminary design studied. The salient design feature is the web of tethers holding the 30 km swarm in a rigid two dimensional array in the orbital plane. A mathematical discussion and tutorial in tether technology and in some aspects of the distribution of services (mass, energy, and information to swarm elements) are included.

  20. Optimum flight paths of turbojet aircraft

    NASA Technical Reports Server (NTRS)

    Miele, Angelo

    1955-01-01

    The climb of turbojet aircraft is analyzed and discussed including the accelerations. Three particular flight performances are examined: minimum time of climb, climb with minimum fuel consumption, and steepest climb. The theoretical results obtained from a previous study are put in a form that is suitable for application on the following simplifying assumptions: the Mach number is considered an independent variable instead of the velocity; the variations of the airplane mass due to fuel consumption are disregarded; the airplane polar is assumed to be parabolic; the path curvatures and the squares of the path angles are disregarded in the projection of the equation of motion on the normal to the path; lastly, an ideal turbojet with performance independent of the velocity is involved. The optimum Mach number for each flight condition is obtained from the solution of a sixth order equation in which the coefficients are functions of two fundamental parameters: the ratio of minimum drag in level flight to the thrust and the Mach number which represents the flight at constant altitude and maximum lift-drag ratio.

  1. Reply to "Comment on 'Origin of tilted-phase generation in systems of ellipsoidal molecules with dipolar interactions' "

    NASA Astrophysics Data System (ADS)

    Bose, Tushar Kanti; Saha, Jayashree

    2014-04-01

    In a recent article [T. K. Bose and J. Saha, Phys. Rev. E 86, 050701 (2012), 10.1103/PhysRevE.86.050701], we have presented the results of a Monte Carlo simulation study of the systems of dipolar Gay-Berne ellipsoids where two terminal antiparallel dipoles are placed symmetrically on the long axis of each ellipsoid, and the results revealed the combined contribution of dipolar separation and transverse orientations in controlling the tilt angle in the tilted hexatic smectic phase. The tilt angle changed from zero to a significant value, in the case of transverse dipoles, with a change in the dipolar separation. In the related comment, Madhusudana [preceding Comment, Phys. Rev. E 89, 046501 (2014), 10.1103/PhysRevE.89.046501] has claimed that the physical origin of the molecular tilt in the significantly tilted phases found in the simulations is similar to that proposed by McMillan [Phys. Rev. A 8, 1921 (1973), 10.1103/PhysRevA.8.1921]. Here, we explain that the claim is not correct and make it clear that the two compared pictures are quite different. In the preceding Comment, Madhusudana has also suggested an alternative explanation for tilt generation in the simulations by criticizing the original one proposed by us. We argue here in support of the original explanation and clarify that his explanation does not follow the simulation results.

  2. Hybrid monitor for both beam position and tilt of pulsed high-current beams

    SciTech Connect

    Pang, J. He, X.; Ma, C.; Zhao, L.; Li, Q.; Dai, Z.

    2014-09-15

    A Hybrid beam monitor, integrated with both azimuthal and axial B-dot probes, was designed for simultaneous measurement of both beam position and beam angle for pulsed high-current beams at the same location in beam pipe. The output signals of axial B-dot probes were found to be mixed with signals caused by transverse position deviation. In order to eliminate the unwanted signals, an elimination method was developed and its feasibility tested on a 50-Ω coaxial line test stand. By this method, a waveform, shape-like to that of input current and proportional to the tilt angle, was simulated and processed by following integration step to achieve the tilt angle. The tests showed that the measurement error of displacement and tilt angle less than 0.3 mm and 1.5 mrad, respectively. The latter error could be reduced with improved probes by reducing the inductance of the axial B-dot probe, but the improvement reached a limit due to some unknown systemic mechanism.

  3. Human Ocular Counter-Rolling and Roll Tilt Perception during Off-Vertical Axis Rotation after Spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Denise, Pierre; Reschke, Millard; Wood, Scott J.

    2007-01-01

    Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 /s in darkness at two angles of tilt (10 and 20 ). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weigthing of the internal representation of gravitational vertical as a result of adaptation to microgravity.

  4. Human Ocular Counter-Rolling and Roll Tilt Perception during Off-Vertical Axis Rotation after Spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Denise, Pierre; Reschke, Millard; Wood, Scott J.

    2007-01-01

    Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 /s in darkness at two angles of tilt (10 and 20 ). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weigthing of the internal representation of gravitational vertical as a result of adaptation to microgravity.

  5. Comparison of decentration and tilt between one piece and three piece polymethyl methacrylate intraocular lenses

    PubMed Central

    Hayashi, K.; Hayashi, H.; Nakao, F.; Hayashi, F.

    1998-01-01

    BACKGROUND—The extent of the decentration and tilt was prospectively compared between one piece polymethyl methacrylate (PMMA) and three piece PMMA intraocular lenses (IOLs) which were implanted in the capsular bag after performing continuous curvilinear capsulorhexis.
METHODS—91 patients underwent a one piece PMMA IOL implantation in one eye as well as the implantation of the three piece PMMA IOL with polyvinylidene fluoride loops in the opposite eye. The length of the lens decentration and the angle of the tilt were quantitated using the anterior eye segment analysis system (EAS-1000) at 1 week as well as 1, 3, and 6 months postoperatively.
RESULTS—The mean length of the decentration in the one piece IOL was smaller than that in the three piece IOL at 1 week (p=0.0092), 1 month (p=0.0044), 3 months (p=0.0069), and 6 months (p=0.0010) postoperatively. However, no significant difference was found in the degree of the tilt between the two types of IOLs throughout the observation periods.
CONCLUSION—These results clarified that the one piece PMMA IOL with rigid PMMA haptics implanted in the capsular bag provides a better centration than the three piece PMMA IOL with flexible haptics, whereas the tilt was the same between the two types of IOLs.

 Keywords: intraocular lens; decentration; tilt; continuous curvilinear capsulorhexis PMID:9640193

  6. [Motor adaptation in the Bielschowsky head-tilt test in cases of superior oblique palsy].

    PubMed

    Ohtsuki, H; Kishimoto, F; Kobashi, R; Watanabe, S; Okano, M; Furuse, H

    1992-08-01

    To elucidate a motor adaptation phenomenon in the Bielschowsky head-tilt test in cases of superior oblique palsy, a gain of the otolith-ocular reflex was studied. The amplitude of ocular counter-rolling (OCR) of the non-paretic eye was measured with a photographic method, using limbal conjunctival marks as landmarks which were marked with indigo carmine. The average preoperative OCR of the non-paretic eye was 10.49 degrees at 30 degrees of head tilt to both sides, but after corrective surgery in the paretic eye the OCR of the non-paretic eye decreased to 8.43 degrees. To clarify the relation between OCR, duration of palsy and vertical deviation of the Bielschowsky head-tilt test (BHP), which was the difference of vertical deviation measured with the head tilted to the left and right shoulders at an angle of 30 degrees, the BHP/OCR ratio was calculated. We found no relation between BHP and OCR, but the BHP/OCR ratio increased proportionally in cases of long-standing palsy, From these results an increased BHP/OCR ratio could be an adaptive phenomenon caused by secondary innervational changes or muscle contracture to minimizing the contralateral head tilt to maintain binocular single vision.

  7. Tilted phases of fatty acid monolayers

    SciTech Connect

    Kaganer, V.M.; Peterson, I.R.; Kenn, R.M.; Shih, M.C.; Durbin, M.; Dutta, P.

    1995-06-15

    X-ray diffraction data from water-supported monolayers of fatty acids with chain lengths from 19 to 22 is presented. The structures of the tilted mesophases {ital L}{sub 2}{sup {prime}}, {ital L}{sub 2}, and {ital Ov} are characterized in detail. The contributions to the unit cell distortion from the tilt and the ordering of the backbone planes of the molecules are separated. It is shown that at the swiveling transition {ital L}{sub 2}{sup {prime}}--{ital L}{sub 2}, not only the tilt azimuth but also the packing of the backbone planes change discontinuously. We demonstrate that the tilting transition {ital LS}--{ital L}{sub 2} is accompanied by the ordering of the backbone planes and may be discontinuous. Evidence is presented for a herringbone ordering transition within the {ital L}{sub 2} region. The distortions are related to symmetry of the phases and described by the order parameters responsible for tilt and herringbone ordering of the backbone planes of the molecules. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. The effect of ground tilt on the lower extremity muscle activity of stroke patients performing squat exercises.

    PubMed

    Ki, Kyog-Il; Choi, Jong-Duk; Cho, Hyuk-Shin

    2014-07-01

    [Purpose] The purpose of this study was to determine the effect of ground tilt on the lower extremity muscle activity of stroke patients performing squat exercises. [Subjects] Fifteen hemiparetic patients volunteered to participate in this study. [Methods] The subjects performed squat exercises at three different ground tilt angles: 15° plantar flexion, a neutral position, and 15° dorsiflexion. A surface electromyogram (sEMG) was used to record the electromyographic activities of the leg extensor muscle in the vastus lateralis (VL), vastus medialis (VM), gastrocnemius lateralis (GL), and gastrocnemius medialis (GM). The sEMG activity was analyzed using a one-way repeated measures ANOVA and a post hoc Bonferroni correction. [Results] The results of this study are summarized as follows. Significant differences were noted for the VL and the GL when the angle of the ankle joint was between the 15° plantar flexion and neutral positions during squat exercises involving the VL and when the angle of the ankle joint was between the neutral position and 15° dorsiflexion during squat exercises involving the VM. [Conclusion] In this study, sEMG showed that the VL and GL changed significantly during squat exercises according to the ground tilt angle of hemiparetic patients. Therefore, squat exercises with different ground tilt angles can be used to improve VL and GL strength.

  9. Tilt Nacelle Vertical and Short Takeoff and Landing Engine

    NASA Image and Video Library

    1979-03-21

    Center Director John McCarthy, left, and researcher Al Johns pose with a one-third scale model of a Grumman Aerospace tilt engine nacelle for Vertical and Short Takeoff and Landing (V/STOL) in the 9- by 15-Foot Low Speed Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying tilt nacelle and inlet issues for several years. One area of concern was the inlet flow separation during the transition from horizontal to vertical flight. The separation of air flow from the inlet’s internal components could significantly stress the fan blades or cause a loss of thrust. In 1978 NASA researchers Robert Williams and Al Johns teamed with Grumman’s H.C. Potonides to develop a series of tests in the Lewis 9- by 15-foot tunnel to study a device designed to delay the flow separation by blowing additional air into the inlet. A jet of air, supplied through the hose on the right, was blown over the inlet surfaces. The researchers verified that the air jet slowed the flow separation. They found that the blowing on boundary layer control resulted in a doubling of the angle-of-attack and decreases in compressor blade stresses and fan distortion. The tests were the first time the concept of blowing air for boundary layer control was demonstrated. Boundary layer control devices like this could result in smaller and lighter V/STOL inlets.

  10. Evaluation of Anterior Segment's Structures in Tilted Disc Syndrome

    PubMed Central

    Ozsoy, Ercan; Demirel, Ersin Ersan; Cumurcu, Tongabay

    2016-01-01

    Purpose. To evaluate anterior segment's structures by Pentacam in patients with tilted disc syndrome (TDS). Methods. Group 1 included forty-six eyes of forty-six patients who have the TDS. Group 2 including forty-six eyes of forty-six cases was the control group which was equal to the study group in age, gender, and refraction. A complete ophthalmic examination was performed in both groups. All cases were evaluated by Pentacam. The axial length (AL) of eyes was measured by ultrasound. Quantitative data obtained from these measurements were compared between two groups. Results. There was no statistically significant difference for age, gender, axial length, and spherical equivalent measurements between two groups (p = 0.625, p = 0.830, p = 0.234, and p = 0.850). There was a statistically significant difference for central corneal thickness (CCT), corneal volume (CV), anterior chamber angle (ACA), and pupil size measurements between two groups (p = 0.001, p = 0.0001, p = 0.003, and p = 0.001). Also, there was no statistically significant difference for anterior chamber depth (ACD), anterior chamber volume (ACV), and lens thickness (LT) measurements between two groups (p = 0.130, p = 0.910, and p = 0.057). Conclusion. We determined that CCT was thinner, CV was less, and ACA was narrower in patients with TDS. There are some changes in the anterior segment of the eyes with tilted disc. PMID:27648303

  11. Modulation loops, time lag and relationship between cosmic ray intensity and tilt of the heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Badruddin; Singh, M.; Singh, Y. P.

    2007-05-01

    Aims:We study certain aspects of the solar modulation of galactic cosmic ray intensity during different solar activity cycles and in different polarity states of the heliosphere. Methods: We plotted modulation loops between the cosmic ray intensity and the tilt angle of the heliospheric current sheet during three solar activity cycles 21, 22 and 23 and obtained the area of modulation loops. The time lag between the tilt angle and the cosmic ray intensity in odd, even solar activity cycles and during A > 0, A < 0 polarity states of the heliosphere are determined using correlation analysis. Rate of intensity decrease with tilt angle during different solar and magnetic cycles are estimated from best fit method. Results: Marked differences during the two odd and the one even solar cycles, as well as during different polarity states of the solar magnetic field (A > 0 and A < 0) are found. We observe variations in finer features of modulation loops obtained using one, three, six and twelve rotation averaged data. We find that the time lag in even cycle (22) is much different from that in odd cycles (21, 23). Moreover, considerable difference in time lags are also observed during A > 0 and A < 0 polarity states of the heliosphere. We also find that the cosmic ray intensity decreases at much faster rate (and with better correlation) with increase in tilt angle during A < 0 than A > 0, indicating stronger response to the tilt angle changes during A < 0. These results are discussed in the light of 3D modulation models including the gradient and curvature drifts and the tilt of the heliospheric current sheet.

  12. Measurement of Transcranial Distance During Head-Down Tilt Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Torikoshi, Shigeyo; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Bowley, S.; Yost, W. T.; Hargens, Alan R.

    1995-01-01

    Exposure to microgravity probably elevates blood pressure and flow in the head which may increase intracranial volume (ICV) and pressure (ICP). Due to the slightly compliant nature of the cranium, any increase of ICP will increase ICV and transcranial distance. We used a noninvasive ultrasound technique to measure transcranial distance (frontal to occipital) during head-down tilt. Seven subjects (ages 26-53) underwent the following tilt angles: 90 deg. upright, 30 deg., 0 deg., -6 deg., -10 deg., -6 deg., 0 deg., 30 deg., and 90 deg. Each angle was maintained for 1 min. Ultrasound wave frequency was collected continuously and transcranial distance was calculated (Delta(x) = x(Delta)f/f, where x is path length and f is frequency of the wave) for each tilt angle. Frequency decreased from 503.687 kHz (90 deg. upright) to 502.619 kHz (-10 deg.). These frequencies translated to an increased transcranial distance of 0.403 mm. Although our data suggest a significant increase in transcranial distance during head-down tilt, this apparent increase may result, in part, from head-down tilt-induced subcutaneous edema or cutaneous blood volume elevation. In three subjects, when the above protocol was repeated with an ace bandage wrapped around the head to minimize such edema, the increased transcranial distance from 90 deg. to -10 deg. was reduced by 0.174 mm. Further development of the technique to quantify bone-to-bone expansion unconfounded by cutaneous fluid is necessary. Therefore, this ultrasound technique may provide measurements of changes in cranial dimensions during microgravity.

  13. Introducer curving technique to reduce tilting of transfemoral Gunther Tulip IVC filter: in vitro study.

    PubMed

    Xiao, Liang; Wang, Man; Huang, De-Sheng; Shen, Jing; Tong, Jia-Jie

    2012-09-01

    Severe tilting of Günther Tulip filter (GTF) may be associated with difficulty in retrieval. To determine if an introducer curving technique of GTF can decrease the tilting degree of GTF in a caval model. The model was constructed by placing Dacron grafts in bifurcated glass tubes. The study included three groups: Right Straight Group (G(1)), Left Straight Group (G(2)), and Left Curved Group (G(3)). In G(3), a 10-20° angle was curved on the metal introducer before insertion to decrease the angle between inferior vena cava axes and metal introducer (A(CM)). Before GTF was released, the distance between the caval right wall and the apical hook (D(CH1)), and A(CM) were measured. The tilt angle of GTF (A(CF)) was also measured. In G(1), GTF apex tended to center compared to G(2) (59% vs. 36%, P < 0.01). In G(3), GTF apex tended to center compared to G(2) (71% vs. 36%, P < 0.01). The differences of A(CF) between G(1) and G(2) (2.66 ± 1.80 vs. 4.13 ± 2.07, P < 0.01) and between G(2) and G(3) (4.13 ± 2.07 vs. 2.39 ± 1.79, P < 0.01) were statistically significant. There were significant positive correlations between A(CM) and A(CF), whereas significant negative correlations were detected between D(CH1) and A(CF) in each group. The oblique course of GTF delivery system relative to the axis of the cava causes filter tilt, and thus, curving the introducer prior to its introduction helps to reduce the filter tilt. We recommend a clinical study to determine whether the introducer curving technique improves filter centering and its retrievability.

  14. Measurement of dihedral angles by scanning electron microscopy.

    NASA Technical Reports Server (NTRS)

    Achutaramayya, G.; Scott, W. D.

    1973-01-01

    The extension of Hoover's (1971) technique to the case of dihedral-angle measurement is described. Dihedral angles are often determined by interferometry on thermally grooved grain boundaries to obtain information on relative interfacial energies. In the technique considered the measured angles approach the true angles as the tilt angle approaches 90 deg. It is pointed out that the scanning electron microscopy method provides a means of seeing the real root of a groove at a lateral magnification which is higher than that obtainable with interferometry.

  15. Measurement of dihedral angles by scanning electron microscopy.

    NASA Technical Reports Server (NTRS)

    Achutaramayya, G.; Scott, W. D.

    1973-01-01

    The extension of Hoover's (1971) technique to the case of dihedral-angle measurement is described. Dihedral angles are often determined by interferometry on thermally grooved grain boundaries to obtain information on relative interfacial energies. In the technique considered the measured angles approach the true angles as the tilt angle approaches 90 deg. It is pointed out that the scanning electron microscopy method provides a means of seeing the real root of a groove at a lateral magnification which is higher than that obtainable with interferometry.

  16. The optimum hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Cary, A., Jr.; Voisinet, R. L. P.

    1986-01-01

    The capabilities of existing hypersonic wind tunnels in the U.S. are assessed to form a basis for recommendations for a new, costly facility which would provide data for modeling the hypervelocity aerodynamics envisioned for the new generation of aerospace vehicles now undergoing early studies. Attention is given to the regimes, both entry and aerodynamic, which the new vehicles will encounter, and the shortcomings of data generated for the Orbiter before flight are discussed. The features of foreign-gas, impulse, aeroballistic range, arc-heated and combustion-heated facilities are examined, noting that in any hypersonic wind tunnel the flow must be preheated to prevent liquefaction upon expansion in the test channel. The limitations of the existing facilities and the identification of the regimes which must be studied lead to a description of the characteristics of an optimum hypersonic wind tunnel, including the operations and productivity, the instrumentation, the nozzle design and the flow quality. Three different design approaches are described, each costing at least $100 million to achieve workability.

  17. The optimum hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Cary, A., Jr.; Voisinet, R. L. P.

    1986-01-01

    The capabilities of existing hypersonic wind tunnels in the U.S. are assessed to form a basis for recommendations for a new, costly facility which would provide data for modeling the hypervelocity aerodynamics envisioned for the new generation of aerospace vehicles now undergoing early studies. Attention is given to the regimes, both entry and aerodynamic, which the new vehicles will encounter, and the shortcomings of data generated for the Orbiter before flight are discussed. The features of foreign-gas, impulse, aeroballistic range, arc-heated and combustion-heated facilities are examined, noting that in any hypersonic wind tunnel the flow must be preheated to prevent liquefaction upon expansion in the test channel. The limitations of the existing facilities and the identification of the regimes which must be studied lead to a description of the characteristics of an optimum hypersonic wind tunnel, including the operations and productivity, the instrumentation, the nozzle design and the flow quality. Three different design approaches are described, each costing at least $100 million to achieve workability.

  18. NICMOS Optimum Coronagraphic Focus Determinaton

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn

    1997-07-01

    This test will ascertain the optimum position of the PAM for maximizing the local contrast ratios in coronagraphic images. Because of the forward motion of the NICMOS optical bench and dewar, the nominal operational position for the PAM is set {for each camera} to achieve diffraction limited focus at the image plane formed at the detector. As a result of the forward motion of the camera 2 detector, hard images are no longer formed coincidentally at the field divider mirror surface {where the coronagraphic hole is located} and at the detector. This will lead to an increase in the diffracted energy in the wings of a PSF from a target placed inside of the coronagraphic hole as the image plane will fall behind the surface of the FDA mirror. The contrast in a coronagraphic image might be enhanced by placing the focus to form an image at either image planes {FDA or detector} or at a place in-between. This is highly dependent on scattering and must be ascertained by direct measurement.

  19. Experimental investigation of optimum beam size for FSO uplink

    NASA Astrophysics Data System (ADS)

    Kaushal, Hemani; Kaddoum, Georges; Jain, Virander Kumar; Kar, Subrat

    2017-10-01

    In this paper, the effect of transmitter beam size on the performance of free space optical (FSO) communication has been determined experimentally. Irradiance profile for varying turbulence strength is obtained using optical turbulence generating (OTG) chamber inside laboratory environment. Based on the results, an optimum beam size is investigated using the semi-analytical method. Moreover, the combined effects of atmospheric scintillation and beam wander induced pointing errors are considered in order to determine the optimum beam size that minimizes the bit error rate (BER) of the system for a fixed transmitter power and link length. The results show that the optimum beam size for FSO uplink depends upon Fried parameter and outer scale of the turbulence. Further, it is observed that the optimum beam size increases with the increase in zenith angle but has negligible effect with the increase in fade threshold level at low turbulence levels and has a marginal effect at high turbulence levels. Finally, the obtained outcome is useful for FSO system design and BER performance analysis.

  20. Advances in tilt rotor noise prediction

    NASA Technical Reports Server (NTRS)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    1992-01-01

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  1. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  2. Advances in tilt rotor noise prediction

    NASA Technical Reports Server (NTRS)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    1992-01-01

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  3. Capillary rise in a tilted Taylor-Hauksbee cell

    NASA Astrophysics Data System (ADS)

    Medina, Abraham; Klapp, Jaime; Torres Victoria, Ayax Hernando; Peralta Lopez, Salomon; Jara Hernandez, Aydet

    2015-11-01

    The penetration of a wetting liquid in the narrow gap between two tilted plates making a small angle among them is analyzed in the framework of the lubrication approximation. At the beginning of the process, the liquid rises independently at different distances from the line of intersection of the plates. The maximum height of the liquid initially increases as a power law of time, where the exponent is dependent on the angle of inclination of the plates and is attained at a point that reaches the line of intersection only after a certain time. At later times, the motion of the liquid is confined to a thin layer around the line of intersection whose height increases again as a power law of time and the exponent of the power law is a function of the angle of inclination. The thickness of the film decreases as the inverse of the power law of time. The evolution of the liquid surface is computed numerically and compared with the results of simple experiments.

  4. Apparatus for raising or tilting a micromechanical structure

    DOEpatents

    Allen, James J.

    2008-09-09

    An active hinge apparatus is disclosed which can be used to raise a micromechanical structure (e.g. a plate or micromirror) on a substrate. The active hinge apparatus utilizes one or more of teeth protruding outward from an axle which also supports the micromechanical structure on one end thereof. A rack is used to engage the teeth and rotate the axle to raise the micromechanical structure and tilt the structure at an angle to the substrate. Motion of the rack is provided by an actuator which can be a mechanically-powered actuator, or alternately an electrostatic comb actuator or a thermal actuator. A latch can be optionally provided in the active hinge apparatus to lock the micromechanical structure in an "erected" position.

  5. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2003-04-08

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  6. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2004-07-06

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  7. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  8. Some THEMIS tip-tilt images .

    NASA Astrophysics Data System (ADS)

    Bommier, V.

    In the MTR (`MulTiRaies', i.e. multiline spectropolarimetry) mode of THEMIS, a map is the result of a reconstruction from a scan of the solar image on the spectrograph entrance slit. The result of image motion appears as zigzags along non-vertical lines or structures in the map. As an image stabilization system, the new tip-tilt acts in reducing such zigzags. A map is presented obtained with the tip-tilt ON where nearly no zigzag is visible.

  9. Association of spinal deformity and pelvic tilt with gait asymmetry in adolescent idiopathic scoliosis patients: Investigation of ground reaction force.

    PubMed

    Park, Yang Sun; Lim, Young Tae; Koh, Kyung; Kim, Jong Moon; Kwon, Hyun Joon; Yang, Ji Seung; Shim, Jae Kun

    2016-07-01

    Adolescent idiopathic scoliosis is a prevalent orthopedic problem in children ages 10 to 16years. Although genetic, physiological and biomechanical factors are considered to contribute to the onset and progression of adolescent idiopathic scoliosis, the underlying mechanisms are not yet clear. The purpose of this study was to investigate the association between spinal deformity and inter-leg ground reaction force asymmetry during walking in adolescent idiopathic scoliosis patients. Fourteen patients (3 males and 11 females) participated in this study. Maximum Cobb's angle, adjusted Cobb's angle, and pelvic tilt were calculated from X-ray images. Asymmetry indices between legs were also calculated from ground reaction force magnitude and time variables from their preferred speed walking. Pearson coefficients of correlation were used to investigate associations of asymmetry indices with angle variables. Asymmetry indices of ground reaction force magnitudes positively correlated with adjusted Cobb's angle and maximum Cobb's angle mainly during the peak of braking phase, average of braking phase, while asymmetry indices of ground reaction force time variables showed no significant correlation with adjusted or maximum Cobb's angle. In contrast, asymmetry indices of ground reaction force time variables positively correlated with pelvic tilt during stance phase. We concluded that the spinal deformity of adolescent idiopathic scoliosis patients estimated using the maximum and adjusted Cobb's angles is generally associated with greater asymmetry of ground reaction force magnitudes in walking, while the pelvic tilt is associated with the greater asymmetry of ground reaction force time variables. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Transition from multiplicity to singularity of steady natural convection in a tilted cubical enclosure

    NASA Astrophysics Data System (ADS)

    Torres, Juan F.; Henry, Daniel; Komiya, Atsuki; Maruyama, Shigenao

    2015-08-01

    The transition from the complex Rayleigh-Bénard convection to the simple heated-from-the-sides configuration in a cubical cavity filled with a Newtonian fluid is numerically studied. The cavity is tilted by an angle θ around its lower horizontal edge and is heated and cooled from two opposite tilted sides. We first analyze the effect of a marginal inclination angle on quasi-Rayleigh-Bénard convection (θ ≈0∘ ), which is a realistic physical approximation to the ideal Rayleigh-Bénard convection. We then yield the critical angles where multiple solutions that were initially found for θ ≈0∘ disappear, eventually resulting in the single steady roll solution found in the heated-from-the-sides configuration (θ =90∘ ). We confirm the existence of critical angles during the transition θ :0∘→90∘ , and we demonstrate that such angles are a consequence of either singularities or collisions of bifurcation points in the Rayleigh-number-θ parameter space. We finally derive the most important critical angles corresponding to any Newtonian fluid of Prandtl number greater than that of air.

  11. Transition from multiplicity to singularity of steady natural convection in a tilted cubical enclosure.

    PubMed

    Torres, Juan F; Henry, Daniel; Komiya, Atsuki; Maruyama, Shigenao

    2015-08-01

    The transition from the complex Rayleigh-Bénard convection to the simple heated-from-the-sides configuration in a cubical cavity filled with a Newtonian fluid is numerically studied. The cavity is tilted by an angle θ around its lower horizontal edge and is heated and cooled from two opposite tilted sides. We first analyze the effect of a marginal inclination angle on quasi-Rayleigh-Bénard convection (θ≈0∘), which is a realistic physical approximation to the ideal Rayleigh-Bénard convection. We then yield the critical angles where multiple solutions that were initially found for θ≈0∘ disappear, eventually resulting in the single steady roll solution found in the heated-from-the-sides configuration (θ=90∘). We confirm the existence of critical angles during the transition θ:0∘→90∘, and we demonstrate that such angles are a consequence of either singularities or collisions of bifurcation points in the Rayleigh-number-θ parameter space. We finally derive the most important critical angles corresponding to any Newtonian fluid of Prandtl number greater than that of air.

  12. Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit.

    PubMed

    Lu, Huihui; Lee, Jun Su; Zhao, Yan; Scarcella, Carmelo; Cardile, Paolo; Daly, Aidan; Ortsiefer, Markus; Carroll, Lee; O'Brien, Peter

    2016-07-25

    In this article we describe a cost-effective approach for hybrid laser integration, in which vertical cavity surface emitting lasers (VCSELs) are passively-aligned and flip-chip bonded to a Si photonic integrated circuit (PIC), with a tilt-angle optimized for optical-insertion into standard grating-couplers. A tilt-angle of 10° is achieved by controlling the reflow of the solder ball deposition used for the electrical-contacting and mechanical-bonding of the VCSEL to the PIC. After flip-chip integration, the VCSEL-to-PIC insertion loss is -11.8 dB, indicating an excess coupling penalty of -5.9 dB, compared to Fibre-to-PIC coupling. Finite difference time domain simulations indicate that the penalty arises from the relatively poor match between the VCSEL mode and the grating-coupler.

  13. Effect of tilted magnetic fields on bistable nanomagnets in hybrid semiconductor/ferromagnet devices

    NASA Astrophysics Data System (ADS)

    Meier, G.; Grundler, D.; Broocks, K.-B.; Heyn, Ch; Heitmann, D.

    2000-02-01

    Using the anisotropic Hall effect in a sub-micron lithographically well-defined two-dimensional electron system we measure the stray field of individual ferromagnetic nanoparticles in tilted magnetic fields. Our model calculations and experimental data show that one can map out the particle's hysteresis loop in great detail even if the field Happ is tilted away from the specimen's easy-axis by an angle φapp around 90°. The investigated Ni nanomagnets exhibit a well-defined remanent `up'- and `down'-state. For the angular-dependent switching we find two different regimes: below a critical angle φc, the hysteresis loop is irreversible and squared, for φc< φapp⩽90° it becomes partly reversible, but discontinuous jumps are still resolved. This characteristic switching behavior is found to depend on the nanomagnet's diameter.

  14. Tilt error in cryospheric surface radiation measurements at high latitudes: a model study

    NASA Astrophysics Data System (ADS)

    Bogren, W. S.; Burkhart, J. F.; Kylling, A.

    2015-08-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in-situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response foreoptic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can respectively introduce up to 2.6, 7.7, and 12.8 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo.

  15. UV Index on tilted surfaces.

    PubMed

    Esteve, A R; Marín, M J; Martínez-Lozano, J A; Tena, F; Utrillas, M P; Cañada, J

    2006-01-01

    Solar ultraviolet erythemal irradiance (UVER) has been studied on inclined planes with different orientations in Valencia, Spain. To do this a platform was designed that could turn through 90 degrees on its own axis. The radiometers were inclined at an angle close to the latitude of Valencia (39.5 degrees N). Using two timers the platform could be turned through 90 degrees every 5 min. On clear or partially cloudy days, including those with different turbidity values, it was observed that the UVER showed a maximum at 1200 h GMT, very close to solar noon, in the north and south positions, while the maximum for east and west orientations was found at approximately one hour before and one hour after midday respectively. It was also observed how the irradiance for the south orientation was greater and for the north was less than for the horizontal plane, as well as the opposite performances of the east and west orientations, for four days close to the summer and winter solstices and each equinox. Some experimental results were also compared with the results from the SMARTS2.9 model for the same conditions. It was found that the model frequently overestimated the experimental data. With respect to the maximum calculated UV Index in the different planes this was always higher for the south orientation than for the north, while it was similar for east and west orientations throughout the year. Finally the accumulated erythemal dosage for the considered period was obtained as a function of phototype and orientation, confirming that the accumulated erythemal dosage decreased by around 37% in the north orientation compared to the horizontal value, while in the south position it was only 6% less and some 20% and 15% less in the east and west positions, respectively.

  16. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise and Functional Electrical Stimulation during Head-Up Tilt

    PubMed Central

    Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena

    2016-01-01

    Introduction: Tilt tables enable early mobilization of patients by providing verticalization. But there is a high risk of orthostatic hypotension provoked by verticalization, especially after neurological diseases such as spinal cord injury. Robot-assisted tilt tables might be an alternative as they add passive robotic leg exercise (PE) that can be enhanced with functional electrical stimulation (FES) to the verticalization, thus reducing the risk of orthostatic hypotension. We hypothesized that the influence of PE on the cardiovascular system during verticalization (i.e., head-up tilt) depends on the verticalization angle, and FES strengthens the PE influence. To test our hypotheses, we investigated the PE effects on the cardiovascular parameters heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) at different angles of verticalization in a healthy population. Methods: Ten healthy subjects on a robot-assisted tilt table underwent four different study protocols while HR, sBP, and dBP were measured: (1) head-up tilt to 60° and 71° without PE; (2) PE at 20°, 40°, and 60° of head-up tilt; (3) PE while constant FES intensity was applied to the leg muscles, at 20°, 40°, and 60° of head-up tilt; (4) PE with variation of the applied FES intensity at 0°, 20°, 40°, and 60° of head-up tilt. Linear mixed models were used to model changes in HR, sBP, and dBP responses. Results: The models show that: (1) head-up tilt alone resulted in statistically significant increases in HR and dBP, but no change in sBP. (2) PE during head-up tilt resulted in statistically significant changes in HR, sBP, and dBP, but not at each angle and not always in the same direction (i.e., increase or decrease of cardiovascular parameters). Neither adding (3) FES at constant intensity to PE nor (4) variation of FES intensity during PE had any statistically significant effects on the cardiovascular parameters. Conclusion: The effect of PE on the cardiovascular system during

  17. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise and Functional Electrical Stimulation during Head-Up Tilt.

    PubMed

    Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena

    2016-01-01

    Introduction: Tilt tables enable early mobilization of patients by providing verticalization. But there is a high risk of orthostatic hypotension provoked by verticalization, especially after neurological diseases such as spinal cord injury. Robot-assisted tilt tables might be an alternative as they add passive robotic leg exercise (PE) that can be enhanced with functional electrical stimulation (FES) to the verticalization, thus reducing the risk of orthostatic hypotension. We hypothesized that the influence of PE on the cardiovascular system during verticalization (i.e., head-up tilt) depends on the verticalization angle, and FES strengthens the PE influence. To test our hypotheses, we investigated the PE effects on the cardiovascular parameters heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) at different angles of verticalization in a healthy population. Methods: Ten healthy subjects on a robot-assisted tilt table underwent four different study protocols while HR, sBP, and dBP were measured: (1) head-up tilt to 60° and 71° without PE; (2) PE at 20°, 40°, and 60° of head-up tilt; (3) PE while constant FES intensity was applied to the leg muscles, at 20°, 40°, and 60° of head-up tilt; (4) PE with variation of the applied FES intensity at 0°, 20°, 40°, and 60° of head-up tilt. Linear mixed models were used to model changes in HR, sBP, and dBP responses. Results: The models show that: (1) head-up tilt alone resulted in statistically significant increases in HR and dBP, but no change in sBP. (2) PE during head-up tilt resulted in statistically significant changes in HR, sBP, and dBP, but not at each angle and not always in the same direction (i.e., increase or decrease of cardiovascular parameters). Neither adding (3) FES at constant intensity to PE nor (4) variation of FES intensity during PE had any statistically significant effects on the cardiovascular parameters. Conclusion: The effect of PE on the cardiovascular system during

  18. Concepts for generating optimum vertical flight profiles

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.

    1979-01-01

    Algorithms for generating optimum vertical profiles are derived and examined. These algorithms form the basis for the design of onboard flight management concepts. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff weight, and range-to-destination are presented. Further considerations for mechanizing two different onboard methods of computing near-optimum flight profiles are then outlined. Finally, the results are summarized, and recommendations are made for further work. Technical details of optimum trajectory design, steering requirements for following these trajectories, and off-line computer programs for testing the concepts are included.

  19. Design and Performance of the Keck Angle Tracker

    NASA Technical Reports Server (NTRS)

    Crawford, Samuel L.; Ragland, S.; Booth, A.; Colavita, M. M.; Hovland, E.

    2006-01-01

    The Keck Angle Tracker (KAT) is a key subsystem in the NASA-funded Keck Interferometer at the Keck Observatory on the summit of Mauna Kea in Hawaii. KAT, which has been in operation since the achievement of first fringes in March 2001, senses the tilt of the stellar wavefront for each of the beams from the interferometer telescopes and provides tilt error signals to fast tip/tilt mirrors for high-bandwidth, wavefront tilt correction. In addition, KAT passes low-bandwidth, desaturation offsets to the adaptive optics system of the Keck telescopes to correct for slow pointing drifts. We present an overview of the instrument design and recent performance of KAT in support of the V2 science and nulling observing modes of the Keck Interferometer.

  20. "Happiness and Education": Tilting at Windmills?

    ERIC Educational Resources Information Center

    Verducci, Susan

    2013-01-01

    This essay explores the question: Is Nel Noddings a visionary who sees past the constraints of contemporary education or is she, like Don Quixote, madly tilting at windmills in her description and defense of happiness as an educational aim? Viewing the educational aim of happiness as an ideal raises substantial challenges for the practicality of…

  1. "Happiness and Education": Tilting at Windmills?

    ERIC Educational Resources Information Center

    Verducci, Susan

    2013-01-01

    This essay explores the question: Is Nel Noddings a visionary who sees past the constraints of contemporary education or is she, like Don Quixote, madly tilting at windmills in her description and defense of happiness as an educational aim? Viewing the educational aim of happiness as an ideal raises substantial challenges for the practicality of…

  2. Rotatable prism for pan and tilt

    NASA Technical Reports Server (NTRS)

    Ball, W. B.

    1980-01-01

    Compact, inexpensive, motor-driven prisms change field of view of TV camera. Camera and prism rotate about lens axis to produce pan effect. Rotating prism around axis parallel to lens produces tilt. Size of drive unit and required clearance are little more than size of camera.

  3. Tilt/Integral/Derivative Compensators For Controllers

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J.

    1995-01-01

    Tilt/integral/derivative (TID) compensators for tunable feedback control systems offer advantages over proportional/integral/derivative compensators. Designed and adjusted more easily, and made to reject disturbances more strongly and less sensitive to variations in parameters of controlled system.

  4. Tilting and shifting modes in a spheromak

    SciTech Connect

    Jardin, S.C.; Chance, M.S.; Dewar, R.L.; Grimm, R.C.; Monticello, D.A.

    1981-04-01

    In the absence of a conducting wall, typical spheromak plasmas are unstable to tilting and/or shifting modes. The effects of the cross-sectional shape, aspect ratio, and the location of a conducting wall on the stability of these modes are investigated.

  5. Postural and Chronological Change in Pelvic Tilt Five Years After Total Hip Arthroplasty in Patients With Developmental Dysplasia of the Hip: A Three-Dimensional Analysis.

    PubMed

    Suzuki, Haruka; Inaba, Yutaka; Kobayashi, Naomi; Ishida, Takashi; Ike, Hiroyuki; Saito, Tomoyuki

    2016-01-01

    The pelvis generally tilts to the posterior with movement from the supine to standing position, and with time after total hip arthroplasty (THA). This study aimed to investigate changes in pelvic tilt from the preoperative supine position to the standing position at 5 years after THA (pelvic change, PC). We measured pelvic tilt using a 2D-3D matching technique in 77 unilaterally affected patients who underwent primary THA. PC in 8% of all patients was ≤-20°, and the greatest PC was -25°. In these patients, posterior pelvic tilt continued up to 5 years after THA. These patients were older, and their lumbo-lordotic angle was small. For such cases, cup orientation should be planned to account for continuous posterior change in pelvic tilt after THA.

  6. An integrated optimum design approach for high speed prop rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.

    1995-01-01

    The objective is to develop an optimization procedure for high-speed and civil tilt-rotors by coupling all of the necessary disciplines within a closed-loop optimization procedure. Both simplified and comprehensive analysis codes are used for the aerodynamic analyses. The structural properties are calculated using in-house developed algorithms for both isotropic and composite box beam sections. There are four major objectives of this study. (1) Aerodynamic optimization: The effects of blade aerodynamic characteristics on cruise and hover performance of prop-rotor aircraft are investigated using the classical blade element momentum approach with corrections for the high lift capability of rotors/propellers. (2) Coupled aerodynamic/structures optimization: A multilevel hybrid optimization technique is developed for the design of prop-rotor aircraft. The design problem is decomposed into a level for improved aerodynamics with continuous design variables and a level with discrete variables to investigate composite tailoring. The aerodynamic analysis is based on that developed in objective 1 and the structural analysis is performed using an in-house code which models a composite box beam. The results are compared to both a reference rotor and the optimum rotor found in the purely aerodynamic formulation. (3) Multipoint optimization: The multilevel optimization procedure of objective 2 is extended to a multipoint design problem. Hover, cruise, and take-off are the three flight conditions simultaneously maximized. (4) Coupled rotor/wing optimization: Using the comprehensive rotary wing code CAMRAD, an optimization procedure is developed for the coupled rotor/wing performance in high speed tilt-rotor aircraft. The developed procedure contains design variables which define the rotor and wing planforms.

  7. Aero-optimum hovering kinematics.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2015-08-07

    Hovering flight for flapping wing vehicles requires rapid and relatively complex reciprocating movement of a wing relative to a stationary surrounding fluid. This note develops a compact analytical aero-kinematic model that can be used for optimization of flapping wing kinematics against aerodynamic criteria of effectiveness (maximum lift) and efficiency (minimum power for a given amount of lift). It can also be used to make predictions of required flapping frequency for a given geometry and basic aerodynamic parameters. The kinematic treatment is based on a consolidation of an existing formulation that allows explicit derivation of flapping velocity for complex motions whereas the aerodynamic model is based on existing quasi-steady analysis. The combined aero-kinematic model provides novel explicit analytical expressions for both lift and power of a hovering wing in a compact form that enables exploration of a rich kinematic design space. Good agreement is found between model predictions of flapping frequency and observed results for a number of insects and optimal hovering kinematics identified using the model are consistent with results from studies using higher order computational models. For efficient flight, the flapping angle should vary using a triangular profile in time leading to a constant velocity flapping motion, whereas for maximum effectiveness the shape of variation should be sinusoidal. For both cases the wing pitching motion should be rectangular such that pitch change at stroke reversal is as rapid as possible.

  8. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2009-12-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this machine might be improved, a student can gain insight beyond the equations of motion and can test hypotheses on readily available working models. Some of these performance improvements are considered in this paper.

  9. SU-E-T-230: Creating a Large Number of Focused Beams with Variable Patient Head Tilt to Improve Dose Fall-Off for Brain Radiosurgery

    SciTech Connect

    Chiu, J; Ma, L

    2015-06-15

    Purpose: To develop a treatment delivery and planning strategy by increasing the number of beams to minimize dose to brain tissue surrounding a target, while maximizing dose coverage to the target. Methods: We analyzed 14 different treatment plans via Leksell PFX and 4C. For standardization, single tumor cases were chosen. Original treatment plans were compared with two optimized plans. The number of beams was increased in treatment plans by varying tilt angles of the patient head, while maintaining original isocenter and the beam positions in the x-, y- and z-axes, collimator size, and beam blocking. PFX optimized plans increased beam numbers with three pre-set tilt angles, 70, 90, 110, and 4C optimized plans increased beam numbers with tilt angles increasing arbitrarily from range of 30 to 150 degrees. Optimized treatment plans were compared dosimetrically with original treatment plans. Results: Comparing total normal tissue isodose volumes between original and optimized plans, the low-level percentage isodose volumes decreased in all plans. Despite the addition of multiple beams up to a factor of 25, beam-on times for 1 tilt angle versus 3 or more tilt angles were comparable (<1 min.). In 64% (9/14) of the studied cases, the volume percentage decrease by >5%, with the highest value reaching 19%. The addition of more tilt angles correlates to a greater decrease in normal brain irradiated volume. Selectivity and coverage for original and optimized plans remained comparable. Conclusion: Adding large number of additional focused beams with variable patient head tilt shows improvement for dose fall-off for brain radiosurgery. The study demonstrates technical feasibility of adding beams to decrease target volume.

  10. NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshop. Volume 7: Tilt Rotor Session

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The technical characteristics of the XV-15 aircraft were discussed. Program objectives, concept evaluation, tilt rotor experiments and civil market applications are presented. The XV-15 status and test schedule are also included.

  11. Tilt and Translation Motion Perception during Pitch Tilt with Visual Surround Translation

    NASA Technical Reports Server (NTRS)

    O'Sullivan, Brita M.; Harm, Deborah L.; Reschke, Millard F.; Wood, Scott J.

    2006-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Previous studies suggest that multisensory integration is critical for discriminating linear accelerations arising from tilt and translation head motion. Visual input is especially important at low frequencies where canal input is declining. The NASA Tilt Translation Device (TTD) was designed to recreate postflight orientation disturbances by exposing subjects to matching tilt self motion with conflicting visual surround translation. Previous studies have demonstrated that brief exposures to pitch tilt with foreaft visual surround translation produced changes in compensatory vertical eye movement responses, postural equilibrium, and motion sickness symptoms. Adaptation appeared greatest with visual scene motion leading (versus lagging) the tilt motion, and the adaptation time constant appeared to be approximately 30 min. The purpose of this study was to compare motion perception when the visual surround translation was inphase versus outofphase with pitch tilt. The inphase stimulus presented visual surround motion one would experience if the linear acceleration was due to foreaft self translation within a stationary surround, while the outofphase stimulus had the visual scene motion leading the tilt by 90 deg as previously used. The tilt stimuli in these conditions were asymmetrical, ranging from an upright orientation to 10 deg pitch back. Another objective of the study was to compare motion perception with the inphase stimulus when the tilts were asymmetrical relative to upright (0 to 10 deg back) versus symmetrical (10 deg forward to 10 deg back). Twelve subjects (6M, 6F, 22-55 yrs) were tested during 3 sessions separated by at least one week. During each of the three sessions (out-of-phase asymmetrical, in-phase asymmetrical, inphase symmetrical), subjects were exposed to visual surround translation

  12. Tilt and Translation Motion Perception during Pitch Tilt with Visual Surround Translation

    NASA Technical Reports Server (NTRS)

    O'Sullivan, Brita M.; Harm, Deborah L.; Reschke, Millard F.; Wood, Scott J.

    2006-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Previous studies suggest that multisensory integration is critical for discriminating linear accelerations arising from tilt and translation head motion. Visual input is especially important at low frequencies where canal input is declining. The NASA Tilt Translation Device (TTD) was designed to recreate postflight orientation disturbances by exposing subjects to matching tilt self motion with conflicting visual surround translation. Previous studies have demonstrated that brief exposures to pitch tilt with foreaft visual surround translation produced changes in compensatory vertical eye movement responses, postural equilibrium, and motion sickness symptoms. Adaptation appeared greatest with visual scene motion leading (versus lagging) the tilt motion, and the adaptation time constant appeared to be approximately 30 min. The purpose of this study was to compare motion perception when the visual surround translation was inphase versus outofphase with pitch tilt. The inphase stimulus presented visual surround motion one would experience if the linear acceleration was due to foreaft self translation within a stationary surround, while the outofphase stimulus had the visual scene motion leading the tilt by 90 deg as previously used. The tilt stimuli in these conditions were asymmetrical, ranging from an upright orientation to 10 deg pitch back. Another objective of the study was to compare motion perception with the inphase stimulus when the tilts were asymmetrical relative to upright (0 to 10 deg back) versus symmetrical (10 deg forward to 10 deg back). Twelve subjects (6M, 6F, 22-55 yrs) were tested during 3 sessions separated by at least one week. During each of the three sessions (out-of-phase asymmetrical, in-phase asymmetrical, inphase symmetrical), subjects were exposed to visual surround translation

  13. Revisiting Hydrophobic Mismatch with Free Energy Simulation Studies of Transmembrane Helix Tilt and Rotation

    PubMed Central

    Kim, Taehoon; Im, Wonpil

    2010-01-01

    Abstract Protein-lipid interaction and bilayer regulation of membrane protein functions are largely controlled by the hydrophobic match between the transmembrane (TM) domain of membrane proteins and the surrounding lipid bilayer. To systematically characterize responses of a TM helix and lipid adaptations to a hydrophobic mismatch, we have performed a total of 5.8-μs umbrella sampling simulations and calculated the potentials of mean force (PMFs) as a function of TM helix tilt angle under various mismatch conditions. Single-pass TM peptides called WALPn (n = 16, 19, 23, and 27) were used in two lipid bilayers with different hydrophobic thicknesses to consider hydrophobic mismatch caused by either the TM length or the bilayer thickness. In addition, different flanking residues, such as alanine, lysine, and arginine, instead of tryptophan in WALP23 were used to examine their influence. The PMFs, their decomposition, and trajectory analysis demonstrate that 1), tilting of a single-pass TM helix is the major response to a hydrophobic mismatch; 2), TM helix tilting up to ∼10° is inherent due to the intrinsic entropic contribution arising from helix precession around the membrane normal even under a negative mismatch; 3), the favorable helix-lipid interaction provides additional driving forces for TM helix tilting under a positive mismatch; 4), the minimum-PMF tilt angle is generally located where there is the hydrophobic match and little lipid perturbation; 5), TM helix rotation is dependent on the specific helix-lipid interaction; and 6), anchoring residues at the hydrophilic/hydrophobic interface can be an important determinant of TM helix orientation. PMID:20655845

  14. Acute Effects of Hamstring Stretching on Sagittal Spinal Curvatures and Pelvic Tilt

    PubMed Central

    López-Miñarro, Pedro A.; Muyor, José M.; Belmonte, Felipe; Alacid, Fernando

    2012-01-01

    The aim of this study was to determine acute effects of hamstring stretching in thoracic and lumbar spinal curvatures and pelvic tilt. Fifty-five adults (29.24 ± 7.41 years) were recruited for this study. Subjects performed a hamstring stretching protocol consisting of four exercises. The session consisted of 3 sets of each exercise and subjects held the position for 20 seconds with a 30-second rest period between sets and exercises. Thoracic and lumbar spinal angles and pelvic tilt were measured with a SpinalMouse in relaxed standing, sit-and-reach test and Macrae & Wright position. Hamstring extensibility was determined by active straight leg raise test and sit-and-reach score. All measures were performed before and immediately after the hamstring stretching protocol. Active straight leg raise angle and sitand-reach score significantly improved immediately after the stretching protocol (p<0.001). Greater anterior pelvic tilt (p<0.001) and lumbar flexion (p<0.05) and a smaller thoracic kyphosis in the sit-and-reach (p<0.001) were found after the stretching protocol. However, stretching produced no significant change on spinal curvatures or pelvic tilt in standing and maximal trunk flexion with knees flexed. In conclusion, static stretching of the hamstring is associated to an immediate change in the sagittal spinal curvatures and pelvic position when performing trunk flexion with knees extended, so that allowing for greater lumbar flexion and anterior pelvic tilt and lower thoracic kyphosis. Hamstring stretching is recommended prior to sport activities involving trunk flexion with the knees straight. PMID:23486214

  15. The perception of roll tilt in pilots during a simulated coordinated turn in a gondola centrifuge.

    PubMed

    Tribukait, Arne; Grönkvist, Mikael; Eiken, Ola

    2011-05-01

    It has previously been reported that nonpilots underestimate the roll tilt angle after acceleration in a gondola centrifuge. The aim of the present work was to elucidate the significance of flight experience for roll tilt perception based on vestibular information. The subjective visual horizontal (SVH) was measured by means of an adjustable luminous line in darkness. Eight nonpilots (N), nine fighter pilots (F), and eight helicopter pilots (H) underwent two centrifuge runs (2 G, 5 min) heading forward and backward, respectively. The roll position of the gondola (60 degrees at 2 G) was controlled so that the subject was always upright with respect to the gravitoinertial force. Upon acceleration of the centrifuge there was a tilt of the SVH in a direction compensatory to the inclination of the gondola. This tilt was larger in the forward position [N: 17.2 +/- 6.4 degrees, F: 31.2 +/- 16.4 degrees, H: 33.6 +/- 18.2 degrees (means +/- SD)] than in the backward position (N: -5.0 +/- 6.8 degrees, F: -12.2 +/- 17.4 degrees, H: -10.4 +/- 15.4 degrees). In N the tilt declined with time, approaching zero by the end of the 2-G plateau. In the pilots it was significantly larger and did not decline. Flight experience results in an increased ability to perceive the roll tilt during movement along a curved path. That this can be revealed in a centrifuge might suggest that acceleration of the centrifuge constitutes a movement pattern which is similar, from a vestibular point of view, to that of an airplane entering a coordinated turn.

  16. Optimum design of Cassegrain antenna for space laser communication

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Jiang, Lun; Wang, Chao; Li, Yingchao

    2016-10-01

    The divergence angle is very important index in space laser communication for energy transfer. Typically, the large aperture telescope as optical antenna is used for angle compression, and the divergence angle of communication beam is usually calculated by diffraction limit angle equation 1.22λ/D. This equation expresses the diffraction of a spherical wave through a circular aperture. However, the light source commonly used laser with a Gaussian distribution, and the optical antenna is central obscurations. The antenna parameters which is obscuration ratio and Gaussian beam apodization were significantly relative with the far field energy. In this study, we obtain the mathematic relation between the divergence angle, energy loss and the antenna parameters. From the relationship, we know that the divergence angle smaller as the increase of antenna obscuration ratio. It would tend to enhance the far-field energy density. But a larger obscuration ratio will increase the energy loss. At the same time, the increase of Gaussian beam apodization resulted in the energy of first diffraction ring was raised but the radius of first ring was increased. They were conflict. And then, the antenna parameters of trade-off was found from curves of obscuration ratio and curves of divergence angle. The parameters of a Cassegrain antenna was optimum designed for the energy maximization, and considerd the apodization from mechanical structure blocking. The long-distance laser communications were successful in these airborne tests. Stable communication was demonstrated. The energy gain is sufficient for SNR of high-bandwidth transmission in atmospheric channel.

  17. Internal tilting mode stability of non-sperical spheromak

    SciTech Connect

    Yamazaki, K.

    1980-06-01

    Fixed boundary tilting mode stability is analyzed for spheromak with arbitrarily shaped cross section. A prolate spheromak can be stabilized against tilting mode by adding a conducting shell of triangular or trapesoidal half-cross section.

  18. Geometric considerations of polar mesospheric summer echoes in tilted beams using coherent radar imaging

    NASA Astrophysics Data System (ADS)

    Sommer, S.; Stober, G.; Chau, J. L.; Latteck, R.

    2014-11-01

    We present observations of polar mesospheric summer echoes (PMSE) using the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). The radar is able to resolve PMSE at high spatial and temporal resolution and to perform pulse-to-pulse beam steering. In this experiment, 81 oblique beam directions were used with off-zenith angles up to 25°. For each beam pointing direction and range gate, coherent radar imaging was applied to determine the mean backscatter location. The location of the mean scatterer in the beam volume was calculated by the deviation from the nominal off-zenith angle of the brightest pixel. It shows that in tilted beams with an off-zenith angle greater than 5°, structures appear at the altitudinal edges of the PMSE layer. Our results indicate that the mean influence of the location of the maximum depends on the tilt of the beam and on the observed area of the PMSE layer. At the upper/lower edge of the PMSE layer, the mean backscatter has a greater/smaller off-zenith angle than the nominal off-zenith angle. This effect intensifies with greater off-zenith beam pointing direction, so the beam filling factor plays an important role in the observation of PMSE layers for oblique beams.

  19. Investigation of Peak Pressure Index Parameters for People with Spinal Cord Injury Using Wheelchair Tilt-in-Space and Recline: Methodology and Preliminary Report

    PubMed Central

    Lung, Chi-Wen; Yang, Tim D.; Crane, Barbara A.; Elliott, Jeannette; Dicianno, Brad E.; Jan, Yih-Kuen

    2014-01-01

    The purpose of this study was to determine the effect of the sensel window's location and size when calculating the peak pressure index (PPI) of pressure mapping with varying degrees of wheelchair tilt-in-space (tilt) and recline in people with spinal cord injury (SCI). Thirteen power wheelchair users were recruited into this study. Six combinations of wheelchair tilt (15°, 25°, and 35°) and recline (10° and 30°) were used by the participants in random order. Displacements of peak pressure and center of pressure were extracted from the left side of the mapping system. Normalized PPI was computed for three sensel window dimensions (3 sensels × 3 sensels, 5 × 5, and 7 × 7). At least 3.33 cm of Euclidean displacement of peak pressures was observed in the tilt and recline. For every tilt angle, peak pressure displacement was not significantly different between 10° and 30° recline, while center of pressure displacement was significantly different (P < .05). For each recline angle, peak pressure displacement was not significantly different between pairs of 15°, 25°, and 35° tilt, while center of pressure displacement was significantly different between 15° versus 35° and 25° versus 35°. Our study showed that peak pressure displacement occurs in response to wheelchair tilt and recline, suggesting that the selected sensel window locations used to calculate PPI should be adjusted during changes in wheelchair configuration. PMID:25057491

  20. Using residual indent morphology to measure the tilt between the triangular pyramid indenter and the sample surface

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Zhao, Hongwei; Shi, Chengli; Zhang, Lin

    2013-10-01

    The tilt between the indenter and the sample surface will affect the measuring results and the accuracy of nanoindentation and scratches. In this paper, the potential factors leading to the tilt are firstly discussed. Then, based on the Cartesian coordinate system at the tip of the triangular pyramid indenter established by Kashani and Madhavan, a theoretical approach is proposed to measure the tilt angle η and the rotation angle ξ of the surface normal \\hat n using the residual indent morphology. In order to reduce the input parameters for solving the equations and also make the equations dimensionless, two coefficients m and n are defined. One practical application is given to verify the feasibility of the theoretical approach. The theoretical approach is simplified and unified by analyzing the calculation results. The presented theoretical approach can be used to measure the tilt between the indenter and the sample surface indirectly, which is the premise for the adjustment of indentation instruments or the practical correction of the tilt.

  1. Angle-dependent magnetotransport in GaAs/InAs core/shell nanowires

    PubMed Central

    Haas, Fabian; Wenz, Tobias; Zellekens, Patrick; Demarina, Nataliya; Rieger, Torsten; Lepsa, Mihail; Grützmacher, Detlev; Lüth, Hans; Schäpers, Thomas

    2016-01-01

    We study the impact of the direction of magnetic flux on the electron motion in GaAs/InAs core/shell nanowires. At small tilt angles, when the magnetic field is aligned nearly parallel to the nanowire axis, we observe Aharonov–Bohm type h/e flux periodic magnetoconductance oscillations. These are attributed to transport via angular momentum states, formed by electron waves within the InAs shell. With increasing tilt of the nanowire in the magnetic field, the flux periodic magnetoconductance oscillations disappear. Universal conductance fluctuations are observed for all tilt angles, however with increasing amplitudes for large tilt angles. We record this evolution of the electron propagation from a circling motion around the core to a diffusive transport through scattering loops and give explanations for the observed different transport regimes separated by the magnetic field orientation. PMID:27091000

  2. Origin of the c-Axis Tilt Occurring During the Lateral Epitaxial Overgrowth of GaN

    NASA Astrophysics Data System (ADS)

    Kuan, T. S.; Inoki, C. K.; Zhang, R.; Gu, S.; Kuech, T. F.

    2001-03-01

    A large angle c-axis tilt has often been observed in GaN layers grown by lateral epitaxial overgrowth (LEO) through narrow windows defined on a seed layer. The c-axis tilt generates vertical tilt boundaries at the coalescence of growth facets. To investigate the defect mechanisms responsible for the onset of c-axis tilt, a series of GaN LEO samples was grown using the hydride vapor phase epitaxy (HVPE) technique and examined by transmission electron microscopy (TEM). Cross sectional TEM images indicate that as LEO proceeds from triangular-shaped ridges originally grown over the windows, all edge-type threading dislocations propagated from the seed layer bend into screw type and glide on the c plane. Plan-view TEM observations reveal further that to relax the twist/shear strain in the LEO regions, these screw dislocations collectively make another 90^o bend again, forming arrays of edge dislocations parallel to the mask edge. The number of dislocations in the arrays can account for the amount of crystal tilt observed. The c-axis tilt is thus a stress-driven phenomenon dictated by the growth window geometry, and is much less influenced by the growth parameters.

  3. Enhanced lateral resolution for phase retrieval based on the transport of intensity equation with tilted illumination

    NASA Astrophysics Data System (ADS)

    Martinez-Carranza, J.; Falaggis, K.; Kozacki, T.

    2016-03-01

    Quantitative Phase Imaging based on the Transport of Intensity Equation (TIE) has shown to be a practical tool for retrieving the phase information of biological and technical samples. When recovering the phase information with the TIE, the maximum lateral resolution that can be obtained is limited by the numerical aperture (NA) of the optical system. In order to overcome this limitation, a system that combines structured illumination and TIE-like techniques have been proposed. These methodologies enlarge synthetically the NA of the optical system, and thus, the lateral resolution of the retrieved phase can be improved. However, the employment of structured illumination may bring error amplifications in the retrieved phase due to its sensitiveness to phase discontinuities and shot noise. In this work, we propose a new methodology that improves the lateral resolution of the retrieved phase beyond the diffraction limit avoiding the problems related with the structured illumination. The methodology presented here uses tilted illumination and a TIE solver. We show that when using this configuration, we can extend the set of recovered frequencies by adjusting the angle of the tilted wave-front. Further, our methodology is designed to extend the NA by employing less tilted angles than other similar techniques. Hence, the final retrieved phase will have an enhanced lateral resolution without amplifying the numerical errors and employing a few tilted angles. Moreover, we show that the algorithm presented here can be combined with other TIE algorithms that are used for suppressing the Low Frequency Artifacts (LFAs) usually present when using TIE based techniques.

  4. Design rules for a compact and low-cost optical position sensing of MOEMS tilt mirrors based on a Gaussian-shaped light source

    NASA Astrophysics Data System (ADS)

    Baumgart, Marcus; Tortschanoff, Andreas

    2013-05-01

    A tilt mirror's deflection angle tracking setup is examined from a theoretical point of view. The proposed setup is based on a simple optical approach and easily scalable. Thus, the principle is especially of interest for small and fast oscillating MEMS/MOEMS based tilt mirrors. An experimentally established optical scheme is used as a starting point for accurate and fast mirror angle-position detection. This approach uses an additional layer, positioned under the MOEMS mirror's backside, consisting of a light source in the center and two photodetectors positioned symmetrical around the center. The mirror's back surface is illuminated by the light source and the intensity change due to mirror tilting is tracked via the photodiodes. The challenge of this method is to get a linear relation between the measured intensity and the current mirror tilt angle even for larger angles. State-of-the-art MOEMS mirrors achieve angles up to ±30°, which exceeds the linear angle approximations. The use of an LED, small laser diode or VCSEL as a lightsource is appropriate due to their small size and inexpensive price. Those light sources typically emit light with a Gaussian intensity distribution. This makes an analytical prediction of the expected detector signal quite complicated. In this publication an analytical simulation model is developed to evaluate the influence of the main parameters for this optical mirror tilt-sensor design. An easy and fast to calculate value directly linked to the mirror's tilt-angle is the "relative differential intensity" (RDI = (I1 - I2) / (I1 + I2)). Evaluation of its slope and nonlinear error highlights dependencies between the identified parameters for best SNR and linearity. Also the energy amount covering the detector area is taken into account. Design optimizing rules are proposed and discussed based on theoretical considerations.

  5. Automated optimum design of wing structures. Deterministic and probabilistic approaches

    NASA Technical Reports Server (NTRS)

    Rao, S. S.

    1982-01-01

    The automated optimum design of airplane wing structures subjected to multiple behavior constraints is described. The structural mass of the wing is considered the objective function. The maximum stress, wing tip deflection, root angle of attack, and flutter velocity during the pull up maneuver (static load), the natural frequencies of the wing structure, and the stresses induced in the wing structure due to landing and gust loads are suitably constrained. Both deterministic and probabilistic approaches are used for finding the stresses induced in the airplane wing structure due to landing and gust loads. A wing design is represented by a uniform beam with a cross section in the form of a hollow symmetric double wedge. The airfoil thickness and chord length are the design variables, and a graphical procedure is used to find the optimum solutions. A supersonic wing design is represented by finite elements. The thicknesses of the skin and the web and the cross sectional areas of the flanges are the design variables, and nonlinear programming techniques are used to find the optimum solution.

  6. A COLLISIONLESS SCENARIO FOR URANUS TILTING

    SciTech Connect

    Boue, Gwenael; Laskar, Jacques

    2010-03-20

    The origin of the high inclination of Uranus' spin-axis (Uranus' obliquity) is one of the great unanswered questions about the solar system. Giant planets are believed to form with nearly zero obliquity, and it has been shown that the present behavior of Uranus' spin is essentially stable. Several attempts were made in order to solve this problem. Here we report numerical simulations showing that Uranus' axis can be tilted during the planetary migration, without the need of a giant impact, provided that the planet had an additional satellite and a temporary large inclination. This might have happened during the giant planet instability phase described in the Nice model. In our scenario, the satellite is ejected after the tilt by a close encounter at the end of the migration. This model can both explain Uranus' large obliquity and bring new constraints on the planet orbital evolution.

  7. Tilted foil polarization of radioactive beam nuclei

    NASA Astrophysics Data System (ADS)

    Goldring, Gvirol

    1992-11-01

    Tilted foil polarization has up to now been mostly applied to nuclear reaction products recoiling out of a target traversed by a primary particle beam. Being a universal phenomenon it can be applied equally well to beams of particles, primary or secondary, radioactive or other. There are however some technical considerations arising from the nature of the beam particles. Radioactive beams are associated with ground state nuclei. They usually have low nuclear spin and as a consequence-as will be shown later-low polarization. Secondary beams are usually low in intensity and do not impose any constraints on the foils they traverse; unlike intense primary heavy ion beams which, if they traverse the foils, essentially limit the foil material to carbon. We review here briefly the tilted foil polarization process and then discuss an experiment with an isomer beam. Finally we review experiments with radioactive beams, past, present and planned for the future.

  8. Enhanced patterning by tilted ion implantation

    NASA Astrophysics Data System (ADS)

    Kim, Sang Wan; Zheng, Peng; Kato, Kimihiko; Rubin, Leonard; Liu, Tsu-Jae King

    2016-03-01

    Tilted ion implantation (TII) is proposed as a lower-cost alternative to self-aligned double patterning (SADP) for pitch halving. This new approach is based on an enhancement in etch rate of a hard-mask layer by implant-induced damage. Ar+ implantation into a thin layer of silicon dioxide (SiO2) is shown to enhance its etch rate in dilute hydrofluoric acid (HF) solution, by up to 9× for an implant dose of 3×1014 cm-2. The formation of sub-lithographic features defined by masked tilted Ar+ implantation into a SiO2 hard-mask layer is experimentally demonstrated. Features with sizes as small as ~21 nm, self-aligned to the lithographically patterned mask, are achieved. As compared with SADP, enhanced patterning by TII requires far fewer and lower-cost process steps and hence is expected to be much more cost-effective.

  9. A CFD study of tilt rotor flowfields

    NASA Technical Reports Server (NTRS)

    Fejtek, Ian; Roberts, Leonard

    1989-01-01

    The download on the wing produced by the rotor wake of a tilt rotor vehicle in hover is of major concern because of its severe impact on payload-carrying capability. In a concerted effort to understand the fundamental fluid dynamics that cause this download, and to help find ways to reduce it, computational fluid dynamics (CFD) is employed to study this problem. The thin-layer Navier-Stokes equations are used to describe the flow, and an implicit, finite difference numerical algorithm is the method of solution. The methodology is developed to analyze the tilt rotor flowfield. Included are discussions of computations of an airfoil and wing in freestream flows at -90 degrees, a rotor alone, and wing/rotor interaction in two and three dimensions. Preliminary results demonstrate the feasibility and great potential of the present approach. Recommendations are made for both near-term and far-term improvements to the method.

  10. Tilting train smooths out the curves

    SciTech Connect

    O'Connor, L.

    1993-02-01

    This article describes a Swedish train that leans into curves and speed around them safely at more than 100 miles per hour and is being tested on a tortuous railroad corridor in the Northeast United States. If the test proves successful, the train--the X2000--could become a fixture in the country's rail system. The train has flexible steering that allows the wheels to hug the rail and permits it to drive around turns faster than most other trains, according to Amtrak. Further, all of the train, expect the locomotive, tilts as it winds its way around the curves. The tilting compensates for the centrifugal force on passengers at high speeds. The X2000 is one of several train systems under consideration by railroads in the United States to improve the rail system in the country. Among the others are Germany's Inter-City Express (ICE) and France's Train a Grande Vitesse (TGV), built by GEC Alshthom (Paris).

  11. Poloidal tilting symmetry of high order tokamak flux surface shaping in gyrokinetics

    NASA Astrophysics Data System (ADS)

    Ball, Justin; Parra, Felix I.; Barnes, Michael

    2016-04-01

    A poloidal tilting symmetry of the local nonlinear δ f gyrokinetic model is demonstrated analytically and verified numerically. This symmetry shows that poloidally rotating all the flux surface shaping effects with large poloidal mode number by a single tilt angle has an exponentially small effect on the transport properties of a tokamak. This is shown using a generalization of the Miller local equilibrium model to specify an arbitrary flux surface geometry. With this geometry specification we find that, when performing an expansion in large flux surface shaping mode number, the governing equations of gyrokinetics are symmetric in the poloidal tilt of the high order shaping effects. This allows us to take the fluxes from a single configuration and calculate the fluxes in any configuration that can be produced by tilting the large mode number shaping effects. This creates a distinction between tokamaks with mirror symmetric flux surfaces and tokamaks without mirror symmetry, which is expected to have important consequences for generating toroidal rotation using up-down asymmetry.

  12. Steering Dynamics of Tilting Narrow Track Vehicle with Passive Front Wheel Design

    NASA Astrophysics Data System (ADS)

    TAN, Jeffrey Too Chuan; ARAKAWA, Hiroki; SUDA, Yoshihiro

    2016-09-01

    In recent years, narrow track vehicle has been emerged as a potential candidate for the next generation of urban transportation system, which is greener and space effective. Vehicle body tilting has been a symbolic characteristic of such vehicle, with the purpose to maintain its stability with the narrow track body. However, the coordination between active steering and vehicle tilting requires considerable driving skill in order to achieve effective stability. In this work, we propose an alternative steering method with a passive front wheel that mechanically follows the vehicle body tilting. The objective of this paper is to investigate the steering dynamics of the vehicle under various design parameters of the passive front wheel. Modeling of a three-wheel tilting narrow track vehicle and multibody dynamics simulations were conducted to study the effects of two important front wheel design parameters, i.e. caster angle and trail toward the vehicle steering dynamics in steering response time, turning radius, steering stability and resiliency towards external disturbance. From the results of the simulation studies, we have verified the relationships of these two front wheel design parameters toward the vehicle steering dynamics.

  13. Wavelength Scanning with a Tilting Interference Filter for Glow-Discharge Elemental Imaging.

    PubMed

    Storey, Andrew P; Ray, Steven J; Hoffmann, Volker; Voronov, Maxim; Engelhard, Carsten; Buscher, Wolfgang; Hieftje, Gary M

    2016-11-21

    Glow discharges have long been used for depth profiling and bulk analysis of solid samples. In addition, over the past decade, several methods of obtaining lateral surface elemental distributions have been introduced, each with its own strengths and weaknesses. Challenges for each of these techniques are acceptable optical throughput and added instrumental complexity. Here, these problems are addressed with a tilting-filter instrument. A pulsed glow discharge is coupled to an optical system comprising an adjustable-angle tilting filter, collimating and imaging lenses, and a gated, intensified charge-coupled device (CCD) camera, which together provide surface elemental mapping of solid samples. The tilting-filter spectrometer is instrumentally simpler, produces less image distortion, and achieves higher optical throughput than a monochromator-based instrument, but has a much more limited tunable spectral range and poorer spectral resolution. As a result, the tilting-filter spectrometer is limited to single-element or two-element determinations, and only when the target spectral lines fall within an appropriate spectral range and can be spectrally discerned. Spectral interferences that result from heterogeneous impurities can be flagged and overcome by observing the spatially resolved signal response across the available tunable spectral range. The instrument has been characterized and evaluated for the spatially resolved analysis of glow-discharge emission from selected but representative samples.

  14. Absorption of circular polarized light in tilted type-I and type-II Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Mukherjee, S. P.; Carbotte, J. P.

    2017-08-01

    We calculate the ac optical response to circularly polarized light of a Weyl semimetal (WSM) with varying amounts of tilt of the Dirac cones. Both type-I and -II (overtilted) WSMs are considered in a continuum model with broken time-reversal symmetry. The Weyl nodes appear in pairs of equal energies but of opposite momentum and chirality. For type I, the response of a particular node to right-hand polarized (RHP) and left-hand polarized (LHP) light is distinct only in a limited range of photon energy Ω , 2/1 +C2/v <Ω/μ <2/1 -C2/v with μ the chemical potential and C2 the tilt associated with the positive chirality node assuming the two nodes are oppositely tilted. For the overtilted case (type II), the same lower bound applies but there is no upper bound. If the tilt is reversed, the RHP and LHP responses are also reversed. We present corresponding results for the Hall angle.

  15. Method for pan-tilt camera calibration using single control point.

    PubMed

    Li, Yunting; Zhang, Jun; Hu, Wenwen; Tian, Jinwen

    2015-01-01

    The pan-tilt (PT) camera is widely used in video surveillance systems due to its rotatable property and low cost. The rough output of a PT camera may not satisfy the demand of practical applications; hence an accurate calibration method of a PT camera is desired. However, high-precision camera calibration methods usually require sufficient control points not guaranteed in some practical cases of a PT camera. In this paper, we present a novel method to online calibrate the rotation angles of a PT camera by using only one control point. This is achieved by assuming that the intrinsic parameters and position of the camera are known in advance. More specifically, we first build a nonlinear PT camera model with respect to two parameters Pan and Tilt. We then convert the nonlinear model into a linear model according to sine and cosine of Tilt, where each element in the augmented coefficient matrix is a function of the single variable Pan. A closed-form solution of Pan and Tilt can then be derived by solving a quadratic equation of tangent of Pan. Our method is noniterative and does not need features matching; thus its time efficiency is better. We evaluate our calibration method on various synthetic and real data. The quantitative results demonstrate that the proposed method outperforms other state-of-the-art methods if the intrinsic parameters and position of the camera are known in advance.

  16. Load transfer in tilted implants with varying cantilever lengths in an all-on-four situation.

    PubMed

    Malhotra, A O; Padmanabhan, T V; Mohamed, K; Natarajan, S; Elavia, U

    2012-12-01

    The aim of this study was to evaluate if tilting of the distal implant at different angulations (30° and 40°) with different cantilever lengths (4 mm and 12 mm) affects the stress and strain distribution in an 'all-on-four' situation. A completely edentulous mandible was modelled with four tapered implants placed within the interforaminal region to receive an all acrylic fixed prosthesis. The two posterior implants were tilted at an angle of 30° and 40°. The prosthesis cantilever was given two different variables of 4 mm and 12 mm. For all models, the equivalent von Mises stress and strain was analysed using three-dimensional finite element analysis. Statistical significance (p < 0.05) was seen when a comparison was made for the stress developed on the implant and cortical bone between the 30° and 40° distally tilted posterior implants in both situations. No significance was seen in the trabecular bone and on the strain developed in these situations. The study shows that increasing the tilt of the distal implants does not increase the stress significantly. It also shows that the architecture of the mandible plays a major role during treatment planning of a completely edentulous patient. © 2012 Australian Dental Association.

  17. A miniature tilting pad gas lubricated bearing

    NASA Technical Reports Server (NTRS)

    Sixsmith, H.; Swift, W. L.

    1983-01-01

    This paper describes the design and development of a miniature tilting pad gas bearing developed for use in very small turbomachines. The bearings have been developed for cryogenic turboexpanders with shaft diameters down to about 0.3 cm and rotational speeds up to one million rpm. Cryogenic expansion turbines incorporating this type of bearing should be suitable for refrigeration rates down to about 10 w.

  18. Dry tilt network at Mount Rainier, Washington

    USGS Publications Warehouse

    Dzurisin, Daniel; Johnson, Daniel J.; Symonds, R.B.

    1984-01-01

    In addition to its primary responsibility of monitoring active Mount St. Helens, the David A. Johnston Cascades Volcano Observatory (CVO) has been charged with obtaining baseline geodetic and geochemical information at each of the other potentially active Cascade volcanoes. Dry tilt and/or trilateration networks were established during 1975-82 at Mount Baker, Mount St. Helens, Mount Hood, Mount Shasta, Lassen Peak, Crater Lake, and Long Valley caldera; coverage was extended during September 1982 to include Mount Rainier.

  19. Spatiotopic coding during dynamic head tilt

    PubMed Central

    Turi, Marco; Burr, David C.

    2016-01-01

    Humans maintain a stable representation of the visual world effortlessly, despite constant movements of the eyes, head, and body, across multiple planes. Whereas visual stability in the face of saccadic eye movements has been intensely researched, fewer studies have investigated retinal image transformations induced by head movements, especially in the frontal plane. Unlike head rotations in the horizontal and sagittal planes, tilting the head in the frontal plane is only partially counteracted by torsional eye movements and consequently induces a distortion of the retinal image to which we seem to be completely oblivious. One possible mechanism aiding perceptual stability is an active reconstruction of a spatiotopic map of the visual world, anchored in allocentric coordinates. To explore this possibility, we measured the positional motion aftereffect (PMAE; the apparent change in position after adaptation to motion) with head tilts of ∼42° between adaptation and test (to dissociate retinal from allocentric coordinates). The aftereffect was shown to have both a retinotopic and spatiotopic component. When tested with unpatterned Gaussian blobs rather than sinusoidal grating stimuli, the retinotopic component was greatly reduced, whereas the spatiotopic component remained. The results suggest that perceptual stability may be maintained at least partially through mechanisms involving spatiotopic coding. NEW & NOTEWORTHY Given that spatiotopic coding could play a key role in maintaining visual stability, we look for evidence of spatiotopic coding after retinal image transformations caused by head tilt. To this end, we measure the strength of the positional motion aftereffect (PMAE; previously shown to be largely spatiotopic after saccades) after large head tilts. We find that, as with eye movements, the spatial selectivity of the PMAE has a large spatiotopic component after head rotation. PMID:27903636

  20. Estimating Insolation Incident on Tilted Surfaces

    NASA Technical Reports Server (NTRS)

    Elkin, R. E.; Toelle, R. G.

    1983-01-01

    ASHMET computer program estimates amount of solar insolation incident on surfaces of several types of solar collectors, including fixed-position flat-plate, monthly-tilt-adjusted flat-plat, beam-tracting, and fixed-azimuthtracker. Basic methodology employed in ASHMET is to use ASHRAE relationships to obtain clear-day total daily insolation incident on collector surface of representative day of each month of year. ASHMET is interactive program and prompts user for all required data.

  1. Stabilizing windings for tilting and shifting modes

    DOEpatents

    Jardin, Stephen C.; Christensen, Uffe R.

    1984-01-01

    This invention relates to passive conducting loops for stabilizing a plasma ring against unstable tilting and/or shifting modes. To this end, for example, plasma ring in a spheromak is stabilized by a set of four figure-8 shaped loops having one pair on one side of the plasma and one pair on the other side with each pair comprising two loops whose axes are transverse to each other.

  2. A tilted cold dark matter cosmological scenario

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Gnedin, Nickolay Y.; Kofman, Lev A.; Ostriker, Jeremiah P.

    1992-01-01

    A new cosmological scenario based on CDM but with a power spectrum index of about 0.7-0.8 is suggested. This model is predicted by various inflationary models with no fine tuning. This tilted CDM model, if normalized to COBE, alleviates many problems of the standard CDM model related to both small-scale and large-scale power. A physical bias of galaxies over dark matter of about two is required to fit spatial observations.

  3. Estimating Insolation Incident on Tilted Surfaces

    NASA Technical Reports Server (NTRS)

    Elkin, R. E.; Toelle, R. G.

    1983-01-01

    ASHMET computer program estimates amount of solar insolation incident on surfaces of several types of solar collectors, including fixed-position flat-plate, monthly-tilt-adjusted flat-plat, beam-tracting, and fixed-azimuthtracker. Basic methodology employed in ASHMET is to use ASHRAE relationships to obtain clear-day total daily insolation incident on collector surface of representative day of each month of year. ASHMET is interactive program and prompts user for all required data.

  4. Tilted Dirac cone on W(110) protected by mirror symmetry

    NASA Astrophysics Data System (ADS)

    Varykhalov, A.; Marchenko, D.; Sánchez-Barriga, J.; Golias, E.; Rader, O.; Bihlmayer, G.

    2017-06-01

    Topologically nontrivial states reveal themselves in strongly spin-orbit coupled systems by Dirac cones. However, their appearance is not a sufficient criterion for a topological phase. In topological insulators, where these states protect surface metallicity, they are straightforwardly assigned based on bulk-boundary correspondence. On metals, where these states are suspected to have tremendous impact as well, e.g., in catalysis, their topological protection is difficult to assess due to the lacking band gap and the frequent assignment to topological properties appears unjustified. Here, we discover by angle-resolved photoemission a state with the dispersion of a Dirac cone at a low-symmetry point of W(110). Our ab initio calculations predict this feature with a linear band crossing and high spin polarization. However, instead of being born by topology, the states arise from Rashba split bands and do not fundamentally depend on the opening of a spin-orbit gap. On the other hand, we find that the [001] mirror plane protects the band crossing point and renormalizes the dispersion towards a Dirac-cone shape. In this sense, the discovered state is the metal counterpart of the surface state of a topological crystalline insulator. The Dirac cone is tilted due to its origin in an accidental band crossing away from high symmetry points. Tilted Dirac cones have recently been predicted for two- and three-dimensional materials and were observed in three-dimensional Weyl semimetals. Accordingly, the protection and renormalization by mirror symmetry uncovered here are a potentially much wider spread phenomenon which does not require topological properties. Our results also indicate why the massive gapless crossing predicted for topological crystalline insulators has never been observed.

  5. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Realization of Fine Tip Tilting by 16-Step Line Tilting

    NASA Astrophysics Data System (ADS)

    Ding, Lu; Chen, Ying-Tian; Hu, Sen; Zhang, Yang

    2010-07-01

    Following Chen's method [Common. Theor. Phys. 52 (2009) 549] to use 8-step line tilting to realize tip tilting, to achieve finer rotation, it is discovered that a 16-step line tilting method may realize a rotation two order smaller than that achieved by 8-step.

  6. TILT, WARP, AND SIMULTANEOUS PRECESSIONS IN DISKS

    SciTech Connect

    Montgomery, M. M.

    2012-07-10

    Warps are suspected in disks around massive compact objects. However, the proposed warping source-non-axisymmetric radiation pressure-does not apply to white dwarfs. In this Letter, we report the first smoothed particle hydrodynamic simulations of accretion disks in SU UMa-type systems that naturally tilt, warp, and simultaneously precess in the prograde and retrograde directions using white dwarf V344 Lyrae in the Kepler field as our model. After {approx}79 days in V344 Lyrae, the disk angular momentum L{sub d} becomes misaligned to the orbital angular momentum L{sub o} . As the gas stream remains normal to L{sub o} , hydrodynamics (e.g., the lift force) is a likely source to disk tilt. In addition to tilt, the outer disk annuli cyclically change shape from circular to highly eccentric due to tidal torques by the secondary star. The effect of simultaneous prograde and retrograde precession is a warp of the colder, denser midplane as seen along the disk rim. The simulated rate of apsidal advance to nodal regression per orbit nearly matches the observed ratio in V344 Lyrae.

  7. Perceptual organization in the tilt illusion

    PubMed Central

    Schwartz, Odelia; Sejnowski, Terrence J.; Dayan, Peter

    2010-01-01

    The tilt illusion is a paradigmatic example of contextual influences on perception. We analyze it in terms of a neural population model for the perceptual organization of visual orientation. In turn, this is based on a well-found treatment of natural scene statistics, known as the Gaussian Scale Mixture model. This model is closely related to divisive gain control in neural processing and has been extensively applied in the image processing and statistical learning communities; however, its implications for contextual effects in biological vision have not been studied. In our model, oriented neural units associated with surround tilt stimuli participate in divisively normalizing the activities of the units representing a center stimulus, thereby changing their tuning curves. We show that through standard population decoding, these changes lead to the forms of repulsion and attraction observed in the tilt illusion. The issues in our model readily generalize to other visual attributes and contextual phenomena, and should lead to more rigorous treatments of contextual effects based on natural scene statistics. PMID:19757928

  8. WIYN tip-tilt module performance

    NASA Astrophysics Data System (ADS)

    Claver, Charles F.; Corson, Charles; Gomez, R. Richard, Jr.; Daly, Philip N.; Dryden, David M.; Abareshi, Behzod

    2003-02-01

    The WIYN Tip-Tilt Module (WTTM) is an addition to the existing Instrument Adapter System (IAS) providing a high performance optical-NIR image stabilized port on the WIYN 3.5m telescope. The WTTM optical system uses a 3-mirror off-axis design along with a high bandwidth tilt mirror. The WTTM is a reimaging system with 15% magnification producing a 4x4 arcminute field of view and near diffraction limited imagery from 400-2000nm. The optics are diamond turned in electroless Nickel over an Aluminum substrate. The WTTM opto-mechanical assembly was designed and built using the principals of the "build-to-print" technique, where the entire system is fabricated and assembled to tolerance with no adjustments. A unique high performance error sensor, using an internal mirrorlette array that feeds 4 fiber coupled avalanche photodiode photon counters, provides the tilt signal. The system runs under the Real-Time Linux operating system providing a maximum closed loop rate of 3khz. In this paper we report on the successful lab testing, verification of the "build-to-print" technique and on telescope performance of the WTTM.

  9. Scale effect and optimum relations for sea surface planning

    NASA Technical Reports Server (NTRS)

    Sedov, L.

    1947-01-01

    From the general dimensional and mechanical similarity theory it follows that a condition of steady motion of a given shape\\bottom with constant speed on the surface of water is determined by four nondimensional parameters. By considering the various systems of independent parameters which are applied in theory and practice and special tests, there is determined their mutual relations and their suitability as planning characteristics. In studying the scale effect on the basis of the Prnndtl formula for the friction coefficient for a turbulent condition the order of magnitude is given of the error in applying the model data to full scale in the case of a single-step bottom For a bottom of complicated shape it is shown how from the test data of the hydrodynamic characteristics for one speed with various loads, or one load with various speeds, there may be obtained by simple computation with good approximation the hydrodynamic characteristics for a different speed or for a different load. (These considerations may be of use in solving certain problems on the stability of planning.) This permits extrapolating the curve of resistance against speed for large speeds inaccessible in the tank tests or for other loads which were not tested. The data obtained by computation are in good agreement with the test results. Problems regarding the optimum trim angle or the optimum width in the case of planning of a flat plate are considered from the point of view of the minimum resistance for a given load on the water and planning speeds. Formulas and graphs are given for the optimum value of the planning coefficient and the corresponding values of the trim angle and width of the flat plate.

  10. High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet

    SciTech Connect

    Ahn, Sangil Schwarzer, Clemens; Zederbauer, Tobias; MacFarland, Donald C.; Detz, Hermann; Andrews, Aaron M.; Schrenk, Werner; Strasser, Gottfried

    2014-02-03

    We introduce a simple technique to improve the beam quality of broad area quantum cascade lasers. Moderately tilted front facets of the laser provide suppression of higher order lateral waveguide modes. A device with a width of 60 μm and a front facet angle of 17° shows a nearly diffraction limited beam profile. In addition, the peak output power and the slope efficiency of the device are increased since most of the light inside the cavity is emitted through the tilted front facet by an asymmetric light intensity distribution along the cavity.

  11. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading

    PubMed Central

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-01-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors. PMID:27641908

  12. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading

    NASA Astrophysics Data System (ADS)

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-09-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.

  13. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading.

    PubMed

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-09-19

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.

  14. Hydrophobic matching controls the tilt and stability of the dimeric platelet-derived growth factor receptor (PDGFR) β transmembrane segment.

    PubMed

    Muhle-Goll, Claudia; Hoffmann, Silke; Afonin, Sergii; Grage, Stephan L; Polyansky, Anton A; Windisch, Dirk; Zeitler, Marcel; Bürck, Jochen; Ulrich, Anne S

    2012-07-27

    The platelet-derived growth factor receptor β is a member of the cell surface receptor tyrosine kinase family and dimerizes upon activation. We determined the structure of the transmembrane segment in dodecylphosphocholine micelles by liquid-state NMR and found that it forms a stable left-handed helical dimer. Solid-state NMR and oriented circular dichroism were used to measure the tilt angle of the helical segments in macroscopically aligned model membranes with different acyl chain lengths. Both methods showed that decreasing bilayer thickness (DEPC-POPC-DMPC) led to an increase in the helix tilt angle from 10° to 30° with respect to the bilayer normal. At the same time, reconstitution of the comparatively long hydrophobic segment became less effective, eventually resulting in complete protein aggregation in the short-chain lipid DLPC. Unrestrained molecular dynamics simulations of the dimer were carried out in explicit lipid bilayers (DEPC, POPC, DMPC, sphingomyelin), confirming the observed dependence of the helix tilt angle on bilayer thickness. Notably, molecular dynamics revealed that the left-handed dimer gets tilted en bloc, whereas conformational transitions to alternative (e.g. right-handed dimeric) states were not supported. The experimental data along with the simulation results demonstrate a pronounced interplay between the platelet-directed growth factor receptor β transmembrane segment and the bilayer thickness. The effect of hydrophobic mismatch might play a key role in the redistribution and activation of the receptor within different lipid microdomains of the plasma membrane in vivo.

  15. Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.

    2008-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize

  16. Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.

    2008-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize

  17. Toward the global optimum in zoom lens design

    NASA Astrophysics Data System (ADS)

    Dodoc, Aurelian

    2012-10-01

    After more than a century from the introduction of zoom lenses, the selection of the right zoom lens type for a given specification is still a challenge for the optical designer. In the process of lens design, the optical designer is permanently searching for the best zoom lens structure in order to fulfill the complex balance between weight, cost and optical performance. This is a continuous optimization process and the result is a global optimum. The most important factors influencing zoom lens cost are: the number of spherical and aspherical lenses, the number of moving groups and lenses and finally the group sensitivity to displacement and tilt. Every lens group whether moving or not inside the zoom lens, has a specific complexity and sensitivity behavior dependent on the zoom lens type. It is not obvious which type of zoom lens will optimally satisfy the required specification. This paper describes the selection process exemplary for a zoom lens with a medium focal length range from 28mm to 80mm and a quasi constant f-number (FNO) during zooming. The lens is used mainly for cinematographic applications and must be able to maintain best image position for the entire range of object positions during zooming. Alternative solutions with their advantages and disadvantages are shown, analyzed and evaluated.

  18. Tilting Saturn without Tilting Jupiter or Ejecting an Ice Giant: Constraints on migration

    NASA Astrophysics Data System (ADS)

    McNeil, Douglas S.; Lee, M. H.

    2010-10-01

    The obliquities of the giant planets preserve information about their migration and encounter histories. Are the classic Nice models (Tsiganis et al. 2005) or the resonant Nice models (Morbidelli et al. 2007) compatible with Jupiter's 3 degree tilt and Saturn's 27? Here we consider the obliquity evolution of the giants during the planetesimal-driven migration phase using two methods: (1) a purely secular integration of the Laplace-Lagrange equations with spin, and (2) a hybrid N-body scheme with full interactions between the Sun and the giants but imposed prescriptions for migration and eccentricity and inclination damping. We find that it is difficult to reproduce today's obliquity values as migration timescales sufficient to tilt Saturn via the Hamilton & Ward (2004) secular spin-orbit resonance mechanism generally suffice to tilt Jupiter more than is observed. Moreover, long migration timescales which make tilting Saturn easier simultaneously reduce the survival fraction (to below 20% for timescales longer than 20 Myr.) We discuss the constraints these observations provide on the dynamical history of the giant planets, and the remaining possibility of tilting Saturn during a late very slow migration of Neptune to its present location after the main phase of migration is complete. [This work was supported by Hong Kong RGC grant HKU 7024/08P.

  19. Speed benefits of tilt-rotor designs for LHX

    NASA Technical Reports Server (NTRS)

    Mcdaniel, R. L.; Adams, J. V.; Balberde, A.; Dereska, S. P.; Gearin, C. J.; Shaw, D. E.

    1983-01-01

    The merits of an advanced helicopter and a tilt rotor aircraft for light utility, scout, and attack roles in combat missions envisioned for the year 2000 and beyond were compared. It is demonstrated that speed has increasing value for 11 different mission classes broadly encompassing the intended LHX roles. Helicopter speeds beyond 250 knots are judged to have lower military worth. Since the tilt rotor concept offers a different cost speed relationship than that of helicopters, assessment of a tilt rotor LHX variant was warranted. The technical parameters of an advanced tilt rotor are stablished. Parameters of representative missions are identified, computed relative value of the tilt rotor LHX are compared to the baseline helicopter, a first-order life cycle estimate for the tilt rotor LHX is established, military worth of the alternative design is computed and the results are evaluated. It is suggested that the tilt rotor is the solution with the greatest capability for meeting the uncertainties of future needs.

  20. Triangle tilt surgery: effect on coracohumeral distance and external rotation of the glenohumeral joint.

    PubMed

    Nath, Rahul K; Mahmooduddin, Faiz

    2010-11-19

    Shoulder muscle imbalances and bone deformities that develop secondary to obstetric brachial plexus injury have been extensively studied. Less emphasis has focused on coracohumeral distance, a small value potentially being linked to impaired shoulder external rotation. The purpose of this study is to analyze coracohumeral distances and shoulder external rotation in obstetric brachial plexus injury patients before and after triangle tilt surgery. Twenty patients with deformities secondary to obstetric brachial plexus injury were included. Coracohumeral distances were measured on computed tomographic images. Clinical functioning was evaluated through video recordings by using a modified Mallet scale. Paired Student t tests were used to determine statistical significance of anatomic and functional parameters, pre- and postoperatively. Coracohumeral distance (P < .0006), total Mallet score (P < .0001), supination angle (P < .0001), and individual Mallet scores for all external rotation parameters including hand-to-mouth (P < .0001), supination (P = .0010), external rotation (P < .0001), hand-to-neck (P < .0001), and hand-to-spine (P = .0064) were significantly higher postoperatively than preoperatively for affected shoulders. Hand-to-mouth angles were significantly lower postoperatively than preoperatively (P < .0001). Coracohumeral distance in unaffected shoulders remained unchanged. Triangle tilt surgery significantly improves coracohumeral distance and clinical functioning in obstetric brachial plexus injury patients. Coracohumeral distance plays a key role in shoulder external rotation. Increasing coracohumeral distance significantly improves all external rotation parameters and total Mallet scores. The triangle tilt surgery relieves excessive tightness of the anterior stabilizing complex, widens coracohumeral distance, and improves external rotation of shoulder.

  1. Characterizing the contribution of cardiac and hepatic uptake in dedicated breast SPECT using tilted trajectories

    NASA Astrophysics Data System (ADS)

    Perez, K. L.; Cutler, S. J.; Madhav, P.; Tornai, M. P.

    2010-08-01

    A small field of view, high resolution gamma camera has been integrated into a dedicated breast, single photon emission computed tomography (SPECT) device. The detector can be flexibly positioned relative to the breast and image beyond the chest wall, allowing the system to capture direct views of the heart and liver. The incomplete sampling of these organs creates artifacts in reconstructed images, complicating lesion detection. To understand the limits imposed on a 3D acquisition trajectory, sequential tilted trajectories at increasing polar tilt are utilized to collect data of anthropomorphic phantoms filled with aqueous 99mTc in a clinically realistic concentration ratio. The counts collected per projection between different scans and the SNR, contrast and resolution (FWHM) of two hot lesions were compared. As expected, the counts per projection increased when the camera had direct views of the heart and liver, but remained relatively constant at other angles. The SNR, contrast and FWHM were more affected by the insufficient sampling of the data by the large polar angles than by the cardiac and hepatic activity. An upper bound on polar tilt for each azimuthal position reduces the artifacts in the reconstructed images. Such trajectories were implemented to show artifact-free reconstructed images.

  2. Wideband-adjustable reflection-suppressed rejection filters using chirped and tilted fiber gratings.

    PubMed

    Liu, Fu; Guo, Tuan; Wu, Chuang; Guan, Bai-Ou; Lu, Chao; Tam, Hwa-Yaw; Albert, Jacques

    2014-10-06

    Wideband-adjustable band-rejection filters based on chirped and tilted fiber Bragg gratings (CTFBG) are proposed and experimentally demonstrated. The flexible chirp-rate and wide tilt-angle provide the gratings with broadband filtering functions over a large range of bandwidths (from 10 nm to 150 nm), together with a low insertion loss (less than 1 dB) and a negligible back-reflection (lower than -20 dB). The slope profile of CTFBG in transmission can be easily tailored by adjusting the tilt angle, grating irradiation time and chirp rate-grating factor, and it is insensitive to the polarization state of the input light, as well as to temperature, axial strain and surrounding refractive index. Furthermore, by coating the CTFBG with a suitable polymer (whose refractive index is close to that of the cladding glass), the cladding modes no longer form weakly discrete resonances and leave a smoothly varying attenuation spectrum for high-quality band-rejection filters, edge filters and gain equalizers.

  3. Tilt error in cryospheric surface radiation measurements at high latitudes: a model study

    NASA Astrophysics Data System (ADS)

    Bogren, Wiley Steven; Faulkner Burkhart, John; Kylling, Arve

    2016-03-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response fore optic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high-latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can, respectively introduce up to 2.7, 8.1, and 13.5 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo. Simulations including a cloud layer demonstrate decreasing tilt error with increasing cloud optical depth.

  4. Excited states of two-dimensional hydrogen atom in tilted magnetic field: Quantum chaos

    NASA Astrophysics Data System (ADS)

    Koval, Eugene A.; Koval, Oksana A.

    2017-09-01

    The aim of the current work is the research of the influence of a tilted magnetic field direction on the spectrum and the energy level spacing distribution of a two-dimensional (2D) hydrogen atom and of an exciton in GaAs/Al0.33Ga0.67As quantum well. It was discovered that the quantum chaos (QC) is initiated with an increasing angle α between the magnetic field direction and the normal to the atomic plane. It is characterized by the repulsion of levels leading to the eliminating of the shell structure and by changing the spectrum statistical properties. The statement about the initiation of chaos and its dominance over regular motion with increasing angle α is confirmed by the results of our calculations of the classical dynamics presented in this paper. The evolution of the spatial distribution of the square of the absolute value of the wave function at an increasing angle α was observed. The differences of calculated dependencies of energies for various excited states on the tilt angle at a wide range of the magnetic field strength were described.

  5. Cranial diameter pulsations measured by non-invasive ultrasound decrease with tilt

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    INTRODUCTION: Intracranial pressure (ICP) may play a significant role in physiological responses to microgravity by contributing to the nausea associated with microgravity exposure. However, effects of altered gravity on ICP in astronauts have not been investigated, primarily due to the invasiveness of currently available techniques. We have developed an ultrasonic device that monitors changes in cranial diameter pulsation non-invasively so that we can evaluate ICP dynamics in astronauts during spaceflight. This study was designed to demonstrate the feasibility of our ultrasound technique under the physiological condition in which ICP dynamics are changed due to altered gravitational force. METHODS: Six healthy volunteers were placed at 60 degrees head-up, 30 degrees headup, supine, and 15 degrees head-down positions for 3 min at each angle. We measured arterial blood pressure (ABP) with a finger pressure cuff, and cranial diameter pulsation with a pulsed phase lock loop device (PPLL). RESULTS: Analysis of covariance demonstrated that amplitudes of cranial diameter pulsations were significantly altered with the angle of tilt (p < 0.001). The 95% confidence interval for linear regression coefficients of the cranial diameter pulsation amplitudes with tilt angle was 0.862 to 0.968. However, ABP amplitudes did not show this relationship. DISCUSSION: Our noninvasive ultrasonic technique reveals that the amplitude of cranial diameter pulsation decreases as a function of tilt angle, suggesting that ICP pulsation follows the same relationship. It is demonstrated that the PPLL device has a sufficient sensitivity to detect changes non-invasively in ICP pulsation caused by altered gravity.

  6. Cranial diameter pulsations measured by non-invasive ultrasound decrease with tilt

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    INTRODUCTION: Intracranial pressure (ICP) may play a significant role in physiological responses to microgravity by contributing to the nausea associated with microgravity exposure. However, effects of altered gravity on ICP in astronauts have not been investigated, primarily due to the invasiveness of currently available techniques. We have developed an ultrasonic device that monitors changes in cranial diameter pulsation non-invasively so that we can evaluate ICP dynamics in astronauts during spaceflight. This study was designed to demonstrate the feasibility of our ultrasound technique under the physiological condition in which ICP dynamics are changed due to altered gravitational force. METHODS: Six healthy volunteers were placed at 60 degrees head-up, 30 degrees headup, supine, and 15 degrees head-down positions for 3 min at each angle. We measured arterial blood pressure (ABP) with a finger pressure cuff, and cranial diameter pulsation with a pulsed phase lock loop device (PPLL). RESULTS: Analysis of covariance demonstrated that amplitudes of cranial diameter pulsations were significantly altered with the angle of tilt (p < 0.001). The 95% confidence interval for linear regression coefficients of the cranial diameter pulsation amplitudes with tilt angle was 0.862 to 0.968. However, ABP amplitudes did not show this relationship. DISCUSSION: Our noninvasive ultrasonic technique reveals that the amplitude of cranial diameter pulsation decreases as a function of tilt angle, suggesting that ICP pulsation follows the same relationship. It is demonstrated that the PPLL device has a sufficient sensitivity to detect changes non-invasively in ICP pulsation caused by altered gravity.

  7. Simple structural unit model for core-dependent properties of symmetrical tilt boundaries

    SciTech Connect

    Balluffi, R.W.; Brokman, A.

    1983-08-01

    Any physical property, p, of a grain boundary, which depends primarily on the atomic structure of the core, e.g., boundary diffusivity or core energy. The purpose of the present note is to demonstrate that the recently determined structural unit model for the core structure allows one to estimate p for any boundary in a series of symmetrical tilt boundaries possessing a range of tilt angles if values of p for a few particular boundaries in the series are known. More specifically, that p for all boundaries with misorientations between those of two so-called ''favored boundaries'' can be estimated from a knowledge of the values of p for the two favored boundaries and the intermediate boundary made up of equal numbers of the structural units comprising the two favored boundaries. Applications of the results to measurements of boundary diffusivities and boundary energies are indicated.

  8. Simple structural unit model for core-dependent properties of symmetrical tilt boundaries

    SciTech Connect

    Balluffi, R.W.; Brokman, A.

    1983-04-01

    Consider any physical property, p, of a grain boundary, which depends primarily on the atomic structure of the core, e.g., the boundary diffusivity or the core energy. This note demonstrates that the recently determined structural unit model for the core structure allows one to estimate p for any boundary in a series of symmetrical tilt boundaries possessing a range of tilt angles if values of p for a few particular boundaries in the series are known. P for all boundaries with misorientations between those of two so-called favored boundaries can be estimated from a knowledge of the values of p for the two favored boundaries and the intermediate boundary made up of equal numbers of the structural units comprising the two favored boundaries. Applications of the results to measurements of boundary diffusivities and boundary energies are indicated briefly.

  9. Simple structural unit model for core-dependent properties of symmetrical tilt boundaries

    SciTech Connect

    Balluffi, R.W.; Brokman, A.

    1983-08-01

    Consider any physical property, p, of a grain boundary, which depends primarily on the atomic structure of the core, e.g., the boundary diffusivity or the core energy. This paper demonstrates that the recently determined structural unit model for the core structure allows one to estimate p for any boundary in a series of symmetrical tilt boundaries possessing a range of tilt angles if values of p for a few particular boundaries in the series are known. More specifically, we shall show that p for all boundaries with misorientations between those of two so-called ''favored boundaries'' can be estimated from a knowledge of the values of p for the two favored boundaries and the intermediate boundary made up of equal numbers of the structural units comprising the two favored boundaries. Applications of the results to measurements of boundary diffusivities and boundary energies are indicated briefly.

  10. Attitude Control of Quad Rotors QTW-UAV with Tilt Wing Mechanism

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoshi; Zhijia, Ren; Horita, Yoshikazu; Nonami, Kenzo; Kimura, Gaku; Bando, Toshio; Hirabayashi, Daisuke; Furuya, Mituhiro; Yasuda, Kenta

    In this paper, we propose an autonomous attitude control of a quad tilt wing-unmanned aerial vehicle (QTW-UAV). A QTW-UAV can achieve vertical takeoff and landing; further, hovering flight, which are characteristic of rotary-wing aircraft such as helicopter. And high cruising speeds, which is a characteristic of fixed-wing aircraft, can be also achieved by changing the angle of the rotors and wings by a tilt mechanism. First, we construct an attitude model of the QTW-UAV by using the identification method. We then design the attitude control system with a Kalman filter-based linear quadratic integral (LQI) control method; the experiment results show that a model-based control design is very useful for the autonomous control of a QTW-UAV.

  11. Performance improvement by tilting receiver plane in M-QAM OFDM visible light communications.

    PubMed

    Wang, Zixiong; Yu, Changyuan; Zhong, Wen-De; Chen, Jian

    2011-07-04

    We propose a scheme to improve the SNR distribution as well as the spectral efficiency of M-QAM OFDM signal for indoor visible light communication by tilting the receiver plane. Newton method is employed for the photo-detector to receive maximum power by finding the optimal tilting angle. This method is a fast algorithm that only three searching steps are needed. The simulation results show that in the case of one LED source, the maximum spectral efficiency improvement is 0.44bit/s/Hz when the launching power of LED source is 12W; while in the case of four LED sources, the maximum spectral efficiency improvement is 0.21bit/s/Hz when the total launching power of the four LED sources is 12W.

  12. Investigation of intermolecular double-quantum off-resonance longitudinal relaxation in the tilted rotating frame

    NASA Astrophysics Data System (ADS)

    Cai, Honghao; Zheng, Bingwen; Ke, Hanping; Chen, Zhong

    2015-11-01

    A modified correlation spectroscopy revamped by asymmetric z-gradients echo detection (CRAZED) sequence was applied to investigate the behavior of intermolecular double-quantum longitudinal relaxation processes in the tilted rotating frame. Theoretical formalism based on dipolar field theory was presented in detail. Spectroscopic measurements and quantitative analysis demonstrated that the signal intensities and intermolecular double-quantum off-resonance longitudinal relaxation time in the rotating frame (T1ρ, DQC eff) are inversely correlated with the tilt angle (θ), while positively correlated with the effective frequency of spin-locking field (ωe). Magnetic resonance imaging experiments of an agarose phantom also prove the validity of the theoretical analysis and demonstrated the feasibility of imaging based on T1ρ, DQC eff . The rotating-frame double-quantum relaxation measurements are useful for probing slow-motion molecules and this study provides the guidance for optimization of the spin-lock experiments.

  13. High brightness angled cavity quantum cascade lasers

    SciTech Connect

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M.

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightest QCL to date.

  14. High brightness angled cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M.

    2015-03-01

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm-2 sr-1 is obtained, which marks the brightest QCL to date.

  15. Long-period tilt-induced accelerations associated with hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Milkereit, Claus; Dahm, Torsten; Cesca, Simone; Lopez, Jose; Nooshiri, Nima; Zang, Arno

    2017-04-01

    In 2015, several small scale hydrofracture experiments have been performed in situ from a horizontal borehole in a mine gallery in granitic rock. The hydrofracture experiments were monitored by a bundle of different near field sensors covering a broad range of frequencies (see Zang et al., Geophys. J. Int. (2017) 208, 790-813, doi: 10.1093/gji/ggw430). We installed broad band sensors in the gallery close to the fracture experiments, and observed clear long period transients on the horizontal components, with timing and polarity correlated with the opening and closing of the fractures. We interpret the broadband signals as tilt-induced excursions. The broadband signals have been measured independent whether high frequency acoustic emission have been observed or not during the individual fracture experiments. They are thus an independent measure of the success of a hydrofracture experiment and the parameter of the newly formed cracks. In this study we show that most tilt-induced long-period signals can be modeled by a rectangular crack with constant opening in an elastic full space, as first order approximation. From theoretical forward modeling, we proof that the tilt has a higher sensitivity to resolve the strike of the fracture than the displacement field. With this model, we retrieve the strike of the fractures from the tilt observed at a single sensor. The results indicate that the strike angles of the hydrofractures change systematically with the distance to the gallery wall, indicating a rotation of the principal stresses close to the free surface of the gallery. The rotation trend is similar to the one observed in previous hydrofracture experiments in mines. We compare the strength of the modeled tensile cracks, i.e. opening times crack area, with the volume of the injected fluid, and discuss the general resolving power of tilt signals for source parameter fractures. The temporal evolution of the opening and closure of the fractures is discussed.

  16. Static roll-tilt over 5 minutes locally distorts the internal estimate of direction of gravity.

    PubMed

    Tarnutzer, A A; Bockisch, C J; Straumann, D; Marti, S; Bertolini, G

    2014-12-01

    The subjective visual vertical (SVV) indicates perceived direction of gravity. Even in healthy human subjects, roll angle-dependent misestimations, roll overcompensation (A-effect, head-roll > 60° and <135°) and undercompensation (E-effect, head-roll < 60°), occur. Previously, we demonstrated that, after prolonged roll-tilt, SVV estimates when upright are biased toward the preceding roll position, which indicates that perceived vertical (PV) is shifted by the prior tilt (Tarnutzer AA, Bertolini G, Bockisch CJ, Straumann D, Marti S. PLoS One 8: e78079, 2013). Hypothetically, PV in any roll position could be biased toward the previous roll position. We asked whether such a "global" bias occurs or whether the bias is "local". The SVV of healthy human subjects (N = 9) was measured in nine roll positions (-120° to +120°, steps = 30°) after 5 min of roll-tilt in one of two adaptation positions (±90°) and compared with control trials without adaptation. After adapting, adjustments were shifted significantly (P < 0.05) toward the previous adaptation position for nearby roll-tilted positions (±30°, ±60°) and upright only. We computationally simulated errors based on the sum of a monotonically increasing function (producing roll undercompensation) and a mixture of Gaussian functions (representing roll overcompensation centered around PV). In combination, the pattern of A- and E-effects could be generated. By shifting the function representing local overcompensation toward the adaptation position, the experimental postadaptation data could be fitted successfully. We conclude that prolonged roll-tilt locally distorts PV rather than globally shifting it. Short-term adaptation of roll overcompensation may explain these shifts and could reflect the brain's strategy to optimize SVV estimates around recent roll positions. Thus postural stability can be improved by visually-mediated compensatory responses at any sustained body-roll orientation.

  17. Composite fermion states around the two-dimensional hole Landau level filling factor 3/2 in tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhang, Po; Liu, Ruiyuan; Du, Rui-Rui; Pfeiffer, L. N.; West, K. W.

    2017-04-01

    Transport measurements under tilted magnetic fields were performed on a series of C-doped (001) GaAs/AlGaAs two-dimensional hole quantum wells. Due to a large g factor, Zeeman energy is large and comparable to the cyclotron energy in these samples. On the other hand, it was found that the in-plane component g∥ is small, and the effect of a tilted magnetic field is mainly to increase the effective mass of the holes. We investigate the spin transition of composite fermion states around Landau level (LL) filling factor 3/2. We found that the ν =4 /3 state encounters a partial- to full-spin-polarization transition, conforming to the same pattern as that of electron samples. In addition, a high-resistance phase emerges at ν =3 /2 under very high tilt angles. We interpret both of these phenomena as a consequence of LL crossing under a purely perpendicular magnetic field.

  18. Fabrication of Fiber-Optic Tilted Bragg Grating Filter in 40 nm Range with A Single Phase Mask

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber-optic Bragg grating filters are fabricated with a range of Bragg wavelength between 1296 and 1336 nm, using a single phase mask. 30 mW of continuous-wave light at 244 nm is used from a frequency-doubled argon-ion laser having an intracavity etalon. Gratings are fabricated by tilting the photosensitive fiber with respect to the phase mask up to an angle of 15 degrees. The variation of Bragg wavelength with the fiber-tilt is explained with a simple formula. High spatial coherence of 244 nm light makes it possible to displace the fiber as much as 6 mm in front of the phase mask and tilt the fiber by as much as 15 degrees. This results in nearly constant band-width and near 100% reflectively for all gratings throughout the 40 nm range.

  19. Energy bandgap variation in oblique angle-deposited indium tin oxide

    SciTech Connect

    Kim, Kyurin; Kim, Hyunsoo; Cho, Jaehee; Park, Jun Hyuk; Kim, Jong Kyu; Fred Schubert, E.

    2016-01-25

    Indium tin oxide (ITO) thin films deposited using the oblique angle deposition (OAD) technique exhibit a strong correlation between structural and optical properties, especially the optical bandgap energy. The microstructural properties of ITO thin films are strongly influenced by the tilt angle used during the OAD process. When changing the tilt angle, the refractive index, porosity, and optical bandgap energy of ITO films also change due to the existence of a preferential growth direction at the interface between ITO and the substrate. Experiments reveal that the ITO film's optical bandgap varies from 3.98 eV (at normal incident deposition) to 3.87 eV (at a 60° tilt angle)

  20. Measurement of two-dimensional small angle deviation with a prism interferometer

    SciTech Connect

    Chatterjee, Sanjib; Kumar, Y. Pavan

    2008-09-20

    A new technique for the measurement of two-dimensional small angular deviation is presented. A compound prism, which effectively produces a combination of two right-angled prisms in orthogonal directions, and plane reference surfaces have been utilized for the measurement of the orthogonal components of the angular tilt of an incident plane wavefront. Each orthogonal component of the angular tilt is separately measured from the angular rotation of the resultant wedge fringes between two plane wavefronts generated due to splitting of the incident plane wavefront by the corresponding set of right-angled prism and plane reference surface. The technique is shown to have high sensitivity for the measurement of small angle deviation. A monolithic prism interferometer, which is practically insensitive to vibration, is also proposed. Results obtained for the measurement of a known tilt angle are presented.

  1. Analysis of tilt of the Günther Tulip filter.

    PubMed

    Sag, Alan A; Stavas, Joseph M; Burke, Charles T; Dixon, Robert G; Marquess, Joel S; Mauro, Matthew A

    2008-05-01

    To determine the frequency, dimensions, predictors, and sequelae of Günther Tulip filter (GTF) tilt measured at the time of intended retrieval. Retrospective review of all medical records and posteroanterior cavograms of 175 patients who underwent both placement and retrieval of the GTF between August 2003 and July 2007 was performed to assess the frequency, dimensions, predictors, and sequelae of tilt. Tilt occurred at the first retrieval attempt in 159 of the 175 patients (91%). The average degree of tilt was 7.1 degrees (range, 0 degrees-30 degrees), with 87 of the 159 filters with tilt (55%) having a rightward tilt. Compared with the femoral approach, filters placed with a jugular approach demonstrated 4.2 degrees (range of the standard deviation, 3.1 degrees-5.3 degrees) greater tilt at the first retrieval attempt (95% confidence interval=2.6 degrees, 5.7 degrees; P<.001, two-sided Student t test), a greater frequency of tilt of at least 14 degrees (P=.002, two-sided Fisher exact test), and greater rightward tilt predominance (P=.046, one-sided Fisher exact test). Tilt magnitude at the first retrieval attempt correlated positively with the inferior vena cava diameter 40 mm caudal to the renal vein confluence (R=.183, P=.018, Pearson correlation). Within its limitations, this study detected no new cases of pulmonary embolism, caval perforation, or GTF migration. The success rates at the first attempt at retrieval and the cumulative GTF retrieval success rates were 93% (176 of 190 filters) and 97% (181 of 190 filters), respectively. All 29 GTFs with tilt of at least 14 degrees were placed and successfully retrieved by means of a jugular approach with minimal clinical and technical sequelae. Frequent GTF tilt detected at the first retrieval attempt can reach at least 14 degrees and is associated with minimal sequelae. Insertion approach and caval diameter are significant factors in GTF tilt.

  2. Magnetic nanocap arrays with tilted magnetization

    NASA Astrophysics Data System (ADS)

    Albrecht, Manfred

    2009-03-01

    In modern magnetic recording materials the ``superparamagnetic effect'' has become increasingly important as new magnetic hard disk drive products are designed for higher storage densities. In this regard, patterned media [1], where two-dimensional arrays of nanostructures are used, is one of the concepts that might provide the required areal density in future magnetic recording devices. However, also nanostructure arrays will ultimately need high anisotropy material such as L10-FePt to provid enough thermal stability and thus much higher writing fields than currently obtainable from perpendicular magnetic recording heads. One proposed solution to this problem is the use of tilted magnetic recording media [2]. The basic idea is to tilt the easy axis of the magnetic medium from the perpendicular direction to 45 degree. In this case, the switching field will be reduced by a foctor of two in the Stoner-Wohlfarth limit. Recently, this approach was realized by oblique film deposition onto arrays of self-assembled spherical particles [3-5]. In this presentation, recent results on different film systems including Co/Pt multilayers, FePt and CoPtCr-SiO2 alloys which have been deposited onto SiO2 particle monolayers will be presented. It turned out that by tuning the growth conditions single domain nanocaps with enhanced magnetic coercivity and tilted anisostropy axis can be achieved even for particle sizes below 50 nm. [4pt] [1] B. D. Terris and T. Thomson, J. Phys. D: Appl. Phys. 38 (2005) R199 [0pt] [2] J.-P. Wang, Nat. Mater. 4, 191 (2005). [0pt] [3] M. Albrecht et al., Nat. Mater. 4, 203 (2005). [0pt] [4] T. Ulbrich et al., Phys. Rev. Lett. 96 (2006) 077202. [0pt] [5] D. Makarov et al., Appl. Phys. Lett. 93, 153112 (2008).

  3. Can imaginary head tilt shorten postrotatory nystagmus?

    NASA Technical Reports Server (NTRS)

    Gianna-Poulin, C. C.; Voelker, C. C.; Erickson, B.; Black, F. O.

    2001-01-01

    In healthy subjects, head tilt upon cessation of a constant-velocity yaw head rotation shortens the duration of postrotatory nystagmus. The presumed mechanism for this effect is that the velocity storage of horizontal semicircular canal inputs is being discharged by otolith organ inputs which signal a constant yaw head position when the head longitudinal axis is no longer earth-vertical. In the present study, normal subjects were rotated head upright in the dark on a vertical-axis rotational chair at 60 degrees/s for 75 s and were required to perform a specific task as soon as the chair stopped. Horizontal position of the right eye was recorded with an infra-red video camera. The average eye velocity (AEV) was measured over a 30-s interval following chair acceleration/deceleration. The ratios (postrotatory AEV/perrotatory AEV) were 1.1 (SD 0.112) when subjects (N=10) kept their head erect, 0.414 (SD 0.083) when subjects tilted their head forward, 1.003 (SD 0.108) when subjects imagined watching a TV show, 1.012 (SD 0.074) when subjects imagined looking at a painting on a wall, and 0.995 (SD 0.074) when subjects imagined floating in a prone position on a lake. Thus, while actual head tilt reduced postrotatory nystagmus, the imagination tasks did not have a statistically significant effect on postrotatory nystagmus. Therefore, velocity storage does not appear to be under the influence of cortical neural signals when subjects imagine that they are floating in a prone orientation.

  4. Can imaginary head tilt shorten postrotatory nystagmus?

    NASA Technical Reports Server (NTRS)

    Gianna-Poulin, C. C.; Voelker, C. C.; Erickson, B.; Black, F. O.

    2001-01-01

    In healthy subjects, head tilt upon cessation of a constant-velocity yaw head rotation shortens the duration of postrotatory nystagmus. The presumed mechanism for this effect is that the velocity storage of horizontal semicircular canal inputs is being discharged by otolith organ inputs which signal a constant yaw head position when the head longitudinal axis is no longer earth-vertical. In the present study, normal subjects were rotated head upright in the dark on a vertical-axis rotational chair at 60 degrees/s for 75 s and were required to perform a specific task as soon as the chair stopped. Horizontal position of the right eye was recorded with an infra-red video camera. The average eye velocity (AEV) was measured over a 30-s interval following chair acceleration/deceleration. The ratios (postrotatory AEV/perrotatory AEV) were 1.1 (SD 0.112) when subjects (N=10) kept their head erect, 0.414 (SD 0.083) when subjects tilted their head forward, 1.003 (SD 0.108) when subjects imagined watching a TV show, 1.012 (SD 0.074) when subjects imagined looking at a painting on a wall, and 0.995 (SD 0.074) when subjects imagined floating in a prone position on a lake. Thus, while actual head tilt reduced postrotatory nystagmus, the imagination tasks did not have a statistically significant effect on postrotatory nystagmus. Therefore, velocity storage does not appear to be under the influence of cortical neural signals when subjects imagine that they are floating in a prone orientation.

  5. Three-dimensional continuation study of convection in a tilted rectangular enclosure.

    PubMed

    Torres, J F; Henry, D; Komiya, A; Maruyama, S; Ben Hadid, H

    2013-10-01

    A continuation method developed from a three-dimensional spectral finite element code is used to study natural convection in a tilted rectangular cavity. The cavity has its length equal to two times the side of its square cross section and it contains a fluid with a Prandtl number Pr = 1. A detailed bifurcation diagram is first obtained in the case without inclination in order to get the sequence of the different branches of solutions and determine the stable solutions. The focus is then put on the stable solutions in the inclined cavity, when the tilt occurs around its longest axis. The subtle changes induced by the tilt on the convective system are clarified. Three different stable solutions are obtained: the longitudinal roll L- solution (with the same sense of rotation as the inclination angle), which develops smoothly from zero Rayleigh number on the leading branch; the longitudinal roll L+ solution (with a sense of rotation opposite to the inclination angle), which is on a disconnected branch and is stabilized beyond a secondary bifurcation point; the oblique roll O ± solutions (corresponding to transverse roll solutions perturbed by the longitudinal flow induced by the tilt), which quickly appear beyond saddle-node points on new disconnected branches. The domain of existence of these stable solutions is eventually obtained and described in the Rayleigh number-inclination parameter space. Finally, the Nusselt number is determined as a function of the inclination at a constant Rayleigh number for the different stable solutions. The Nusselt number is maximum at an inclination of 49.55° for the leading longitudinal roll L- solution.

  6. Thermal and Wind Effects on the Azimuth Axis Tilt of the ASTE 10-m Antenna

    NASA Astrophysics Data System (ADS)

    Ukita, Nobuharu; Ezawa, Hajime; Ikenoue, Bungo; Saito, Masao

    2007-10-01

    The azimuth axis tilt of the ASTE 10-m antenna induced by thermal and wind loadings was investigated with a dual-axis inclinometer on the azimuth axis, along with thermometers on the pedestal and yoke structures and an ultrasonic anemometer on a nearby weather station. The dependences of the inclinometer zero-point offsets against temperature of the device, temperature gradients in the pedestal and yoke structure were obtained for the measurements over 11 months during the antenna being parked at its home position (azimuth angles = ?180 degrees, an elevation angle = 60 degrees) under wind velocities < 8 m s-1. The temperature dependences of the zero-point offsets were found to be 1.24 and -0.46 arcseconds/degree, and were close to those obtained with an independent method. The azimuth axis tilts due to the temperature difference between the two opposite sides of pedestal walls were found to be about 1.1 and 1.7 arcseconds/degree, and consistent with 1.5 arcseconds/degree estimated with a simple model. The residual axis tilt of the whole samples after removal of the temperature dependences shows dependence against overturning moment estimated from the wind data. The stiffness of the antenna structures between the yoke base section and the ground was estimated to be 5.3 and 3.4 GNm/rad using the observed tilts in two directions; and were smaller than 6.0 GNm/rad from a mechanical model prediction. Based on these field experiments, we discuss the improvements and limitations of pointing performance with the inclinometer metrology system.

  7. Border-ownership-dependent tilt aftereffect

    NASA Astrophysics Data System (ADS)

    von der Heydt, Rüdiger; Macuda, Todd; Qiu, Fangtu T.

    2005-10-01

    Single-cell recordings from macaque visual cortex have shown orientation-selective neurons in area in V2 code for border ownership [J. Neurosci. 20, 6594 (2000)]: Each piece of contrast border is represented by two pools of neurons whose relative firing rate indicates the side of border ownership. Here we show that the human visual cortex uses a similar coding scheme by demonstrating a border-ownership-contingent tilt aftereffect. The aftereffect was specific for the adapted location, indicating that the adapted neurons have small receptive fields. We conclude that figure-ground organization is represented by border-ownership-selective neurons at early stages in the human visual cortex.

  8. V-22 Osprey Tilt-Rotor Aircraft

    DTIC Science & Technology

    2001-11-05

    Website [http://www.navair.navy.mil/ v22 /]. The V-22 has the ability to carry considerably larger IB86103 11-05-01 CRS-8 Figure 1. V-22 Osprey in...Congressional Research Service ˜ The Library of Congress CRS Issue Brief for Congress Received through the CRS Web Order Code IB86103 V-22 Osprey ...00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE V-22 Osprey Tilt-Rotor Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  9. Interdigitated pixel electrodes with alternating tilts for fast fringe-field switching of liquid crystals.

    PubMed

    Choi, Tae-Hoon; Woo, Jae-Hyeon; Choi, Yeongyu; Yoon, Tae-Hoon

    2016-11-28

    We propose an interdigitated pixel electrode structure with alternating tilts for fast fringe-field switching of liquid crystals (LCs). In contrast to an LC cell, where the pixel electrodes are parallel to the LC alignment direction, this device does not require a non-zero pretilt angle, owing to an obliquely applied electric field; thus, it can retain a much wider viewing angle by aligning the LCs without a pretilt. In addition to a short response time and wide viewing angle, the proposed device allows a much larger deviation of the LC alignment direction, which is essential for mass production. Moreover, LCs with negative dielectric anisotropy can be used to minimize the transmittance decrease.

  10. Human ocular counter-rolling and roll tilt perception during off-vertical axis rotation after spaceflight.

    PubMed

    Clément, Gilles; Denise, Pierre; Reschke, Millard F; Wood, Scott J

    2007-01-01

    Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 degrees/s in darkness at two angles of tilt (10 degrees and 20 degrees). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weighting of the internal representation of gravitational vertical as a result of adaptation to microgravity.

  11. Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair

    NASA Astrophysics Data System (ADS)

    Décréau, P. M. E.; Kougblénou, S.; Lointier, G.; Rauch, J.-L.; Trotignon, J.-G.; Vallières, X.; Canu, P.; Rochel Grimald, S.; El-Lemdani Mazouz, F.; Darrouzet, F.

    2013-11-01

    The Cluster mission operated a "tilt campaign" during the month of May 2008. Two of the four identical Cluster spacecraft were placed at a close distance (~50 km) from each other and the spin axis of one of the spacecraft pair was tilted by an angle of ~46°. This gave the opportunity, for the first time in space, to measure global characteristics of AC electric field, at the sensitivity available with long boom (88 m) antennas, simultaneously from the specific configuration of the tilted pair of satellites and from the available base of three satellites placed at a large characteristic separation (~1 RE). This paper describes how global characteristics of radio waves, in this case the configuration of the electric field polarization ellipse in 3-D-space, are identified from in situ measurements of spin modulation features by the tilted pair, validating a novel experimental concept. In the event selected for analysis, non-thermal continuum (NTC) waves in the 15-25 kHz frequency range are observed from the Cluster constellation placed above the polar cap. The observed intensity variations with spin angle are those of plane waves, with an electric field polarization close to circular, at an ellipticity ratio e = 0.87. We derive the source position in 3-D by two different methods. The first one uses ray path orientation (measured by the tilted pair) combined with spectral signature of magnetic field magnitude at source. The second one is obtained via triangulation from the three spacecraft baseline, using estimation of directivity angles under assumption of circular polarization. The two results are not compatible, placing sources widely apart. We present a general study of the level of systematic errors due to the assumption of circular polarization, linked to the second approach, and show how this approach can lead to poor triangulation and wrong source positioning. The estimation derived from the first method places the NTC source region in the dawn sector, at a

  12. Tilt-effect of holograms and images displayed on a spatial light modulator.

    PubMed

    Harm, Walter; Roider, Clemens; Bernet, Stefan; Ritsch-Marte, Monika

    2015-11-16

    We show that a liquid crystal spatial light modulator (LCOS-SLM) can be used to display amplitude images, or phase holograms, which change in a pre-determined way when the display is tilted, i.e. observed under different angles. This is similar to the tilt-effect (also called "latent image effect") known from various security elements ("kinegrams") on credit cards or bank notes. The effect is achieved without any specialized optical components, simply by using the large phase shifting capability of a "thick" SLM, which extends over several multiples of 2π, in combination with the angular dependence of the phase shift. For hologram projection one can use the fact that the phase of a monochromatic wave is only defined modulo 2π. Thus one can design a phase pattern extending over several multiples of 2π, which transforms at different readout angles into different 2π-wrapped phase structures, due to the angular dependence of the modulo 2π operation. These different beams then project different holograms at the respective readout angles. In amplitude modulation mode (with inserted polarizer) the intensity of each SLM pixel oscillates over several periods when tuning its control voltage. Since the oscillation period depends on the readout angle, it is possible to find a certain control voltage which produces two (or more) selectable gray levels at a corresponding number of pre-determined readout angles. This is done with all SLM pixels individually, thus constructing different images for the selected angles. We experimentally demonstrate the reconstruction of multiple (Fourier- and Fresnel-) holograms, and of different amplitude images, by readout of static diffractive patterns in a variable angular range between 0° and 60°.

  13. Unilateral tilted disc and ipsilateral keratoconus in the same eye

    PubMed Central

    Ciftci, Suleyman

    2011-01-01

    The objective of this case was to report unilateral tilted disc in a boy with ipsilateral keratoconus. The tilted disc syndrome is a non-hereditary bilateral condition. This configuration is accompanied by situs inversus of the retinal vessels, congenital inferonasal conus, thinning of the inferonasal retinal pigment epithelium and choroid, and myopic astigmatism. Unilateral tilted disc syndrome is a rare condition. Keratoconus is a disorder characterised by progressive corneal steepening. The author present a case of unilateral tilted disc in a boy with ipsilateral keratoconus. Pterygium is a common disorder and tilted disc syndrome is a bilateral condition. But unilateral tilted disc in a boy with ipsilateral keratoconus is the first report in literature. Due to these clinical presentation, this report is an exception in literature and reported an unknown clinical coincident. PMID:22692492

  14. Effect of posterior pelvic tilt taping in women with sacroiliac joint pain during active straight leg raising who habitually wore high-heeled shoes: a preliminary study.

    PubMed

    Lee, Jung-Hoon; Yoo, Won-Gyu; Kim, Mi-Hyun; Oh, Jae-Seop; Lee, Kyung-Soon; Han, Jin-Tae

    2014-05-01

    The purpose of this study was to assess whether a 1-day application of posterior pelvic tilt taping (PPTT) using a kinesiology tape would decrease anterior pelvic tilt and active straight leg raising test scores in women with sacroiliac joint who habitually wore high-heeled shoes. Sixteen women (mean age, 23.63 ± 3.18 years) were enrolled in this study. Anterior pelvic tilt was measured using a palpation meter before PPTT application, immediately after PPTT application, 1 day after PPTT application, and immediately after PPTT removal after 1 day of application. Active straight leg raising scores were measured at the same periods. Posterior pelvic tilt taping was applied in the target position (posterior pelvic tilt position). The anterior pelvic tilt was decreased during and after 1 day of PPTT application (before and after kinesiology tape removal) compared with the initial angle (all P < .05). Active straight leg raising scores were decreased during and 1 day after PPTT application (before and after kinesiology tape removal) compared with the initial score (all P < .05). The results of this preliminary study suggests that PPTT may temporarily decrease anterior pelvic tilt and active straight leg raising score in women with sacroiliac joint pain who habitually wear high-heeled shoes. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  15. Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography.

    PubMed

    Winkler, Hanspeter; Taylor, Kenneth A

    2006-02-01

    An image alignment method for electron tomography is presented which is based on cross-correlation techniques and which includes a simultaneous refinement of the tilt geometry. A coarsely aligned tilt series is iteratively refined with a procedure consisting of two steps for each cycle: area matching and subsequent geometry correction. The first step, area matching, brings into register equivalent specimen regions in all images of the tilt series. It determines four parameters of a linear two-dimensional transformation, not just translation and rotation as is done during the preceding coarse alignment with conventional methods. The refinement procedure also differs from earlier methods in that the alignment references are now computed from already aligned images by reprojection of a backprojected volume. The second step, geometry correction, refines the initially inaccurate estimates of the geometrical parameters, including the direction of the tilt axis, a tilt angle offset, and the inclination of the specimen with respect to the support film or specimen holder. The correction values serve as an indicator for the progress of the refinement. For each new iteration, the correction values are used to compute an updated set of geometry parameters by a least squares fit. Model calculations show that it is essential to refine the geometrical parameters as well as the accurate alignment of the images to obtain a faithful map of the original structure.

  16. Hip range of motion during daily activities in patients with posterior pelvic tilt from supine to standing position.

    PubMed

    Tamura, Satoru; Miki, Hidenobu; Tsuda, Kosuke; Takao, Masaki; Hattori, Asaki; Suzuki, Naoki; Yonenobu, Kazuo; Sugano, Nobuhiko

    2015-04-01

    In most patients with hip disorders, the anterior pelvic plane (APP) sagittal tilt does not change from supine to standing position. However, in some patients, APP sagittal tilt changes more than 10° posteriorly from supine to standing position. The purpose of this study was to both examine APP sagittal tilt and investigate the hip flexion and extension range of motion (ROM) required during daily activities in these atypical patients. Patient-specific 4-dimensional (4D) motion analysis was performed for 50 hips from 44 patients who had undergone total hip arthroplasty. All patients divided into two categories, such as atypical patients for whom the pelvis tilted more than 10° posteriorly from supine to standing position preoperatively (19 hips from 18 patients) and the remaining typical patients (31 hips from 26 patients). The required hip flexion and extension angles did not differ significantly between atypical patients and typical patients. In conclusion, the hip flexion ROM during deep bending activities and hip extension ROM during extension activities required in those atypical patients with pelvic tilt more than 10° backward from supine to standing position did not shift in the direction of extension.

  17. Visually-induced tilt during parabolic flights.

    PubMed

    Cheung, B S; Howard, I P; Money, K E

    1990-01-01

    A helmet-mounted visual display system was used to study visually induced sensations of self-motion (vection) about the roll, pitch and yaw axes under normal gravity condition (1g) and during the microgravity and hypergravity phases of parabolic flights aboard the NASA KC-135 aircraft. Under each gravity condition, the following parameters were investigated: (1) the subject's perceived body vertical with eyes closed and with eyes open gazing at a stationary random dot display; (2) the magnitude of sensations of body tilt with respect to the subjective vertical, while the subject viewed displays rotating about the roll, pitch and yaw axes; (3) the magnitude of vection; (4) latency of vection. All eleven subjects perceived a definite "up and down" orientation throughout the course of the flight. During the microgravity phase, the average magnitudes of perceived body tilt and self-motion increased significantly, and there was no significant difference in vection latency. These results show that there is a rapid onset of increased dependence on visual inputs for perception of self-orientation and self-motion in weightlessness, and a decreased dependence on otolithic and somatosensory graviceptive information. Anti-motion sickness drugs appear not to affect the parameters measured.

  18. Optimum Suction Distribution for Transition Control

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; Hall, P.

    1996-01-01

    The optimum suction distribution which gives the longest laminar region for a given total suction is computed. The goal here is to provide the designer with a method to find the best suction distribution subject to some overall constraint applied to the suction. We formulate the problem using the Lagrangian multiplier method with constraints. The resulting non-linear system of equations is solved using the Newton-Raphson technique. The computations are performed for a Blasius boundary layer on a flat-plate and crossflow cases. For the Blasius boundary layer, the optimum suction distribution peaks upstream of the maximum growth rate region and remains flat in the middle before it decreases to zero at the end of the transition point. For the stationary and travelling crossflow instability, the optimum suction peaks upstream of the maximum growth rate region and decreases gradually to zero.

  19. Optimum flight profiles for short haul missions

    NASA Technical Reports Server (NTRS)

    Erzberger, H.; Barman, J. F.; Mclean, J. D.

    1975-01-01

    An algorithm, based on the energy-state method, is derived for calculating optimum trajectories with a range constraint. The basis of the algorithm is the assumption that optimum trajectories consist of, at most, three segments: an increasing energy segment (climb); a constant energy segment (cruise); and a decreasing energy segment (descent). The algorithm is used to compute minimum fuel, minimum time, and minimum direct-operating-cost trajectories, with range as a parameter, for an in-service CTOL aircraft and for an advanced STOL aircraft. Use of a simplified trajectory increases the fuel consumption of the total descent trajectory by about 10 percent and the time to fly the descent by about 19 percent compared to the optimum.

  20. The optimum flat plate solar collector

    NASA Astrophysics Data System (ADS)

    Hassan, K.-E.

    The solar fluid heater problem is formulated as an unsteady, two-dimensional conduction problem. Simplified to a steady, one-dimensional problem provides a direct formulation far more flexible than the formulation hitherto in use, without any loss of generality. This flexibility is used to determine the geometry of optimum collectors, and to determine the performance of fan-shaped ones. An optimum collector would have a uniform effectiveness along the fluid path and, hence, effect a required fluid temperature rise with the least possible area. A fan-shaped collector of about the same geometrical proportions is shown to be nearly as effective as the corresponding optimum collector. The performance of either shape is determined for certain conditions. It shows that for this case a saving of some 6 to 13 percent could be obtained in comparison with the corresonding usual 'parallel-tube' design.

  1. Approach guidance logic for a tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Beser, J.

    1978-01-01

    The distinctive feature of a tilt-rotor aircraft is that the pilot can change the rotor mast angles to go from a helicopter configuration for take-off and landing to an airplane configuration for high cruise speeds and vice-versa. An approach path for such an aircraft is proposed and the logic required to fly along this path in the presence of wind is determined. The main contribution of this work is an efficient and, to my knowledge, new method for generating the nominal state and control histories taking into account an estimate of the mean wind velocity and direction. The method requires the solution of algebraic (mostly linear) equations to generate a 'universal nominal', and feedforward and feedback gains. Then, in flight the additional state and control corrections due to deviation in descent rate, deceleration, and flight in a steady wind are obtained by multiplying simple precalculated functions of time by descent rate, deceleration or sine and cosine components of the mean wind vector. Simulations of approach flights for different wind conditions, assuming perfect state information in the feedback signal, indicated satisfactory performance.

  2. Role of nuclear structure on the tilting mode

    NASA Astrophysics Data System (ADS)

    Naik, H.; Dange, S. P.

    2003-12-01

    The high spin fraction (HSF) of 131Te as a function of fragment emission angle has been determined in the 40 MeV alpha-particle induced fission of 238U using off-line gamma ray spectrometric technique. From the HSF the fragment average spin (Jav) of fission product has been deduced using statistical model analysis. The Jav value of 131Te is seen to remain nearly constant (10ℏ) from 90° to 20°. On the other hand, the Jav value of 132I from earlier work shows a drastic decrease (33%) from 11.4ℏ at 90° to 7.6ℏ at 20°. However, the yield weighted Jav value of both the products show a decrease of 13%, which in close agreement with the value of 5-10% change from 90° to 0° in the results obtained from gamma ray multiplicity measurements. Thus the drastic difference in the change of fragment average spin (Jav) of individual product from 90° to 20° obtained from the gamma ray spectrometric technique is most probably due to the nuclear structure effect of the fission products in their fragment stage. This shows the role of nuclear structure on the tilting mode and this experimental observation is made for the first time.

  3. Precision tip-tilt-piston actuator that provides exact constraint

    DOEpatents

    Hale, Layton C.

    1999-01-01

    A precision device which can precisely actuate three degrees of freedom of an optic mount, commonly referred to as tip, tilt, and piston. The device consists of three identical flexure mechanisms, an optic mount to be supported and positioned, a structure that supports the flexure mechanisms, and three commercially available linear actuators. The advantages of the precision device is in the arrangement of the constraints offered by the flexure mechanism and not in the particular design of the flexure mechanisms, as other types of mechanisms could be substituted. Each flexure mechanism constrains two degrees of freedom in the plane of the mechanisms and one direction is actuated. All other degrees of freedom are free to move within the range of flexure mechanisms. Typically, three flexure mechanisms are equally spaced in angle about to optic mount and arranged so that each actuated degree of freedom is perpendicular to the plane formed by the optic mount. This arrangement exactly constrains the optic mount and allows arbitrary actuated movement of the plane within the range of the flexure mechanisms. Each flexure mechanism provides a mechanical advantage, typically on the order of 5:1, between the commercially available actuator and the functional point on the optic mount. This improves resolution by the same ratio and stiffness by the square of the ratio.

  4. Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4%. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

  5. Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4 percent. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

  6. Rotor stability estimation with competing tilting pad bearing models

    NASA Astrophysics Data System (ADS)

    Cloud, C. Hunter; Maslen, Eric H.; Barrett, Lloyd E.

    2012-05-01

    When predicting the stability of rotors supported by tilting pad journal bearings, it is currently debated whether or not the bearings should be represented with frequency dependent dynamics. Using an experimental apparatus, measurements of pad temperatures, unbalance response and stability are compared with modeling predictions for two tilting pad bearing designs. Predictions based on frequency dependent tilting pad bearing dynamics exhibited significantly better correlation with the stability measurements than those assuming frequency independent dynamics.

  7. Analysis of the effects of disk tilt on the differential-phase-detection signal in a high-density DVD read-only disk driver.

    PubMed

    Shen, Quanhong; Xu, Duanyi

    2006-06-10

    A high-density DVD (HD-DVD) is one of the high-density optical storage technology newly designed to meet the demands of high-definition video broadcasting that is very sensitive to the radial tilt of a disk. An analytic model based on diffraction theory is presented in detail to calculate the tracking error signal of a HD-DVD read-only disk driver by using the differential-phase-detection (DPD) method when radial tilt of a disk occurs. The effects of the tilt on a DPD signal in a HD-DVD read-only disk driver are quantified and compared to those in a DVD read-only disk driver. Experimental measurements for the DPD signal under different radial tilt angles in a HD-DVD read-only disk driver are also reported.

  8. Expected accuracy of tilt measurements on a novel hexapod-based digital zenith camera system: a Monte-Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Hirt, Christian; Papp, Gábor; Pál, András; Benedek, Judit; Szũcs, Eszter

    2014-08-01

    Digital zenith camera systems (DZCS) are dedicated astronomical-geodetic measurement systems for the observation of the direction of the plumb line. A DZCS key component is a pair of tilt meters for the determination of the instrumental tilt with respect to the plumb line. Highest accuracy (i.e., 0.1 arc-seconds or better) is achieved in practice through observation with precision tilt meters in opposite faces (180° instrumental rotation), and application of rigorous tilt reduction models. A novel concept proposes the development of a hexapod (Stewart platform)-based DZCS. However, hexapod-based total rotations are limited to about 30°-60° in azimuth (equivalent to ±15° to ±30° yaw rotation), which raises the question of the impact of the rotation angle between the two faces on the accuracy of the tilt measurement. The goal of the present study is the investigation of the expected accuracy of tilt measurements to be carried out on future hexapod-based DZCS, with special focus placed on the role of the limited rotation angle. A Monte-Carlo simulation study is carried out in order to derive accuracy estimates for the tilt determination as a function of several input parameters, and the results are validated against analytical error propagation. As the main result of the study, limitation of the instrumental rotation to 60° (30°) deteriorates the tilt accuracy by a factor of about 2 (4) compared to a 180° rotation between the faces. Nonetheless, a tilt accuracy at the 0.1 arc-second level is expected when the rotation is at least 45°, and 0.05 arc-second (about 0.25 microradian) accurate tilt meters are deployed. As such, a hexapod-based DZCS can be expected to allow sufficiently accurate determination of the instrumental tilt. This provides supporting evidence for the feasibility of such a novel instrumentation. The outcomes of our study are not only relevant to the field of DZCS, but also to all other types of instruments where the instrumental tilt

  9. Optimum viewing distance for target acquisition

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    2015-05-01

    Human visual system (HVS) "resolution" (a.k.a. visual acuity) varies with illumination level, target characteristics, and target contrast. For signage, computer displays, cell phones, and TVs a viewing distance and display size are selected. Then the number of display pixels is chosen such that each pixel subtends 1 min-1. Resolution of low contrast targets is quite different. It is best described by Barten's contrast sensitivity function. Target acquisition models predict maximum range when the display pixel subtends 3.3 min-1. The optimum viewing distance is nearly independent of magnification. Noise increases the optimum viewing distance.

  10. Optimum Design Methods for Structural Sandwich Panels

    DTIC Science & Technology

    1988-01-01

    Security ClassificatioN~ Optimum Design Methods for Structural Sandwich Panels M 4, l 12. PERSONAL AUTHOR(S) Gibson, Lorna J. 113a. TYPE OF REPORT 13b...The largest value of GrE , for the 320 kg/m 3 foam for which the crack propagated through the adhesive, corresponds to the surface energy of the...Introduction , The goal of this part of the pro.ect is to find the minimum weight design of a foam core sandwich beam fora given strernth. The optimum value

  11. Optimum Detection of Frequency-Hopped Signals

    NASA Technical Reports Server (NTRS)

    Cheng, Unjeng; Levitt, Barry; Polydoros, Andreas; Simon, Marvin K.

    1992-01-01

    This paper derives and analyzes optimum and near-optimum structures for detecting frequency-hopped (FH) signals with arbitrary modulation in additive white Gaussian noise. The principalmodulation formats considered are M-ary frequency-shift-keying (MFSK) with fast frequency hopping(FFH) wherein a single tone is transmitted per hop, and slow frequency hopping (SFH) with multipleMFSK tones (data symbols) per hop. The SFH detection category has not previously been addressedin the open literature and its analysis is generally more complex than FFH.

  12. Aerodynamic design of optimum wind turbines

    NASA Astrophysics Data System (ADS)

    de Paor, A. M.

    1982-11-01

    A design procedure is presented and illustrated for one-, two- or three-bladed horizontal axis, constant chord wind turbines of optimum performance. Following specification of the number of blades, the lift coefficient, and the lift-to-drag ratio at the design point, algorithms are developed for finding: the tip-speed ratio at which the optimum power coefficient is developed, the ratio of blade chord to radius, and the manner in which each blade should be twisted along its axis. Programs are given for implementing the calculations iteratively on a programmable calculator.

  13. Transient cardio-respiratory responses to visually induced tilt illusions

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Ramsdell, C. D.; Mullen, T. J.; Oman, C. M.; Harm, D. L.; Paloski, W. H.

    2000-01-01

    Although the orthostatic cardio-respiratory response is primarily mediated by the baroreflex, studies have shown that vestibular cues also contribute in both humans and animals. We have demonstrated a visually mediated response to illusory tilt in some human subjects. Blood pressure, heart and respiration rate, and lung volume were monitored in 16 supine human subjects during two types of visual stimulation, and compared with responses to real passive whole body tilt from supine to head 80 degrees upright. Visual tilt stimuli consisted of either a static scene from an overhead mirror or constant velocity scene motion along different body axes generated by an ultra-wide dome projection system. Visual vertical cues were initially aligned with the longitudinal body axis. Subjective tilt and self-motion were reported verbally. Although significant changes in cardio-respiratory parameters to illusory tilts could not be demonstrated for the entire group, several subjects showed significant transient decreases in mean blood pressure resembling their initial response to passive head-up tilt. Changes in pulse pressure and a slight elevation in heart rate were noted. These transient responses are consistent with the hypothesis that visual-vestibular input contributes to the initial cardiovascular adjustment to a change in posture in humans. On average the static scene elicited perceived tilt without rotation. Dome scene pitch and yaw elicited perceived tilt and rotation, and dome roll motion elicited perceived rotation without tilt. A significant correlation between the magnitude of physiological and subjective reports could not be demonstrated.

  14. Prediction of the heliospheric current sheet tilt: 1992-1996

    SciTech Connect

    Suess, S.T. ); McComas, D.J. ); Hoeksema, J.T. )

    1993-02-05

    Heliospheric current sheet tilt evolves systematically over the solar cycle. Here the authors show that this evolution is different than the sunspot cycle and that tilt for the period 1992-1996 can be predicted using persistence. That is, the tilt over the coming cycle will be the same as for the past cycle. The Ulysses spacecraft has passed Jupiter and is moving out of the plane of the ecliptic, so they use the prediction of the changing heliospheric current sheet tilt to predict that Ulysses will pass beyond the envelope, or maximum latitude, of the heliospheric current sheet in November 1993. 10 refs., 6 figs.

  15. Modes of tilting during extensional core complex development.

    PubMed

    Coleman, D S; Walker, J D

    1994-01-14

    Crustal extension and formation of the Mineral Mountains core complex, Utah, involved tilting of the Mineral Mountains batholith and associated faults during hanging wall and footwall deformation. The batholith was folded in the hanging wall of the Beaver Valley fault between 11 and 9 million years ago yielding about 45 degrees of tilt. Subsequently, the batholith was unroofed along the Cave Canyon detachment fault, and the batholith and fault were tilted approximately 40 degrees during footwall uplift. Recognition of deformed dikes beneath the detachment fault establishes the importance of footwall tilt during formation of extensional core complexes and demonstrates that footwall rebound can be an important process during extension.

  16. The normal response to prolonged passive head up tilt testing

    PubMed Central

    Petersen, M; Williams, T; Gordon, C; Chamberlain-Webbe..., R; Sutton, R

    2000-01-01

    OBJECTIVE—To define the responses to head up tilt in a large group of normal adult subjects using the most widely employed protocol for tilt testing.
METHODS—127 normal subjects aged 19-88 years (mean (SD), 49 (20) years) without a previous history of syncope underwent tilt testing at 60° for 45 minutes or until syncope intervened. Blood pressure monitoring was performed with digital photoplethysmography, providing continuous, non-invasive, beat to beat heart rate and pressure measurements.
RESULTS—13% of subjects developed vasovagal syncope after a mean (SD) tilt time of 31.7 (12.4) minutes (range 8.5-44.9 minutes). Severe cardioinhibition during syncope was observed less often than is reported in patients investigated for syncope. There were no differences in the age or sex distributions of subjects with positive or negative outcomes, or in the proportions with cardioinhibitory and vasodepressor vasovagal syncope compared with previously reported patient populations. Subjects with negative outcomes showed age related differences in heart rate and blood pressure behaviour throughout tilt.
CONCLUSIONS—False positive results with tilting appear to be common. This has important implications for the use of diagnostic tilt testing. The magnitude of the heart rate and blood pressure changes observed during negative tilts largely invalidates previously suggested criteria for abnormal non-syncopal outcomes.


Keywords: syncope; head up tilt; postural hypotension PMID:11040011

  17. Prediction of the heliospheric current sheet tilt - 1992-1996

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Mccomas, D. J.; Hoeksema, J. T.

    1993-01-01

    Heliospheric current sheet tilt evolves systematically over the solar cycle. Here we show that this evolution is different than the sunspot cycle and that tilt for the period 1992-1996 can be predicted using persistence. That is, the tilt over the coming cycle will be the same as for the past cycle. The Ulysses spacecraft has passed Jupiter and is moving out of the plane of the ecliptic, so we use the prediction of the changing heliospheric current sheet tilt to predict that Ulysses will pass beyond the envelope, or maximum latitude, of the heliospheric current sheet in November 1993.

  18. Magnetotransport properties of Co90Fe10/Cu/Ni80Fe20 pseudo-spin-valve with out-of-plane tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Luo, Linqiang; Dao, Nam; Kittiwatanakul, Salinporn; Wolf, Stuart; Lu, Jiwei; UVa NanoStar Team

    The giant magnetoresistance (GMR) effect of a pseudo spin valve made of Co90Fe10/Cu/Ni80Fe20 has been investigated, with a magnetic field applied perpendicularly tilted to the sample plane. Without using a pinning layer, the magnetic separation of the free and fixed layers is uniquely achieved by utilizing perpendicular fields due to different anisotropy energies between Ni80Fe20 and Co90Fe10. The magneto-transport measurements are carried out by Van der Pauw method in current-in-plane geometry at room temperature. By tilting the magnetic field at different angles from out-of-plane, the GMR plateau's width can be tuned. A plateau width of about 2000 Oe is observed at tilted angle 0.5o, which opens a significantly larger window for high-resistance states comparing with a plateau width of 10 Oe for in-plane fields. With the out-of-plane tilted fields, the orientation of the magnetic moments can be tuned continuously out of the sample plane, and the relative orientation between Ni80Fe20 and Co90Fe10 can also be tuned by the tilted angle, enabling us to precisely control the sample's states for current-induced spin dynamics study that is very difficult in the case of in-plane applied magnetic fields.

  19. Modelling PTB's spatial angle autocollimator calibrator

    NASA Astrophysics Data System (ADS)

    Kranz, Oliver; Geckeler, Ralf D.; Just, Andreas; Krause, Michael

    2013-05-01

    The accurate and traceable form measurement of optical surfaces has been greatly advanced by a new generation of surface profilometers which are based on the reflection of light at the surface and the measurement of the reflection angle. For this application, high-resolution electronic autocollimators provide accurate and traceable angle metrology. In recent years, great progress has been made at the Physikalisch-Technische Bundesanstalt (PTB) in autocollimator calibration. For an advanced autocollimator characterisation, a novel calibration device has been built up at PTB: the Spatial Angle Autocollimator Calibrator (SAAC). The system makes use of an innovative Cartesian arrangement of three autocollimators (two reference autocollimators and the autocollimator to be calibrated), which allows a precise measurement of the angular orientation of a reflector cube. Each reference autocollimator is sensitive primarily to changes in one of the two relevant tilt angles, whereas the autocollimator to be calibrated is sensitive to both. The distance between the reflector cube and the autocollimator to be calibrated can be varied flexibly. In this contribution, we present the SAAC and aspects of the mathematical modelling of the system for deriving analytical expressions for the autocollimators' angle responses. These efforts will allow advancing the form measurement substantially with autocollimator-based profilometers and approaching fundamental measurement limits. Additionally, they will help manufacturers of autocollimators to improve their instruments and will provide improved angle measurement methods for precision engineering.

  20. Balanced diffraction aberrations, independent of the observation point: application to a tilted dielectric plate.

    PubMed

    Sheppard, Colin J R

    2013-10-01

    Balancing of Zernike aberrations breaks down if the defocus term is large enough that the condition (z/λ)≪2/[π(NA)⁴] is not satisfied. A modified Zernike aberration expansion, based on the Zernike aberrations, is developed that accurately includes axial displacement as a low-order term, even for large displacements. This expansion can be used to analyze aberrations for on-axis illumination of a high numerical aperture system. But more importantly, for systems of moderate numerical aperture it allows balanced aberration coefficients to be determined independent of the assumption of a particular reference point. The approach is applied to the case of a tilted dielectric plate. An exact expression is given for the wave front aberration, valid for both large angles of tilt and high beam convergence angles, that is independent of observation distance. Analytical expressions for the third- and fifth-order aberration coefficients are derived. Expressions are given for expansion of multiple-angle power series terms into Zernike polynomials.

  1. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    PubMed

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  2. Pelvic tilt and trunk inclination: new predictive factors in curve progression during the Milwaukee bracing for adolescent idiopathic scoliosis.

    PubMed

    Guo, Jing; Liu, Zhen; Lv, Feng; Zhu, Zezhang; Qian, Bangping; Zhang, Xing; Lin, Xiaolong; Sun, Xu; Qiu, Yong

    2012-10-01

    Previous studies had shown that sagittal spinal and pelvic morphology may be associated with the development and progression of adolescent idiopathic scoliosis, but the predictive value of initial spinal and pelvic morphology on the curve progression during brace treatment is unknown. The objective of this study was to evaluate the relation between initial spinopelvic morphology and the risk of curve progression of adolescent idiopathic scoliosis with the Milwaukee brace. From 2002 to 2007, adolescent idiopathic scoliosis (single thoracic curve with apex at or above T8) was treated with the Milwaukee brace in 60 girls. Initial standing, full-length lateral radiographs were made and seven sagittal radiographic parameters of spinal and pelvic alignment were measured. Patients were followed until skeletal maturity or progression of Cobb angle >45°. The progression of curve was defined as an increase of Cobb angle ≥6° at final follow-up or progression to surgery during brace treatment. The 45 patients (75.0 %) who had successful control of curve progression were initially significantly more skeletally mature (higher mean Risser sign) than the 15 patients (25.0 %) who had curve progression. The initial mean Cobb angle was similar between the stable and progressed groups. The mean pelvic tilt, T1-spinopelvic inclination and T9-spinopelvic inclination angles were significantly greater in the stable group than in the progressed group and these three angles were independent predictors for curve progression during brace treatment. There were no significant differences between the stable and progressed groups in initial mean pelvic incidence, sacral slope, thoracic kyphosis or lumbar lordosis angles. Pre-bracing pelvic tilt ≤-0.5° was strongly predictive and T1-spinopelvic inclination ≤3.5° was moderately predictive of curve progression during the Milwaukee brace treatment. Initial pelvic tilt and spinopelvic inclination angles may predict the curve progression and

  3. Parametric Study of Water Rocket for Optimum Flight

    NASA Astrophysics Data System (ADS)

    Ota, Takayuki; Umemura, Akira

    Parametric study is conducted to find the optimum condition of water rocket for long flight, provided that the tank volume is prescribed. The parameters considered in the present study are the initial air pressure, water volume fraction, empty rocket mass, launching angle and bottle diameter which significantly affect the flight performance of water rocket. First, we calculate the temporal changes in tank pressure, water and air issue speeds and thrust, on the basis of a simple physical model which has been experimentally validated. Then, this model is incorporated into the equation of motion to calculate the ballistic flight of water rocket with various parameter values. As a result, it is found that PET bottles in the market are one of the most suitable for use as the pressure tank of water rocket.

  4. Optimum design of a nanoscale spin-Seebeck power device.

    PubMed

    Liao, Tianjun; Lin, Jian; Su, Guozhen; Lin, Bihong; Chen, Jincan

    2015-05-07

    A theoretical model of a nanoscale spin-Seebeck power device (SSPD) is proposed based on the longitudinal spin-Seebeck effect in bilayers made of a ferromagnetic insulator and a normal metal. Expressions for the power output and thermal efficiency of the SSPD are derived analytically. The performance characteristics of the nanoscale SSPD are analyzed using numerical simulation. The maximum power output density and efficiency are calculated numerically. The effect of the spin Hall angle on the performance characteristics of the SSPD is analyzed. The choice of materials and the structure of the device are discussed. The optimum criteria of some key parameters of the SSPD, such as the power output density, efficiency, thickness of the normal metal, and the load resistance, are given. The results obtained here could provide a theoretical basis for the optimal design and operation of nanoscale SSPDs.

  5. The HAMP Signal Relay Domain Adopts Multiple Conformational States through Collective Piston and Tilt Motions

    PubMed Central

    Zhu, Lizhe; Bolhuis, Peter G.; Vreede, Jocelyne

    2013-01-01

    The HAMP domain is a linker region in prokaryotic sensor proteins and relays input signals to the transmitter domain and vice versa. Functional as a dimer, the structure of HAMP shows a parallel coiled-coil motif comprising four helices. To date, it is unclear how HAMP can relay signals from one domain to another, although several models exist. In this work, we use molecular simulation to test the hypothesis that HAMP adopts different conformations, one of which represents an active, signal-relaying configuration, and another an inactive, resting state. We first performed molecular dynamics simulation on the prototype HAMP domain Af1503 from Archaeoglobus fulgidus. We explored its conformational space by taking the structure of the A291F mutant disabling HAMP activity as a starting point. These simulations revealed additional conformational states that differ in the tilt angles between the helices as well as the relative piston shifts of the helices relative to each other. By enhancing the sampling in a metadynamics set up, we investigated three mechanistic models for HAMP signal transduction. Our results indicate that HAMP can access additional conformational states characterized by piston motion. Furthermore, the piston motion of the N-terminal helix of one monomer is directly correlated with the opposite piston motion of the C-terminal helix of the other monomer. The change in piston motion is accompanied by a change in tilt angle between the monomers, thus revealing that HAMP exhibits a collective motion, i.e. a combination of changes in tilt angles and a piston-like displacement. Our results provide insights into the conformational changes that underlie the signaling mechanism involving HAMP. PMID:23468603

  6. The HAMP signal relay domain adopts multiple conformational states through collective piston and tilt motions.

    PubMed

    Zhu, Lizhe; Bolhuis, Peter G; Vreede, Jocelyne

    2013-01-01

    The HAMP domain is a linker region in prokaryotic sensor proteins and relays input signals to the transmitter domain and vice versa. Functional as a dimer, the structure of HAMP shows a parallel coiled-coil motif comprising four helices. To date, it is unclear how HAMP can relay signals from one domain to another, although several models exist. In this work, we use molecular simulation to test the hypothesis that HAMP adopts different conformations, one of which represents an active, signal-relaying configuration, and another an inactive, resting state. We first performed molecular dynamics simulation on the prototype HAMP domain Af1503 from Archaeoglobus fulgidus. We explored its conformational space by taking the structure of the A291F mutant disabling HAMP activity as a starting point. These simulations revealed additional conformational states that differ in the tilt angles between the helices as well as the relative piston shifts of the helices relative to each other. By enhancing the sampling in a metadynamics set up, we investigated three mechanistic models for HAMP signal transduction. Our results indicate that HAMP can access additional conformational states characterized by piston motion. Furthermore, the piston motion of the N-terminal helix of one monomer is directly correlated with the opposite piston motion of the C-terminal helix of the other monomer. The change in piston motion is accompanied by a change in tilt angle between the monomers, thus revealing that HAMP exhibits a collective motion, i.e. a combination of changes in tilt angles and a piston-like displacement. Our results provide insights into the conformational changes that underlie the signaling mechanism involving HAMP.

  7. Effects of implant tilting and the loading direction on the displacement and micromotion of immediately loaded implants: an in vitro experiment and finite element analysis.

    PubMed

    Sugiura, Tsutomu; Yamamoto, Kazuhiko; Horita, Satoshi; Murakami, Kazuhiro; Tsutsumi, Sadami; Kirita, Tadaaki

    2017-08-01

    The purpose of this study was to investigate the effects of implant tilting and the loading direction on the displacement and micromotion (relative displacement between the implant and bone) of immediately loaded implants by in vitro experiments and finite element analysis (FEA). Six artificial bone blocks were prepared. Six screw-type implants with a length of 10 mm and diameter of 4.3 mm were placed, with 3 positioned axially and 3 tilted. The tilted implants were 30° distally inclined to the axial implants. Vertical and mesiodistal oblique (45° angle) loads of 200 N were applied to the top of the abutment, and the abutment displacement was recorded. Nonlinear finite element models simulating the in vitro experiment were constructed, and the abutment displacement and micromotion were calculated. The data on the abutment displacement from in vitro experiments and FEA were compared, and the validity of the finite element model was evaluated. The abutment displacement was greater under oblique loading than under axial loading and greater for the tilted implants than for the axial implants. The in vitro and FEA results showed satisfactory consistency. The maximum micromotion was 2.8- to 4.1-fold higher under oblique loading than under vertical loading. The maximum micromotion values in the axial and tilted implants were very close under vertical loading. However, in the tilted implant model, the maximum micromotion was 38.7% less than in the axial implant model under oblique loading. The relationship between abutment displacement and micromotion varied according to the loading direction (vertical or oblique) as well as the implant insertion angle (axial or tilted). Tilted implants may have a lower maximum extent of micromotion than axial implants under mesiodistal oblique loading. The maximum micromotion values were strongly influenced by the loading direction. The maximum micromotion values did not reflect the abutment displacement values.

  8. Investigation of various essential factors for optimum infrared thermography.

    PubMed

    Okada, Keiji; Takemura, Kei; Sato, Shigeru

    2013-10-01

    We investigated various essential factors for optimum infrared thermography for cattle clinics. The effect of various factors on the detection of surface temperature was investigated in an experimental room with a fixed ambient temperature using a square positioned on a wall. Various factors of animal objects were examined using cattle to determine the relationships among presence of hair, body surface temperature, surface temperature of the eyeball, the highest temperature of the eye circle, rectum temperature and ambient temperature. Also, the surface temperature of the flank at different time points after eating was examined. The best conditions of thermography for cattle clinics were determined and were as follows: (1) The distance between a thermal camera and an object should be fixed, and the camera should be set within a 45-degree angle with respect to the objects using the optimum focal length. (2) Factors that affect the camera temperature, such as extreme cold or heat, direct sunshine, high humidity and wind, should be avoided. (3) For the comparison of thermographs, imaging should be performed under identical conditions. If this is not achievable, hairless parts should be used.

  9. Investigation of Various Essential Factors for Optimum Infrared Thermography

    PubMed Central

    OKADA, Keiji; TAKEMURA, Kei; SATO, Shigeru

    2013-01-01

    ABSTRACT We investigated various essential factors for optimum infrared thermography for cattle clinics. The effect of various factors on the detection of surface temperature was investigated in an experimental room with a fixed ambient temperature using a square positioned on a wall. Various factors of animal objects were examined using cattle to determine the relationships among presence of hair, body surface temperature, surface temperature of the eyeball, the highest temperature of the eye circle, rectum temperature and ambient temperature. Also, the surface temperature of the flank at different time points after eating was examined. The best conditions of thermography for cattle clinics were determined and were as follows: (1) The distance between a thermal camera and an object should be fixed, and the camera should be set within a 45-degree angle with respect to the objects using the optimum focal length. (2) Factors that affect the camera temperature, such as extreme cold or heat, direct sunshine, high humidity and wind, should be avoided. (3) For the comparison of thermographs, imaging should be performed under identical conditions. If this is not achievable, hairless parts should be used. PMID:23759714

  10. Structure, Topology and Tilt of Cell-Signaling Peptides Containing Nuclear Localization Sequences in Membrane Bilayers Determined by Solid-State NMR and Molecular Dynamics Simulation Studies

    PubMed Central

    Ramamoorthy, Ayyalusamy; Kandasamy, Senthil K.; Lee, Dong-Kuk; Kidambi, Srikanth; Larson, Ronald G.

    2008-01-01

    Cell-signaling peptides have been extensively used to transport functional molecules across the plasma membrane into living cells. These peptides consist of a hydrophobic sequence and a cationic nuclear localization sequence (NLS). It has been assumed that the hydrophobic region penetrates through the hydrophobic lipid bilayer and delivers the NLS inside the cell. To better understand the transport mechanism of these peptides, in this study, we investigated the structure, orientation, tilt of the peptide relative to the bilayer normal, and the membraneinteraction of two cell-signaling peptides, SA and SKP. Results from CD and solid-state NMR experiments combined with molecular dynamics simulations suggest that the hydrophobic region is helical and has a transmembrane orientation with the helical axis tilted away from the bilayer normal. The influence of the hydrophobic mismatch, between the hydrophobic length of the peptide and the hydrophobic thickness of the bilayer, on the tilt angle of the peptides was investigated using thicker POPC and thinner DMPC bilayers. NMR experiments showed that the hydrophobic domain of each peptide has a tilt angle of 15±3° in POPC, while in DMPC 25±3° and 30±3° tilts were observed for SA and SKP peptides respectively. These results are in good agreement with molecular dynamics simulations, which predicts a tilt angle of 13.3° (SA in POPC), 16.4° (SKP in POPC), 22.3° (SA in DMPC) and 31.7° (SKP in POPC). These results and simulations on the hydrophobic fragment of SA or SKP suggest that the tilt of helices increases with a decrease in the bilayer thickness without changing the phase, order, and structure of the lipid bilayers. PMID:17240980

  11. A mathematical simulation model of a 1985-era tilt-rotor passenger aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.; Widdison, C. A.

    1976-01-01

    A mathematical model for use in real-time piloted simulation of a 1985-era tilt rotor passenger aircraft is presented. The model comprises the basic six degrees-of-freedom equations of motion, and a large angle of attack representation of the airframe and rotor aerodynamics, together with equations and functions used to model turbine engine performance, aircraft control system and stability augmentation system. A complete derivation of the primary equations is given together with a description of the modeling techniques used. Data for the model is included in an appendix.

  12. Interactions between displacement cascades and Σ3<110> tilt grain boundaries in Cu

    NASA Astrophysics Data System (ADS)

    Li, Bo; Long, Xiao-Jiang; Shen, Zhao-Wu; Luo, Sheng-Nian

    2016-12-01

    With large-scale molecular dynamics simulations, we investigate systematically the interaction of displacement cascades with a set of Σ3<110> tilt grain boundaries (GBs) in Cu bicrystals at low ambient temperatures, as regards irradiation-induced defect production/absorption and GB migration/faceting. Except for coherent twin boundary, GBs exhibit pronounced preferential absorption of interstitials, which depends on initial primary knock-on atom distance from GB plane and inclination angle. GB migration occurs when displacement cascades overlap with a GB plane, as induced by recrystallization of thermal spike, and concurrent asymmetric grain growth. Faceting occurs via expanding coherent twin boundaries for asymmetric GBs.

  13. Optimum fiber distribution in singlewall corrugated fiberboard

    Treesearch

    Millard W. Johnson; Thomas J. Urbanik; William E. Denniston

    1979-01-01

    Determining optimum distribution of fiber through rational design of corrugated fiberboard could result in significant reductions in fiber required to meet end-use conditions, with subsequent reductions in price pressure and extension of the softwood timber supply. A theory of thin plates under large deformations is developed that is both kinematically and physically...

  14. Optimum Building Shapes for Energy Conservation

    ERIC Educational Resources Information Center

    Berkoz, Esher Balkan

    1977-01-01

    An approach to optimum building shape design is summarized that is based on local climate and is especially important for heat control in lower cost construction with temperature-responsive thermal characteristics. The study was supported by Istanbul Technical University. For journal availability see HE 508 931. (Author/LBH)

  15. Investigation of optimum wavelengths for oximetry

    NASA Astrophysics Data System (ADS)

    Huong, Audrey K. C.; Stockford, Ian M.; Crowe, John A.; Morgan, Stephen P.

    2009-07-01

    An evaluation of the optimum choice of wavelengths, when using the 'Modified Lambert-Beer law' to estimate blood oxygen saturation, that minimises the mean error across a range of oxygen saturation values is presented. The stability of this approach and its susceptibility to noise are also considered.

  16. The Optimum Thermal Environment for Naked Babies

    PubMed Central

    Hey, E. N.; Katz, G.

    1970-01-01

    The optimum thermal environment in which to nurse a baby naked in an incubator has been defined from a knowledge of the magnitude of the factors affecting thermal balance. Such a neutral environment allows body temperature to remain normal while oxygen consumption and evaporative water loss are both at a minimum. PMID:5427846

  17. Common Core: Teaching Optimum Topic Exploration (TOTE)

    ERIC Educational Resources Information Center

    Karge, Belinda Dunnick; Moore, Roxane Kushner

    2015-01-01

    The Common Core has become a household term and yet many educators do not understand what it means. This article explains the historical perspectives of the Common Core and gives guidance to teachers in application of Teaching Optimum Topic Exploration (TOTE) necessary for full implementation of the Common Core State Standards. An effective…

  18. A patient treated with tilt training and midodrine after 68 seconds asystole during head-up tilt table testing.

    PubMed

    Oz, Fahrettin; Cizgici, Yaşar; Bilge, A Kaya

    2011-08-01

    Neurocardiogenic syncope is a relatively common cause of syncope and is diagnosed by head-up tilt testing. A 21-year-old man was examined for frequent syncope episodes which occurred after episodes of blood drawing and standing in queue. Syncope developed in tilt table testing. After about 68 seconds, sinus rhythm returned. Recent reports have shown that tilt training is a very effective therapy for recurrent neurocardiogenic syncope. In our case, the patient was treated with midodrine 2.5 mg once a day and a tilt training programme. Therapy resulted in improvement and during a follow-up of six months, no major events occurred.

  19. Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field

    DOE PAGES

    Lin, Shi-Zeng; Saxena, Avadh

    2015-11-03

    Here we study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is non-circular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chain like structure. Lastly, the dynamical response ofmore » the non-circular skyrmions depends on the direction of external currents.« less

  20. Micromagnetic study of spin transfer switching with a spin polarization tilted out of the free layer plane

    SciTech Connect

    Chaves-O'Flynn, Gabriel D. Wolf, Georg; Pinna, Daniele; Kent, Andrew D.

    2015-05-07

    We present the results of zero temperature macrospin and micromagnetic simulations of spin transfer switching of thin film nanomagnets in the shape of an ellipse with a spin-polarization tilted out of the layer plane. The perpendicular component of the spin-polarization is shown to increase the reversal speed, leading to a lower current for switching in a given time. However, for tilt angles larger than a critical angle, the layer magnetization starts to precess about an out-of-plane axis, which leads to a final magnetization state that is very sensitive to simulation conditions. As the ellipse lateral size increases, this out-of-plane precession is suppressed, due to the excitation of spatially non-uniform magnetization modes.