Science.gov

Sample records for optimum tilt angle

  1. Modeling Spatio-Temporal Dynamics of Optimum Tilt Angles for Solar Collectors in Turkey

    PubMed Central

    Ertekin, Can; Evrendilek, Fatih; Kulcu, Recep

    2008-01-01

    Quantifying spatial and temporal variations in optimal tilt angle of a solar collector relative to a horizontal position assists in maximizing its performance for energy collection depending on changes in time and space. In this study, optimal tilt angles were quantified for solar collectors based on the monthly global and diffuse solar radiation on a horizontal surface across Turkey. The dataset of monthly average daily global solar radiation was obtained from 158 places, and monthly diffuse radiation data were estimated using an empirical model in the related literature. Our results showed that high tilt angles during the autumn (September to November) and winter (December to February) and low tilt angles during the summer (March to August) enabled the solar collector surface to absorb the maximum amount of solar radiation. Monthly optimum tilt angles were estimated devising a sinusoidal function of latitude and day of the year, and their validation resulted in a high R2 value of 98.8%, with root mean square error (RMSE) of 2.06°. PMID:27879857

  2. Optimum Tilt Angle of Flow Guide in Steam Turbine Exhaust Hood Considering the Effect of Last Stage Flow Field

    NASA Astrophysics Data System (ADS)

    CAO, Lihua; LIN, Aqiang; LI, Yong; XIAO, Bin

    2017-03-01

    Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam turbine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal design of its structure without consideration of the wet steam condensing flow and the exhaust hood coupled with the front and rear parts. To better understand the aerodynamic performance influenced by the tilt angle of flow guide inside a diffuser, taking a 600 MW steam turbine as an example, a numerical simulator CFX is adopted to solve compressible three-dimensional (3D) Reynolds time-averaged N-S equations and standard k-ɛ turbulence model. And the exhaust hood flow field influenced by different tilt angles of flow guide is investigated with consideration of the wet steam condensing flow and the exhaust hood coupled with the last stage blades and the condenser throat. The result shows that the total pressure loss coefficient and the static pressure recovery coefficient of exhaust hood change regularly and monotonously with the gradual increase of tilt angle of flow guide. When the tilt angle of flow guide is within the range of 30° to 40°, the static pressure recovery coefficient is in the range of 15.27% to 17.03% and the total pressure loss coefficient drops to approximately 51%, the aerodynamic performance of exhaust hood is significantly improved. And the effective enthalpy drop in steam turbine increases by 0.228% to 0.274%. It is feasible to obtain a reasonable title angle of flow guide by the method of coupling the last stage and the condenser throat to exhaust hood in combination of the wet steam model, which provides a practical guidance to flow guide transformation and optimal design in exhaust hood.

  3. Optimum orientation of tilting solar concentrator arrays

    NASA Astrophysics Data System (ADS)

    Harting, E.; Giutronich, J. E.

    1984-01-01

    This note shows that there is a considerable degree of freedom in selecting the orientation of a field of tilting solar concentrators, without changing the path of the sun across the concentrator acceptance angle, and hence without affecting performance. The orientation of a particular array may be chosen to more closely match the natural terrain, thus reducing site preparation costs. Further, a proper choice may improve overall performance in situations where the average daily insolation is asymmetrical about local noon.

  4. Behavior of Tilted Angle Shear Connectors

    PubMed Central

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  5. Rotation Angle for the Optimum Tracking of One-Axis Trackers

    SciTech Connect

    Marion, W. F.; Dobos, A. P.

    2013-07-01

    An equation for the rotation angle for optimum tracking of one-axis trackers is derived along with equations giving the relationships between the rotation angle and the surface tilt and azimuth angles. These equations are useful for improved modeling of the solar radiation available to a collector with tracking constraints and for determining the appropriate motor revolutions for optimum tracking.

  6. Calibration method of tilt and azimuth angles for alignment of TEM tomographic tilt series

    NASA Astrophysics Data System (ADS)

    Hayashida, Misa; Terauchi, Shinya; Fujimoto, Toshiyuki

    2011-10-01

    This paper describes the calibration method of the tilt and azimuth angles of specimen using a digital protractor and a laser autocollimator for alignment of electron tomography. It also suggests an easy method to check whether the specimen is tilted by 180.0°, and whether the azimuth angle is 0.0°; the method involves the use of two images of a rod-shaped specimen collected before and after a 180.0° tilt. The method is based on the assumption that these images are symmetric about the tilt axis when the azimuth angle is 0.0°. In addition, we used an experiment to demonstrate the effect of the incorrect angles on reconstructed images and simulated the image quality against distance away from tilt axis.

  7. LONG-TERM MEASUREMENTS OF SUNSPOT MAGNETIC TILT ANGLES

    SciTech Connect

    Li Jing; Ulrich, Roger K.

    2012-10-20

    Tilt angles of close to 30,600 sunspots are determined using Mount Wilson daily averaged magnetograms taken from 1974 to 2012, and SOHO/MDI magnetograms taken from 1996 to 2010. Within a cycle, more than 90% of sunspots have a normal polarity alignment along the east-west direction following Hale's law. The median tilts increase with increasing latitude (Joy's law) at a rate of {approx}0.{sup 0}5 per degree of latitude. Tilt angles of spots appear largely invariant with respect to time at a given latitude, but they decrease by {approx}0.{sup 0}9 per year on average, a trend that largely reflects Joy's law following the butterfly diagram. We find an asymmetry between the hemispheres in the mean tilt angles. On average, the tilts are greater in the Southern than in the Northern Hemisphere for all latitude zones, and the differences increase with increasing latitude.

  8. Photovoltaic Modules: Effect of Tilt Angle on Soiling

    NASA Astrophysics Data System (ADS)

    Cano, Jose

    2011-12-01

    Photovoltaic (PV) systems are one of the next generation's renewable energy sources for our world energy demand. PV modules are highly reliable. However, in polluted environments, over time, they will collect grime and dust. There are also limited field data studies about soiling losses on PV modules. The study showed how important it is to investigate the effect of tilt angle on soiling. The study includes two sets of mini-modules. Each set has 9 PV modules tilted at 0, 5, 10, 15, 20, 23, 30, 33 and 40°. The first set called "Cleaned" was cleaned every other day. The second set called "Soiled" was never cleaned after the first day. The short circuit current, a measure of irradiance, and module temperature was monitored and recorded every two minutes over three months (January-March 2011). The data were analyzed to investigate the effect of tilt angle on daily and monthly soiling, and hence transmitted solar insolation and energy production by PV modules. The study shows that during the period of January through March 2011 there was an average loss due to soiling of approximately 2.02% for 0° tilt angle. Modules at tilt angles 23° and 33° also have some insolation losses but do not come close to the module at 0° tilt angle. Tilt angle 23° has approximately 1.05% monthly insolation loss, and 33° tilt angle has an insolation loss of approximately 0.96%. The soiling effect is present at any tilt angle, but the magnitude is evident: the flatter the solar module is placed the more energy it will lose.

  9. Automated small tilt-angle measurement using Lau interferometry

    SciTech Connect

    Prakash, Shashi; Singh, Sumitra; Rana, Santosh

    2005-10-01

    A technique for a tilt-angle measurement of reflecting objects based on the Lau interferometry coupled with the moire readout has been proposed. A white-light incoherent source illuminates a set of two gratings, resulting in the generation of the Fresnel image due to the Lau effect. The Fresnel image is projected onto a reflecting object. The image reflected from the object is superimposed onto an identical grating, which results in the formation of a moire fringe pattern. The inclination angle of moire fringes is a function of tilt angle of the object. Theory and experimental arrangement of the proposed technique is presented and results of the investigation are reported.

  10. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong

    2015-10-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  11. On the determination of fiber tilt angles in fiber diffraction.

    PubMed

    Stribeck, Norbert

    2009-01-01

    The common digital method that is used to eliminate the effect of fiber tilt from fiber diffraction patterns is based on an approximation given by Franklin & Gosling [Acta Cryst. (1953), 6, 678-685]. The estimate of the tilt angle is iteratively optimized in the so-called ;Fraser correction'. Building on the fundamental work of Polanyi [Z. Phys. (1921), 7, 149-180], the exact solution is presented.

  12. Optimum take-off angle in the long jump.

    PubMed

    Linthorne, Nicholas P; Guzman, Maurice S; Bridgett, Lisa A

    2005-07-01

    In this study, we found that the optimum take-off angle for a long jumper may be predicted by combining the equation for the range of a projectile in free flight with the measured relations between take-off speed, take-off height and take-off angle for the athlete. The prediction method was evaluated using video measurements of three experienced male long jumpers who performed maximum-effort jumps over a wide range of take-off angles. To produce low take-off angles the athletes used a long and fast run-up, whereas higher take-off angles were produced using a progressively shorter and slower run-up. For all three athletes, the take-off speed decreased and the take-off height increased as the athlete jumped with a higher take-off angle. The calculated optimum take-off angles were in good agreement with the athletes' competition take-off angles.

  13. Tilt angle control of nanocolumns grown by glancing angle sputtering at variable argon pressures

    SciTech Connect

    Garcia-Martin, J. M.; Cebollada, A.; Alvarez, R.; Romero-Gomez, P.; Palmero, A.

    2010-10-25

    We show that the tilt angle of nanostructures obtained by glancing angle sputtering is finely tuned by selecting the adequate argon pressure. At low pressures, a ballistic deposition regime dominates, yielding high directional atoms that form tilted nanocolumns. High pressures lead to a diffusive regime which gives rise to vertical columnar growth. Monte Carlo simulations reproduce the experimental results indicating that the loss of directionality of the sputtered particles in the gas phase, together with the self-shadowing mechanism at the surface, are the main processes responsible for the development of the columns.

  14. The Aurora at Quiet Magnetospheric Conditions: Repeatability and Dipole Tilt Angle Dependence

    DTIC Science & Technology

    1993-03-01

    A tial to variation of the dipole tilt angle. Wu et al. [1991] images of the aurora borealis obtained by Polar BEAR at studied the substorm westward... Aurora at Quiet Magnetospheric Conditions: SRepeatability and Dipole Tilt Angle Dependence PE 62101F _PR 4643 6. AUTHCR(S) TA 11 I. Oznovich*, R.W...tilt angle at quiet magnetospheric conditions? In order to address these questions, northern hemisphere images of the aurora at 1356 A, obtained by

  15. Effect of polymer concentration on stabilized large-tilt-angle flexoelectro-optic switching

    NASA Astrophysics Data System (ADS)

    Broughton, B. J.; Clarke, M. J.; Morris, S. M.; Blatch, A. E.; Coles, H. J.

    2006-01-01

    In this letter, the uniform lying helix (ULH) liquid crystal texture, required for the flexoelectro-optic effect, is polymer stabilized by the addition of a small percentage of reactive mesogen to a high-tilt-angle (φ>60°) bimesogenic chiral nematic host. The electro-optic response is measured for a range of reactive mesogen concentration mixtures, and compared to the large-tilt-angle switch of the pure chiral nematic mixture. The optimum concentration of reactive mesogen, which is found to provide ample stabilization of the texture with minimal impact on the electro-optic response, is found to be approximately 3%. Our results indicate that polymer stabilization of the ULH texture using a very low concentration of reactive mesogen is a reliable way of ruggedizing flexoelectro-optic devices without interfering significantly with the electro-optics of the effect, negating the need for complicated surface alignment patterns or surface-only polymerization. The polymer stabilization is shown to reduce the temperature dependence of the flexoelectro-optic response due to ``pinning'' of the chiral nematic helical pitch. This is a restriction of the characteristic thermochromic behavior of the chiral nematic. Furthermore, selection of the temperature at which the sample is ultraviolet cured allows the tilt angle to be optimized for the entire chiral nematic temperature range. The response time, however, remains more sensitive to operating temperature than curing temperature. This allows the sample to be cured at low temperature and operated at high temperature, providing simultaneous optimization of these two previously antagonistic performance aspects.

  16. Sunspot group tilt angles and the strength of the solar cycle

    NASA Astrophysics Data System (ADS)

    Dasi-Espuig, M.; Solanki, S. K.; Krivova, N. A.; Cameron, R.; Peñuela, T.

    2010-07-01

    Context. It is well known that the tilt angles of active regions increase with their latitude (Joy's law). It has never been checked before, however, whether the average tilt angles change from one cycle to the next. Flux transport models show the importance of tilt angles for the reversal and build up of magnetic flux at the poles, which is in turn correlated to the strength of the next cycle. Aims: Here we analyse time series of tilt angle measurements and look for a possible relationship of the tilt angles with other solar cycle parameters, in order to glean information on the solar dynamo and to estimate their potential for predicting solar activity. Methods: We employed tilt angle data from Mount Wilson and Kodaikanal observatories covering solar cycles 15 to 21. We analyse the latitudinal distribution of the tilt angles (Joy's law), their variation from cycle to cycle, and their relationship to other solar cycle parameters, such as the strength (or total area covered by sunspots in a cycle), amplitude, and length. Results: The two main results of our analysis follow. 1. We find an anti-correlation between the mean normalised tilt angle of a given cycle and the strength (or amplitude) of that cycle, with a correlation coefficient of rc = -0.95 (99.9% confidence level) and rc = -0.93 (99.76% confidence level) for Mount Wilson and Kodaikanal data, respectively. 2. The product of the cycle's averaged tilt angle and the strength of the same cycle displays a significant correlation with the strength of the next cycle (rc = 0.65 at 89% confidence level and rc = 0.70 at 92% confidence level for Mount Wilson and Kodaikanal data, respectively). An even better correlation is obtained between the source term of the poloidal flux in Babcock-Leighton-type dynamos (which contains the tilt angle) and the amplitude of the next cycle. Further we confirm the linear relationship (Joy's law) between the tilt angle and latitude with slopes of 0.26 and 0.28 for Mount Wilson and

  17. Sun angles and shading analysis for surfaces at any tilt or azimuth

    SciTech Connect

    Sharp, K.

    1981-01-01

    The solution of the geometric relationships pertinent to an analysis of the shading of a surface at any tilt or azimuth is presented. The approach taken was to use a rotational matrix to convert the solar position relative to the earth to solar position relative to the tilted surface. The derived sun angles are the three components of the angle of incidence of beam radiation in an orthogonal cartesian coordinate system relative to the normal to the tilted surface. Shading factors are developed from these angles for overhangs and side fins of restricted geometry. The algorithms are especially suited to programmable calculator use.

  18. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    SciTech Connect

    McClintock, B. H.; Norton, A. A.; Li, J. E-mail: aanorton@stanford.edu

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude of umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.

  19. Sunspot areas and tilt angles for solar cycles 7-10

    NASA Astrophysics Data System (ADS)

    Senthamizh Pavai, V.; Arlt, R.; Dasi-Espuig, M.; Krivova, N. A.; Solanki, S. K.

    2015-12-01

    Aims: Extending the knowledge about the properties of solar cycles into the past is essential for understanding the solar dynamo. This paper aims to estimate areas of sunspots observed by Schwabe in 1825-1867 and to calculate the tilt angles of sunspot groups. Methods: The sunspot sizes in Schwabe's drawings are not to scale and need to be converted into physical sunspot areas. We employed a statistical approach assuming that the area distribution of sunspots was the same in the 19th century as it was in the 20th century. Results: Umbral areas for about 130 000 sunspots observed by Schwabe were obtained, as well as the tilt angles of sunspot groups assuming them to be bipolar. There is, of course, no polarity information in the observations. The annually averaged sunspot areas correlate reasonably with sunspot number. We derived an average tilt angle by attempting to exclude unipolar groups with a minimum separation of the two alleged polarities and an outlier rejection method which follows the evolution of each group and detects the moment it turns unipolar at its decay. As a result, the tilt angles, although displaying considerable scatter, average to 5̊.85 ± 0, with the leading polarity located closer to the equator, in good agreement with tilt angles obtained from 20th century data sets. Sources of uncertainties in the tilt angle determination are discussed and need to be addressed whenever different data sets are combined. The sunspot area and tilt angle data are provided at the CDS. The sunspot area and tilt angle data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A73

  20. Optimum Projection Angle for Attaining Maximum Distance in a Soccer Punt Kick

    PubMed Central

    Linthorne, Nicholas P.; Patel, Dipesh S.

    2011-01-01

    To produce the greatest horizontal distance in a punt kick the ball must be projected at an appropriate angle. Here, we investigated the optimum projection angle that maximises the distance attained in a punt kick by a soccer goalkeeper. Two male players performed many maximum-effort kicks using projection angles of between 10° and 90°. The kicks were recorded by a video camera at 100 Hz and a 2 D biomechanical analysis was conducted to obtain measures of the projection velocity, projection angle, projection height, ball spin rate, and foot velocity at impact. The player’s optimum projection angle was calculated by substituting mathematical equations for the relationships between the projection variables into the equations for the aerodynamic flight of a soccer ball. The calculated optimum projection angles were in agreement with the player’s preferred projection angles (40° and 44°). In projectile sports even a small dependence of projection velocity on projection angle is sufficient to produce a substantial shift in the optimum projection angle away from 45°. In the punt kicks studied here, the optimum projection angle was close to 45° because the projection velocity of the ball remained almost constant across all projection angles. This result is in contrast to throwing and jumping for maximum distance, where the projection velocity the athlete is able to achieve decreases substantially with increasing projection angle and so the optimum projection angle is well below 45°. Key points The optimum projection angle that maximizes the distance of a punt kick by a soccer goalkeeper is about 45°. The optimum projection angle is close to 45° because the projection velocity of the ball is almost the same at all projection angles. This result is in contrast to throwing and jumping for maximum distance, where the optimum projection angle is well below 45° because the projection velocity the athlete is able to achieve decreases substantially with increasing

  1. Comparison of Debrecen and Mount Wilson/Kodaikanal sunspot group tilt angles and the Joy's law

    NASA Astrophysics Data System (ADS)

    Baranyi, T.

    2015-02-01

    The study of active region tilt angles and their variations in different time-scales plays an important role in revealing the subsurface dynamics of magnetic flux ropes and in understanding the dynamo mechanism. In order to reveal the exact characteristics of tilt angles, precise long-term tilt angle data bases are needed. However, there are only a few different data sets at present, which are difficult to be compared and cross-calibrate because of their substantial deviations. In this paper, we describe new tilt angle data bases derived from the Debrecen Photoheliographic Data (DPD) (1974-) and from the SOHO/MDI-Debrecen Data (SDD) (1996-2010) sunspot catalogues. We compare them with the traditional sunspot group tilt angle data bases of Mount Wilson Observatory (1917-85) and Kodaikanal Solar Observatory (1906-87) and we analyse the deviations. Various methods and filters are investigated which may improve the sample of data and may help in deriving better results based on combined data. As a demonstration of the enhanced quality of the improved data set a refined diagram of Joy's law is presented.

  2. Optimum Projection Angle for Attaining Maximum Distance in a Rugby Place Kick

    PubMed Central

    Linthorne, Nicholas P.; Stokes, Thomas G.

    2014-01-01

    This study investigated the effect of projection angle on the distance attained in a rugby place kick. A male rugby player performed 49 maximum-effort kicks using projection angles of between 20 and 50°. The kicks were recorded by a video camera at 50 Hz and a 2 D biomechanical analysis was conducted to obtain measures of the projection velocity and projection angle of the ball. The player’s optimum projection angle was calculated by substituting a mathematical expression for the relationship between projection velocity and projection angle into the equations for the aerodynamic flight of a rugby ball. We found that the player’s calculated optimum projection angle (30.6°, 95% confidence limits ± 1.9°) was in close agreement with his preferred projection angle (mean value 30.8°, 95% confidence limits ± 2.1°). The player’s calculated optimum projection angle was also similar to projection angles previously reported for skilled rugby players. The optimum projection angle in a rugby place kick is considerably less than 45° because the projection velocity that a player can produce decreases substantially as projection angle is increased. Aerodynamic forces and the requirement to clear the crossbar have little effect on the optimum projection angle. Key Points The optimum projection angle in a rugby place kick is about 30°. The optimum projection angle is considerably less than 45° because the projection velocity that a player can produce decreases substantially as projection angle is increased. Aerodynamic forces and the requirement to clear the crossbar have little effect on the optimum projection angle. PMID:24570626

  3. Tilt Angle and Footpoint Separation of Small and Large Bipolar Sunspot Regions Observed with HMI

    NASA Astrophysics Data System (ADS)

    McClintock, B. H.; Norton, A. A.

    2016-02-01

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. (2015) results that the sunspots appear to be two distinct populations.

  4. TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI

    SciTech Connect

    McClintock, B. H.; Norton, A. A. E-mail: aanorton@stanford.edu

    2016-02-10

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations.

  5. ACTIVE-REGION TILT ANGLES: MAGNETIC VERSUS WHITE-LIGHT DETERMINATIONS OF JOY'S LAW

    SciTech Connect

    Wang, Y.-M.; Colaninno, R. C.; Baranyi, T.; Li, J. E-mail: robin.colaninno@nrl.navy.mil E-mail: jli@igpp.ucla.edu

    2015-01-01

    The axes of solar active regions are inclined relative to the east-west direction, with the tilt angle tending to increase with latitude ({sup J}oy's law{sup )}. Observational determinations of Joy's law have been based either on white-light images of sunspot groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magnetic data. We confirm this effect by comparing sunspot-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21-23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light ''tilt angles'' refer to sunspots of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent sunspots. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16-23.

  6. 'Abnormal' angle response curves of TW/Rs for near zero tilt and high tilt channeling implants

    SciTech Connect

    Guo Baonian; Gossmann, Hans-Joachim; Toh, Terry; Colombeau, Benjamin; Todorov, Stan; Sinclair, Frank; Shim, Kyu-Ha; Henry, Todd

    2012-11-06

    Angle control has been widely accepted as the key requirement for ion implantation in semiconductor device processing. From an ion implanter point of view, the incident ion direction should be measured and corrected by suitable techniques, such as XP-VPS for the VIISta implanter platform, to ensure precision ion placement in device structures. So called V-curves have been adopted to generate the wafer-based calibration using channeling effects as the Si lattice steer ions into a channeling direction. Thermal Wave (TW) or sheet resistance (Rs) can be used to determine the minimum of the angle response curve. Normally it is expected that the TW and Rs have their respective minima at identical angles. However, the TW and Rs response to the angle variations does depend on factors such as implant species, dose, and wafer temperature. Implant damage accumulation effects have to be considered for data interpretation especially for some 'abnormal' V-curve data. In this paper we will discuss some observed 'abnormal' angle responses, such as a) TW/Rs reverse trend for Arsenic beam, 2) 'W' shape of Rs Boron, and 3) apparent TW/Rs minimum difference for high tilt characterization, along with experimental data and TCAD simulations.

  7. VizieR Online Data Catalog: Scheiner drawing sunspot areas and tilt angles (Arlt+, 2016)

    NASA Astrophysics Data System (ADS)

    Arlt, R.; Senthamizh Pavai, V.; Schmiel, C.; Spada, F.

    2016-09-01

    Christoph Scheiner and his collaborators observed the sunspots from 1611-1631 at five different locations of Rome in Italy, Ingolstadt in Germany, Douai (Duacum in Latin) in France, Freiburg im Breisgau, Germany and Vienna, Austria. However, most of his published drawings were made in Rome. These sunspot drawings are important because they can tell us how the solar activity declined to a very low-activity phase which lasted for nearly five decades. The three sources used for the sunspot data extraction are Scheiner (1630rour.book.....S, Rosa Ursina sive solis), Scheiner (1651ppsm.book.....S, Prodromus pro sole mobili et terra stabili contra Academicum Florentinum Galilaeum a Galilaeis), and Reeves & Van Helden (2010, On sunspots. Galileo Galilei and Christoph Scheiner (University of Chicago Press)). The suspot drawings show the sunspot groups traversing the solar disk in a single full-disk drawing. The positions and areas of the sunspots were measured using 13 circular cursor shapes with different diameters. Umbral areas for 8167 sunspots and tilt angles for 697 manually selected, supposedly bipolar groups were obtained from Scheiner's sunspot drawings. The database does not contain spotless days. There is, of course, no polarity information in the sunspot drawings, so the tilt angles are actually pseudo-tilt angles. Both an updated sunspot database and a tilt angle database may be available at http://www.aip.de/Members/rarlt/sunspots for further study. (2 data files).

  8. A field calibration method to eliminate the error caused by relative tilt on roll angle measurement

    NASA Astrophysics Data System (ADS)

    Qi, Jingya; Wang, Zhao; Huang, Junhui; Yu, Bao; Gao, Jianmin

    2016-11-01

    The roll angle measurement method based on a heterodyne interferometer is an efficient technique for its high precision and environmental noise immunity. The optical layout bases on a polarization-assisted conversion of the roll angle into an optical phase shift, read by a beam passing through the objective plate actuated by the roll rotation. The measurement sensitivity or the gain coefficient G is calibrated before. However, a relative tilt between the laser and objective plate always exist due to the tilt of the laser and the roll of the guide in the field long rail measurement. The relative tilt affect the value of G, thus result in the roll angle measurement error. In this paper, a method for field calibration of G is presented to eliminate the measurement error above. The field calibration layout turns the roll angle into an optical path change (OPC) by a rotary table. Thus, the roll angle can be obtained from the OPC read by a two-frequency interferometer. Together with the phase shift, an accurate G in field measurement can be obtained and the measurement error can be corrected. The optical system of the field calibration method is set up and the experiment results are given. Contrasted with the Renishaw XL-80 for calibration, the proposed field calibration method can obtain the accurate G in the field rail roll angle measurement.

  9. Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins.

    PubMed Central

    Tristram-Nagle, S; Zhang, R; Suter, R M; Worthington, C R; Sun, W J; Nagle, J F

    1993-01-01

    The tilt angle theta tilt of the hydrocarbon chains has been determined for fully hydrated gel phase of a series of saturated lecithins. Oriented samples were prepared on glass substrates and hydrated with supersaturated water vapor. Evidence for full hydration was the same intensity pattern of the low angle lamellar peaks and the same lamellar repeat D as unoriented multilamellar vesicles. Tilting the sample permitted observation of all the wide angle arcs necessary to verify the theoretical diffraction pattern corresponding to tilting of the chains towards nearest neighbors. The length of the scattering unit corresponds to two hydrocarbon chains, requiring each bilayer to scatter coherently rather than each monolayer. For DPPC, theta tilt was determined to be 32.0 +/- 0.5 degrees at 19 degrees C, slightly larger than previous direct determinations and considerably smaller than the value required by recent gravimetric measurements. This new value allows more accurate determinations of a variety of structural parameters, such as area per lipid molecule, A = 47.2 +/- 0.5 A2, and number of water molecules of hydration, nw = 11.8 +/- 0.7. As the chain length n of the lipids was increased from 16 to 20 carbons, the parameters A and nw remained constant, suggesting that the headgroup packing is at its excluded volume limit for this range. However, theta tilt increased by 3 degrees and the chain area Ac decreased by 0.5 A2. This behavior is explained in terms of a competition between a bulk free energy term and a finite or end effect term. Images FIGURE 6 FIGURE 7 PMID:8494973

  10. Optimum Strategies for Selecting Descent Flight-Path Angles

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)

    2016-01-01

    An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.

  11. Tilted angle CZT detector for photon counting/energy weighting x-ray and CT imaging.

    PubMed

    Shikhaliev, Polad M

    2006-09-07

    X-ray imaging with a photon counting/energy weighting detector can provide the highest signal to noise ratio (SNR). Scanning slit/multi-slit x-ray image acquisition can provide a dose-efficient scatter rejection, which increases SNR. Use of a photon counting/energy weighting detector in a scanning slit/multi-slit acquisition geometry could provide highest possible dose efficiency in x-ray and CT imaging. Currently, the most advanced photon counting detector is the cadmium zinc telluride (CZT) detector, which, however, is suboptimal for energy resolved x-ray imaging. A tilted angle CZT detector is proposed in this work for applications in photon counting/energy weighting x-ray and CT imaging. In tilted angle configuration, the x-ray beam hits the surface of the linear array of CZT crystals at a small angle. This allows the use of CZT crystals of a small thickness while maintaining the high photon absorption. Small thickness CZT detectors allow for a significant decrease in the polarization effect in the CZT volume and an increase in count rate. The tilted angle CZT with a small thickness also provides higher spatial and energy resolution, and shorter charge collection time, which potentially enables fast energy resolving x-ray image acquisition. In this work, the major performance parameters of the tilted angle CZT detector, including its count rate, spatial resolution and energy resolution, were evaluated. It was shown that for a CZT detector with a 0.7 mm thickness and 13 degrees tilting angle, the maximum count rate can be increased by 10.7 times, while photon absorption remains >90% at photon energies up to 120 keV. Photon counting/energy weighting x-ray imaging using a tilted angle CZT detector was simulated. SNR improvement due to optimal photon energy weighting was 23% and 14% when adipose contrast element, inserted in soft tissue with 10 cm and 20 cm thickness, respectively, was imaged using 5 energy bins and weighting factors optimized for the adipose. SNR

  12. Development of empirical correlation of peak friction angle with surface roughness of discontinuities using tilt test

    NASA Astrophysics Data System (ADS)

    Serasa, Ailie Sofyiana; Lai, Goh Thian; Rafek, Abdul Ghani; Simon, Norbert; Hussein, Azimah; Ern, Lee Khai; Surip, Noraini; Mohamed, Tuan Rusli

    2016-11-01

    The significant influence of surface roughness of discontinuity surfaces is a quantity that is fundamental to the understanding of shear strength of geological discontinuities. This is due to reason that the shear strength of geological discontinuities greatly influenced the mechanical behavior of a rock mass especially in stability evaluation of tunnel, foundation, and natural slopes. In evaluating the stability of these structures, the study of peak friction angle (Φpeak) of rough discontinuity surfaces has become more prominent seeing that the shear strength is a pivotal factor causing failures. The measurement of peak friction angle however, requires an extensive series of laboratory tests which are both time and cost demanding. With that in mind, this publication presents an approach in the form of an experimentally determined polynomial equation to estimate peak friction angle of limestone discontinuity surfaces by measuring the Joint Roughness Coefficient (JRC) values from tilt tests, and applying the fore mentioned empirical correlation. A total of 1967 tilt tests and JRC measurements were conducted in the laboratory to determine the peak friction angles of rough limestone discontinuity surfaces. A polynomial equation of ɸpeak = -0.0635JRC2 + 3.95JRC + 25.2 that exhibited 0.99 coefficient of determination (R2) were obtained from the correlation of JRC and peak friction angles. The proposed correlation offers a practical method for estimation of peak friction angles of rough discontinuity surfaces of limestone from measurement of JRC in the field.

  13. Dislocation structures and electrical conduction properties of low angle tilt grain boundaries in LiNbO3

    NASA Astrophysics Data System (ADS)

    Furushima, Yuho; Nakamura, Atsutomo; Tochigi, Eita; Ikuhara, Yuichi; Toyoura, Kazuaki; Matsunaga, Katsuyuki

    2016-10-01

    Dislocations in crystalline materials constitute unique, atomic-scale, one-dimensional structure and have a potential to induce peculiar physical properties that are not found in the bulk. In this study, we fabricated LiNbO3 bicrystals with low angle tilt grain boundaries and investigated the relationship between the atomic structure of the boundary dislocations and their electrical conduction properties. Observations by using transmission electron microscopy revealed that dislocation structures at the (0001) low angle tilt grain boundaries depend on the tilt angle of the boundaries. Specifically, the characteristic dislocation structures with a large Burgers vector were formed in the boundary with the tilt angle of 2°. It is noteworthy that only the grain boundary of 2° exhibits distinct electrical conductivity after reduction treatment, although LiNbO3 is originally insulating. This unique electrical conductivity is suggested to be due to the characteristic dislocation structures with a large Burgers vector.

  14. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    SciTech Connect

    Jiang, J.; Cameron, R. H.; Schüssler, M.

    2014-08-10

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input based upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.

  15. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    PubMed

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  16. A literature review on optimum and preferred joint angles in automotive sitting posture.

    PubMed

    Schmidt, Susanne; Amereller, Maximilian; Franz, Matthias; Kaiser, Ralf; Schwirtz, Ansgar

    2014-03-01

    In this study, a survey of the scientific literature in the field of optimum and preferred human joint angles in automotive sitting posture was conducted by referring to thirty different sources published between 1940 and today. The strategy was to use only sources with numerical angle data in combination with keywords. The aim of the research was to detect commonly used joint angles in interior car design. The main analysis was on data measurement, usability and comparability of the different studies. In addition, the focus was on the reasons for the differently described results. It was found that there is still a lack of information in methodology and description of background. Due to these reasons published data is not always usable to design a modern ergonomic car environment. As a main result of our literature analysis we suggest undertaking further research in the field of biomechanics and ergonomics to work out scientific based and objectively determined "optimum" joint angles in automotive sitting position.

  17. The effects of different types of automated inclining bed and tilt angle on body-pressure redistribution.

    PubMed

    Yi, Chung-Hwi; Kim, Han-Sung; Yoo, Won-Gyu; Kim, Min-Hee; Kwon, Oh-Yun

    2009-06-01

    The damage caused by pressure in bedridden hospitalized patients is attributable to the body tissues becoming compressed against bony prominences, which results in poor capillary perfusion. Automated inclining beds were developed in this study to assist patients in repositioning, with the aim of quantifying the effects of 3 types of bed (bed 1, 1-axis tilting; bed 2, 1-axis and 2-segment tilting; and bed 3, 2-axis and 3-segment tilting) and 3 tilt angles (10, 15, and 20 degrees upward from the horizontal) on body-pressure redistribution. Twenty healthy subjects (14 men and 6 women) aged 21 to 26 years were recruited from the Yonsei University student population (mean [SD]: height, 164.0 cm [5.5 cm]; weight, 58.7 kg [7.3 kg]). A body-pressure measurement system was used to analyze the pressure distributions of the human body for the different bed types and tilt angles. The results showed that pressure reduction was significantly greater for bed 2 than for beds 1 and 3, and for tilt angles of 15 and 20 degrees upward. The highest pressure reduction was found for bed 2, with a tilt angle of 20 degrees upward from the horizontal.

  18. Point defect sink efficiency of low-angle tilt grain boundaries

    NASA Astrophysics Data System (ADS)

    Gu, Yejun; Han, Jian; Dai, Shuyang; Zhu, Yichao; Xiang, Yang; Srolovitz, David J.

    We examine the common assumption that grain boundaries (GBs) are ideal (or perfect) sinks for point defects by comparing and contrasting its implications with an explicit model of a low-angle tilt GB described by an array of edge dislocations which annihilate point defects by climbing. We solve the resultant diffusion equation in the absence and presence of irradiation-induced point defects. The GB sink efficiency depends on the physical parameters describing the boundary geometry (i.e., misorientation), material properties, and/or irradiation conditions (point defect generation and annihilation within the interior of grains). When the constituent dislocation spacing is small (large misorientation), the GB sink efficiency approaches that of the ideal sink. However, for small misorientations, the GB sink efficiency drops rapidly to zero and the ideal sink assumption for the GB fails dramatically. We derive a reduced dimension description of GBs where the influence of GB structure is captured in a single parameter in a Robin boundary condition for the diffusion equation. For the case of a low-angle tilt GB, we explicitly relate this parameter to the GB structure. We discuss the generality of this approach for cases where the low-angle GB model applies and parameterize the model so that it accurately reproduces the results of the two-dimensional dislocation model. The applicability of the approach to more general GBs is discussed as well as the implication of these results for predicting grain size effects under irradiation conditions.

  19. Solar heat gain coefficient of complex fenestrations with a venetian blind for differing slat tilt angles

    SciTech Connect

    Klems, J.H.; Warner, J.L.

    1996-08-01

    Measured bidirectional transmittances and reflectances of a buff-colored venetian blind together with a layer calculation scheme developed in previous publications are utilized to produce directional-hemispherical properties for the venetian blind layer and solar heat gain coefficients for the blind in combination with clear double glazing. Results are presented for three blind slat tilt angles and for the blind mounted either interior to the double glazing or between the glass panes. Implications of the results for solar heat gain calculations are discussed in the context of sun positions for St. Louis, MO.

  20. A refractive tilting-plate technique for measurement of dynamic contact angles.

    PubMed

    Smedley, Gregory T; Coles, Donald E

    2005-06-01

    The contact angle is a critical parameter in liquid interface dynamics ranging from liquid spreading on a solid surface on earth to liquid motion in partially filled containers in space. A refractive tilting-plate technique employing a scanning laser beam is developed to conduct an experimental study of a moving contact line, with the intention of making accurate measurements of the contact angle. The technique shows promise as an accurate and potentially fully automated means to determine the velocity dependence of the contact angle at the intersection of the interface between two transparent fluids with a transparent solid surface. Ray tracing calculations are included to reinforce the measurement concept. The principal experiments were conducted at speeds ranging from 0.05 to 1.00 mm/s, both advancing and receding, using an immiscible liquid pair (nonane/formamide) in contact with glass. The contact angle was found to depend for practical purposes only on the sign of the velocity and not on its magnitude for the range of velocities studied. Other observations revealed a bimodal behavior of the contact line that depends on which liquid first contacts the glass, with resulting drift in the dynamic contact angle with time.

  1. VizieR Online Data Catalog: Sunspot areas and tilt angles (Senthamizh Pavai+, 2015)

    NASA Astrophysics Data System (ADS)

    Senthamizh Pavai, V.; Arlt, R.; Dasi-Espuig, M.; Krivova, N.; Solanki, S.

    2015-11-01

    We present sunspot positions and areas from historical observations of sunspots by Samuel Heinrich Schwabe from Dessau, Germany. He has recorded his observations of sunspots from 1825-1867 as drawings in small circles of about 5cm diameter (representing the solar disk). Even though he has used quite a number of telescopes for his observations, the majority of the full-disk drawings were made with a 3-1/2-foot telescope from Fraunhofer. His observing log books are stored in the library of the Royal Astronomical Society in London. Those drawings were digitized photographically with a resolution of 2912x4378 pixels per page. The sizes and positions of the sunspots were measured using a dozen of circular mouse cursor shapes with different diameters. The sunspot sizes in Schwabe's drawings are not to scale and need to be converted into physical sunspot areas. We employed a statistical approach assuming that the area distribution of sunspots was the same in the 19th century as it was in the 20th century. Umbral areas for about 130,000 sunspots observed by Schwabe were obtained, as well as the tilt angles of sunspot groups assuming them to be bipolar (two or more spots). There is, of course, no polarity information in the observations. Both an updated sunspot database and a tilt angle database are available at http://www.aip.de/Members/rarlt/ sunspots for further study. (2 data files).

  2. Emission angle dependence of fission fragment spin: Effects of single particle spin and tilting mode

    NASA Astrophysics Data System (ADS)

    Datta, T.; Naik, H.; Dange, S. P.

    1995-06-01

    The high-spin yield fraction (HSF) for the fission product 132Im,g has been measured as a function of fragment emission angle (90° >=Θ>=10°) in the 237Np(α29 MeV,f) system. It was seen that the HSF for 132I or corresponding fragment (~=134I) spin initially decreases as emission angle decreases from 90° to ~=45° and then steadily increases at lower angles (Θ<45°). Contrary to the present observation in odd-Z 241Am fission, earlier we had observed that fragment spin continuously decreases to a limit with decrease in emission angle from 90° to 20° in even-even 242Pu fission. These data have been analyzed in the framework of the collective mode model invoking the effect of single particle spin. It is seen that for an odd-Z or A fissioning nucleus, angular variation of fragment spin could be accounted for on the basis of coupling between the odd nucleon spin (j>=k~=4ħ) projections and spin due to the collective rotational (tilting) degrees. Collective rotational degrees govern fragment spin for even-even fissioning nucleus.

  3. Accurate measurement of relative tilt and azimuth angles in electron tomography: A comparison of fiducial marker method with electron diffraction

    SciTech Connect

    Hayashida, Misa; Malac, Marek; Egerton, Ray F.; Bergen, Michael; Li, Peng

    2014-08-15

    Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy of the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.

  4. Accurate measurement of relative tilt and azimuth angles in electron tomography: a comparison of fiducial marker method with electron diffraction.

    PubMed

    Hayashida, Misa; Malac, Marek; Bergen, Michael; Egerton, Ray F; Li, Peng

    2014-08-01

    Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy of the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.

  5. Response properties of gerbil otolith afferents to small angle pitch and roll tilts

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Angelaki, D. E.; Correia, M. J.

    1991-01-01

    The responses from isolated single otolith afferent fibers were obtained to small angle sinusoidal pitch and roll tilts in anesthetized gerbils. The stimulus directions that produced the maximum (response vector) and minimum response sensitivities were determined for each otolith afferent, with response vectors for the units being spread throughout the horizontal plane, similar to those reported for other species. A breadth of tuning measure was derived, with narrowly tuned neurons responding maximally to stimulation in one direction and minimally along an orthogonal ('null') direction. Most (approximately 80%) otolith afferents are narrowly tuned, however, some fibers were broadly tuned responding significantly to stimulations in any direction in the horizontal plane. The number of broadly tuned otolith afferents (approximately 20%) differs significantly from the more substantial number of broadly tuned vestibular nuclei neurons (88%) recently reported in rats.

  6. Nanoscopic mechanism of Cu precipitation at small-angle tilt boundaries in Si

    NASA Astrophysics Data System (ADS)

    Ohno, Yutaka; Inoue, Kaihei; Kutsukake, Kentaro; Deura, Momoko; Ohsawa, Takayuki; Yonenaga, Ichiro; Yoshida, Hideto; Takeda, Seiji; Taniguchi, Ryo; Otubo, Hideki; Nishitani, Sigeto R.; Ebisawa, Naoki; Shimizu, Yasuo; Takamizawa, Hisashi; Inoue, Koji; Nagai, Yasuyoshi

    2015-06-01

    We investigate copper (Cu) precipitation at small-angle tilt boundaries on (220) in Czochralski-grown p-type silicon (Si) ingots using transmission electron microscopy, atom probe tomography, and ab initio calculations. In the initial stage of precipitation, Cu atoms agglomerate along the boundaries, forming coherent layers (less than about 2 nm thick) of Cu3Si with a body-centered-cubic structure in a metastable state (a =0.285 nm). As the layers thicken, they become semicoherent with misfit dislocations on the (220) interphase boundaries, reducing coherency strains. Subsequently, the metastable layers convert into incoherent polyhedrons of orthorhombic η''-Cu3Si in the equilibrium state, forming interphase boundaries on {112} in Si. These results are similar to the Cu precipitation processes found in metallic alloys: the formation of Guinier-Preston zones followed by a conversion into the equilibrium θ phase.

  7. Sunspot positions, areas, and group tilt angles for 1611-1631 from observations by Christoph Scheiner

    NASA Astrophysics Data System (ADS)

    Arlt, R.; Senthamizh Pavai, V.; Schmiel, C.; Spada, F.

    2016-11-01

    Aims: Digital images of observations printed in the books Rosa Ursina sive solis and Prodromus pro sole mobili by Christoph Scheiner, as well as the drawings from Scheiner's letters to Marcus Welser, are analysed to obtain information on the positions and sizes of sunspots that appeared before the Maunder minimum. Methods: In most cases, the given orientation of the ecliptic is used to set up the heliographic coordinate system for the drawings. Positions and sizes are measured manually on screen. Very early drawings have no indication of their orientation. A rotational matching using common spots of adjacent days is used in some cases, while in other cases, the assumption that images were aligned with a zenith-horizon coordinate system appeared to be the most probable. Results: In total, 8167 sunspots were measured. A distribution of sunspot latitudes versus time (butterfly diagram) is obtained for Scheiner's observations. The observations of 1611 are very inaccurate, the drawings of 1612 have at least an indication of their orientation, while the remaining part of the spot positions from 1618-1631 have good to very good accuracy. We also computed 697 tilt angles of apparently bipolar sunspot groups observed in the period 1618-1631. We find that the average tilt angle of nearly 4 degrees is not significantly different from 20th-century values. Data on the sunspot position and area are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A104

  8. Using Ultrasonography to Determine Optimal Head-down Tilt Position Angle in Patients before Catheterization of the Internal Jugular Vein

    PubMed Central

    Kasatkin, Anton A.; Urakov, Aleksandr L.; Nigmatullina, Anna R.

    2017-01-01

    Context: It is believed that 15°–25° head-down tilt position increases the internal jugular vein cross-sectional area (IJV CSA). The increase in IJV CSA before puncture reduces the risk of its perforation. This pattern was not observed in all patients. We assumed that the absence of respiratory-based IJV excursion is one of the criteria of head-down tilt position effectiveness. Aims: The aim of this study is to determine the head-down tilt angle, which ensures the absence of the respiratory-based IJV excursion. Subjects and Methods: Prospective study included twenty adult patients. The IJVs scanning was carried out in 1 min after placing the patients in a horizontal position on their back and in 1 min after placing them in the head-down tilt position at 5°, 10°, 15°, and 20° tilt angles. Results: We found that collapsibility index of <9% indicating the absence of respiratory-based IJV excursion was recorded in 25% of patients in the horizontal supine position. In this case, placing the patients in the Trendelenburg position for IJV catheterization may not be indicated. In 65% of the patients, the respiratory-based excursion was not observed at 10° head-down tilt position. Only 35% of the patients required 15° head-down tilt position. Conclusions: In clinical settings, the disappearance of respiratory-based vein excursion on the ultrasound scanner screen can be considered as criteria of the head-down tilt position effectiveness.

  9. Simultaneous piston position and tilt angle sensing for large vertical displacement micromirrors by frequency detection inductive sensing

    NASA Astrophysics Data System (ADS)

    Tseng, V. F.-G.; Xie, H.

    2015-11-01

    This paper presents a frequency detection based inductive eddy current sensing mechanism to simultaneously sense the piston position and tilt angle of the mirror plate of large vertical displacement micromirrors that exhibit piston scan ranges above 100 μm. This is accomplished by sensing the inductance change, and thus resonant frequency shift, of two microfabricated sensing coils packaged underneath the mirror plate. For demonstration purpose, the coils were paired with discrete circuit components to oscillate at 11.9 MHz and 12.5 MHz, respectively. The piston position and tilt angle of the mirror plate could be simultaneously monitored over a 500 μm piston scan range, achieving a maximum piston sensitivity of 4.15 kHz/μm with a piston sensing resolution of 96 nm and a maximum tilt angle sensitivity of 60.5 kHz/° with a tilt angle sensing resolution of 0.0013°. Analytical modeling of the coil inductance change via image theory was also conducted, showing that the sensor sensitivity and resolution could be improved by increasing the coil oscillation frequency and decreasing the coil size.

  10. Development of intelligent model to determine favorable wheelchair tilt and recline angles for people with spinal cord injury.

    PubMed

    Fu, Jicheng; Jan, Yih-Kuen; Jones, Maria

    2011-01-01

    Machine-learning techniques have found widespread applications in bioinformatics. Such techniques provide invaluable insight on understanding the complex biomedical mechanisms and predicting the optimal individualized intervention for patients. In our case, we are particularly interested in developing an individualized clinical guideline on wheelchair tilt and recline usage for people with spinal cord injury (SCI). The current clinical practice suggests uniform settings to all patients. However, our previous study revealed that the response of skin blood flow to wheelchair tilt and recline settings varied largely among patients. Our finding suggests that an individualized setting is needed for people with SCI to maximally utilize the residual neurological function to reduce pressure ulcer risk. In order to achieve this goal, we intend to develop an intelligent model to determine the favorable wheelchair usage to reduce pressure ulcers risk for wheelchair users with SCI. In this study, we use artificial neural networks (ANNs) to construct an intelligent model that can predict whether a given tilt and recline setting will be favorable to people with SCI based on neurological functions and SCI injury history. Our results indicate that the intelligent model significantly outperforms the traditional statistical approach in accurately classifying favorable wheelchair tilt and recline settings. To the best of our knowledge, this is the first study using intelligent models to predict the favorable wheelchair tilt and recline angles. Our methods demonstrate the feasibility of using ANN to develop individualized wheelchair tilt and recline guidance for people with SCI.

  11. Altitude and airspeed effects on the optimum synchrophase angles for a four-engine propeller aircraft

    NASA Astrophysics Data System (ADS)

    Blunt, David M.

    2014-08-01

    Noise and vibration is a serious problem in all types of aircraft. Any techniques that lower cabin noise and vibration levels by even a few decibels with little or no weight or performance penalties are worth pursuing. Propeller synchrophasing is one such technique that has shown potential in aircraft with two or more propellers; however this technique is not being used to its full potential because the synchrophase angles are typically fixed. This paper provides a detailed examination of how the optimum synchrophase angles in a typical four-engine propeller aircraft vary with different altitudes and airspeeds, and how this information could lead to the design of new adaptive propeller synchrophasing systems and potentially yield improvements to other active noise control measures in propeller aircraft.

  12. Notebook computer use with different monitor tilt angle: effects on posture, muscle activity and discomfort of neck pain users.

    PubMed

    Chiou, Wen-Ko; Chou, Wei-Ying; Chen, Bi-Hui

    2012-01-01

    This study aimed to evaluate the posture, muscle activities, and self reported discomforts of neck pain notebook computer users on three monitor tilt conditions: 100°, 115°, and 130°. Six subjects were recruited in this study to completed typing tasks. Results showed subjects have a trend to show the forward head posture in the condition that monitor was set at 100°, and the significant less neck and shoulder discomfort were noted in the condition that monitor was set at 130°. These result suggested neck pain notebook user to set their monitor tilt angle at 130°.

  13. Eye movements and motion perception induced by off-vertical axis rotation (OVAR) at small angles of tilt after spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Darlot, C.; Petropoulos, A.; Berthoz, A.

    1995-01-01

    The nystagmus and motion perception of two astronauts were recorded during Earth-vertical axis rotation and during off-vertical axis rotation (OVAR) before and after 7 days of spaceflight. Postflight, the peak velocity and duration of per- and postrotatory nystagmus during velocity steps about the Earth-vertical axis were the same as preflight values. During OVAR at constant velocity (45/s, tilt angles successively 5, 10, and 15 degrees), the mean horizontal slow-phase eye velocity (bias), produced by the 'velocity storage mechanism' in the vestibular system, and the peak-to-peak amplitude (modulation) in horizontal eye velocity and position, generated from the output of otolith afferents, were also the same before as after flight. There were, however, changes in the vertical eve position and in the perceived body motion during OVAR. The angle of the perceived body path described as a cone was larger in both astronauts postflight. One astronaut experienced either a large cone angle with its axis upright, or a smaller cone angle with its axis tilted backwards, accompanied by an upward vertical eye drift. These results suggest an increase in the sensitivity of the otolithic system after spaceflight and a longer period of readaptation to Earth's gravity for otolith-induced responses than for canal-induced responses. Our data support the hypothesis that just after spaceflight the CNS generally interprets changes in the otolith signals to be due to translation rather than to tilt.

  14. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    PubMed Central

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-01-01

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975

  15. Action potentials and twitch forces of rabbit masseter motor units at optimum jaw angle.

    PubMed

    van Eijden, T M G J; Turkawski, S J J

    2002-08-01

    This study examines mutual correlations between electrical and contractile motor-unit properties. Action potentials and twitch force responses of 42 masseter motor units were recorded in 14 rabbits. Motor units were excited by stimulating motoneurones in the trigeminal motor nucleus. Action potentials and twitches were measured at different jaw gapes between 0 and 21 degrees, in steps of 3 degrees. For each motor unit, the jaw angle-active force interrelation was determined and variables for action potential and force were compared at the jaw angle at which the motor unit produced the largest force. The results showed a large variation in variables for action potential and force, possibly related to the variation in motor-unit morphology. A weak correlation was found between the variables for action-potential amplitude and the magnitude of optimum force, indicating that motor units producing larger forces tended to have action potentials with larger amplitudes. Twitch-contraction time and the moment arm of the motor unit correlated positively with both the median frequency and the duration of the action potential. This indicates that slower contracting motor units had longer action potentials and is in accord with the earlier observation that slower motor units are preferentially located in the anterior regions of the masseter.

  16. Measurement of multi-directional azimuth and tilt angles using an improved DVD pickup head with a CMOS sensor: A simulation design study

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Shing; Lin, Yan-Nan; Tien, Chuen-Lin; Chang, Jenq-Yang

    2013-06-01

    We present a new detection method for an improved DVD pickup head system capable of measuring the multidirectional azimuth and small tilt angles. A complementary metal-oxide semiconductor (CMOS) sensor is used to capture images and analyze the slight shift of the central position of the beam shape when the test plane rotates to create a tilt angle and angular signal. The proposed detection method can determine the azimuth angle of the test plane from 0° to 360° at intervals of 5°. The tilt angle measurement is varied from 0° to 4.2° at intervals of 0.3°. The simulation results show that the improved DVD pickup head system can recognize multi-directional azimuth angles of the test plane under a small tilt.

  17. Effects of Tilt Angle, DNA Concentration, and Surface Potential on Directed Alignment of DNA Molecule for the Application to Nanodevices

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jin; Hong, Byungyou

    2013-03-01

    This paper reports an efficient approach to control both the density and direction of highly aligned DNA molecules and thus DNA-templated gold nanowires (AuNWs) on Si chips. We utilized tilting method to prepare stretched DNA structures on SiO2/Si substrate and found important parameters in the alignment process that tilt angle, DNA concentration, and surface potential are controlled the density and structure of DNA aligned on the surface. In additional, we also can be directly connected DNA-templated AuNWs between two terminal electrodes on Si chips. This method also describes a simple way to form singled, bundled and networked DNA arrays on Si substrates.

  18. Effect of Individual Strengthening Exercises for Anterior Pelvic Tilt Muscles on Back Pain, Pelvic Angle, and Lumbar ROMs of a LBP Patient with Flat Back.

    PubMed

    Yoo, Won-Gyu

    2013-10-01

    [Purpose] The purpose of this paper is to report the effect of individual strengthening exercises for the anterior pelvic tilt muscles on back pain, pelvic tilt angle, and lumbar ROM of a low back pain (LBP) patient with flat back. [Subject] A 37 year-old male, who complained of LBP pain at L3-5 levels with flat back, participated. [Methods] He performed the individual strengthening exercises for anterior pelvic tilt muscles (erector spinae,iliopsoas, rectus femoris). [Results] Pelvic tilt angles of the right and left sides were recovered to normal ranges. His lumbar ROMs increased, and low back pain decreased. [Conclusion] We suggest that individual resistance exercises are a necessary approach for effective and fast strengthening of pelvic anterior tilt muscles in LBP with flat back.

  19. Comparative analysis on viewing angle change in Fresnel and Fourier holographic images reconstructed by a tilted plane wave.

    PubMed

    Chae, Byung Gyu

    2014-05-20

    We carry out a comparative analysis on a viewing angle change in Fresnel and Fourier holographic images reconstructed by a tilted plane wave. A tilted plane wave illuminating an on-axis hologram generates a diffractive wave carrying the holographic image in a paraxial region of a new diffraction axis. The reconstructed image in the Fresnel hologram is deformed along the new viewing direction, which is well described as Affine transformation. In the Fourier holographic image, the replica of the image is formed without its deformation when the hologram is placed in the front focal plane of the lens, whereas in the case of a hologram that is located at a distance different from a focal length, image deformation arises. This property is investigated through numerical simulation based on a wide-angle diffraction phenomenon. We also perform a similar interpretation for high-order diffraction images appearing in the sampled Fourier hologram and discuss a method for enlarging the viewing angle of the holographic image.

  20. Comparison of muscle and skin perfusion over the ischial tuberosities in response to wheelchair tilt-in-space and recline angles in people with spinal cord injury

    PubMed Central

    Jan, Yih-Kuen; Crane, Barbara A.; Liao, Fuyuan; Woods, Jeffrey A.; Ennis, William J.

    2013-01-01

    Objective To compare the efficacy of wheelchair tilt-in-space and recline on enhancing muscle and skin perfusion over the ischial tuberosities in people with spinal cord injury (SCI). Design Repeated measures and before-after trial design. Setting University research laboratory. Participants Power wheelchair users with SCI (N=20). Interventions Six combinations of wheelchair tilt-in-space and recline angles were presented to participants in a random order. The testing protocol consisted of a baseline 5 min sitting with no tilt/recline and 5 min positioned in tilted and reclined position at each of 6 conditions, including: (1) 15° tilt-in-space and 100° recline, (2) 25° tilt-in-space and 100° recline, (3) 35° tilt-in-space and 100° recline, (4) 15° tilt-in-space and 120° recline, (5) 25° tilt-in-space and 120° recline, and (6) 35° tilt-in-space and 120° recline. Main Outcome Measures Muscle and skin perfusion was assessed by near-infrared spectroscopy and laser Doppler flowmetry, respectively. Results Muscle perfusion was significantly increased at 25° and 35° tilt-in-space when combined with 120° recline and skin perfusion was significantly increased at 3 tilt-in-space angles (15°, 25°, 35°) when combined with 120° recline and at 35° tilt-in-space when combined with 100° recline (P<.05). Even in the positions of increased muscle perfusion and skin perfusion (25° and 35° of tilt-in-space combined with 120° of recline), the amount of muscle perfusion change was significantly lower than the amount of skin perfusion change (P<.05). Conclusions Our results indicate that a larger angle of tilt-in-space and recline is needed to improve muscle perfusion compared to skin perfusion. A position of 25° tilt-in-space combined with 120° recline is effective in enhancing muscle and skin perfusion of weight-bearing soft tissues at the ischial tuberosities. PMID:23602880

  1. Monitoring and dynamic control of distance and tilt angle measurements in micro-alignment instrument using an imaging approach.

    PubMed

    Jeng, C C; Wu, C H; Li, C Z; Chen, J H

    2009-08-17

    An accurate and simple optical triangulation method is proposed for determining the distance and the tilt angle between the window and the SQUID sensor in a scanning SQUID microscope (SSM) system. The surface of window near the sensor plane is roughened with Alumina powder so that the incident and reflected traces of the laser beam passing the window surface become visible and can be measured precisely with a normal optical microscope. Using the proposed approach, the distance between the sensor and the sample can be reproducibly adjusted to 30 microm or less. This method can also be applied to photolithography apparatus to detect the relative positions of the mask and the wafer.

  2. Stable dual-wavelength microlaser controlled by the output mirror tilt angle

    NASA Astrophysics Data System (ADS)

    Pallas, Florent; Herault, Emilie; Zhou, Jie; Roux, Jean-Francois; Vitrant, Guy

    2011-12-01

    A continuous-wave dual-wavelength solid-state microlaser is presented and a technique for regulating the gain competition between the two wavelengths is proposed, based on the angular tilt of the laser cavity output mirror. Laser behavior is studied and balanced dual-wavelength emission is obtained with output power levels as high as 200 mW for 2 W pump power. Sum frequency mixing is demonstrated making the source promising for Terahertz generation in the 0.5-0.7 THz range through difference frequency generation.

  3. Note: effect of the tilting angle of the wire on the onset of natural convection in the transient hot wire method.

    PubMed

    Lee, Seung-Hyun; Jang, Seok Pil

    2012-07-01

    In this paper, numerical and experimental investigations are systematically performed to identify the effect of the tilting angle of the wire on the onset of natural convection in the transient hot wire method (THWM), a widely accepted technique for measuring the thermal conductivity of various media, especially nanofluids. To validate our numerical simulation code, the numerical results are compared with theoretical solutions as well as with experimental results. Based on the results, we show that the onset time of natural convection in THWM decreases rapidly with the increase of the wire's tilting angle from vertical position. Also, we systematically show the effect of the wire's tilting angle on the linear region, which is a suitable measurement interval, and on the measurement error of THWM.

  4. Capacitance of single crystal and low-angle tilt bicrystals of Fe-doped SrTiO3.

    PubMed

    De Souza, R A; Maier, J

    2007-01-01

    We used a.c. impedance spectroscopy to study the capacitance of single crystal and bicrystal Fe-doped SrTiO3. Measurements performed on a single crystal sample indicate unequivocally that the bulk dielectric permittivity is dependent on defect concentration. Three symmetrical [001] tilt bicrystals with misorientation angles theta = 2.3, 5.4 and 7.8 degrees were examined. The area specific capacitances obtained for the 5.4 and 7.8 degrees boundaries are consistent with values predicted from a one-dimensional double-Schottky-barrier model. For the 2.3 degrees boundary, more complex behaviour was observed. This is attributed to the electrical non-uniformity of the interface becoming significant at large dislocation separation. The effects of a d.c. bias on the impedance of the bicrystals was also investigated.

  5. Relationship between the contact angle and the tilt angle on the vertical polymer layer of NLC using various ion beam exposure energy

    NASA Astrophysics Data System (ADS)

    Lim, Ji-Hun; Kim, Young-Hwan; Oh, Byeong-Yun; Kim, Byoung-Yong; Han, Jeong-Min; Hwang, Jeong-Yeon; Seo, Dae-Shik

    2009-08-01

    Recently, the relationship between surface energy and tilt angle on vertical polyimide (PI) was studied. The study showed that ion beam (IB) exposure using argon gas changes the surface energy of vertical PI as a function of exposure time. This characteristic induces the transition of vertical liquid crystal (LC) orientation from vertical to homogeneous. In this study, we applied the property to fabricate liquid crystal displays (LCD) with both vertical alignment (VA) and twisted nematic (TN) LCDs on vertical PI. The study revealed correlations between various IB exposure energies and surface energies with the same exposure time on vertical PI. X-ray photoelectron spectroscopic spectra were analyzed to prove the correlations and transmittance curves via applied voltage to VA, and TN LCDs were evaluated to observe the LC driving performance on IB-irradiated vertical PI.

  6. Deposition temperature mediated tunable tilt angle magnetization in Co-Pt/Ni81Fe19 exchange springs

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Hsu, Jen-Hwa; Tsai, C. L.; Lee, C.-M.

    2015-05-01

    In this study, we investigate the effect of deposition temperature of Co-Pt fixed layer, Td,CoPt (150, 250 and 350 °C) on the tilt angle magnetization (θM) of Ni81Fe19-layer grown at room temperature (RT) and at different thicknesses (tNiFe=0, 1.0, 2.5 and 4.0 nm) in Co-Pt(Td,CoPt)/NiFe(tNiFe) exchange springs. The magnetic studies demonstrated a strong perpendicular magnetic anisotropy (PMA) for the equi-compositional ordered Co-Pt layer grown on glass substrate using the film sequence: Ta(20 nm)/Pt(20 nm)/CoPt(5 nm), regardless of Td,CoPt. The PMA can be retained with the addition of a 4-nm NiFe layer on the top when Td,CoPt≥250 °C. In contrast, relatively a thin layer of Ni-Fe (2.5 nm) can destroy the perpendicular exchange-spring behavior if the Co-Pt layer is deposited at RT. Using 3-D micromagnetic simulation, the interfacial exchange coupling strength (Aij) between the Co-Pt and NiFe-layers was estimated and the Aij value is found to increase rapidly when Td,CoPt is increased from RT to 300 °C. Besides, the magnetization tilted angle (θM) of NiFe can be easily tuned from completely out-of-plane to almost 60° when tNiFe=4.0 nm. Through this study, it is demonstrated that the θM of NiFe-layer can be tuned by not only altering the tNiFe; but also by varying the Td,CoPt.

  7. Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in Czochralski-grown silicon crystals

    SciTech Connect

    Ohno, Yutaka Inoue, Kaihei; Fujiwara, Kozo; Deura, Momoko; Kutsukake, Kentaro; Yonenaga, Ichiro; Shimizu, Yasuo; Inoue, Koji; Ebisawa, Naoki; Nagai, Yasuyoshi

    2015-06-22

    Three-dimensional distribution of oxygen atoms at small-angle tilt boundaries (SATBs) in Czochralski-grown p-type silicon ingots was investigated by atom probe tomography combined with transmission electron microscopy. Oxygen gettering along edge dislocations composing SATBs, post crystal growth, was observed. The gettering ability of SATBs would depend both on the dislocation strain and on the dislocation density. Oxygen atoms would agglomerate in the atomic sites under the tensile hydrostatic stress larger than about 2.0 GPa induced by the dislocations. It was suggested that the density of the atomic sites, depending on the tilt angle of SATBs, determined the gettering ability of SATBs.

  8. Electro-optic response of the anticlinic, antiferroelectric liquid-crystal phase of a biaxial bent-core molecule with tilt angle near 45∘

    NASA Astrophysics Data System (ADS)

    Nakata, Michi; Chen, Dong; Shao, Renfan; Korblova, Eva; Maclennan, Joseph E.; Walba, David M.; Clark, Noel A.

    2012-03-01

    We describe the unusual electro-optic response of a biaxial bent-core liquid crystal molecule that exhibits an anticlinic, antiferroelectric smectic phase (Sm-CAPA) with a molecular tilt angle close to 45°. In the ground state, the sample shows very low birefringence. A weak applied electric field distorts the antiferroelectric ground state, inducing a small azimuthal reorientation of the molecules on the tilt cone. This results in only a modest increase in the birefringence but an anomalously large (˜40°) analog rotation of the extinction direction. This unusual electro-optic response is shown to be a consequence of the molecular biaxiality.

  9. Dynamics of formation of low-angle tilt boundaries in metals and alloys at high loading rates

    NASA Astrophysics Data System (ADS)

    Gutkin, M. Yu.; Rzhavtsev, E. A.

    2015-12-01

    A computer model has been developed in which the process of formation of low-angle tilt boundaries and fragmentation of initial subgrains during shock loading of metals and alloys is clearly demonstrated by the of two-dimensional discrete dislocation-disclination dynamics method. The formation and evolution of such grains proceeds under the action of an external stress and the stress field of grain boundary disclinations distributed on the subgrain boundaries. With the D16 aluminum alloy as an example, three cases of fragmented structures formed in accordance with the initial configuration of the disclination ensemble have been considered for a dipole, quadrupole, and arbitrary octupole of wedge disclinations. It has been shown that, in all these cases, the formation of a stable fragmented structure requires a stress of ~0.5 GPa and time of 10 ns. The main results of computer simulation (the finite form of a fragmented structure, typical level of applied stress, and small fragmentation time) agree well with known experimental results on shock compression of the D16 aluminum alloy.

  10. The multiple roles of small-angle tilt grain boundaries in annihilating radiation damage in SiC

    DOE PAGES

    Jiang, Hao; Wang, Xing; Szlufarska, Izabela

    2017-02-09

    Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled andmore » can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. As a result, when defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.« less

  11. Bioinspired tilt-angle fabricated structure gradient fibers: micro-drops fast transport in a long-distance

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Wang, Lin; Xue, Yan; Jiang, Lei; Zheng, Yongmei

    2013-10-01

    Issues of surfaces, e.g., inspired from beetle's back, spider silk, cactus stem, etc., become the active area of research on designing novel materials in need of human beings to acquire fresh water resource from air. However, the design of materials on surface structure is little achieved on controlling of micro-scale drop transport in a long distance. Here, we report the ability of micro-drop transport in a long distance on a bioinspired Fibers with Gradient Spindle-knots (BFGS), which are fabricated by tilt angle dip-coating method. The micro-drop of ~0.25 μL transports in distance of ~5.00 mm, with velocity of 0.10-0.22 m s-1 on BFGS. It is attributed to the multi-level cooperation of the release energy of drop coalescence along the gradient spindle-knots, in addition to capillary adhesion force and continuous difference of Laplace pressure, accordingly, water drops are driven to move fast directionally in a long distance on BFGS.

  12. The Multiple Roles of Small-Angle Tilt Grain Boundaries in Annihilating Radiation Damage in SiC

    PubMed Central

    Jiang, Hao; Wang, Xing; Szlufarska, Izabela

    2017-01-01

    Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled and can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. When defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb. PMID:28181488

  13. The Multiple Roles of Small-Angle Tilt Grain Boundaries in Annihilating Radiation Damage in SiC

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Wang, Xing; Szlufarska, Izabela

    2017-02-01

    Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled and can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. When defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.

  14. High efficiency ring-lens supercritical angle fluorescence (SAF) detection for optimum bioassay performance.

    PubMed

    Kurzbuch, Dirk; Somers, Martin; McDonagh, Colette

    2013-09-23

    We present a polymer biochip with embedded optics which allows the detection of supercritical angle fluorescence (SAF) without losses due to total internal reflection within the substrate. The chip design comprises structured spherical and aspherical optical elements on the bottom, while the top is chemically functionalized for direct binding of biomolecules. Furthermore, this design facilitates integration in lab-on-a-chip systems with appropriate microfluidics. In the confocal optical setup an ellipsoidal mirror is used for collection of SAF light above the critical angle of the water-polymer interface, which is detected by a photon-counting detector. The work presented here represents a proof of concept for performing sensitive and rapid point-of-care testing, using this low-cost, robust and disposable optical biochip platform. The performance of the platform was validated using direct binding DNA and human IgG assays which yielded low limits of detection 10 pM for DNA and 10 pg/ml for human IgG.

  15. Does matching relation exist between the length and the tilting angle of terminal implants in the all-on-four protocol? stress distributions by 3D finite element analysis

    PubMed Central

    Li, Xiaomei; Cao, Zhizhong; Qiu, Xiaoqian; Tang, Zhen; Gong, Lulu

    2015-01-01

    PURPOSE To explore whether there is matching relation between the length and the tilting angle of terminal implants in the All-on-Four protocol by studying the effects of different implant configurations on stress distributions of implant, bone, and framework. MATERIALS AND METHODS Four implants were employed to support a full-arch fixed prosthesis and five three-dimensional finite element models were established with CT images, based on the length (S and L) and distal tilt angle (0°, 30° and 45°) of terminal implants for an edentulous mandible, which named: Tilt0-S, Tilt30-S, Tilt30-L, Tilt45-S and Tilt45-L. An oblique 240 N was loaded at second molar. The von Mises Stresses were analyzed. The implants were consecutively named #1 to #4 from the loading point. RESULTS 1) Tilt0-S had the greatest stress on the implants, with the other groups exhibiting variable reductions; the four implants of Tilt45-L demonstrated the greatest reduction in stress. 2) Tilt0-S had the greatest stress at bone around #1 implant neck, and Tilt45-L exhibited the least stress, which was a 36.3% reduction compared to Tilt0-S. 3) The greatest stress in the framework was found on the cantilevers distal to #1 implant. Tilt45-S exhibited the least stress. CONCLUSION Matching different length and tilting angle of the terminal implants led to variable stress reductions on implants, bone and the superstructure. By optimizing implant configuration, the reduction of stress on implants and surrounding bone could be maximized. Under the present condition, Tilt45-L was the preferred configuration. Further clinical testings are required. PMID:26140176

  16. Vortex flow structures and interactions for the optimum thrust efficiency of a heaving airfoil at different mean angles of attack

    SciTech Connect

    Martín-Alcántara, A.; Fernandez-Feria, R.

    2015-07-15

    The thrust efficiency of a two-dimensional heaving airfoil is studied computationally for a low Reynolds number using a vortex force decomposition. The auxiliary potentials that separate the total vortex force into lift and drag (or thrust) are obtained analytically by using an elliptic airfoil. With these auxiliary potentials, the added-mass components of the lift and drag (or thrust) coefficients are also obtained analytically for any heaving motion of the airfoil and for any value of the mean angle of attack α. The contributions of the leading- and trailing-edge vortices to the thrust during their down- and up-stroke evolutions are computed quantitatively with this formulation for different dimensionless frequencies and heave amplitudes (St{sub c} and St{sub a}) and for several values of α. Very different types of flows, periodic, quasi-periodic, and chaotic described as St{sub c}, St{sub a}, and α, are varied. The optimum values of these parameters for maximum thrust efficiency are obtained and explained in terms of the interactions between the vortices and the forces exerted by them on the airfoil. As in previous numerical and experimental studies on flapping flight at low Reynolds numbers, the optimum thrust efficiency is reached for intermediate frequencies (St{sub c} slightly smaller than one) and a heave amplitude corresponding to an advance ratio close to unity. The optimal mean angle of attack found is zero. The corresponding flow is periodic, but it becomes chaotic and with smaller average thrust efficiency as |α| becomes slightly different from zero.

  17. Prediction of the optimum surface orientation angles to achieve maximum solar radiation using Particle Swarm Optimization in Sabha City Libya

    NASA Astrophysics Data System (ADS)

    Mansour, F. A.; Nizam, M.; Anwar, M.

    2017-02-01

    This research aims to predict the optimum surface orientation angles in solar panel installation to achieve maximum solar radiation. Incident solar radiation is calculated using koronakis mathematical model. Particle Swarm Optimization (PSO) is used as computational method to find optimum angle orientation for solar panel installation in order to get maximum solar radiation. A series of simulation has been carried out to calculate solar radiation based on monthly, seasonally, semi-yearly and yearly period. South-facing was calculated also as comparison of proposed method. South-facing considers azimuth of 0°. Proposed method attains higher incident predictions than South-facing that recorded 2511.03 kWh/m2for monthly. It were about 2486.49 kWh/m2, 2482.13 kWh/m2and 2367.68 kWh/m2 for seasonally, semi-yearly and yearly. South-facing predicted approximately 2496.89 kWh/m2, 2472.40 kWh/m2, 2468.96 kWh/m2, 2356.09 kWh/m2for monthly, seasonally, semi-yearly and yearly periods respectively. Semi-yearly is the best choice because it needs twice adjustments of solar panel in a year. Yet it considers inefficient to adjust solar panel position in every season or monthly with no significant solar radiation increase than semi-yearly and solar tracking device still considers costly in solar energy system. PSO was able to predict accurately with simple concept, easy and computationally efficient. It has been proven by finding the best fitness faster.

  18. Switchable dual-wavelength Q-switched and mode-locked fiber lasers using a large-angle tilted fiber grating.

    PubMed

    Zhang, Zuxing; Mou, Chengbo; Yan, Zhijun; Wang, Yongjin; Zhou, Kaiming; Zhang, Lin

    2015-01-26

    We proposed and demonstrated pulsed fiber lasers Q-switched and mode-locked by using a large-angle tilted fiber grating, for the first time to our best knowledge. Owing to the unique polarization properties of the large-angle tilted fiber grating (LA-TFG), i.e. polarization-dependent loss and polarization-mode splitting, switchable dual-wavelength Q-switched and mode-locked pulses have been achieved with short and long cavities, respectively. For the mode-locking case, the laser was under the operation of nanosecond rectangular pulses, due to the peak-power clamping effect. With the increasing pump power, the durations of both single- and dual-wavelength rectangular pulses increase. It was also found that each filtered wavelength of the dual-wavelength rectangular pulse corresponds to an individual nanosecond rectangular pulse by employing a tunable bandpass filter.

  19. Perception of the upright and susceptibility to motion sickness as functions of angle of tilt and angular velocity in off-vertical rotation. [human tolerance to angular accelerations

    NASA Technical Reports Server (NTRS)

    Miller, E. F., II; Graybiel, A.

    1973-01-01

    Motion sickness susceptibility of four normal subjects was measured in terms of duration of exposure necessary to evoke moderate malaise (MIIA) as a function of velocity in a chair rotated about a central axis tilted 10 deg with respect to gravitational upright. The subjects had little or no susceptibility to this type of rotation at 2.5 and 5.0 rpm, but with further increases in rate, the MIIA endpoint was always reached and with ever shorter test durations. Minimal provocative periods for all subjects were found at 15 or 20 rpm. Higher rotational rates dramatically reversed the vestibular stressor effect, and the subjects as a group tended to reach a plateau of relatively low susceptibility at 40 and 45 rpm. At these higher velocities, furthermore, the subjects essentially lost their sensation of being tilted off vertical. In the second half of the study, the effect of tilt angle was varied while the rotation rate was maintained at a constant 17.5 rpm. Two subjects were completely resistant to symptoms of motion sickness when rotated at 2.5 deg off vertical; with greater off-vertical angles, the susceptibility of all subjects increased sharply at first, then tapered off in a manner reflecting a Fechnerian function.

  20. The effect of inclination angle on the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries

    NASA Astrophysics Data System (ADS)

    Yuan, Lin; Jing, Peng; Shan, Debin; Guo, Bin

    2017-01-01

    Atomistic simulations were used to investigate the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries at 0.1 K. The calculated grain boundary energies of Σ3 asymmetric tilt grain boundaries corresponded well with the energies measured in experiments and predicted by the theoretical description. The Σ3 asymmetric tilt grain boundaries with low inclination angles were composed of a replication of twin boundary segments separated by small ledges. The results demonstrated that the combination effect of Schmid factor and non-Schmid factors could explain dislocations emission into grain 1 only in models with low inclination angles (Ф < 64.76°). At the latter stage of plastic deformation, free surfaces served as additional dislocation sources. Parallelly arranged operative slip systems were the fundamental features of plastic deformation. In addition, a number of stacking faults and multiple stacking faults were formed during plastic deformation. The hindrance of stacking faults to dislocation motion and the interactions between dislocations leaded to the observed strain hardening in nanowires with inclination angles at and above 29.50°. The low stacking fault energy of silver was responsible for the appearance of strain hardening. Dislocations emitted from grain 2 interacted with each other contributing to the observed strain hardening. Grain boundaries were completely eliminated by successive emission of dislocations from grain boundaries in nanowires with an inclination angle of 35.26° and 54.74°. A detailed understanding of the relationship between strength and grain boundary structures as well as specific plastic deformation would push forward the application of nanocrystalline materials and provide insights into the synthesis of nanocrystalline materials with superior strength and ductility.

  1. Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plate.

    PubMed

    Krasovitski, Boris; Marmur, Abraham

    2005-04-26

    The limiting inclination angle (slip angle), for which a two-dimensional water drop may be at equilibrium on a chemically heterogeneous surface, is exactly calculated for a variety of cases. The main conclusion is that, in the cases studied, the contact angles at the upper and lower contact line do not always simultaneously equal the receding and advancing contact angles, respectively. On a hydrophobic surface, the lowest contact angle (at the upper contact line) tends to be approximately equal to the receding contact angle, while the highest contact angle (at the lower contact line) may be much lower than the advancing contact angle. For hydrophilic surfaces, the opposite is true. These conclusions imply that the hysteresis range cannot in general be measured by analyzing the shape of a drop on an inclined plane. Also, the limiting inclination angle cannot in general be calculated from the classical equation based only on the advancing and receding contact angles.

  2. High-sensitivity refractive index sensor based on large-angle tilted fiber grating with carbon nanotube deposition

    NASA Astrophysics Data System (ADS)

    Badmos, Abdulyezir A.; Sun, Qizhen; Yan, Zhijun; Arif, Raz N.; Zhang, Junxi; Rozhin, Alex; Zhang, Lin

    2016-04-01

    This paper presents a highly sensitive ambient refractive index (RI) sensor based on 81° tilted fiber grating (81°-TFG) structure UV-inscribed in standard telecom fiber (62.5μm cladding radius) with carbon nanotube (CNT) overlay deposition. The sensing mechanism is based on the ability of CNT to induce change in transmitted optical power and the high sensitivity of 81°-TFG to ambient refractive index. The thin CNT film with high refractive index enhances the cladding modes of the TFG, resulting in the significant interaction between the propagating light and the surrounding medium. Consequently, the surrounding RI change will induce not only the resonant wavelength shift but also the power intensity change of the attenuation band in the transmission spectrum. Result shows that the change in transmitted optical power produces a corresponding linear reduction in intensity with increment in RI values. The sample shows high sensitivities of 207.38nm/RIU, 241.79nm/RIU at RI range 1.344-1.374 and 113.09nm/RIU, 144.40nm/RIU at RI range 1.374-1.392 (for X-pol and Y-pol respectively). It also shows power intensity sensitivity of 65.728dBm/RIU and 45.898 (for X-pol and Y-pol respectively). The low thermal sensitivity property of the 81°-TFG offers reduction in thermal cross-sensitivity and enhances specificity of the sensor.

  3. Relationship among the variables of kinematic and tilt angle of whole body according to the foot trip during gait

    PubMed Central

    Ko, Young-Churl; Ryew, Che-Cheong; Hyun, Seung-Hyun

    2017-01-01

    The aim of this study was to analyze the relation between incline angle of whole body and kinematic variables at tripping during gait. The participants consisted of healthy adult female (n=6). The three-dimensional (3D) motion analysis of posture restoring after inducing tripping of right foot at supporting phase of left foot was performed. As a result, supporting time elapsed of one stride and one foot at tripping showed longer than that of normal gait. The length of one stride showed longer at tripping than that of normal gait, and velocity of center of gravity (COG) showed faster at tripping than that of normal gait. Anteriorposterior incline angle of whole body showed more forwarded incline at tripping than that of normal gait. As a result of correlation among variables, one stride and supporting time elapsed showed positive relation r=0.973 (R2=0.947, P<0.001), also r=0.920 (R2=0.846, P<0.001) relative to velocity of COG, r=0.970 (R2=0.941, P<0.001) of 1-stride time elapsed relative to velocity of COG and r=0.833 (R2=0.613, P<0.05) of velocity of COG relative to anteriorposterior incline angle respectively. Therefore instantaneous stoppage of gait posture when tripped at supporting phase of one leg during gait may be impossible and rather may cause a recovery of gait pattern when secured the faster velocity of COG and the longer of supporting time elapsed of one leg. PMID:28349043

  4. Optimum divergence angle of a Gaussian beam wave in the presence of random jitter in free-space laser communication systems.

    PubMed

    Toyoshima, Morio; Jono, Takashi; Nakagawa, Keizo; Yamamoto, Akio

    2002-03-01

    The average bit error rate (BER) of optical communication systems is considered in the presence of random angular jitter. First, the received power and the BER in the absence of jitter are reviewed. Then the average BER is obtained in the presence of circularly symmetric, normally distributed jitter by using the probability density function of the optical signal. By minimizing the power penalty for average BER, the optimum ratio of the divergence angle of the laser beam to the random angular jitter at the desired BER is obtained. An analytic approximation of the optimum ratio is derived as a function of the desired average BER. The results can be used for designing the link budget of optical communication and tracking channels in the presence of jitter.

  5. Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)

    2014-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.

  6. Role of polarizer-tilting-angle in zero-field spin-transfer nano-oscillators with perpendicular anisotropy

    SciTech Connect

    Gonzalez-Fuentes, C.; Gallardo, R. A. Landeros, P.

    2015-10-05

    An analytical model for studying the stability of a single domain ferromagnetic layer under the influence of a spin-polarized current is presented. The theory is applied to bias-field-free nano-oscillators with perpendicular anisotropy, which allows to obtain a polarizer-angle vs. current phase diagram that describes the stability of magnetic states. Explicit formulae for the critical current densities unveil the influence of the relative orientation between free and polarizer layers, allowing the emergence of precessional steady-states, and also the possibility to reduce the magnitude of the threshold current density to produce microwave oscillations. It is shown that oscillating steady-states arise in a broad angular region, and the dependence of their boundaries is fully specified by the model. The reliability of the analytical results has been corroborated by comparison to numerical calculations. Such structures are currently under intense research because of remarkable properties offering new prospects for microwave applications in communication technologies.

  7. Experimental study on bank erosion and protection using submerged vane placed at an optimum angle in a 180° laboratory channel bend

    NASA Astrophysics Data System (ADS)

    Dey, Litan; Barbhuiya, Abdul Karim; Biswas, Piya

    2017-04-01

    Unsteadiness of the vertical velocity profile and secondary flow in open channel bends poses serious problems in hydraulic engineering design. Insertion of vertical submerged vanes in the channel bend at an optimum angle with the tangential component of flow can minimize the unsteadiness and generation of secondary flow resulting in the reduction of scour depth at the outer bank. A series of experiments were conducted in a 180° bend laboratory channel to study flow erosion and effective ness of the submerged vane in reducing scour depth. The average approach to flow velocity at 0.20 m flow depth above the lowest initial bed level was 25 cm/s. An Acoustic Doppler Velocimeter (ADV) was used to measure the three-dimensional time-averaged velocity components at different azimuthal sections on stabilized nonscoured beds without vane. Scour bed profile without vanes shows that bank erosion in a 180° parabolic-shaped bed channel occurs mostly at the zone from bend angles 120° to 140°. Vanes were installed at angles of 10°, 15°, 20°, 30°, and 40° to the tangential flow component maintaining a spacingof 75 cm distance from one vane to another. Experimental results show that a 15° vane angle produces best result in reducing outer bank scour in a parabolic-shaped channel. The data presented in this paper can also be used for validating three-dimensional turbulence models for simulating flows in a curved channel.

  8. Determination of basic friction angle using various laboratory tests.

    NASA Astrophysics Data System (ADS)

    Jang, Bo-An

    2016-04-01

    The basic friction angle of rock is an important factor of joint shear strength and is included within most shear strength criteria. It can be measured by direct shear test, triaxial compression test and tilt test. Tilt test is mostly used because it is the simplest method. However, basic friction angles measured using tilt test for same rock type or for one sample are widely distributed and often do not show normal distribution. In this research, the basic friction angles for the Hangdeung granite form Korea and Berea sandstone from USA are measured accurately using direct shear test and triaxial compression test. Then basic friction angles are again measured using tilt tests with various conditions and are compared with those measured using direct shear test and triaxial compression test to determine the optimum condition of tilt test. Three types of sliding planes, such as planes cut by saw and planes polished by #100 and #600 grinding powders, are prepared. When planes are polished by #100 grinding powder, the basic friction angles measured using direct shear test and triaxial compression test are very consistent and show narrow ranges. However, basic friction angles show wide ranges when planes are cut by saw and are polished by #600 grinding powder. The basic friction angle measured using tilt test are very close to those measured using direct shear test and triaxial compression test when plane is polished by #100 grinding powder. When planes are cut by saw and are polished by #600 grinding powder, basic friction angles measured using tilt test are slightly different. This indicates that tilt test with plane polished by #100 grinding powder can yield an accurate basic friction angle. In addition, the accurate values are obtained not only when planes are polished again after 10 times of tilt test, but values are averaged by more 30 times of tests.

  9. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics

    PubMed Central

    2014-01-01

    Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°). PMID:25435833

  10. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics.

    PubMed

    Kayes, Md Imrul; Leu, Paul W

    2014-01-01

    Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°).

  11. Cardiopulmonary readjustments in passive tilt

    NASA Technical Reports Server (NTRS)

    Matalon, S. V.; Farhi, L. E.

    1979-01-01

    The readjustment of cardiopulmonary variables in human volunteers at various tilt angles on a tilt board is studied. Five healthy subjects (18-31 yr) with thorough knowledge of the experimental protocol are tested, passively tilted from the supine to the upright position in 15-deg increments in random sequence. The parameters measured are cardiac output (Q), heart rate (HR), stroke volume (SV), minute and alveolar ventilation /V(E) and V(A)/, functional residual capacity (FRC), and arterial-end-tidal P(CO2) pressure difference. It is found that changes in Q and FRC are linearly related to the sine of the tilt angle, indicating that either reflexes are absent or their net effect is proportional to the effects of gravity. This is clearly not the case for other variables /HR, SV, V(E), V(A)/, where it is possible to demonstrate threshold values for the appearance of secondary changes.

  12. Ultraviolet fast-response photoelectric effect in tilted orientation SrTiO{sub 3} single crystals

    SciTech Connect

    Zhao Kun; Jin Kuijuan; Huang Yanhong; Zhao Songqing; Lu Huibin; He Meng; Chen Zhenghao; Zhou Yueliang; Yang Guozhen

    2006-10-23

    Ultraviolet photoelectricity based on the vicinal cut as-supplied SrTiO{sub 3} single crystals has been experimentally studied in the absence of an applied bias at room temperature. An open-circuit photovoltage of 130 ps rise time and 230 ps full width at half maximum was observed under the irradiation of a 355 nm pulsed laser of 25 ps in duration. The dependence of the photoelectric effect on the tilting angles was studied, and the optimum angle is 20.9 deg. . Seebeck effect is proposed to elucidate the tilting angle dependence of laser-induced photovoltage. This work demonstrates the potential of SrTiO{sub 3} single crystals in ultraviolet detection.

  13. Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series

    SciTech Connect

    Dahmen, Tim; Baudoin, Jean-Pierre G; Lupini, Andrew R; Kubel, Christian; Slusallek, Phillip; De Jonge, Niels

    2014-01-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  14. Two-dimensional dipolar scattering with a tilt

    SciTech Connect

    Ticknor, Christopher

    2011-09-15

    We study two-body dipolar scattering in two dimensions with a tilted polarization axis. This tilt reintroduces the anisotropic interaction in a controllable manner. As a function of this polarization angle, we present the scattering rates in both the threshold and semiclassical regimes. Additionally, we study the properties of the molecular bound states as a function of the polarization angle.

  15. Tilted fuel cell apparatus

    DOEpatents

    Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.

    2005-04-12

    Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.

  16. Roll tracking effects of G-vector tilt and various types of motion washout

    NASA Technical Reports Server (NTRS)

    Jex, H. R.; Magdaleno, R. E.; Junker, A. M.

    1978-01-01

    In a dogfight scenario, the task was to follow the target's roll angle while suppressing gust disturbances. All subjects adopted the same behavioral strategies in following the target while suppressing the gusts, and the MFP-fitted math model response was generally within one data symbol width. The results include the following: (1) comparisons of full roll motion (both with and without the spurious gravity tilt cue) with the static case. These motion cues help suppress disturbances with little net effect on the visual performance. Tilt cues were clearly used by the pilots but gave only small improvement in tracking errors. (2) The optimum washout (in terms of performance close to real world, similar behavioral parameters, significant motion attenuation (60 percent), and acceptable motion fidelity) was the combined attenuation and first-order washout. (3) Various trends in parameters across the motion conditions were apparent, and are discussed with respect to a comprehensive model for predicting adaptation to various roll motion cues.

  17. Resolution enhancement in tilted coordinates

    NASA Astrophysics Data System (ADS)

    Hariri Naghadeh, Diako; Keith Morley, Christopher

    2016-11-01

    Deconvolution is applied to remove source wavelet effects from seismograms. The results are resolution enhancement that enables detection of thin layers. Following enhancement of resolution, low frequency and high angle reflectors, particularly at great depth, appear as low amplitude and semi-invisible reflectors that are difficult to track and pick. A new approach to enhance resolution is introduced that estimates a derivative using continuous wavelet transform in tilted coordinates. The results are compared with sparse spike deconvolution, curvelet deconvolution and inverse quality filtering in wavelet domain. The positive consequence of the new method is to increase sampling of high dip features by changing the coordinate system from Cartesian to tilted. To compare those methods a complex data set was chosen that includes high angle faults and chaotic mass transport complex. Image enhancement using curvelet deconvolution shows a chaotic system as a non-chaotic one. The results show that sparse spike deconvolution and inverse quality filtering in wavelet domain are able to enhance resolution more than curvelet deconvolution especially at great depth but it is impossible to follow steep dip reflectors after resolution enhancement using these methods, especially when their apparent dips are more than 45°. By estimating derivatives in a continuous wavelet transform from tilted data sets similar resolution enhancement as the other deconvolution methods is achieved but additionally steep dipping reflectors are imaged much better than others. Subtracted results of the enhanced resolution data set using new method and the other introduced methods show that steeply dipping reflectors are highlighted as a particular ability of the new method. The results show that high frequency recovery in Cartesian co-ordinate is accompanied by inability to image steeply dipping reflectors especially at great depths. Conversely recovery of high frequency data and imaging of the data

  18. Tilted cone beam VCT reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Hsieh, Jiang; Tang, Xiangyang

    2005-04-01

    Reconstruction algorithms for volumetric CT have been the focus of many studies. Several exact and approximate reconstruction algorithms have been proposed for step-and-shoot and helical scanning trajectories to combat cone beam related artifacts. In this paper, we present a closed form cone beam reconstruction formula for tilted gantry data acquisition. Although several algorithms were proposed to compensate for errors induced by the gantry tilt, none of the algorithms addresses the case in which the cone beam geometry is first rebinned to a set of parallel beams prior to the filtered backprojection. Because of the rebinning process, the amount of iso-center adjustment depends not only on the projection angle and tilt angle, but also on the reconstructed pixel location. The proposed algorithm has been tested extensively on both 16 and 64 slice VCT with phantoms and clinical data. The efficacy of the algorithm is clearly demonstrated by the experiments.

  19. Tilting a wobbly chair

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2017-03-01

    If a small object is placed under the front leg of a chair, the chair tilts backwards. If the object is placed under a rear leg, the chair tilts sideways. The effect is surprising but can be analysed in terms of elementary physics.

  20. Microwave Brightness Temperatures of Tilted Convective Systems

    NASA Technical Reports Server (NTRS)

    Hong, Ye; Haferman, Jeffrey L.; Olson, William S.; Kummerow, Christian D.

    1998-01-01

    Aircraft and ground-based radar data from the Tropical Ocean and Global Atmosphere Coupled-Ocean Atmosphere Response Experiment (TOGA COARE) show that convective systems are not always vertical. Instead, many are tilted from vertical. Satellite passive microwave radiometers observe the atmosphere at a viewing angle. For example, the Special Sensor Microwave/Imager (SSM/I) on Defense Meteorological Satellite Program (DMSP) satellites and the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) on the TRMM satellite have an incident angle of about 50deg. Thus, the brightness temperature measured from one direction of tilt may be different than that viewed from the opposite direction due to the different optical depth. This paper presents the investigation of passive microwave brightness temperatures of tilted convective systems. To account for the effect of tilt, a 3-D backward Monte Carlo radiative transfer model has been applied to a simple tilted cloud model and a dynamically evolving cloud model to derive the brightness temperature. The radiative transfer results indicate that brightness temperature varies when the viewing angle changes because of the different optical depth. The tilt increases the displacements between high 19 GHz brightness temperature (Tb(sub 19)) due to liquid emission from lower level of cloud and the low 85 GHz brightness temperature (Tb(sub 85)) due to ice scattering from upper level of cloud. As the resolution degrades, the difference of brightness temperature due to the change of viewing angle decreases dramatically. The dislocation between Tb(sub 19) and Tb(sub 85), however, remains prominent.

  1. Tilted disordered Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Trescher, Maximilian; Sbierski, Björn; Brouwer, Piet W.; Bergholtz, Emil J.

    2017-01-01

    Although Lorentz invariance forbids the presence of a term that tilts the energy-momentum relation in the Weyl Hamiltonian, a tilted dispersion is not forbidden and, in fact, generic for condensed matter realizations of Weyl semimetals. We here investigate the combined effect of such a tilted Weyl dispersion and the presence of potential disorder. In particular, we address the influence of a tilt on the disorder-induced phase transition between a quasiballistic phase at weak disorder, in which the disorder is an irrelevant perturbation, and a diffusive phase at strong disorder. Our main result is that the presence of a tilt leads to a reduction of the critical disorder strength for this transition or, equivalently, that increasing the tilt at fixed disorder strength drives the system through the phase transition to the diffusive strong-disorder phase. Notably this obscures the tilt-induced Lifshitz transition to an overtilted type II Weyl phase at any finite disorder strength. Our results are supported by analytical calculations using the self-consistent Born approximation and numerical calculations of the density of states and of transport properties.

  2. OPTIMUM SYSTEMS CONTROL,

    DTIC Science & Technology

    Variational calculus and continuous optimal control, (4) The maximum principle and Hamilton Jacobi theory, (5) Optimum systems control examples, (6...Discrete variational calculus and the discrete maximum principle, (7) Optimum control of distributed parameter systems, (8) Optimum state estimation in

  3. Tilt displacement range testing for a piezoelectric deformable mirror

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Hao, Qun; Song, Yong; Cheng, Xuemin; Fan, Fan; Li, Heng

    2016-10-01

    In our previous works, we presented a zoom system and image stabilization design based on deformable mirrors (DMs). According to the high bandwidth and free edge characteristics of the piezoelectric deformable mirror (PDM), we tested the system's image-stable capability. We found the PDM could realize some tilt displacements while keeping a certain stable surface shape, it could obtain higher image stabilizing precision when integrated with the traditional mechanical image stabilization systems. In the design of the image stabilization system, the PDM's tilt displacement range is a key factor for consideration. So in this paper, we carried out a tilt displacement range testing experiment by using the OKO's 37-channel PDM. We measured and analyzed the variation of the tilt displacements in optical image stabilization process, and calculated the maximum tilt angle as the PDM surface shape was stabilized. We built an experimental platform consisting of a fixed target, an imaging system based on PDM, and a CCD camera. We used the ZYGO interferometer as an evaluation instrument to measure the surface shape stability. When the PDM surface had a tilt displacement, the image point of the fixed target on the camera sensor shifted correspondingly. The tilt angle of the PDM could be obtained by calculating this shift. The results showed that the maximum tilt angle of the PDM was 0.2mrad. The paper also analyzed the experiment errors when concerning about the off-axis error of the PDM deflection center.

  4. Tilt Table Test

    MedlinePlus

    ... and you're monitored closely. Most people regain consciousness almost immediately. In some cases, if blood pressure ... horizontal position, and you may not actually lose consciousness. When your tilt table test is complete, you ...

  5. Modelling of the UV Index on vertical and 40° tilted planes for different orientations.

    PubMed

    Serrano, D; Marín, M J; Utrillas, M P; Tena, F; Martínez-Lozano, J A

    2012-02-01

    In this study, estimated data of the UV Index on vertical planes are presented for the latitude of Valencia, Spain. For that purpose, the UVER values have been generated on vertical planes by means of four different geometrical models a) isotropic, b) Perez, c) Gueymard, d) Muneer, based on values of the global horizontal UVER and the diffuse horizontal UVER, measured experimentally. The UVER values, obtained by any model, overestimate the experimental values for all orientations, with the exception of the Perez model for the East plane. The results show statistical values of the MAD parameter (Mean Absolute Deviation) between 10% and 25%, the Perez model being the one that obtained a lower MAD for all levels. As for the statistic RMSD parameter (Root Mean Square Deviation), the results show values between 17% and 32%, and again the Perez model provides the best results in all vertical planes. The difference between the estimated UV Index and the experimental UV Index, for vertical and 40° tilted planes, was also calculated. 40° is an angle close to the latitude of Burjassot, Valencia, (39.5°), which, according to various studies, is the optimum angle to capture maximum radiation on tilted planes. We conclude that the models provide a good estimate of the UV Index, as they coincide or differ in one unit compared to the experimental values in 99% of cases, and this is valid for all orientations. Finally, we examined the relation between the UV Index on vertical and 40° tilted planes, both the experimental and estimated by the Perez model, and the experimental UV Index on a horizontal plane at 12 GMT. Based on the results, we can conclude that it is possible to estimate with a good approximation the UV Index on vertical and 40° tilted planes in different directions on the basis of the experimental horizontal UVI value, thus justifying the interest of this study.

  6. Optimal angle of polycrystalline silicon solar panels placed in a building using the ant colony optimization algorithm

    NASA Astrophysics Data System (ADS)

    Saouane, I.; Chaker, A.; Zaidi, B.; Shekhar, C.

    2017-03-01

    This paper describes the mathematical model used to determine the amount of solar radiation received on an inclined solar photovoltaic panel. The optimum slope angles for each month, season, and year have also been calculated for a solar photovoltaic panel. The optimization of the procedure to maximize the solar energy collected by the solar panel by varying the tilt angle is also presented. As a first step, the global solar radiation on the horizontal surface of a thermal photovoltaic panel during clear sky is estimated. Thereafter, the Muneer model, which provides the most accurate estimation of the total solar radiation at a given geographical point has been used to determine the optimum collector slope. Also, the Ant Colony Optimization (ACO) algorithm was applied to obtain the optimum tilt angle settings for PV collector to improve the PV collector efficiency. The results show good agreement between calculated and predicted results. Additionally, this paper presents studies carried out on the polycrystalline silicon solar panels for electrical energy generation in the city of Ghardaia. The electrical energy generation has been studied as a function of amount of irradiation received and the angle of optimum orientation of the solar panels.

  7. Computer simulations of effects of disk tilt and lens tilt on push-pull tracking error signal in an optical disk drive.

    PubMed

    Bartlett, C L; Kay, D; Mansuripur, M

    1997-11-10

    We quantify the effects of disk tilt and objective lens tilt on the push-pull tracking error signal of an optical disk data storage system. For a grooved disk, such as a recordable compact disk that operates at a laser wavelength of lambda, it is found that disk tilt produces a tracking offset of 0.05lambda per degree of tilt, whereas objective lens tilt produces an offset of 0.012lambda per degree of tilt. The amplitude of the tracking error signal decreases by 2.5% at the disk tilt angle of 0.3 degrees and by 5% at the objective lens tilt of 0.3 degrees . We achieved these simulations with the computer program Diffract, which performs a combination of diffraction and ray-tracing calculations through the entire optical path, from the light source to the detectors.

  8. Tilt rotor aircraft aeroacoustics

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Smith, Charles A.; Maisel, Martin D.; Brieger, John T.

    1989-01-01

    This paper studies the state of knowledge and the needed improvement in noise methodology and measurements for tilt rotor aircraft. Similarities and differences between tilt rotor aeroacoustic conditions and helicopter and propeller experience are identified. A discussion of the possible principal noise mechanisms throughout the flight envelope shows a need for further experimental and analytical investigations to develop an adequate understanding of the important sources and influencing factors. Existing experimental data from flight tests suggest terminal area noise reduction by operating within certain portions of the conversion flight envelope. Prediction methods are found to provide approximate indications only for low frequency harmonic and broadband noise for several of the tilt rotor's operating conditions. The acoustic effects of the hover case 'fountain' flow are pronounced and need further research. Impulsive noise and high frequency harmonic noise remain problems, as on helicopters, pending major improvements in wake, unsteady aerodynamics, and acoustics methodology.

  9. Combined scanning transmission electron microscopy tilt- and focal series.

    PubMed

    Dahmen, Tim; Baudoin, Jean-Pierre; Lupini, Andrew R; Kübel, Christian; Slusallek, Philipp; de Jonge, Niels

    2014-04-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt-focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller "missing wedge" artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  10. Tilt rotor hover aeroacoustics

    NASA Technical Reports Server (NTRS)

    Coffen, Charles David

    1992-01-01

    The methodology, results, and conclusions of a study of tilt rotor hover aeroacoustics and aerodynamics are presented. Flow visualization and hot wire velocity measurement were performed on a 1/12-scale model of the XV-15 Tilt Rotor Aircraft in hover. The wing and fuselage below the rotor cause a complex recirculating flow. Results indicate the physical dimensions and details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Discrete frequency harmonic thickness and the loading noise mechanism were predicted using WOPWOP for the standard metal blades and the Advanced Technology Blades. The recirculating flow created by the wing below the rotor is a primary sound mechanism for a hovering tilt rotor. The effects of dynamic blade response should be included for fountain flow conditions which produce impulsive blade loading. Broadband noise mechanisms were studied using Amiet's method with azimuthally varying turbulence characteristics derived from the measurements. The recirculating fountain flow with high turbulence levels in the recirculating zone is the dominant source of broadband noise for a hovering rotor. It is shown that tilt rotor hover aeroacoustic noise mechanisms are now understood. Noise predictions can be made based on reasonably accurate aerodynamic models developed here.

  11. Tilt sensitivity of the two-grating interferometer

    SciTech Connect

    Anderson, Christopher N.; Naulleau, Patrick P.

    2008-01-30

    Fringe formation in the two-grating interferometer is analyzed in the presence of a small parallelism error between the diffraction gratings assumed in the direction of grating shear. Our analysis shows that with partially coherent illumination, fringe contrast in the interference plane is reduced in the presence of nonzero grating tilt with the effect proportional to the grating tilt angle and the grating spatial frequencies. Our analysis also shows that for a given angle between the gratings there is an angle between the final grating and the interference plane that optimizes fringe contrast across the field.

  12. Tilt of Emerging Bipolar Magnetic Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Kosovichev, A. G.; Stenflo, J. O.

    2008-12-01

    Magnetic fields emerging from the Sun's interior carry information about the physical processes of magnetic field generation and transport in the convection zone. A statistical analysis of variations of the tilt angle of bipolar magnetic regions during the emergence, observed from SOHO MDI, shows that the systematic tilt with respect to the equator (Joy's law) is established by the middle of the emergence period. This suggests that the tilt is most likely generated below the surface. However, the data do not show evidence of a dependence of the tilt angle on the amount of flux or a relaxation of the bipolar orientation toward the east-west direction, in contrast to the predictions of the rising magnetic flux rope theories.

  13. Tilt changes of short duration

    USGS Publications Warehouse

    McHugh, Stuart

    1976-01-01

    Section I of this report contains a classification scheme for short period tilt data. For convenience, all fluctuations in the local tilt field of less than 24 hours duration will be designated SP (i.e., short period) tilt events. Three basic categories of waveshape appearance are defined, and the rules for naming the waveforms are outlined. Examples from tilt observations at four central California sites are provided. Section II contains some coseismic tilt data. Fourteen earthquakes in central California, ranging in magnitude from 2.9 to 5.2, were chosen for study on four tiltmeters within 10 source dimensions of the epicenters. The raw records from each of the four tiltmeters at the times of the earthquakes were photographed and are presented in this section. Section III contains documentation of computer programs used in the analysis of the short period tilt data. Program VECTOR computes the difference vector of a tilt event and displays the sequence of events as a head-to-tail vector plot. Program ONSTSP 1) requires two component digitized tilt data as input, 2) scales and plots the data, and 3) computes and displays the amplitude, azimuth, and normalized derivative of the tilt amplitude. Program SHARPS computes the onset sharpness, (i.e., the normalized derivative of the tilt amplitude at the onset of the tilt event) as a function of source-station distance from a model of creep-related tilt changes. Program DSPLAY plots the digitized data.

  14. Classical and quantum mechanics of diatomic molecules in tilted fields.

    PubMed

    Arango, Carlos A; Kennerly, William W; Ezra, Gregory S

    2005-05-08

    We investigate the classical and quantum mechanics of diatomic molecules in noncollinear (tilted) static electric and nonresonant linearly polarized laser fields. The classical diatomic in tilted fields is a nonintegrable system, and we study the phase space structure for physically relevant parameter regimes for the molecule KCl. While exhibiting low-energy (pendular) and high-energy (free-rotor) integrable limits, the rotor in tilted fields shows chaotic dynamics at intermediate energies, and the degree of classical chaos can be tuned by changing the tilt angle. We examine the quantum mechanics of rotors in tilted fields. Energy-level correlation diagrams are computed, and the presence of avoided crossings quantified by the study of nearest-neighbor spacing distributions as a function of energy and tilting angle. Finally, we examine the influence of classical periodic orbits on rotor wave functions. Many wave functions in the tilted field case are found to be highly nonseparable in spherical polar coordinates. Localization of wave functions in the vicinity of classical periodic orbits, both stable and unstable, is observed for many states.

  15. Tilt optimization of a building integrated solar concentrating unit

    NASA Astrophysics Data System (ADS)

    Chemisana, D.; Tripanagnostopoulos, Y.; Lamnatou, Chr.; Souliotis, M.; Rosell, J. I.; Barrau, J.

    2012-10-01

    The concept of a static linear Fresnel concentrator with a tracking absorber has been simulated and well understood in the past. This paper bridges the gap between theoretical optical performances and operation in outdoor conditions. The effort focuses on the characterization of weather and tilt angle effects on the solar concentrator annual performance. Useful mathematical expressions are derived to show the dependence of the annual concentrated energy on latitude, global radiation, mean clearness index and tilt angle. An equation for the optimization of the annual yield is also proposed. The results are applied to a PVT generator and the annual production of thermal and electrical output energy is evaluated for an installation in Barcelona (Spain). A performance improvement above 5% is reached when the optimized tilt angle is used.

  16. Nondissipative optimum charge regulator

    NASA Technical Reports Server (NTRS)

    Rosen, R.; Vitebsky, J. N.

    1970-01-01

    Optimum charge regulator provides constant level charge/discharge control of storage batteries. Basic power transfer and control is performed by solar panel coupled to battery through power switching circuit. Optimum controller senses battery current and modifies duty cycle of switching circuit to maximize current available to battery.

  17. Inverse solutions for tilting orthogonal double prisms.

    PubMed

    Li, Anhu; Ding, Ye; Bian, Yongming; Liu, Liren

    2014-06-10

    An analytical reverse solution and actual examples are given to show how to direct a laser beam from a pair of orthogonal prisms to given targets in free space. Considering the influences of double-prism structural parameters, a lookup table method to seek the numerical reverse solution of each prism's tilting angle is also proposed for steering the double-prism orientation to track a target position located in the near field. Some case studies, as well as a specified elliptical target trajectory scanned by the cam-based driving double prisms, exhibit the significant application values of the theoretical derivation. The analytic reverse and numerical solutions can be generalized to investigate the synthesis of scanning patterns and the controlling strategy of double-prism tilting motion, the potentials of which can be explored to perform the orientation and position tracking functions in applications of precision engineering fields.

  18. Tilted Liquid Crystal Alignment on Asymmetrically Grooved Porous Alumina Film

    NASA Astrophysics Data System (ADS)

    Maeda, Tsuyoshi; Hiroshima, Kohki

    2005-06-01

    This paper reports the achievement of tilted liquid crystal (LC) alignment on an anodic porous alumina (APA) film using microgrooves with asymmetric shapes and dozens of minute pores. The microgrooves with asymmetric shapes were formed by a rubbing technique. The minute pores were then produced by anodization. The LC pretilt angle was controlled by the shapes of the microgrooves and pores. The LC director was orientated in the same inclining direction as that of a rubbed polyimide (PI) film. The pretilt angle was in the range of 20 to 90°. This tilted LC alignment remains very stable against external forces such as thermal shock and intense light.

  19. Tilted string cosmologies

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-04-01

    Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.

  20. Data Correction for Gantry-tilted Local CT.

    PubMed

    Liang, Hongzhu; Zhang, Cishen; Yan, Ming; Zhou, Jiayin

    2005-01-01

    Gantry-tilted helical multi-slice computed tomography (CT) refers to the helical scanning CT system equipped with multi-row detector operating at some gantry tilting angle. Its purpose is to avoid the area which is vulnerable to the X-ray radiation. The local tomography is to reduce the total radiation dose by only scanning the region of interest for image reconstruction. In this paper we consider the scanning scheme, and incorporate the local tomography technique with the gantry-tilted helical multi-slice CT. The image degradation problem caused by gantry tilting is studied, and a new error correction method is proposed to deal with this problem in the local CT. Computer simulation shows that the proposed method can enhance the local imaging performance in terms of image sharpness and artifacts reduction.

  1. Effect of beam quality on tilt measurement using cyclic interferometer

    NASA Astrophysics Data System (ADS)

    Pretheesh Kumar, V. C.; Ganesan, A. R.; Joenathan, C.; Somasundaram, U.

    2016-08-01

    Accurate measurement of angles is extremely important in various metrological applications. Interferometry has always been an excellent technique for accurate measurements. Several methods have been proposed for accurate tilt measurement using interferometric techniques. Almost all of them use the Michelson configuration which is extremely sensitive to environmental vibrations and turbulences. We know that a cyclic interferometer is extremely stable. Even though it is not sensitive to displacement changes, it is twice sensitive to tilt compared to that of a Michelson interferometer. We have enhanced the sensitivity to measure tilt using multiple reflections in a cyclic interferometer. Since the input beam is collimated, we have studied the effect of aberration of the input beam on the accuracy of tilt measurement. Experimental results on this study are presented in this paper.

  2. Human perceptual overestimation of whole body roll tilt in hypergravity

    PubMed Central

    Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2014-01-01

    Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally. PMID:25540216

  3. Aberration and boresight error correction for conformal aircraft windows using the inner window surface and tilted fixed correctors.

    PubMed

    Zhao, Chunzhu; Cui, Qingfeng; Mao, Shan

    2016-04-01

    A static solution to aberrations and boresight error for tilted conformal aircraft windows at different look angles is reported. The solution uses the inner window surface to correct the window aberrations at a 0° look angle and uses fixed correctors behind the window to correct the residual window aberrations at other look angles. Then, the boresight error for the window at different look angles is corrected by tilting the fixed correctors. The principle of the solution is discussed, and a design example shows that the solution is effective in correcting the aberrations and boresight error for a tilted conformal aircraft window at different look angles.

  4. Method to fabricate a tilted logpile photonic crystal

    DOEpatents

    Williams, John D.; Sweatt, William C.

    2010-10-26

    A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.

  5. Numerical simulation about orthogonal single frequency dithering technique used in tilt control of fiber laser array

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixin; Zhi, Dong; Ma, Yanxing; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2017-01-01

    Beam combination of fiber laser array is an effective technique contributed to improve the brightness of fiber lasers. In order to realize high-efficiency CBC, challenges like phase distortion (mainly including piston and tilt phase aberrations) should be taken into consideration. Resent years, tilt phase aberrations control has been come true by adaptive fiber optics collimator using the stochastic parallel gradient descent (SPGD) algorithm. However, the convergence rate of tilt control system still cannot satisfy the needs of practical application. In order to increase the tilt control bandwidth, a new idea is put forward that applying the orthogonal single frequency dithering (OSFD) technique into tilt control, and numerical simulation has been completed. A hexagonal laser array with 7 elements has been simulated, and each element has a pair of initial tilt angles in horizontal and vertical direction. The initial tilt angles comply with normal distribution. In the same condition, tilt phase control has been realized through SPGD and OSFD individually, and the convergence steps (defined as the iteration steps that improve the normalized PIB above 0.9) with appropriate parameters are respectively about 20 (SPGD) and 7 (OSFD). Furthermore, tilt phase control of large number hexagonal array is simulated, and the results are as follows: for 19/37 elements, the least convergence steps are about 80/160(SPGD) and 19/55(OSFD). Comparing with SPGD algorithm, it is obvious that the OSFD has higher convergence rate and greater potential for tilt control application in large number coherent fiber laser array.

  6. Tilt compensated MOEMS projector as input device

    NASA Astrophysics Data System (ADS)

    Grüger, Heinrich; Heberer, Andreas; Gerwig, Christian; Nauber, Petra; Scholles, Michael; Lakner, Hubert

    2007-02-01

    Silicon micro machining once headed into two directions: MEMS (micro electro mechanical systems) based sensors like accelerometers and gyroscopes on the one hand, MOEMS (micro opto electro mechanical systems) based actuators like scanner mirrors on the other hand. Now both directions meet again: A tilt compensated projector module uses a two dimensional excited scanner mirror as well as accelerometers and gyroscopes. The projector module can have a minimum size of 30 x 15 x 15 mm 3 with a monochrome red laser source (λ = 635 nm). It reaches a resolution of 640 x 480 pixels (VGA) and a frame rate of 50fps. Colour projection requires lager size due to the lack of compact green laser sources. The tilt and roll angles are measured statically by a three axes accelerometer, fast movement is detected dynamically by three single axis gyroscopes. Thus tilt of the projection systems was compensated successfully. The dynamic range was set to 300 x 300 pixels for sufficient system dynamic. Furthermore the motion detection was used to achieve control and input device functions. The first demonstration and test system consists of a projector mounted at the axis of a PC racing wheel together with the additional inertial measurement unit (IMU) system. It was shown that projection and input function work well together. Using this approach, new possibilities for hand-held devices arise in the close future.

  7. Tilted dipole model for bias-dependent photoluminescence pattern

    SciTech Connect

    Fujieda, Ichiro Suzuki, Daisuke; Masuda, Taishi

    2014-12-14

    In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5 wt. % coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission.

  8. Passive tilt compensation in an FTS using a double-sided flat retroflector

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.

    1988-01-01

    An optical configuration for a tilt-compensated Fourier transform spectrometer is presented. An expanded and collimated He-Ne laser beam was passed through the interferometer and the collimated output was observed visually. The double-sided mirror was tilted through angles approaching 1 deg with no apparent degradation in the interference quality.

  9. Imaging tilted transversely isotropic media with a generalised screen propagator

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Il; Byun, Joongmoo; Seol, Soon Jee

    2015-01-01

    One-way wave equation migration is computationally efficient compared with reverse time migration, and it provides a better subsurface image than ray-based migration algorithms when imaging complex structures. Among many one-way wave-based migration algorithms, we adopted the generalised screen propagator (GSP) to build the migration algorithm. When the wavefield propagates through the large velocity variation in lateral or steeply dipping structures, GSP increases the accuracy of the wavefield in wide angle by adopting higher-order terms induced from expansion of the vertical slowness in Taylor series with each perturbation term. To apply the migration algorithm to a more realistic geological structure, we considered tilted transversely isotropic (TTI) media. The new GSP, which contains the tilting angle as a symmetric axis of the anisotropic media, was derived by modifying the GSP designed for vertical transversely isotropic (VTI) media. To verify the developed TTI-GSP, we analysed the accuracy of wave propagation, especially for the new perturbation parameters and the tilting angle; the results clearly showed that the perturbation term of the tilting angle in TTI media has considerable effects on proper propagation. In addition, through numerical tests, we demonstrated that the developed TTI-GS migration algorithm could successfully image a steeply dipping salt flank with high velocity variation around anisotropic layers.

  10. Tilts in strong ground motion

    USGS Publications Warehouse

    Graizer, V.

    2006-01-01

    Most instruments used in seismological practice to record ground motion are pendulum seismographs, velocigraphs, or accelerographs. In most cases it is assumed that seismic instruments are only sensitive to the translational motion of the instrument's base. In this study the full equation of pendulum motion, including the inputs of rotations and tilts, is considered. It is shown that tilting the accelerograph's base can severely impact its response to the ground motion. The method of tilt evaluation using uncorrected strong-motion accelerograms was first suggested by Graizer (1989), and later tested in several laboratory experiments with different strong-motion instruments. The method is based on the difference in the tilt sensitivity of the horizontal and vertical pendulums. The method was applied to many of the strongest records of the Mw 6.7 Northridge earthquake of 1994. Examples are shown when relatively large tilts of up to a few degrees occurred during strong earthquake ground motion. Residual tilt extracted from the strong-motion record at the Pacoima Dam-Upper Left Abutment reached 3.1?? in N45??E direction, and was a result of local earthquake-induced tilting due to high-amplitude shaking. This value is in agreement with the residual tilt measured by using electronic level a few days after the earthquake. The method was applied to the building records from the Northridge earthquake. According to the estimates, residual tilt reached 2.6?? on the ground floor of the 12-story Hotel in Ventura. Processing of most of the strongest records of the Northridge earthquake shows that tilts, if happened, were within the error of the method, or less than about 0.5??.

  11. Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter

    SciTech Connect

    Meot, F.; Huang, H.

    2015-06-15

    A possible origin of a 14 deg y-normal spin n0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.

  12. Tilt anisoplanatism in extended turbulence propagation

    NASA Astrophysics Data System (ADS)

    Magee, Eric P.; Whiteley, Matthew R.; Das, Shashikala T.; Welsh, Byron M.

    2003-04-01

    The use of high-energy laser (HEL) weapon systems in tactical air-to-ground target engagements offers great promise for revolutionizing the USAF's war-fighting capabilities. Laser directed-energy systems will enable ultra-precision strike with minimal collateral damage and significant stand-off range for the aerial platform. The tactical directed energy application differs in many crucial ways from the conventional approach used in missile defense. Tactical missions occur at much lower altitudes and involve look-down to low-contrast ground targets instead of a high-contrast boosting missile. At these lower altitudes, the strength of atmospheric turbulence is greatly enhanced. Although the target slant ranges are much shorter, tactical missions may still involve moderate values of the Rytov number (0.1-0.5), and small isoplanatic angles compared to the diffraction angle. With increased density of air in the propagation path, and the potential for slow-moving or stationary ground targets, HEL-induced thermal blooming will certainly be a concern. In order to minimize the errors induced by tracking through thermal blooming, offset aimpoint tracking can be used. However, this will result in significant tilt anisoplanatism, thus degrading beam stabilization on target. In this paper we investigate the effects of extended turbulence on tracking (or tilt) anisoplanatism using theory and wave optics simulations. The simulations show good agreement with geometric optics predictions at angles larger than about 5 micro-radians (asymptotic regime) while at smaller angles the agreement is poor. We present a theoretical basis for this observation.

  13. Method for Determining Optimum Injector Inlet Geometry

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, W. Neill (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  14. A blended wing body airplane with a close-coupled, tilting tail

    NASA Astrophysics Data System (ADS)

    Nasir, R. E. M.; Mazlan, N. S. C.; Ali, Z. M.; Wisnoe, W.; Kuntjoro, W.

    2016-10-01

    This paper highlights a novel approach to stabilizing and controlling pitch and yaw motion via a set of horizontal tail that can act as elevator and rudder. The tail is incorporated into a new design of blended wing body (BWB) aircraft, known as Baseline-V, located just aft of the trailing edge of its inboard wing. The proposed close-coupled tail is equipped with elevators that deflect in unison, and can tilt - an unusual means of tilting where if starboard side is tilted downward at k degree, and then the portside must be tilted upward at k degree too. A wind tunnel experiment is conducted to investigate aerodynamics and static stability of Baseline-V BWB aircraft. The model is being tested at actual flight speed of 15 m/s (54 km/h) with varying angle of attack for five elevator angle cases at zero tilt angle and varying sideslip angle for four tilt angle cases at one fixed elevator angle. The result shows that the aircraft's highest lift-to-drag ratio is 32. It is also found that Baseline-V is statically stable in pitch and yaw but has no clear indication in terms of roll stability.

  15. Increasing the sensitivity for tilt measurement using a cyclic interferometer with multiple reflections

    NASA Astrophysics Data System (ADS)

    Pretheesh Kumar, Valiyaparambil Chacko; Joenathan, Charles; Ganesan, Angarai; Somasundram, Umapathy

    2016-08-01

    Measurement of tilt plays an important role in metrological applications and consequently, several methods have been proposed in the recent past. Classical interferometric methods can measure angles with high accuracy but are easily susceptible to external turbulences. We propose to use a cyclic interferometer to measure tilt in which the sensitivity to tilt measurement is double when compared with that of the classical Michelson interferometer. Since the counter propagating beams travel identical paths, the interferometer is insensitive to external vibrations and turbulence and thus can be used under harsh environmental conditions. The novelty in the technique lies in creating multiple reflections in the tilt mirror to enhance the measurement accuracy by the way of increasing the sensitivity. This paper presents the basics of the interferometer and experimental results to quantify the increase in sensitivity. By increasing the number of reflections, it is shown that sensitivity can be further improved to measure tilt angles below 5 μrad.

  16. Optimum connection management scheduling

    NASA Astrophysics Data System (ADS)

    Kadar, Ivan

    2000-08-01

    Connection Management plays a key role in both distributed 'local' network-centric and 'globally' connected info- centric systems. The role of Connection Management is to provide seamless demand-based sharing of the information products. For optimum distributed information fusion performance, these systems must minimize communications delays and maximize message throughput, and at the same time take into account relative-sensors-targets geometrical constraints and data pedigree. In order to achieve overall distributed 'network' effectiveness, these systems must be adaptive, and be able to distribute data s needed in real- time. A system concept will be described which provides optimum capacity-based information scheduling. A specific example, based on a satellite channel, is used to illustrate simulated performance results and their effects on fusion systems performance.

  17. A tilt-pair based method for assigning the projection directions of randomly oriented single-particle molecules.

    PubMed

    Ueno, Yutaka; Mine, Shouhei; Kawasaki, Kazunori

    2015-04-01

    In this article, we describe an improved method to assign the projection angle for averaged images using tilt-pair images for three-dimensional reconstructions from randomly oriented single-particle molecular images. Our study addressed the so-called 'initial volume problem' in the single-particle reconstruction, which involves estimation of projection angles of the particle images. The projected images of the particles in different tilt observations were mixed and averaged for the characteristic views. After the ranking of these group average images in terms of reliable tilt angle information, mutual tilt angles between images are assigned from the constituent tilt-pair information. Then, multiples of the conical tilt series are made and merged to construct a network graph of the particle images in terms of projection angles, which are optimized for the three-dimensional reconstruction. We developed the method with images of a synthetic object and applied it to a single-particle image data set of the purified deacetylase from archaea. With the introduction of low-angle tilt observations to minimize unfavorable imaging conditions due to tilting, the results demonstrated reasonable reconstruction models without imposing symmetry to the structure. This method also guides its users to discriminate particle images of different conformational state of the molecule.

  18. Numerical study of natural convection in fully open tilted cavities

    SciTech Connect

    Elsayed, M.M.; Al-Najem, N.M.; El-Refaee, M.M.; Noor, A.A.

    1999-09-01

    A numerical simulation of two-dimensional laminar natural convection in a fully open tilted square cavity with an isothermally heated back wall is conducted. The remaining two walls of the cavity are adiabatic. Steady-state solutions are presented for Grashof numbers between 10{sup 2} and 10{sup 5} and for tilt angles ranging from {minus}60{degree} to 90{degree} (where 90{degree} represents a cavity with the opening facing down). The fluid properties are assumed to be constant except for the density variation with temperature that gives rise to the buoyancy forces, which is treated by the Boussinesq approximation. The fluid concerned is air with Prandtl number fixed at 0.71. The governing equations are expressed in a normalized primitive variables formulation. Numerical predictions of the velocity and temperature fields are obtained using the finite-volume-based power law (SIMPLER: Semi-Implicit Method for Pressure-Linked Equations Revised) algorithm. For a vertical open cavity ({alpha} = 0{degree}), the algorithm generated results that were in good agreement with those previously published. Flow patterns and isotherms are shown in order to give a better understanding of the heat transfer and flow mechanisms inside the cavity. Effects of the controlling parameters-Grashof number and tilt angle-on the heat transfer (average Nusselt number) are presented and analyzed. The results also revealed that the open-cavity Nusselt number approaches the flat-plate solution when either Grashof number or tilt angle increases. In addition, a correlation of the Nusselt number in terms of the Grashof number and tilt angle is developed and presented; a comparison is made with available data from other literature.

  19. Conservative GRMHD simulations of moderately thin, tilted accretion disks

    SciTech Connect

    Teixeira, Danilo Morales; Fragile, P. Chris; Zhuravlev, Viacheslav V.; Ivanov, Pavel B.

    2014-12-01

    This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work, we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for both prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bardeen-Petterson alignment for prograde disks may be rather small, only including very thin disks. Unlike our previous work, we find no evidence for standing shocks in our simulated tilted disks. We ascribe this to the black hole spin, tilt angle, and disk scale height all being small in these simulations. We also add to the growing body of literature pointing out that the turbulence driven by the magnetorotational instability in global simulations of accretion disks is not isotropic. Finally, we provide a comparison between our moderately thin, untilted reference simulation and other numerical simulations of thin disks in the literature.

  20. High tilt susceptibility of the Scintrex CG-5 relative gravimeters

    NASA Astrophysics Data System (ADS)

    Reudink, R.; Klees, R.; Francis, O.; Kusche, J.; Schlesinger, R.; Shabanloui, A.; Sneeuw, N.; Timmen, L.

    2014-06-01

    We report on the susceptibility of the Scintrex CG-5 relative gravimeters to tilting, that is the tendency of the instrument of providing incorrect readings after being tilted (even by small angles) for a moderate period of time. Tilting of the instrument can occur when in transit between sites usually on the backseat of a car even using the specially designed transport case. Based on a series of experiments with different instruments, we demonstrate that the readings may be offset by tens of Gal. In addition, it may take hours before the first reliable readings can be taken, with the actual time depending on how long the instrument had been tilted. This sensitivity to tilt in combination with the long time required for the instrument to provide reliable readings has not yet been reported in the literature and is not addressed adequately in the Scintrex CG-5 user manual. In particular, the inadequate instrument state cannot easily be detected by checking the readings during the observation or by reviewing the final data before leaving a site, precautions suggested by Scintrex Ltd. In regional surveys with car transportation over periods of tens of minutes to hours, the gravity measurements can be degraded by some 10 Gal. To obtain high-quality results in line with the CG-5 specifications, the gravimeters must remain in upright position to within a few degrees during transits. This requirement may often be unrealistic during field observations, particularly when observing in hilly terrain or when walking with the instrument in a backpack.

  1. Improvements to tilt rotor performance through passive blade twist control

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.

    1988-01-01

    A passive blade twist control is presented in which the twist distribution of a tilt rotor blade is elastically changed as a function of rotor speed. The elastic twist deformation is used to achieve two different blade twist distributions corresponding to the two rotor speeds used on conventional tilt rotors in hover and forward flight. By changing the blade twist distribution, the aerodynamic performance can be improved in both modes of flight. The concept presented obtains a change in twist distribution with extension-twist-coupled composite blade structure. This investigation first determines the linear twists which are optimum for each flight mode. Based on the optimum linear twist distributions, three extension-twist-coupled blade designs are developed using coupled-beam and laminate analyses integrated with an optimization analysis. The designs are optimized for maximum twist deformation subject to material strength limitations. The aerodynamic performances of the final designs are determined which show that the passive blade twist control concept is viable, and can enhance conventional tilt rotor performance.

  2. Low tilt angle photometry and the thickness of Saturn's rings

    NASA Technical Reports Server (NTRS)

    Lumme, K.; Irvine, W. M.

    1979-01-01

    Nine photographic plates taken by Focas and Dollfus (1969) at the moment of the 1966 passage of the earth through the ring plane of Saturn have been remeasured. The value 0.8 (+2.3, -0.8) km is obtained for the ring thickness. The observed transmitted radiation through the rings at two distances from the planet suggests that there are density fluctuations in Ring A with the low density areas having an optical thickness less than 0.13. The radiation reflected by the outermost part of the ring layer can be explained in terms of particles similar to those in the bulk of the rings. The time of the passage of the earth through the ring plane was found to be December 18 at 07h plus or minus 4h UT in 1966.

  3. Magnetotransport across the artificially designed tilted grain boundaries

    NASA Astrophysics Data System (ADS)

    Chen, Aiping; Bi, Zhenxing; Tsai, Chen-Fong; Chen, Li; Su, Qing; Zhang, Xinghang; Wang, Haiyan; Texas A&M University Collaboration; Texas A&M University Team; Los Alamos National Lab Team

    2014-03-01

    Single-phase epitaxial La0.7Sr0.3MnO3 (LSMO) thin films with significantly enhanced low-field magnetoresistance (LFMR) properties are demonstrated in this work. The LSMO films on SrTiO3 (001) substrates exhibit tilted and well-aligned nanocolumn structure achieved by pulsed laser oblique-angle deposition (PLOAD) followed by subsequent postannealing. The tilted aligned nanocolumnar (TAN) arrays have been achieved at relative high deposition angles (>=30°) and low deposition temperatures (<=450 °C). More attractively, the tilted grain boundaries (GBs) can be systematically manipulated by the postannealing process and so can the LFMR values of the LSMO TAN films. These results demonstrate that the tilted nanocolumnar films achieved by PLOAD and the GB tailoring by postannealing may provide a new approach to control and manipulate the magnetotransport properties of single-phase manganite perovskite films for device applications that require large LFMR effects, high epitaxial quality, and low resistivity.

  4. Crystal lattice tilting in prismatic calcite.

    PubMed

    Olson, Ian C; Metzler, Rebecca A; Tamura, Nobumichi; Kunz, Martin; Killian, Christopher E; Gilbert, Pupa U P A

    2013-08-01

    We analyzed the calcitic prismatic layers in Atrina rigida (Ar), Haliotis iris (Hi), Haliotis laevigata (HL), Haliotis rufescens (Hrf), Mytilus californianus (Mc), Pinctada fucata (Pf), Pinctada margaritifera (Pm) shells, and the aragonitic prismatic layer in the Nautilus pompilius (Np) shell. Dramatic structural differences were observed across species, with 100-μm wide single-crystalline prisms in Hi, HL and Hrf, 1-μm wide needle-shaped calcite prisms in Mc, 1-μm wide spherulitic aragonite prisms in Np, 20-μm wide single-crystalline calcite prisms in Ar, and 20-μm wide polycrystalline calcite prisms in Pf and Pm. The calcite prisms in Pf and Pm are subdivided into sub-prismatic domains of orientations, and within each of these domains the calcite crystal lattice tilts gradually over long distances, on the order of 100 μm, with an angle spread of crystal orientation of 10-20°. Furthermore, prisms in Pf and Pm are harder than in any other calcite prisms analyzed, their nanoparticles are smaller, and the angle spread is strongly correlated with hardness in all shells that form calcitic prismatic layers. One can hypothesize a causal relationship of these correlated parameters: greater angle spread may confer greater hardness and resistance to wear, thus providing Pf and Pm with a structural advantage in their environment. This is the first structure-property relationship thus far hypothesized in mollusk shell prisms.

  5. Gender and line size factors modulate the deviations of the subjective visual vertical induced by head tilt

    PubMed Central

    2012-01-01

    Background The subjective visual vertical (SVV, the visual estimation of gravitational direction) is commonly considered as an indicator of the sense of orientation. The present study examined the impact of two methodological factors (the angle size of the stimulus and the participant's gender) on deviations of the SVV caused by head tilt. Forty healthy participants (20 men and 20 women) were asked to make visual vertical adjustments of a light bar with their head held vertically or roll-tilted by 30° to the left or to the right. Line angle sizes of 0.95° and 18.92° were presented. Results The SVV tended to move in the direction of head tilt in women but away from the direction of head tilt in men. Moreover, the head-tilt effect was also modulated by the stimulus' angle size. The large angle size led to deviations in the direction of head-tilt, whereas the small angle size had the opposite effect. Conclusions Our results showed that gender and line angle size have an impact on the evaluation of the SVV. These findings must be taken into account in the growing body of research that uses the SVV paradigm in disease settings. Moreover, this methodological issue may explain (at least in part) the discrepancies found in the literature on the head-tilt effect. PMID:22420467

  6. Tilt and Translation Motion Perception during Off Vertical Axis Rotation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Reschke, Millard F.; Clement, Gilles

    2006-01-01

    The effect of stimulus frequency on tilt and translation motion perception was studied during constant velocity off-vertical axis rotation (OVAR), and compared to the effect of stimulus frequency on eye movements. Fourteen healthy subjects were rotated in darkness about their longitudinal axis 10deg and 20deg off-vertical at 0.125 Hz, and 20deg offvertical at 0.5 Hz. Oculomotor responses were recorded using videography, and perceived motion was evaluated using verbal reports and a joystick with four degrees of freedom (pitch and roll tilt, mediallateral and anteriorposterior translation). During the lower frequency OVAR, subjects reported the perception of progressing along the edge of a cone. During higher frequency OVAR, subjects reported the perception of progressing along the edge of an upright cylinder. The modulation of both tilt recorded from the joystick and ocular torsion significantly increased as the tilt angle increased from 10deg to 20deg at 0.125 Hz, and then decreased at 0.5 Hz. Both tilt perception and torsion slightly lagged head orientation at 0.125 Hz. The phase lag of torsion increased at 0.5 Hz, while the phase of tilt perception did not change as a function of frequency. The amplitude of both translation perception recorded from the joystick and horizontal eye movements was negligible at 0.125 Hz and increased as a function of stimulus frequency. While the phase lead of horizontal eye movements decreased at 0.5 Hz, the phase of translation perception did not vary with stimulus frequency and was similar to the phase of tilt perception during all conditions. During dynamic linear acceleration in the absence of other sensory input (canal, vision) a change in stimulus frequency alone elicits similar changes in the amplitude of both self motion perception and eye movements. However, in contrast to the eye movements, the phase of both perceived tilt and translation motion is not altered by stimulus frequency. We conclude that the neural processing

  7. Fabrication and Characteristics of Micro-Electro-Mechanical-System-Based Tilt Sensor

    NASA Astrophysics Data System (ADS)

    Choi, Ju Chan; Kong, Seong Ho

    2009-06-01

    A miniaturized tilt sensor using air medium, which is measurable on a two-axis inclination angle, is fabricated and its output characteristics are evaluated. The proposed tilt sensor consists of a central microheater surrounded by four temperature sensors. Without an inclination, the microheater creates a symmetric temperature profile in an encapsulated microchamber filled with air medium. When the device is tilted, the temperature sensors formed around the central heater measure the asymmetric temperature profile, caused by the effect of convection. The proposed tilt sensor covers a measurement range of ±90° on two axes with excellent linearity and symmetric sensitivity. Furthermore, the structure and fabrication sequence of the proposed sensor are quite simple; that is, the microheater and temperature sensors can be simultaneously formed because they are made of the same material. Several issues, confronting the previously reported electrolytic tilt sensor, such as metal electrode corrosion, electrolyte deterioration, surface tension of the electrolyte, and difficulty in packaging, were avoided.

  8. Human responses to upright tilt: a window on central autonomic integration

    NASA Technical Reports Server (NTRS)

    Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.

    1999-01-01

    1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low

  9. Tilted microstrip phased arrays with improved electromagnetic decoupling for ultrahigh-field magnetic resonance imaging.

    PubMed

    Pang, Yong; Wu, Bing; Jiang, Xiaohua; Vigneron, Daniel B; Zhang, Xiaoliang

    2014-12-01

    One of the technical challenges in designing a dedicated transceiver radio frequency (RF) array for MR imaging in humans at ultrahigh magnetic fields is how to effectively decouple the resonant elements of the array. In this work, we propose a new approach using tilted microstrip array elements for improving the decoupling performance and potentially parallel imaging capability. To investigate and validate the proposed design technique, an 8-channel volume array with tilted straight-type microstrip elements was designed, capable for human imaging at the ultrahigh field of 7 Tesla. In this volume transceiver array, its electromagnetic decoupling behavior among resonant elements, RF field penetration to biological samples, and parallel imaging performance were studied through bench tests and in vivo MR imaging experiments. In this specific tilted element array design, decoupling among array elements changes with the tilted angle of the elements and the best decoupling can be achieved at certain tilted angle. In vivo human knee MR images were acquired using the tilted volume array at 7 Tesla for method validation. Results of this study demonstrated that the electromagnetic decoupling between array elements and the B1 field strength can be improved by using the tilted element method in microstrip RF coil array designs at the ultrahigh field of 7T.

  10. Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Carbone, Giuseppe; Pierro, Elena; Kovalev, Alexander E.; Gorb, Stanislav N.

    2014-01-01

    We studied experimentally and theoretically the effect of different tilt angles on the adhesion of mushroom-shaped adhesive microstructures. The marginal measured influence of tilting on pull-off forces is quantitatively well confirmed by numerical and theoretical calculations and was shown to be a direct consequence of an optimized stress distribution. In addition, the presence of a joint-like narrowing under the contact elements, as found in some biological attachment systems, was shown to further contribute to the tilt-tolerance. The results obtained allow us to explain the advantage of the widely observed mushroom-shaped contact geometry in nature for long-term and permanent adhesion.

  11. SYSTEMATIC ERROR REDUCTION: NON-TILTED REFERENCE BEAM METHOD FOR LONG TRACE PROFILER.

    SciTech Connect

    QIAN,S.; QIAN, K.; HONG, Y.; SENG, L.; HO, T.; TAKACS, P.

    2007-08-25

    Systematic error in the Long Trace Profiler (LTP) has become the major error source as measurement accuracy enters the nanoradian and nanometer regime. Great efforts have been made to reduce the systematic error at a number of synchrotron radiation laboratories around the world. Generally, the LTP reference beam has to be tilted away from the optical axis in order to avoid fringe overlap between the sample and reference beams. However, a tilted reference beam will result in considerable systematic error due to optical system imperfections, which is difficult to correct. Six methods of implementing a non-tilted reference beam in the LTP are introduced: (1) application of an external precision angle device to measure and remove slide pitch error without a reference beam, (2) independent slide pitch test by use of not tilted reference beam, (3) non-tilted reference test combined with tilted sample, (4) penta-prism scanning mode without a reference beam correction, (5) non-tilted reference using a second optical head, and (6) alternate switching of data acquisition between the sample and reference beams. With a non-tilted reference method, the measurement accuracy can be improved significantly. Some measurement results are presented. Systematic error in the sample beam arm is not addressed in this paper and should be treated separately.

  12. Tilted Thick-Disk Accretion onto a Kerr Black Hole

    SciTech Connect

    Fragile, P C; Anninos, P

    2003-12-12

    We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M{sup 2} = +0.9 (prograde disk). The black hole is then instantaneously tilted, through a change in the metric, by an angle {beta}{sub 0}. In this Letter we report results with {beta}{sub 0} = 0, 15, and 30{sup o}. The disk is allowed to respond to the Lense-Thirring precession of the tilted black hole. We find that the disk settles into a quasi-static, twisted, warped configuration with Lense-Thirring precession dominating out to a radius analogous to the Bardeen-Petterson transition in tilted Keplerian disks.

  13. Field induced UV-alignment method for a zero pre-tilt liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Won; Park, Jun-Hee; Yoon, Tae-Hoon

    2016-09-01

    Recently, photo-alignment technology has been the focus of research efforts because lowering the pre-tilt angle is essential for complete elimination of the off-axis light leakage. However, even though photo-alignment can provide zero pre-tilt angle, it has not yet been widely applied in mass production because of its weak surface anchoring, high curing energy, and strong image sticking. In this paper, we demonstrate that the zero pre-tilt angle can be obtained by employing the field-induced UV-alignment method. We have shown electro-optical characteristics and parameters related to the image quality of a fringe-field switching cell fabricated using the proposed method as functions of the monomer concentration and the UV irradiation time.

  14. Theoretical analysis of interferometer wave front tilt and fringe radiant flux on a rectangular photodetector.

    PubMed

    Smith, Robert; Fuss, Franz Konstantin

    2013-09-06

    This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector for variable location within the fringe pattern and with varying wave front angle. The results indicate that the flux is a damped sine function of the wave front angle, with a decay constant of the ratio of wavelength to detector width. The modulation amplitude of the dynamic fringe pattern reduces to zero at wave front angles that are an integer multiple of this ratio and the results show that the polarity of the radiant flux changes exclusively at these multiples. Varying tilt angle causes radiant flux oscillations under an envelope curve, the frequency of which is dependent on the location of the detector with the fringe pattern. It is also shown that a fringe count of zero can be obtained for specific photodetector locations and wave front angles where the combined effect of fringe contraction and fringe tilt can have equal and opposite effects. Fringe tilt as a result of a wave front angle of 0.05° can introduce a phase measurement difference of 16° between a photodetector/pixel located 20 mm and one located 100 mm from the optical origin.

  15. Effect of lens tilt on SCE and filamentation characteristics of femtosecond pulses in air

    NASA Astrophysics Data System (ADS)

    Sreeja, S.; Prashant, T. Shuvan; Leela, Ch.; Kumar, V. Rakesh; Tewari, Surya P.; Venugopal Rao, S.; Kiran, P. Prem

    2012-06-01

    We present the evolution of SCE associated with filaments due to the tilt of focusing lens under tight focusing geometries. Transform limited femtosecond (fs) pulses (800 nm, 45 fs, 1 kHz repetition rate) were focused in ambient air using three different focusing geometries f/#6, f/#7.5, and f/#12 corresponding to numerical apertures (NA) of 0.08, 0.06, and 0.04, respectively. The focusing lens was tilted from zero up to 20 degrees. The filaments decayed into two shorter parts through tilting of the lens and the separation between shorter filaments increased with increasing lens tilt, in tune with earlier reports [Kamali et al., Opt. Commun. 282, 950-954 (2009)]. The separation between the filaments matched well with the predicted distances due to astigmatism induced in loose focusing geometries. However the deviation increased as we moved to the tighter focusing geometries. The SCE spectrum demonstrated an anomalous behaviour. The SCE spectrum was suppressed at larger tilt angles of 12 - 20°. However at lower tilt angles, up to 8°, the SCE was observed to be same to that measured without any tilt of the focusing lens. This behaviour is predominant with tighter focusing geometries of f/#6 and f/#7.5, wherein the SCE was observed to be higher at 4° and 8° in comparison with that observed at an angle of 0°. Systematic study of the focusing lens tilt on anomalous SCE spectra and filament characteristics in the tight focusing geometry are presented.

  16. The tilt rotor research aircraft (XV-15) program

    NASA Technical Reports Server (NTRS)

    Magee, J. P.

    1983-01-01

    The tilt rotor concept is introduced and the performance capabilities and noise characteristics of the XV-15 aircraft are discussed. In hover, the aircraft is lifted by the two wing tip mounted rotors with the nacelles in the vertical position. In this flight mode, the vehicle is a twin rotor helicopter and is controlled by rotor cyclic and collective controls. The aircraft can fly as a helicopter or tilt the nacelle to the propeller mode and operate as a fixed-wing twin turboprop airplane. It is also possible to stop the conversion at any intermediate angle and fly continuously or reconvert. The rotors are powered by two modified T-53 engines and the power train includes a cross shaft located in the wing, to allow for the engine failure case and still retain power to both rotors.

  17. Resolution enhancement of computed radiography images using two orthogonal tilts

    NASA Astrophysics Data System (ADS)

    Pollmann, Steven I.; Norley, Chris J. D.; Yuan, Xunhua; Holdsworth, David W.

    2012-03-01

    Limitations to the spatial resolution of current digital x-ray systems are bounded by the physical characteristics of the xray detector. However, the need to image smaller structures provides motivation to develop high-resolution x-ray detector systems for use with computed radiographic, and tomographic x-ray systems. We report the implementation of a tilted detector technique (TDT) to attain near isotropic resolution enhancement by combining two orthogonal image views, acquired with existing detector hardware tilted at a fixed angle. Images were acquired using a ceiling-mounted x-ray unit (Proteus XR/a, GE Medical Systems, 50kVp, 250mAs). Images were digitized using a Fujifilm Capsula X CR system, from a 35×43cm detector cassette placed on an angulated stand, featuring a 3520×4280 image matrix with an in-plane pixel spacing of 0.1mm. Three images were acquired: two for use with our TDT; and one for comparison, with no detector tilt. Performance was determined by using two line-pair phantoms (Models 07-521 and 07-533, Nuclear Associates) placed orthogonally to each other in the field of view. Custom software corrected for perspective distortion, co-registered and combined the tilted-detector images into a single higher-resolution image. Following unwarping and co-registration, the limiting spatial resolution of an image obtained via the weighted combination of the two orthogonal views (8 lp/mm) is found to be superior to that of a single view acquired with no detector tilt (5 lp/mm). This novel technique shows significant improvement in the spatial resolution of x-ray image acquisitions, using existing x-ray components and detector hardware.

  18. Experimental determination of optimum gutter brush parameters and road sweeping criteria for different types of waste.

    PubMed

    Abdel-Wahab, Magd M; Wang, Chong; Vanegas-Useche, Libardo V; Parker, Graham A

    2011-06-01

    The removal ability of gutter brushes for road sweeping for various debris types and different sweeping parameters is studied through experimental tests. The brushing test rig used comprises two commercial gutter brushes, a concrete test bed, and an asphalt test road with a gutter of 0.25 cm width and 10° slope. The brush-surface contact area is determined by sweeping sand on the concrete test bed. Sweeping problems are identified and discussed, and sweeping criteria for the different debris types are suggested. Also, optimum sweeping parameters are proposed for each debris type. In addition, debris removal mechanisms are discussed and analysed. The results indicate that for large heavy debris such as stones and gravel, it is not difficult to achieve large removal forces, because the steel bristles are relatively stiff. Conversely, high removal forces are not needed for particles of millimetre or micron sizes, but bristle curvature has to be appropriate to remove particles from road concavities. Finally, it is found that mud, especially dry mud on a rough surface, is the hardest debris to sweep, requiring a brush with a large tilt angle and a very large penetration to produce large removal forces.

  19. Angle performance on optima MDxt

    SciTech Connect

    David, Jonathan; Kamenitsa, Dennis

    2012-11-06

    Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).

  20. Equilibrium contact angle or the most-stable contact angle?

    PubMed

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation.

  1. Gravito-Inertial Force Resolution in Perception of Synchronized Tilt and Translation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Holly, Jan; Zhang, Guen-Lu

    2011-01-01

    the GIF-resolution hypothesis even when the gravito-inertial force vector remains aligned with the body during periodic motion. Perception is also consistent with GIF-resolution in the opposite condition, when the gravito-inertial force vector angle is enhanced by synchronized tilt and translation.

  2. Extension-twist coupling of composite circular tubes with application to tilt rotor blade design

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.

    1987-01-01

    This investigation was conducted to determine if twist deformation required for the design of full-scale extension-twist-coupled tilt-rotor blades can be achieved within material design limit loads, and to demonstrate the accuracy of a coupled-beam analysis in predicting twist deformations. Two extension-twist-coupled tilt-rotor blade designs were developed based on theoretically optimum aerodynamic twist distributions. The designs indicated a twist rate requirement of between .216 and .333 deg/in. Agreement between axial tests and analytical predictions was within 10 percent at design limit loads. Agreement between the torsion tests and predictions was within 11 percent.

  3. Paleomagnetic vectors and tilted dikes

    NASA Astrophysics Data System (ADS)

    Borradaile, G. J.

    2001-04-01

    Where tectonic deformation reorients rocks without penetrative strain, their paleomagnetic vectors may be restored to their original attitudes by untilting. For strata, paleomagnetic inclination is readily restored but the tilt axis must be precisely known if paleodeclination is required. For dikes, without the knowledge of the rotation(s), neither declination nor inclination of the paleomagnetic vector can be uniquely defined. Furthermore, back-rotating dike orientations to an upright attitude assumes primary verticality whereas primary dike dips are bimodal across the spreading axes (e.g. Troodos ophiolite, Cyprus). In the Cyprus ophiolite, the dikes of the Limassol Forest Transform Zone are tilted due to uplift of the mantle-sequence rocks and deflected against the Arakapas Fault. Their paleomagnetic vectors may be restored rotating about the two axes defined by the strike and the vertical, or about a net axis that is possibly the actual tectonic rotation axis. This net axis is determined from the tectonic regional dispersion of the dike orientations. In this test case, the results of the restorations differ slightly but underline the difficulty in selecting the best restoration procedure and the greater difficulty of restoring the paleomagnetic data from dikes vis à vis strata. For dikes, it is recommended that the paleomagnetic vectors are restored using average dike orientations to minimize the inaccuracies due to the large primary variation in dike orientation.

  4. Modulation of internal estimates of gravity during and after prolonged roll-tilts.

    PubMed

    Tarnutzer, Alexander A; Bertolini, Giovanni; Bockisch, Christopher J; Straumann, Dominik; Marti, Sarah

    2013-01-01

    Perceived direction of gravity, as assessed by the subjective visual vertical (SVV), shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56 yo) repetitively adjusted a luminous arrow to the SVV over periods of 5 min while upright, roll-tilted (± 45°, ± 90°), and immediately after returning to upright. Significant (p<0.05) drifts (median absolute drift-amplitude: 10°/5 min) were found in 71% (± 45°) and 78% (± 90°) of runs. At ± 90° roll-tilt significant increases in absolute adjustment errors were more likely (76%), whereas significant increases (56%) and decreases (44%) were about equally frequent at ± 45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71 sec) was noted in 47% of all runs (all subjects pooled). No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central

  5. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy

    SciTech Connect

    Bell, Linda J.; Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2014-10-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle change between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1 cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more

  6. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy.

    PubMed

    Bell, Linda J; Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2014-01-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle change between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by more

  7. ''Optimum productivity'': a geneticist's view

    SciTech Connect

    Libby, W.J.

    1980-01-01

    Both ''optimum'' and ''productivity'' are explored in a social context with a long time dimension. Renewability, flexibility, and diversity are important concepts in long-term planning to achieve optimum productivity. Various possible genetic contributions, including complementary clones, quantitative genetic engineering, resistant trees and plantations, elimination of inbreeding, single-gene genetic engineering, and agri-forestry, are suggested for long-term sustained or increased productivity.

  8. MIMO decorrelation for visible light communication based on angle optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyong; Zhu, Yijun

    2017-03-01

    Recently, many researchers have used the normal vector tilting to solve the problems about low rate of multiplexing and channel strong correlation in Visible Light Communication Multiple-Input Multiple-Output (VLC-MIMO) system, but they all lack of the theoretical support. In this paper, we establish a channel model about 2×2 VLC-MIMO, then translate the communication problem about vector tilting optimal angle in a certain range into a mathematical problem about seeking the minimum value of function. Finally, we deduced the mathematic expressions about the optimal tilting angles of corresponding LEDs and PDs, and these expressions will provide a theoretical basis for the further study.

  9. TILTING TABLE AREA, PDP ROOM, LEVEL +27’, LOOKING NORTHWEST. TILTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TILTING TABLE AREA, PDP ROOM, LEVEL +27’, LOOKING NORTHWEST. TILTING TABLE MARKED BY WHITE ELECTRICAL CORD IN LOWER LEFT CENTER - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  10. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this…

  11. Geometry dependence of the clogging transition in tilted hoppers

    NASA Astrophysics Data System (ADS)

    Thomas, C. C.; Durian, D. J.

    2013-05-01

    We report the effects of system geometry on the clogging of granular material flowing out of flat-bottomed hoppers with variable aperture size D and with variable angle θ of tilt of the hopper away from horizontal. In general, larger tilt angles make the system more susceptible to clogging. To quantify this effect for a given θ, we measure the distribution of mass discharged between clogging events as a function of aperture size and extrapolate to the critical size at which the average mass diverges. By repeating for different angles, we map out a clogging phase diagram as a function of D and θ that demarcates the regimes of free flow (large D, small θ) and clogging (small D, large θ). We do this for both circular holes and long rectangular slits. Additionally, we measure four types of grain: smooth spheres (glass beads), compact angular grains (beach sand), disklike grains (lentils), and rodlike grains (rice). For circular apertures, the clogging phase diagram is found to be the same for all grain types. For narrow slit apertures and compact grains, the shape is also the same as for circular holes when expressed in terms of projected area of the aperture against the average flow direction. For lentils and rice discharged from slits, the behavior differs and may be due to alignment between grain and slit axes.

  12. Tilting Uranus without a Collision

    NASA Astrophysics Data System (ADS)

    Rogoszinski, Zeeve; Hamilton, Douglas P.

    2016-10-01

    The most accepted hypothesis for the origin of Uranus' 98° obliquity is a giant collision during the late stages of planetary accretion. This model requires a single Earth mass object striking Uranus at high latitudes; such events occur with a probability of about 10%. Alternatively, Uranus' obliquity may have arisen from a sequence of smaller impactors which lead to a uniform distribution of obliquities. Here we explore a third model for tilting Uranus using secular spin-orbit resonance theory. We investigate early Solar System configurations in which a secular resonance between Uranus' axial precession frequency and another planet's orbital node precession frequency might occur.Thommes et al. (1999) hypothesized that Uranus and Neptune initially formed between Jupiter and Saturn, and were then kicked outward. In our scenario, Neptune leaves first while Uranus remains behind. As an exterior Neptune slowly migrates outward, it picks up both Uranus and Saturn in spin-orbit resonances (Ward and Hamilton 2004; Hamilton and Ward 2004). Only a distant Neptune has a nodal frequency slow enough to resonate with Uranus' axial precession.This scenario, with diverging orbits, results in resonance capture. As Neptune migrates outward its nodal precession slows. While in resonance, Uranus and Saturn each tilt a bit further, slowing their axial precession rates to continually match Neptune's nodal precession rate. Tilting Uranus to high obliquities takes a few 100 Myrs. This timescale may be too long to hold Uranus captive between Jupiter and Saturn, and we are investigating how to reduce it. We also find that resonance capture is rare if Uranus' initial obliquity is greater than about 10°, as the probability of capture decreases as the planet's initial obliquity increases. We will refine this estimate by quantifying capture statistics, and running accretion simulations to test the likelihood of a low early obliquity. Our preliminary findings show that most assumptions about

  13. Angle Performance on Optima XE

    SciTech Connect

    David, Jonathan; Satoh, Shu

    2011-01-07

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were able to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1{sigma}). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.

  14. A tilt sensor with a compact dimension based on a long-period fiber grating.

    PubMed

    Wang, Yunpeng; Zhao, Chun-Liu; Hu, Limin; Dong, Xinyong; Jin, Yongxing; Shen, Changyu; Jin, Shangzhong

    2011-09-01

    A tilt sensor with a compact dimension based on a long-period fiber grating (LPG) is proposed and experimentally demonstrated. The LPG is fixed in a rigid Plexi-glass tubular with a slant orientation and half of the LPG is immersed into the NaCl aqueous solutions, whereas the other half is exposed in air. The tilt angle is obtained by monitoring the dip wavelength shift of the LPG, which changes gradually when the immersed length of the LPG varies with the tilt angle. Experimental results show that the average sensitivity 0.077 nm/° is achieved within the measurement range from -30° to 30° at the static measurement.

  15. A tilt sensor with a compact dimension based on a long-period fiber grating

    NASA Astrophysics Data System (ADS)

    Wang, Yunpeng; Zhao, Chun-Liu; Hu, Limin; Dong, Xinyong; Jin, Yongxing; Shen, Changyu; Jin, Shangzhong

    2011-09-01

    A tilt sensor with a compact dimension based on a long-period fiber grating (LPG) is proposed and experimentally demonstrated. The LPG is fixed in a rigid Plexi-glass tubular with a slant orientation and half of the LPG is immersed into the NaCl aqueous solutions, whereas the other half is exposed in air. The tilt angle is obtained by monitoring the dip wavelength shift of the LPG, which changes gradually when the immersed length of the LPG varies with the tilt angle. Experimental results show that the average sensitivity 0.077 nm/° is achieved within the measurement range from -30° to 30° at the static measurement.

  16. A Cardiovascular Mathematical Model of Graded Head-Up Tilt

    PubMed Central

    Lim, Einly; Chan, Gregory S. H.; Dokos, Socrates; Ng, Siew C.; Latif, Lydia A.; Vandenberghe, Stijn; Karunanithi, Mohan; Lovell, Nigel H.

    2013-01-01

    A lumped parameter model of the cardiovascular system has been developed and optimized using experimental data obtained from 13 healthy subjects during graded head-up tilt (HUT) from the supine position to . The model includes descriptions of the left and right heart, direct ventricular interaction through the septum and pericardium, the systemic and pulmonary circulations, nonlinear pressure volume relationship of the lower body compartment, arterial and cardiopulmonary baroreceptors, as well as autoregulatory mechanisms. A number of important features, including the separate effects of arterial and cardiopulmonary baroreflexes, and autoregulation in the lower body, as well as diastolic ventricular interaction through the pericardium have been included and tested for their significance. Furthermore, the individual effect of parameter associated with heart failure, including LV and RV contractility, baseline systemic vascular resistance, pulmonary vascular resistance, total blood volume, LV diastolic stiffness and reflex gain on HUT response have also been investigated. Our fitted model compares favorably with our experimental measurements and published literature at a range of tilt angles, in terms of both global and regional hemodynamic variables. Compared to the normal condition, a simulated congestive heart failure condition produced a blunted response to HUT with regards to the percentage changes in cardiac output, stroke volume, end diastolic volume and effector response (i.e., heart contractility, venous unstressed volume, systemic vascular resistance and heart rate) with progressive tilting. PMID:24204817

  17. Large optics inspection, tilting, and washing stand

    DOEpatents

    Ayers, Marion Jay; Ayers, Shannon Lee

    2012-10-09

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  18. Large optics inspection, tilting, and washing stand

    DOEpatents

    Ayers, Marion Jay; Ayers, Shannon Lee

    2010-08-24

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  19. Tip--tilt compensation for astronomical imaging

    SciTech Connect

    Olivier, S.S. ); Gavel, D.T. )

    1994-01-01

    We present a performance analysis of tip--tilt-compensation systems that use natural stars as tilt references. Taking into account properties of the atmosphere and of the galactic stellar populations, we optimize operating parameters over the system to determine performance limits for several varieties of tip--tilt-compensation system operating on a 10-m telescope on Mauna Kea, Hawaii. We find that, for systems that use a single tilt reference star, if the image of the star is uncorrected, a one-axis root-mean-square tilt residual of less than 190 nrad can be obtained for at least 99% of all astronomical objects, whereas if the image of the tilt reference star is fully corrected this limit drops to 90 nrad. For systems that use two tilt reference stars the limits drop to 160 nrad if the images of the stars are uncorrected and to 60 nrad if the images of the stars are fully corrected. These residual tilt levels would permit [ital V]-band images with long-exposure resolution of 8.5, 4.2, 7.3, and 2.9 times the diffraction limit, respectively, where the diffraction-limited resolution in the [ital V] band is 0.011 arcsec. These results may be compared with the typical seeing of 0.75 arcsec.

  20. Optimum Solar Conversion Cell Configurations

    NASA Technical Reports Server (NTRS)

    Chen, Bin (Inventor)

    2015-01-01

    Methods for maximizing a fraction of light energy absorbed in each of three classes of light concentrators (rectangular parallelepipeds, paraboloids and prisms) by choice of incident angle of radiation and of one or more geometrical or physical parameters (absorber thickness, paraboloid dimensions, location of paraboloid focus, prism angles, concentrator material, cladding, prism angles, etc.). Alternatively, the light energy absorbed plus the light energy that escapes through non-total internal reflection within the light concentrator can be minimized.

  1. A study of the cornering forces generated by aircraft tires on a tilted, free-swiveling nose gear

    NASA Technical Reports Server (NTRS)

    Daugherty, R. H.; Stubbs, S. M.

    1985-01-01

    An experimental investigation was conducted to study the effect of various parameters on the cornering forces produced by a rolling aircraft tire installed on a tilted, free-swiveling nose gear. The parameters studied included tilt angle, trial, tire inflation pressure, rake angle, vertical load, and whether or not a twin tire configuration corotates. These parameters were evaluated by measuring the cornering force produced by an aircraft tire installed on the nose gear of a modified vehicle as it was towed slowly. Cornering force coefficient increased with increasing tilt angle. Increasing trial or rake angle decreased the magnitude of the cornering force coefficient. Tire inflation pressure had no effect on the cornering force coefficient. Increasing vertical load decreased the cornering force coefficient. When the tires of a twin tire system rotated independently, the cornering force coefficients were the same as those for the single-tire configuration. When the twin tire system was made to corotate, however, the cornering force coefficients increased significantly.

  2. Numerical aperture characteristics of angle-ended plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Farrell, Gerard

    2003-03-01

    With the increasing information rates demanded in consumer, automotive and aeronautical applications, a low cost and high performance physical transmission medium is required. Compared with Silica Optical Fiber, Plastic Optical Fiber (POF) offers an economic solution for a range of high-capacity, short-haul applications in industrial and military environments. Recently, a new type of POF, the perfluorinated graded-index plastic optical fiber (PF GI-POF), has been introduced that has low losses and high bandwidth at the communication wavelengths 850 nm and 1300nm. POF is normally terminated perpendicular to the fiber axis. We propose an angle-ended POF, which is terminated at non-perpendicular angles to the fiber axis. The aim of the research is to investigate the numerical aperture (NA) characteristics of angle-ended POF along the major axis of the elliptical endface. A theoretical model indicates that the NA of the angle-ended POF will increase nonlinearly with tilt-angle and the acceptance cone will be deflected with the angle of the deflection increasing nonlinearly with tilt-angle. We present results for the measured NA and the measured deflection angle using the far-field radiation method. Results are presented for 13 angle-ended SI-POF tilt-angles. We also present results for theoretical value of NA and deflection angle as a function of tilt-angle. The agreement between the measured and theoretical value is good up to tilt-angles of about 15 degrees, beyond which deviation occurs.

  3. Detection and correction of wavefront errors caused by slight reference tilt in two-step phase-shifting digital holography.

    PubMed

    Xu, Xianfeng; Cai, Luzhong; Gao, Fei; Jia, Yulei; Zhang, Hui

    2015-11-10

    A simple and convenient method, without the need for any additional optical devices and measurements, is suggested to improve the quality of the reconstructed object wavefront in two-step phase-shifting digital holography by decreasing the errors caused by reference beam tilt, which often occurs in practice and subsequently introduces phase distortion in the reconstructed wave. The effects of reference beam tilt in two-step generalized interferometry is analyzed theoretically, showing that this tilt incurs no error either on the extracted phase shift or on the retrieved real object wave amplitude on the recording plane, but causes great deformation of the recovered object wavefront. A corresponding error detection and correction approach is proposed, and the formulas to calculate the tilt angle and correct the wavefront are deduced. A series of computer simulations to find and remove the wavefront errors caused by reference beam tilt demonstrate the effectiveness of this method.

  4. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system.

    PubMed

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-04-28

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m(2) is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m(2) at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.

  5. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    NASA Astrophysics Data System (ADS)

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-04-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.

  6. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    PubMed Central

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-01-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems. PMID:24770490

  7. Blade-Pitch Control for Quieting Tilt-Rotor Aircraft

    NASA Technical Reports Server (NTRS)

    Betzina, Mark D.; Nguyen, Khanh Q.

    2004-01-01

    A method of reducing the noise generated by a tilt-rotor aircraft during descent involves active control of the blade pitch of the rotors. This method is related to prior such noise-reduction methods, of a type denoted generally as higher-harmonic control (HHC), in which the blade pitch is made to oscillate at a harmonic of the frequency of rotation of the rotor. A tilt-rotor aircraft is so named because mounted at its wing tips are motors that can be pivoted to enable the aircraft to take off and land like a helicopter or to fly like a propeller airplane. When the aircraft is operating in its helicopter mode, the rotors generate more thrust per unit rotor-disk area than helicopter rotors do, thus producing more blade-vortex interaction (BVI) noise. BVI is a major source of noise produced by helicopters and tilt-rotor aircraft during descent: When a rotor descends into its own wake, the interaction of each blade with the blade-tip vortices generated previously gives rise to large air-pressure fluctuations. These pressure fluctuations radiate as distinct, impulsive noise. In general, the pitch angle of the rotor blades of a tilt-rotor aircraft is controlled by use of a swash plate connected to the rotor blades by pitch links. In both prior HHC methods and the present method, HHC control signals are fed as input to swash-plate control actuators, causing the rotor-blade pitch to oscillate. The amplitude, frequency, and phase of the control signal can be chosen to minimize BVI noise.

  8. Change in the direction of electric wind from a wire electrode tilted relative to a grounded plane

    NASA Astrophysics Data System (ADS)

    Elagin, I. A.; Begal', D. I.; Ashikhmin, I. A.; Stishkov, Yu. K.

    2017-01-01

    We report on experimental investigations of the structure of electric (ionic) wind in the wire-versus-plane electrode system with a constant interelectrode gap and variable wire tilt angle relative to the plane. Characteristic wind velocity distributions were determined using a laser Doppler anemometry technique. It is established that the position of the narrow central jet of the wind significantly changes depending on the tilt of the corona-forming electrode.

  9. Tilted wheel satellite attitude control with air-bearing table experimental results

    NASA Astrophysics Data System (ADS)

    Inumoh, Lawrence O.; Forshaw, Jason L.; Horri, Nadjim M.

    2015-12-01

    Gyroscopic actuators for satellite control have attracted significant research interest over the years, but their viability for the control of small satellites has only recently started to become clear. Research on variable speed gyroscopic actuators has long been focused on single gimbal actuators; double gimbal actuators typically operate at constant wheel spin rate and allow tilt angle ranges far larger than the ranges needed to operate most satellite missions. This research examines a tilted wheel, a newly proposed type of inertial actuator that can generate torques in all three principal axes of a rigid satellite using a spinning wheel and a double tilt mechanism. The tilt mechanism tilts the angular momentum vector about two axes providing two degree of freedom control, while variation of the wheel speed provides the third. The equations of motion of the system lead to a singularity-free system during nominal operation avoiding the need for complex steering logic. This paper describes the hardware design of the tilted wheel and the experimental setup behind both standalone and spherical air-bearing tables used to test it. Experimental results from the air bearing table are provided with the results depicting the high performance capabilities of the proposed actuator in torque generation.

  10. Tilting double-prism scanner driven by cam-based mechanism.

    PubMed

    Li, Anhu; Yi, Wanli; Sun, Wansong; Liu, Liren

    2015-06-20

    A pair of orthogonal tilting prisms has been explored in our previous work to perform the orientation and position tracking function with tracking accuracy better than submicroradian order. Crucial to the function implementation, however, is the real-time nonlinear control of the tilting angles of double prisms for tracking a given target trajectory. In previous papers [Proc. SPIE5892, 1-5 (2005).PSISDG0277-786X; Appl. Opt.45, 8063 (2006).PSISDG0277-786X; Proc. SPIE6709, 41 (2007).PSISDG0277-786X; Appl. Opt.51, 356 (2011).10.1364/AO.51.000356APOPAI1559-128X; Appl. Opt.53, 3712 (2014).10.1364/AO.53.003712APOPAI1559-128X], a new driving method by a cam-based mechanism, which can transfer the control problem to the design of corresponding cam configuration, is investigated. The design process of a cam-based mechanism is explained from the mapping relation between the tilting angles of a prism and the configuration curve of a corresponding cam. Based on the designed cam-based mechanism, a tracking error less than 0.375% is depicted between the tracking trajectory and the original one. Moreover, the dynamic characteristic of the tracking mechanism is discussed in detail as well as the impacts of different tilting speeds on the tracking trajectory. The proposed tracking mechanism of a tilting double-prism scanner can create a new avenue for passively tracking a given target.

  11. Variability of Retinal Thickness Measurements in Tilted or Stretched Optical Coherence Tomography Images

    PubMed Central

    Uji, Akihito; Abdelfattah, Nizar Saleh; Boyer, David S.; Balasubramanian, Siva; Lei, Jianqin; Sadda, SriniVas R.

    2017-01-01

    Purpose To investigate the level of inaccuracy of retinal thickness measurements in tilted and axially stretched optical coherence tomography (OCT) images. Methods A consecutive series of 50 eyes of 50 patients with age-related macular degeneration were included in this study, and Cirrus HD-OCT images through the foveal center were used for the analysis. The foveal thickness was measured in three ways: (1) parallel to the orientation of the A-scan (Tx), (2) perpendicular to the retinal pigment epithelium (RPE) surface in the instrument-displayed aspect ratio image (Ty), and (3) thickness measured perpendicular to the RPE surface in a native aspect ratio image (Tz). Mathematical modeling was performed to estimate the measurement error. Results The measurement error was larger in tilted images with a greater angle of tilt. In the simulation, with axial stretching by a factor of 2, Ty/Tz ratio was > 1.05 at a tilt angle between 13° to 18° and 72° to 77°, > 1.10 at a tilt angle between 19° to 31° and 59° to 71°, and > 1.20 at an angle ranging from 32° to 58°. Of note with even more axial stretching, the Ty/Tz ratio is even larger. Tx/Tz ratio was smaller than the Ty/Tz ratio at angles ranging from 0° to 54°. The actual patient data showed good agreement with the simulation. The Ty/Tz ratio was greater than 1.05 (5% error) at angles ranging from 13° to 18° and 72° to 77°, greater than 1.10 (10% error) angles ranging from 19° to 31° and 59° to 71°, and greater than 1.20 (20% error) angles ranging from 32° to 58° in the images axially stretched by a factor of 2 (b/a = 2), which is typical of most OCT instrument displays. Conclusions Retinal thickness measurements obtained perpendicular to the RPE surface were overestimated when using tilted and axially stretched OCT images. Translational Relevance If accurate measurements are to be obtained, images with a native aspect ratio similar to microscopy must be used. PMID:28299239

  12. Echocardiograms during six hours of bedrest at head-down and head-up tilt and during space flight

    NASA Technical Reports Server (NTRS)

    Lathers, C. M.; Riddle, J. M.; Mulvagh, S. L.; Mukai, C.; Diamandis, P. H.; Dussack, L. G.; Bungo, M. W.; Charles, J. B.

    1993-01-01

    Left ventricular end-diastolic volume increased after 4 1/2 to 6 hours of space flight, but was significantly decreased after 5 to 6 days of space flight. To determine the role of acute gravitational effects in this phenomenon, responses to a 6-hour bedrest model of 0 gravity (G; 5 degrees head-down tilt) were compared with those of fractional gravity loads of 1/6 G, 1/3 G, and 2/3 G by using head-up tilts of 10 degrees, 20 degrees, and 42 degrees, respectively. On 4 different days, six healthy male subjects were tilted at one of the four angles for 6 hours. Cardiac dimensions and volumes were determined from two-dimensional and M-mode echocardiograms in the left lateral decubitus position at control (0), 2, 4, and 6 hours. Stroke volume decreased with time (P < .05) for all tilt angles when compared with control. Ejection fraction (EF) at -5 degrees was greater than at +20 degrees and +42 degrees (not significant); EF at +10 degrees was greater than at +42 degrees (not significant). For the tilt angles of -5 degrees, +10 degrees, and +20 degrees, mean heart rate decreased during the first 2 hours, and returned to control or was slightly elevated above control (+20 degrees) by 6 hours (not significant). At the +42 degrees angle of tilt, heart rate was increased above control at hours 2, 4, and 6. There were no significant differences in cardiac output at any time point for any tilt angle.(ABSTRACT TRUNCATED AT 250 WORDS).

  13. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis.

    PubMed

    Kota, Arun K; Li, Yongxin; Mabry, Joseph M; Tuteja, Anish

    2012-11-14

    Hierarchically structured, superoleophobic surfaces are demonstrated that display one of the lowest contact angle hysteresis values ever reported - even with extremely low-surface-tension liquids such as n-heptane. Consequently, these surfaces allow, for the first time, even ≈2 μL n-heptane droplets to bounce and roll-off at tilt angles. ≤ 2°.

  14. Modeling of magnetization precession in spin-torque nano-oscillators with a tilted polarizer

    SciTech Connect

    Lv, Gang; Zhang, Hong E-mail: yaowen@tongji.edu.cn; Cao, Xuecheng; Qin, Yufeng; Li, Guihua; Wang, Linhui; Liu, Yaowen E-mail: yaowen@tongji.edu.cn; Hou, Zhiwei

    2015-07-15

    The spin-torque induced magnetization precession dynamics are studied in a spin-valve with a tilted spin polarizer. Macrospin simulations demonstrate that the frequency of precession state depends both on the external DC current and the intrinsic parameters of devices such as the tilted angle of spin polarizer, the damping factor and saturation magnetization of the free layer. The dependence role of those parameters is characterized by phase diagrams. An analytical model is presented, which can successfully interpret the features of precession frequency.

  15. An analysis of temperature effect in a finite journal bearing with spatial tilt and viscous dissipation

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Mullen, R. L.; Hendricks, R. C.

    1984-01-01

    The analysis presented herein deals with the evaluation of the pressure, velocity, and temperature profiles in a finite-length plane journal bearing. The geometry of the case under study consists of a spatially tilted shaft. The two-dimensional Reynolds equation accounts for the variation of the clearance gap h with x and z and is used to model the pressure field. The latter is solved for a variety of shaft tilt angles and then used to calculate the two-dimensional flow field. Finally, the flow field is used in the energy equation to solve for the film temperature profile, when the effect of viscous dissipation is taken into account.

  16. The benefit of thresholding carbon layers in electron tomographic tilt series by intensity downshifting.

    PubMed

    Gontard, Lionel C; Cintas, Jesús; Borkowski, Rafal E Dunin

    2017-03-01

    When performing electron tomography, tilt series of images are often acquired from samples that contain unwanted carbonaceous material, such as an embedding resin, a thin carbon support film or hydrocarbon contamination. The presence of such layers can introduce artefacts in reconstructions, obscuring features of interest. Here, we illustrate the benefit of preprocessing a high-angle annular dark-field tomographic tilt series by thresholding unwanted low-density materials using a simple intensity downshifting procedure. The resulting tomograms have fewer artefacts and segmentation can be performed more accurately. We present two representative examples taken from studies of catalyst nanoparticles and amyloid plaque core material from the human brain.

  17. Dynamic of charged planar geometry in tilted and non-tilted frames

    SciTech Connect

    Sharif, M. Zaeem Ul Haq Bhatti, M.

    2015-05-15

    We investigate the dynamics of charged planar symmetry with an anisotropic matter field subject to a radially moving observer called a tilted observer. The Einstein-Maxwell field equations are used to obtain a relation between non-tilted and tilted frames and between kinematical and dynamical quantities. Using the Taub mass formalism and conservation laws, two evolution equations are developed to analyze the inhomogeneities in the tilted congruence. It is found that the radial velocity (due to the tilted observer) and the electric charge have a crucial effect on the inhomogeneity factor. Finally, we discuss the stability in the non-tilted frame in the pure diffusion case and examine the effects of the electromagnetic field.

  18. Scanning transmission electron microscopy through-focal tilt-series on biological specimens.

    PubMed

    Trepout, Sylvain; Messaoudi, Cédric; Perrot, Sylvie; Bastin, Philippe; Marco, Sergio

    2015-10-01

    Since scanning transmission electron microscopy can produce high signal-to-noise ratio bright-field images of thick (≥500 nm) specimens, this tool is emerging as the method of choice to study thick biological samples via tomographic approaches. However, in a convergent-beam configuration, the depth of field is limited because only a thin portion of the specimen (from a few nanometres to tens of nanometres depending on the convergence angle) can be imaged in focus. A method known as through-focal imaging enables recovery of the full depth of information by combining images acquired at different levels of focus. In this work, we compare tomographic reconstruction with the through-focal tilt-series approach (a multifocal series of images per tilt angle) with reconstruction with the classic tilt-series acquisition scheme (one single-focus image per tilt angle). We visualised the base of the flagellum in the protist Trypanosoma brucei via an acquisition and image-processing method tailored to obtain quantitative and qualitative descriptors of reconstruction volumes. Reconstructions using through-focal imaging contained more contrast and more details for thick (≥500 nm) biological samples.

  19. Aberration and boresight error correction for conformal windows using tilted and decentered fixed correctors

    NASA Astrophysics Data System (ADS)

    Zhao, Chunzhu; Mao, Shan

    2016-10-01

    A static solution to aberrations and boresight error for tilted conformal aircraft windows at different look angles is reported, which is the use of tilted and decentered fixed correctors. The principle of the static solution is discussed, and three tilted and decentered fixed correctors are designed to correct the aberrations and boresight error for a conformal window. The correctors are fixed in position between the conformal window and the gimbaled imaging system, thus requiring no moving parts. The design result shows that the predominant astigmatism introduced by the conformal window is corrected by the tilted and decentered fixed correctors at different look angles. Moreover, the boresight error for the conformal window, as a function of look angle, is also corrected by the correctors. The root mean square wavefront aberration for the final conformal window imaging system is less than 0.2 wave across the full field of regard on the visible spectrum, and the boresight error is less than 0.5' across the full field of regard.

  20. Aerodynamic characteristics of a powered tilt-proprotor wind tunnel model

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Mineck, R. E.; Freeman, C. E.

    1976-01-01

    An investigation was conducted in the Langley V/STOL tunnel to determine the performance, stability and control, and rotor-wake interaction effects of a powered tilt-proprotor aircraft model with gimbal-hub rotors. Tests were conducted at representative flight conditions for hover, helicopter, transition, and airplane flight. Force and moment data were obtained for the complete model and for each of the two rotors. In addition to wind-speed variation, the angle of attack, angle of sideslip, rotor speed, rotor collective pitch, longitudinal cyclic pitch, rotor pylon angle, and configuration geometry were varied. The results, presented in graphical form, are available in tabular form to facilitate the validation of analytical methods of defining the aerodynamic characteristics of tilt-proprotor configurations.

  1. The tilt illusion: phenomenology and functional implications.

    PubMed

    Clifford, Colin W G

    2014-11-01

    The perceived orientation of a line or grating is affected by the orientation structure of the surrounding image: the tilt illusion. Here, I offer a selective review of the literature on the tilt illusion, focusing on functional aspects. The review explores the merits of mechanistic accounts of the tilt illusion based upon sensory gain control in which neuronal responses are normalized by the pooled activity of other units. The role of inhibition between orientation-selective neurons is discussed, and it is argued that their associated disinhibition must also be taken into account in order to model the full angular dependence of the tilt illusion on surround orientation. Parallels are drawn with adaptation as modulation by the temporal rather than spatial context within which an image fragment is processed. The chromatic selectivity of the tilt illusion and the extent of its dependence on the visibility of the surround are used to infer characteristics of the neuronal normalization pools and the loci in the cortical processing hierarchy at which gain control operates. Finally, recent evidence is discussed as to the possible clinical relevance of the tilt illusion as a biomarker for schizophrenia.

  2. Tilted planes in 3D image analysis

    NASA Astrophysics Data System (ADS)

    Pargas, Roy P.; Staples, Nancy J.; Malloy, Brian F.; Cantrell, Ken; Chhatriwala, Murtuza

    1998-03-01

    Reliable 3D wholebody scanners which output digitized 3D images of a complete human body are now commercially available. This paper describes a software package, called 3DM, being developed by researchers at Clemson University and which manipulates and extracts measurements from such images. The focus of this paper is on tilted planes, a 3DM tool which allows a user to define a plane through a scanned image, tilt it in any direction, and effectively define three disjoint regions on the image: the points on the plane and the points on either side of the plane. With tilted planes, the user can accurately take measurements required in applications such as apparel manufacturing. The user can manually segment the body rather precisely. Tilted planes assist the user in analyzing the form of the body and classifying the body in terms of body shape. Finally, titled planes allow the user to eliminate extraneous and unwanted points often generated by a 3D scanner. This paper describes the user interface for tilted planes, the equations defining the plane as the user moves it through the scanned image, an overview of the algorithms, and the interaction of the tilted plane feature with other tools in 3DM.

  3. Rocket rendezvous at preassigned destinations with optimum exit trajectories

    NASA Astrophysics Data System (ADS)

    Srivastava, T. N.; Nangia, A. K.

    1982-10-01

    A numerical model for the optimum trajectory for a commuter rocket to follow in order to rendezvous with a destination rocket vehicle is presented. The interceptor is launched from a launch orbit, then receives a specific velocity impulse at some point along the course to achieve the meeting. An optimum exit path from the launch orbit is characterized by minimum fuel expenditure, as is the intermediate-point velocity injection. Calculations are made of the flight durations and the launch angle, and elements of an optimum transfer trajectory for a rendezvous are defined. Sample calculations are presented for a rendezvous between a circular and an elliptical orbit, and for a meeting somewhere between earth and Mars.

  4. General Relativistic Magnetohydrodynamics Simulations of Tilted Black Hole Accretion Flows and Their Radiative Properties

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Gammie, C. F.; Dolence, J.; Noble, S. C.

    2013-01-01

    We perform global General Relativistic Magnetohydrodynamics (GRMHD) simulations of non-radiative, magnetized disks that are initially tilted with respect to the black hole's spin axis. We run the simulations with different size and tilt angle of the tori for 2 different resolutions. We also perform radiative transfer using Monte Carlo based code that includes synchrotron emission, absorption and Compton scattering to obtain spectral energy distribution and light curves. Similar work was done by Fragile et al. (2007) and Dexter & Fragile (2012) to model the super massive black hole SgrA* with tilted accretion disks. We compare our results of fully conservative hydrodynamic code and spectra that include X-ray, with their results.

  5. Reply to "Comment on 'Origin of tilted-phase generation in systems of ellipsoidal molecules with dipolar interactions' "

    NASA Astrophysics Data System (ADS)

    Bose, Tushar Kanti; Saha, Jayashree

    2014-04-01

    In a recent article [T. K. Bose and J. Saha, Phys. Rev. E 86, 050701 (2012), 10.1103/PhysRevE.86.050701], we have presented the results of a Monte Carlo simulation study of the systems of dipolar Gay-Berne ellipsoids where two terminal antiparallel dipoles are placed symmetrically on the long axis of each ellipsoid, and the results revealed the combined contribution of dipolar separation and transverse orientations in controlling the tilt angle in the tilted hexatic smectic phase. The tilt angle changed from zero to a significant value, in the case of transverse dipoles, with a change in the dipolar separation. In the related comment, Madhusudana [preceding Comment, Phys. Rev. E 89, 046501 (2014), 10.1103/PhysRevE.89.046501] has claimed that the physical origin of the molecular tilt in the significantly tilted phases found in the simulations is similar to that proposed by McMillan [Phys. Rev. A 8, 1921 (1973), 10.1103/PhysRevA.8.1921]. Here, we explain that the claim is not correct and make it clear that the two compared pictures are quite different. In the preceding Comment, Madhusudana has also suggested an alternative explanation for tilt generation in the simulations by criticizing the original one proposed by us. We argue here in support of the original explanation and clarify that his explanation does not follow the simulation results.

  6. Hybrid monitor for both beam position and tilt of pulsed high-current beams

    SciTech Connect

    Pang, J. He, X.; Ma, C.; Zhao, L.; Li, Q.; Dai, Z.

    2014-09-15

    A Hybrid beam monitor, integrated with both azimuthal and axial B-dot probes, was designed for simultaneous measurement of both beam position and beam angle for pulsed high-current beams at the same location in beam pipe. The output signals of axial B-dot probes were found to be mixed with signals caused by transverse position deviation. In order to eliminate the unwanted signals, an elimination method was developed and its feasibility tested on a 50-Ω coaxial line test stand. By this method, a waveform, shape-like to that of input current and proportional to the tilt angle, was simulated and processed by following integration step to achieve the tilt angle. The tests showed that the measurement error of displacement and tilt angle less than 0.3 mm and 1.5 mrad, respectively. The latter error could be reduced with improved probes by reducing the inductance of the axial B-dot probe, but the improvement reached a limit due to some unknown systemic mechanism.

  7. Human Ocular Counter-Rolling and Roll Tilt Perception during Off-Vertical Axis Rotation after Spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Denise, Pierre; Reschke, Millard; Wood, Scott J.

    2007-01-01

    Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 /s in darkness at two angles of tilt (10 and 20 ). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weigthing of the internal representation of gravitational vertical as a result of adaptation to microgravity.

  8. [Motor adaptation in the Bielschowsky head-tilt test in cases of superior oblique palsy].

    PubMed

    Ohtsuki, H; Kishimoto, F; Kobashi, R; Watanabe, S; Okano, M; Furuse, H

    1992-08-01

    To elucidate a motor adaptation phenomenon in the Bielschowsky head-tilt test in cases of superior oblique palsy, a gain of the otolith-ocular reflex was studied. The amplitude of ocular counter-rolling (OCR) of the non-paretic eye was measured with a photographic method, using limbal conjunctival marks as landmarks which were marked with indigo carmine. The average preoperative OCR of the non-paretic eye was 10.49 degrees at 30 degrees of head tilt to both sides, but after corrective surgery in the paretic eye the OCR of the non-paretic eye decreased to 8.43 degrees. To clarify the relation between OCR, duration of palsy and vertical deviation of the Bielschowsky head-tilt test (BHP), which was the difference of vertical deviation measured with the head tilted to the left and right shoulders at an angle of 30 degrees, the BHP/OCR ratio was calculated. We found no relation between BHP and OCR, but the BHP/OCR ratio increased proportionally in cases of long-standing palsy, From these results an increased BHP/OCR ratio could be an adaptive phenomenon caused by secondary innervational changes or muscle contracture to minimizing the contralateral head tilt to maintain binocular single vision.

  9. Evaluation of Anterior Segment's Structures in Tilted Disc Syndrome

    PubMed Central

    Ozsoy, Ercan; Demirel, Ersin Ersan; Cumurcu, Tongabay

    2016-01-01

    Purpose. To evaluate anterior segment's structures by Pentacam in patients with tilted disc syndrome (TDS). Methods. Group 1 included forty-six eyes of forty-six patients who have the TDS. Group 2 including forty-six eyes of forty-six cases was the control group which was equal to the study group in age, gender, and refraction. A complete ophthalmic examination was performed in both groups. All cases were evaluated by Pentacam. The axial length (AL) of eyes was measured by ultrasound. Quantitative data obtained from these measurements were compared between two groups. Results. There was no statistically significant difference for age, gender, axial length, and spherical equivalent measurements between two groups (p = 0.625, p = 0.830, p = 0.234, and p = 0.850). There was a statistically significant difference for central corneal thickness (CCT), corneal volume (CV), anterior chamber angle (ACA), and pupil size measurements between two groups (p = 0.001, p = 0.0001, p = 0.003, and p = 0.001). Also, there was no statistically significant difference for anterior chamber depth (ACD), anterior chamber volume (ACV), and lens thickness (LT) measurements between two groups (p = 0.130, p = 0.910, and p = 0.057). Conclusion. We determined that CCT was thinner, CV was less, and ACA was narrower in patients with TDS. There are some changes in the anterior segment of the eyes with tilted disc. PMID:27648303

  10. Modulation loops, time lag and relationship between cosmic ray intensity and tilt of the heliospheric current sheet

    NASA Astrophysics Data System (ADS)

    Badruddin; Singh, M.; Singh, Y. P.

    2007-05-01

    Aims:We study certain aspects of the solar modulation of galactic cosmic ray intensity during different solar activity cycles and in different polarity states of the heliosphere. Methods: We plotted modulation loops between the cosmic ray intensity and the tilt angle of the heliospheric current sheet during three solar activity cycles 21, 22 and 23 and obtained the area of modulation loops. The time lag between the tilt angle and the cosmic ray intensity in odd, even solar activity cycles and during A > 0, A < 0 polarity states of the heliosphere are determined using correlation analysis. Rate of intensity decrease with tilt angle during different solar and magnetic cycles are estimated from best fit method. Results: Marked differences during the two odd and the one even solar cycles, as well as during different polarity states of the solar magnetic field (A > 0 and A < 0) are found. We observe variations in finer features of modulation loops obtained using one, three, six and twelve rotation averaged data. We find that the time lag in even cycle (22) is much different from that in odd cycles (21, 23). Moreover, considerable difference in time lags are also observed during A > 0 and A < 0 polarity states of the heliosphere. We also find that the cosmic ray intensity decreases at much faster rate (and with better correlation) with increase in tilt angle during A < 0 than A > 0, indicating stronger response to the tilt angle changes during A < 0. These results are discussed in the light of 3D modulation models including the gradient and curvature drifts and the tilt of the heliospheric current sheet.

  11. The effect of ground tilt on the lower extremity muscle activity of stroke patients performing squat exercises.

    PubMed

    Ki, Kyog-Il; Choi, Jong-Duk; Cho, Hyuk-Shin

    2014-07-01

    [Purpose] The purpose of this study was to determine the effect of ground tilt on the lower extremity muscle activity of stroke patients performing squat exercises. [Subjects] Fifteen hemiparetic patients volunteered to participate in this study. [Methods] The subjects performed squat exercises at three different ground tilt angles: 15° plantar flexion, a neutral position, and 15° dorsiflexion. A surface electromyogram (sEMG) was used to record the electromyographic activities of the leg extensor muscle in the vastus lateralis (VL), vastus medialis (VM), gastrocnemius lateralis (GL), and gastrocnemius medialis (GM). The sEMG activity was analyzed using a one-way repeated measures ANOVA and a post hoc Bonferroni correction. [Results] The results of this study are summarized as follows. Significant differences were noted for the VL and the GL when the angle of the ankle joint was between the 15° plantar flexion and neutral positions during squat exercises involving the VL and when the angle of the ankle joint was between the neutral position and 15° dorsiflexion during squat exercises involving the VM. [Conclusion] In this study, sEMG showed that the VL and GL changed significantly during squat exercises according to the ground tilt angle of hemiparetic patients. Therefore, squat exercises with different ground tilt angles can be used to improve VL and GL strength.

  12. Measurement of Transcranial Distance During Head-Down Tilt Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Torikoshi, Shigeyo; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Bowley, S.; Yost, W. T.; Hargens, Alan R.

    1995-01-01

    Exposure to microgravity probably elevates blood pressure and flow in the head which may increase intracranial volume (ICV) and pressure (ICP). Due to the slightly compliant nature of the cranium, any increase of ICP will increase ICV and transcranial distance. We used a noninvasive ultrasound technique to measure transcranial distance (frontal to occipital) during head-down tilt. Seven subjects (ages 26-53) underwent the following tilt angles: 90 deg. upright, 30 deg., 0 deg., -6 deg., -10 deg., -6 deg., 0 deg., 30 deg., and 90 deg. Each angle was maintained for 1 min. Ultrasound wave frequency was collected continuously and transcranial distance was calculated (Delta(x) = x(Delta)f/f, where x is path length and f is frequency of the wave) for each tilt angle. Frequency decreased from 503.687 kHz (90 deg. upright) to 502.619 kHz (-10 deg.). These frequencies translated to an increased transcranial distance of 0.403 mm. Although our data suggest a significant increase in transcranial distance during head-down tilt, this apparent increase may result, in part, from head-down tilt-induced subcutaneous edema or cutaneous blood volume elevation. In three subjects, when the above protocol was repeated with an ace bandage wrapped around the head to minimize such edema, the increased transcranial distance from 90 deg. to -10 deg. was reduced by 0.174 mm. Further development of the technique to quantify bone-to-bone expansion unconfounded by cutaneous fluid is necessary. Therefore, this ultrasound technique may provide measurements of changes in cranial dimensions during microgravity.

  13. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  14. Advances in tilt rotor noise prediction

    NASA Technical Reports Server (NTRS)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    1992-01-01

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  15. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2004-07-06

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  16. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2003-04-08

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  17. Apparatus for raising or tilting a micromechanical structure

    DOEpatents

    Allen, James J.

    2008-09-09

    An active hinge apparatus is disclosed which can be used to raise a micromechanical structure (e.g. a plate or micromirror) on a substrate. The active hinge apparatus utilizes one or more of teeth protruding outward from an axle which also supports the micromechanical structure on one end thereof. A rack is used to engage the teeth and rotate the axle to raise the micromechanical structure and tilt the structure at an angle to the substrate. Motion of the rack is provided by an actuator which can be a mechanically-powered actuator, or alternately an electrostatic comb actuator or a thermal actuator. A latch can be optionally provided in the active hinge apparatus to lock the micromechanical structure in an "erected" position.

  18. Capillary rise in a tilted Taylor-Hauksbee cell

    NASA Astrophysics Data System (ADS)

    Medina, Abraham; Klapp, Jaime; Torres Victoria, Ayax Hernando; Peralta Lopez, Salomon; Jara Hernandez, Aydet

    2015-11-01

    The penetration of a wetting liquid in the narrow gap between two tilted plates making a small angle among them is analyzed in the framework of the lubrication approximation. At the beginning of the process, the liquid rises independently at different distances from the line of intersection of the plates. The maximum height of the liquid initially increases as a power law of time, where the exponent is dependent on the angle of inclination of the plates and is attained at a point that reaches the line of intersection only after a certain time. At later times, the motion of the liquid is confined to a thin layer around the line of intersection whose height increases again as a power law of time and the exponent of the power law is a function of the angle of inclination. The thickness of the film decreases as the inverse of the power law of time. The evolution of the liquid surface is computed numerically and compared with the results of simple experiments.

  19. Optimum Designs for Superpressure Balloons

    NASA Astrophysics Data System (ADS)

    Smith, M.; Rainwater, E.

    Natural shape balloons have been employed for minimum stress envelope design in zero pressure scientific balloons since the 1940's. Superpressure balloons, on the other hand, have traditionally been spheres with tangential load attachment points. Application of natural shape design principles to superpressure balloons is relatively new. The resulting natural shape superpressure balloon shape generally fits Euler's Elastica. There are numerous examples of superpressure cylinder balloons which take on the elastica shape when pressurized. Techniques tried for reducing circumferential stresses in the NASA ULDB natural shape superpressure balloons have revealed new challenges both for design and manufacture. This paper will present a thorough background in the development of the current design concept as well as a review of the current challenges associated with manufacturing these envelopes. Approaches for achieving an optimum design will be presented along with ground and flight test data.

  20. Swarms: Optimum aggregations of spacecraft

    NASA Technical Reports Server (NTRS)

    Mayer, H. L.

    1980-01-01

    Swarms are aggregations of spacecraft or elements of a space system which are cooperative in function, but physically isolated or only loosely connected. For some missions the swarm configuration may be optimum compared to a group of completely independent spacecraft or a complex rigidly integrated spacecraft or space platform. General features of swarms are induced by considering an ensemble of 26 swarms, examples ranging from Earth centered swarms for commercial application to swarms for exploring minor planets. A concept for a low altitude swarm as a substitute for a space platform is proposed and a preliminary design studied. The salient design feature is the web of tethers holding the 30 km swarm in a rigid two dimensional array in the orbital plane. A mathematical discussion and tutorial in tether technology and in some aspects of the distribution of services (mass, energy, and information to swarm elements) are included.

  1. Some THEMIS tip-tilt images .

    NASA Astrophysics Data System (ADS)

    Bommier, V.

    In the MTR (`MulTiRaies', i.e. multiline spectropolarimetry) mode of THEMIS, a map is the result of a reconstruction from a scan of the solar image on the spectrograph entrance slit. The result of image motion appears as zigzags along non-vertical lines or structures in the map. As an image stabilization system, the new tip-tilt acts in reducing such zigzags. A map is presented obtained with the tip-tilt ON where nearly no zigzag is visible.

  2. Optimum flight paths of turbojet aircraft

    NASA Technical Reports Server (NTRS)

    Miele, Angelo

    1955-01-01

    The climb of turbojet aircraft is analyzed and discussed including the accelerations. Three particular flight performances are examined: minimum time of climb, climb with minimum fuel consumption, and steepest climb. The theoretical results obtained from a previous study are put in a form that is suitable for application on the following simplifying assumptions: the Mach number is considered an independent variable instead of the velocity; the variations of the airplane mass due to fuel consumption are disregarded; the airplane polar is assumed to be parabolic; the path curvatures and the squares of the path angles are disregarded in the projection of the equation of motion on the normal to the path; lastly, an ideal turbojet with performance independent of the velocity is involved. The optimum Mach number for each flight condition is obtained from the solution of a sixth order equation in which the coefficients are functions of two fundamental parameters: the ratio of minimum drag in level flight to the thrust and the Mach number which represents the flight at constant altitude and maximum lift-drag ratio.

  3. UV Index on tilted surfaces.

    PubMed

    Esteve, A R; Marín, M J; Martínez-Lozano, J A; Tena, F; Utrillas, M P; Cañada, J

    2006-01-01

    Solar ultraviolet erythemal irradiance (UVER) has been studied on inclined planes with different orientations in Valencia, Spain. To do this a platform was designed that could turn through 90 degrees on its own axis. The radiometers were inclined at an angle close to the latitude of Valencia (39.5 degrees N). Using two timers the platform could be turned through 90 degrees every 5 min. On clear or partially cloudy days, including those with different turbidity values, it was observed that the UVER showed a maximum at 1200 h GMT, very close to solar noon, in the north and south positions, while the maximum for east and west orientations was found at approximately one hour before and one hour after midday respectively. It was also observed how the irradiance for the south orientation was greater and for the north was less than for the horizontal plane, as well as the opposite performances of the east and west orientations, for four days close to the summer and winter solstices and each equinox. Some experimental results were also compared with the results from the SMARTS2.9 model for the same conditions. It was found that the model frequently overestimated the experimental data. With respect to the maximum calculated UV Index in the different planes this was always higher for the south orientation than for the north, while it was similar for east and west orientations throughout the year. Finally the accumulated erythemal dosage for the considered period was obtained as a function of phototype and orientation, confirming that the accumulated erythemal dosage decreased by around 37% in the north orientation compared to the horizontal value, while in the south position it was only 6% less and some 20% and 15% less in the east and west positions, respectively.

  4. Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit.

    PubMed

    Lu, Huihui; Lee, Jun Su; Zhao, Yan; Scarcella, Carmelo; Cardile, Paolo; Daly, Aidan; Ortsiefer, Markus; Carroll, Lee; O'Brien, Peter

    2016-07-25

    In this article we describe a cost-effective approach for hybrid laser integration, in which vertical cavity surface emitting lasers (VCSELs) are passively-aligned and flip-chip bonded to a Si photonic integrated circuit (PIC), with a tilt-angle optimized for optical-insertion into standard grating-couplers. A tilt-angle of 10° is achieved by controlling the reflow of the solder ball deposition used for the electrical-contacting and mechanical-bonding of the VCSEL to the PIC. After flip-chip integration, the VCSEL-to-PIC insertion loss is -11.8 dB, indicating an excess coupling penalty of -5.9 dB, compared to Fibre-to-PIC coupling. Finite difference time domain simulations indicate that the penalty arises from the relatively poor match between the VCSEL mode and the grating-coupler.

  5. Tilt error in cryospheric surface radiation measurements at high latitudes: a model study

    NASA Astrophysics Data System (ADS)

    Bogren, W. S.; Burkhart, J. F.; Kylling, A.

    2015-08-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in-situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response foreoptic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can respectively introduce up to 2.6, 7.7, and 12.8 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo.

  6. Measurement of dihedral angles by scanning electron microscopy.

    NASA Technical Reports Server (NTRS)

    Achutaramayya, G.; Scott, W. D.

    1973-01-01

    The extension of Hoover's (1971) technique to the case of dihedral-angle measurement is described. Dihedral angles are often determined by interferometry on thermally grooved grain boundaries to obtain information on relative interfacial energies. In the technique considered the measured angles approach the true angles as the tilt angle approaches 90 deg. It is pointed out that the scanning electron microscopy method provides a means of seeing the real root of a groove at a lateral magnification which is higher than that obtainable with interferometry.

  7. Transition from multiplicity to singularity of steady natural convection in a tilted cubical enclosure.

    PubMed

    Torres, Juan F; Henry, Daniel; Komiya, Atsuki; Maruyama, Shigenao

    2015-08-01

    The transition from the complex Rayleigh-Bénard convection to the simple heated-from-the-sides configuration in a cubical cavity filled with a Newtonian fluid is numerically studied. The cavity is tilted by an angle θ around its lower horizontal edge and is heated and cooled from two opposite tilted sides. We first analyze the effect of a marginal inclination angle on quasi-Rayleigh-Bénard convection (θ≈0∘), which is a realistic physical approximation to the ideal Rayleigh-Bénard convection. We then yield the critical angles where multiple solutions that were initially found for θ≈0∘ disappear, eventually resulting in the single steady roll solution found in the heated-from-the-sides configuration (θ=90∘). We confirm the existence of critical angles during the transition θ:0∘→90∘, and we demonstrate that such angles are a consequence of either singularities or collisions of bifurcation points in the Rayleigh-number-θ parameter space. We finally derive the most important critical angles corresponding to any Newtonian fluid of Prandtl number greater than that of air.

  8. Transition from multiplicity to singularity of steady natural convection in a tilted cubical enclosure

    NASA Astrophysics Data System (ADS)

    Torres, Juan F.; Henry, Daniel; Komiya, Atsuki; Maruyama, Shigenao

    2015-08-01

    The transition from the complex Rayleigh-Bénard convection to the simple heated-from-the-sides configuration in a cubical cavity filled with a Newtonian fluid is numerically studied. The cavity is tilted by an angle θ around its lower horizontal edge and is heated and cooled from two opposite tilted sides. We first analyze the effect of a marginal inclination angle on quasi-Rayleigh-Bénard convection (θ ≈0∘ ), which is a realistic physical approximation to the ideal Rayleigh-Bénard convection. We then yield the critical angles where multiple solutions that were initially found for θ ≈0∘ disappear, eventually resulting in the single steady roll solution found in the heated-from-the-sides configuration (θ =90∘ ). We confirm the existence of critical angles during the transition θ :0∘→90∘ , and we demonstrate that such angles are a consequence of either singularities or collisions of bifurcation points in the Rayleigh-number-θ parameter space. We finally derive the most important critical angles corresponding to any Newtonian fluid of Prandtl number greater than that of air.

  9. "Happiness and Education": Tilting at Windmills?

    ERIC Educational Resources Information Center

    Verducci, Susan

    2013-01-01

    This essay explores the question: Is Nel Noddings a visionary who sees past the constraints of contemporary education or is she, like Don Quixote, madly tilting at windmills in her description and defense of happiness as an educational aim? Viewing the educational aim of happiness as an ideal raises substantial challenges for the practicality of…

  10. Tilting and shifting modes in a spheromak

    SciTech Connect

    Jardin, S.C.; Chance, M.S.; Dewar, R.L.; Grimm, R.C.; Monticello, D.A.

    1981-04-01

    In the absence of a conducting wall, typical spheromak plasmas are unstable to tilting and/or shifting modes. The effects of the cross-sectional shape, aspect ratio, and the location of a conducting wall on the stability of these modes are investigated.

  11. Rotatable prism for pan and tilt

    NASA Technical Reports Server (NTRS)

    Ball, W. B.

    1980-01-01

    Compact, inexpensive, motor-driven prisms change field of view of TV camera. Camera and prism rotate about lens axis to produce pan effect. Rotating prism around axis parallel to lens produces tilt. Size of drive unit and required clearance are little more than size of camera.

  12. Tilt/Integral/Derivative Compensators For Controllers

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J.

    1995-01-01

    Tilt/integral/derivative (TID) compensators for tunable feedback control systems offer advantages over proportional/integral/derivative compensators. Designed and adjusted more easily, and made to reject disturbances more strongly and less sensitive to variations in parameters of controlled system.

  13. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise and Functional Electrical Stimulation during Head-Up Tilt

    PubMed Central

    Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena

    2016-01-01

    Introduction: Tilt tables enable early mobilization of patients by providing verticalization. But there is a high risk of orthostatic hypotension provoked by verticalization, especially after neurological diseases such as spinal cord injury. Robot-assisted tilt tables might be an alternative as they add passive robotic leg exercise (PE) that can be enhanced with functional electrical stimulation (FES) to the verticalization, thus reducing the risk of orthostatic hypotension. We hypothesized that the influence of PE on the cardiovascular system during verticalization (i.e., head-up tilt) depends on the verticalization angle, and FES strengthens the PE influence. To test our hypotheses, we investigated the PE effects on the cardiovascular parameters heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) at different angles of verticalization in a healthy population. Methods: Ten healthy subjects on a robot-assisted tilt table underwent four different study protocols while HR, sBP, and dBP were measured: (1) head-up tilt to 60° and 71° without PE; (2) PE at 20°, 40°, and 60° of head-up tilt; (3) PE while constant FES intensity was applied to the leg muscles, at 20°, 40°, and 60° of head-up tilt; (4) PE with variation of the applied FES intensity at 0°, 20°, 40°, and 60° of head-up tilt. Linear mixed models were used to model changes in HR, sBP, and dBP responses. Results: The models show that: (1) head-up tilt alone resulted in statistically significant increases in HR and dBP, but no change in sBP. (2) PE during head-up tilt resulted in statistically significant changes in HR, sBP, and dBP, but not at each angle and not always in the same direction (i.e., increase or decrease of cardiovascular parameters). Neither adding (3) FES at constant intensity to PE nor (4) variation of FES intensity during PE had any statistically significant effects on the cardiovascular parameters. Conclusion: The effect of PE on the cardiovascular system during

  14. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  15. The optimum hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Cary, A., Jr.; Voisinet, R. L. P.

    1986-01-01

    The capabilities of existing hypersonic wind tunnels in the U.S. are assessed to form a basis for recommendations for a new, costly facility which would provide data for modeling the hypervelocity aerodynamics envisioned for the new generation of aerospace vehicles now undergoing early studies. Attention is given to the regimes, both entry and aerodynamic, which the new vehicles will encounter, and the shortcomings of data generated for the Orbiter before flight are discussed. The features of foreign-gas, impulse, aeroballistic range, arc-heated and combustion-heated facilities are examined, noting that in any hypersonic wind tunnel the flow must be preheated to prevent liquefaction upon expansion in the test channel. The limitations of the existing facilities and the identification of the regimes which must be studied lead to a description of the characteristics of an optimum hypersonic wind tunnel, including the operations and productivity, the instrumentation, the nozzle design and the flow quality. Three different design approaches are described, each costing at least $100 million to achieve workability.

  16. Postural and Chronological Change in Pelvic Tilt Five Years After Total Hip Arthroplasty in Patients With Developmental Dysplasia of the Hip: A Three-Dimensional Analysis.

    PubMed

    Suzuki, Haruka; Inaba, Yutaka; Kobayashi, Naomi; Ishida, Takashi; Ike, Hiroyuki; Saito, Tomoyuki

    2016-01-01

    The pelvis generally tilts to the posterior with movement from the supine to standing position, and with time after total hip arthroplasty (THA). This study aimed to investigate changes in pelvic tilt from the preoperative supine position to the standing position at 5 years after THA (pelvic change, PC). We measured pelvic tilt using a 2D-3D matching technique in 77 unilaterally affected patients who underwent primary THA. PC in 8% of all patients was ≤-20°, and the greatest PC was -25°. In these patients, posterior pelvic tilt continued up to 5 years after THA. These patients were older, and their lumbo-lordotic angle was small. For such cases, cup orientation should be planned to account for continuous posterior change in pelvic tilt after THA.

  17. NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshop. Volume 7: Tilt Rotor Session

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The technical characteristics of the XV-15 aircraft were discussed. Program objectives, concept evaluation, tilt rotor experiments and civil market applications are presented. The XV-15 status and test schedule are also included.

  18. Tilt and Translation Motion Perception during Pitch Tilt with Visual Surround Translation

    NASA Technical Reports Server (NTRS)

    O'Sullivan, Brita M.; Harm, Deborah L.; Reschke, Millard F.; Wood, Scott J.

    2006-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Previous studies suggest that multisensory integration is critical for discriminating linear accelerations arising from tilt and translation head motion. Visual input is especially important at low frequencies where canal input is declining. The NASA Tilt Translation Device (TTD) was designed to recreate postflight orientation disturbances by exposing subjects to matching tilt self motion with conflicting visual surround translation. Previous studies have demonstrated that brief exposures to pitch tilt with foreaft visual surround translation produced changes in compensatory vertical eye movement responses, postural equilibrium, and motion sickness symptoms. Adaptation appeared greatest with visual scene motion leading (versus lagging) the tilt motion, and the adaptation time constant appeared to be approximately 30 min. The purpose of this study was to compare motion perception when the visual surround translation was inphase versus outofphase with pitch tilt. The inphase stimulus presented visual surround motion one would experience if the linear acceleration was due to foreaft self translation within a stationary surround, while the outofphase stimulus had the visual scene motion leading the tilt by 90 deg as previously used. The tilt stimuli in these conditions were asymmetrical, ranging from an upright orientation to 10 deg pitch back. Another objective of the study was to compare motion perception with the inphase stimulus when the tilts were asymmetrical relative to upright (0 to 10 deg back) versus symmetrical (10 deg forward to 10 deg back). Twelve subjects (6M, 6F, 22-55 yrs) were tested during 3 sessions separated by at least one week. During each of the three sessions (out-of-phase asymmetrical, in-phase asymmetrical, inphase symmetrical), subjects were exposed to visual surround translation

  19. SU-E-T-230: Creating a Large Number of Focused Beams with Variable Patient Head Tilt to Improve Dose Fall-Off for Brain Radiosurgery

    SciTech Connect

    Chiu, J; Ma, L

    2015-06-15

    Purpose: To develop a treatment delivery and planning strategy by increasing the number of beams to minimize dose to brain tissue surrounding a target, while maximizing dose coverage to the target. Methods: We analyzed 14 different treatment plans via Leksell PFX and 4C. For standardization, single tumor cases were chosen. Original treatment plans were compared with two optimized plans. The number of beams was increased in treatment plans by varying tilt angles of the patient head, while maintaining original isocenter and the beam positions in the x-, y- and z-axes, collimator size, and beam blocking. PFX optimized plans increased beam numbers with three pre-set tilt angles, 70, 90, 110, and 4C optimized plans increased beam numbers with tilt angles increasing arbitrarily from range of 30 to 150 degrees. Optimized treatment plans were compared dosimetrically with original treatment plans. Results: Comparing total normal tissue isodose volumes between original and optimized plans, the low-level percentage isodose volumes decreased in all plans. Despite the addition of multiple beams up to a factor of 25, beam-on times for 1 tilt angle versus 3 or more tilt angles were comparable (<1 min.). In 64% (9/14) of the studied cases, the volume percentage decrease by >5%, with the highest value reaching 19%. The addition of more tilt angles correlates to a greater decrease in normal brain irradiated volume. Selectivity and coverage for original and optimized plans remained comparable. Conclusion: Adding large number of additional focused beams with variable patient head tilt shows improvement for dose fall-off for brain radiosurgery. The study demonstrates technical feasibility of adding beams to decrease target volume.

  20. Design and Performance of the Keck Angle Tracker

    NASA Technical Reports Server (NTRS)

    Crawford, Samuel L.; Ragland, S.; Booth, A.; Colavita, M. M.; Hovland, E.

    2006-01-01

    The Keck Angle Tracker (KAT) is a key subsystem in the NASA-funded Keck Interferometer at the Keck Observatory on the summit of Mauna Kea in Hawaii. KAT, which has been in operation since the achievement of first fringes in March 2001, senses the tilt of the stellar wavefront for each of the beams from the interferometer telescopes and provides tilt error signals to fast tip/tilt mirrors for high-bandwidth, wavefront tilt correction. In addition, KAT passes low-bandwidth, desaturation offsets to the adaptive optics system of the Keck telescopes to correct for slow pointing drifts. We present an overview of the instrument design and recent performance of KAT in support of the V2 science and nulling observing modes of the Keck Interferometer.

  1. Internal tilting mode stability of non-sperical spheromak

    SciTech Connect

    Yamazaki, K.

    1980-06-01

    Fixed boundary tilting mode stability is analyzed for spheromak with arbitrarily shaped cross section. A prolate spheromak can be stabilized against tilting mode by adding a conducting shell of triangular or trapesoidal half-cross section.

  2. Origin of the c-Axis Tilt Occurring During the Lateral Epitaxial Overgrowth of GaN

    NASA Astrophysics Data System (ADS)

    Kuan, T. S.; Inoki, C. K.; Zhang, R.; Gu, S.; Kuech, T. F.

    2001-03-01

    A large angle c-axis tilt has often been observed in GaN layers grown by lateral epitaxial overgrowth (LEO) through narrow windows defined on a seed layer. The c-axis tilt generates vertical tilt boundaries at the coalescence of growth facets. To investigate the defect mechanisms responsible for the onset of c-axis tilt, a series of GaN LEO samples was grown using the hydride vapor phase epitaxy (HVPE) technique and examined by transmission electron microscopy (TEM). Cross sectional TEM images indicate that as LEO proceeds from triangular-shaped ridges originally grown over the windows, all edge-type threading dislocations propagated from the seed layer bend into screw type and glide on the c plane. Plan-view TEM observations reveal further that to relax the twist/shear strain in the LEO regions, these screw dislocations collectively make another 90^o bend again, forming arrays of edge dislocations parallel to the mask edge. The number of dislocations in the arrays can account for the amount of crystal tilt observed. The c-axis tilt is thus a stress-driven phenomenon dictated by the growth window geometry, and is much less influenced by the growth parameters.

  3. Investigation of Peak Pressure Index Parameters for People with Spinal Cord Injury Using Wheelchair Tilt-in-Space and Recline: Methodology and Preliminary Report

    PubMed Central

    Lung, Chi-Wen; Yang, Tim D.; Crane, Barbara A.; Elliott, Jeannette; Dicianno, Brad E.; Jan, Yih-Kuen

    2014-01-01

    The purpose of this study was to determine the effect of the sensel window's location and size when calculating the peak pressure index (PPI) of pressure mapping with varying degrees of wheelchair tilt-in-space (tilt) and recline in people with spinal cord injury (SCI). Thirteen power wheelchair users were recruited into this study. Six combinations of wheelchair tilt (15°, 25°, and 35°) and recline (10° and 30°) were used by the participants in random order. Displacements of peak pressure and center of pressure were extracted from the left side of the mapping system. Normalized PPI was computed for three sensel window dimensions (3 sensels × 3 sensels, 5 × 5, and 7 × 7). At least 3.33 cm of Euclidean displacement of peak pressures was observed in the tilt and recline. For every tilt angle, peak pressure displacement was not significantly different between 10° and 30° recline, while center of pressure displacement was significantly different (P < .05). For each recline angle, peak pressure displacement was not significantly different between pairs of 15°, 25°, and 35° tilt, while center of pressure displacement was significantly different between 15° versus 35° and 25° versus 35°. Our study showed that peak pressure displacement occurs in response to wheelchair tilt and recline, suggesting that the selected sensel window locations used to calculate PPI should be adjusted during changes in wheelchair configuration. PMID:25057491

  4. Using residual indent morphology to measure the tilt between the triangular pyramid indenter and the sample surface

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Zhao, Hongwei; Shi, Chengli; Zhang, Lin

    2013-10-01

    The tilt between the indenter and the sample surface will affect the measuring results and the accuracy of nanoindentation and scratches. In this paper, the potential factors leading to the tilt are firstly discussed. Then, based on the Cartesian coordinate system at the tip of the triangular pyramid indenter established by Kashani and Madhavan, a theoretical approach is proposed to measure the tilt angle η and the rotation angle ξ of the surface normal \\hat n using the residual indent morphology. In order to reduce the input parameters for solving the equations and also make the equations dimensionless, two coefficients m and n are defined. One practical application is given to verify the feasibility of the theoretical approach. The theoretical approach is simplified and unified by analyzing the calculation results. The presented theoretical approach can be used to measure the tilt between the indenter and the sample surface indirectly, which is the premise for the adjustment of indentation instruments or the practical correction of the tilt.

  5. An integrated optimum design approach for high speed prop rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.

    1995-01-01

    The objective is to develop an optimization procedure for high-speed and civil tilt-rotors by coupling all of the necessary disciplines within a closed-loop optimization procedure. Both simplified and comprehensive analysis codes are used for the aerodynamic analyses. The structural properties are calculated using in-house developed algorithms for both isotropic and composite box beam sections. There are four major objectives of this study. (1) Aerodynamic optimization: The effects of blade aerodynamic characteristics on cruise and hover performance of prop-rotor aircraft are investigated using the classical blade element momentum approach with corrections for the high lift capability of rotors/propellers. (2) Coupled aerodynamic/structures optimization: A multilevel hybrid optimization technique is developed for the design of prop-rotor aircraft. The design problem is decomposed into a level for improved aerodynamics with continuous design variables and a level with discrete variables to investigate composite tailoring. The aerodynamic analysis is based on that developed in objective 1 and the structural analysis is performed using an in-house code which models a composite box beam. The results are compared to both a reference rotor and the optimum rotor found in the purely aerodynamic formulation. (3) Multipoint optimization: The multilevel optimization procedure of objective 2 is extended to a multipoint design problem. Hover, cruise, and take-off are the three flight conditions simultaneously maximized. (4) Coupled rotor/wing optimization: Using the comprehensive rotary wing code CAMRAD, an optimization procedure is developed for the coupled rotor/wing performance in high speed tilt-rotor aircraft. The developed procedure contains design variables which define the rotor and wing planforms.

  6. Concepts for generating optimum vertical flight profiles

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.

    1979-01-01

    Algorithms for generating optimum vertical profiles are derived and examined. These algorithms form the basis for the design of onboard flight management concepts. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff weight, and range-to-destination are presented. Further considerations for mechanizing two different onboard methods of computing near-optimum flight profiles are then outlined. Finally, the results are summarized, and recommendations are made for further work. Technical details of optimum trajectory design, steering requirements for following these trajectories, and off-line computer programs for testing the concepts are included.

  7. Enhanced lateral resolution for phase retrieval based on the transport of intensity equation with tilted illumination

    NASA Astrophysics Data System (ADS)

    Martinez-Carranza, J.; Falaggis, K.; Kozacki, T.

    2016-03-01

    Quantitative Phase Imaging based on the Transport of Intensity Equation (TIE) has shown to be a practical tool for retrieving the phase information of biological and technical samples. When recovering the phase information with the TIE, the maximum lateral resolution that can be obtained is limited by the numerical aperture (NA) of the optical system. In order to overcome this limitation, a system that combines structured illumination and TIE-like techniques have been proposed. These methodologies enlarge synthetically the NA of the optical system, and thus, the lateral resolution of the retrieved phase can be improved. However, the employment of structured illumination may bring error amplifications in the retrieved phase due to its sensitiveness to phase discontinuities and shot noise. In this work, we propose a new methodology that improves the lateral resolution of the retrieved phase beyond the diffraction limit avoiding the problems related with the structured illumination. The methodology presented here uses tilted illumination and a TIE solver. We show that when using this configuration, we can extend the set of recovered frequencies by adjusting the angle of the tilted wave-front. Further, our methodology is designed to extend the NA by employing less tilted angles than other similar techniques. Hence, the final retrieved phase will have an enhanced lateral resolution without amplifying the numerical errors and employing a few tilted angles. Moreover, we show that the algorithm presented here can be combined with other TIE algorithms that are used for suppressing the Low Frequency Artifacts (LFAs) usually present when using TIE based techniques.

  8. A COLLISIONLESS SCENARIO FOR URANUS TILTING

    SciTech Connect

    Boue, Gwenael; Laskar, Jacques

    2010-03-20

    The origin of the high inclination of Uranus' spin-axis (Uranus' obliquity) is one of the great unanswered questions about the solar system. Giant planets are believed to form with nearly zero obliquity, and it has been shown that the present behavior of Uranus' spin is essentially stable. Several attempts were made in order to solve this problem. Here we report numerical simulations showing that Uranus' axis can be tilted during the planetary migration, without the need of a giant impact, provided that the planet had an additional satellite and a temporary large inclination. This might have happened during the giant planet instability phase described in the Nice model. In our scenario, the satellite is ejected after the tilt by a close encounter at the end of the migration. This model can both explain Uranus' large obliquity and bring new constraints on the planet orbital evolution.

  9. A CFD study of tilt rotor flowfields

    NASA Technical Reports Server (NTRS)

    Fejtek, Ian; Roberts, Leonard

    1989-01-01

    The download on the wing produced by the rotor wake of a tilt rotor vehicle in hover is of major concern because of its severe impact on payload-carrying capability. In a concerted effort to understand the fundamental fluid dynamics that cause this download, and to help find ways to reduce it, computational fluid dynamics (CFD) is employed to study this problem. The thin-layer Navier-Stokes equations are used to describe the flow, and an implicit, finite difference numerical algorithm is the method of solution. The methodology is developed to analyze the tilt rotor flowfield. Included are discussions of computations of an airfoil and wing in freestream flows at -90 degrees, a rotor alone, and wing/rotor interaction in two and three dimensions. Preliminary results demonstrate the feasibility and great potential of the present approach. Recommendations are made for both near-term and far-term improvements to the method.

  10. Tilted foil polarization of radioactive beam nuclei

    NASA Astrophysics Data System (ADS)

    Goldring, Gvirol

    1992-11-01

    Tilted foil polarization has up to now been mostly applied to nuclear reaction products recoiling out of a target traversed by a primary particle beam. Being a universal phenomenon it can be applied equally well to beams of particles, primary or secondary, radioactive or other. There are however some technical considerations arising from the nature of the beam particles. Radioactive beams are associated with ground state nuclei. They usually have low nuclear spin and as a consequence-as will be shown later-low polarization. Secondary beams are usually low in intensity and do not impose any constraints on the foils they traverse; unlike intense primary heavy ion beams which, if they traverse the foils, essentially limit the foil material to carbon. We review here briefly the tilted foil polarization process and then discuss an experiment with an isomer beam. Finally we review experiments with radioactive beams, past, present and planned for the future.

  11. Aero-optimum hovering kinematics.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2015-08-07

    Hovering flight for flapping wing vehicles requires rapid and relatively complex reciprocating movement of a wing relative to a stationary surrounding fluid. This note develops a compact analytical aero-kinematic model that can be used for optimization of flapping wing kinematics against aerodynamic criteria of effectiveness (maximum lift) and efficiency (minimum power for a given amount of lift). It can also be used to make predictions of required flapping frequency for a given geometry and basic aerodynamic parameters. The kinematic treatment is based on a consolidation of an existing formulation that allows explicit derivation of flapping velocity for complex motions whereas the aerodynamic model is based on existing quasi-steady analysis. The combined aero-kinematic model provides novel explicit analytical expressions for both lift and power of a hovering wing in a compact form that enables exploration of a rich kinematic design space. Good agreement is found between model predictions of flapping frequency and observed results for a number of insects and optimal hovering kinematics identified using the model are consistent with results from studies using higher order computational models. For efficient flight, the flapping angle should vary using a triangular profile in time leading to a constant velocity flapping motion, whereas for maximum effectiveness the shape of variation should be sinusoidal. For both cases the wing pitching motion should be rectangular such that pitch change at stroke reversal is as rapid as possible.

  12. Angle-dependent magnetotransport in GaAs/InAs core/shell nanowires

    PubMed Central

    Haas, Fabian; Wenz, Tobias; Zellekens, Patrick; Demarina, Nataliya; Rieger, Torsten; Lepsa, Mihail; Grützmacher, Detlev; Lüth, Hans; Schäpers, Thomas

    2016-01-01

    We study the impact of the direction of magnetic flux on the electron motion in GaAs/InAs core/shell nanowires. At small tilt angles, when the magnetic field is aligned nearly parallel to the nanowire axis, we observe Aharonov–Bohm type h/e flux periodic magnetoconductance oscillations. These are attributed to transport via angular momentum states, formed by electron waves within the InAs shell. With increasing tilt of the nanowire in the magnetic field, the flux periodic magnetoconductance oscillations disappear. Universal conductance fluctuations are observed for all tilt angles, however with increasing amplitudes for large tilt angles. We record this evolution of the electron propagation from a circling motion around the core to a diffusive transport through scattering loops and give explanations for the observed different transport regimes separated by the magnetic field orientation. PMID:27091000

  13. Spatiotopic coding during dynamic head tilt

    PubMed Central

    Turi, Marco; Burr, David C.

    2016-01-01

    Humans maintain a stable representation of the visual world effortlessly, despite constant movements of the eyes, head, and body, across multiple planes. Whereas visual stability in the face of saccadic eye movements has been intensely researched, fewer studies have investigated retinal image transformations induced by head movements, especially in the frontal plane. Unlike head rotations in the horizontal and sagittal planes, tilting the head in the frontal plane is only partially counteracted by torsional eye movements and consequently induces a distortion of the retinal image to which we seem to be completely oblivious. One possible mechanism aiding perceptual stability is an active reconstruction of a spatiotopic map of the visual world, anchored in allocentric coordinates. To explore this possibility, we measured the positional motion aftereffect (PMAE; the apparent change in position after adaptation to motion) with head tilts of ∼42° between adaptation and test (to dissociate retinal from allocentric coordinates). The aftereffect was shown to have both a retinotopic and spatiotopic component. When tested with unpatterned Gaussian blobs rather than sinusoidal grating stimuli, the retinotopic component was greatly reduced, whereas the spatiotopic component remained. The results suggest that perceptual stability may be maintained at least partially through mechanisms involving spatiotopic coding. NEW & NOTEWORTHY Given that spatiotopic coding could play a key role in maintaining visual stability, we look for evidence of spatiotopic coding after retinal image transformations caused by head tilt. To this end, we measure the strength of the positional motion aftereffect (PMAE; previously shown to be largely spatiotopic after saccades) after large head tilts. We find that, as with eye movements, the spatial selectivity of the PMAE has a large spatiotopic component after head rotation. PMID:27903636

  14. A tilted cold dark matter cosmological scenario

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Gnedin, Nickolay Y.; Kofman, Lev A.; Ostriker, Jeremiah P.

    1992-01-01

    A new cosmological scenario based on CDM but with a power spectrum index of about 0.7-0.8 is suggested. This model is predicted by various inflationary models with no fine tuning. This tilted CDM model, if normalized to COBE, alleviates many problems of the standard CDM model related to both small-scale and large-scale power. A physical bias of galaxies over dark matter of about two is required to fit spatial observations.

  15. Dry tilt network at Mount Rainier, Washington

    USGS Publications Warehouse

    Dzurisin, Daniel; Johnson, Daniel J.; Symonds, R.B.

    1984-01-01

    In addition to its primary responsibility of monitoring active Mount St. Helens, the David A. Johnston Cascades Volcano Observatory (CVO) has been charged with obtaining baseline geodetic and geochemical information at each of the other potentially active Cascade volcanoes. Dry tilt and/or trilateration networks were established during 1975-82 at Mount Baker, Mount St. Helens, Mount Hood, Mount Shasta, Lassen Peak, Crater Lake, and Long Valley caldera; coverage was extended during September 1982 to include Mount Rainier.

  16. A miniature tilting pad gas lubricated bearing

    NASA Technical Reports Server (NTRS)

    Sixsmith, H.; Swift, W. L.

    1983-01-01

    This paper describes the design and development of a miniature tilting pad gas bearing developed for use in very small turbomachines. The bearings have been developed for cryogenic turboexpanders with shaft diameters down to about 0.3 cm and rotational speeds up to one million rpm. Cryogenic expansion turbines incorporating this type of bearing should be suitable for refrigeration rates down to about 10 w.

  17. Estimating Insolation Incident on Tilted Surfaces

    NASA Technical Reports Server (NTRS)

    Elkin, R. E.; Toelle, R. G.

    1983-01-01

    ASHMET computer program estimates amount of solar insolation incident on surfaces of several types of solar collectors, including fixed-position flat-plate, monthly-tilt-adjusted flat-plat, beam-tracting, and fixed-azimuthtracker. Basic methodology employed in ASHMET is to use ASHRAE relationships to obtain clear-day total daily insolation incident on collector surface of representative day of each month of year. ASHMET is interactive program and prompts user for all required data.

  18. Steering Dynamics of Tilting Narrow Track Vehicle with Passive Front Wheel Design

    NASA Astrophysics Data System (ADS)

    TAN, Jeffrey Too Chuan; ARAKAWA, Hiroki; SUDA, Yoshihiro

    2016-09-01

    In recent years, narrow track vehicle has been emerged as a potential candidate for the next generation of urban transportation system, which is greener and space effective. Vehicle body tilting has been a symbolic characteristic of such vehicle, with the purpose to maintain its stability with the narrow track body. However, the coordination between active steering and vehicle tilting requires considerable driving skill in order to achieve effective stability. In this work, we propose an alternative steering method with a passive front wheel that mechanically follows the vehicle body tilting. The objective of this paper is to investigate the steering dynamics of the vehicle under various design parameters of the passive front wheel. Modeling of a three-wheel tilting narrow track vehicle and multibody dynamics simulations were conducted to study the effects of two important front wheel design parameters, i.e. caster angle and trail toward the vehicle steering dynamics in steering response time, turning radius, steering stability and resiliency towards external disturbance. From the results of the simulation studies, we have verified the relationships of these two front wheel design parameters toward the vehicle steering dynamics.

  19. Wavelength Scanning with a Tilting Interference Filter for Glow-Discharge Elemental Imaging.

    PubMed

    Storey, Andrew P; Ray, Steven J; Hoffmann, Volker; Voronov, Maxim; Engelhard, Carsten; Buscher, Wolfgang; Hieftje, Gary M

    2016-11-21

    Glow discharges have long been used for depth profiling and bulk analysis of solid samples. In addition, over the past decade, several methods of obtaining lateral surface elemental distributions have been introduced, each with its own strengths and weaknesses. Challenges for each of these techniques are acceptable optical throughput and added instrumental complexity. Here, these problems are addressed with a tilting-filter instrument. A pulsed glow discharge is coupled to an optical system comprising an adjustable-angle tilting filter, collimating and imaging lenses, and a gated, intensified charge-coupled device (CCD) camera, which together provide surface elemental mapping of solid samples. The tilting-filter spectrometer is instrumentally simpler, produces less image distortion, and achieves higher optical throughput than a monochromator-based instrument, but has a much more limited tunable spectral range and poorer spectral resolution. As a result, the tilting-filter spectrometer is limited to single-element or two-element determinations, and only when the target spectral lines fall within an appropriate spectral range and can be spectrally discerned. Spectral interferences that result from heterogeneous impurities can be flagged and overcome by observing the spatially resolved signal response across the available tunable spectral range. The instrument has been characterized and evaluated for the spatially resolved analysis of glow-discharge emission from selected but representative samples.

  20. Poloidal tilting symmetry of high order tokamak flux surface shaping in gyrokinetics

    NASA Astrophysics Data System (ADS)

    Ball, Justin; Parra, Felix I.; Barnes, Michael

    2016-04-01

    A poloidal tilting symmetry of the local nonlinear δ f gyrokinetic model is demonstrated analytically and verified numerically. This symmetry shows that poloidally rotating all the flux surface shaping effects with large poloidal mode number by a single tilt angle has an exponentially small effect on the transport properties of a tokamak. This is shown using a generalization of the Miller local equilibrium model to specify an arbitrary flux surface geometry. With this geometry specification we find that, when performing an expansion in large flux surface shaping mode number, the governing equations of gyrokinetics are symmetric in the poloidal tilt of the high order shaping effects. This allows us to take the fluxes from a single configuration and calculate the fluxes in any configuration that can be produced by tilting the large mode number shaping effects. This creates a distinction between tokamaks with mirror symmetric flux surfaces and tokamaks without mirror symmetry, which is expected to have important consequences for generating toroidal rotation using up-down asymmetry.

  1. Method for pan-tilt camera calibration using single control point.

    PubMed

    Li, Yunting; Zhang, Jun; Hu, Wenwen; Tian, Jinwen

    2015-01-01

    The pan-tilt (PT) camera is widely used in video surveillance systems due to its rotatable property and low cost. The rough output of a PT camera may not satisfy the demand of practical applications; hence an accurate calibration method of a PT camera is desired. However, high-precision camera calibration methods usually require sufficient control points not guaranteed in some practical cases of a PT camera. In this paper, we present a novel method to online calibrate the rotation angles of a PT camera by using only one control point. This is achieved by assuming that the intrinsic parameters and position of the camera are known in advance. More specifically, we first build a nonlinear PT camera model with respect to two parameters Pan and Tilt. We then convert the nonlinear model into a linear model according to sine and cosine of Tilt, where each element in the augmented coefficient matrix is a function of the single variable Pan. A closed-form solution of Pan and Tilt can then be derived by solving a quadratic equation of tangent of Pan. Our method is noniterative and does not need features matching; thus its time efficiency is better. We evaluate our calibration method on various synthetic and real data. The quantitative results demonstrate that the proposed method outperforms other state-of-the-art methods if the intrinsic parameters and position of the camera are known in advance.

  2. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2009-12-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this machine might be improved, a student can gain insight beyond the equations of motion and can test hypotheses on readily available working models. Some of these performance improvements are considered in this paper.

  3. Design rules for a compact and low-cost optical position sensing of MOEMS tilt mirrors based on a Gaussian-shaped light source

    NASA Astrophysics Data System (ADS)

    Baumgart, Marcus; Tortschanoff, Andreas

    2013-05-01

    A tilt mirror's deflection angle tracking setup is examined from a theoretical point of view. The proposed setup is based on a simple optical approach and easily scalable. Thus, the principle is especially of interest for small and fast oscillating MEMS/MOEMS based tilt mirrors. An experimentally established optical scheme is used as a starting point for accurate and fast mirror angle-position detection. This approach uses an additional layer, positioned under the MOEMS mirror's backside, consisting of a light source in the center and two photodetectors positioned symmetrical around the center. The mirror's back surface is illuminated by the light source and the intensity change due to mirror tilting is tracked via the photodiodes. The challenge of this method is to get a linear relation between the measured intensity and the current mirror tilt angle even for larger angles. State-of-the-art MOEMS mirrors achieve angles up to ±30°, which exceeds the linear angle approximations. The use of an LED, small laser diode or VCSEL as a lightsource is appropriate due to their small size and inexpensive price. Those light sources typically emit light with a Gaussian intensity distribution. This makes an analytical prediction of the expected detector signal quite complicated. In this publication an analytical simulation model is developed to evaluate the influence of the main parameters for this optical mirror tilt-sensor design. An easy and fast to calculate value directly linked to the mirror's tilt-angle is the "relative differential intensity" (RDI = (I1 - I2) / (I1 + I2)). Evaluation of its slope and nonlinear error highlights dependencies between the identified parameters for best SNR and linearity. Also the energy amount covering the detector area is taken into account. Design optimizing rules are proposed and discussed based on theoretical considerations.

  4. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Realization of Fine Tip Tilting by 16-Step Line Tilting

    NASA Astrophysics Data System (ADS)

    Ding, Lu; Chen, Ying-Tian; Hu, Sen; Zhang, Yang

    2010-07-01

    Following Chen's method [Common. Theor. Phys. 52 (2009) 549] to use 8-step line tilting to realize tip tilting, to achieve finer rotation, it is discovered that a 16-step line tilting method may realize a rotation two order smaller than that achieved by 8-step.

  5. TILT, WARP, AND SIMULTANEOUS PRECESSIONS IN DISKS

    SciTech Connect

    Montgomery, M. M.

    2012-07-10

    Warps are suspected in disks around massive compact objects. However, the proposed warping source-non-axisymmetric radiation pressure-does not apply to white dwarfs. In this Letter, we report the first smoothed particle hydrodynamic simulations of accretion disks in SU UMa-type systems that naturally tilt, warp, and simultaneously precess in the prograde and retrograde directions using white dwarf V344 Lyrae in the Kepler field as our model. After {approx}79 days in V344 Lyrae, the disk angular momentum L{sub d} becomes misaligned to the orbital angular momentum L{sub o} . As the gas stream remains normal to L{sub o} , hydrodynamics (e.g., the lift force) is a likely source to disk tilt. In addition to tilt, the outer disk annuli cyclically change shape from circular to highly eccentric due to tidal torques by the secondary star. The effect of simultaneous prograde and retrograde precession is a warp of the colder, denser midplane as seen along the disk rim. The simulated rate of apsidal advance to nodal regression per orbit nearly matches the observed ratio in V344 Lyrae.

  6. WIYN tip-tilt module performance

    NASA Astrophysics Data System (ADS)

    Claver, Charles F.; Corson, Charles; Gomez, R. Richard, Jr.; Daly, Philip N.; Dryden, David M.; Abareshi, Behzod

    2003-02-01

    The WIYN Tip-Tilt Module (WTTM) is an addition to the existing Instrument Adapter System (IAS) providing a high performance optical-NIR image stabilized port on the WIYN 3.5m telescope. The WTTM optical system uses a 3-mirror off-axis design along with a high bandwidth tilt mirror. The WTTM is a reimaging system with 15% magnification producing a 4x4 arcminute field of view and near diffraction limited imagery from 400-2000nm. The optics are diamond turned in electroless Nickel over an Aluminum substrate. The WTTM opto-mechanical assembly was designed and built using the principals of the "build-to-print" technique, where the entire system is fabricated and assembled to tolerance with no adjustments. A unique high performance error sensor, using an internal mirrorlette array that feeds 4 fiber coupled avalanche photodiode photon counters, provides the tilt signal. The system runs under the Real-Time Linux operating system providing a maximum closed loop rate of 3khz. In this paper we report on the successful lab testing, verification of the "build-to-print" technique and on telescope performance of the WTTM.

  7. Optimum design of Cassegrain antenna for space laser communication

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Jiang, Lun; Wang, Chao; Li, Yingchao

    2016-10-01

    The divergence angle is very important index in space laser communication for energy transfer. Typically, the large aperture telescope as optical antenna is used for angle compression, and the divergence angle of communication beam is usually calculated by diffraction limit angle equation 1.22λ/D. This equation expresses the diffraction of a spherical wave through a circular aperture. However, the light source commonly used laser with a Gaussian distribution, and the optical antenna is central obscurations. The antenna parameters which is obscuration ratio and Gaussian beam apodization were significantly relative with the far field energy. In this study, we obtain the mathematic relation between the divergence angle, energy loss and the antenna parameters. From the relationship, we know that the divergence angle smaller as the increase of antenna obscuration ratio. It would tend to enhance the far-field energy density. But a larger obscuration ratio will increase the energy loss. At the same time, the increase of Gaussian beam apodization resulted in the energy of first diffraction ring was raised but the radius of first ring was increased. They were conflict. And then, the antenna parameters of trade-off was found from curves of obscuration ratio and curves of divergence angle. The parameters of a Cassegrain antenna was optimum designed for the energy maximization, and considerd the apodization from mechanical structure blocking. The long-distance laser communications were successful in these airborne tests. Stable communication was demonstrated. The energy gain is sufficient for SNR of high-bandwidth transmission in atmospheric channel.

  8. Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.

    2008-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize

  9. Hydrophobic matching controls the tilt and stability of the dimeric platelet-derived growth factor receptor (PDGFR) β transmembrane segment.

    PubMed

    Muhle-Goll, Claudia; Hoffmann, Silke; Afonin, Sergii; Grage, Stephan L; Polyansky, Anton A; Windisch, Dirk; Zeitler, Marcel; Bürck, Jochen; Ulrich, Anne S

    2012-07-27

    The platelet-derived growth factor receptor β is a member of the cell surface receptor tyrosine kinase family and dimerizes upon activation. We determined the structure of the transmembrane segment in dodecylphosphocholine micelles by liquid-state NMR and found that it forms a stable left-handed helical dimer. Solid-state NMR and oriented circular dichroism were used to measure the tilt angle of the helical segments in macroscopically aligned model membranes with different acyl chain lengths. Both methods showed that decreasing bilayer thickness (DEPC-POPC-DMPC) led to an increase in the helix tilt angle from 10° to 30° with respect to the bilayer normal. At the same time, reconstitution of the comparatively long hydrophobic segment became less effective, eventually resulting in complete protein aggregation in the short-chain lipid DLPC. Unrestrained molecular dynamics simulations of the dimer were carried out in explicit lipid bilayers (DEPC, POPC, DMPC, sphingomyelin), confirming the observed dependence of the helix tilt angle on bilayer thickness. Notably, molecular dynamics revealed that the left-handed dimer gets tilted en bloc, whereas conformational transitions to alternative (e.g. right-handed dimeric) states were not supported. The experimental data along with the simulation results demonstrate a pronounced interplay between the platelet-directed growth factor receptor β transmembrane segment and the bilayer thickness. The effect of hydrophobic mismatch might play a key role in the redistribution and activation of the receptor within different lipid microdomains of the plasma membrane in vivo.

  10. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading

    NASA Astrophysics Data System (ADS)

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-09-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.

  11. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading

    PubMed Central

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-01-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors. PMID:27641908

  12. Tilting Saturn without Tilting Jupiter or Ejecting an Ice Giant: Constraints on migration

    NASA Astrophysics Data System (ADS)

    McNeil, Douglas S.; Lee, M. H.

    2010-10-01

    The obliquities of the giant planets preserve information about their migration and encounter histories. Are the classic Nice models (Tsiganis et al. 2005) or the resonant Nice models (Morbidelli et al. 2007) compatible with Jupiter's 3 degree tilt and Saturn's 27? Here we consider the obliquity evolution of the giants during the planetesimal-driven migration phase using two methods: (1) a purely secular integration of the Laplace-Lagrange equations with spin, and (2) a hybrid N-body scheme with full interactions between the Sun and the giants but imposed prescriptions for migration and eccentricity and inclination damping. We find that it is difficult to reproduce today's obliquity values as migration timescales sufficient to tilt Saturn via the Hamilton & Ward (2004) secular spin-orbit resonance mechanism generally suffice to tilt Jupiter more than is observed. Moreover, long migration timescales which make tilting Saturn easier simultaneously reduce the survival fraction (to below 20% for timescales longer than 20 Myr.) We discuss the constraints these observations provide on the dynamical history of the giant planets, and the remaining possibility of tilting Saturn during a late very slow migration of Neptune to its present location after the main phase of migration is complete. [This work was supported by Hong Kong RGC grant HKU 7024/08P.

  13. Tilt error in cryospheric surface radiation measurements at high latitudes: a model study

    NASA Astrophysics Data System (ADS)

    Bogren, Wiley Steven; Faulkner Burkhart, John; Kylling, Arve

    2016-03-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response fore optic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high-latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can, respectively introduce up to 2.7, 8.1, and 13.5 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo. Simulations including a cloud layer demonstrate decreasing tilt error with increasing cloud optical depth.

  14. Automated optimum design of wing structures. Deterministic and probabilistic approaches

    NASA Technical Reports Server (NTRS)

    Rao, S. S.

    1982-01-01

    The automated optimum design of airplane wing structures subjected to multiple behavior constraints is described. The structural mass of the wing is considered the objective function. The maximum stress, wing tip deflection, root angle of attack, and flutter velocity during the pull up maneuver (static load), the natural frequencies of the wing structure, and the stresses induced in the wing structure due to landing and gust loads are suitably constrained. Both deterministic and probabilistic approaches are used for finding the stresses induced in the airplane wing structure due to landing and gust loads. A wing design is represented by a uniform beam with a cross section in the form of a hollow symmetric double wedge. The airfoil thickness and chord length are the design variables, and a graphical procedure is used to find the optimum solutions. A supersonic wing design is represented by finite elements. The thicknesses of the skin and the web and the cross sectional areas of the flanges are the design variables, and nonlinear programming techniques are used to find the optimum solution.

  15. Cranial diameter pulsations measured by non-invasive ultrasound decrease with tilt

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    INTRODUCTION: Intracranial pressure (ICP) may play a significant role in physiological responses to microgravity by contributing to the nausea associated with microgravity exposure. However, effects of altered gravity on ICP in astronauts have not been investigated, primarily due to the invasiveness of currently available techniques. We have developed an ultrasonic device that monitors changes in cranial diameter pulsation non-invasively so that we can evaluate ICP dynamics in astronauts during spaceflight. This study was designed to demonstrate the feasibility of our ultrasound technique under the physiological condition in which ICP dynamics are changed due to altered gravitational force. METHODS: Six healthy volunteers were placed at 60 degrees head-up, 30 degrees headup, supine, and 15 degrees head-down positions for 3 min at each angle. We measured arterial blood pressure (ABP) with a finger pressure cuff, and cranial diameter pulsation with a pulsed phase lock loop device (PPLL). RESULTS: Analysis of covariance demonstrated that amplitudes of cranial diameter pulsations were significantly altered with the angle of tilt (p < 0.001). The 95% confidence interval for linear regression coefficients of the cranial diameter pulsation amplitudes with tilt angle was 0.862 to 0.968. However, ABP amplitudes did not show this relationship. DISCUSSION: Our noninvasive ultrasonic technique reveals that the amplitude of cranial diameter pulsation decreases as a function of tilt angle, suggesting that ICP pulsation follows the same relationship. It is demonstrated that the PPLL device has a sufficient sensitivity to detect changes non-invasively in ICP pulsation caused by altered gravity.

  16. Performance improvement by tilting receiver plane in M-QAM OFDM visible light communications.

    PubMed

    Wang, Zixiong; Yu, Changyuan; Zhong, Wen-De; Chen, Jian

    2011-07-04

    We propose a scheme to improve the SNR distribution as well as the spectral efficiency of M-QAM OFDM signal for indoor visible light communication by tilting the receiver plane. Newton method is employed for the photo-detector to receive maximum power by finding the optimal tilting angle. This method is a fast algorithm that only three searching steps are needed. The simulation results show that in the case of one LED source, the maximum spectral efficiency improvement is 0.44bit/s/Hz when the launching power of LED source is 12W; while in the case of four LED sources, the maximum spectral efficiency improvement is 0.21bit/s/Hz when the total launching power of the four LED sources is 12W.

  17. Investigation of intermolecular double-quantum off-resonance longitudinal relaxation in the tilted rotating frame

    NASA Astrophysics Data System (ADS)

    Cai, Honghao; Zheng, Bingwen; Ke, Hanping; Chen, Zhong

    2015-11-01

    A modified correlation spectroscopy revamped by asymmetric z-gradients echo detection (CRAZED) sequence was applied to investigate the behavior of intermolecular double-quantum longitudinal relaxation processes in the tilted rotating frame. Theoretical formalism based on dipolar field theory was presented in detail. Spectroscopic measurements and quantitative analysis demonstrated that the signal intensities and intermolecular double-quantum off-resonance longitudinal relaxation time in the rotating frame (T1ρ, DQC eff) are inversely correlated with the tilt angle (θ), while positively correlated with the effective frequency of spin-locking field (ωe). Magnetic resonance imaging experiments of an agarose phantom also prove the validity of the theoretical analysis and demonstrated the feasibility of imaging based on T1ρ, DQC eff . The rotating-frame double-quantum relaxation measurements are useful for probing slow-motion molecules and this study provides the guidance for optimization of the spin-lock experiments.

  18. Static roll-tilt over 5 minutes locally distorts the internal estimate of direction of gravity.

    PubMed

    Tarnutzer, A A; Bockisch, C J; Straumann, D; Marti, S; Bertolini, G

    2014-12-01

    The subjective visual vertical (SVV) indicates perceived direction of gravity. Even in healthy human subjects, roll angle-dependent misestimations, roll overcompensation (A-effect, head-roll > 60° and <135°) and undercompensation (E-effect, head-roll < 60°), occur. Previously, we demonstrated that, after prolonged roll-tilt, SVV estimates when upright are biased toward the preceding roll position, which indicates that perceived vertical (PV) is shifted by the prior tilt (Tarnutzer AA, Bertolini G, Bockisch CJ, Straumann D, Marti S. PLoS One 8: e78079, 2013). Hypothetically, PV in any roll position could be biased toward the previous roll position. We asked whether such a "global" bias occurs or whether the bias is "local". The SVV of healthy human subjects (N = 9) was measured in nine roll positions (-120° to +120°, steps = 30°) after 5 min of roll-tilt in one of two adaptation positions (±90°) and compared with control trials without adaptation. After adapting, adjustments were shifted significantly (P < 0.05) toward the previous adaptation position for nearby roll-tilted positions (±30°, ±60°) and upright only. We computationally simulated errors based on the sum of a monotonically increasing function (producing roll undercompensation) and a mixture of Gaussian functions (representing roll overcompensation centered around PV). In combination, the pattern of A- and E-effects could be generated. By shifting the function representing local overcompensation toward the adaptation position, the experimental postadaptation data could be fitted successfully. We conclude that prolonged roll-tilt locally distorts PV rather than globally shifting it. Short-term adaptation of roll overcompensation may explain these shifts and could reflect the brain's strategy to optimize SVV estimates around recent roll positions. Thus postural stability can be improved by visually-mediated compensatory responses at any sustained body-roll orientation.

  19. Magnetic nanocap arrays with tilted magnetization

    NASA Astrophysics Data System (ADS)

    Albrecht, Manfred

    2009-03-01

    In modern magnetic recording materials the ``superparamagnetic effect'' has become increasingly important as new magnetic hard disk drive products are designed for higher storage densities. In this regard, patterned media [1], where two-dimensional arrays of nanostructures are used, is one of the concepts that might provide the required areal density in future magnetic recording devices. However, also nanostructure arrays will ultimately need high anisotropy material such as L10-FePt to provid enough thermal stability and thus much higher writing fields than currently obtainable from perpendicular magnetic recording heads. One proposed solution to this problem is the use of tilted magnetic recording media [2]. The basic idea is to tilt the easy axis of the magnetic medium from the perpendicular direction to 45 degree. In this case, the switching field will be reduced by a foctor of two in the Stoner-Wohlfarth limit. Recently, this approach was realized by oblique film deposition onto arrays of self-assembled spherical particles [3-5]. In this presentation, recent results on different film systems including Co/Pt multilayers, FePt and CoPtCr-SiO2 alloys which have been deposited onto SiO2 particle monolayers will be presented. It turned out that by tuning the growth conditions single domain nanocaps with enhanced magnetic coercivity and tilted anisostropy axis can be achieved even for particle sizes below 50 nm. [4pt] [1] B. D. Terris and T. Thomson, J. Phys. D: Appl. Phys. 38 (2005) R199 [0pt] [2] J.-P. Wang, Nat. Mater. 4, 191 (2005). [0pt] [3] M. Albrecht et al., Nat. Mater. 4, 203 (2005). [0pt] [4] T. Ulbrich et al., Phys. Rev. Lett. 96 (2006) 077202. [0pt] [5] D. Makarov et al., Appl. Phys. Lett. 93, 153112 (2008).

  20. Can imaginary head tilt shorten postrotatory nystagmus?

    NASA Technical Reports Server (NTRS)

    Gianna-Poulin, C. C.; Voelker, C. C.; Erickson, B.; Black, F. O.

    2001-01-01

    In healthy subjects, head tilt upon cessation of a constant-velocity yaw head rotation shortens the duration of postrotatory nystagmus. The presumed mechanism for this effect is that the velocity storage of horizontal semicircular canal inputs is being discharged by otolith organ inputs which signal a constant yaw head position when the head longitudinal axis is no longer earth-vertical. In the present study, normal subjects were rotated head upright in the dark on a vertical-axis rotational chair at 60 degrees/s for 75 s and were required to perform a specific task as soon as the chair stopped. Horizontal position of the right eye was recorded with an infra-red video camera. The average eye velocity (AEV) was measured over a 30-s interval following chair acceleration/deceleration. The ratios (postrotatory AEV/perrotatory AEV) were 1.1 (SD 0.112) when subjects (N=10) kept their head erect, 0.414 (SD 0.083) when subjects tilted their head forward, 1.003 (SD 0.108) when subjects imagined watching a TV show, 1.012 (SD 0.074) when subjects imagined looking at a painting on a wall, and 0.995 (SD 0.074) when subjects imagined floating in a prone position on a lake. Thus, while actual head tilt reduced postrotatory nystagmus, the imagination tasks did not have a statistically significant effect on postrotatory nystagmus. Therefore, velocity storage does not appear to be under the influence of cortical neural signals when subjects imagine that they are floating in a prone orientation.

  1. Three-dimensional continuation study of convection in a tilted rectangular enclosure.

    PubMed

    Torres, J F; Henry, D; Komiya, A; Maruyama, S; Ben Hadid, H

    2013-10-01

    A continuation method developed from a three-dimensional spectral finite element code is used to study natural convection in a tilted rectangular cavity. The cavity has its length equal to two times the side of its square cross section and it contains a fluid with a Prandtl number Pr = 1. A detailed bifurcation diagram is first obtained in the case without inclination in order to get the sequence of the different branches of solutions and determine the stable solutions. The focus is then put on the stable solutions in the inclined cavity, when the tilt occurs around its longest axis. The subtle changes induced by the tilt on the convective system are clarified. Three different stable solutions are obtained: the longitudinal roll L- solution (with the same sense of rotation as the inclination angle), which develops smoothly from zero Rayleigh number on the leading branch; the longitudinal roll L+ solution (with a sense of rotation opposite to the inclination angle), which is on a disconnected branch and is stabilized beyond a secondary bifurcation point; the oblique roll O ± solutions (corresponding to transverse roll solutions perturbed by the longitudinal flow induced by the tilt), which quickly appear beyond saddle-node points on new disconnected branches. The domain of existence of these stable solutions is eventually obtained and described in the Rayleigh number-inclination parameter space. Finally, the Nusselt number is determined as a function of the inclination at a constant Rayleigh number for the different stable solutions. The Nusselt number is maximum at an inclination of 49.55° for the leading longitudinal roll L- solution.

  2. Thermal and Wind Effects on the Azimuth Axis Tilt of the ASTE 10-m Antenna

    NASA Astrophysics Data System (ADS)

    Ukita, Nobuharu; Ezawa, Hajime; Ikenoue, Bungo; Saito, Masao

    2007-10-01

    The azimuth axis tilt of the ASTE 10-m antenna induced by thermal and wind loadings was investigated with a dual-axis inclinometer on the azimuth axis, along with thermometers on the pedestal and yoke structures and an ultrasonic anemometer on a nearby weather station. The dependences of the inclinometer zero-point offsets against temperature of the device, temperature gradients in the pedestal and yoke structure were obtained for the measurements over 11 months during the antenna being parked at its home position (azimuth angles = ?180 degrees, an elevation angle = 60 degrees) under wind velocities < 8 m s-1. The temperature dependences of the zero-point offsets were found to be 1.24 and -0.46 arcseconds/degree, and were close to those obtained with an independent method. The azimuth axis tilts due to the temperature difference between the two opposite sides of pedestal walls were found to be about 1.1 and 1.7 arcseconds/degree, and consistent with 1.5 arcseconds/degree estimated with a simple model. The residual axis tilt of the whole samples after removal of the temperature dependences shows dependence against overturning moment estimated from the wind data. The stiffness of the antenna structures between the yoke base section and the ground was estimated to be 5.3 and 3.4 GNm/rad using the observed tilts in two directions; and were smaller than 6.0 GNm/rad from a mechanical model prediction. Based on these field experiments, we discuss the improvements and limitations of pointing performance with the inclinometer metrology system.

  3. Interdigitated pixel electrodes with alternating tilts for fast fringe-field switching of liquid crystals.

    PubMed

    Choi, Tae-Hoon; Woo, Jae-Hyeon; Choi, Yeongyu; Yoon, Tae-Hoon

    2016-11-28

    We propose an interdigitated pixel electrode structure with alternating tilts for fast fringe-field switching of liquid crystals (LCs). In contrast to an LC cell, where the pixel electrodes are parallel to the LC alignment direction, this device does not require a non-zero pretilt angle, owing to an obliquely applied electric field; thus, it can retain a much wider viewing angle by aligning the LCs without a pretilt. In addition to a short response time and wide viewing angle, the proposed device allows a much larger deviation of the LC alignment direction, which is essential for mass production. Moreover, LCs with negative dielectric anisotropy can be used to minimize the transmittance decrease.

  4. High brightness angled cavity quantum cascade lasers

    SciTech Connect

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M.

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightest QCL to date.

  5. High brightness angled cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.; Slivken, S.; Razeghi, M.

    2015-03-01

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm-2 sr-1 is obtained, which marks the brightest QCL to date.

  6. Human ocular counter-rolling and roll tilt perception during off-vertical axis rotation after spaceflight.

    PubMed

    Clément, Gilles; Denise, Pierre; Reschke, Millard F; Wood, Scott J

    2007-01-01

    Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 degrees/s in darkness at two angles of tilt (10 degrees and 20 degrees). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weighting of the internal representation of gravitational vertical as a result of adaptation to microgravity.

  7. Energy bandgap variation in oblique angle-deposited indium tin oxide

    SciTech Connect

    Kim, Kyurin; Kim, Hyunsoo; Cho, Jaehee; Park, Jun Hyuk; Kim, Jong Kyu; Fred Schubert, E.

    2016-01-25

    Indium tin oxide (ITO) thin films deposited using the oblique angle deposition (OAD) technique exhibit a strong correlation between structural and optical properties, especially the optical bandgap energy. The microstructural properties of ITO thin films are strongly influenced by the tilt angle used during the OAD process. When changing the tilt angle, the refractive index, porosity, and optical bandgap energy of ITO films also change due to the existence of a preferential growth direction at the interface between ITO and the substrate. Experiments reveal that the ITO film's optical bandgap varies from 3.98 eV (at normal incident deposition) to 3.87 eV (at a 60° tilt angle)

  8. Measurement of two-dimensional small angle deviation with a prism interferometer

    SciTech Connect

    Chatterjee, Sanjib; Kumar, Y. Pavan

    2008-09-20

    A new technique for the measurement of two-dimensional small angular deviation is presented. A compound prism, which effectively produces a combination of two right-angled prisms in orthogonal directions, and plane reference surfaces have been utilized for the measurement of the orthogonal components of the angular tilt of an incident plane wavefront. Each orthogonal component of the angular tilt is separately measured from the angular rotation of the resultant wedge fringes between two plane wavefronts generated due to splitting of the incident plane wavefront by the corresponding set of right-angled prism and plane reference surface. The technique is shown to have high sensitivity for the measurement of small angle deviation. A monolithic prism interferometer, which is practically insensitive to vibration, is also proposed. Results obtained for the measurement of a known tilt angle are presented.

  9. Visually-induced tilt during parabolic flights.

    PubMed

    Cheung, B S; Howard, I P; Money, K E

    1990-01-01

    A helmet-mounted visual display system was used to study visually induced sensations of self-motion (vection) about the roll, pitch and yaw axes under normal gravity condition (1g) and during the microgravity and hypergravity phases of parabolic flights aboard the NASA KC-135 aircraft. Under each gravity condition, the following parameters were investigated: (1) the subject's perceived body vertical with eyes closed and with eyes open gazing at a stationary random dot display; (2) the magnitude of sensations of body tilt with respect to the subjective vertical, while the subject viewed displays rotating about the roll, pitch and yaw axes; (3) the magnitude of vection; (4) latency of vection. All eleven subjects perceived a definite "up and down" orientation throughout the course of the flight. During the microgravity phase, the average magnitudes of perceived body tilt and self-motion increased significantly, and there was no significant difference in vection latency. These results show that there is a rapid onset of increased dependence on visual inputs for perception of self-orientation and self-motion in weightlessness, and a decreased dependence on otolithic and somatosensory graviceptive information. Anti-motion sickness drugs appear not to affect the parameters measured.

  10. Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair

    NASA Astrophysics Data System (ADS)

    Décréau, P. M. E.; Kougblénou, S.; Lointier, G.; Rauch, J.-L.; Trotignon, J.-G.; Vallières, X.; Canu, P.; Rochel Grimald, S.; El-Lemdani Mazouz, F.; Darrouzet, F.

    2013-11-01

    The Cluster mission operated a "tilt campaign" during the month of May 2008. Two of the four identical Cluster spacecraft were placed at a close distance (~50 km) from each other and the spin axis of one of the spacecraft pair was tilted by an angle of ~46°. This gave the opportunity, for the first time in space, to measure global characteristics of AC electric field, at the sensitivity available with long boom (88 m) antennas, simultaneously from the specific configuration of the tilted pair of satellites and from the available base of three satellites placed at a large characteristic separation (~1 RE). This paper describes how global characteristics of radio waves, in this case the configuration of the electric field polarization ellipse in 3-D-space, are identified from in situ measurements of spin modulation features by the tilted pair, validating a novel experimental concept. In the event selected for analysis, non-thermal continuum (NTC) waves in the 15-25 kHz frequency range are observed from the Cluster constellation placed above the polar cap. The observed intensity variations with spin angle are those of plane waves, with an electric field polarization close to circular, at an ellipticity ratio e = 0.87. We derive the source position in 3-D by two different methods. The first one uses ray path orientation (measured by the tilted pair) combined with spectral signature of magnetic field magnitude at source. The second one is obtained via triangulation from the three spacecraft baseline, using estimation of directivity angles under assumption of circular polarization. The two results are not compatible, placing sources widely apart. We present a general study of the level of systematic errors due to the assumption of circular polarization, linked to the second approach, and show how this approach can lead to poor triangulation and wrong source positioning. The estimation derived from the first method places the NTC source region in the dawn sector, at a

  11. Hip range of motion during daily activities in patients with posterior pelvic tilt from supine to standing position.

    PubMed

    Tamura, Satoru; Miki, Hidenobu; Tsuda, Kosuke; Takao, Masaki; Hattori, Asaki; Suzuki, Naoki; Yonenobu, Kazuo; Sugano, Nobuhiko

    2015-04-01

    In most patients with hip disorders, the anterior pelvic plane (APP) sagittal tilt does not change from supine to standing position. However, in some patients, APP sagittal tilt changes more than 10° posteriorly from supine to standing position. The purpose of this study was to both examine APP sagittal tilt and investigate the hip flexion and extension range of motion (ROM) required during daily activities in these atypical patients. Patient-specific 4-dimensional (4D) motion analysis was performed for 50 hips from 44 patients who had undergone total hip arthroplasty. All patients divided into two categories, such as atypical patients for whom the pelvis tilted more than 10° posteriorly from supine to standing position preoperatively (19 hips from 18 patients) and the remaining typical patients (31 hips from 26 patients). The required hip flexion and extension angles did not differ significantly between atypical patients and typical patients. In conclusion, the hip flexion ROM during deep bending activities and hip extension ROM during extension activities required in those atypical patients with pelvic tilt more than 10° backward from supine to standing position did not shift in the direction of extension.

  12. Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography.

    PubMed

    Winkler, Hanspeter; Taylor, Kenneth A

    2006-02-01

    An image alignment method for electron tomography is presented which is based on cross-correlation techniques and which includes a simultaneous refinement of the tilt geometry. A coarsely aligned tilt series is iteratively refined with a procedure consisting of two steps for each cycle: area matching and subsequent geometry correction. The first step, area matching, brings into register equivalent specimen regions in all images of the tilt series. It determines four parameters of a linear two-dimensional transformation, not just translation and rotation as is done during the preceding coarse alignment with conventional methods. The refinement procedure also differs from earlier methods in that the alignment references are now computed from already aligned images by reprojection of a backprojected volume. The second step, geometry correction, refines the initially inaccurate estimates of the geometrical parameters, including the direction of the tilt axis, a tilt angle offset, and the inclination of the specimen with respect to the support film or specimen holder. The correction values serve as an indicator for the progress of the refinement. For each new iteration, the correction values are used to compute an updated set of geometry parameters by a least squares fit. Model calculations show that it is essential to refine the geometrical parameters as well as the accurate alignment of the images to obtain a faithful map of the original structure.

  13. Tilt-effect of holograms and images displayed on a spatial light modulator.

    PubMed

    Harm, Walter; Roider, Clemens; Bernet, Stefan; Ritsch-Marte, Monika

    2015-11-16

    We show that a liquid crystal spatial light modulator (LCOS-SLM) can be used to display amplitude images, or phase holograms, which change in a pre-determined way when the display is tilted, i.e. observed under different angles. This is similar to the tilt-effect (also called "latent image effect") known from various security elements ("kinegrams") on credit cards or bank notes. The effect is achieved without any specialized optical components, simply by using the large phase shifting capability of a "thick" SLM, which extends over several multiples of 2π, in combination with the angular dependence of the phase shift. For hologram projection one can use the fact that the phase of a monochromatic wave is only defined modulo 2π. Thus one can design a phase pattern extending over several multiples of 2π, which transforms at different readout angles into different 2π-wrapped phase structures, due to the angular dependence of the modulo 2π operation. These different beams then project different holograms at the respective readout angles. In amplitude modulation mode (with inserted polarizer) the intensity of each SLM pixel oscillates over several periods when tuning its control voltage. Since the oscillation period depends on the readout angle, it is possible to find a certain control voltage which produces two (or more) selectable gray levels at a corresponding number of pre-determined readout angles. This is done with all SLM pixels individually, thus constructing different images for the selected angles. We experimentally demonstrate the reconstruction of multiple (Fourier- and Fresnel-) holograms, and of different amplitude images, by readout of static diffractive patterns in a variable angular range between 0° and 60°.

  14. Approach guidance logic for a tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Beser, J.

    1978-01-01

    The distinctive feature of a tilt-rotor aircraft is that the pilot can change the rotor mast angles to go from a helicopter configuration for take-off and landing to an airplane configuration for high cruise speeds and vice-versa. An approach path for such an aircraft is proposed and the logic required to fly along this path in the presence of wind is determined. The main contribution of this work is an efficient and, to my knowledge, new method for generating the nominal state and control histories taking into account an estimate of the mean wind velocity and direction. The method requires the solution of algebraic (mostly linear) equations to generate a 'universal nominal', and feedforward and feedback gains. Then, in flight the additional state and control corrections due to deviation in descent rate, deceleration, and flight in a steady wind are obtained by multiplying simple precalculated functions of time by descent rate, deceleration or sine and cosine components of the mean wind vector. Simulations of approach flights for different wind conditions, assuming perfect state information in the feedback signal, indicated satisfactory performance.

  15. Role of nuclear structure on the tilting mode

    NASA Astrophysics Data System (ADS)

    Naik, H.; Dange, S. P.

    2003-12-01

    The high spin fraction (HSF) of 131Te as a function of fragment emission angle has been determined in the 40 MeV alpha-particle induced fission of 238U using off-line gamma ray spectrometric technique. From the HSF the fragment average spin (Jav) of fission product has been deduced using statistical model analysis. The Jav value of 131Te is seen to remain nearly constant (10ℏ) from 90° to 20°. On the other hand, the Jav value of 132I from earlier work shows a drastic decrease (33%) from 11.4ℏ at 90° to 7.6ℏ at 20°. However, the yield weighted Jav value of both the products show a decrease of 13%, which in close agreement with the value of 5-10% change from 90° to 0° in the results obtained from gamma ray multiplicity measurements. Thus the drastic difference in the change of fragment average spin (Jav) of individual product from 90° to 20° obtained from the gamma ray spectrometric technique is most probably due to the nuclear structure effect of the fission products in their fragment stage. This shows the role of nuclear structure on the tilting mode and this experimental observation is made for the first time.

  16. Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4 percent. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

  17. Precision tip-tilt-piston actuator that provides exact constraint

    DOEpatents

    Hale, Layton C.

    1999-01-01

    A precision device which can precisely actuate three degrees of freedom of an optic mount, commonly referred to as tip, tilt, and piston. The device consists of three identical flexure mechanisms, an optic mount to be supported and positioned, a structure that supports the flexure mechanisms, and three commercially available linear actuators. The advantages of the precision device is in the arrangement of the constraints offered by the flexure mechanism and not in the particular design of the flexure mechanisms, as other types of mechanisms could be substituted. Each flexure mechanism constrains two degrees of freedom in the plane of the mechanisms and one direction is actuated. All other degrees of freedom are free to move within the range of flexure mechanisms. Typically, three flexure mechanisms are equally spaced in angle about to optic mount and arranged so that each actuated degree of freedom is perpendicular to the plane formed by the optic mount. This arrangement exactly constrains the optic mount and allows arbitrary actuated movement of the plane within the range of the flexure mechanisms. Each flexure mechanism provides a mechanical advantage, typically on the order of 5:1, between the commercially available actuator and the functional point on the optic mount. This improves resolution by the same ratio and stiffness by the square of the ratio.

  18. Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4%. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

  19. Analysis of the effects of disk tilt on the differential-phase-detection signal in a high-density DVD read-only disk driver.

    PubMed

    Shen, Quanhong; Xu, Duanyi

    2006-06-10

    A high-density DVD (HD-DVD) is one of the high-density optical storage technology newly designed to meet the demands of high-definition video broadcasting that is very sensitive to the radial tilt of a disk. An analytic model based on diffraction theory is presented in detail to calculate the tracking error signal of a HD-DVD read-only disk driver by using the differential-phase-detection (DPD) method when radial tilt of a disk occurs. The effects of the tilt on a DPD signal in a HD-DVD read-only disk driver are quantified and compared to those in a DVD read-only disk driver. Experimental measurements for the DPD signal under different radial tilt angles in a HD-DVD read-only disk driver are also reported.

  20. Modes of tilting during extensional core complex development.

    PubMed

    Coleman, D S; Walker, J D

    1994-01-14

    Crustal extension and formation of the Mineral Mountains core complex, Utah, involved tilting of the Mineral Mountains batholith and associated faults during hanging wall and footwall deformation. The batholith was folded in the hanging wall of the Beaver Valley fault between 11 and 9 million years ago yielding about 45 degrees of tilt. Subsequently, the batholith was unroofed along the Cave Canyon detachment fault, and the batholith and fault were tilted approximately 40 degrees during footwall uplift. Recognition of deformed dikes beneath the detachment fault establishes the importance of footwall tilt during formation of extensional core complexes and demonstrates that footwall rebound can be an important process during extension.

  1. Transient cardio-respiratory responses to visually induced tilt illusions

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Ramsdell, C. D.; Mullen, T. J.; Oman, C. M.; Harm, D. L.; Paloski, W. H.

    2000-01-01

    Although the orthostatic cardio-respiratory response is primarily mediated by the baroreflex, studies have shown that vestibular cues also contribute in both humans and animals. We have demonstrated a visually mediated response to illusory tilt in some human subjects. Blood pressure, heart and respiration rate, and lung volume were monitored in 16 supine human subjects during two types of visual stimulation, and compared with responses to real passive whole body tilt from supine to head 80 degrees upright. Visual tilt stimuli consisted of either a static scene from an overhead mirror or constant velocity scene motion along different body axes generated by an ultra-wide dome projection system. Visual vertical cues were initially aligned with the longitudinal body axis. Subjective tilt and self-motion were reported verbally. Although significant changes in cardio-respiratory parameters to illusory tilts could not be demonstrated for the entire group, several subjects showed significant transient decreases in mean blood pressure resembling their initial response to passive head-up tilt. Changes in pulse pressure and a slight elevation in heart rate were noted. These transient responses are consistent with the hypothesis that visual-vestibular input contributes to the initial cardiovascular adjustment to a change in posture in humans. On average the static scene elicited perceived tilt without rotation. Dome scene pitch and yaw elicited perceived tilt and rotation, and dome roll motion elicited perceived rotation without tilt. A significant correlation between the magnitude of physiological and subjective reports could not be demonstrated.

  2. The normal response to prolonged passive head up tilt testing

    PubMed Central

    Petersen, M; Williams, T; Gordon, C; Chamberlain-Webbe..., R; Sutton, R

    2000-01-01

    OBJECTIVE—To define the responses to head up tilt in a large group of normal adult subjects using the most widely employed protocol for tilt testing.
METHODS—127 normal subjects aged 19-88 years (mean (SD), 49 (20) years) without a previous history of syncope underwent tilt testing at 60° for 45 minutes or until syncope intervened. Blood pressure monitoring was performed with digital photoplethysmography, providing continuous, non-invasive, beat to beat heart rate and pressure measurements.
RESULTS—13% of subjects developed vasovagal syncope after a mean (SD) tilt time of 31.7 (12.4) minutes (range 8.5-44.9 minutes). Severe cardioinhibition during syncope was observed less often than is reported in patients investigated for syncope. There were no differences in the age or sex distributions of subjects with positive or negative outcomes, or in the proportions with cardioinhibitory and vasodepressor vasovagal syncope compared with previously reported patient populations. Subjects with negative outcomes showed age related differences in heart rate and blood pressure behaviour throughout tilt.
CONCLUSIONS—False positive results with tilting appear to be common. This has important implications for the use of diagnostic tilt testing. The magnitude of the heart rate and blood pressure changes observed during negative tilts largely invalidates previously suggested criteria for abnormal non-syncopal outcomes.


Keywords: syncope; head up tilt; postural hypotension PMID:11040011

  3. Prediction of the heliospheric current sheet tilt - 1992-1996

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Mccomas, D. J.; Hoeksema, J. T.

    1993-01-01

    Heliospheric current sheet tilt evolves systematically over the solar cycle. Here we show that this evolution is different than the sunspot cycle and that tilt for the period 1992-1996 can be predicted using persistence. That is, the tilt over the coming cycle will be the same as for the past cycle. The Ulysses spacecraft has passed Jupiter and is moving out of the plane of the ecliptic, so we use the prediction of the changing heliospheric current sheet tilt to predict that Ulysses will pass beyond the envelope, or maximum latitude, of the heliospheric current sheet in November 1993.

  4. Magnetotransport properties of Co90Fe10/Cu/Ni80Fe20 pseudo-spin-valve with out-of-plane tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Luo, Linqiang; Dao, Nam; Kittiwatanakul, Salinporn; Wolf, Stuart; Lu, Jiwei; UVa NanoStar Team

    The giant magnetoresistance (GMR) effect of a pseudo spin valve made of Co90Fe10/Cu/Ni80Fe20 has been investigated, with a magnetic field applied perpendicularly tilted to the sample plane. Without using a pinning layer, the magnetic separation of the free and fixed layers is uniquely achieved by utilizing perpendicular fields due to different anisotropy energies between Ni80Fe20 and Co90Fe10. The magneto-transport measurements are carried out by Van der Pauw method in current-in-plane geometry at room temperature. By tilting the magnetic field at different angles from out-of-plane, the GMR plateau's width can be tuned. A plateau width of about 2000 Oe is observed at tilted angle 0.5o, which opens a significantly larger window for high-resistance states comparing with a plateau width of 10 Oe for in-plane fields. With the out-of-plane tilted fields, the orientation of the magnetic moments can be tuned continuously out of the sample plane, and the relative orientation between Ni80Fe20 and Co90Fe10 can also be tuned by the tilted angle, enabling us to precisely control the sample's states for current-induced spin dynamics study that is very difficult in the case of in-plane applied magnetic fields.

  5. Balanced diffraction aberrations, independent of the observation point: application to a tilted dielectric plate.

    PubMed

    Sheppard, Colin J R

    2013-10-01

    Balancing of Zernike aberrations breaks down if the defocus term is large enough that the condition (z/λ)≪2/[π(NA)⁴] is not satisfied. A modified Zernike aberration expansion, based on the Zernike aberrations, is developed that accurately includes axial displacement as a low-order term, even for large displacements. This expansion can be used to analyze aberrations for on-axis illumination of a high numerical aperture system. But more importantly, for systems of moderate numerical aperture it allows balanced aberration coefficients to be determined independent of the assumption of a particular reference point. The approach is applied to the case of a tilted dielectric plate. An exact expression is given for the wave front aberration, valid for both large angles of tilt and high beam convergence angles, that is independent of observation distance. Analytical expressions for the third- and fifth-order aberration coefficients are derived. Expressions are given for expansion of multiple-angle power series terms into Zernike polynomials.

  6. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    PubMed

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  7. Structure, Topology and Tilt of Cell-Signaling Peptides Containing Nuclear Localization Sequences in Membrane Bilayers Determined by Solid-State NMR and Molecular Dynamics Simulation Studies

    PubMed Central

    Ramamoorthy, Ayyalusamy; Kandasamy, Senthil K.; Lee, Dong-Kuk; Kidambi, Srikanth; Larson, Ronald G.

    2008-01-01

    Cell-signaling peptides have been extensively used to transport functional molecules across the plasma membrane into living cells. These peptides consist of a hydrophobic sequence and a cationic nuclear localization sequence (NLS). It has been assumed that the hydrophobic region penetrates through the hydrophobic lipid bilayer and delivers the NLS inside the cell. To better understand the transport mechanism of these peptides, in this study, we investigated the structure, orientation, tilt of the peptide relative to the bilayer normal, and the membraneinteraction of two cell-signaling peptides, SA and SKP. Results from CD and solid-state NMR experiments combined with molecular dynamics simulations suggest that the hydrophobic region is helical and has a transmembrane orientation with the helical axis tilted away from the bilayer normal. The influence of the hydrophobic mismatch, between the hydrophobic length of the peptide and the hydrophobic thickness of the bilayer, on the tilt angle of the peptides was investigated using thicker POPC and thinner DMPC bilayers. NMR experiments showed that the hydrophobic domain of each peptide has a tilt angle of 15±3° in POPC, while in DMPC 25±3° and 30±3° tilts were observed for SA and SKP peptides respectively. These results are in good agreement with molecular dynamics simulations, which predicts a tilt angle of 13.3° (SA in POPC), 16.4° (SKP in POPC), 22.3° (SA in DMPC) and 31.7° (SKP in POPC). These results and simulations on the hydrophobic fragment of SA or SKP suggest that the tilt of helices increases with a decrease in the bilayer thickness without changing the phase, order, and structure of the lipid bilayers. PMID:17240980

  8. Upright Perception and Ocular Torsion Change Independently during Head Tilt

    PubMed Central

    Otero-Millan, Jorge; Kheradmand, Amir

    2016-01-01

    We maintain a stable perception of the visual world despite continuous movements of our eyes, head and body. Perception of upright is a key aspect of such orientation constancy. Here we investigated whether changes in upright perception during sustained head tilt were related to simultaneous changes in torsional position of the eyes. We used a subjective visual vertical (SVV) task, modified to track changes in upright perception over time, and a custom video method to measure ocular torsion simultaneously. We tested 12 subjects in upright position, during prolonged (~15 min) lateral head tilts of 20 degrees, and also after the head returned to upright position. While the head was tilted, SVV drifted in the same direction as the head tilt (left tilt: −5.4 ± 1.4° and right tilt: +2.2 ± 2.1°). After the head returned to upright position, there was an SVV aftereffect with respect to the pre-tilt baseline, which was also in the same direction as the head tilt (left tilt: −3.9 ± 0.6° and right tilt: +2.55 ± 1.0°). Neither the SVV drift nor the SVV aftereffect were correlated with the changes in ocular torsion. Using the Bayesian spatial-perception model we show that the pattern of SVV drift and aftereffect in our results could be explained by a drift and an adaptation in sensory inputs that encode head orientation. The fact that ocular torsion (mainly driven by the otoliths) could not account for the perceptual changes suggests that neck proprioception could be the primary source of drift in upright perception during head tilt, and subsequently the aftereffect in upright position. PMID:27909402

  9. Interactions between displacement cascades and Σ3<110> tilt grain boundaries in Cu

    NASA Astrophysics Data System (ADS)

    Li, Bo; Long, Xiao-Jiang; Shen, Zhao-Wu; Luo, Sheng-Nian

    2016-12-01

    With large-scale molecular dynamics simulations, we investigate systematically the interaction of displacement cascades with a set of Σ3<110> tilt grain boundaries (GBs) in Cu bicrystals at low ambient temperatures, as regards irradiation-induced defect production/absorption and GB migration/faceting. Except for coherent twin boundary, GBs exhibit pronounced preferential absorption of interstitials, which depends on initial primary knock-on atom distance from GB plane and inclination angle. GB migration occurs when displacement cascades overlap with a GB plane, as induced by recrystallization of thermal spike, and concurrent asymmetric grain growth. Faceting occurs via expanding coherent twin boundaries for asymmetric GBs.

  10. A mathematical simulation model of a 1985-era tilt-rotor passenger aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.; Widdison, C. A.

    1976-01-01

    A mathematical model for use in real-time piloted simulation of a 1985-era tilt rotor passenger aircraft is presented. The model comprises the basic six degrees-of-freedom equations of motion, and a large angle of attack representation of the airframe and rotor aerodynamics, together with equations and functions used to model turbine engine performance, aircraft control system and stability augmentation system. A complete derivation of the primary equations is given together with a description of the modeling techniques used. Data for the model is included in an appendix.

  11. Impact of body tilt on the central aortic pressure pulse.

    PubMed

    Rotaru, Corina; Liaudet, Lucas; Waeber, Bernard; Feihl, François

    2015-04-01

    The present work was undertaken to investigate, in young healthy volunteers, the relationships between the forward propagation times of arterial pressure waves and the timing of reflected waves observable on the aortic pulse, in the course of rapid changes in body position. 20 young healthy subjects, 10 men, and 10 women, were examined on a tilt table at two different tilt angles, -10° (Head-down) and + 45° (Head-up). In each position, carotid-femoral (Tcf) and carotid-tibial forward propagation times (Tct) were measured with the Complior device. In each position also, the central aortic pressure pulse was recorded with radial tonometry, using the SphygmoCor device and a generalized transfer function, so as to evaluate the timing of reflected waves reaching the aorta in systole (onset of systolic reflected wave, sT1r) and diastole (mean transit time of diastolic reflected wave, dMTT). The position shift from Head-up to Head-down caused a massive increase in both Tct (women from 130 ± 10 to 185 ± 18 msec P < 0.001, men from 136 ± 9 to 204 ± 18 msec P < 0.001) and dMTT (women from 364 ± 35 to 499 ± 33 msec P < 0.001, men from 406 ± 22 to 553 ± 21 msec P < 0.001). Mixed model regression showed that the changes in Tct and dMTT observed between Head-up and Head-down were tightly coupled (regression coefficient 2.1, 95% confidence interval 1.9-2.3, P < 0.001). These results strongly suggest that the diastolic waves observed on central aortic pulses reconstructed from radial tonometric correspond at least in part to reflections generated in the lower limbs.

  12. Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field

    SciTech Connect

    Lin, Shi-Zeng; Saxena, Avadh

    2015-11-03

    Here we study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is non-circular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chain like structure. Lastly, the dynamical response of the non-circular skyrmions depends on the direction of external currents.

  13. Micromagnetic study of spin transfer switching with a spin polarization tilted out of the free layer plane

    SciTech Connect

    Chaves-O'Flynn, Gabriel D. Wolf, Georg; Pinna, Daniele; Kent, Andrew D.

    2015-05-07

    We present the results of zero temperature macrospin and micromagnetic simulations of spin transfer switching of thin film nanomagnets in the shape of an ellipse with a spin-polarization tilted out of the layer plane. The perpendicular component of the spin-polarization is shown to increase the reversal speed, leading to a lower current for switching in a given time. However, for tilt angles larger than a critical angle, the layer magnetization starts to precess about an out-of-plane axis, which leads to a final magnetization state that is very sensitive to simulation conditions. As the ellipse lateral size increases, this out-of-plane precession is suppressed, due to the excitation of spatially non-uniform magnetization modes.

  14. Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field

    DOE PAGES

    Lin, Shi-Zeng; Saxena, Avadh

    2015-11-03

    Here we study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is non-circular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chain like structure. Lastly, the dynamical response ofmore » the non-circular skyrmions depends on the direction of external currents.« less

  15. Modelling PTB's spatial angle autocollimator calibrator

    NASA Astrophysics Data System (ADS)

    Kranz, Oliver; Geckeler, Ralf D.; Just, Andreas; Krause, Michael

    2013-05-01

    The accurate and traceable form measurement of optical surfaces has been greatly advanced by a new generation of surface profilometers which are based on the reflection of light at the surface and the measurement of the reflection angle. For this application, high-resolution electronic autocollimators provide accurate and traceable angle metrology. In recent years, great progress has been made at the Physikalisch-Technische Bundesanstalt (PTB) in autocollimator calibration. For an advanced autocollimator characterisation, a novel calibration device has been built up at PTB: the Spatial Angle Autocollimator Calibrator (SAAC). The system makes use of an innovative Cartesian arrangement of three autocollimators (two reference autocollimators and the autocollimator to be calibrated), which allows a precise measurement of the angular orientation of a reflector cube. Each reference autocollimator is sensitive primarily to changes in one of the two relevant tilt angles, whereas the autocollimator to be calibrated is sensitive to both. The distance between the reflector cube and the autocollimator to be calibrated can be varied flexibly. In this contribution, we present the SAAC and aspects of the mathematical modelling of the system for deriving analytical expressions for the autocollimators' angle responses. These efforts will allow advancing the form measurement substantially with autocollimator-based profilometers and approaching fundamental measurement limits. Additionally, they will help manufacturers of autocollimators to improve their instruments and will provide improved angle measurement methods for precision engineering.

  16. Optical coherence tomography endoscopic probe based on a tilted MEMS mirror

    PubMed Central

    Duan, Can; Tanguy, Quentin; Pozzi, Antonio; Xie, Huikai

    2016-01-01

    This paper reports a compact microendoscopic OCT probe with an outer diameter of only 2.7 mm. The small diameter is enabled by a novel 2-axis scanning MEMS mirror with a preset 45° tilted angle. The tilted MEMS mirror is directly integrated on a silicon optical bench (SiOB). The SiOB provides mechanical support and electrical wiring to the mirror plate via a set of bimorph flexure, enabling a compact probe mount design without the requirement of a 45° slope, which is capable to dramatically reduce the probe size and ease the assembly process. Additionally, the SiOB also provides trenches with properly-designed opening widths for automatic alignment of the MEMS mirror, GRIN lens and optical fiber. The 45°-tilted MEMS mirror plate is actuated by four electrothermal bimorph actuators. The packaged 2.7 mm-diameter probe offers 2-axis side-view optical scanning with a large optical scan range of 40° at a low drive voltage of 5.5 Vdc in both axes, allowing a lateral scan area of 2.2 mm × 2.2 mm at a 3 mm working distance. High-resolution 2D and 3D OCT images of the IR card, ex vivo imaging of meniscus specimens and rat brain slices, in vivo imaging of the human finger and nail have been obtained with a TDOCT system. PMID:27699103

  17. Direct mapping of Li-enabled octahedral tilt ordering and associated strain in nanostructured perovskites

    NASA Astrophysics Data System (ADS)

    Zhu, Ye; Withers, Ray L.; Bourgeois, Laure; Dwyer, Christian; Etheridge, Joanne

    2015-11-01

    Self-assembled nanostructures with periodic phase separation hold great promise for creating two- and three-dimensional superlattices with extraordinary physical properties. Understanding the mechanism(s) driving the formation of such superlattices demands an understanding of their underlying atomic structure. However, the nanoscale structural fluctuations intrinsic to these superlattices pose a new challenge for structure determination methods. Here we develop an optimized atomic-level imaging condition to measure TiO6 octahedral tilt angles, unit-cell-by-unit-cell, in perovskite-based Li0.5-3xNd0.5+xTiO3, and thereby determine the mathematical formula governing this nanoscale superstructure. We obtain a direct real-space correlation of the octahedral tilt modulation with the superstructure geometry and lattice-parameter variations. This reveals a composition-dependent, self-ordered octahedral superlattice. Amazingly, we observe a reversible annihilation/reconstruction of the octahedral superlattice correlated with the delithiation/lithiation process in this promising Li-ion conductor. This approach to quantify local octahedral tilt and correlate it with strain can be applied to characterize complex octahedral behaviours in other advanced oxide systems.

  18. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar.

    PubMed

    Liu, Dong; Hostetler, Chris; Miller, Ian; Cook, Anthony; Hair, Johnathan

    2012-01-16

    High spectral resolution lidars (HSRLs) have shown great value in aircraft aerosol remote sensing application and are planned for future satellite missions. A compact, robust, quasi-monolithic tilted field-widened Michelson interferometer is being developed as the spectral discrimination filter for an second-generation HSRL(HSRL-2) at NASA Langley Research Center. The Michelson interferometer consists of a cubic beam splitter, a solid arm and an air arm. Piezo stacks connect the air arm mirror to the body of the interferometer and can tune the interferometer within a small range. The whole interferometer is tilted so that the standard Michelson output and the reflected complementary output can both be obtained. In this paper, the transmission ratio is proposed to evaluate the performance of the spectral filter for HSRL. The transmission ratios over different types of system imperfections, such as cumulative wavefront error, locking error, reflectance of the beam splitter and anti-reflection coatings, system tilt, and depolarization angle are analyzed. The requirements of each imperfection for good interferometer performance are obtained.

  19. Optimum flight profiles for short haul missions

    NASA Technical Reports Server (NTRS)

    Erzberger, H.; Barman, J. F.; Mclean, J. D.

    1975-01-01

    An algorithm, based on the energy-state method, is derived for calculating optimum trajectories with a range constraint. The basis of the algorithm is the assumption that optimum trajectories consist of, at most, three segments: an increasing energy segment (climb); a constant energy segment (cruise); and a decreasing energy segment (descent). The algorithm is used to compute minimum fuel, minimum time, and minimum direct-operating-cost trajectories, with range as a parameter, for an in-service CTOL aircraft and for an advanced STOL aircraft. Use of a simplified trajectory increases the fuel consumption of the total descent trajectory by about 10 percent and the time to fly the descent by about 19 percent compared to the optimum.

  20. Optimum Suction Distribution for Transition Control

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; Hall, P.

    1996-01-01

    The optimum suction distribution which gives the longest laminar region for a given total suction is computed. The goal here is to provide the designer with a method to find the best suction distribution subject to some overall constraint applied to the suction. We formulate the problem using the Lagrangian multiplier method with constraints. The resulting non-linear system of equations is solved using the Newton-Raphson technique. The computations are performed for a Blasius boundary layer on a flat-plate and crossflow cases. For the Blasius boundary layer, the optimum suction distribution peaks upstream of the maximum growth rate region and remains flat in the middle before it decreases to zero at the end of the transition point. For the stationary and travelling crossflow instability, the optimum suction peaks upstream of the maximum growth rate region and decreases gradually to zero.

  1. The optimum flat plate solar collector

    NASA Astrophysics Data System (ADS)

    Hassan, K.-E.

    The solar fluid heater problem is formulated as an unsteady, two-dimensional conduction problem. Simplified to a steady, one-dimensional problem provides a direct formulation far more flexible than the formulation hitherto in use, without any loss of generality. This flexibility is used to determine the geometry of optimum collectors, and to determine the performance of fan-shaped ones. An optimum collector would have a uniform effectiveness along the fluid path and, hence, effect a required fluid temperature rise with the least possible area. A fan-shaped collector of about the same geometrical proportions is shown to be nearly as effective as the corresponding optimum collector. The performance of either shape is determined for certain conditions. It shows that for this case a saving of some 6 to 13 percent could be obtained in comparison with the corresonding usual 'parallel-tube' design.

  2. Vesicle shape, molecular tilt, and the suppression of necks.

    PubMed

    Jiang, Hongyuan; Huber, Greg; Pelcovits, Robert A; Powers, Thomas R

    2007-09-01

    Can the presence of molecular-tilt order significantly affect the shapes of lipid bilayer membranes, particularly membrane shapes with narrow necks? Motivated by the propensity for tilt order and the common occurrence of narrow necks in the intermediate stages of biological processes such as endocytosis and vesicle trafficking, we examine how tilt order inhibits the formation of necks in the equilibrium shapes of vesicles. For vesicles with a spherical topology, point defects in the molecular order with a total strength of +2 are required. We study axisymmetric shapes and suppose that there is a unit-strength defect at each pole of the vesicle. The model is further simplified by the assumption of tilt isotropy: invariance of the energy with respect to rotations of the molecules about the local membrane normal. This isotropy condition leads to a minimal coupling of tilt order and curvature, giving a high energetic cost to regions with Gaussian curvature and tilt order. Minimizing the elastic free energy with constraints of fixed area and fixed enclosed volume determines the allowed shapes. Using numerical calculations, we find several branches of solutions and identify them with the branches previously known for fluid membranes. We find that tilt order changes the relative energy of the branches, suppressing thin necks by making them costly, leading to elongated prolate vesicles as a generic family of tilt-ordered membrane shapes.

  3. TILTING ELECTRIC ARC FURNACE USED TO MELT BRONZE IN THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TILTING ELECTRIC ARC FURNACE USED TO MELT BRONZE IN THE BRASS FOUNDRY BY MEANS OF AN ARC CREATED BETWEEN TWO HORIZONTAL ELECTRODES. WHEN MELTED, THE FURNACE TILTS, FILLING MOBILE LADLES FROM THE SPOUT. - Stockham Pipe & Fittings Company, Brass Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  4. V/STOL tilt rotor aircraft study. Volume 7: Tilt rotor flight control program feedback studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Eason, W.; Gillmore, K.; Morris, J.; Spittle, R.

    1973-01-01

    An exploratory study has been made of the use of feedback control in tilt rotor aircraft. This has included the use of swashplate cyclic and collective controls and direct lift control. Various sensor and feedback systems are evaluated in relation to blade loads alleviation, improvement in flying qualities, and modal suppression. Recommendations are made regarding additional analytical and wind tunnel investigations and development of feedback systems in the full scale flight vehicle. Estimated costs and schedules are given.

  5. Tip-tilt compensation: Resolution limits for ground-based telescopes using laser guide star adaptive optics. Revision 2

    SciTech Connect

    Olivier, S.S.; Max, C.E.; Gavel, D.T.; Brase, J.M.

    1992-10-08

    The angular resolution of long-exposure images from ground-based telescopes equipped with laser guide star adaptive optics systems is fundamentally limited by the the accuracy with which the tip-tilt aberrations introduced by the atmosphere can be corrected. Assuming that a natural star is used as the tilt reference, the residual error due to tilt anisoplanatism can significantly degrade the long-exposure resolution even if the tilt reference star is separated from the object being imaged by a small angle. Given the observed distribution of stars in the sky, the need to find a tilt reference star quite close to the object restricts the fraction of the sky over which long-exposure images with diffraction limited resolution can be obtained. In this paper, the authors present a comprehensive performance analysis of tip-tilt compensation systems that use a natural star as a tilt reference, taking into account properties of the atmosphere and of the Galactic stellar populations, and optimizing over the system operating parameters to determine the fundamental limits to the long-exposure resolution. Their results show that for a ten meter telescope on Mauna Kea, if the image of the tilt reference star is uncorrected, about half the sky can be imaged in the V band with long-exposure resolution less than 60 milli-arc-seconds (mas), while if the image of the tilt reference star is fully corrected, about half the sky can be imaged in the V band with long-exposure resolution less than 16 mas. Furthermore, V band images long-exposure resolution of less than 16 mas may be obtained with a ten meter telescope on Mauna Kea for unresolved objects brighter than magnitude 22 that are fully corrected by a laser guide star adaptive optics system. This level of resolution represents about 70% of the diffraction limit of a ten meter telescope in the V band and is more than a factor of 45 better than the median seeing in the V band on Mauna Kea.

  6. Optimum Detection of Frequency-Hopped Signals

    NASA Technical Reports Server (NTRS)

    Cheng, Unjeng; Levitt, Barry; Polydoros, Andreas; Simon, Marvin K.

    1992-01-01

    This paper derives and analyzes optimum and near-optimum structures for detecting frequency-hopped (FH) signals with arbitrary modulation in additive white Gaussian noise. The principalmodulation formats considered are M-ary frequency-shift-keying (MFSK) with fast frequency hopping(FFH) wherein a single tone is transmitted per hop, and slow frequency hopping (SFH) with multipleMFSK tones (data symbols) per hop. The SFH detection category has not previously been addressedin the open literature and its analysis is generally more complex than FFH.

  7. Optimum viewing distance for target acquisition

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    2015-05-01

    Human visual system (HVS) "resolution" (a.k.a. visual acuity) varies with illumination level, target characteristics, and target contrast. For signage, computer displays, cell phones, and TVs a viewing distance and display size are selected. Then the number of display pixels is chosen such that each pixel subtends 1 min-1. Resolution of low contrast targets is quite different. It is best described by Barten's contrast sensitivity function. Target acquisition models predict maximum range when the display pixel subtends 3.3 min-1. The optimum viewing distance is nearly independent of magnification. Noise increases the optimum viewing distance.

  8. Aerodynamic design of optimum wind turbines

    NASA Astrophysics Data System (ADS)

    de Paor, A. M.

    1982-11-01

    A design procedure is presented and illustrated for one-, two- or three-bladed horizontal axis, constant chord wind turbines of optimum performance. Following specification of the number of blades, the lift coefficient, and the lift-to-drag ratio at the design point, algorithms are developed for finding: the tip-speed ratio at which the optimum power coefficient is developed, the ratio of blade chord to radius, and the manner in which each blade should be twisted along its axis. Programs are given for implementing the calculations iteratively on a programmable calculator.

  9. Alignment of fiducial marks in a tomographic tilt series with an unknown rotation axis

    NASA Astrophysics Data System (ADS)

    Levine, Zachary H.; Volkovitsky, Alex; Hung, Howard K.

    2007-06-01

    Alignment for tomography using a transmission electron microscopy frequently uses colloidal gold particles as fiducial reference marks. Typically, there is an implicit assumption that the tilt axis of the tomographic series is orthogonal to the beam direction. However, this may not be true, either intentionally, if a tilt-rotate stage is used, or unintentionally, because of mechanical errors in the rotation stage or the sample fixture. Here, we provide a computer code which takes as input a set of two-dimensional (2D) observations of fiducial reference marks at various tilt angles and the values of those tilt angles. It produces as output a three-dimensional model of the observations, 2D shifts for each view, and the tilt axis direction. Program summaryTitle of program: particleTilt Catalogue identifier: ADYW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYW_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers: IBM compatible desktop PC; SGI Octane Operating system: Red Hat WS 3 Linux (with 2.4.21-40.EL kernel); IRIX 6.5 IP30 Program language used: Fortran 90 No. of bits in a word: 32 No. of processors used: one Has the code been vectorized: no No. of lines in distributed program, including test data, etc.: 2397 No. of bytes in distributed program, including test data, etc.: 47 017 Distribution format: tar.gz Peripherals used: one Typical running time: 350 ms (larger included example, on 2.8 GHz 32-bit PC) Nature of problem: The program is used to assist the alignment step in tomography. The samples should be prepared with spherical particles (typically gold beads) which are observed in several views. (Not every particle need be observed in every view.) The program reports coordinates of a 3D model of the particles as well as the direction of the tilt axis as a point on the unit sphere. Method of solution: Our package minimizes an objective function whose free variables are a set of 3D model points and

  10. A single-tilt TEM stereomicroscopy technique for crystalline materials.

    PubMed

    McCabe, Rodney J; Misra, Amit; Mitchell, Terence E; Alexander, Kathleen B

    2003-02-01

    A new single-tilt technique for performing TEM stereomicroscopy of strain fields in crystalline materials has been developed. The technique is a weak beam technique that involves changing the value of g and/or s g while tilting across a set of Kikuchi bands. The primary benefit of the technique is it can be used with single-tilt TEM specimen holders including many specialty holders such as in situ straining, heating, and cooling holders. Standard stereo-TEM techniques are almost always limited to holders allowing two degrees of rotational freedom (i.e., double-tilt or tilt/rotation holders). An additional benefit of the new technique is that it eliminates the need to focus with the specimen height control. These advantages make it useful for stereo viewing or for quantitative stereomicroscopy provided necessary consideration is given to errors that may result from the technique.

  11. Description of a tilt wing mathematical model for piloted simulation

    NASA Technical Reports Server (NTRS)

    Totah, Joseph J.

    1991-01-01

    A tilt-wing mathematical model that was used in a piloted six-deg-of-freedom flight simulation application is presented. Two types of control systems developed for the model - a conventional programmed-flap wing-tilt control system and a geared-flap wing-tilt control system - are discussed. The objective of this effort was to develop the capability to study tilt-wing aircraft. Experienced tilt-wing pilots subjectively evaluated the model using programmed-flap control to assess the quality of the simulation. The objective was met and the model was then applied to study geared-flap control to investigate the possibility of eliminating the need for auxiliary pitch control devices. This was performed in the moving-base simulation environment, and the vehicle responses with programmed-flap and geared-flap control were compared.

  12. EFFECTIVE INNER RADIUS OF TILTED BLACK HOLE ACCRETION DISKS

    SciTech Connect

    Fragile, P. Chris

    2009-12-01

    One of the primary means of determining the spin a of an astrophysical black hole is by actually measuring the inner radius r {sub in} of a surrounding accretion disk and using that to infer a. By comparing a number of different estimates of r {sub in} from simulations of tilted accretion disks with differing black hole spins, we show that such a procedure can give quite wrong answers. Over the range 0 <= a/M <= 0.9, we find that, for moderately thick disks (H/r approx 0.2) with modest tilt (15 deg.), r {sub in} is nearly independent of spin. This result is likely dependent on tilt, such that for larger tilts, it may even be that r {sub in} would increase with increasing spin. In the opposite limit, we confirm through numerical simulations of untilted disks that, in the limit of zero tilt, r {sub in} recovers approximately the expected dependence on a.

  13. Marker-free dual-axis tilt series alignment

    PubMed Central

    Winkler, Hanspeter; Taylor, Kenneth A.

    2013-01-01

    Dual-axis tilt series in electron tomography are collected by successively tilting the object about two approximately orthogonal tilt axes. Here we report on the extension of marker-free image registration based on cross-correlation techniques to dual-axis tilt series. A simultaneous geometry refinement yields accurate parameters for the computati on of the final reconstruction. Both, image registration and 3D-reconstruction operate on the combined data from the paired single axis series rather than computing individual single axis tomograms followed by a separate combination step. We show that with simultaneous registration and reconstruction of dual-axis tilt series, tomograms with higher resolution are obtained than by merging separately computed tomograms. PMID:23435123

  14. Optimum design of a nanoscale spin-Seebeck power device.

    PubMed

    Liao, Tianjun; Lin, Jian; Su, Guozhen; Lin, Bihong; Chen, Jincan

    2015-05-07

    A theoretical model of a nanoscale spin-Seebeck power device (SSPD) is proposed based on the longitudinal spin-Seebeck effect in bilayers made of a ferromagnetic insulator and a normal metal. Expressions for the power output and thermal efficiency of the SSPD are derived analytically. The performance characteristics of the nanoscale SSPD are analyzed using numerical simulation. The maximum power output density and efficiency are calculated numerically. The effect of the spin Hall angle on the performance characteristics of the SSPD is analyzed. The choice of materials and the structure of the device are discussed. The optimum criteria of some key parameters of the SSPD, such as the power output density, efficiency, thickness of the normal metal, and the load resistance, are given. The results obtained here could provide a theoretical basis for the optimal design and operation of nanoscale SSPDs.

  15. Dynamics of thin-skinned fold and thrust belts with a tilted detachment

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Kaus, Boris J. P.; Epard, Jean-Luc

    2014-05-01

    The formation of the Jura fold and thrust belt is linked to the Alpine orogeny. However, it is still a matter of debate why the Jura was formed tens of kilometres far away from the active deformation front while the Molasse basin that lies in between remained mostly undeformed. Progressive thickening of the Molasse basin due to its infill with sediments, and the existence of a tilted potential detachment level at the Triassic evaporitic units, have been pushed forward as the main causes for the detachment of the Molasse basin and the consequent jump of the deformation front from the Alpine front to the position of the Jura at around 22 Ma or later (e.g Willett and Schlunegger, 2010). In order to better understand the dynamics of a thin-skinned fold and thrust belt with a tilted detachment we have performed systematic forward numerical simulations with the 2D thermo-mechanical finite element code MILAMIN_VEP. The modelled setup consists of a tilted detachment, overlain by a sedimentary cover of constant thickness and a wedge shaped basin infill that makes the initial surface slope of the system to be zero. In this study we have tested the importance of the following factors in the dynamics of such a fold and thrust belt evolution: 1) the applied boundary conditions 2) the angle of a uniformly tilted detachment 3) the end displacement of a curved detachment with a flexural foreland basin profile. The implications of the studied factors are discussed for the case of the Jura-Molasse system. Acknowledgements Funding was provided by the European Research Council under the European Community's Seventh Framework program (FP7/2007-2013) ERC Grant agreement #258830. References Willett, S.D. and Schlunegger, F. 2010, The last phase of deposition in the Swiss Molasse Basin: from foredeep to negative-alpha basin. Basin Research 22, 623-639, doi: 10.1111/j.1365-2117.2009.00435.x

  16. Haemostasis in head and neck surgical procedures: Valsalva manoeuvre versus Trendelenburg tilt

    PubMed Central

    Moumoulidis, I; Del Pero, Martinez M; Brennan, L; Jani, P

    2010-01-01

    INTRODUCTION The aim of the study was to identify whether Trendelenburg position helps detect any further bleeding points following Valsalva manoeuvre in order to achieve adequate haemostasis in head and neck surgery. PATIENTS AND METHODS Fifty consecutive patients undergoing major head and neck surgical procedures were included. The protocol consisted in performing Valsalva manoeuvre to check haemostasis and treated any bleeding points identified. The operating table was tilted 30° and haemostasis was checked again and treated accordingly. The number of vessels identified and the treatment was recorded. RESULTS Twelve male and 38 female patients were included. The median age was 53 years and 74% had an ASA of 1. Twelve patients had complicating features such as retrosternal extensions or raised T4 levels pre-operatively. Thyroid resections were the most common operations performed. The total number of bleeding vessels identified in Trendelenburg tilt was significantly greater than when using Valsalva manoeuvre (P < 0.0001). All bleeding points found on Valsalva manoeuvre were minor (< 2 mm) and dealt with using diathermy. In Trendelenburg position, 11% of bleeding vessels required ties or stitching. The time taken during Valsalva manoeuvre was 60 s on average and 360 s in Trendelenburg position. CONCLUSIONS The results show that the Trendelenburg position is vastly superior to the Valsalva manoeuvre in identifying bleeding vessels at haemostasis. It has become our practice to put patients in Trendelenburg tilt routinely (we have discontinued the Valsalva manoeuvre), to check its adequacy before closing the wound. We have not noticed any intracranial complications using a tilt angle of 30°. PMID:20501015

  17. Investigation of Various Essential Factors for Optimum Infrared Thermography

    PubMed Central

    OKADA, Keiji; TAKEMURA, Kei; SATO, Shigeru

    2013-01-01

    ABSTRACT We investigated various essential factors for optimum infrared thermography for cattle clinics. The effect of various factors on the detection of surface temperature was investigated in an experimental room with a fixed ambient temperature using a square positioned on a wall. Various factors of animal objects were examined using cattle to determine the relationships among presence of hair, body surface temperature, surface temperature of the eyeball, the highest temperature of the eye circle, rectum temperature and ambient temperature. Also, the surface temperature of the flank at different time points after eating was examined. The best conditions of thermography for cattle clinics were determined and were as follows: (1) The distance between a thermal camera and an object should be fixed, and the camera should be set within a 45-degree angle with respect to the objects using the optimum focal length. (2) Factors that affect the camera temperature, such as extreme cold or heat, direct sunshine, high humidity and wind, should be avoided. (3) For the comparison of thermographs, imaging should be performed under identical conditions. If this is not achievable, hairless parts should be used. PMID:23759714

  18. Investigation of various essential factors for optimum infrared thermography.

    PubMed

    Okada, Keiji; Takemura, Kei; Sato, Shigeru

    2013-10-01

    We investigated various essential factors for optimum infrared thermography for cattle clinics. The effect of various factors on the detection of surface temperature was investigated in an experimental room with a fixed ambient temperature using a square positioned on a wall. Various factors of animal objects were examined using cattle to determine the relationships among presence of hair, body surface temperature, surface temperature of the eyeball, the highest temperature of the eye circle, rectum temperature and ambient temperature. Also, the surface temperature of the flank at different time points after eating was examined. The best conditions of thermography for cattle clinics were determined and were as follows: (1) The distance between a thermal camera and an object should be fixed, and the camera should be set within a 45-degree angle with respect to the objects using the optimum focal length. (2) Factors that affect the camera temperature, such as extreme cold or heat, direct sunshine, high humidity and wind, should be avoided. (3) For the comparison of thermographs, imaging should be performed under identical conditions. If this is not achievable, hairless parts should be used.

  19. Optimum Building Shapes for Energy Conservation

    ERIC Educational Resources Information Center

    Berkoz, Esher Balkan

    1977-01-01

    An approach to optimum building shape design is summarized that is based on local climate and is especially important for heat control in lower cost construction with temperature-responsive thermal characteristics. The study was supported by Istanbul Technical University. For journal availability see HE 508 931. (Author/LBH)

  20. Calculations enable optimum design of magnetic brake

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1966-01-01

    Mathematical analysis and computations determine optimum magnetic coil configurations for a magnetic brake which controllably decelerates a free falling load to a soft stop. Calculations on unconventionally wound coils determine the required parameters for the desired deceleration with minimum electrical energy supplied to the stationary coil.

  1. The Optimum Thermal Environment for Naked Babies

    PubMed Central

    Hey, E. N.; Katz, G.

    1970-01-01

    The optimum thermal environment in which to nurse a baby naked in an incubator has been defined from a knowledge of the magnitude of the factors affecting thermal balance. Such a neutral environment allows body temperature to remain normal while oxygen consumption and evaporative water loss are both at a minimum. PMID:5427846

  2. Investigation of optimum wavelengths for oximetry

    NASA Astrophysics Data System (ADS)

    Huong, Audrey K. C.; Stockford, Ian M.; Crowe, John A.; Morgan, Stephen P.

    2009-07-01

    An evaluation of the optimum choice of wavelengths, when using the 'Modified Lambert-Beer law' to estimate blood oxygen saturation, that minimises the mean error across a range of oxygen saturation values is presented. The stability of this approach and its susceptibility to noise are also considered.

  3. Common Core: Teaching Optimum Topic Exploration (TOTE)

    ERIC Educational Resources Information Center

    Karge, Belinda Dunnick; Moore, Roxane Kushner

    2015-01-01

    The Common Core has become a household term and yet many educators do not understand what it means. This article explains the historical perspectives of the Common Core and gives guidance to teachers in application of Teaching Optimum Topic Exploration (TOTE) necessary for full implementation of the Common Core State Standards. An effective…

  4. Low speed tests of a fixed geometry inlet for a tilt nacelle V/STOL airplane

    NASA Technical Reports Server (NTRS)

    Syberg, J.; Koncsek, J. L.

    1977-01-01

    Test data were obtained with a 1/4 scale cold flow model of the inlet at freestream velocities from 0 to 77 m/s (150 knots) and angles of attack from 45 deg to 120 deg. A large scale model was tested with a high bypass ratio turbofan in the NASA/ARC wind tunnel. A fixed geometry inlet is a viable concept for a tilt nacelle V/STOL application. Comparison of data obtained with the two models indicates that flow separation at high angles of attack and low airflow rates is strongly sensitive to Reynolds number and that the large scale model has a significantly improved range of separation-free operation.

  5. Measuring dynamics of the subjective vertical and tilt using a joystick.

    PubMed

    Correia Grácio, Bruno J; Bos, Jelte E

    2012-01-01

    Humans are able to estimate the vertical direction of an Earth fixed reference frame, which estimate is known as the subjective vertical (SV). To identify the SV, a distinction must be made between accelerations due to self-motion and gravity. Previous studies on this topic measured the SV using a variety of methods possibly affecting the outcome differently. In this study subjects were sinusoidally moved around their naso-occipital axis and their SV was dynamically measured using a joystick. In half the experimental conditions, the joystick was moved with the motion and was kept vertical on other experimental conditions, thus moving against self-motion. Although physically indicating the same angle, the average perceived angle was larger when moving the joystick with the motion than against. The difference can be explained by assuming an idiotropic vector being at issue when measuring the subjective vertical, and not when measuring subjective tilt.

  6. The influence of tilt grain boundaries on the mechanical properties of bicrystalline graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Xu, Na; Guo, Jian-Gang; Cui, Zhen

    2016-10-01

    The mechanical properties of bicrystalline graphene nanoribbons with various tilt grain boundaries (GBs) which typically consist of repeating pentagon-heptagon ring defects are investigated based on the method of molecular structural mechanics. The GB models are constructed via the theory of disclinations in crystals, and the elastic properties and ultimate strength of bicrystalline graphene nanoribbons are calculated under uniaxial tensile loads in perpendicular and parallel directions to grain boundaries. The dependence of mechanical properties is analyzed on the chirality and misorientation angles of graphene nanoribbons, and the experimental phenomena that Young's modulus and ultimate strength of bicrystalline graphene nanoribbons can either increase or decrease with the grain boundary angles are further verified and discussed. In addition, the influence of GB on the size effects of graphene Young's modulus is also analyzed.

  7. Bulk Friction Angles in Dry, Drained, and Saturated Gravel Beds

    NASA Astrophysics Data System (ADS)

    Holo, S.; Palucis, M. C.; Lamb, M. P.

    2015-12-01

    We examined the effect of capillary action and lubrication of grains on bulk friction angles through tilting chute experiments. In each experiment, we screed a bed of 5mm gravels in 65cm long x 18cm wide tilting chute with fixed roughness and slowly tilted the chute until a granular avalanche occurred. We performed these experiments under three conditions: with dry grains, with a bed that had been submerged and subsequently drained such that no water occupied the pore space, and with the entire apparatus submerged under water such that the bed is saturated. In addition, for each of these cases, we performed experiments with 5, 10, and 15cm bed thicknesses. In the dry case, the bed failed at ~ 41º, and bed thickness did not have a significant effect on failure angle. In the drained case, friction angles increased from 46.5º to 50.9º with increasing bed thickness. In the submerged case, the bed failed at angles not significantly different than those from the dry case, and they did not vary with bed thickness. The increase in friction angles between the dry and drained cases suggests that addition of the water induces a cohesive effect on the grains. Because the pore pressure from the saturated bed removes capillary effects but retains lubrication effects, the submerged case data suggest that capillary action is primarily responsible for the observed increases in friction angle and effects from grain lubrication are negligible. Further study is ongoing to fully understand the effect of capillary action on bulk friction angles in unsaturated gravel and why it appears to increase with bed thickness.

  8. The effects of dipole tilt on magnetotail structure and dynamics

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Ashour-Abdalla, Maha; Ogino, Tatsuki

    1989-01-01

    A three-dimensional time-dependent global magnetohydrodynamic (MHD) model of the interaction between the solar wind and the earth's magnetosphere has been used to study the effects of dipole tilt on the structure and dynamics of the magnetotail. The location of the tail neutral sheet shifts in the north-south direction following changes in the dipole tilt. When the northern edge of the geomagnetic dipole is tilted toward the sun (positive tilt), it is above the geocentric solar magnetosphere (GSM) equator, while for negative tilt, it is below. The neutral sheet forms an arc across the tail in the y-z plane for nonzero tilt. For positive tilt, the neutral sheet rises above the GSM equatorial plane near the noon-midnight meridian and returns to the equator near the magnetopause. The position and shape of the neutral sheet result from the requirement that the earthward magnetic flux equals the tailward flux and can be well explained by a simple analytical model.

  9. A strategy for advancing tilt-rotor technology

    NASA Technical Reports Server (NTRS)

    Morlok, Edward K.; Schoendorfer, David L.

    1985-01-01

    Tilt-rotor technology has many features which make it a very promising development in aviation which might have application to a wide variety of transportation and logistics situations. However, aside from military applications and rather specialized industrial applications, little is known regarding the potential of tilt-rotor for commercial transportation and hence it is difficult to plan a development program which would gain support and be likely to produce a stream of significant benefits. The purpose is to attempt to provide some of this information in a manner that would be useful for preparing a strategy for development of tilt-rotor aircraft technology. Specifically, the objectives were: to identify promising paths of development and deployment of tilt-rotor aircraft technology in the air transportation system considering both benefits and disbenefits, and to identify any particular groups that are likely to benefit significantly and propose plans for gaining their support of research and development of this technology. Potential advantages of the tilt-rotor technology in the context of air transportation as a door-to-door system were identified, and then promising paths of development of such tilt-rotor systems were analyzed. These then lead to recommendations for specific studies, information dissemination and development of awareness of the tilt-rotor among specific transport-related groups.

  10. Motion perception during tilt and translation after space flight

    NASA Astrophysics Data System (ADS)

    Clément, Gilles; Wood, Scott J.

    2013-11-01

    Preliminary results of an ongoing study examining the effects of space flight on astronauts' motion perception induced by independent tilt and translation motions are presented. This experiment used a sled and a variable radius centrifuge that translated the subjects forward-backward or laterally, and simultaneously tilted them in pitch or roll, respectively. Tests were performed on the ground prior to and immediately after landing. The astronauts were asked to report about their perceived motion in response to different combinations of body tilt and translation in darkness. Their ability to manually control their own orientation was also evaluated using a joystick with which they nulled out the perceived tilt while the sled and centrifuge were in motion. Preliminary results confirm that the magnitude of perceived tilt increased during static tilt in roll after space flight. A deterioration in the crewmember to control tilt using non-visual inertial cues was also observed post-flight. However, the use of a tactile prosthesis indicating the direction of down on the subject's trunk improved manual control performance both before and after space flight.

  11. Dipolar condensates with tilted dipoles in a pancake-shaped confinement

    NASA Astrophysics Data System (ADS)

    Mishra, Chinmayee; Nath, Rejish

    2016-09-01

    The effect of dipolar orientation with respect to the condensate plane on the mean-field dynamics of dipolar Bose-Einstein condensates in a pancake-shaped confinement is discussed. The stability of a quasi-two-dimensional condensate, with respect to the tilting angle, is found to be different from a two-dimensional layer of dipoles, indicating the relevance of the transverse extension while characterizing two-dimensional dipolar systems. An anisotropic excitation spectrum exhibiting a highly tunable, rotonlike minimum can arise entirely from the dipole-dipole interactions, by tilting the dipoles. At the magic angle and in the absence of contact interactions, the long-wavelength excitations are not phononlike and always unstable. The post-roton-instability dynamics, in contrast to phonon instability, in a uniform condensate, is featured by a transient, defect-free, stripe pattern, which eventually undergoes local collapses, and driving the condensate back into the stable regime can make them sustained for longer. Hopping between stripes has been observed before it melts into a uniform state in the presence of dissipation. Finally, we discuss a class of solutions, in which a quasi-two-dimensional condensate is self-trapped in one direction, as well as a regime of interaction parameters, including attractive short-range interactions, at which a two-dimensional anisotropic soliton can be stabilized, and we show that a chromium condensate with a relatively small number of atoms is well suited for this.

  12. Analysis of structural deformation and concentrator misalignment in a roll-tilt solar tracker

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Kuang; Fang, June-Yuan

    2013-09-01

    The aim of this study is, using finite element analysis, to investigate the effects of gravity and wind loadings on structural deformation and concentrator misalignment in a high concentrator photovoltaic (HCPV) system equipped with a roll-tilt form of solar tracker. Self-weight and a wind of 12 m/s blowing to the front, lateral, and rear sides of the solar tracker, were applied to calculate the stress distribution, structural deformation, and concentrator misalignment. No structural failure was predicted for all components in the given solar tracker according to von Mises failure criterion. An agreement in the trend of variation of concentrator misalignment and normal displacement of Fresnel lens in each concentrator module was found. For all cases investigated, the maximum concentrator misalignment was of 0.142° for a wind speed of 12 m/s with wind direction of 90° at a tilt angle of 1° and it was within the range of an acceptance angle of 0.5° for the given concentrator modules. Consequently, the given HCPV system is expected to operate safely under the effect of a wind speed of 12 m/s and below with a good efficiency in power generation.

  13. Tilt Error in Cryospheric Surface Radiation Measurements at High Latitudes: A Model Study

    NASA Astrophysics Data System (ADS)

    Bogren, W.; Kylling, A.; Burkhart, J. F.

    2015-12-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in-situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response foreoptic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250nm to 4500nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high latitude albedo measurement with a solar zenith angle of 60◦, a sensor tilted by 1, 3, and 5◦ can respectively introduce up to 2.6, 7.7, and 12.8% error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo.

  14. Hover test results of a small-scale twin-tilt nacelle model

    NASA Technical Reports Server (NTRS)

    Schmidt, S. B.

    1985-01-01

    Characteristics in hover of an 11/36%-scale, powered, twin-tilt nacelle model were measured in the NASA Ames Research Center's 40- by 80-Foot Wind Tunnel. The model was powered by two high-pressure air-driven turbofan propulsion simulators. The position of the sting-mounted model was fixed and a movable ground plane was used to vary ground height and orientation. Hover characteristics were investigated in and out of ground effect for roll angles of -2 deg to +14 deg and pitch angles of -15 deg to +10 deg. Results for the basic configurations are compared with data from hover tests of the full-scale tilt nacelle model. Two methods were investigated to increase vertical vane effectiveness: (1) extending the maximum vane deflection from 20 deg to 70 deg, and (2) adding a third vertical vane. The goal was to increase the roll-control capability to significantly reduce or balance the strong, unfavorable rolling moment created by the loss of one engine. Results indicate that the three-vertical-vane configuration is more effective than two vertical vanes and that extended vane deflections significantly reduce the engine-out roll in hover.

  15. Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.

    2011-01-01

    We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, <20 cm radius) in a darkened room is utilized to elicit otolith reflexes in the lateral plane without concordant canal or visual cues. A Tilt-Translation Sled (TTS) is capable of synchronizing pitch tilt with fore-aft translation to align the resultant gravitoinertial vector with the longitudinal body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a

  16. Mars - Change in axial tilt due to climate?

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    1990-01-01

    The average tilt of Mars' equator with respect to its orbital plane may have increased significantly over the age of the solar system. Obliquity oscillations might have induced changes in the climate, which altered the mass distribution and hence the solar torque on the planet. Viscous deformation attributable to loading by the large polar caps expected at low obliquity may have induced secular changes in the axial tilt. Earth-like effective viscosities can account for virtually the entire present obliquity of 24.4 degrees. Thus the present average tilt of Mars may not be primordial.

  17. Mars: change in axial tilt due to climate?

    PubMed

    Rubincam, D P

    1990-05-11

    The average tilt of Mars' equator with respect to its orbital plane may have increased significantly over the age of the solar system. Obliquity oscillations might have induced changes in the climate, which altered the mass distribution and hence the solar torque on the planet. Viscous deformation attributable to loading by the large polar caps expected at low obliquity may have induced secular changes in the axial tilt. Earth-like effective viscosities can account for virtually the entire present obliquity of 24.4 degrees. Thus the present average tilt of Mars may not be primordial.

  18. Cosmic ray intensity and the tilt of the neutral sheet

    NASA Technical Reports Server (NTRS)

    Saito, T.; Swinson, D. B.

    1985-01-01

    Recent publications have related long-term variations in cosmic ray intensity at the Earth with long term variations in the tilt of the neutral sheet in the inner heliosphere. The tilt of the neutral sheet from 1971 to 1974 is compared with the cosmic ray intensity at Earth, recorded by the Mt. Washington neutron monitor. The remarkable large decreases in cosmic ray intensity which occurred in 1973 and 1974 correlate well with excursions in the tilt of the neutral sheet which occurred earlier during these same two years.

  19. Performance characterization of scanning beam steered by tilting double prisms.

    PubMed

    Li, Anhu; Yi, Wanli; Zuo, Qiyou; Sun, Wansong

    2016-10-03

    A pair of orthogonal tilting double prisms with a tracking precision better than submicroradian order exhibits a good application potential in laser tracking fields. In the paper, the beam scanning performance determined by both the structure parameters and the tilting motions of two prisms is overall investigated. The functional relation between the structure parameters and the exact beam scanning range is established, the capability of high-accuracy beam steering is validated together with the investigation of the scanning error sources and the nonlinear control laws, and the beam shape distortion degree under multi-parameter combinations is demonstrated. These studies can provide important references for the development of tilting double prisms.

  20. Optimum viscous flow in pressure-swirl atomizers

    NASA Astrophysics Data System (ADS)

    Amini, Ghobad; Pereira, Aaron; Yun, Sangsig; Li, Xianguo

    2013-11-01

    Due to their simple configuration and reliable operation, pressure-swirl atomizers are widely used in applications such as combustion, painting, humidification, and sprinkling. The liquid is swirled by entering into the atomizer tangentially and its surface area is increased as discharges in a large spray angle. Understanding the effects of nozzle geometry and inlet flow condition on the discharge coefficient and spray angle is very important in nozzle design. To this end, the flow field inside a pressure-swirl atomizer has been studied theoretically. The main body of the liquid is taken to be moving in circles round the axis. Within the boundary layer, containing transverse and longitudinal velocity components, the retarded liquid is slowed down by viscosity and driven towards the exit orifice by pressure gradient. The swirling motion of liquid creates a low pressure zone near the nozzle axis and leads to the formation of a helical air-core. Through studying the growth of the boundary layer from nozzle entry to the orifice exit, the portions of the outflow exits the orifice from boundary layer current and also from the main body of the swirling liquid are specified. For a given range of pressure drop values, the optimum nozzle geometry and liquid flowrate are predicted. Additionally, the reason of increasing the flow by increasing liquid viscosity or decreasing orifice diameter is explained. A series of experiments and numerical modeling have also been carried out to support the theoretical results.

  1. Preoperative posterior tilt of at least 20° increased the risk of fixation failure in Garden-I and -II femoral neck fractures

    PubMed Central

    Dolatowski, Filip C; Adampour, Mina; Frihagen, Frede; Stavem, Knut; Erik Utvåg, Stein; Hoelsbrekken, Sigurd Erik

    2016-01-01

    Background and purpose It has been suggested that preoperative posterior tilt of the femoral head may increase the risk of fixation failure in Garden-I and -II femoral neck fractures. To investigate this association, we studied a cohort of 322 such patients. Patients and methods Patients treated with internal fixation between 2005 and 2012 were retrospectively identified using hospital records and the digital image bank. 2 raters measured the preoperative posterior tilt angle and categorized it into 3 groups: < 10°, 10–20°, and ≥ 20°. The inter-rater reliability (IRR) was determined. Patients were observed until September 2013 (with a minimum follow-up of 18 months) or until failure of fixation necessitating salvage arthroplasty. The risk of fixation failure was assessed using competing-risk regression analysis, adjusting for time to surgery. Results Patients with a posterior tilt of ≥ 20° had a higher risk of fixation failure: 19% (8/43) as compared to 11% (14/127) in the 10–20° category and 6% (9/152) in the < 10° category (p = 0.03). Posterior tilt of ≥ 20° increased the risk of fixation failure, with an adjusted hazard ratio of 3.4 (95% CI: 1.3–8.9; p = 0.01). The interclass correlation coefficient for angular measurements of posterior tilt was 0.90 (95% CI: 0.87–0.92), and the IRR for the categorization of posterior tilt into 3 groups was 0.76 (95% CI: 0.69–0.81). Interpretation Preoperative posterior tilt of ≥ 20° in Garden-I and -II femoral neck fractures increased the risk of fixation failure necessitating salvage arthroplasty. The reliability of the methods that we used to measure posterior tilt ranged from good to excellent. PMID:26937557

  2. Tilt of the radius from forearm rotational axis reliably predicts rotational improvement after corrective osteotomy for malunited forearm fractures.

    PubMed

    Tatebe, Masahiro; Shinohara, Takaaki; Okui, Nobuyuki; Yamamoto, Michiro; Kurimoto, Shigeru; Hirata, Hitoshi

    2012-02-01

    Forearm rotation occurs around an axis connecting the center of the radial head and the fovea of the distal ulna. The purpose of the present study was to demonstrate the usefulness of the difference between forearm and proximal radial axis in the treatment of malunited forearm fractures. We reviewed the results of eight corrective osteotomies for malunited fractures of the forearm without dislocations of the wrist or elbow. Subjects were 6 men and 2 women (mean age, 15 years; range, 10-21 years). Corrective osteotomy was performed at the fracture site. Preoperatively and at final follow-up, the are of forearm rotation was recorded and anteroposterior and lateral X-rays were taken. Proximal radius tilt was defined as the angle between the rotational axis of the forearm and the axis of the proximal radius. Corrective osteotomy improved proximal radius tilt in all cases. Three patients were considered to have malrotation. Postoperative rotational are correlated with proximal radial tilt (r = -0.83). No significant difference in rotational arc was evident between malunited cases and the remaining cases. To improve forearm rotation, corrective osteotomy should be planned to minimize proximal radius tilt.

  3. Inclination of standing posture due to the presentation of tilted view through an immersive head-mounted display

    PubMed Central

    Ohmura, Yuji; Yano, Shiro; Katsuhira, Junji; Migita, Masato; Yozu, Arito; Kondo, Toshiyuki

    2017-01-01

    [Purpose] The purpose of the present study is to clarify whether tilted scenery presented through an immersive head-mounted display (HMD) causes the inclination of standing posture. [Subjects and Methods] Eleven healthy young adult males who provided informed consent participated in the experiment. An immersive HMD and a stereo camera were employed to develop a visual inclination system. The subjects maintained a standing posture twice for 5s each while wearing the visual inclination system. They performed this task under two conditions: normal view and 20° leftward tilted view. A three-dimensional motion analysis system was used to measure the subjects’ postures, and two force plates were used to measure the vertical component of the floor reaction force of each leg. [Results] In the 20° leftward tilted view, the head and trunk angles in the frontal plane were similarly inclined toward the left, and the vertical component of the floor reaction force increased in the left leg, whereas it decreased in the right leg. [Conclusion] When the view in the immersive HMD was tilted, the participants’ trunk side bent toward the same side as that of the view. This visual inclination system seems to be a simple intervention for changing standing posture. PMID:28265145

  4. Motion analysis of wheelchair propulsion movements in hemiplegic patients: effect of a wheelchair cushion on suppressing posterior pelvic tilt.

    PubMed

    Kawada, Kyohei; Matsuda, Tadamitsu; Takanashi, Akira; Miyazima, Shigeki; Yamamoto, Sumiko

    2015-03-01

    [Purpose] This study sought to ascertain whether, in hemiplegic patients, the effect of a wheelchair cushion to suppress pelvic posterior tilt when initiating wheelchair propulsion would continue in subsequent propulsions. [Subjects] Eighteen hemiplegic patients who were able to propel a wheelchair in a seated position participated in this study. [Methods] An adjustable wheelchair was fitted with a cushion that had an anchoring function, and a thigh pad on the propulsion side was removed. Propulsion movements from the seated position without moving through three propulsion cycles were measured using a three-dimensional motion analysis system, and electromyography was used to determine the angle of pelvic posterior tilt, muscle activity of the biceps femoris long head, and propulsion speed. [Results] Pelvic posterior tilt could be suppressed through the three propulsion cycles, which served to increase propulsion speed. Muscle activity of the biceps femoris long head was highest when initiating propulsion and decreased thereafter. [Conclusion] The effect of the wheelchair cushion on suppressing pelvic posterior tilt continued through three propulsion cycles.

  5. 'Optimum mobility' facelift. Part 1 - the theory.

    PubMed

    Fanous, Nabil

    2006-01-01

    Traditional rhytidectomy techniques, such as the cutaneous lift, the superficial musculoaponeurotic system lift, the deep plane lift and the subperiosteal lift, are mostly differentiated by their different planes of dissection. As well, many of these techniques consider the complete mobilization of tissues a prerequisite for obtaining a satisfactory result.However, is it true that the result of a rhytidectomy is linked to the choice of the dissection plane? Also, is it true that the adequacy of the surgical mobilization of tissues is vital to the outcome? The present paper discusses the above questions and introduces a factor that is believed to be crucial to the planning and success of a rhytidectomy: facial tissue mobility. The analysis of this mobility is presented and leads to the development of three theories: 'intrinsic mobility', 'surgically induced mobility' and 'optimum mobility points'. These theories form the foundation of a rhytidectomy technique termed 'optimum mobility' facelift.

  6. OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS

    SciTech Connect

    LIN-LIU,YR; STAMBAUGH,RD

    2002-11-01

    OAK A271 OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS. The dependence of the ideal ballooning {beta} limit on aspect ratio, A, and elongation {kappa} is systematically explored for nearly 100% bootstrap current driven tokamak equilibria in a wide range of the shape parameters (A = 1.2-7.0, {kappa} = 1.5-6.0 with triangularity {delta} = 0.5). The critical {beta}{sub N} is shown to be optimal at {kappa} = 3.0-4.0 for all A studied and increases as A decreases with a dependence close to A{sup -0.5}. The results obtained can be used as a theoretical basis for the choice of optimum aspect ratio and elongation of next step burning plasma tokamaks or tokamak reactors.

  7. Active magnetic bearings for optimum turbomachinery design

    NASA Technical Reports Server (NTRS)

    Hustak, J.; Kirk, R. G.; Schoeneck, K. A.

    1985-01-01

    The design and shop test results are given for a high speed eight stage centrifugal compressor supported by active magnetic bearings. A brief summary of the rotor dynamics analysis is presented with specific attention given to design considerations for optimum rotor stability. The concerns for retrofit of magnetic bearings in existing machinery are discussed with supporting analysis of a four stage centrifugal compressor. Recommendations are given on design and analysis requirements for successful machinery operation of either retrofit or new design turbomachinery.

  8. NASA Now: Engineering Design: Tilt Rotors, Aircraft of the Future

    NASA Video Gallery

    Meet Carl Russell, a research aerospace engineer who is working on developing new innovations for air travel. Russell discusses how tilt rotors work, including a demonstration on how rotors use Ber...

  9. Modulation of soleus H reflex by lateral tilting in man.

    PubMed

    Aiello, I; Rosati, G; Sau, G F; Cacciotto, R; Lentinu, M E; Tidore, B; Traccis, S

    1992-04-01

    Static vestibular influences on extensor tone of the lower limbs in man were studied by analyzing the changes in right soleus H-reflex (RSHR) area in relation to lateral tiltings. Eight normal adult volunteers were tested in an experimental situation designed to minimize all afferent inputs, except the vestibular ones. Each subject was seated on a chair which could be tilted laterally from the vertical to both sides. Lateral tiltings were applied at a random order from the vertical (0 degree, control position) to 4 degrees, 8 degrees, 12 degrees, 16 degrees, and 20 degrees of both sides (test positions). The results showed inhibition in SHR area of the leg ipsilateral to the tilting and facilitation of the contralateral SHR. These data indicate that, in man, as in the decerebrate cat, tonic labyrinth reflexes act asymmetrically and that, in static condition, the vestibular system modulates muscle tone of the lower limbs adequately to counteract lateral perturbation of upright position.

  10. Determination of the position angle of stellar spin axes

    NASA Astrophysics Data System (ADS)

    Lesage, A.-L.; Wiedemann, G.

    2014-03-01

    Context. Measuring the stellar position angle provides valuable information on binary stellar formation or stellar spin axis evolution. Aims: We aim to develop a method for determining the absolute stellar position angle using spectro-astrometric analysis of high resolution long-slit spectra. The method has been designed in particular for slowly rotating stars. We investigate its applicability to existing dispersive long-slit spectrographs, identified here by their plate scale, and the size of the resulting stellar sample. Methods: The stellar rotation induces a tilt in the stellar lines whose angle depends on the stellar position angle and the orientation of the slit. We developed a rotation model to calculate and reproduce the effects of stellar rotation on unreduced high resolution stellar spectra. Then we retrieved the tilt amplitude using a spectro-astrometric extraction of the position of the photocentre of the spectrum. Finally we present two methods for analysing the position spectrum using either direct measurement of the tilt or a cross-correlation analysis. Results: For stars with large apparent diameter and using a spectrograph with a small plate scale, we show that it is possible to determine the stellar position angle directly within 10° with a signal-to-noise ratio of the order of 6. Under less favourable conditions, i.e. larger plate scale or smaller stellar diameter, the cross-correlation method yields comparable results. Conclusions: We show that with the currently existing instruments, it is possible to determine the stellar position angle of at least 50 stars precisely, mostly K-type giants with apparent diameter down to 5 milliarcseconds. If we consider errors of around 10° still acceptable, we may include stars with apparent diameter down to 2 mas in the sample that then comprises also some main sequence stars.

  11. Which way is down? Positional distortion in the tilt illusion.

    PubMed

    Tomassini, Alessandro; Solomon, Joshua Adam; Morgan, Michael John

    2014-01-01

    Contextual information can have a huge impact on our sensory experience. The tilt illusion is a classic example of contextual influence exerted by an oriented surround on a target's perceived orientation. Traditionally, the tilt illusion has been described as the outcome of inhibition between cortical neurons with adjacent receptive fields and a similar preference for orientation. An alternative explanation is that tilted contexts could produce a re-calibration of the subjective frame of reference. Although the distinction is subtle, only the latter model makes clear predictions for unoriented stimuli. In the present study, we tested one such prediction by asking four naive subjects to estimate three positions (4, 6, and 8 o'clock) on an imaginary clock face within a tilted surround. To indicate their estimates, they used either an unoriented dot or a line segment, with one endpoint at fixation in the middle of the surround. The surround's tilt was randomly chosen from a set of orientations (± 75°, ± 65°, ± 55°, ± 45°, ± 35°, ± 25°, ± 15°, ± 5° with respect to vertical) across trials. Our results showed systematic biases consistent with the tilt illusion in both conditions. Biases were largest when observers attempted to estimate the 4 and 8 o'clock positions, but there was no significant difference between data gathered with the dot and data gathered with the line segment. A control experiment confirmed that biases were better accounted for by a local coordinate shift than to torsional eye movements induced by the tilted context. This finding supports the idea that tilted contexts distort perceived positions as well as perceived orientations and cannot be readily explained by lateral interactions between orientation selective cells in V1.

  12. Long Baseline Tilt Meter Array to Monitor Cascadia's Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Suszek, N.; Bilham, R.; Flake, R.; Melbourne, T. I.; Miller, M.

    2004-12-01

    Five biaxial Michelson tilt meters are currently being installed in the Puget Lowlands near Seattle to monitor dynamic tilt changes accompanying episodic slow earthquakes that occur at 20-40 km depth. Each tilt meter consists of a 1-2 m deep, 500-m-long, 15-cm diameter, horizontal, half-filled water-pipe, terminated by float sensors with sub-micron water-level resolution, similar to those that have operated unattended for the past decade within the Long Valley caldera. The sensors measure water height relative to the base of a pile driven to 10 m depth. A wide-body LVDT attached to this pile outside the reservoir, senses the motion of the core attached to the float within. The voltage indicating the position of the core is sampled 16 times a second, and digitally filtered before transmission via radio modem for storage as 1-minute samples in a remote computer. The computer gathers 16-bit water height, vault temperature, air pressure and various housekeeping data once per minute using remote telemetry. Installed during 2004, the first of the tilt meters, installed in 2004, float sensors at each end, and one in the center of each pipe, permit us to examine tilt signal coherence and local noise. Each adjacent pair of sensors has a tilt resolution of 2e-9 and a range of 8 microradians. We anticipate tilt signals with durations of 0.3-30 days, and amplitudes of less than 0.1 microradian associated with slow earthquakes. Anticipated noise levels in the tilt meters are 10-1000 times lower that these expected signals, similar to or better than signal-to-noise levels from planned strain meters of the PBO array.

  13. Gradual tilting of crystallographic orientation and configuration of dislocations in GaN selectively grown by vapour phase epitaxy methods

    PubMed

    Kuwan; Tsukamoto; Taki; Horibuchi; Oki; Kawaguchi; Shibata; Sawaki; Hiramatsu

    2000-01-01

    Cross-sectional transmission electron microscope (TEM) observation was performed for selectively grown gallium nitride (GaN) in order to examine the dependence of GaN microstructure on the growth conditions. The GaN films were grown by hydride vapour phase epitaxy (HVPE) or metalorganic vapour phase epitaxy (MOVPE) on GaN covered with a patterned mask. Thin foil specimens for TEM observation were prepared with focused ion beam (FIB) machining apparatus. It was demonstrated that the c-axis of GaN grown over the terrace of the mask tilts towards the centre of the terrace when the GaN is grown in a carrier gas of N2. The wider terrace results in a larger tilting angle if other growth conditions are identical. The tilting is attributed to 'horizontal dislocations' (HDs) generated during the overgrowth of GaN on the mask terrace. The HDs in HVPE-GaN have a semi-loop shape and are tangled with one another, while those in MOVPE-GaN are straight and lined up to form low-angle grain boundaries.

  14. The modified Thomas test is not a valid measure of hip extension unless pelvic tilt is controlled.

    PubMed

    Vigotsky, Andrew D; Lehman, Gregory J; Beardsley, Chris; Contreras, Bret; Chung, Bryan; Feser, Erin H

    2016-01-01

    The modified Thomas test was developed to assess the presence of hip flexion contracture and to measure hip extensibility. Despite its widespread use, to the authors' knowledge, its criterion reference validity has not yet been investigated. The purpose of this study was to assess the criterion reference validity of the modified Thomas test for measuring peak hip extension angle and hip extension deficits, as defined by the hip not being able to extend to 0º, or neutral. Twenty-nine healthy college students (age = 22.00 ± 3.80 years; height = 1.71 ± 0.09 m; body mass = 70.00 ± 15.60 kg) were recruited for this study. Bland-Altman plots revealed poor validity for the modified Thomas test's ability to measure hip extension, which could not be explained by differences in hip flexion ability alone. The modified Thomas test displayed a sensitivity of 31.82% (95% CI [13.86-54.87]) and a specificity of 57.14% (95% CI [18.41-90.10]) for testing hip extension deficits. It appears, however, that by controlling pelvic tilt, much of this variance can be accounted for (r = 0.98). When pelvic tilt is not controlled, the modified Thomas test displays poor criterion reference validity and, as per previous studies, poor reliability. However, when pelvic tilt is controlled, the modified Thomas test appears to be a valid test for evaluating peak hip extension angle.

  15. Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems.

    PubMed

    Günther, Philipp; Kuschmierz, Robert; Pfister, Thorsten; Czarske, Jürgen W

    2013-05-01

    The precise distance measurement of fast-moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two mutually tilted interference fringe systems has been realized for this task. The distance is coded in the phase difference between the generated interference signals corresponding to the fringe systems. Large tilting angles between the interference fringe systems are necessary for a high sensitivity. However, due to the speckle effect at rough surfaces, different envelopes and phase jumps of the interference signals occur. At large tilting angles, these signals become dissimilar, resulting in a small correlation coefficient and a high measurement uncertainty. Based on a matching of illumination and receiving optics, the correlation coefficient and the phase difference estimation have been improved significantly. For axial displacement measurements of recurring rough surfaces, laterally moving with velocities of 5 m/s, an uncertainty of 110 nm has been attained. For nonrecurring surfaces, a distance measurement uncertainty of 830 nm has been achieved. Incorporating the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects results. Since the measurement uncertainty of the displacement, distance, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects, such as crankshafts, camshafts, vacuum pump shafts, or turning parts of lathes.

  16. The modified Thomas test is not a valid measure of hip extension unless pelvic tilt is controlled

    PubMed Central

    Lehman, Gregory J.; Beardsley, Chris; Contreras, Bret; Chung, Bryan; Feser, Erin H.

    2016-01-01

    The modified Thomas test was developed to assess the presence of hip flexion contracture and to measure hip extensibility. Despite its widespread use, to the authors’ knowledge, its criterion reference validity has not yet been investigated. The purpose of this study was to assess the criterion reference validity of the modified Thomas test for measuring peak hip extension angle and hip extension deficits, as defined by the hip not being able to extend to 0º, or neutral. Twenty-nine healthy college students (age = 22.00 ± 3.80 years; height = 1.71 ± 0.09 m; body mass = 70.00 ± 15.60 kg) were recruited for this study. Bland–Altman plots revealed poor validity for the modified Thomas test’s ability to measure hip extension, which could not be explained by differences in hip flexion ability alone. The modified Thomas test displayed a sensitivity of 31.82% (95% CI [13.86–54.87]) and a specificity of 57.14% (95% CI [18.41–90.10]) for testing hip extension deficits. It appears, however, that by controlling pelvic tilt, much of this variance can be accounted for (r = 0.98). When pelvic tilt is not controlled, the modified Thomas test displays poor criterion reference validity and, as per previous studies, poor reliability. However, when pelvic tilt is controlled, the modified Thomas test appears to be a valid test for evaluating peak hip extension angle. PMID:27602291

  17. A correlation polarimeter for noise-like signals. [optimum estimation of linearly polarized electromagnetic wave

    NASA Technical Reports Server (NTRS)

    Ohlson, J. E.

    1976-01-01

    Optimum estimation (tracking) of the polarization plane of a linearly polarized electromagnetic wave is determined when the signal is a narrow-band Gaussian random process with a polarization plane angle which is also a Gaussian random process. This model is compared to previous work and is applicable to space communication. The estimator performs a correlation operation similar to an amplitude-comparison monopulse angle tracker, giving the name correlation polarimeter. Under large signal-to-noise ratio (SNR), the estimator is causal. Performance of the causal correlation polarimeter is evaluated for arbitrary SNR. Optimum precorrelation filtering is determined. With low SNR, the performance of this system is far better than that of previously developed systems. Practical implementation is discussed. A scheme is given to reduce the effect of linearly polarized noise.

  18. Age, splanchnic vasoconstriction, and heat stress during tilting

    NASA Technical Reports Server (NTRS)

    Minson, C. T.; Wladkowski, S. L.; Pawelczyk, J. A.; Kenney, W. L.

    1999-01-01

    During upright tilting, blood is translocated to the dependent veins of the legs and compensatory circulatory adjustments are necessary to maintain arterial pressure. For examination of the effect of age on these responses, seven young (23 +/- 1 yr) and seven older (70 +/- 3 yr) men were head-up tilted to 60 degrees in a thermoneutral condition and during passive heating with water-perfused suits. Measurements included heart rate (HR), cardiac output (Qc; acetylene rebreathing technique), central venous pressure (CVP), blood pressures, forearm blood flow (venous occlusion plethysmography), splanchnic and renal blood flows (indocyanine green and p-aminohippurate clearance), and esophageal and mean skin temperatures. In response to tilting in the thermoneutral condition, CVP and stroke volume decreased to a greater extent in the young men, but HR increased more, such that the fall in Qc was similar between the two groups in the upright posture. The rise in splanchnic vascular resistance (SVR) was greater in the older men, but the young men increased forearm vascular resistance (FVR) to a greater extent than the older men. The fall in Qc during combined heat stress and tilting was greater in the young compared with older men. Only four of the young men versus six of the older men were able to finish the second tilt without becoming presyncopal. In summary, the older men relied on a greater increase in SVR to compensate for a reduced ability to constrict the skin and muscle circulations (as determined by changes in FVR) during head-up tilting.

  19. Calculation of farfield distortion for a tilted-facet SOA

    SciTech Connect

    Ratowsky, R.P.; Dijaili, S.; Walker, J.; Patterson, F.; Kallman, J.; Deri, R.

    1996-04-01

    Semiconductor optical amplifiers (SOAs) are very important elements for telecommunications, computer communications, and signal processing applications. For stable, low noise operation, the modal reflection into the guided SOA mode must be minimized; modal reflectivity typically has to be kept below about {minus}40 dB. This can be accomplished by antireflection (AR) coatings, or by tilting of the SOA end facet. The latter approach has been vigorously pursued recently, because effective AR coatings require very high tolerances and have polarization-dependent reflectivities. Consequently, there has been a great deal of theoretical effort aimed at calculating the modal reflectivity from tilted interfaces, using a variety of approaches. However, there has been little attention directed toward calculating the transmitted field of a tilted-facet SOA. This is a problem of considerable importance, because the coupling of the SOA light to an element such as an optical fiber depends critically on the field distribution at the entrance plane to the fiber. Moreover, experimental measurements of the farfield of tilted-facet SOAs have revealed a curious crescent-shaped intensity distribution. To improve coupling efficiency it is important to understand to what extent this phenomenon is due to the SOA modal field distribution and to what extent it is due to the tilted interface. The authors explain the crescent-shaped farfield intensity distribution of tilted-facet SOAs using vector wave optics, and discuss implications for coupling to other optical elements.

  20. Three dimensional eye movements of squirrel monkeys following postrotatory tilt

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Young, L. R.; Paige, G. D.; Tomko, D. L.

    1993-01-01

    Three-dimensional squirrel monkey eye movements were recorded during and immediately following rotation around an earth-vertical yaw axis (160 degrees/s steady state, 100 degrees/s2 acceleration and deceleration). To study interactions between the horizontal angular vestibulo-ocular reflex (VOR) and head orientation, postrotatory VOR alignment was changed relative to gravity by tilting the head out of the horizontal plane (pitch or roll tilt between 15 degrees and 90 degrees) immediately after cessation of motion. Results showed that in addition to post rotatory horizontal nystagmus, vertical nystagmus followed tilts to the left or right (roll), and torsional nystagmus followed forward or backward (pitch) tilts. When the time course and spatial orientation of eye velocity were considered in three dimensions, the axis of eye rotation always shifted toward alignment with gravity, and the postrotatory horizontal VOR decay was accelerated by the tilts. These phenomena may reflect a neural process that resolves the sensory conflict induced by this postrotatory tilt paradigm.

  1. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.

    PubMed

    Chen, Zhen; Dorfman, Kevin D

    2014-02-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device.

  2. A New Higher-Order Composite Theory for Analysis and Design of High Speed Tilt-Rotor Blades

    NASA Technical Reports Server (NTRS)

    McCarthy, Thomas Robert

    1996-01-01

    A higher-order theory is developed to model composite box beams with arbitrary wall thicknesses. The theory, based on a refined displacement field, represents a three-dimensional model which approximates the elasticity solution. Therefore, the cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are automatically included in the formulation. The model accurately captures the transverse shear stresses through the thickness of each wall while satisfying all stress-free boundary conditions. Several numerical results are presented to validate the present theory. The developed theory is then used to model the load carrying member of a tilt-rotor blade which has thick-walled sections. The composite structural analysis is coupled with an aerodynamic analysis to compute the aeroelastic stability of the blade. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt-rotor aircraft. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem and a hybrid approximate analysis is used to reduce the computational effort. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt-rotor blade.

  3. Procedure for Optimum Design of a Two-Stage Spur Gear System

    NASA Astrophysics Data System (ADS)

    Abuid, Bader Ahmed; Ameen, Yahya Muhammed

    In this paper, an optimum design of a two-stage spur gear system is performed. The optimization is based on a multicriterion technique consisting of a Min-Max method combined with a direct search technique. The optimum design includes the minimization of seven objective functions. They are the volume of gears, the center distance and five dynamic factors in the input shaft, first-teeth meshing, intermediate shaft, second meshing and the output shaft. The dynamic factors are estimated using a dynamic model of twelve degrees of freedom. The objective functions are governed by eleven design variables, chosen to be the number of teeth and face width of the pinion of each stage, stiffness of the input, intermediate, and output shafts and the inertia of the four gears of the mechanism. The developed optimum design is found to give compact-gear system with quiet running (minimum dynamic factors) compared with the classical design. The angle between the power transmitting directions is found to have an important role on the objective functions and the optimum design. A value of 180° for this angle is found to be the optimal for all functions.

  4. Comparison of Optimum Interpolation and Cressman Analyses

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1985-01-01

    The development of a state of the art optimum interpolation (O/I) objective analysis procedure for use in numerical weather prediction studies was investigated. A three dimensional multivariate O/I analysis scheme was developed. Some characteristics of the GLAS O/I compared with those of the NMC and ECMWF systems are summarized. Some recent enhancements of the GLAS scheme include a univariate analysis of water vapor mixing ratio, a geographically dependent model prediction error correlation function and a multivariate oceanic surface analysis.

  5. Comparison of Optimum Interpolation and Cressman Analyses

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1984-01-01

    The objective of this investigation is to develop a state-of-the-art optimum interpolation (O/I) objective analysis procedure for use in numerical weather prediction studies. A three-dimensional multivariate O/I analysis scheme has been developed. Some characteristics of the GLAS O/I compared with those of the NMC and ECMWF systems are summarized. Some recent enhancements of the GLAS scheme include a univariate analysis of water vapor mixing ratio, a geographically dependent model prediction error correlation function and a multivariate oceanic surface analysis.

  6. Skin cooling maintains cerebral blood flow velocity and orthostatic tolerance during tilting in heated humans

    NASA Technical Reports Server (NTRS)

    Wilson, Thad E.; Cui, Jian; Zhang, Rong; Witkowski, Sarah; Crandall, Craig G.

    2002-01-01

    Orthostatic tolerance is reduced in the heat-stressed human. The purpose of this project was to identify whether skin-surface cooling improves orthostatic tolerance. Nine subjects were exposed to 10 min of 60 degrees head-up tilting in each of four conditions: normothermia (NT-tilt), heat stress (HT-tilt), normothermia plus skin-surface cooling 1 min before and throughout tilting (NT-tilt(cool)), and heat stress plus skin-surface cooling 1 min before and throughout tilting (HT-tilt(cool)). Heating and cooling were accomplished by perfusing 46 and 15 degrees C water, respectively, though a tube-lined suit worn by each subject. During HT-tilt, four of nine subjects developed presyncopal symptoms resulting in the termination of the tilt test. In contrast, no subject experienced presyncopal symptoms during NT-tilt, NT-tilt(cool), or HT-tilt(cool). During the HT-tilt procedure, mean arterial blood pressure (MAP) and cerebral blood flow velocity (CBFV) decreased. However, during HT-tilt(cool), MAP, total peripheral resistance, and CBFV were significantly greater relative to HT-tilt (all P < 0.01). No differences were observed in calculated cerebral vascular resistance between the four conditions. These data suggest that skin-surface cooling prevents the fall in CBFV during upright tilting and improves orthostatic tolerance, presumably via maintenance of MAP. Hence, skin-surface cooling may be a potent countermeasure to protect against orthostatic intolerance observed in heat-stressed humans.

  7. Contact-angle hysteresis on super-hydrophobic surfaces.

    PubMed

    McHale, G; Shirtcliffe, N J; Newton, M I

    2004-11-09

    The relationship between perturbations to contact angles on a rough or textured surface and the super-hydrophobic enhancement of the equilibrium contact angle is discussed theoretically. Two models are considered. In the first (Wenzel) case, the super-hydrophobic surface has a very high contact angle and the droplet completely contacts the surface upon which it rests. In the second (Cassie-Baxter) case, the super-hydrophobic surface has a very high contact angle, but the droplet bridges across surface protrusions. The theoretical treatment emphasizes the concept of contact-angle amplification or attenuation and distinguishes between the increases in contact angles due to roughening or texturing surfaces and perturbations to the resulting contact angles. The theory is applied to predicting contact-angle hysteresis on rough surfaces from the hysteresis observable on smooth surfaces and is therefore relevant to predicting roll-off angles for droplets on tilted surfaces. The theory quantitatively predicts a "sticky" surface for Wenzel-type surfaces and a "slippy" surface for Cassie-Baxter-type surfaces.

  8. Prior head-down tilt does not impair the cerebrovascular response to head-up tilt

    PubMed Central

    Yang, Changbin; Gao, Yuan; Greaves, Danielle K.; Villar, Rodrigo; Beltrame, Thomas; Fraser, Katelyn S.

    2015-01-01

    The hypothesis that cerebrovascular autoregulation was not impaired during head-up tilt (HUT) that followed brief exposures to varying degrees of prior head-down tilt (HDT) was tested in 10 healthy young men and women. Cerebral mean flow velocity (MFV) and cardiovascular responses were measured in transitions to a 60-s period of 75° HUT that followed supine rest (control) or 15 s HDT at −10°, −25°, and −55°. During HDT, heart rate (HR) was reduced for −25° and −55°, and cardiac output was lower at −55° HDT. MFV increased during −10° HDT, but not in the other conditions even though blood pressure at the middle cerebral artery (BPMCA) increased. On the transition to HUT, HR increased only for −55° condition, but stroke volume and cardiac output transiently increased for −25° and −55°. Total peripheral resistance index decreased in proportion to the magnitude of HDT and recovered over the first 20 s of HUT. MFV was significantly less in all HDT conditions compared with the control in the first 5-s period of HUT, but it recovered quickly. An autoregulation correction index derived from MFV recovery relative to BPMCA decline revealed a delay in the first 5 s for prior HDT compared with control but then a rapid increase to briefly exceed control after −55° HDT. This study showed that cerebrovascular autoregulation is modified by but not impaired by brief HDT prior to HUT and that cerebral MFV recovered quickly and more rapidly than arterial blood pressure to protect against cerebral hypoperfusion and potential syncope. PMID:25749443

  9. The Influence of Gender and Anthropometry on Haemodynamic Status at Rest and in Response to Graded Incremental Head-Up Tilt in Young, Healthy Adults

    PubMed Central

    Sarafian, Delphine; Miles-Chan, Jennifer L.

    2017-01-01

    The body's ability to rapidly and appropriately regulate blood pressure in response to changing physiological demand is a key feature of a healthy cardiovascular system. Passively tilting the body, thereby changing central blood volume, is a well-recognized and controlled method of evaluating this ability. However, such studies usually involve single tilt angles, or intermittent tilting separated by supine, resting periods; valuable information concerning the adaptive capacity of the regulatory systems involved is therefore currently lacking. Furthermore, despite increasing recognition that men and women differ in the magnitude of their haemodynamic response to such stimuli, little is known about the degree to which gender differences in body composition and anthropometry influence these regulatory pathways, or indeed if these differences are apparent in response to graded, incremental tilting. In the present study we measured, in 23 young, healthy adults (13 men, 10 women), the continuous beat-to-beat haemodynamic response to graded, incremental tilting (0°, 20°, 40°, 60°, and back to 40°) with each tilt angle lasting 16 min. On average, we observed increases in heart rate (+41%), blood pressure (+10%), and total peripheral resistance (+16%) in response to tilting. However, whilst men showed an immediate decrease in cardiac output upon tilting (−8.9%) cardiac output in women did not change significantly from supine values. Interestingly, the decrease in stroke volume observed in women was significantly less than that observed in men (−22 vs. −36%, p < 0.05); although the present study could not determine if this difference was due to gender per se or due to differences in body size (in particular height) between the two gender groups. Such disparities in the magnitude of autonomic response may indicate (in the case of our gradual incremental tilt procedure) a better buffering capacity to progressive changes in central blood volume in women; which

  10. Tilted cone-beam reconstruction with row-wise fan-to-parallel rebinning

    NASA Astrophysics Data System (ADS)

    Hsieh, Jiang; Tang, Xiangyang

    2006-10-01

    Reconstruction algorithms for cone-beam CT have been the focus of many studies. Several exact and approximate reconstruction algorithms were proposed for step-and-shoot and helical scanning trajectories to combat cone-beam related artefacts. In this paper, we present a new closed-form cone-beam reconstruction formula for tilted gantry data acquisition. Although several algorithms were proposed in the past to combat errors induced by the gantry tilt, none of the algorithms addresses the scenario in which the cone-beam geometry is first rebinned to a set of parallel beams prior to the filtered backprojection. We show that the image quality advantages of the rebinned parallel-beam reconstruction are significant, which makes the development of such an algorithm necessary. Because of the rebinning process, the reconstruction algorithm becomes more complex and the amount of iso-centre adjustment depends not only on the projection and tilt angles, but also on the reconstructed pixel location. In this paper, we first demonstrate the advantages of the row-wise fan-to-parallel rebinning and derive a closed-form solution for the reconstruction algorithm for the step-and-shoot and constant-pitch helical scans. The proposed algorithm requires the 'warping' of the reconstruction matrix on a view-by-view basis prior to the backprojection step. We further extend the algorithm to the variable-pitch helical scans in which the patient table travels at non-constant speeds. The algorithm was tested extensively on both the 16- and 64-slice CT scanners. The efficacy of the algorithm is clearly demonstrated by multiple experiments.

  11. Nutations of sunflower seedlings on tilted clinostats

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Chapman, D. K.

    1977-01-01

    The kinetics of hypocotyl nutations in Helianthus annuus L. were measured on plants which were rotated on clinostats with axes of rotation inclined at various angles, alpha, away from the vertical. The g-force component acting in the direction of the plant axis was taken as g cos alpha. The average period and average amplitude of nutation were constant for all such axially directed g-forces between 1.0 and 0.2 g (vertical to about 80 inclination). On the horizontal clinostat (90 inclination) nutation was neither initiated nor sustained. The g-force just sufficient fully to activate nutational oscillations should be sought for g-force parameter values ranging from 0 to 0.2.

  12. Recording Tilt with Broadband Seismic Sensors at Erupting Volcanoes

    NASA Astrophysics Data System (ADS)

    Young, B. E.; Lees, J. M.; Lyons, J. J.

    2011-12-01

    The horizontal components of broadband seismometers are known to be susceptible to gravitational acceleration due to slow tilting, and this has been successfully exploited to assess ground deformation at many volcanoes, including Anatahan (Mariana Islands), Meakan-dake (Japan), Santiaguito (Guatemala) and Stromboli (Italy). Tilt can be estimated from seismic velocity by differentiating, scaling to remove gravity, and applying an instrument correction. The fundamental assumption in estimating tilt from broadband data is that the signal recorded is the result of tilt and not translation, thus analysis of tilt require filtering below corner frequencies of seismic instruments, where the response to tilt should be flat. However, processing techniques for deriving tilt are not uniform among researchers. Filter type and passband allowance for the processing of data sets differs from case to case, and the dominant periods of tilt signals may vary from tens to hundreds of seconds. For instance, data from Santiaguito was filtered in the 600-30s passband, while at Anatahan filters spanned 13 hours to 8 minutes. In our study, we investigate tilt from seismic data sets at Karymsky (Kamchatka, Russia), Fuego (Guatemala), Yasur (Vanuatu), and Tungurahua (Ecuador) to understand implementation and limitations of this tool. We examine the importance of filter-type distortion related to filtering on the seismic signal. For example, a comparison of time domain versus frequency domain implementation is explored using a variety of lowpass and bandpass filters. We also investigate the advantages and drawbacks of causal versus acausal filters. In a few cases tiltmeters have been co-located with broadband seismic sensors for direct comparison. Signals at Mt. St. Helens, Stromboli, Sakurajima, and Semeru show a correlation of tilt and seismic records, although records at Karymsky volcano suggest that no tilt is recorded on either instrument. We speculate that strong vent explosions exhibit

  13. A high-accuracy roundness measurement for cylindrical components by a morphological filter considering eccentricity, probe offset, tip head radius and tilt error

    NASA Astrophysics Data System (ADS)

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Zhou, Tong; Kuang, Ye

    2016-08-01

    A morphological filter is proposed to obtain a high-accuracy roundness measurement based on the four-parameter roundness measurement model, which takes into account eccentricity, probe offset, probe tip head radius and tilt error. This paper analyses the sample angle deviations caused by the four systematic errors to design a morphological filter based on the distribution of the sample angle. The effectiveness of the proposed method is verified through simulations and experiments performed with a roundness measuring machine. Compared to the morphological filter with the uniform sample angle, the accuracy of the roundness measurement can be increased by approximately 0.09 μm using the morphological filter with a non-uniform sample angle based on the four-parameter roundness measurement model, when eccentricity is above 16 μm, probe offset is approximately 1000 μm, tilt error is approximately 1″, the probe tip head radius is 1 mm and the cylindrical component radius is approximately 37 mm. The accuracy and reliability of roundness measurements are improved by using the proposed method for cylindrical components with a small radius, especially if the eccentricity and probe offset are large, and the tilt error and probe tip head radius are small. The proposed morphological filter method can be used for precision and ultra-precision roundness measurements, especially for functional assessments of roundness profiles.

  14. Optimum quantum states for interferometers with fixed and moving mirrors

    SciTech Connect

    Luis, Alfredo

    2004-04-01

    We address a systematic approach to the study of the optimum states reaching maximum resolution for interferometers with moving mirrors. We find a correspondence between the optimum states for interferometers with fixed and moving mirrors.

  15. Single-cell diffraction tomography with optofluidic rotation about a tilted axis

    NASA Astrophysics Data System (ADS)

    Müller, Paul; Schürmann, Mirjam; Chan, Chii J.; Guck, Jochen

    2015-08-01

    Optical diffraction tomography (ODT) is a tomographic technique that can be used to measure the three-dimensional (3D) refractive index distribution within living cells without the requirement of any marker. In principle, ODT can be regarded as a generalization of optical projection tomography which is equivalent to computerized tomography (CT). Both optical tomographic techniques require projection-phase images of cells measured at multiple angles. However, the reconstruction of the 3D refractive index distribution post-measurement differs for the two techniques. It is known that ODT yields better results than projection tomography, because it takes into account diffraction of the imaging light due to the refractive index structure of the sample. Here, we apply ODT to biological cells in a microfluidic chip which combines optical trapping and microfluidic flow to achieve an optofluidic single-cell rotation. In particular, we address the problem that arises when the trapped cell is not rotating about an axis perpendicular to the imaging plane, but is instead arbitrarily tilted. In this paper we show that the 3D reconstruction can be improved by taking into account such a tilted rotational axis in the reconstruction process.

  16. Proto-CIRCUS tilted-coil tokamak-torsatron hybrid: design and construction

    NASA Astrophysics Data System (ADS)

    Doumet, M.; Israeli, B. Y.; Hammond, K. C.; Sweeney, R. M.; Volpe, F. A.; Spong, D. A.; Clark, A. W.; Kornbluth, Y.

    2014-10-01

    An innovative magnetic confinement concept is based on a toroidal configuration in which the toroidal field coils are tilted and interlinked with each other. Field line tracing and equilibrium calculations suggest that this configuration can generate rotational transform with lower plasma current and exhibit less effective magnetic ripple than tokamaks of comparable size. These properties may have interesting implications for disruptions and steady-state operation. Proto-CIRCUS is a tabletop device recently constructed at Columbia University to test this concept. It features six interlocked coils with independently adjustable radial positions and tilt angles. Plasmas will have major and minor radii of approximately 16 cm and 5 cm, respectively. Start-up, heating and current drive will initially rely on 2.45 GHz electron cyclotron waves. Here we describe the design and construction of the device and present the results of numerical optimizations aimed at minimizing the required plasma current. Flux surface measurements will confirm whether this relatively simple concept can generate the expected rotational transform.

  17. Cantilever tilt causing amplitude related convolution in dynamic mode atomic force microscopy.

    PubMed

    Wang, Chunmei; Sun, Jielin; Itoh, Hiroshi; Shen, Dianhong; Hu, Jun

    2011-01-01

    It is well known that the topography in atomic force microscopy (AFM) is a convolution of the tip's shape and the sample's geometry. The classical convolution model was established in contact mode assuming a static probe, but it is no longer valid in dynamic mode AFM. It is still not well understood whether or how the vibration of the probe in dynamic mode affects the convolution. Such ignorance complicates the interpretation of the topography. Here we propose a convolution model for dynamic mode by taking into account the typical design of the cantilever tilt in AFMs, which leads to a different convolution from that in contact mode. Our model indicates that the cantilever tilt results in a dynamic convolution affected by the absolute value of the amplitude, especially in the case that corresponding contact convolution has sharp edges beyond certain angle. The effect was experimentally demonstrated by a perpendicular SiO(2)/Si super-lattice structure. Our model is useful for quantitative characterizations in dynamic mode, especially in probe characterization and critical dimension measurements.

  18. Adapting Tilt Corrections and the Governing Flow Equations for Steep, Fully Three-Dimensional, Mountainous Terrain

    NASA Astrophysics Data System (ADS)

    Oldroyd, Holly J.; Pardyjak, Eric R.; Huwald, Hendrik; Parlange, Marc B.

    2016-06-01

    In recent studies of atmospheric turbulent surface exchange in complex terrain, questions arise concerning velocity-sensor tilt corrections and the governing flow equations for coordinate systems aligned with steep slopes. The standard planar-fit method, a popular tilt-correction technique, must be modified when applied to complex mountainous terrain. The ramifications of these adaptations have not previously been fully explored. Here, we carefully evaluate the impacts of the selection of sector size (the range of flow angles admitted for analysis) and planar-fit averaging time. We offer a methodology for determining an optimized sector-wise planar fit (SPF), and evaluate the sensitivity of momentum fluxes to varying these SPF input parameters. Additionally, we clarify discrepancies in the governing flow equations for slope-aligned coordinate systems that arise in the buoyancy terms due to the gravitational vector no longer acting along a coordinate axis. New adaptions to the momentum equations and turbulence kinetic energy budget equation allow for the proper treatment of the buoyancy terms for purely upslope or downslope flows, and for slope flows having a cross-slope component. Field data show that new terms in the slope-aligned forms of the governing flow equations can be significant and should not be omitted. Since the optimized SPF and the proper alignment of buoyancy terms in the governing flow equations both affect turbulent fluxes, these results hold implications for similarity theory or budget analyses for which accurate flux estimates are important.

  19. Fabrication of black-gold coatings by glancing angle deposition with sputtering

    PubMed Central

    Vitrey, Alan; Alvarez, Rafael; Palmero, Alberto; González, María Ujué

    2017-01-01

    The fabrication of black-gold coatings using sputtering is reported here. Glancing angle deposition with a rotating substrate is needed to obtain vertical nanostructures. Enhanced light absorption is obtained in the samples prepared in the ballistic regime with high tilt angles. Under these conditions the diameter distribution of the nanostructures is centered at about 60 nm and the standard deviation is large enough to obtain black-metal behavior in the visible range. PMID:28326233

  20. Optimum design of ninety degree bends

    NASA Technical Reports Server (NTRS)

    Modi, Vijay; Cabuk, Hayri; Huan, Jian-Chun; Quadracci, Richard

    1992-01-01

    An algorithm for the optimum design of an internal flow component to obtain the maximum pressure rise is presented. Maximum pressure rise in a duct with simultaneous turning and diffusion is shown to be related to the control of flow separation on the passage walls. Such a flow is usually associated with downstream conditions that are desirable in turbomachinery and propulsion applications to ensure low loss and stable performance. The algorithm requires the solution of an 'adjoint' problem in addition to the 'direct' equations governing the flow in a body, which in the present analysis are assumed to be the laminar Navier-Stokes equations. The theoretical framework and computational algorithms presented in this study are for the steady Navier-Stokes equations. A procedure is developed for the numerical solution of the adjoint equations. This procedure is coupled with a direct solver in a design iteration loop, that provides a new shape with a higher pressure rise. This procedure is first validated for the design of optimum plane diffusers in two-dimensional flow. The direct Navier-Stokes and the 'adjoint' equations are solved using a finite volume formulation for spatial discretization in an artificial compressibility framework. A simplified version of the above approach is then utilized to design ninety degree diffusing bends. Calculations were carried out for a mean radius ratio at inlet of 2.5 and Reynolds numbers varying from 100 to 500. While at this stage laminar flows is assumed, it is shown that a similar approach can be conceived for turbulent flows.

  1. Optimum conditions for microbial carbonate precipitation.

    PubMed

    Okwadha, George D O; Li, Jin

    2010-11-01

    The type of bacteria, bacterial cell concentration, initial urea concentration, reaction temperature, the initial Ca(2+) concentration, ionic strength, and the pH of the media are some factors that control the activity of the urease enzyme, and may have a significant impact on microbial carbonate precipitation (MCP). Factorial experiments were designed based on these factors to determine the optimum conditions that take into consideration economic advantage while at the same time giving quality results. Sporosarcina pasteurii strain ATCC 11859 was used at constant temperature (25°C) and ionic strength with varying amounts of urea, Ca(2+), and bacterial cell concentration. The results indicate that the rate of ureolysis (k(urea)) increases with bacterial cell concentration, and the bacterial cell concentration had a greater influence on k(urea) than initial urea concentration. At 25 mM Ca(2+) concentration, increasing bacterial cell concentration from 10(6) to 10(8)cells mL⁻¹ increased the CaCO(3) precipitated and CO(2) sequestrated by over 30%. However, when the Ca(2+) concentration was increased 10-fold to 250 mM Ca(2+), the amount of CaCO(3) precipitated and CO(2) sequestrated increased by over 100% irrespective of initial urea concentration. Consequently, the optimum conditions for MCP under our experimental conditions were 666 mM urea and 250 mM Ca(2+) at 2.3×10⁸ cells mL⁻¹ bacterial cell concentration. However, a greater CaCO(3) deposition is achievable with higher concentrations of urea, Ca(2+), and bacterial cells so long as the respective quantities are within their economic advantage. X-ray Diffraction, Scanning Electron Microscopy and Energy Dispersive X-ray analyzes confirmed that the precipitate formed was CaCO(3) and composed of predominantly calcite crystals with little vaterite crystals.

  2. Absolute Measurement of Tilts via Fourier Analysis of Interferograms

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2004-01-01

    The Fourier method of interferogram analysis requires the introduction of a constant tilt into the interferogram to serve as a carrier signal for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.

  3. Absolute Measurement of Tilts via Fourier Analysis of Interferograms

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2004-01-01

    The Fourier method of interferogram analysis requires the introduction of a constant tilt into the inteferogram to serve as a 'carrier signal' for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.

  4. Tilt precursors before earthquakes on the San Andreas fault, California

    USGS Publications Warehouse

    Johnston, M.J.S.; Mortensen, C.E.

    1974-01-01

    An array of 14 biaxial shallow-borehole tiltmeters (at 10-7 radian sensitivity) has been installed along 85 kilometers of the San Andreas fault during the past year. Earthquake-related changes in tilt have been simultaneously observed on up to four independent instruments. At earthquake distances greater than 10 earthquake source dimensions, there are few clear indications of tilt change. For the four instruments with the longest records (>10 months), 26 earthquakes have occurred since July 1973 with at least one instrument closer than 10 source dimensions and 8 earthquakes with more than one instrument within that distance. Precursors in tilt direction have been observed before more than 10 earthquakes or groups of earthquakes, and no similar effect has yet been seen without the occurrence of an earthquake.

  5. Converting heat into directed transport on a tilted lattice

    NASA Astrophysics Data System (ADS)

    Teo, Colin; Bissbort, Ulf; Poletti, Dario

    2017-03-01

    We present a self-contained engine, which is made of one or more two-level systems, each of which is coupled to a single bath, as well as to a common load composed of a particle on a tilted lattice. We show that an increase in time of energy and entropy in the system composed of the spins and the particle, due to the interaction with the bath, can set the particle into upward motion at an average constant speed, even when driven by a single spin connected to a single bath. When considering an ensemble of different spins, the velocity of the particle is larger when the tilt is on resonance with any of the spins' energy splitting. Interestingly, we find regimes where the spins' polarization enters periodic cycles with the oscillation period being determined by the tilt of the lattice.

  6. Cerebrospinal fluid pressure in conscious head-down tilted rats

    NASA Technical Reports Server (NTRS)

    Severs, Walter B.; Morrow, Bret A.; Keil, Lanny C.

    1991-01-01

    The acute effects of a 1-h -45 deg head-down tilt on continouously recorded cerebrospinal fluid pressure (PCSF) of conscious rats are studied in order to investigate the shift of blood volume into the thoracic cavity in microgravity. PCSF, evaluated in 15-min time blocks over a 3-h experiment, increased slightly (less than 0.05) during the first 30 min of a control hour at 0 deg. There was a transient increase for about 5 min immediately after tilt (-45 deg) that may have been due to head movement after the position change. PCSF was statistically unchanged (above 0.05) during the second (-45 deg) hour and the third (0 deg) recovery hour. It is shown that the dynamics of intracranial pressure regulation can accommodate the acute cephalad fluid shift after tilting.

  7. Mantle dynamics of continent-wide tilting of Australia

    NASA Astrophysics Data System (ADS)

    Dicaprio, L.; Gurnis, M.; Muller, R. D.

    2009-12-01

    Australia is distinctive in that during the Cenozoic it experienced first order, broad-scale vertical motions unrelated to normal orogenic processes. The progressive continent-wide tilting down to the northeast is attributed to the horizontal motion of the continent over subducted slabs. We use plate tectonic reconstructions and a model of mantle convection to quantitatively link the geological evolution of the continent to mantle convection. The passage of slabs beneath the Southwest Pacific since 50 Ma is modeled numerically, and the results are compared to geologic observations of anomalous topography. Models show that Australia undergoes a 300 m northeast downward tilt as it approaches and overrides subducted slabs between Melanesia and the active margin along the Loyalty and proto-Tonga Kermadec subduction systems. This pattern of dynamic subsidence is consistent with observations of continent wide tilting and may indicate that during the Cenozoic Australia moved northward away from a relatively hot mantle anomaly presently located beneath Antarctica.

  8. Effect of tilt on strong motion data processing

    USGS Publications Warehouse

    Graizer, V.M.

    2005-01-01

    In the near-field of an earthquake the effects of the rotational components of ground motion may not be negligible compared to the effects of translational motions. Analyses of the equations of motion of horizontal and vertical pendulums show that horizontal sensors are sensitive not only to translational motion but also to tilts. Ignoring this tilt sensitivity may produce unreliable results, especially in calculations of permanent displacements and long-period calculations. In contrast to horizontal sensors, vertical sensors do not have these limitations, since they are less sensitive to tilts. In general, only six-component systems measuring rotations and accelerations, or three-component systems similar to systems used in inertial navigation assuring purely translational motion of accelerometers can be used to calculate residual displacements. ?? 2004 Elsevier Ltd. All rights reserved.

  9. Robust tilt and lock mechanism for hopping actuator

    DOEpatents

    Salton, Jonathan R.; Buerger, Stephen; Dullea, Kevin J.; Marron, Lisa C.; Salisbury, Curt Michael; Spletzer, Barry Louis

    2017-02-07

    A tilt and lock apparatus that includes a tilt servomechanism, a spiral torsion spring, a lock wheel, and a lock hook is described herein. The spiral torsion spring is mechanically coupled to the tilt servomechanism and the lock wheel (which includes an opening). When a shaft is positioned through the opening, rotation of the lock wheel is in unison with rotation of the shaft. An external surface of the lock wheel includes one or more grooves. The lock hook includes a head that engages and disengages the grooves. The lock wheel is stationary when the head engages one of the grooves and is rotatable when the head disengages the grooves. The head and the grooves are geometrically aligned when engaged to prevent creation of a force that acts to disengage the head responsive to an applied force acting on the shaft.

  10. On the phenomenology of tilted domains in lamellar eutectic growth

    NASA Astrophysics Data System (ADS)

    Caroli, B.; Caroli, C.; Fauve, S.

    1992-03-01

    We show that, due to the coupling between tilt (amplitude of the antisymmetric part of the font profile) and phase dynamics, the phenomenology of tilt domains of finite width proposed by Coullet et al. within the assumption of a subcritical homogeneous tilt bifurcation retains the same qualitative features when this bifurcation is direct, as is the case for lamellar eutectics. Nous montrons que, du fait du couplage entre les dynamiques d'inclinaison (amplitude de la partie impaire du profil de front) et de phase, la phénoménologie des domaines d'inclinaison de largeur finie proposée par Coullet et al. pour le cas d'une bifurcation d'inclinaison homogène sous critique garde les mêmes caractéristiques qualitatives quand cette bifurcation est directe, comme c'est le cas pour la croissance eutectique lamellaire.

  11. An electronic pan/tilt/zoom camera system

    NASA Technical Reports Server (NTRS)

    Zimmermann, Steve; Martin, H. L.

    1992-01-01

    A small camera system is described for remote viewing applications that employs fisheye optics and electronics processing for providing pan, tilt, zoom, and rotational movements. The fisheye lens is designed to give a complete hemispherical FOV with significant peripheral distortion that is corrected with high-speed electronic circuitry. Flexible control of the viewing requirements is provided by a programmable transformation processor so that pan/tilt/rotation/zoom functions can be accomplished without mechanical movements. Images are presented that were taken with a prototype system using a CCD camera, and 5 frames/sec can be acquired from a 180-deg FOV. The image-tranformation device can provide multiple images with different magnifications and pan/tilt/rotation sequences at frame rates compatible with conventional video devices. The system is of interest to the object tracking, surveillance, and viewing in constrained environments that would require the use of several cameras.

  12. Generation of optimum pseudorandom signals for respiratory impedance measurements.

    PubMed

    Daróczy, B; Hantos, Z

    1990-02-01

    Spontaneous breathing may impair the reliability of forced oscillatory impedance estimates at low frequencies, especially when the oscillatory power is distributed among many frequency values. Since the amplitude of the external forcing is limited to avoid non-linearities, it is suggested that the total energy of a composite electrical signal driving the loudspeaker be maximized at a given amplitude by finding the optimum phase relationships of the signal components, and that the low-frequency components increase in energy at the expense of the less disturbed high-frequency region. In healthy children and adults and in obstructed patients, the coherences and the coefficients of variation of the respiratory system impedance (Zrs) at 2 and 3 Hz were studied in the case of three test signals of 2-15 Hz bandwidth. Signals T1 and T2 had a flat power spectrum, whereas the components of T3 decreased sharply between 2 and 5 Hz; T1 was generated by simple random selection of phase angles, while optimization for maximum energy was done for T2 and T3. Optimization alone (T2) increased the reliability of the Zrs estimates at all frequencies, whereas enhancement of the low-frequency power (T3) resulted in a radical improvement of the estimates at 2 and 3 Hz, without loss in reliability at higher frequencies.

  13. Direct and Inverse Kinematics of a Novel Tip-Tilt-Piston Parallel Manipulator

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad

    2004-01-01

    Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is shown that the 16 solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.

  14. Radial inclination and palmar tilt as risk factors for Kienböck's disease.

    PubMed

    Jafari, Davood; Shariatzadeh, Hooman; Mazhar, Farid Najd; Ghahremani, Mohammad H; Jalili, Alireza

    2012-11-01

    Radial inclination angle (RIA) and palmar tilt (PT) of distal articular surface of radius, are anatomical factors that influence force transmission across the wrist and load transfer to the lunate. The purpose of this study is to evaluate the relationship between these parameters and Kienböck's disease. We measured and compared RIA and PT in standard posteroanterior and lateral wrist x-rays of 55 patients with Kienböck's disease and 60 controls. The mean RIA was 25.5° in Kienböck's disease patients and 23.3° in the control group (P = .002). The mean PT was 11.5° and 9.4° for patients and controls, respectively (P = .005). All of these differences were statistically significant. We concluded that there is an etiological association between higher degrees of RIA and PT with Kienböck's disease.

  15. [Arthroscopically assisted osteosynthesis of dorsally tilted intraarticular distal radius fractures--technique and results].

    PubMed

    Lutz, M; Wieland, T; Deml, C; Erhart, S; Rudisch, A; Klestil, T

    2014-10-01

    The present paper describes the indication and application of an arthroscopically assisted osteosynthesis for distal radius fractures. Visualisation of articular incongruency is emphasised with special regard to articular fracture fragment reduction. In addition to that, classification of soft tissue injuries and treatment options are discussed. The final clinical and radiological results of 17 patients are presented: DASH and PRWE averaged 4.9 and 6.0 respectively. Active range of motion measured 123° for flexion/extension, 51° for radial and ulnar deviation and 163° for pronosupination, which is 87%, 98% and 97%, respectively, compared with the opposite wrist. Radial inclination at final follow-up was 23°, palmar tilt measured 6° and ulnar variance averaged -1.2 mm. The scapholunate gap at follow-up was 1.6 mm, and the scapholunate angle measured 57°.

  16. Determination of structure tilting in magnetized plasmas—Time delay estimation in two dimensions

    SciTech Connect

    Guszejnov, Dávid; Bencze, Attila; Zoletnik, Sándor; Krämer-Flecken, Andreas

    2013-06-15

    Time delay estimation (TDE) is a well-known technique to investigate poloidal flows in fusion plasmas. The present work is an extension of the earlier works of Bencze and Zoletnik [Phys. Plasmas 12, 052323 (2005)] and Tal et al.[Phys. Plasmas 18, 122304 (2011)]. From the prospective of the comparison of theory and experiment, it seems to be important to estimate the statistical properties of the TDE based on solid mathematical groundings. This paper provides analytic derivation of the variance of the TDE using a two-dimensional model for coherent turbulent structures in the plasma edge and also gives an explicit method for determination of the tilt angle of structures. As a demonstration, this method is then applied to the results of a quasi-2D Beam Emission Spectroscopy measurement performed at the TEXTOR tokamak.

  17. Three-dimensional microelectromechanical tilting platform operated by gear-driven racks

    SciTech Connect

    Klody, Kelly A.; Habbit, Jr., Robert D.

    2005-11-01

    A microelectromechanical (MEM) tiltable-platform apparatus is disclosed which utilizes a light-reflective platform (i.e. a micromirror) which is supported above a substrate by flexures which can be bent upwards to tilt the platform in any direction over an angle of generally .+-.10 degrees using a gear-driven rack attached to each flexure. Each rack is driven by a rotary microengine (i.e. a micromotor); and an optional thermal actuator can be used in combination with each microengine for initially an initial uplifting of the platform away from the substrate. The MEM apparatus has applications for optical switching (e.g. between a pair of optical fibers) or for optical beam scanning.

  18. Atomistic simulation of tensile deformation behavior of ∑5 tilt grain boundaries in copper bicrystal.

    PubMed

    Zhang, Liang; Lu, Cheng; Tieu, Kiet

    2014-08-01

    Experiments on polycrystalline metallic samples have indicated that Grain boundary (GB) structure can affect many material properties related to fracture and plasticity. In this study, atomistic simulations are employed to investigate the structures and mechanical behavior of both symmetric and asymmetric ∑5[0 0 1] tilt GBs of copper bicrystal. First, the equilibrium GB structures are generated by molecular statics simulation at 0K. The results show that the ∑5 asymmetric GBs with different inclination angles (φ) are composed of only two structural units corresponding to the two ∑5 symmetric GBs. Molecular dynamics simulations are then conducted to investigate the mechanical response and the underlying deformation mechanisms of bicrystal models with different ∑5 GBs under tension. Tensile deformation is applied under both 'free' and 'constrained' boundary conditions. Simulation results revealed different mechanical properties of the symmetric and asymmetric GBs and indicated that stress state can play an important role in the deformation mechanisms of nanocrystalline materials.

  19. Diffraction patterns from multiple tilted laser apertures: numerical analysis

    NASA Astrophysics Data System (ADS)

    Kovalev, Anton V.; Polyakov, Vadim M.

    2016-03-01

    We propose a Rayleigh-Sommerfeld based method for numerical calculation of multiple tilted apertures near and far field diffraction patterns. Method is based on iterative procedure of fast Fourier transform based circular convolution of the initial field complex amplitudes distribution and impulse response function modified in order to account aperture and observation planes mutual tilt. The method is computationally efficient and has good accordance with the results of experimental diffraction patterns and can be applied for analysis of spatial noises occurring in master oscillator power amplifier laser systems. The example of diffraction simulation for a Phobos-Ground laser rangefinder amplifier is demonstrated.

  20. Simultaneous measurement of translation and tilt using digital speckle photography

    SciTech Connect

    Bhaduri, Basanta; Quan, Chenggen; Tay, Cho Jui; Sjoedahl, Mikael

    2010-06-20

    A Michelson-type digital speckle photographic system has been proposed in which one light beam produces a Fourier transform and another beam produces an image at a recording plane, without interfering between themselves. Because the optical Fourier transform is insensitive to translation and the imaging technique is insensitive to tilt, the proposed system is able to simultaneously and independently determine both surface tilt and translation by two separate recordings, one before and another after the surface motion, without the need to obtain solutions for simultaneous equations. Experimental results are presented to verify the theoretical analysis.

  1. Sedimentary basins reconnaissance using the magnetic Tilt-Depth method

    USGS Publications Warehouse

    Salem, A.; Williams, S.; Samson, E.; Fairhead, D.; Ravat, D.; Blakely, R.J.

    2010-01-01

    We compute the depth to the top of magnetic basement using the Tilt-Depth method from the best available magnetic anomaly grids covering the continental USA and Australia. For the USA, the Tilt-Depth estimates were compared with sediment thicknesses based on drilling data and show a correlation of 0.86 between the datasets. If random data were used then the correlation value goes to virtually zero. There is little to no lateral offset of the depth of basinal features although there is a tendency for the Tilt-Depth results to be slightly shallower than the drill depths. We also applied the Tilt-Depth method to a local-scale, relatively high-resolution aeromagnetic survey over the Olympic Peninsula of Washington State. The Tilt-Depth method successfully identified a variety of important tectonic elements known from geological mapping. Of particular interest, the Tilt-Depth method illuminated deep (3km) contacts within the non-magnetic sedimentary core of the Olympic Mountains, where magnetic anomalies are subdued and low in amplitude. For Australia, the Tilt-Depth estimates also give a good correlation with known areas of shallow basement and sedimentary basins. Our estimates of basement depth are not restricted to regional analysis but work equally well at the micro scale (basin scale) with depth estimates agreeing well with drill hole and seismic data. We focus on the eastern Officer Basin as an example of basin scale studies and find a good level of agreement between previously-derived basin models. However, our study potentially reveals depocentres not previously mapped due to the sparse distribution of well data. This example thus shows the potential additional advantage of the method in geological interpretation. The success of this study suggests that the Tilt-Depth method is useful in estimating the depth to crystalline basement when appropriate quality aeromagnetic anomaly data are used (i.e. line spacing on the order of or less than the expected depth to

  2. V/STOL tilt rotor aircraft study. Volume 6: Preliminary design of a composite wing for tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.; Badri-Nath, Y.

    1973-01-01

    The results of a study of the use of composite materials in the wing of a tilt rotor aircraft are presented. An all-metal tilt rotor aircraft was first defined to provide a basis for comparing composite with metal structure. A configuration study was then done in which the wing of the metal aircraft was replaced with composite wings of varying chord and thickness ratio. The results of this study defined the design and performance benefits obtainable with composite materials. Based on these results the aircraft was resized with a composite wing to extend the weight savings to other parts of the aircraft. A wing design was then selected for detailed structural analysis. A development plan including costs and schedules to develop this wing and incorporate it into a proposed flight research tilt rotor vehicle has been devised.

  3. Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth's surface for cloudless atmospheres

    SciTech Connect

    Bird, R.; Riordan, C.

    1984-12-01

    A new, simple model for calculating clear-sky direct and diffuse spectral irradiance on horizontal and tilted surfaces is presented. The model is based on previously reported simple algorithms and on comparisons with rigorous radiative transfer calculations and limited outdoor measurements. Equations for direct normal irradiance are outlined; and include: Raleigh scattering; aerosol scattering and absorption; water vapor absorption; and ozone and uniformly mixed gas absorption. Inputs to the model include solar zenith angle, collector tilt angle, atmospheric turbidity, amount of ozone and precipitable water vapor, surface pressure, and ground albedo. The model calculates terrestrial spectra from 0.3 to 4.0 ..mu..m with approximately 10 nm resolution. A major goal of this work is to provide researchers with the capability to calculate spectral irradiance for different atmospheric conditions and different collector geometries using microcomputers. A listing of the computer program is provided.

  4. A study on difference and importance of sacral slope and pelvic sacral angle that affect lumbar curvature.

    PubMed

    Choi, Seyoung; Lee, Minsun; Kwon, Byongan

    2014-01-01

    Individual pelvic sacral angle was measured, compared and analyzed for the 6 male and female adults who were diagnosed with lumbar spinal stenosis, foraminal stenosis and mild spondylolisthesis in accordance with spinal parameters, pelvic parameters and occlusion state of sacroiliac joint presented by the author of this thesis based on the fact that the degree of lumbar excessive lordosis that was one of the causes for lumbar pain was determined by sacral slope. The measured values were compared with the standard values of the average normal range from 20 s to 40 s of normal Koreans stated in the study on the change in lumbar lordosis angle, lumbosacral angle and sacral slope in accordance with the age by Oh et al. [5] and sacral slope and pelvic sacral slope of each individual of the subjects for measurement were compared. Comparing the difference between the two tilt angles possessed by an individual is a comparison to determine how much the sacroiliac joint connecting pelvis and sacral vertebrae compensated and corrected the sacral vertebrae slope by pelvic tilt under the condition of synarthrodial joint.Under the condition that the location conforming to the line in which the sagittal line of gravity connects with pelvic ASIS and pubic pubic tuberele is the neutral location of pelvic tilt, sacral slope being greater than pelvic sacral slope means pelvic anterior tilting, whereas sacral slope being smaller than pelvic sacral slope means pelvic posterior tilting. On that account, male B, female A and female C had a pelvic posterior tilting of 16 degrees, 1 degree and 5 degrees respectively, whereas male A, male C and female B had a pelvic anterior tilting of 3 degrees, 9 degrees and 4 degrees respectively. In addition, the 6 patients the values of lumbar lordosis angle, lumbosacral angle and sacral slope that were almost twice as much as the normal standard values of Koreans. It is believed that this is because the pelvic sacral slope maintaining an angle that is

  5. Effects of head-down tilt on fluid and electrolyte balance

    NASA Technical Reports Server (NTRS)

    Volicer, L.; Jean-Charles, R.; Chobanian, A. V.

    1976-01-01

    The metabolic effects of -5 deg tilt were studied in eight normal individuals. Exposure to tilt for 24 hr increased sodium excretion and decreased plasma volume. Plasma renin activity and plasma aldosterone levels were not significantly different from supine values during the first 6 hr of tilting, but were increased significantly at the end of the 24-hr tilt period. Creatinine clearance and potassium balance were not affected by the tilt. These findings indicate that head-down tilt induces a sodium diuresis and stimulation of the renin-angiotensin-aldosterone system.

  6. Breaking the trade-off between thermal and electrical conductivities in the thermoelectric material of an artificially tilted multilayer

    PubMed Central

    Sakai, Akihiro; Kanno, Tsutomu; Takahashi, Kouhei; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka; Abe, Hiroya

    2014-01-01

    Breaking the trade-off between thermoelectric (TE) parameters has long been demanded in order to highly enhance its performance. Here, we report the ‘trade-off-free’ interdependence between thermal conductivity (κ) and resistivity (ρ) in a TE/metal tilted multilayer and significant enhancement of TE power generation based on the off-diagonal thermoelectric (ODTE) effect, which generates transverse electrical current in response to vertical thermal current. ρ and κ can be simultaneously decreased by setting charge flow along more-electrically conductive layer and thermal flow across less-thermally conductive perpendicular direction by decreasing the tilting angle. Moreover, introducing porosity in the metal layer enables to decrease in κ without changing ρ, because the macroscopic ρ and κ of the tilted multilayer is respectively governed by the properties of the TE material and the metal with large dissimilarity. The obtained results reveal new strategies for developing trade-off-free TE materials, which will stimulate practical use of TE conversion for waste-heat recovery. PMID:25124989

  7. Optimum coding techniques for MST radars

    NASA Technical Reports Server (NTRS)

    Sulzer, M. P.; Woodman, R. F.

    1986-01-01

    The optimum coding technique for MST (mesosphere stratosphere troposphere) radars is that which gives the lowest possible sidelobes in practice and can be implemented without too much computing power. Coding techniques are described in Farley (1985). A technique mentioned briefly there but not fully developed and not in general use is discussed here. This is decoding by means of a filter which is not matched to the transmitted waveform, in order to reduce sidelobes below the level obtained with a matched filter. This is the first part of the technique discussed here; the second part consists of measuring the transmitted waveform and using it as the basis for the decoding filter, thus reducing errors due to imperfections in the transmitter. There are two limitations to this technique. The first is a small loss in signal to noise ratio (SNR), which usually is not significant. The second problem is related to incomplete information received at the lowest ranges. An appendix shows a technique for handling this problem. Finally, it is shown that the use of complementary codes on transmission and nonmatched decoding gives the lowest possible sidelobe level and the minimum loss in SNR due to mismatch.

  8. Optimum folding pathways for growing protein chains.

    PubMed

    Senturk, Serife; Baday, Sefer; Arkun, Yaman; Erman, Burak

    2007-11-26

    The folding of a protein is studied as it grows residue by residue from the N-terminus and enters an environment that stabilizes the folded state. This mode of folding of a growing chain is different from refolding where the full chain folds from a disordered initial configuration to the native state. We propose a sequential dynamic optimization method that computes the evolution of optimum folding pathways as amino acid residues are added to the peptide chain one by one. The dynamic optimization formulation is deterministic and uses Newton's equations of motion and a Go-type potential that establishes the native contacts and excluded volume effects. The method predicts the optimal energy-minimizing path among all the alternative feasible pathways. As two examples, the folding of the chicken villin headpiece, a 36-residue protein, and chymotrypsin inhibitor 2 (CI2), a 64-residue protein, are studied. Results on the villin headpiece show significant differences from the refolding of the same chain studied previously. Results on CI2 mostly agree with the results of refolding experiments and computational work.

  9. Optimum harvest maturity for Leymus chinensis seed

    PubMed Central

    Lin, Jixiang; Wang, Yingnan; Qi, Mingming; Li, Xiaoyu; Yang, Chunxue; Wang, Yongcui

    2016-01-01

    ABSTRACT Timely harvest is critical to achieve maximum seed viability and vigour in agricultural production. However, little information exists concerning how to reap the best quality seeds of Leymus chinensis, which is the dominant and most promising grass species in the Songnen Grassland of Northern China. The objective of this study was to investigate and evaluate possible quality indices of the seeds at different days after peak anthesis. Seed quality at different development stages was assessed by the colours of the seed and lemmas, seed weight, moisture content, electrical conductivity of seed leachate and germination indices. Two consecutive years of experimental results showed that the maximum seed quality was recorded at 39 days after peak anthesis. At this date, the colours of the seed and lemmas reached heavy brown and yellow, respectively. The seed weight was highest and the moisture content and the electrical conductivity of seed leachate were lowest. In addition, the seed also reached its maximum germination percentage and energy at this stage, determined using a standard germination test (SGT) and accelerated ageing test (AAT). Thus, Leymus chinensis can be harvested at 39 days after peak anthesis based on the changes in parameters. Colour identification can be used as an additional indicator to provide a more rapid and reliable measure of optimum seed maturity; approximately 10 days after the colour of the lemmas reached yellow and the colour of the seed reached heavy brown, the seed of this species was suitable for harvest. PMID:27170257

  10. Improve filtration for optimum equipment reliability

    SciTech Connect

    Cervera, S.M.

    1996-01-01

    The introduction 20 years ago of the American Petroleum Institute Standard API-614 as a purchase specification for lubrication, shaft sealing and control oil systems, had a considerable impact and did much to improve system reliability at that time. Today, however, these recommendations regarding filter rating and flushing cleanliness are outdated. Much research in the tribology field correlates clearance size particulate contamination with accelerated component wear, fatigue and performance degradation. Some of these studies demonstrate that by decreasing the population of clearance size particulate in lubrication oils, component life increases exponentially. Knowing the dynamic clearances of a piece of machinery makes it possible, using the ISO 4406 Cleanliness Code, to determine what cleanliness level will minimize contamination-related component wear/fatigue and thus help optimize machinery performance and reliability. Data obtained by the author through random sampling of rotating equipment lube and seal oil systems indicate that the API-614 standard, as it pertains to filtration and flushing, is insufficient to ensure that particulate contamination is maintained to within the levels necessary to achieve optimum equipment reliability and safety, without increasing operating cost. Adopting and practicing the guidelines presented should result in the following benefits: (1) the frequency of bearing, oil pump, mechanical seal, fluid coupling, gearbox and hydraulic control valve failures would be minimized; (2) the mean time between planned maintenance (MTBPM) would be increased. The result will be a substantial increase in safety and cost savings to the operator.

  11. Optimum arousal level preservation system using biosignals.

    PubMed

    Takahashi, Issey; Ohashi, Hayato; Yokoyama, Kiyoko

    2011-12-01

    The purpose of this study is to develop a driver's optimum arousal level preservation system while driving. The important point of developing this system is how we keep a driver's adequate conditions on driving. Most of the systems, which have been already put to practical use, are using audible sound or warning messages on a display to urge driver to take a rest. However, arousal levels are strongly related to the balance of autonomic modulations; therefore we need the stimulation that preserves a driver's adequate condition physiologically. Some preceding studies reported that the stimulation using the biological rhythms especially heart beating rhythms are influential to human body. We gave a consideration to this fact and made a course of using driver's heartbeat rhythm for the feedback stimulation to realize the demand. In this paper, we examined the stimulation from two points of views. The one is to investigate the possibilities of controlling a driver's heartbeat rhythms by making synchronization between the driver's heartbeat and a vibratory stimulation. The other one is to find out the stimulation that induces RSA (Respiratory Sinus Arrhythmia) in order to adjust the parasympathetic modulations. The result of the experiment indicated that the 1 [s] constant beat stimulation has an effect of inducing RSA, and the stimulation using a rhythm of heartbeat has a possibility of controlling driver's heart rate variability, and its' efficiency might be possible to be improved by adjusting the rhythm of the stimulation to the driver's heartbeat rhythms.

  12. MBG holograms under the optimum conditions

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-ming; Li, Min-qian; Pan, Jin-fang; Wang, Junmin; Sun, Meng-jia

    1996-12-01

    A systematic investigation is carried out on the optimization of diffraction efficiency (DE) of only methylene blue sensitized gelatin (MBG) holograms. The influence of the following factors on DE are studied: the concentration of methylene blue (Cm), the concentration of ammonium dichromate solution (Ca), swelling temperature (Ts), exposure (E) and the relative humidity of air (RH). This study shows that under the condition of Cm-0.009%; Ca- 5%; Ts within 35 - 45 degree(s)C; E-150 mJ/cm2; RH within 45 - 65%, an optimum DE of over 80%, even 90% can be achieved in MBG holograms. In our experiments we find that a moderate DE(35%) is obtained without dichromate solution in post- processing. In order to know the role which the condition of bathing the plate in a dichromate solution plays and the photo-chemical mechanism of forming the interference pattern in the films, the X-ray spectra are made, the Cr3+ ligands are not found; this means that the quantity of Cr3+ ligands is too small to measure, even if its is existing in the processed film. These results can not be interpreted with the normal photo-chemical mechanism of forming the holograms.

  13. Impaired perception of surface tilt in progressive supranuclear palsy

    PubMed Central

    Dale, Marian L.; Horak, Fay B.; Wright, W. Geoffrey; Schoneburg, Bernadette M.; Nutt, John G.; Mancini, Martina

    2017-01-01

    Introduction Progressive supranuclear palsy (PSP) is characterized by early postural instability and backward falls. The mechanisms underlying backward postural instability in PSP are not understood. The aim of this study was to test the hypothesis that postural instability in PSP is a result of dysfunction in the perception of postural verticality. Methods We gathered posturography data on 12 subjects with PSP to compare with 12 subjects with idiopathic Parkinson’s Disease (PD) and 12 healthy subjects. Objective tests of postural impairment included: dynamic sensory perception tests of gravity and of surface oscillations, postural responses to surface perturbations, the sensory organization test of postural sway under altered sensory conditions and limits of stability in stance. Results Perception of toes up (but not toes down) surface tilt was reduced in subjects with PSP compared to both control subjects (p≤0.001 standing, p≤0.007 seated) and subjects with PD (p≤0.03 standing, p≤0.04 seated). Subjects with PSP, PD and normal controls accurately perceived the direction of gravity when standing on a tilting surface. Unlike PD and control subjects, subjects with PSP exerted less postural corrective torque in response to toes up surface tilts. Discussion Difficulty perceiving backward tilt of the surface or body may account for backward falls and postural impairments in patients with PSP. These observations suggest that abnormal central integration of sensory inputs for perception of body and surface orientation contributes to the pathophysiology of postural instability in PSP. PMID:28267762

  14. Abnormal Tilt Perception During Centrifugation in Patients with Vestibular Migraine.

    PubMed

    Wang, Joanne; Lewis, Richard F

    2016-06-01

    Vestibular migraine (VM), defined as vestibular symptoms caused by migraine mechanisms, is very common but poorly understood. Because dizziness is often provoked in VM patients when the semicircular canals and otolith organs are stimulated concurrently (e.g., tilting the head relative to gravity), we measured tilt perception and eye movements in patients with VM and in migraine and normal control subjects during fixed-radius centrifugation, a paradigm that simultaneously modulates afferent signals from the semicircular canals and otoliths organs. Twenty-four patients (8 in each category) were tested with a motion paradigm that generated an inter-aural centrifugal force of 0.36 G, resulting in a 20° tilt of the gravito-inertial force in the roll plane. We found that percepts of roll tilt developed slower in VM patients than in the two control groups, but that eye movement responses, including the shift in the eye's rotational axis, were equivalent in all three groups. These results demonstrate a change in vestibular perception in VM that is unaccompanied by changes in vestibular-mediated eye movements and suggest that either the brain's integration of canal and otolith signals or the dynamics of otolith responses are aberrant in patients with VM.

  15. Correlation between length and tilt of lipid tails

    SciTech Connect

    Kopelevich, Dmitry I.; Nagle, John F.

    2015-10-21

    It is becoming recognized from simulations, and to a lesser extent from experiment, that the classical Helfrich-Canham membrane continuum mechanics model can be fruitfully enriched by the inclusion of molecular tilt, even in the fluid, chain disordered, biologically relevant phase of lipid bilayers. Enriched continuum theories then add a tilt modulus κ{sub θ} to accompany the well recognized bending modulus κ. Different enrichment theories largely agree for many properties, but it has been noticed that there is considerable disagreement in one prediction; one theory postulates that the average length of the hydrocarbon chain tails increases strongly with increasing tilt and another predicts no increase. Our analysis of an all-atom simulation favors the latter theory, but it also shows that the overall tail length decreases slightly with increasing tilt. We show that this deviation from continuum theory can be reconciled by consideration of the average shape of the tails, which is a descriptor not obviously includable in continuum theory.

  16. Tilted axis rotation in odd-odd {sup 164}Tm

    SciTech Connect

    Reviol, W.; Riedinger, L.L.; Wang, X.Z.; Zhang, J.Y.

    1996-12-31

    Ten band structures are observed in {sup 164}Tm, among them sets of parallel and anti-parallel couplings of the proton and neutron spins. The Tilted Axis Cranking scheme is applied for the first time to an odd-odd nucleus in a prominent region of nuclear deformation.

  17. ELECTRIC FURNACES TILT AROUND A PIVOT UNDER THE SPOUT TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ELECTRIC FURNACES TILT AROUND A PIVOT UNDER THE SPOUT TO FILL BULL LADLES BELOW THE CHARGING DECK. THE REAR VIEW OF A POURING ELECTRIC FURNACE FROM THE CHARGING DECK IS SHOWN HERE. - Southern Ductile Casting Company, Melting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  18. Simulations of Micropumps Based on Tilted Flexible Fibers

    NASA Astrophysics Data System (ADS)

    Hancock, Matthew; Elabbasi, Nagi; Demirel, Melik

    2015-11-01

    Pumping liquids at low Reynolds numbers is challenging because of the principle of reversibility. We report here a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla valves, check valves). We demonstrate proof-of-concept with 2D and 3D fluid-structure interaction (FSI) simulations in COMSOL Multiphysics®of micropumps consisting of a source for oscillatory fluidic motion, e.g. a piston, and a channel lined with tilted flexible rods or sheets to provide rectification. When flow is against the rod tilt direction, the rods bend backward, narrowing the channel and increasing flow resistance; when flow is in the direction of rod tilt, the rods bend forward, widening the channel and decreasing flow resistance. The 2D and 3D simulations involve moving meshes whose quality is maintained by prescribing the mesh displacement on guide surfaces positioned on either side of each flexible structure. The prescribed displacement depends on structure bending and maintains mesh quality even for large deformations. Simulations demonstrate effective pumping even at Reynolds numbers as low as 0.001. Because rod rigidity may be specified independently of Reynolds number, in principle, rod rigidity may be reduced to enable pumping at arbitrarily low Reynolds numbers.

  19. Zero-plasma-current equilibria generated by tilted planar coils

    NASA Astrophysics Data System (ADS)

    Li, J.; Israeli, B.; Hammond, K. C.; Volpe, F. A.

    2016-10-01

    It is known that a periodic toroidal arrangement of tilted planar coils, combined with vertical field coils, can generate a helical magnetic field. One question, though, is: is this coil-set a generator or an amplifier of rotational transform? In other words, is a finite plasma-current needed? A numerical scan of coil-currents shows that configurations exist, for which no plasma-current is needed, and yet torsatron plasmas of finite volume can be obtained. The case of six tilted circular coils has been examined in great detail because of its relevance to the CIRCUS device operated by Columbia, a generalization of the two-tilted-coil CNT stellarator, also at Columbia. More axisymmetric configurations featuring a higher number of tilted circular coils are also being investigated. The calculations are performed with the aid of a numerical field-line tracer and the VMEC equilibrium solver, slightly modified to reflect the simplicity of the coil geometry: the coils are not discretized; instead, their field is evaluated by means of analytical expressions. This allows for faster calculations and rapid, fine scans of large parameter spaces.

  20. Reading Angles in Maps

    ERIC Educational Resources Information Center

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  1. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The

  2. Digital holographic metrology based on multi-angle interferometry.

    PubMed

    Dong, Jun; Jiang, Chao; Jia, Shuhai

    2016-09-15

    We propose a multi-angle interferometry method for digital holographic metrology. In an application of three-dimensional (3D) reconstruction, the hologram corresponding to a different illumination angle is recorded as the illumination angle with a single wavelength tilted at regular intervals by an electronically controlled rotating stage. A Fourier-transform-based axial depth scanning algorithm formed by the reconstructed phase is used to obtain the height point by point over the whole field of view. Hence, the 3D reconstruction can be obtained effectively; even the object has large depth discontinuities resulting from the difficulty of the phase unwrapping. Due to a monochrome source only being used, the method is available for objects with wavelength-dependent reflectivity and those that are free of chromatic aberration caused by the different wavelengths.

  3. Fast auto-acquisition tomography tilt series by using HD video camera in ultra-high voltage electron microscope.

    PubMed

    Nishi, Ryuji; Cao, Meng; Kanaji, Atsuko; Nishida, Tomoki; Yoshida, Kiyokazu; Isakozawa, Shigeto

    2014-11-01

    series of 61 images within 30 minutes. Accuracy and repeatability were good enough to practical use (Figure 1). We successfully reduced the total acquisition time of a tomography tilt series in half than before.jmicro;63/suppl_1/i25/DFU066F1F1DFU066F1Fig. 1.Objective lens current change with a tilt angle during acquisition of tomography series (Sample: a rat hepatocyte, thickness: 2 m, magnification: 4k, acc. voltage: 2 MV). Tilt angle range is ±60 degree with 2 degree step angle. Two series were acquired in the same area. Both data were almost same and the deviation was smaller than the minimum step by manual, so auto-focus worked well. We also developed a computer-aided three dimensional (3D) visualization and analysis software for electron tomography "HawkC" which can sectionalize the 3D data semi-automatically[5,6]. If this auto-acquisition system is used with IMOD reconstruction software[7] and HawkC software, we will be able to do on-line UHVEM tomography. The system would help pathology examination in the future.This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, under a Grant-in-Aid for Scientific Research (Grant No. 23560024, 23560786), and SENTAN, Japan Science and Technology Agency, Japan.

  4. Peculiar velocity field: Constraining the tilt of the Universe

    SciTech Connect

    Ma Yinzhe; Gordon, Christopher; Feldman, Hume A.

    2011-05-15

    A large bulk flow, which is in tension with the Lambda cold dark matter ({Lambda}CDM) cosmological model, has been observed. In this paper, we provide a physically plausible explanation of this bulk flow, based on the assumption that some fraction of the observed dipole in the cosmic microwave background is due to an intrinsic fluctuation, so that the subtraction of the observed dipole leads to a mismatch between the cosmic microwave background defined rest frame and the matter rest frame. We investigate a model that takes into account the relative velocity (hereafter the tilted velocity) between the two frames, and develop a Bayesian statistic to explore the likelihood of this tilted velocity. By studying various independent peculiar velocity catalogs, we find that (1) the magnitude of the tilted velocity u is around 400 km/s, and its direction is close to what is found from previous bulk flow analyses; for most catalogs analyzed, u=0 is excluded at about the 2.5{sigma} level; (2) constraints on the magnitude of the tilted velocity can result in constraints on the duration of inflation, due to the fact that inflation can neither be too long (no dipole effect) nor too short (very large dipole effect); (3) under the assumption of a superhorizon isocurvature fluctuation, the constraints on the tilted velocity require that inflation lasts at least 6 e-folds longer (at the 95% confidence interval) than that required to solve the horizon problem. This opens a new window for testing inflation and models of the early universe from observations of large scale structure.

  5. Modeling Flow Past a Tilted Vena Cava Filter

    SciTech Connect

    Singer, M A; Wang, S L

    2009-06-29

    Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside a model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.

  6. Differences in lumbar and pelvic angles and gluteal pressure in different sitting postures.

    PubMed

    Yu, Ji-Su; An, Duk-Hyun

    2015-05-01

    [Purpose] To investigate the effects of erect sitting, slouched posture with cross-legged sitting, and erect posture with cross-legged sitting on the lumbar and pelvic angles, and gluteal pressure. [Subjects] For the experiments, 17 healthy women were recruited. [Methods] All subjects were asked to perform three sitting postures: erect sitting, slouched posture with cross-legged sitting, and erect posture with cross-legged sitting. Lumbar and pelvic angles were measured using a three-dimensional motion-capture system, and gluteal pressure was measured using a pressure mat. [Results] Compared to erector sitting, slouched posture with cross-legged sitting showed significantly greater lumbar flexion, posterior pelvic tilt, and left pelvic tilt. Compared to erect sitting, erect posture with cross-legged sitting showed significantly greater lumbar flexion and posterior pelvic tilt. Compared to erect posture with cross-legged sitting, slouched posture with cross-legged sitting showed significantly greater lumbar flexion and posterior pelvic tilt. Compared to erect sitting and erect posture with cross-legged sitting, slouched posture with cross-legged sitting showed significantly greater left gluteal pressure; there was no significant difference in right gluteal pressure. [Conclusion] An erect posture can reduce changes in lumbar and pelvic angles, and gluteal pressure compared to a slouched posture during cross-legged sitting.

  7. Prediction of noise constrained optimum takeoff procedures

    NASA Technical Reports Server (NTRS)

    Padula, S. L.

    1980-01-01

    An optimization method is used to predict safe, maximum-performance takeoff procedures which satisfy noise constraints at multiple observer locations. The takeoff flight is represented by two-degree-of-freedom dynamical equations with aircraft angle-of-attack and engine power setting as control functions. The engine thrust, mass flow and noise source parameters are assumed to be given functions of the engine power setting and aircraft Mach number. Effective Perceived Noise Levels at the observers are treated as functionals of the control functions. The method is demonstrated by applying it to an Advanced Supersonic Transport aircraft design. The results indicate that automated takeoff procedures (continuously varying controls) can be used to significantly reduce community and certification noise without jeopardizing safety or degrading performance.

  8. Gaia: focus, straylight and basic angle

    NASA Astrophysics Data System (ADS)

    Mora, A.; Biermann, M.; Bombrun, A.; Boyadjian, J.; Chassat, F.; Corberand, P.; Davidson, M.; Doyle, D.; Escolar, D.; Gielesen, W. L. M.; Guilpain, T.; Hernandez, J.; Kirschner, V.; Klioner, S. A.; Koeck, C.; Laine, B.; Lindegren, L.; Serpell, E.; Tatry, P.; Thoral, P.

    2016-07-01

    The Gaia all-sky astrometric survey is challenged by several issues affecting the spacecraft stability. Amongst them, we find the focus evolution, straylight and basic angle variations Contrary to pre-launch expectations, the image quality is continuously evolving, during commissioning and the nominal mission. Payload decontaminations and wavefront sensor assisted refocuses have been carried out to recover optimum performance. An ESA-Airbus DS working group analysed the straylight and basic angle issues and worked on a detailed root cause analysis. In parallel, the Gaia scientists have also analysed the data, most notably comparing the BAM signal to global astrometric solutions, with remarkable agreement. In this contribution, a status review of these issues will be provided, with emphasis on the mitigation schemes and the lessons learned for future space missions where extreme stability is a key requirement.

  9. Optimum design of uncooled staring infrared camera

    NASA Astrophysics Data System (ADS)

    Li, Yingwen; Pan, Debin; Liu, Aidong; Geng, Anbing; Li, Yong; He, Jun

    2006-02-01

    Several models of target acquisition range prediction of the uncooled staring camera and their advantages are proposed in the paper. NVTherm is used to evaluate the modulation transfer function, minimum resolvable temperature difference and target acquisition range. The analysis result shows that the performance of the detector is the key factor to limit the performance of the uncooled staring camera. The target acquisition range of the uncooled infrared camera can be improved by increasing effective focus length (EFL) of optical component, decreasing its F/# or reducing the pixel pitch of the detector. The detection range of 1.09 km can be achieved under the condition of 75 mm EFL and F/0.8. When the EFL changes from 75mm to 150 mm under the condition of F/0.8 and 45μm pixel pitch, the detection range of 2.36 km, recognition range of 0.47 km and identification range of 0.24 km have been gotten. When the pixel pitch is reduced to 35μm, the detection range is 2.59 km. Furthermore, when 2 x 2 microscan is adopted in the camera design, then the pixel pitch will change from 35μm to 17.5μm. Although the infrared camera becomes an optical performance limited system, its performance improves a lot to get the detection range of 2.94 km. The field test shows that the detection range to a 1.7 m x 0.45 m target is 2.2 km under the condition of F/0.8, 150mm EFL and 45 μm pixel pitch, achieving good matches with the evaluation value of 2.36 km through NVTherm. An optimum uncooled infrared design is achieved using the NVTherm software which shortens the design cycle.

  10. Implementation of optimum solar electricity generating system

    NASA Astrophysics Data System (ADS)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  11. Implementation of optimum solar electricity generating system

    SciTech Connect

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  12. Optimum three-dimensional atmospheric entry from the analytical solution of Chapman's exact equations

    NASA Technical Reports Server (NTRS)

    Busemann, A.; Vinh, N. X.; Culp, R. D.

    1974-01-01

    The general solution for the optimum three-dimensional aerodynamic control of a lifting vehicle entering a planetary atmosphere is developed. A set of dimensionless variables, modified Chapman variables, is introduced. The resulting exact equations of motion, referred to as Chapman's exact equations, have the advantage that they are completely free of the physical characteristics of the vehicle. Furthermore, a completely general lift-drag relationship is used in the derivation. The results obtained apply to any type of vehicle of arbitrary weight, dimensions and shape, having an arbitrary drag polar, and entering any planetary atmosphere. The aerodynamic controls chosen are the lift coefficient and the bank angle. General optimum control laws for these controls are developed. Several earlier particular solutions are shown to be special cases of this general result. Results are valid for both free and constrained terminal position.

  13. Mechanochemically conjugated PMHS/nano-SiO 2 hybrid and subsequent optimum grafting density study

    NASA Astrophysics Data System (ADS)

    Lin, Jinbin; Chen, Hongling; Yuan, Yongbing; Ji, Yan

    2011-08-01

    In this paper, we reported the preparation of poly(methylhydrosiloxane) (PMHS)/SiO 2 hybrid particles by mechanochemical method based on high energy ball milling (HEBM). The obtained hybrid particles were characterized by Fourier transform infrared (FT-IR) spectroscopy, 29Si CP (cross-polarization) MAS NMR, viscosity measurement, particle size distribution, thermal analysis (TGA, DSC and DTG), static contact angle (CA), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). FT-IR and 29Si CP MAS NMR spectra indicate that PMHS is chemically anchored onto the surface of nano-SiO 2. Viscosity measurement, particle size distribution, FE-SEM and TEM demonstrate that an appropriate grafting density optimizes the dispersion of nanoparticles in poly(dimethylsiloxane) (PDMS) matrix, so lower viscosity can be achieved. Too high or too low grafting density may only achieve suboptimal and poor dispersions. The optimum grafting density of PMHS on nano-SiO 2 was determined by thermal analysis, with approximately 0.0531 PMHS/nm 2. Static contact angle measurement indicates that the water contact angle of hybrid particles is modulated by changing the grafting density of PMHS on nano-SiO 2. The CA value of PMHS/SiO 2 hybrid with optimum grafting density is 139.4°, and the highest CA value of PMHS/SiO 2 hybrid is approximately 158.2°.

  14. High-speed reference-beam-angle control technique for holographic memory drive

    NASA Astrophysics Data System (ADS)

    Yamada, Ken-ichiro; Ogata, Takeshi; Hosaka, Makoto; Fujita, Koji; Okuyama, Atsushi

    2016-09-01

    We developed a holographic memory drive for next-generation optical memory. In this study, we present the key technology for achieving a high-speed transfer rate for reproduction, that is, a high-speed control technique for the reference beam angle. In reproduction in a holographic memory drive, there is the issue that the optimum reference beam angle during reproduction varies owing to distortion of the medium. The distortion is caused by, for example, temperature variation, beam irradiation, and moisture absorption. Therefore, a reference-beam-angle control technique to position the reference beam at the optimum angle is crucial. We developed a new optical system that generates an angle-error-signal to detect the optimum reference beam angle. To achieve the high-speed control technique using the new optical system, we developed a new control technique called adaptive final-state control (AFSC) that adds a second control input to the first one derived from conventional final-state control (FSC) at the time of angle-error-signal detection. We established an actual experimental system employing AFSC to achieve moving control between each page (Page Seek) within 300 µs. In sequential multiple Page Seeks, we were able to realize positioning to the optimum angles of the reference beam that maximize the diffracted beam intensity. We expect that applying the new control technique to the holographic memory drive will enable a giga-bit/s-class transfer rate.

  15. TILTING TABLE AREA, PDP ROOM, LEVEL +27’, LOOKING SOUTHWEST, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TILTING TABLE AREA, PDP ROOM, LEVEL +27’, LOOKING SOUTHWEST, SHOWING TILTING TABLE, MARKED BY WHITE ELECTRICAL CORD - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  16. Cross-Modal Transfer of the Tilt Aftereffect From Vision to Touch

    PubMed Central

    Krystallidou, Dafni

    2016-01-01

    Visual input powerfully modulates the dynamics of tactile orientation perception. This study investigated the transfer of the tilt aftereffect (TAE) from vision to somatosensation. In a visual tilt adaptation paradigm, participants were exposed to clockwise or anticlockwise visual tilt, followed by three brief tactile two-point stimuli delivered on their forehead. In a two-alternative forced choice task, participants had to indicate whether the haptic stimulus was tilted to the right or left. Repeated exposure to oriented visual gratings produced a tactile TAE, such that the subsequent tactile stimuli appeared tilted toward the opposite direction. To assess the origin of this effect, the experiment was repeated with the head tilted. Adaptation to a gravitationally tilted grating but with the head tilted so that the grating was retinally vertical induced a robust tactile aftereffect suggesting that the visuotactile TAE is due to spatiotopic rather than retinotopic adaptation. PMID:27757217

  17. Optimum mobility’ facelift. Part 2 – the technique

    PubMed Central

    Fanous, Nabil; Karsan, Naznin; Zakhary, Kristina; Tawile, Carolyne

    2006-01-01

    In the first of this two-part article on the ‘optimum mobility’ facelift, facial tissue mobility was analyzed, and three theories or mechanisms emerged: ‘intrinsic mobility’, ‘surgically induced mobility’ and ‘optimum mobility points’. In this second part, these three theories are applied to a rhytidectomy procedure termed ‘optimum mobility’ facelift. Before surgery, ‘optimum mobility points’ are marked on the skin. During surgery, the subcutaneous dissection is kept to a minimum by carrying it out precisely to these ‘optimum mobility points’. The facial tissues, with their skin and superficial musculoaponeurotic system attachments intact, are then mobilized laterally using the ‘intrinsic mobility’ phenomenon, and this mobilization fixed in place using mattress sutures. The ‘optimum mobility’ facelift is an efficient rhytidectomy technique that has a thoughtful, precise plan, a low complication rate, a fast recovery and very satisfactory results. PMID:19554119

  18. Viewing angle changeable display

    NASA Astrophysics Data System (ADS)

    Leng, Jinbi; Huang, Ziqiang; Yang, Wenjun; Chen, Xiaoxi

    2010-10-01

    Viewing angle changeable display can change the display viewing angle as needed: In the public place the display could have a narrow viewing angle for privacy, while in the private place the displays could have a wide viewing angle for the convenience of the operation and better viewing experience. This article propose a novel adjustable optical transmission device to realize the viewing angle changes for LCD by using the principle of guest- host effect of liquid crystal. The major technology is to insert a special equipment between the backlight and the LCD, through which the backlight will display either parallel or scattered features to get an either narrow or wide viewing angle. The equipment is an adjustable transmission cell (ATC) which is actually a black G-H LC cell. This ATC is the main focus of our invention. The ATC consists of a polarizer sheet and a special guest-host liquid crystal device filled with the two-phase dye (called as GH-LC in this report), to achieve the viewing angle change in the LCD. When an electrical field charges to the ATC, only the so-called near-axis lights can pass through the ATC within a relatively small angle, while the other scattered lights are absorbed sequentially by GH-LC and the polarizer sheet. On the other hand, when there is no electrical charge to the ATC, the cell behaves like a normal polarizer; and the scattered light can pass through the cell and polarizer in a normal way. This paper describes the principle and structure of the device, applies the electric field on the sample to observe the electro-optical properties, combine the theoretical and experimental research, getting the viewing angle effects of the display.

  19. Photoelectric angle converter

    NASA Astrophysics Data System (ADS)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  20. Meteorite incidence angles

    NASA Astrophysics Data System (ADS)

    Hughes, D. W.

    1993-06-01

    Think about an asteroid smashing into the surface of the Moon and excavating a crater; or hitting Earth and scattering meteorite fragments over a strewn field. Imagine a fragment of cometary dust burning out in the Earth's atmosphere and producing a meteor. These bodies have paths that are inclined at some angle to the vertical. But what is the predominant value of this angle of incidence, i? How does the number of incident bodies vary as a function of angle i? And how do both these affect the prevalence of non- circular lunar craters and the ellipticity of meteorite strewn fields?

  1. Optimum shape of a blunt forebody in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Ting, L.

    1989-01-01

    The optimum shape of a blunt forebody attached to a symmetric wedge or cone is determined. The length of the forebody, its semi-thickness or base radius, the nose radius and the radius of the fillet joining the forebody to the wedge or cone are specified. The optimum shape is composed of simple curves. Thus experimental models can be built readily to investigate the utilization of aerodynamic heating for boundary layer control. The optimum shape based on the modified Newtonian theory can also serve as the preliminary shape for the numerical solution of the optimum shape using the governing equations for a compressible inviscid or viscous flow.

  2. Research on high precision equal-angle scanning method in rotary kiln temperature measurement system

    NASA Astrophysics Data System (ADS)

    Dai, Shaosheng; Guo, Zhongyuan; You, Changhui; Liu, Jinsong; Cheng, Yang; Tang, Huaming

    2016-05-01

    Aiming at traditional horizontal equal-angle scanning method's disadvantage of measurement error, a high precision equal-angle scanning method is proposed, the proposed method establishes a tilt scanning model by the following steps: introducing height variable, precisely calculating the viewing angle, building scanning model. The model is used to calculate scanning position on rotary kiln's surface, which helps to locate and track temperature variation. The experiment shows that the proposed method can effectively improve the precision of temperature spots' location on the rotary kiln surface.

  3. Triangle Tilt and Steel Osteotomy: Similar Approaches to Common Problems

    PubMed Central

    Nath, Rahul K; Somasundaram, Chandra; Mahmooduddin, Faiz

    2011-01-01

    Background: Each year, thousands of children worldwide suffer obstetric brachial plexus nerve injuries resulting not only in primary nerve injury, but also in development of secondary muscle and bone deformities of the shoulder. The triangle tilt surgery has been developed and shown to effectively address these deformities. The triangle tilt procedure was initially designed by the lead author (RKN) to follow the concepts of joint normalization featured in the Steel pelvic osteotomy used to correct developmental dysplasia of the hip joint, and indeed ultimately bears a striking resemblance to the Steel osteotomy. Prior to performing these bony surgical procedures, soft tissue procedures are performed to release the muscle contractures of the shoulder and hip. The purpose of this article is to compare and analyze the similarities between the indications, surgical techniques, involved anatomy, and outcomes of these operative procedures. Methods: A literature review was conducted using PubMed to identify articles pertaining to triangle tilt surgery and the Steel pelvic osteotomy. Functional parameters and surgical strategies were compared. Pre- and post-operative CTs were analyzed to compare anatomical results of the procedures. Results: Similarities were found between both procedures in terms of indications, involved anatomy, surgical techniques, and outcomes. The triangle tilt surgery is indicated to correct the developmental dysplasia of the glenohumeral joint in obstetric brachial plexus injury patients. Steel pelvic osteotomy is performed to correct the subluxation and dislocation of the hip innominate bone in patients with congenital dysplasia, cerebral palsy myelodysplasia, and poliomyelitis. The involved anatomy of both procedures is similar in that both involve limb girdles and ball-and-socket joints, namely the shoulder and hip. Both procedures are also triple osteotomies, the triangle tilt involving the acromion, clavicle and scapula while the Steel

  4. Convergence reduces ocular counterroll (OCR) during static roll-tilt.

    PubMed

    Ooi, D; Cornell, E D; Curthoys, I S; Burgess, A M; MacDougall, H G

    2004-11-01

    When humans are roll-tilted around the naso-occipital axis, both eyes roll or tort in the opposite direction to roll-tilt, a phenomenon known as ocular counterroll (OCR). While the magnitude of OCR is primarily determined by vestibular, somatosensory, and proprioceptive input, direction of gaze also plays a major role. The aim of this study was to measure the interaction between some of these factors in the control of OCR. Videooculography was used to measure 3D eye position during maintained whole body (en bloc) static roll-tilt in darkness, while subjects fixated first on a distant (at 130 cm) and then a near (at 30 cm) head-fixed target aligned with the subject's midline. We found that while converging on the near target, human subjects displayed a significant reduction in OCR for both directions of roll-tilt--i.e. the interaction between OCR and vergence was not simple addition or subtraction of torsion induced by vergence with torsion induced by roll-tilt. To remove the possibility that the OCR reduction may be associated with the changed horizontal position of the eye in the orbit during symmetric convergence, we ran an experiment using asymmetric convergence in which the distant and near targets were aligned directly in front of one eye. We found the magnitude of OCR in this asymmetric convergence case was also reduced for near viewing by about the same amount as in the symmetric vergence condition, confirming that the convergence command rather than horizontal position of the eye underlies the OCR reduction, since there was no horizontal movement of the aligned eye in the orbit between fixation on the distant and near targets. Increasing vergence from 130 to 30 cm reduced OCR gain by around 35% on average. That reduction was equal in both eyes and occurred in both the symmetric and asymmetric convergence conditions. These results demonstrate the important role vergence plays in determining ocular counterroll during roll-tilt and may support the contention

  5. Optimum electrolyte composition of a dialysis solution.

    PubMed

    Rippe, Bengt; Venturoli, Daniele

    2008-06-01

    In patients undergoing peritoneal dialysis (PD) for end-stage renal failure, the optimum electrolyte composition of a dialysis solution is that which best serves the homeostatic needs of the body. Comparing the transperitoneal removal of electrolytes by conventional PD solutions (CPDSs) with that by normal kidneys, it is evident that peritoneal removal is in the lower range of what can be considered "normal." Given the electrolyte composition of CPDSs and a total dwell volume of 4 exchanges of 2 L each, approximately 90 mmol NaCl, 40 mmol K(+), 10 - 15 mmol HPO(4)(-) and 1 - 2 mmol Ca(2+) can be removed daily [plus 1 L ultrafiltration (UF)]. Na(+), Ca(2+), and Mg(2+) are supplied in CPDSs in concentrations close to their plasma concentrations, which makes their removal almost entirely dependent on UF. In UF failure (UFF), plasma levels of the foregoing ions will tend to rise, producing a higher diffusion gradient to compensate for their defective UF removal. Peritoneal removal of HCO(3)(-), HPO(4)(-), and K(+) are usually quite efficient because of the zero CPDS concentrations of these ions. Approximately 150 mmol HCO(3)(-) is lost daily with CPDSs, compensated for by the addition of 30 - 40 mmol/L lactate, or, with the use of multi-compartment bags, bicarbonate instead. However, a mixture of bicarbonate and lactate should be preferred as a buffer, to avoid intracellular acidosis from high levels of pCO(2) in the dialysis fluid. For patients on continuous ambulatory peritoneal dialysis (CAPD) without UFF and with some residual renal function, PD fluid concentrations of Na(+) 130 - 133 mmol/L, Ca(2+) 1.25 - 1.35 mmol/L, and Mg(2+) 0.25 - 0.3 mmol/L seem appropriate. With reduced UF after a few years of PD, the removal of fluid and electrolytes often becomes deficient. Dietary salt restriction can be prescribed, but it is hard to implement. The use of low-Na(+) solution (LNa) is a potential alternative. The reduction in osmolality resulting from Na(+) removal in LNa

  6. Angles, Time, and Proportion

    ERIC Educational Resources Information Center

    Pagni, David L.

    2005-01-01

    This article describes an investigation making connections between the time on an analog clock and the angle between the minute hand and the hour hand. It was posed by a middle school mathematics teacher. (Contains 8 tables and 6 figures.)

  7. Modal propagation angles in ducts with soft walls and their connection with suppressor performance

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1979-01-01

    The angles of propagation of the wave fronts associated with duct modes are derived for a cylindrical duct with soft walls (acoustic suppressors) and a uniform steady flow. The angle of propagation with respect to the radial coordinate (angle of incidence on the wall) is shown to be a better correlating parameter for the optimum wall impedance of spinning modes than the previously used mode cutoff ratio. Both the angle of incidence upon the duct wall and the propagation angle with respect to the duct axis are required to describe the attenuation of a propagating mode. Using the modal propagation angles, a geometric acoustics approach to suppressor acoustic performance was developed. Results from this approximate method were compared to exact modal propagation calculations to check the accuracy of the approximate method. The results are favorable except in the immediate vicinity of the modal optimum impedance where the approximate method yields about one-half of the exact maximum attenuation.

  8. Temperature effect on a tilted birefringent filter in a tunable laser: A limitation for Raman spectroscopy

    SciTech Connect

    Burneau, A.; Humbert, B. )

    1989-12-15

    The temperature effect on the wave number selected by a tilted birefringent filter inside a dye laser cavity is measured and theoretically discussed. For a quartz plate at Brewster angle, the wave-number shift is observed between 1.1 and 1.35 cm{sup {minus}1} K{sup {minus}1} according to the angle between the crystal optical axis and the incident plane. A thorough calculation is fully in agreement with these results: the main part of the shift is related to the variation of refractive indices, but both the thickness expansion and the wavelength disperson of indices moderate the temperature effect. The observed shift is still larger than the width at half height of the exciting line necessary for Raman spectroscopy. A filter with three plates whose thicknesses are in ratio 1:4:16, which transmits a band of satisfactory width, cannot be used however if a rigorous temperature stability is not achieved. A practical solution is found by combining a 1:4 filter and a Fabry--Perot etalon.

  9. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten

    PubMed Central

    Chen, Nanjun; Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Zhou, Hong-Bo; Jin, Shuo; Ran, Guang; Lu, Guang-Hong; Gao, Fei

    2016-01-01

    The harsh irradiation environment poses serious threat to the structural integrity of leading candidate for plasma-facing materials, tungsten (W), in future nuclear fusion reactors. It is thus essential to understand the radiation-induced segregation of native defects and impurities to defect sinks, such as grain boundaries (GBs), by quantifying the segregation energetics. In this work, molecular statics simulations of a range of equilibrium and metastable [100] symmetric tilt GBs are carried out to explore the energetics of vacancy segregation. We show that the low-angle GBs have larger absorption length scales over their high-angle counterparts. Vacancy sites that are energetically unfavorable for segregation are found in all GBs. The magnitudes of minimum segregation energies for the equilibrium GBs vary from −2.61 eV to −0.76 eV depending on the GB character, while those for the metastable GB states tend to be much lower. The significance of vacancy delocalization in decreasing the vacancy segregation energies and facilitating GB migration has been discussed. Metrics such as GB energy and local stress are used to interpret the simulation results, and correlations between them have been established. This study contributes to the possible application of polycrystalline W under irradiation in advanced nuclear fusion reactors. PMID:27874047

  10. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten.

    PubMed

    Chen, Nanjun; Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Zhou, Hong-Bo; Jin, Shuo; Ran, Guang; Lu, Guang-Hong; Gao, Fei

    2016-11-22

    The harsh irradiation environment poses serious threat to the structural integrity of leading candidate for plasma-facing materials, tungsten (W), in future nuclear fusion reactors. It is thus essential to understand the radiation-induced segregation of native defects and impurities to defect sinks, such as grain boundaries (GBs), by quantifying the segregation energetics. In this work, molecular statics simulations of a range of equilibrium and metastable [100] symmetric tilt GBs are carried out to explore the energetics of vacancy segregation. We show that the low-angle GBs have larger absorption length scales over their high-angle counterparts. Vacancy sites that are energetically unfavorable for segregation are found in all GBs. The magnitudes of minimum segregation energies for the equilibrium GBs vary from -2.61 eV to -0.76 eV depending on the GB character, while those for the metastable GB states tend to be much lower. The significance of vacancy delocalization in decreasing the vacancy segregation energies and facilitating GB migration has been discussed. Metrics such as GB energy and local stress are used to interpret the simulation results, and correlations between them have been established. This study contributes to the possible application of polycrystalline W under irradiation in advanced nuclear fusion reactors.

  11. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten

    NASA Astrophysics Data System (ADS)

    Chen, Nanjun; Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Zhou, Hong-Bo; Jin, Shuo; Ran, Guang; Lu, Guang-Hong; Gao, Fei

    2016-11-01

    The harsh irradiation environment poses serious threat to the structural integrity of leading candidate for plasma-facing materials, tungsten (W), in future nuclear fusion reactors. It is thus essential to understand the radiation-induced segregation of native defects and impurities to defect sinks, such as grain boundaries (GBs), by quantifying the segregation energetics. In this work, molecular statics simulations of a range of equilibrium and metastable [100] symmetric tilt GBs are carried out to explore the energetics of vacancy segregation. We show that the low-angle GBs have larger absorption length scales over their high-angle counterparts. Vacancy sites that are energetically unfavorable for segregation are found in all GBs. The magnitudes of minimum segregation energies for the equilibrium GBs vary from ‑2.61 eV to ‑0.76 eV depending on the GB character, while those for the metastable GB states tend to be much lower. The significance of vacancy delocalization in decreasing the vacancy segregation energies and facilitating GB migration has been discussed. Metrics such as GB energy and local stress are used to interpret the simulation results, and correlations between them have been established. This study contributes to the possible application of polycrystalline W under irradiation in advanced nuclear fusion reactors.

  12. Study of contact angle hysteresis using the Cellular Potts Model.

    PubMed

    Mortazavi, Vahid; D'Souza, Roshan M; Nosonovsky, Michael

    2013-02-28

    We use the Cellular Potts Model (CPM) to study the contact angle (CA) hysteresis in multiphase (solid-liquid-vapour) systems. We simulate a droplet over the tilted patterned surface, and a bubble placed under the surface immersed in liquid. The difference between bubbles and droplets was discussed through their CA hysteresis. Dependency of CA hysteresis on the surface structure and other parameters was also investigated. This analysis allows decoupling of the 1D (pinning of the triple line) and 2D (adhesion hysteresis in the contact area) effects and provides new insight into the nature of CA hysteresis.

  13. Finding optimum airfoil shape to get maximum aerodynamic efficiency for a wind turbine

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci; Bozkurt, Ismail

    2017-02-01

    In this study, aerodynamic performances of S-series wind turbine airfoil of S 825 are investigated to find optimum angle of attack. Aerodynamic performances calculations are carried out by utilization of a Computational Fluid Dynamics (CFD) method withstand finite capacity approximation by using Reynolds-Averaged-Navier Stokes (RANS) theorem. The lift and pressure coefficients, lift to drag ratio of airfoil S 825 are analyzed with SST turbulence model then obtained results crosscheck with wind tunnel data to verify the precision of computational Fluid Dynamics (CFD) approximation. The comparison indicates that SST turbulence model used in this study can predict aerodynamics properties of wind blade.

  14. 'Magic Angle Precession'

    SciTech Connect

    Binder, Bernd

    2008-01-21

    An advanced and exact geometric description of nonlinear precession dynamics modeling very accurately natural and artificial couplings showing Lorentz symmetry is derived. In the linear description it is usually ignored that the geometric phase of relativistic motion couples back to the orbital motion providing for a non-linear recursive precession dynamics. The high coupling strength in the nonlinear case is found to be a gravitomagnetic charge proportional to the precession angle and angular velocity generated by geometric phases, which are induced by high-speed relativistic rotations and are relevant to propulsion technologies but also to basic interactions. In the quantum range some magic precession angles indicating strong coupling in a phase-locked chaotic system are identified, emerging from a discrete time dynamical system known as the cosine map showing bifurcations at special precession angles relevant to heavy nuclei stability. The 'Magic Angle Precession' (MAP) dynamics can be simulated and visualized by cones rolling in or on each other, where the apex and precession angles are indexed by spin, charge or precession quantum numbers, and corresponding magic angles. The most extreme relativistic warping and twisting effect is given by the Dirac spinor half spin constellation with 'Hyperdiamond' MAP, which resembles quark confinement.

  15. XV-15 Tilt Rotor Research Aircraft - Program report

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Wernicke, K. G.

    1979-01-01

    This paper is a status report of the NASA/Army XV-15 Project. The basic tilt-rotor concept and the XV-15 Tilt-Rotor Research Aircraft are discussed and some results of full-scale wind-tunnel tests in the Ames 40- by 80-Foot Wind Tunnel are presented. Flight-test data are included to give preliminary performance, noise, and vibration data in hover and as far into transition flight as are available at the time of presentation. Information concerning vehicle aerodynamics and airloads obtained as a result of both wind-tunnel and flight tests are provided with some conclusions as to the ramifications of the data in terms of design criteria and configuration layout.

  16. Profile stabilization of tilt mode in a Field Reversed Configuration

    SciTech Connect

    Cobb, J.W.; Tajima, T.; Barnes, D.C.

    1993-06-01

    The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.

  17. The cost of noise reduction in commercial tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Faulkner, H. B.

    1974-01-01

    The relationship between direct operating cost (DOC) and departure noise annoyance was developed for commercial tilt rotor aircraft. This was accomplished by generating a series of tilt rotor aircraft designs to meet various noise goals at minimum DOC. These vehicles were spaced across the spectrum of possible noise levels from completely unconstrained to the quietest vehicle that could be designed within the study ground rules. A group of optimization parameters were varied to find the minimum DOC while other inputs were held constant and some external constraints were met. This basic variation was then extended to different aircraft sizes and technology time frames. It was concluded that reducing noise annoyance by designing for lower rotor tip speeds is a very promising avenue for future research and development. It appears that the cost of halving the annoyance compared to an unconstrained design is insignificant and the cost of halving the annoyance again is small.

  18. Piloted simulation study of two tilt-wing control concepts

    NASA Technical Reports Server (NTRS)

    Birckelbaw, Lourdes G.; Corliss, Lloyd D.

    1994-01-01

    A two-phase piloted simulation study was conducted to investigate alternative wing and flap controls for tilt-wing aircraft. The initial phase of the study compared the flying qualities of both a conventional (programmed) flap and an innovative geared flap. The second phase of the study introduced an alternate method of pilot control for the geared flap and further studied the flying qualities of the programmed flap, and two geared flap configurations. In general, the pilot rating showed little variation between the programmed flap and the geared flap control concepts. Some differences between the two concepts were noticed and are discussed in this paper. The addition of pitch attitude stabilization in the second phase of the study greatly enhanced the aircraft flying qualities. This paper describes the simulated tilt-wing aircraft and the flap control concepts and presents the results of both phases of the simulation study.

  19. Uncertainties in Small-Angle Measurement Systems Used to Calibrate Angle Artifacts

    PubMed Central

    Stone, Jack A.; Amer, Mohamed; Faust, Bryon; Zimmerman, Jay

    2004-01-01

    We have studied a number of effects that can give rise to errors in small-angle measurement systems when they are used to calibrate artifacts such as optical polygons. Of these sources of uncertainty, the most difficult to quantify are errors associated with the measurement of imperfect, non-flat faces of the artifact, causing the instrument to misinterpret the average orientation of the surface. In an attempt to shed some light on these errors, we have compared autocollimator measurements to angle measurements made with a Fizeau phase-shifting interferometer. These two instruments have very different operating principles and implement different definitions of the orientation of a surface, but (surprisingly) we have not yet seen any clear differences between results obtained with the autocollimator and with the interferometer. The interferometer is in some respects an attractive alternative to an autocollimator for small-angle measurement; it implements an unambiguous and robust definition of surface orientation in terms of the tilt of a best-fit plane, and it is easier to quantify likely errors of the interferometer measurements than to evaluate autocollimator uncertainty. PMID:27366616

  20. Optical mode engineering and high power density per facet length (>8.4 kW/cm) in tilted wave laser diodes

    NASA Astrophysics Data System (ADS)

    Ledentsov, N. N.; Shchukin, V. A.; Maximov, M. V.; Gordeev, N. Y.; Kaluzhniy, N. A.; Mintairov, S. A.; Payusov, A. S.; Shernyakov, Yu. M.

    2016-03-01

    Tilted Wave Lasers (TWLs) based on optically coupled thin active waveguide and thick passive waveguide offer an ultimate solution for thick-waveguide diode laser, preventing catastrophic optical mirror damage and thermal smile in laser bars, providing robust operation in external cavity modules thus enabling wavelength division multiplexing and further increase in brightness enabling direct applications of laser diodes in the mainstream material processing. We show that by proper engineering of the waveguide one can realize high performance laser diodes at different tilt angles of the vertical lobes. Two vertical lobes directed at various angles (namely, +/-27° or +/-9°) to the junction plane are experimentally realized by adjusting the compositions and the thicknesses of the active and the passive waveguide sections. The vertical far field of a TWL with the two +/-9° vertical beams allows above 95% of all the power to be concentrated within a vertical angle below 25°, the fact which is important for laser stack applications using conventional optical coupling schemes. The full width at half maximum of each beam of the value of 1.7° evidences diffraction- limited operation. The broad area (50 μm) TWL chips at the cavity length of 1.5 mm reveal a high differential efficiency ~90% and a current-source limited pulsed power >42W for as-cleaved TWL device. Thus the power per facet length in a laser bar in excess of 8.4 kW/cm can be realized. Further, an ultimate solution for the smallest tilt angle is that where the two vertical lobes merge forming a single lobe directed at the zero angle is proposed.

  1. Contact-angle of water drop on a sloped water repellent soil

    NASA Astrophysics Data System (ADS)

    Arye, Gilboa; Bachmann, Jörg

    2015-04-01

    Soil water repellency is a well-known phenomenon worldwide and currently well documented in the scientific literature. Most methods used to characterize the magnitude and/or persistency of soil water repellency is directly or indirectly related to the initial advancing contact angle at the solid-liquid-vapor interface. These methods are commonly involved by placing a water (or solution) drops on horizontal surface of water repellent soil (WRS)particles attached to a plane surface. Under natural conditions, however, a soil surface layer is mostly sloped due to micro and/or macro topography. Therefore, the formation of advancing contact angle (downhill) and receding contact angle (uphill) should be considered, rather than a unique value of the contact angle. The difference between the advancing and receding contact angle values is defined as the contact angle hysteresis, commonly attributed to surface roughness and/or chemical heterogeneities. For a given tilt angle, a water drop exceeding a critical volume will slide downhill. Alternatively, for a given drop volume, a critical sliding angle can be defined. Measurements of advancing, receding and sliding angles on sloped WRS is indispensable for our understanding on water adhesion due to hysteresis and may provide critical values for predicting the initiation of water runoff in sloped landscapes on the micro and macro scales of WRS. Accordingly, the main objective of this study was to measure the advancing and receding contact angles on a sloped WRS as a function of: i) water drop volume, ii) particle size distribution and iii) surface slope. The measurements of contact angles on sloped WRS were taken with an advanced goniometer microscope (OCA20, DataPhysics) with external tilting device and SCA20 software for analyzing contact angles highly resolved with respect to time and spatial scales. The results obtained will be presented and the rolling-drop-criteria will be discussed.

  2. Tectonic tilting of the northern Owens Valley, California

    SciTech Connect

    Pinter, N.; Keller, E.A. . Dept. of Geological Sciences)

    1992-01-01

    Tectonic rotation is characteristic of active deformation in many of the structural basins of the Basin and Range. The Owens Valley (OV) is the most western basin of the province. The structure, stratigraphy, and geomorphology of the northern OV suggest that there has been active eastward tilting of the valley throughout at least the late Quaternary. A series of analytical techniques are developed here which quantify the age, rate, and character of deformation. The geomorphic clock'' of the northern OV was reset 738,000 years ago by the unroofing of Long Valley Caldera, just to the north, and the emplacement of the Bishop Tuff ignimbrite sheet. Since that time, cooling joints in the tuff and channels cut into the surface of the sheet have been reoriented, and fluvial terraces and alluvial fans have been tilted. Each of these analyses have the same solution--a net down-to-the-east rotation of the valley block at a mean rate of 0.8--1.0[degree]/Ma. Other indicators of tilt support this solution: fluvial and lacustrine strata at the type-locality of the Glass Mountain ashes dip approximately 1[degree] to the east; and gravity measurements of basement geometry demonstrate a dip of 11.0--13.7[degree] eastward. Extrapolating a uniform rate of tilt, the dip of the basement suggest that sedimentation in the OV began in the late Miocene. The character of deformation across the study area is consistent with motion on the Coyote warp anticlinal trend, near the base of the Sierra Nevada. The author propose that the Coyote warp has acted as a tectonic hinge, accommodating westward rotation of the Sierra Nevada and eastward rotation of the northern OV.

  3. Dual Telecentric Lens System For Projection Onto Tilted Toroidal Screen

    NASA Technical Reports Server (NTRS)

    Gold, Ronald S.; Hudyma, Russell M.

    1995-01-01

    System of two optical assemblies for projecting image onto tilted toroidal screen. One projection lens optimized for red and green spectral region; other for blue. Dual-channel approach offers several advantages which include: simplified color filtering, simplified chromatic aberration corrections, less complex polarizing prism arrangement, and increased throughput of blue light energy. Used in conjunction with any source of imagery, designed especially to project images formed by reflection of light from liquid-crystal light valve (LCLV).

  4. Tilt stability of rotating current rings with passive conductors

    SciTech Connect

    Zweibel, E.G.; Pomphrey, N.

    1984-12-01

    We study the combined effects of rotation and resistive passive conductors on the stability of a rigid current in an external magnetic field. We present numerical and approximate analytical solutions to the equations of motion, which show that the ring is always tilt unstable on the resistive decay timescale of the conductors, although rotation and eddy currents may stabilize it over short times. Possible applications of our model include spheromaks which rotate or which are encircled by energetic particle rings.

  5. Laser Illuminated Imaging: Multiframe Beam Tilt Tracking and Deconvolution Algorithm

    DTIC Science & Technology

    2012-09-01

    delays in light as it propagates through the atmosphere, using Fourier optics this time delay or tilt in the propagation field can be represented as...Robert J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976) 2. Goodman , Joseph W., Introduction to Fourier ... Optics , Greenwood Village, CO: Roberts & Company Publishers, 2005. 0-9747077-2-4. 3. Goodman , Joseph W., Statistical Optics , Wiley, New York : John

  6. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study

    PubMed Central

    Xing, Hui; Dong, Xianglei; Wu, Hongjing; Hao, Guanhua; Wang, Jianyuan; Chen, Changle; Jin, Kexin

    2016-01-01

    We report the results of a phase-field study of degenerate seaweed to tilted dendrite transition and their growth dynamics during directional solidification of a binary alloy. Morphological selection maps in the planes of (G, Vp) and (ε4, Vp) show that lower pulling velocity, weaker anisotropic strength and higher thermal gradient can enhance the formation of the degenerate seaweed. The tip undercooling shows oscillations in seaweed growth, but it keeps at a constant value in dendritic growth. The M-S instability on the tips and the surface tension anisotropy of the solid-liquid interface are responsible for the formation of the degenerate seaweed. It is evidenced that the place where the interfacial instability occurs determines the morphological transition. The transient transition from degenerate seaweed to tilted dendrite shows that dendrites are dynamically preferred over seaweed. For the tilted dendritic arrays with a large tilted angle, primary spacing is investigated by comparing predicted results with the classical scaling power law, and the growth direction is found to be less sensitive to the pulling velocity and the primary spacing. Furthermore, the effect of the initial interface wavelength on the morphological transition is investigated to perform the history dependence of morphological selection. PMID:27210816

  7. Degenerate seaweed to tilted dendrite transition and their growth dynamics in directional solidification of non-axially oriented crystals: a phase-field study

    NASA Astrophysics Data System (ADS)

    Xing, Hui; Dong, Xianglei; Wu, Hongjing; Hao, Guanhua; Wang, Jianyuan; Chen, Changle; Jin, Kexin

    2016-05-01

    We report the results of a phase-field study of degenerate seaweed to tilted dendrite transition and their growth dynamics during directional solidification of a binary alloy. Morphological selection maps in the planes of (G, Vp) and (ε4, Vp) show that lower pulling velocity, weaker anisotropic strength and higher thermal gradient can enhance the formation of the degenerate seaweed. The tip undercooling shows oscillations in seaweed growth, but it keeps at a constant value in dendritic growth. The M-S instability on the tips and the surface tension anisotropy of the solid-liquid interface are responsible for the formation of the degenerate seaweed. It is evidenced that the place where the interfacial instability occurs determines the morphological transition. The transient transition from degenerate seaweed to tilted dendrite shows that dendrites are dynamically preferred over seaweed. For the tilted dendritic arrays with a large tilted angle, primary spacing is investigated by comparing predicted results with the classical scaling power law, and the growth direction is found to be less sensitive to the pulling velocity and the primary spacing. Furthermore, the effect of the initial interface wavelength on the morphological transition is investigated to perform the history dependence of morphological selection.

  8. A dual-axis tilt acquisition geometry for digital musculoskeletal tomosynthesis

    NASA Astrophysics Data System (ADS)

    Levakhina, Yulia M.; Duschka, Robert L.; Vogt, Florian M.; Barkhausen, Joerg; Buzug, Thorsten M.

    2013-07-01

    Digital tomosynthesis (DT) is a limited angle tomographic x-ray technique. It is an attractive low-dose alternative to computed tomography (CT) in many imaging applications. However, the DT dataset is incomplete, which leads to out-of-focus artifacts and limited axial resolution. In this paper, a novel dual-axis tilt acquisition geometry is proposed and evaluated. This geometry solves some issues in tomosynthesis with the traditional scanning geometry by scanning the object with a set of perpendicular arcs. In this geometry the acquisition in the additional perpendicular direction is done using a tiltable object supporting platform. The proposed geometry allows for capturing more singularities of the Radon transform, filling the Fourier space with more data and better approximating the Tuy-Smith conditions. In order to evaluate the proposed system, several studies have been carried out. To validate the simulation setup the performance of the traditional scanning geometry has been simulated and compared to known results from the literature. It has also been shown that the possible improvement of the image quality in the traditional geometry is limited. These limitations can be partially overcome by using the proposed dual-axis tilt geometry. The novel geometry is superior and with the same number of projections better reconstructed images can be obtained. All studies have been made using a software tomosynthesis simulator. A micro-CT reconstruction of a bone has been used as a software phantom. Simultaneous algebraic reconstruction has been used to reconstruct simulated projections. As a conclusion, acquiring data outside the standard arc allows for improving performance of musculoskeletal tomosynthesis. With the proposed dual-axis acquisition geometry a performance gain is achieved without an increase in dose and major modifications to the instrumentation of existing tomosynthesis devices.

  9. A dual-axis tilt acquisition geometry for digital musculoskeletal tomosynthesis.

    PubMed

    Levakhina, Yulia M; Duschka, Robert L; Vogt, Florian M; Barkhausen, Joerg; Buzug, Thorsten M

    2013-07-21

    Digital tomosynthesis (DT) is a limited angle tomographic x-ray technique. It is an attractive low-dose alternative to computed tomography (CT) in many imaging applications. However, the DT dataset is incomplete, which leads to out-of-focus artifacts and limited axial resolution. In this paper, a novel dual-axis tilt acquisition geometry is proposed and evaluated. This geometry solves some issues in tomosynthesis with the traditional scanning geometry by scanning the object with a set of perpendicular arcs. In this geometry the acquisition in the additional perpendicular direction is done using a tiltable object supporting platform. The proposed geometry allows for capturing more singularities of the Radon transform, filling the Fourier space with more data and better approximating the Tuy-Smith conditions. In order to evaluate the proposed system, several studies have been carried out. To validate the simulation setup the performance of the traditional scanning geometry has been simulated and compared to known results from the literature. It has also been shown that the possible improvement of the image quality in the traditional geometry is limited. These limitations can be partially overcome by using the proposed dual-axis tilt geometry. The novel geometry is superior and with the same number of projections better reconstructed images can be obtained. All studies have been made using a software tomosynthesis simulator. A micro-CT reconstruction of a bone has been used as a software phantom. Simultaneous algebraic reconstruction has been used to reconstruct simulated projections. As a conclusion, acquiring data outside the standard arc allows for improving performance of musculoskeletal tomosynthesis. With the proposed dual-axis acquisition geometry a performance gain is achieved without an increase in dose and major modifications to the instrumentation of existing tomosynthesis devices.

  10. Analytic crack solutions for tilt fields around hydraulic fractures

    SciTech Connect

    Warpinski, N.R.

    2000-01-05

    The recent development of downhole tiltmeter arrays for monitoring hydraulic fractures has provided new information on fracture growth and geometry. These downhole arrays offer the significant advantages of being close to the fracture (large signal) and being unaffected by the free surface. As with surface tiltmeter data, analysis of these measurements requires the inversion of a crack or dislocation model. To supplement the dislocation models of Davis [1983], Okada [1992] and others, this work has extended several elastic crack solutions to provide tilt calculations. The solutions include constant-pressure 2D, penny-shaped, and 3D-elliptic cracks and a 2D-variable-pressure crack. Equations are developed for an arbitrary inclined fracture in an infinite elastic space. Effects of fracture height, fracture length, fracture dip, fracture azimuth, fracture width and monitoring distance on the tilt distribution are given, as well as comparisons with the dislocation model. The results show that the tilt measurements are very sensitive to the fracture dimensions, but also that it is difficult to separate the competing effects of the various parameters.

  11. Octahedral tilting, monoclinic phase and the phase diagram of PZT

    NASA Astrophysics Data System (ADS)

    Cordero, F.; Trequattrini, F.; Craciun, F.; Galassi, C.

    2011-10-01

    Anelastic and dielectric spectroscopy measurements on PbZr1-xTixO3 (PZT) close to the morphotropic (MPB) and antiferroelectric boundaries provide new insight into some controversial aspects of its phase diagram. No evidence is found of a border separating monoclinic (M) from rhombohedral (R) phases, in agreement with recent structural studies supporting a coexistence of the two phases over a broad composition range x < 0.5, with the fraction of M increasing toward the MPB. It is also discussed why the observed maximum of elastic compliance appears to be due to a rotational instability of the polarization linearly coupled to shear strain. Therefore it cannot be explained by extrinsic softening from finely twinned R phase alone, but indicates the presence also of M phase, not necessarily homogeneous. A new diffuse transition is found within the ferroelectric phase near x ˜ 0.1, at a temperature TIT higher than the well established boundary TT to the phase with tilted octahedra. It is proposed that around TIT the octahedra start rotating in a disordered manner and finally become ordered below TT. In this interpretation, the onset temperature for octahedral tilting monotonically increases up to the antiferroelectric transition of PbZrO3, and the depression of TT(x) below x = 0.18 would be a consequence of the partial relief of the mismatch between the average cation radii with the initial stage of tilting below TIT.

  12. Orientation processing mechanisms revealed by the plaid tilt illusion

    NASA Technical Reports Server (NTRS)

    Smith, S.; Wenderoth, P.; van der Zwan, R.

    2001-01-01

    The tilt after-effect (TAE) and tilt illusion (TI) have revealed a great deal about the nature of orientation coding of 1-dimensional (1D) lines and gratings. Comparatively little research however has addressed the mechanisms responsible for encoding the orientation of 2-dimensional (2D) plaid stimuli. A multi-stage model of edge detection has recently been proposed [Georgeson, M. A. (1998) Image & Vision Computing, 16(6-7), 389-405] to account for the perceived structure of a plaid stimulus that incorporates extraction of the zero-crossings (ZCs) of the plaid. Data is presented showing that the ZCs of a plaid inducing stimulus can interact with vertical grating test stimulus to induce a standard tilt illusion. However, by considering the second-order structure of a plaid rather than ZCs, it was shown that the perceived orientation of the vertical test grating results from the combination of orientation illusions due to the first- and second-order components of an inducing plaid. The data suggest that the mechanisms encoding the orientation of second-order contours are similar to, and interact directly with, those that encode first-order contours.

  13. An electronic pan/tilt/zoom camera system

    NASA Technical Reports Server (NTRS)

    Zimmermann, Steve; Martin, H. Lee

    1991-01-01

    A camera system for omnidirectional image viewing applications that provides pan, tilt, zoom, and rotational orientation within a hemispherical field of view (FOV) using no moving parts was developed. The imaging device is based on the effect that from a fisheye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high speed electronic circuitry. An incoming fisheye image from any image acquisition source is captured in memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. As a result, this device can accomplish the functions of pan, tilt, rotation, and zoom throughout a hemispherical FOV without the need for any mechanical mechanisms. A programmable transformation processor provides flexible control over viewing situations. Multiple images, each with different image magnifications and pan tilt rotation parameters, can be obtained from a single camera. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment.

  14. Scientists Contemplate Tilting of Rock Layers on Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Gazing across the landscape of the 'Columbia Hills' in Gusev Crater on Mars, scientists working with NASA's Mars Exploration Rover Spirit think they have been seeing hints of tilted rock layers across the area traversed by the rover. At 'Larry's Lookout,' pictured here, ridges of rock are stacked atop each other and tilted. Similar rock ridges are visible in the distance across the 'Tennessee Valley.' One possible explanation for these ridges is that they were formed by tilted layers of sediment that were more resistant to erosion and now stand in relief above the surrounding surface. Scientists hope to better understand the structure of the hills and perhaps determine how they were formed by observing how the orientation of layers in these outcrops changes throughout the region. Hypotheses include that the Columbia Hills are the remains of an ancient volcano, a remnant of an old impact crater formed by an asteroid or comet, or delta deposits formed where water flowed into Gusev Crater early in its history. Each of these hypotheses leads to a different prediction regarding bedding orientation and structure.

    Hills on the distant horizon may be the rim of a large impact crater many miles to the east of the Columbia Hills. Spirit took this image with its navigation camera on martian day, or sol, 438 (March 27, 2005).

  15. Analysis of a ferrofluid core differential transformer tilt measurement sensor

    NASA Astrophysics Data System (ADS)

    Medvegy, T.; Molnár, Á.; Molnár, G.; Gugolya, Z.

    2017-04-01

    In our work, we developed a ferrofluid core differential transformer sensor, which can be used to measure tilt and acceleration. The proposed sensor consisted of three coils, from which the primary was excited with an alternating current. In the space surrounded by the coils was a cell half-filled with ferrofluid, therefore in the horizontal state of the sensor the fluid distributes equally in the three sections of the cell surrounded by the three coils. Nevertheless when the cell is being tilted or accelerated (in the direction of the axis of the coils), there is a different amount of ferrofluid in the three sections. The voltage induced in the secondary coils strongly depends on the amount of ferrofluid found in the core surrounded by them, so the tilt or the acceleration of the cell becomes measurable. We constructed the sensor in several layouts. The linearly coiled sensor had an excellent resolution. Another version with a toroidal cell had almost perfect linearity and a virtually infinite measuring range.

  16. Keeping a pan-tilt-zoom camera calibrated.

    PubMed

    Wu, Ziyan; Radke, Richard J

    2013-08-01

    Pan-tilt-zoom (PTZ) cameras are pervasive in modern surveillance systems. However, we demonstrate that the (pan, tilt) coordinates reported by PTZ cameras become inaccurate after many hours of operation, endangering tracking and 3D localization algorithms that rely on the accuracy of such values. To solve this problem, we propose a complete model for a PTZ camera that explicitly reflects how focal length and lens distortion vary as a function of zoom scale. We show how the parameters of this model can be quickly and accurately estimated using a series of simple initialization steps followed by a nonlinear optimization. Our method requires only 10 images to achieve accurate calibration results. Next, we show how the calibration parameters can be maintained using a one-shot dynamic correction process; this ensures that the camera returns the same field of view every time the user requests a given (pan, tilt, zoom), even after hundreds of hours of operation. The dynamic calibration algorithm is based on matching the current image against a stored feature library created at the time the PTZ camera is mounted. We evaluate the calibration and dynamic correction algorithms on both experimental and real-world datasets, demonstrating the effectiveness of the techniques.

  17. Tip/tilt-compensated through-focus scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jun Ho; Park, Jun Hyung; Jeong, Dohwan; Shin, Eun Ji; Park, Chris

    2016-11-01

    Through-Focus Optical Microscopy (TSOM), with nanometer scale lateral and vertical sensitivity matching those of scanning electron microscopy, has been demonstrated to be utilized for 3D inspection and metrology. There have been sensitivity and instability issues in acquiring through-focus images because TSOM 3D information is indirectly extracted by differentiating a target TSOM image from reference TSOM images. This paper first reports on the optical axis instability that occurs during the scanning process of TSOM when implemented in an existing patterned wafer inspection tool by moving the wafer plane; this is followed by quantitative confirmation of the optical/mechanical instability using a new TSOM tool on an optical bench with a Shack-Hartmann wavefront sensor and a tip/tilt sensor. Then, this paper proposes two tip/tilt compensated TSOM optical acquisition methods that can be applied with adaptive optics. The first method simply adopts a tip/tilt mirror with a quad cell in a simple closed loop, while the second method adopts a highorder deformable mirror with a Shack-Hartmann sensor. The second method is able to correct high-order residual aberrations as well as to perform through-focus scanning without z-axis movement, while the first method is easier to implement in pre-existing wafer inspection systems with only minor modification.

  18. Tilt networks of Mount Shasta and Lassen Peak, California

    USGS Publications Warehouse

    Dzurisin, Daniel; Johnson, Daniel J.; Murray, T.L.; Myers, Barbara

    1982-01-01

    In response to recent eruptions at Mount St. Helens and with support from the USGS Volcanic Hazards Program, the Cascades Volcano Observatory (CVO) has initiated a program to monitor all potentially-active volcanoes of the Cascade Range. As part of that effort, we installed tilt networks and obtained baseline measurements at Mount Shasta and Lassen Peak, California during July 1981. At the same time, baseline electronic distance measurements (EDM) were made and fumarole surveys were conducted by other crews from CVO. Annual surveys are planned initially, with subsequent visits as conditions warrant. These geodetic and geochemical measurements supplement a program of continuous seismic monitoring of Cascade volcanoes by the USGS Office of Earthquake Studies in cooperation with local universities. Other tilt networks were established at Mount Baker in 1975 and at Mount St. Helens in 1981. EDM networks were established at Mount Baker in 1975, Mount St. Helens in 1980, and Crater Lake in 1981. Additional tilt and/or EDM networks are planned for Mount Rainier, Mount Hood, Glacier Peak, Three Sisters, and Crater Lake as funds permit.

  19. Spinal Posture of Thoracic and Lumbar Spine and Pelvic Tilt in Highly Trained Cyclists

    PubMed Central

    Muyor, José M.; López-Miñarro, Pedro A.; Alacid, Fernando

    2011-01-01

    The aim of this study was to evaluate sagittal thoracic and lumbar spinal curvatures and pelvic tilt in elite and master cyclists when standing on the floor, and sitting on a bicycle at three different handlebar-hand positions. A total of 60 elite male cyclists (mean age: 22.95 ± 3.38 years) and 60 master male cyclists (mean age: 34.27 ± 3.05 years) were evaluated. The Spinal Mouse system was used to measure sagittal thoracic and lumbar curvature in standing on the floor and sitting positions on the bicycle at three different handlebar-hand positions (high, medium, and low). The mean values for thoracic and lumbar curvatures and pelvic tilt in the standing position on the floor were 48.17 ± 8.05°, -27.32 ± 7.23°, and 13.65 ± 5.54°, respectively, for elite cyclists and 47.02 ± 9.24°, -25.30 ± 6.29°, and 11.25 ± 5.17° for master cyclists. A high frequency of thoracic hyperkyphosis in the standing position was observed (58.3% in elite cyclists and 53.3% in master cyclists), whereas predominately neutral values were found in the lumbar spine (88.3% and 76.7% in elite and master cyclists, respectively). When sitting on the bicycle, the thoracic curve was at a lower angle in the three handlebar-hand positions with respect to the standing position on the floor in both groups (p < 0.01). The lumbar curve adopted a kyphotic posture. In conclusion, cyclists present a high percentage of thoracic hyperkyphotic postures in standing positions on the floor. However, thoracic hyperkyphosis is not directly related to positions adopted on the bicycle. Key points This study evaluated thoracic and lumbar spinal curvatures and pelvic tilt in elite and master cyclists while standing and sitting on the bicycle. Elite and master cyclists showed a high frequency of thoracic hyperkyphosis and neutral lumbar lordosis in standing. Cyclists adopted a significantly lower thoracic kyphosis on the bicycle at the three handlebar positions analysed (upper, middle and lower handlebars

  20. 50 CFR 600.310 - National Standard 1-Optimum Yield.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false National Standard 1-Optimum Yield. 600.310 Section 600.310 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS National Standards § 600.310 National Standard 1—Optimum Yield....