Sample records for optimum tilt angle

  1. Behavior of Tilted Angle Shear Connectors.

    PubMed

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N H

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  2. Behavior of Tilted Angle Shear Connectors

    PubMed Central

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  3. Tilt angles and positive response of head-up tilt test in children with orthostatic intolerance.

    PubMed

    Lin, Jing; Wang, Yuli; Ochs, Todd; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2015-01-01

    This study aimed at examining three tilt angle-based positive responses and the time to positive response in a head-up tilt test for children with orthostatic intolerance, and the psychological fear experienced at the three angles during head-up tilt test. A total of 174 children, including 76 boys and 98 girls, aged from 4 to 18 years old (mean 11.3±2.8 years old), with unexplained syncope, were randomly divided into three groups, to undergo head-up tilt test at the angles of 60°, 70° and 80°, respectively. The diagnostic rates and times were analysed, and Wong-Baker face pain rating scale was used to access the children's psychological fear. There were no significant differences in diagnostic rates of postural orthostatic tachycardia syndrome and vasovagal syncope at different tilt angles during the head-up tilt test (p>0.05). There was a significant difference, however, in the psychological fear at different tilt angles utilising the Kruskal-Wallis test (χ2=36.398, p<0.01). It was mildest at tilt angle 60° utilising the Kolmogorov-Smirnov test (p<0.01). A positive rank correlation was found between the psychological fear and the degree of tilt angle (r(s)=0.445, p<0.01). Positive response appearance time was 15.1±14.0 minutes at 60° for vasovagal syncope children. There was no significant difference in the time to positive response, at different tilt angles during the head-up tilt test for vasovagal syncope or for postural orthostatic tachycardia syndrome. Hence, it is suggested that a tilt angle of 60° and head-up tilt test time of 45 minutes should be suitable for children with vasovagal syncope.

  4. Optimum Tilt Angle of Flow Guide in Steam Turbine Exhaust Hood Considering the Effect of Last Stage Flow Field

    NASA Astrophysics Data System (ADS)

    CAO, Lihua; LIN, Aqiang; LI, Yong; XIAO, Bin

    2017-07-01

    Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam turbine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal design of its structure without consideration of the wet steam condensing flow and the exhaust hood coupled with the front and rear parts. To better understand the aerodynamic performance influenced by the tilt angle of flow guide inside a diffuser, taking a 600 MW steam turbine as an example, a numerical simulator CFX is adopted to solve compressible three-dimensional (3D) Reynolds time-averaged N-S equations and standard k- ɛ turbulence model. And the exhaust hood flow field influenced by different tilt angles of flow guide is investigated with consideration of the wet steam condensing flow and the exhaust hood coupled with the last stage blades and the condenser throat. The result shows that the total pressure loss coefficient and the static pressure recovery coefficient of exhaust hood change regularly and monotonously with the gradual increase of tilt angle of flow guide. When the tilt angle of flow guide is within the range of 30° to 40°, the static pressure recovery coefficient is in the range of 15.27% to 17.03% and the total pressure loss coefficient drops to approximately 51%, the aerodynamic performance of exhaust hood is significantly improved. And the effective enthalpy drop in steam turbine increases by 0.228% to 0.274%. It is feasible to obtain a reasonable title angle of flow guide by the method of coupling the last stage and the condenser throat to exhaust hood in combination of the wet steam model, which provides a practical guidance to flow guide transformation and optimal design in exhaust hood.

  5. Study on the optimum tilted angle of solar panels in Hainan tropical photovoltaic facility agricultural system

    NASA Astrophysics Data System (ADS)

    Wang, Jingxuan; Ge, Zhiwu; Yang, Xiaoyan; Ye, Chunhua; Lin, Yanxia

    2017-04-01

    Photovoltaic facility agriculture system can effectively alleviate the contradiction between limited land and Photovoltaic power generation. It’s flexible to create suitable environment for crop growth, and generate electricity over the same land at the same time. It’s necessary to set appropriate solar panel angle to get more solar energy. Through detailed analysis and comparison, we chose the Hay’s model as solar radiation model. Based on the official meteorological data got from Haikou Meteorological Bureau, and by comparing the amount of radiation obtained at different tilted angles per month, the optimal placement angle of PV panels at different seasons in Haikou was obtained through calculation, and the optimal placement angle from April to October was also obtained. Through optimized angle and arrangement of solar photovoltaic panels, we can get greater power efficiency.

  6. RE-EXAMINING SUNSPOT TILT ANGLE TO INCLUDE ANTI-HALE STATISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClintock, B. H.; Norton, A. A.; Li, J., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu, E-mail: jli@igpp.ucla.edu

    2014-12-20

    Sunspot groups and bipolar magnetic regions (BMRs) serve as an observational diagnostic of the solar cycle. We use Debrecen Photohelographic Data (DPD) from 1974-2014 that determined sunspot tilt angles from daily white light observations, and data provided by Li and Ulrich that determined sunspot magnetic tilt angle using Mount Wilson magnetograms from 1974-2012. The magnetograms allowed for BMR tilt angles that were anti-Hale in configuration, so tilt values ranged from 0 to 360° rather than the more common ±90°. We explore the visual representation of magnetic tilt angles on a traditional butterfly diagram by plotting the mean area-weighted latitude ofmore » umbral activity in each bipolar sunspot group, including tilt information. The large scatter of tilt angles over the course of a single cycle and hemisphere prevents Joy's law from being visually identified in the tilt-butterfly diagram without further binning. The average latitude of anti-Hale regions does not differ from the average latitude of all regions in both hemispheres. The distribution of anti-Hale sunspot tilt angles are broadly distributed between 0 and 360° with a weak preference for east-west alignment 180° from their expected Joy's law angle. The anti-Hale sunspots display a log-normal size distribution similar to that of all sunspots, indicating no preferred size for anti-Hale sunspots. We report that 8.4% ± 0.8% of all bipolar sunspot regions are misclassified as Hale in traditional catalogs. This percentage is slightly higher for groups within 5° of the equator due to the misalignment of the magnetic and heliographic equators.« less

  7. Micromirror with large-tilting angle using Fe-based metallic glass.

    PubMed

    Lee, Jae-Wung; Lin, Yu-Ching; Kaushik, Neelam; Sharma, Parmanand; Makino, Akihiro; Inoue, Akihisa; Esashi, Masayoshi; Gessner, Thomas

    2011-09-01

    For enhancing the micromirror properties like tilting angle and stability during actuation, Fe-based metallic glass (MG) was applied for torsion bar material. A micromirror with mirror-plate diameter of 900 μm and torsion bar dimensions length 250 μm, width 30 μm and thickness 2.5 μm was chosen for the tilting angle tests, which were performed by permanent magnets and electromagnet setup. An extremely large tilting angle of over -270° was obtained from an activation test by permanent magnet that has approximately 0.2 T of magnetic strength. A large mechanical tilting angle of over -70° was obtained by applying approximately 1.1 mT to the mirror when 93 mAwas applied to solenoid setup. The large-tilting angle of the micromirror is due to the torsion bar, which was fabricated with Fe-based MG thin film that has large elastic strain limit, fracture toughness, and excellent magnetic property.

  8. Flow tilt angle measurements using lidar anemometry

    NASA Astrophysics Data System (ADS)

    Dellwik, Ebba; Mann, Jakob

    2010-05-01

    A new way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 minute mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175m above ground level, (2) a reference site in flat agricultural terrain and (3) a second reference site in very complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by comparing tilt estimates at various heights. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. However, the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical, the measurement height and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over

  9. A novel method of measuring spatial rotation angle using MEMS tilt sensors

    NASA Astrophysics Data System (ADS)

    Cao, Jian'an; Zhu, Xin; Wu, Hao; Zhang, Leping

    2017-10-01

    This paper presents a novel method of measuring spatial rotation angle with a dual-axis micro-electro-mechanical systems tilt sensor. When the sensor is randomly mounted on the surface of the rotating object, there are three unpredictable and unknown mounting position parameters: α, the sensor’s swing angle on the measuring plane; β, the angle between the rotation axis and the horizontal plane; and γ, the angle between the measuring plane and the rotation axis. Thus, the sensor’s spatial rotation model is established to describe the relationship between the measuring axis, rotation axis, and horizontal plane, and the corresponding analytical equations are derived. Furthermore, to eliminate the deviation caused by the uncertain direction of the rotation axis, an extra perpendicularly mounted, single-axis tilt sensor is combined with the dual-axis tilt sensor, forming a three-axis tilt sensor. Then, by measuring the sensors’ three tilts and solving the model’s equations, the object’s spatial rotation angle is obtained. Finally, experimental results show that the developed tilt sensor is capable of measuring spatial rotation angle in the range of  ±180° with an accuracy of 0.2° if the angle between the rotation axis and the horizontal plane is less than 75°.

  10. Edge detection of magnetic anomalies using analytic signal of tilt angle (ASTA)

    NASA Astrophysics Data System (ADS)

    Alamdar, K.; Ansari, A. H.; Ghorbani, A.

    2009-04-01

    Magnetic is a commonly used geophysical technique to identify and image potential subsurface targets. Interpretation of magnetic anomalies is a complex process due to the superposition of multiple magnetic sources, presence of geologic and cultural noise and acquisition and positioning error. Both the vertical and horizontal derivatives of potential field data are useful; horizontal derivative, enhance edges whereas vertical derivative narrow the width of anomaly and so locate source bodies more accurately. We can combine vertical and horizontal derivative of magnetic field to achieve analytic signal which is independent to body magnetization direction and maximum value of this lies over edges of body directly. Tilt angle filter is phased-base filter and is defined as angle between vertical derivative and total horizontal derivative. Tilt angle value differ from +90 degree to -90 degree and its zero value lies over body edge. One of disadvantage of this filter is when encountering with deep sources the detected edge is blurred. For overcome this problem many authors introduced new filters such as total horizontal derivative of tilt angle or vertical derivative of tilt angle which Because of using high-order derivative in these filters results may be too noisy. If we combine analytic signal and tilt angle, a new filter termed (ASTA) is produced which its maximum value lies directly over body edge and is easer than tilt angle to delineate body edge and no complicity of tilt angle. In this work new filter has been demonstrated on magnetic data from an area in Sar- Cheshme region in Iran. This area is located in 55 degree longitude and 32 degree latitude and is a copper potential region. The main formation in this area is Andesith and Trachyandezite. Magnetic surveying was employed to separate the boundaries of Andezite and Trachyandezite from adjacent area. In this regard a variety of filters such as analytic signal, tilt angle and ASTA filter have been applied which

  11. Calculating Angle Lambda (λ) Using Zernike Tilt Measurements in Specular Reflection Corneal Topography

    PubMed Central

    Braaf, Boy; van de Watering, Thomas Christiaan; Spruijt, Kees; van der Heijde, Rob G.L.; Sicam, Victor Arni D.P.

    2010-01-01

    Purpose To develop a method to calculate the angle λ of the human eye using Zernike tilt measurements in specular reflection corneal topography. Methods The meaning of Zernike tilt in specular reflection corneal topography is demonstrated by measurements on translated artificial surfaces using the VU Topographer. The relationship derived from the translation experiments is used to determine the angle λ. Corneal surfaces are measured for a set of eight different fixation points, for which tilt angles ρ are obtained from the Zernike tilt coefficients. The angles ρ are used with respect to the fixation target angles to determine angle λ by fitting a geometrical model. This method is validated with Orbscan II's angle-κ measurements in 9 eyes. Results The translation experiments show that the Zernike tilt coefficient is directly related to an angle ρ, which describes a tilt orientation of the cornea and can therefore be used to derive a value for angle λ. A significant correlation exists between measured values for angle λ with the VU Topographer and the angle κ with the Orbscan II (r=0.95, P<0.001). A Bland-Altman plot indicates a mean difference of -0.52 degrees between the two instruments, but this is not statistically significant as indicated by a matched-pairs Wilcoxon signed-rank test (P≤0.1748). The mean precision for measuring angle λ using the VU topographer is 0.6±0.3 degrees. Conclusion The method described above to determine angle λ is sufficiently repeatable and performs similarly to the angle-κ measurements made with the Orbscan II.

  12. Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sic; Zhang, Qing-Zhao; Kang, Seong-Seung; Jang, Bo-An

    2018-04-01

    Samples of Hwangdeung granite from Korea and Berea sandstone from USA, both containing sliding planes, were prepared by saw-cutting or polishing using either #100 or #600 grinding powders. Their basic friction angles were measured by direct shear testing, triaxial compression testing, and tilt testing. The direct shear tests and triaxial compression tests on the saw-cut, #100, and #600 surfaces indicated that the most reliable results were obtained from the #100 surface: basic friction angle of 29.4° for granite and 34.1° for sandstone. To examine the effect of surface conditions on the friction angle in tilt tests, the sliding angles were measured 50 times with two surface conditions (surfaces cleaned and not cleaned after each measurement). The initial sliding angles were high regardless of rock type and surface conditions and decreased exponentially as measurements continued. The characteristics of the sliding angles, differences between tilt tests, and dispersion between measurements in each test indicated that #100 surface produced the most reliable basic friction angle measurement. Without cleaning the surfaces, the average angles for granite (32 measurements) and sandstone (23 measurements) were similar to the basic friction angle. When 20-50 measurements without cleaning were averaged, the basic friction angle was within ± 2° for granite and ± 3° for sandstone. Sliding angles using five different tilting speeds were measured but the average was similar, indicating that tilting speed (between 0.2° and 1.6°/s) has little effect on the sliding angle. Sliding angles using four different sample sizes were measured with the best results obtained for samples larger than 8 × 8 cm.

  13. Research in Varying Burner Tilt Angle to Reduce Rear Pass Temperature in Coal Fired Boiler

    NASA Astrophysics Data System (ADS)

    Thrangaraju, Savithry K.; Munisamy, Kannan M.; Baskaran, Saravanan

    2017-04-01

    This research shows the investigation conducted on one of techniques that is used in Manjung 700 MW tangentially fired coal power plant. The investigation conducted in this research is finding out the right tilt angle for the burners in the boiler that causes an efficient temperature distribution and combustion gas flow pattern in the boiler especially at the rear pass section. The main outcome of the project is to determine the right tilt angle for the burner to create an efficient temperature distribution and combustion gas flow pattern that able to increase the efficiency of the boiler. The investigation is carried out by using Computational Fluid Dynamics method to obtain the results by varying the burner tilt angle. The boiler model is drawn by using designing software which is called Solid Works and Fluent from Computational Fluid Dynamics is used to conduct the analysis on the boiler model. The analysis is to imitate the real combustion process in the real Manjung 700 MW boiler. The expected results are to determine the right burner tilt angle with a computational fluid analysis by obtaining the temperature distribution and combustion gas flow pattern for each of the three angles set for the burner tilt angle in FLUENT software. Three burner tilt angles are selected which are burner tilt angle at (0°) as test case 1, burner tilt angle at (+10°) as test case 2 and burner tilt angle at (-10°) as test case 3. These entire three cases were run in CFD software and the results of temperature distribution and velocity vector were obtained to find out the changes on the three cases at the furnace and rear pass section of the boiler. The results are being compared in analysis part by plotting graphs to determine the right tilting angle that reduces the rear pass temperature.

  14. ACTIVE-REGION TILT ANGLES: MAGNETIC VERSUS WHITE-LIGHT DETERMINATIONS OF JOY'S LAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.-M.; Colaninno, R. C.; Baranyi, T.

    2015-01-01

    The axes of solar active regions are inclined relative to the east-west direction, with the tilt angle tending to increase with latitude ({sup J}oy's law{sup )}. Observational determinations of Joy's law have been based either on white-light images of sunspot groups or on magnetograms, where the latter have the advantage of measuring directly the physically relevant quantity (the photospheric field), but the disadvantage of having been recorded routinely only since the mid-1960s. White-light studies employing the historical Mount Wilson (MW) database have yielded tilt angles that are smaller and that increase less steeply with latitude than those obtained from magneticmore » data. We confirm this effect by comparing sunspot-group tilt angles from the Debrecen Photoheliographic Database with measurements made by Li and Ulrich using MW magnetograms taken during cycles 21-23. Whether white-light or magnetic data are employed, the median tilt angles significantly exceed the mean values, and provide a better characterization of the observed distributions. The discrepancy between the white-light and magnetic results is found to have two main sources. First, a substantial fraction of the white-light ''tilt angles'' refer to sunspots of the same polarity. Of greater physical significance is that the magnetograph measurements include the contribution of plage areas, which are invisible in white-light images but tend to have greater axial inclinations than the adjacent sunspots. Given the large uncertainties inherent in both the white-light and the magnetic measurements, it remains unclear whether any systematic relationship exists between tilt angle and cycle amplitude during cycles 16-23.« less

  15. Optimum take-off angle in the long jump.

    PubMed

    Linthorne, Nicholas P; Guzman, Maurice S; Bridgett, Lisa A

    2005-07-01

    In this study, we found that the optimum take-off angle for a long jumper may be predicted by combining the equation for the range of a projectile in free flight with the measured relations between take-off speed, take-off height and take-off angle for the athlete. The prediction method was evaluated using video measurements of three experienced male long jumpers who performed maximum-effort jumps over a wide range of take-off angles. To produce low take-off angles the athletes used a long and fast run-up, whereas higher take-off angles were produced using a progressively shorter and slower run-up. For all three athletes, the take-off speed decreased and the take-off height increased as the athlete jumped with a higher take-off angle. The calculated optimum take-off angles were in good agreement with the athletes' competition take-off angles.

  16. Effects of pelvic tilt angles and forced vital capacity in healthy individuals

    PubMed Central

    Hwang, Young-In; Kim, Ki-Song

    2018-01-01

    [Purpose] The purpose of this study was to investigate the effect of pelvic tilt angles and lung function in participants performing pelvic tilts on a ball. [Subjects and Methods] Eighteen subjects participated in this study. While they performed pelvic tilt on sitting at a ball, the peak expiratory flow (PEF) and forced expiratory volume in one second (FEV1) were measured at 10 degrees of anterior and posterior pelvic tilt, respectively, and neutral position. The repeated measure ANOVA was performed, and the Bonferroni correction was used for post-hoc analysis. [Results] The PEF of the participants was significantly higher at neutral position, compared with an anterior pelvic tilt at 10 degrees. The FEV1 was also higher in neutral position, compared with anterior and posterior pelvic tilt. [Conclusion] This study underlines the need for the standardization of the FVC testing protocol for positioning the pelvic angle in a neutral position in patients with respiratory disorders to promote reliable interpretation of intervention outcomes. PMID:29410572

  17. Optimum Projection Angle for Attaining Maximum Distance in a Soccer Punt Kick

    PubMed Central

    Linthorne, Nicholas P.; Patel, Dipesh S.

    2011-01-01

    To produce the greatest horizontal distance in a punt kick the ball must be projected at an appropriate angle. Here, we investigated the optimum projection angle that maximises the distance attained in a punt kick by a soccer goalkeeper. Two male players performed many maximum-effort kicks using projection angles of between 10° and 90°. The kicks were recorded by a video camera at 100 Hz and a 2 D biomechanical analysis was conducted to obtain measures of the projection velocity, projection angle, projection height, ball spin rate, and foot velocity at impact. The player’s optimum projection angle was calculated by substituting mathematical equations for the relationships between the projection variables into the equations for the aerodynamic flight of a soccer ball. The calculated optimum projection angles were in agreement with the player’s preferred projection angles (40° and 44°). In projectile sports even a small dependence of projection velocity on projection angle is sufficient to produce a substantial shift in the optimum projection angle away from 45°. In the punt kicks studied here, the optimum projection angle was close to 45° because the projection velocity of the ball remained almost constant across all projection angles. This result is in contrast to throwing and jumping for maximum distance, where the projection velocity the athlete is able to achieve decreases substantially with increasing projection angle and so the optimum projection angle is well below 45°. Key points The optimum projection angle that maximizes the distance of a punt kick by a soccer goalkeeper is about 45°. The optimum projection angle is close to 45° because the projection velocity of the ball is almost the same at all projection angles. This result is in contrast to throwing and jumping for maximum distance, where the optimum projection angle is well below 45° because the projection velocity the athlete is able to achieve decreases substantially with increasing

  18. Flow tilt angles near forest edges - Part 2: Lidar anemometry

    NASA Astrophysics Data System (ADS)

    Dellwik, E.; Mann, J.; Bingöl, F.

    2010-05-01

    A novel way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 min mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175 m a.g.l. (above ground level), (2) a reference site in flat agricultural terrain and (3) a second reference site in complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by assuming zero tilt angle at high altitudes. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are potentially slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct, and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. It is demonstrated that the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements

  19. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    PubMed

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  20. Is there an optimal upper instrumented vertebra (UIV) tilt angle to prevent post-operative shoulder imbalance and neck tilt in Lenke 1 and 2 adolescent idiopathic scoliosis (AIS) patients?

    PubMed

    Kwan, M K; Chan, C Y W

    2016-10-01

    To investigate whether an optimal upper instrumented vertebra (UIV) tilt angle would prevent 'lateral' shoulder imbalance or neck tilt (with 'medial' shoulder imbalance) post-operatively. The mean follow-up for 60 AIS (Lenke 1 and Lenke 2) patients was 49.3 ± 8.4 months. Optimal UIV tilt angle was calculated from the cervical supine side bending radiographs. Lateral shoulder imbalance was graded using the clinical shoulder grading. The clinical neck tilt grading was as follows: Grade 0: no neck tilt, Grade 1: actively correctable neck tilt, Grade 2: neck tilt that cannot be corrected by active contraction and Grade 3: severe neck tilt with trapezial asymmetry >1 cm. T1 tilt, clavicle angle and cervical axis were measured. UIVDiff (difference between post-operative UIV tilt and pre-operative Optimal UIV tilt) and the reserve motion of the UIV were correlated with the outcome measures. Patients were assessed at 6 weeks and at final follow-up with a minimum follow-up duration of 24 months. Among patients with grade 0 neck tilt, 88.2 % of patients had the UIV tilt angle within the reserve motion range. This percentage dropped to 75.0 % in patients with grade 1 neck tilt whereas in patients with grade 2 and grade 3 neck tilt, the percentage dropped further to 22.2 and 20.0 % (p = 0.000). The occurrence of grade 2 and 3 neck tilt when UIVDiff was <5°, 5-10° and >10° was 9.5, 50.0 and 100.0 %, respectively (p = 0.005). UIVDiff and T1 tilt had a positive and strong correlation (r 2  = 0.618). However, UIVDiff had poor correlation with clavicle angle and the lateral shoulder imbalance. An optimal UIV tilt might prevent neck tilt with 'medial' shoulder imbalance due to trapezial prominence and but not 'lateral' shoulder imbalance.

  1. TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClintock, B. H.; Norton, A. A., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu

    2016-02-10

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limitmore » our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations.« less

  2. Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins.

    PubMed Central

    Tristram-Nagle, S; Zhang, R; Suter, R M; Worthington, C R; Sun, W J; Nagle, J F

    1993-01-01

    The tilt angle theta tilt of the hydrocarbon chains has been determined for fully hydrated gel phase of a series of saturated lecithins. Oriented samples were prepared on glass substrates and hydrated with supersaturated water vapor. Evidence for full hydration was the same intensity pattern of the low angle lamellar peaks and the same lamellar repeat D as unoriented multilamellar vesicles. Tilting the sample permitted observation of all the wide angle arcs necessary to verify the theoretical diffraction pattern corresponding to tilting of the chains towards nearest neighbors. The length of the scattering unit corresponds to two hydrocarbon chains, requiring each bilayer to scatter coherently rather than each monolayer. For DPPC, theta tilt was determined to be 32.0 +/- 0.5 degrees at 19 degrees C, slightly larger than previous direct determinations and considerably smaller than the value required by recent gravimetric measurements. This new value allows more accurate determinations of a variety of structural parameters, such as area per lipid molecule, A = 47.2 +/- 0.5 A2, and number of water molecules of hydration, nw = 11.8 +/- 0.7. As the chain length n of the lipids was increased from 16 to 20 carbons, the parameters A and nw remained constant, suggesting that the headgroup packing is at its excluded volume limit for this range. However, theta tilt increased by 3 degrees and the chain area Ac decreased by 0.5 A2. This behavior is explained in terms of a competition between a bulk free energy term and a finite or end effect term. Images FIGURE 6 FIGURE 7 PMID:8494973

  3. Effects of tilted angle of Bragg facets on the performance of successive strips based Bragg concave diffraction grating

    NASA Astrophysics Data System (ADS)

    Du, Bingzheng; Zhu, Jingping; Mao, Yuzheng; Wang, Kai; Chen, Huibing; Hou, Xun

    2018-03-01

    The effects of the tilted angle of facets on the diffraction orders, diffraction spectra, dispersion power, and the neighbor channel crosstalk of successive etching strips based Bragg concave diffraction grating (Bragg-CDG) are studied in this paper. The electric field distribution and diffraction spectra of four Bragg-CDGs with different tilted angles are calculated by numerical simulations. With the reflection condition of Bragg facets constant, the blazing order cannot change with the titled angle. As the tilted angle increases, the number of diffraction orders of Bragg-CDG will decrease, thereby concentrating more energy on the blazing order and improving the uniformity of diffraction spectra. In addition, the dispersion power of Bragg-CDG can be improved and the neighbor channel crosstalk of devices can be reduced by increasing the tilted angle. This work is beneficial to optimize the performance of Bragg-CDG.

  4. Wake measurements of a dechirper jaw with nonzero tilt angle

    NASA Astrophysics Data System (ADS)

    Bane, Karl; Guetg, Marc; Lutman, Alberto

    2018-05-01

    The RadiaBeam/SLAC dechirper at the Linac Coherent Light Source (LCLS) is being used as a fast kicker, by inducing transverse wakefields, to, e.g., facilitate Fresh-slice, two-color laser operation. The dechirper jaws are independently adjustable at both ends, and it is difficult to avoid leaving residual (longitudinal) tilt in them during setup. In this report we develop a model independent method of removing unknown tilt in a jaw. In addition, for a short uniform bunch passing by a single dechirper plate, we derive an explicit analytical formula for the transverse wake kick as function of average plate offset and tilt angle. We perform wake kick measurements for the different dechirper jaws of the RadiaBeam/SLAC dechirper, and find that the agreement between measurement and theory is excellent.

  5. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J.; Cameron, R. H.; Schüssler, M., E-mail: jiejiang@nao.cas.cn

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input basedmore » upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.« less

  6. Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock-Leighton Solar Dynamo Model

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Miesch, Mark

    2017-09-01

    We present results from a three-dimensional Babcock-Leighton (BL) dynamo model that is sustained by the emergence and dispersal of bipolar magnetic regions (BMRs). On average, each BMR has a systematic tilt given by Joy’s law. Randomness and nonlinearity in the BMR emergence of our model produce variable magnetic cycles. However, when we allow for a random scatter in the tilt angle to mimic the observed departures from Joy’s law, we find more variability in the magnetic cycles. We find that the observed standard deviation in Joy’s law of {σ }δ =15^\\circ produces a variability comparable to the observed solar cycle variability of ˜32%, as quantified by the sunspot number maxima between 1755 and 2008. We also find that tilt angle scatter can promote grand minima and grand maxima. The time spent in grand minima for {σ }δ =15^\\circ is somewhat less than that inferred for the Sun from cosmogenic isotopes (about 9% compared to 17%). However, when we double the tilt scatter to {σ }δ =30^\\circ , the simulation statistics are comparable to the Sun (˜18% of the time in grand minima and ˜10% in grand maxima). Though the BL mechanism is the only source of poloidal field, we find that our simulations always maintain magnetic cycles even at large fluctuations in the tilt angle. We also demonstrate that tilt quenching is a viable and efficient mechanism for dynamo saturation; a suppression of the tilt by only 1°-2° is sufficient to limit the dynamo growth. Thus, any potential observational signatures of tilt quenching in the Sun may be subtle.

  7. VizieR Online Data Catalog: Scheiner drawing sunspot areas and tilt angles (Arlt+, 2016)

    NASA Astrophysics Data System (ADS)

    Arlt, R.; Senthamizh Pavai, V.; Schmiel, C.; Spada, F.

    2016-09-01

    Christoph Scheiner and his collaborators observed the sunspots from 1611-1631 at five different locations of Rome in Italy, Ingolstadt in Germany, Douai (Duacum in Latin) in France, Freiburg im Breisgau, Germany and Vienna, Austria. However, most of his published drawings were made in Rome. These sunspot drawings are important because they can tell us how the solar activity declined to a very low-activity phase which lasted for nearly five decades. The three sources used for the sunspot data extraction are Scheiner (1630rour.book.....S, Rosa Ursina sive solis), Scheiner (1651ppsm.book.....S, Prodromus pro sole mobili et terra stabili contra Academicum Florentinum Galilaeum a Galilaeis), and Reeves & Van Helden (2010, On sunspots. Galileo Galilei and Christoph Scheiner (University of Chicago Press)). The suspot drawings show the sunspot groups traversing the solar disk in a single full-disk drawing. The positions and areas of the sunspots were measured using 13 circular cursor shapes with different diameters. Umbral areas for 8167 sunspots and tilt angles for 697 manually selected, supposedly bipolar groups were obtained from Scheiner's sunspot drawings. The database does not contain spotless days. There is, of course, no polarity information in the sunspot drawings, so the tilt angles are actually pseudo-tilt angles. Both an updated sunspot database and a tilt angle database may be available at http://www.aip.de/Members/rarlt/sunspots for further study. (2 data files).

  8. Simultaneous piston position and tilt angle sensing for large vertical displacement micromirrors by frequency detection inductive sensing

    NASA Astrophysics Data System (ADS)

    Tseng, V. F.-G.; Xie, H.

    2015-11-01

    This paper presents a frequency detection based inductive eddy current sensing mechanism to simultaneously sense the piston position and tilt angle of the mirror plate of large vertical displacement micromirrors that exhibit piston scan ranges above 100 μm. This is accomplished by sensing the inductance change, and thus resonant frequency shift, of two microfabricated sensing coils packaged underneath the mirror plate. For demonstration purpose, the coils were paired with discrete circuit components to oscillate at 11.9 MHz and 12.5 MHz, respectively. The piston position and tilt angle of the mirror plate could be simultaneously monitored over a 500 μm piston scan range, achieving a maximum piston sensitivity of 4.15 kHz/μm with a piston sensing resolution of 96 nm and a maximum tilt angle sensitivity of 60.5 kHz/° with a tilt angle sensing resolution of 0.0013°. Analytical modeling of the coil inductance change via image theory was also conducted, showing that the sensor sensitivity and resolution could be improved by increasing the coil oscillation frequency and decreasing the coil size.

  9. Evaluation of electrolytic tilt sensors for measuring model angle of attack in wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    1992-01-01

    The results of a laboratory evaluation of electrolytic tilt sensors as potential candidates for measuring model attitude or angle of attack in wind tunnel tests are presented. The performance of eight electrolytic tilt sensors was compared with that of typical servo accelerometers used for angle-of-attack measurements. The areas evaluated included linearity, hysteresis, repeatability, temperature characteristics, roll-on-pitch interaction, sensitivity to lead-wire resistance, step response time, and rectification. Among the sensors being evaluated, the Spectron model RG-37 electrolytic tilt sensors have the highest overall accuracy in terms of linearity, hysteresis, repeatability, temperature sensitivity, and roll sensitivity. A comparison of the sensors with the servo accelerometers revealed that the accuracy of the RG-37 sensors was on the average about one order of magnitude worse. Even though a comparison indicates that the cost of each tilt sensor is about one-third the cost of each servo accelerometer, the sensors are considered unsuitable for angle-of-attack measurements. However, the potential exists for other applications such as wind tunnel wall-attitude measurements where the errors resulting from roll interaction, vibration, and response time are less and sensor temperature can be controlled.

  10. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics

    PubMed Central

    2014-01-01

    Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°). PMID:25435833

  11. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics.

    PubMed

    Kayes, Md Imrul; Leu, Paul W

    2014-01-01

    Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°).

  12. Multi-objective Optimization of Solar Irradiance and Variance at Pertinent Inclination Angles

    NASA Astrophysics Data System (ADS)

    Jain, Dhanesh; Lalwani, Mahendra

    2018-05-01

    The performance of photovoltaic panel gets highly affected bychange in atmospheric conditions and angle of inclination. This article evaluates the optimum tilt angle and orientation angle (surface azimuth angle) for solar photovoltaic array in order to get maximum solar irradiance and to reduce variance of radiation at different sets or subsets of time periods. Non-linear regression and adaptive neural fuzzy interference system (ANFIS) methods are used for predicting the solar radiation. The results of ANFIS are more accurate in comparison to non-linear regression. These results are further used for evaluating the correlation and applied for estimating the optimum combination of tilt angle and orientation angle with the help of general algebraic modelling system and multi-objective genetic algorithm. The hourly average solar irradiation is calculated at different combinations of tilt angle and orientation angle with the help of horizontal surface radiation data of Jodhpur (Rajasthan, India). The hourly average solar irradiance is calculated for three cases: zero variance, with actual variance and with double variance at different time scenarios. It is concluded that monthly collected solar radiation produces better result as compared to bimonthly, seasonally, half-yearly and yearly collected solar radiation. The profit obtained for monthly varying angle has 4.6% more with zero variance and 3.8% more with actual variance, than the annually fixed angle.

  13. Dislocation structures and electrical conduction properties of low angle tilt grain boundaries in LiNbO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furushima, Yuho; Nakamura, Atsutomo, E-mail: nakamura@numse.nagoya-u.ac.jp; Toyoura, Kazuaki

    Dislocations in crystalline materials constitute unique, atomic-scale, one-dimensional structure and have a potential to induce peculiar physical properties that are not found in the bulk. In this study, we fabricated LiNbO{sub 3} bicrystals with low angle tilt grain boundaries and investigated the relationship between the atomic structure of the boundary dislocations and their electrical conduction properties. Observations by using transmission electron microscopy revealed that dislocation structures at the (0001) low angle tilt grain boundaries depend on the tilt angle of the boundaries. Specifically, the characteristic dislocation structures with a large Burgers vector were formed in the boundary with the tiltmore » angle of 2°. It is noteworthy that only the grain boundary of 2° exhibits distinct electrical conductivity after reduction treatment, although LiNbO{sub 3} is originally insulating. This unique electrical conductivity is suggested to be due to the characteristic dislocation structures with a large Burgers vector.« less

  14. Optimal angle of polycrystalline silicon solar panels placed in a building using the ant colony optimization algorithm

    NASA Astrophysics Data System (ADS)

    Saouane, I.; Chaker, A.; Zaidi, B.; Shekhar, C.

    2017-03-01

    This paper describes the mathematical model used to determine the amount of solar radiation received on an inclined solar photovoltaic panel. The optimum slope angles for each month, season, and year have also been calculated for a solar photovoltaic panel. The optimization of the procedure to maximize the solar energy collected by the solar panel by varying the tilt angle is also presented. As a first step, the global solar radiation on the horizontal surface of a thermal photovoltaic panel during clear sky is estimated. Thereafter, the Muneer model, which provides the most accurate estimation of the total solar radiation at a given geographical point has been used to determine the optimum collector slope. Also, the Ant Colony Optimization (ACO) algorithm was applied to obtain the optimum tilt angle settings for PV collector to improve the PV collector efficiency. The results show good agreement between calculated and predicted results. Additionally, this paper presents studies carried out on the polycrystalline silicon solar panels for electrical energy generation in the city of Ghardaia. The electrical energy generation has been studied as a function of amount of irradiation received and the angle of optimum orientation of the solar panels.

  15. The anterior tilt angle of the proximal tibia epiphyseal plate: a significant radiological finding in young children with trampoline fractures.

    PubMed

    Stranzinger, Enno; Leidolt, Lars; Eich, Georg; Klimek, Peter Michael

    2014-08-01

    Evaluation of the anterior tilt angle of the proximal tibia epiphyseal plate in young children, which suffered a trampoline fracture in comparison with a normal population. 62 children (31 females, 31 males) between 2 and 5 years of age (average 2 years 11 months, standard deviation 11 months) with radiographs in two views of the tibia were included in this retrospective study. 25 children with proximal tibia fractures were injured with a history of jumping on a trampoline. All other causes for tibia fractures were excluded. A normal age-mapped control cohort of 37 children was compared. These children had neither evidence of a trampoline related injury nor a fracture of the tibia. The anterior tilt angle of the epiphyseal plate of the tibia was defined as an angle between the proximal tibia physis and the distal tibia physis on a lateral view. Two radiologists evaluated all radiographs for fractures and measured the anterior tilt angle in consensus. An unpaired Student's t-test was used for statistical analysis (SPSS). Original reports were reviewed and compared with the radiological findings and follow-up radiographs. In the normal control group, the average anterior tilt angle measured -3.2°, SD ± 2.8°. The children with trampoline fractures showed an anterior tilt of +4.4°, SD ± 2.9°. The difference was statistically significant, P<0.0001. In 6 patients (24% of all patients with confirmed fractures) the original report missed to diagnose the proximal tibial fracture. Young children between 2 and 5 years of age are at risk for proximal tibia fractures while jumping on a trampoline. These fractures may be very subtle and difficult to detect on initial radiographs. Measurement of the anterior tilt angle of the proximal tibia epiphyseal plate on lateral radiographs is supportive for interpreting correctly trampoline fractures. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. The impact of office chair features on lumbar lordosis, intervertebral joint and sacral tilt angles: a radiographic assessment.

    PubMed

    De Carvalho, Diana; Grondin, Diane; Callaghan, Jack

    2017-10-01

    The purpose of this study was to determine which office chair feature is better at improving spine posture in sitting. Participants (n = 28) were radiographed in standing, maximum flexion and seated in four chair conditions: control, lumbar support, seat pan tilt and backrest with scapular relief. Measures of lumbar lordosis, intervertebral joint angles and sacral tilt were compared between conditions and sex. Sitting consisted of approximately 70% of maximum range of spine flexion. No differences in lumbar flexion were found between the chair features or control. Significantly more anterior pelvic rotation was found with the lumbar support (p = 0.0028) and seat pan tilt (p < 0.0001). Males had significantly more anterior pelvic rotation and extended intervertebral joint angles through L1-L3 in all conditions (p < 0.0001). No one feature was statistically superior with respect to minimising spine flexion, however, seat pan tilt resulted in significantly improved pelvic posture. Practitioner Summary: Seat pan tilt, and to some extent lumbar supports, appear to improve seated postures. However, sitting, regardless of chair features used, still involves near end range flexion of the spine. This will increase stresses to the spine and could be a potential injury generator during prolonged seated exposures.

  17. Numerical calculations of temperature dependence of dielectric constant for an ordered assembly of BaTiO3 nanocubes with small tilt angles

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Mimura, Ken-ichi; Izu, Noriya; Kato, Kazumi

    2018-03-01

    The dielectric constant of an ordered assembly of BaTiO3 nanocubes is numerically calculated as a function of temperature assuming a distribution of tilt angles of attached nanocubes. As the phase transition temperature from the tetragonal crystal structure to the cubic crystal structure of a BaTiO3 nanocube decreases as the tilt angle increases, the temperature at the peak of the dielectric constant of an ordered assembly is considerably lower than the Curie temperature of a free-standing BaTiO3 crystal. The peak of the dielectric constant as a function of temperature for an ordered assembly becomes considerably broader than that for a single crystal owing to the contribution of nanocubes with various tilt angles.

  18. Unique determination of the -CN group tilt angle in Langmuir monolayers using sum-frequency polarization null angle and phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-10-14

    The relative phase and amplitude ratio between the ssp and ppp polarization combinations of the vibrational sum-frequency generation (SFG) response can be uniquely and accurately determined by the polarization null angle (PNA) method. In this report we show that PNA measurements of the -CN vibration in the 4-n pentyl-4'-cyanoterphenyl (5CT) Langmuir monolayer at the air/water interface yields ssp and ppp response of the same phase, while those in the 4-n-octyl-4'cyanobiphenyl (8CB) Langmuir monolayer have the opposite phase. Accordingly, the -CN group in the 5CT monolayer is tilted around 25+/-2 from the interface normal, while that in the 8CB is tiltedmore » around 57+/-2, consistent with the significant differences in the phase diagrams and hydrogen bonding SFG spectra of the two Langmuir monolayers as reported in the literature. These results also demonstrate that in SFG studies the relative phase information of the different polarization combinations, especially for the ssp and ppp, is important in the unique determination of the tilt angle and conformation of a molecular group at the interface.« less

  19. A literature review on optimum and preferred joint angles in automotive sitting posture.

    PubMed

    Schmidt, Susanne; Amereller, Maximilian; Franz, Matthias; Kaiser, Ralf; Schwirtz, Ansgar

    2014-03-01

    In this study, a survey of the scientific literature in the field of optimum and preferred human joint angles in automotive sitting posture was conducted by referring to thirty different sources published between 1940 and today. The strategy was to use only sources with numerical angle data in combination with keywords. The aim of the research was to detect commonly used joint angles in interior car design. The main analysis was on data measurement, usability and comparability of the different studies. In addition, the focus was on the reasons for the differently described results. It was found that there is still a lack of information in methodology and description of background. Due to these reasons published data is not always usable to design a modern ergonomic car environment. As a main result of our literature analysis we suggest undertaking further research in the field of biomechanics and ergonomics to work out scientific based and objectively determined "optimum" joint angles in automotive sitting position. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  20. Effects of Inclined Treadmill Walking on Pelvic Anterior Tilt Angle, Hamstring Muscle Length, and Trunk Muscle Endurance of Seated Workers with Flat-back Syndrome.

    PubMed

    Kim, Min-Hee; Yoo, Won-Gyu

    2014-06-01

    [Purpose] This study investigated the effects of inclined treadmill walking on pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance of seated workers with flat-back syndrome. [Subjects] Eight seated workers with flat-back syndrome who complained of low-back pain in the L3-5 region participated in this study. [Methods] The subjects performed a walking exercise on a 30° inclined treadmill. We measured the pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance before and after inclined treadmill walking. [Results] Anterior pelvic tilt angle and active knee extension angle significantly increased after inclined treadmill walking. Trunk extensor and flexor muscle endurance times were also significantly increased compared to the baseline. [Conclusion] Inclined treadmill walking may be an effective approach for the prevention or treatment of low-back pain in flat-back syndrome.

  1. Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in Czochralski-grown silicon crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Yutaka, E-mail: yutakaohno@imr.tohoku.ac.jp; Inoue, Kaihei; Fujiwara, Kozo

    2015-06-22

    Three-dimensional distribution of oxygen atoms at small-angle tilt boundaries (SATBs) in Czochralski-grown p-type silicon ingots was investigated by atom probe tomography combined with transmission electron microscopy. Oxygen gettering along edge dislocations composing SATBs, post crystal growth, was observed. The gettering ability of SATBs would depend both on the dislocation strain and on the dislocation density. Oxygen atoms would agglomerate in the atomic sites under the tensile hydrostatic stress larger than about 2.0 GPa induced by the dislocations. It was suggested that the density of the atomic sites, depending on the tilt angle of SATBs, determined the gettering ability of SATBs.

  2. Evaluation of electrolytic tilt sensors for wind tunnel model angle-of-attack (AOA) measurements

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    1991-01-01

    The results of a laboratory evaluation of three types of electrolytic tilt sensors as potential candidates for model attitude or angle of attack (AOA) measurements in wind tunnel tests are presented. Their performance was also compared with that from typical servo accelerometers used for AOA measurements. Model RG-37 electrolytic tilt sensors were found to have the highest overall accuracy among the three types. Compared with the servo accelerometer, their accuracies are about one order of magnitude worse and each of them cost about two-thirds less. Therefore, the sensors are unsuitable for AOA measurements although they are less expensive. However, the potential for other applications exists where the errors resulting from roll interaction, vibration, and response time are less, and sensor temperature can be controlled.

  3. Influence of forming conditions on fiber tilt

    Treesearch

    David W. Vahey; John M. Considine; Michael A. and MacGregor

    2013-01-01

    Fiber tilt describes the projection of fiber length in the thickness direction of paper. The projection is described by the tilt angle of fibers with respect to the plane of the sheet. A simple model for fiber tilt is based on jet-to-wire velocity differential in combination with cross-flows on the wire. The tilt angle of a fiber is found to vary as the sine of its in-...

  4. Optimum angle-cut of collimator for dense objects in high-energy proton radiography

    NASA Astrophysics Data System (ADS)

    Xu, Hai-Bo; Zheng, Na

    2016-02-01

    The use of minus identity lenses with an angle-cut collimator can achieve high contrast images in high-energy proton radiography. This article presents the principles of choosing the angle-cut aperture of the collimator for different energies and objects. Numerical simulation using the Monte Carlo code Geant4 has been implemented to investigate the entire radiography for the French test object. The optimum angle-cut apertures of the collimators are also obtained for different energies. Supported by NSAF (11176001) and Science and Technology Developing Foundation of China Academy of Engineering Physics (2012A0202006)

  5. Effect of Individual Strengthening Exercises for Anterior Pelvic Tilt Muscles on Back Pain, Pelvic Angle, and Lumbar ROMs of a LBP Patient with Flat Back.

    PubMed

    Yoo, Won-Gyu

    2013-10-01

    [Purpose] The purpose of this paper is to report the effect of individual strengthening exercises for the anterior pelvic tilt muscles on back pain, pelvic tilt angle, and lumbar ROM of a low back pain (LBP) patient with flat back. [Subject] A 37 year-old male, who complained of LBP pain at L3-5 levels with flat back, participated. [Methods] He performed the individual strengthening exercises for anterior pelvic tilt muscles (erector spinae,iliopsoas, rectus femoris). [Results] Pelvic tilt angles of the right and left sides were recovered to normal ranges. His lumbar ROMs increased, and low back pain decreased. [Conclusion] We suggest that individual resistance exercises are a necessary approach for effective and fast strengthening of pelvic anterior tilt muscles in LBP with flat back.

  6. The distribution of tilt angles in newly born NSs: role of interior viscosity and magnetic field

    NASA Astrophysics Data System (ADS)

    Dall'Osso, Simone; Perna, Rosalba

    2017-12-01

    We study how the viscosity of neutron star (NS) matter affects the distribution of tilt angles (χ) between the spin and magnetic axes in young pulsars. Under the hypothesis that the NS shape is determined by the magnetically induced deformation, and that the toroidal component of the internal magnetic field exceeds the poloidal one, we show that the dissipation of precessional motions by bulk viscosity can naturally produce a bi-modal distribution of tilt angles, as observed in radio/γ-ray pulsars, with a low probability of achieving χ ˜ (20°-70°) if the interior B-field is ˜(1011-1015) G and the birth spin period is ˜10-300 ms. As a corollary of the model, the idea that the NS shape is solely determined by the poloidal magnetic field, or by the centrifugal deformation of the crust, is found to be inconsistent with the tilt angle distribution in young pulsars. When applied to the Crab pulsar, with χ ˜ 45°-70° and birth spin ≳20 ms, our model implies that: (I) the magnetically induced ellipticity is ɛB ≳ 3 × 10-6; and (II) the measured positive\\dot{χ } ˜ 3.6 × 10^{-12} rad s-1 requires an additional viscous process, acting on a time-scale ≲104 yr. We interpret the latter as crust-core coupling via mutual friction in the superfluid NS interior. One critical implication of our model is a gravitational wave signal at (twice) the spin frequency of the NS. For ɛB ˜ 10-6, this could be detectable by Advanced LIGO/Virgo operating at design sensitivity.

  7. Intensity insensitive one-dimensional optical fiber tilt sensor

    NASA Astrophysics Data System (ADS)

    Vadakkapattu Canthadai, Badrinath; Sengupta, Dipankar; Pachava, Vengalrao; Kishore, P.

    2014-06-01

    The paper presents a proximity sensor based on plastic optical fiber as tilt sensor. Discrete and continuous response of the sensor against change in tilt angle of the setup is studied. The sensor can detect tilt angles up to 5.70 and the achieved sensor sensitivity is 97mV/0 .

  8. Symmetric Tilt Grain Boundaries of Synthetic Forsterite Bicrystals

    NASA Astrophysics Data System (ADS)

    Heinemann, S.; Wirth, R.; Dresen, G.

    2002-12-01

    { indent1.5em skip0ex Structure and transport properties of grain boundaries in rocks are still poorly understood. For example, grain boundary diffusivity and mobility depend on orientation, and they are different for low and high angle grain boundaries. The transition from low to high angle grain boundaries in rock-forming minerals is not studied in detail, but a high angle grain boundary is commonly defined by a lattice misorientation of >10°-15°. To investigate the physical properties of olivine grain boundaries we produced a series of synthetic forsterite bicrystals with symmetric tilt grain boundaries by direct bonding [1,2]. For each bicrystal two oriented synthetic forsterite single crystals were joined at room temperature and annealed at 400°C for one week. All bicrystals were cut in two parts and one part was annealed further at 1650°C for 48h. The tilt axis of the boundary in the synthesized bicrystals is parallel to the a direction, and the tilt angles of the series range from 9° to 21°. Specimens were prepared for investigations in the transmission electron microscope (TEM) using focused ion beam (FIB) technique. High-resolution TEM investigations of symmetric tilt grain boundaries reveal dislocation arrays between undisturbed crystal regions in samples annealed at 400°C and 1650°C. This suggests that bonding of bicrystals occurred already below or at 400°C. The burgers vectors of the dislocations are parallel to c. Dislocation cores do not overlap up to a tilt angle of 21°. This indicates that for forsterite small angle grain boundaries exist up to tilt angles of 21°. The dislocation model of small angle grain boundaries can be applied and the observed dislocation spacings d are related to tilt angle θ and burgers vector length b by Franks formula [3]: d = b/(2sin(2/θ )) ~ b/θ . With tilt angles increasing from 9° to 21° the dislocation spacing decreased. Using Frank's equation and the observation that dislocations do not overlap at a

  9. Touch-screen tablet user configurations and case-supported tilt affect head and neck flexion angles.

    PubMed

    Young, Justin G; Trudeau, Matthieu; Odell, Dan; Marinelli, Kim; Dennerlein, Jack T

    2012-01-01

    The aim of this study was to determine how head and neck postures vary when using two media tablet (slate) computers in four common user configurations. Fifteen experienced media tablet users completed a set of simulated tasks with two media tablets in four typical user configurations. The four configurations were: on the lap and held with the user's hands, on the lap and in a case, on a table and in a case, and on a table and in a case set at a high angle for watching movies. An infra-red LED marker based motion analysis system measured head/neck postures. Head and neck flexion significantly varied across the four configurations and across the two tablets tested. Head and neck flexion angles during tablet use were greater, in general, than angles previously reported for desktop and notebook computing. Postural differences between tablets were driven by case designs, which provided significantly different tilt angles, while postural differences between configurations were driven by gaze and viewing angles. Head and neck posture during tablet computing can be improved by placing the tablet higher to avoid low gaze angles (i.e. on a table rather than on the lap) and through the use of a case that provides optimal viewing angles.

  10. Effect of the Individual Strengthening Exercises for Posterior Pelvic Tilt Muscles on Back Pain, Pelvic Angle, and Lumbar ROM of a LBP Patient with Excessive Lordosis: A Case Study.

    PubMed

    Yoo, Won-Gyu

    2014-02-01

    [Purpose] The purpose of this study was to document the effect of individual strengthening exercises for posterior pelvic tilt muscles on back pain, pelvic tilt angle, and lumbar ROM of a low back pain (LBP) patient with excessive lordosis. [Subjects] The subject was a 28 year-old male with excessive lordosis who complained of severe LBP at the L3 level. [Methods] He performed individual strengthening exercises for the posterior pelvic tilt muscles (rectus abdominis, gluteus maximus, hamstring). [Results] Pelvic tilt angles on the right and left sides recovered to his normal ranges. Limited lumbar ROM increased, and low back pain decreased. [Conclusion] We suggest that an approach of individual resistance exercises is necessary for the effective and fast strengthening of the pelvic posterior tilt muscles in case of LBP with excessive lordosis.

  11. Cardiopulmonary readjustments in passive tilt

    NASA Technical Reports Server (NTRS)

    Matalon, S. V.; Farhi, L. E.

    1979-01-01

    The readjustment of cardiopulmonary variables in human volunteers at various tilt angles on a tilt board is studied. Five healthy subjects (18-31 yr) with thorough knowledge of the experimental protocol are tested, passively tilted from the supine to the upright position in 15-deg increments in random sequence. The parameters measured are cardiac output (Q), heart rate (HR), stroke volume (SV), minute and alveolar ventilation /V(E) and V(A)/, functional residual capacity (FRC), and arterial-end-tidal P(CO2) pressure difference. It is found that changes in Q and FRC are linearly related to the sine of the tilt angle, indicating that either reflexes are absent or their net effect is proportional to the effects of gravity. This is clearly not the case for other variables /HR, SV, V(E), V(A)/, where it is possible to demonstrate threshold values for the appearance of secondary changes.

  12. A blended wing body airplane with a close-coupled, tilting tail

    NASA Astrophysics Data System (ADS)

    Nasir, R. E. M.; Mazlan, N. S. C.; Ali, Z. M.; Wisnoe, W.; Kuntjoro, W.

    2016-10-01

    This paper highlights a novel approach to stabilizing and controlling pitch and yaw motion via a set of horizontal tail that can act as elevator and rudder. The tail is incorporated into a new design of blended wing body (BWB) aircraft, known as Baseline-V, located just aft of the trailing edge of its inboard wing. The proposed close-coupled tail is equipped with elevators that deflect in unison, and can tilt - an unusual means of tilting where if starboard side is tilted downward at k degree, and then the portside must be tilted upward at k degree too. A wind tunnel experiment is conducted to investigate aerodynamics and static stability of Baseline-V BWB aircraft. The model is being tested at actual flight speed of 15 m/s (54 km/h) with varying angle of attack for five elevator angle cases at zero tilt angle and varying sideslip angle for four tilt angle cases at one fixed elevator angle. The result shows that the aircraft's highest lift-to-drag ratio is 32. It is also found that Baseline-V is statically stable in pitch and yaw but has no clear indication in terms of roll stability.

  13. Development of intelligent model to determine favorable wheelchair tilt and recline angles for people with spinal cord injury.

    PubMed

    Fu, Jicheng; Jan, Yih-Kuen; Jones, Maria

    2011-01-01

    Machine-learning techniques have found widespread applications in bioinformatics. Such techniques provide invaluable insight on understanding the complex biomedical mechanisms and predicting the optimal individualized intervention for patients. In our case, we are particularly interested in developing an individualized clinical guideline on wheelchair tilt and recline usage for people with spinal cord injury (SCI). The current clinical practice suggests uniform settings to all patients. However, our previous study revealed that the response of skin blood flow to wheelchair tilt and recline settings varied largely among patients. Our finding suggests that an individualized setting is needed for people with SCI to maximally utilize the residual neurological function to reduce pressure ulcer risk. In order to achieve this goal, we intend to develop an intelligent model to determine the favorable wheelchair usage to reduce pressure ulcers risk for wheelchair users with SCI. In this study, we use artificial neural networks (ANNs) to construct an intelligent model that can predict whether a given tilt and recline setting will be favorable to people with SCI based on neurological functions and SCI injury history. Our results indicate that the intelligent model significantly outperforms the traditional statistical approach in accurately classifying favorable wheelchair tilt and recline settings. To the best of our knowledge, this is the first study using intelligent models to predict the favorable wheelchair tilt and recline angles. Our methods demonstrate the feasibility of using ANN to develop individualized wheelchair tilt and recline guidance for people with SCI.

  14. Notebook computer use with different monitor tilt angle: effects on posture, muscle activity and discomfort of neck pain users.

    PubMed

    Chiou, Wen-Ko; Chou, Wei-Ying; Chen, Bi-Hui

    2012-01-01

    This study aimed to evaluate the posture, muscle activities, and self reported discomforts of neck pain notebook computer users on three monitor tilt conditions: 100°, 115°, and 130°. Six subjects were recruited in this study to completed typing tasks. Results showed subjects have a trend to show the forward head posture in the condition that monitor was set at 100°, and the significant less neck and shoulder discomfort were noted in the condition that monitor was set at 130°. These result suggested neck pain notebook user to set their monitor tilt angle at 130°.

  15. Application of posterior pelvic tilt taping for the treatment of chronic low back pain with sacroiliac joint dysfunction and increased sacral horizontal angle.

    PubMed

    Lee, Jung-hoon; Yoo, Won-gyu

    2012-11-01

    Kinesio Taping (KT) is a therapeutic method used by physical therapists and athletic trainers in combination with other treatment techniques for various musculoskeletal and neuromuscular problems. However, no research has evaluated the effect of KT in patients with low back pain (LBP). The purpose of this case was to describe the application of posterior pelvic tilt taping (PPTT) with Kinesio tape as a treatment for chronic LBP and to reduce the anterior pelvic tilt angle. Case report. The patien was a 20-year-old female amateur swimmer with a Cobb's angle (L1-S1) of 68°, a sacral horizontal angle of 45°, and pain in both medial buttock areas and sacroiliac joints. We performed PPTT with Kinesio tape for 2 weeks (six times per week for an average of 9 h each time). The patient’s radiographs showed that the Cobb's angle (L1-S1) had decreased from 68° to 47° and that the sacral horizontal angle had decreased from 45° to 31°. Reductions in hypomobility or motion asymmetry, as assessed by the motion palpation test, and in pain, as measured by the pain-provocation tests, were observed. On palpation for both medial buttock areas in the prone position, the patient felt no pain. The patient experienced no pain or stiffness in the low back area while performing forward flexion in the standing position with knees fully extended when washing dishes in the sink. The case study demonstrated that PPTT intervention favourably affected the pelvic inclination and sacral horizontal angle, leading to beneficial effects on sacroiliac joint dysfunction (SIJD) and medial buttock pain. Additional research on the clinical effects of this taping procedure requires greater numbers of athletes with SIJD or LBP who have inappropriate anterior pelvic tilt angles and hyperlordosis.

  16. Trigonometry-Integrated 'Lift' Technique (TILT) for Restoring Volar Tilt in Distal Radius Fractures: Description of Technique and Preliminary Results.

    PubMed

    Sechachalam, Sreedharan; Satku, Mala; Wong, Jian Hao Kevin; Tan, Lester Teong Jin; Yong, Fok Chuan

    2017-03-01

    Restoration of extra-articular and intra-articular parameters are important considerations during operative fixation of distal radius fractures. Restoration of volar tilt by using visual estimation and the 'lift' technique has previously been described. The aim of our study was to describe a mathematical technique for accurately restoring the volar tilt of the distal radius to acceptable anatomic values. A retrospective review of cases performed using the trigonometry-integrated ' lift' technique (TILT) was performed. This technique uses the pre-operative volar tilt angle as well as the dimensions of the implant to calculate the 'lift' required to restore volar tilt. Intra-operative angles were measured using a marked transparency overlay on fluoroscopic images. Pre-operative and post-operative volar tilt were measured and analysed. Twenty-seven fractures were included in the study, with 20 being classified as Arbeitsgemeinschaft für Osteosynthesefragen (AO) C-type. Pre-'lift' volar tilt ranged from 0° to -20°. Post-'lift' volar tilt ranged from 2° to 16°, with all but three cases ranging from 5° to 15°. The mean volar tilt achieved was 10.2°. The trigonometry-integrated 'lift' technique resulted in reliable intra-operative restoration of anatomic volar tilt in distal radius fractures.

  17. Precipitation of low energy electrons at high latitudes: Effects of substorms, interplanetary magnetic field and dipole tilt angle

    NASA Technical Reports Server (NTRS)

    Burch, J. L.

    1972-01-01

    Data from the auroral particles experiment on OGO-4 were used to study effects of substorm activity, interplanetary magnetic field latitutde, and dipole tilt angle on high-latitude precipitation of 700 eV electrons. It was found that: (1) The high-latitude zone of 700 eV electron precipitation in late evening and early morning hours moves equatorward by 5 to 10 deg during substorms. (2) The low-latitude boundary of polar cusp electron precipitation at 9 to 15 hours MLT also moves equatorward by several degrees during substorms and, in the absence of significant substorm activity, after a period of southward interplanetary magnetic field. (3) With times containing substorm activity or a southward interplanetary magnetic field eliminated, the low-latitude boundary of polar cusp electron precipitation is found to move by approximately 4 deg over the total yearly range of tilt angles. At maximum winter and summer conditions the invariant latitude of the boundary is shown to shift by approximately -3 deg and +1 deg respectively from its equinox location.

  18. Effects of head tilt on visual field testing with a head-mounted perimeter imo

    PubMed Central

    Matsumoto, Chota; Nomoto, Hiroki; Numata, Takuya; Eura, Mariko; Yamashita, Marika; Hashimoto, Shigeki; Okuyama, Sachiko; Kimura, Shinji; Yamanaka, Kenzo; Chiba, Yasutaka; Aihara, Makoto; Shimomura, Yoshikazu

    2017-01-01

    Purpose A newly developed head-mounted perimeter termed “imo” enables visual field (VF) testing without a fixed head position. Because the positional relationship between the subject’s head and the imo is fixed, the effects of head position changes on the test results are small compared with those obtained using a stationary perimeter. However, only ocular counter-roll (OCR) induced by head tilt might affect VF testing. To quantitatively reveal the effects of head tilt and OCR on the VF test results, we investigated the associations among the head-tilt angle, OCR amplitude and VF testing results. Subjects and methods For 20 healthy subjects, we binocularly recorded static OCR (s-OCR) while tilting the subject’s head at an arbitrary angle ranging from 0° to 60° rightward or leftward in 10° increments. By monitoring iris patterns, we evaluated the s-OCR amplitude. We also performed blind spot detection while tilting the subject’s head by an arbitrary angle ranging from 0° to 50° rightward or leftward in 10° increments to calculate the angle by which the blind spot rotates because of head tilt. Results The association between s-OCR amplitude and head-tilt angle showed a sinusoidal relationship. In blind spot detection, the blind spot rotated to the opposite direction of the head tilt, and the association between the rotation angle of the blind spot and the head-tilt angle also showed a sinusoidal relationship. The rotation angle of the blind spot was strongly correlated with the s-OCR amplitude (R2≥0.94, p<0.0001). A head tilt greater than 20° with imo causes interference between adjacent test areas. Conclusions Both the s-OCR amplitude and the rotation angle of the blind spot were correlated with the head-tilt angle by sinusoidal regression. The rotated VF was correlated with the s-OCR amplitude. During perimetry using imo, the change in the subject’s head tilt should be limited to 20°. PMID:28945777

  19. Microwave Brightness Temperatures of Tilted Convective Systems

    NASA Technical Reports Server (NTRS)

    Hong, Ye; Haferman, Jeffrey L.; Olson, William S.; Kummerow, Christian D.

    1998-01-01

    Aircraft and ground-based radar data from the Tropical Ocean and Global Atmosphere Coupled-Ocean Atmosphere Response Experiment (TOGA COARE) show that convective systems are not always vertical. Instead, many are tilted from vertical. Satellite passive microwave radiometers observe the atmosphere at a viewing angle. For example, the Special Sensor Microwave/Imager (SSM/I) on Defense Meteorological Satellite Program (DMSP) satellites and the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) on the TRMM satellite have an incident angle of about 50deg. Thus, the brightness temperature measured from one direction of tilt may be different than that viewed from the opposite direction due to the different optical depth. This paper presents the investigation of passive microwave brightness temperatures of tilted convective systems. To account for the effect of tilt, a 3-D backward Monte Carlo radiative transfer model has been applied to a simple tilted cloud model and a dynamically evolving cloud model to derive the brightness temperature. The radiative transfer results indicate that brightness temperature varies when the viewing angle changes because of the different optical depth. The tilt increases the displacements between high 19 GHz brightness temperature (Tb(sub 19)) due to liquid emission from lower level of cloud and the low 85 GHz brightness temperature (Tb(sub 85)) due to ice scattering from upper level of cloud. As the resolution degrades, the difference of brightness temperature due to the change of viewing angle decreases dramatically. The dislocation between Tb(sub 19) and Tb(sub 85), however, remains prominent.

  20. A buoyancy-based fiber Bragg grating tilt sensor

    NASA Astrophysics Data System (ADS)

    Maheshwari, Muneesh; Yang, Yaowen; Chaturvedi, Tanmay

    2017-04-01

    In this paper, a novel design of fiber Bragg grating tilt sensor is proposed. This tilt sensor exhibits high angle sensitivity and resolution. The presented tilt sensor works on the principle of the force of buoyancy in a liquid. It has certain advantages over the other designs of tilt sensors. The temperature effect can be easily compensated by using an un-bonded or free FBG. An analytical model is established which correlates the Bragg wavelength (λB) with the angle of inclination. This model is then validated by the experiment, where the experimental and analytical results are found in good agreement with each other.

  1. Transmission-grating-based wavefront tilt sensor.

    PubMed

    Iwata, Koichi; Fukuda, Hiroki; Moriwaki, Kousuke

    2009-07-10

    We propose a new type of tilt sensor. It consists of a grating and an image sensor. It detects the tilt of the collimated wavefront reflected from a plane mirror. Its principle is described and analyzed based on wave optics. Experimental results show its validity. Simulations of the ordinary autocollimator and the proposed tilt sensor show that the effect of noise on the measured angle is smaller for the latter. These results show a possibility of making a smaller and simpler tilt sensor.

  2. Low photon-count tip-tilt sensor

    NASA Astrophysics Data System (ADS)

    Saathof, Rudolf; Schitter, Georg

    2016-07-01

    Due to the low photon-count of dark areas of the universe, signal strength of tip-tilt sensor is low, limiting sky-coverage of reliable tip-tilt measurements. This paper presents the low photon-count tip-tilt (LPC-TT) sensor, which potentially achieves improved signal strength. Its optical design spatially samples and integrates the scene. This increases the probability that several individual sources coincide on a detector segment. Laboratory experiments show feasibility of spatial sampling and integration and the ability to measure tilt angles. By simulation an improvement of the SNR of 10 dB compared to conventional tip-tilt sensors is shown.

  3. Mechanisms of Günther Tulip filter tilting during transfemoral placement.

    PubMed

    Matsui, Y; Horikawa, M; Ohta, K; Jahangiri Noudeh, Y; Kaufman, J A; Farsad, K

    The purpose of this study was to characterize the mechanisms of Günther Tulip filter (GTF) tilting during transfemoral placement in an experimental model with further validation in a clinical series. In an experimental study, 120 GTF placements in an inferior vena cava (IVC) model were performed using 6 configurations of pre-deployment filter position. The angle between the pre-deployment filter axis and IVC axis, and the proximity of the constrained filter legs to IVC wall prior to deployment were evaluated. The association of those pre-deployment factors with post-deployment filter tilting was analyzed. The association noted in the experimental study was then evaluated in a retrospective clinical series of 21 patients. In the experimental study, there was a significant association between the pre-deployment angle and post-deployment filter tilting (P<0.0001). With a low pre-deployment angle (≤5°), a significant association was noted between filter tilting and the proximity of the constrained filter legs to the far IVC wall (P=0.001). In a retrospective clinical study, a significant association between the pre-deployment angle and post-deployment filter tilting was also noted with a linear regression model (P=0.026). Significant association of the pre-deployment angle with post-deployment GTF tilting was shown in both the experimental and clinical studies. The experimental study also showed that proximity of filter legs is relevant when pre-deployment angle is small. Addressing these factors may result in a lower incidence of filter tilting. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  4. Optimal micro-mirror tilt angle and sync mark design for digital micro-mirror device based collinear holographic data storage system.

    PubMed

    Liu, Jinpeng; Horimai, Hideyoshi; Lin, Xiao; Liu, Jinyan; Huang, Yong; Tan, Xiaodi

    2017-06-01

    The collinear holographic data storage system (CHDSS) is a very promising storage system due to its large storage capacities and high transfer rates in the era of big data. The digital micro-mirror device (DMD) as a spatial light modulator is the key device of the CHDSS due to its high speed, high precision, and broadband working range. To improve the system stability and performance, an optimal micro-mirror tilt angle was theoretically calculated and experimentally confirmed by analyzing the relationship between the tilt angle of the micro-mirror on the DMD and the power profiles of diffraction patterns of the DMD at the Fourier plane. In addition, we proposed a novel chess board sync mark design in the data page to reduce the system bit error rate in circumstances of reduced aperture required to decrease noise and median exposure amount. It will provide practical guidance for future DMD based CHDSS development.

  5. A Horizontal Tilt Correction Method for Ship License Numbers Recognition

    NASA Astrophysics Data System (ADS)

    Liu, Baolong; Zhang, Sanyuan; Hong, Zhenjie; Ye, Xiuzi

    2018-02-01

    An automatic ship license numbers (SLNs) recognition system plays a significant role in intelligent waterway transportation systems since it can be used to identify ships by recognizing the characters in SLNs. Tilt occurs frequently in many SLNs because the monitors and the ships usually have great vertical or horizontal angles, which decreases the accuracy and robustness of a SLNs recognition system significantly. In this paper, we present a horizontal tilt correction method for SLNs. For an input tilt SLN image, the proposed method accomplishes the correction task through three main steps. First, a MSER-based characters’ center-points computation algorithm is designed to compute the accurate center-points of the characters contained in the input SLN image. Second, a L 1- L 2 distance-based straight line is fitted to the computed center-points using M-estimator algorithm. The tilt angle is estimated at this stage. Finally, based on the computed tilt angle, an affine transformation rotation is conducted to rotate and to correct the input SLN horizontally. At last, the proposed method is tested on 200 tilt SLN images, the proposed method is proved to be effective with a tilt correction rate of 80.5%.

  6. Human responses to upright tilt: a window on central autonomic integration

    NASA Technical Reports Server (NTRS)

    Cooke, W. H.; Hoag, J. B.; Crossman, A. A.; Kuusela, T. A.; Tahvanainen, K. U.; Eckberg, D. L.

    1999-01-01

    1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low

  7. Human responses to upright tilt: a window on central autonomic integration.

    PubMed

    Cooke, W H; Hoag, J B; Crossman, A A; Kuusela, T A; Tahvanainen, K U; Eckberg, D L

    1999-06-01

    1. We examined interactions between haemodynamic and autonomic neural oscillations during passive upright tilt, to gain better insight into human autonomic regulatory mechanisms. 2. We recorded the electrocardiogram, finger photoplethysmographic arterial pressure, respiration and peroneal nerve muscle sympathetic activity in nine healthy young adults. Subjects breathed in time with a metronome at 12 breaths min-1 (0.2 Hz) for 5 min each, in supine, and 20, 40, 60, 70 and 80 deg head-up positions. We performed fast Fourier transform (and autoregressive) power spectral analyses and integrated low-frequency (0.05-0.15 Hz) and respiratory-frequency (0. 15-0.5 Hz) spectral powers. 3. Integrated areas of muscle sympathetic bursts and their low- and respiratory-frequency spectral powers increased directly and significantly with the tilt angle. The centre frequency of low-frequency sympathetic oscillations was constant before and during tilt. Sympathetic bursts occurred more commonly during expiration than inspiration at low tilt angles, but occurred equally in expiration and inspiration at high tilt angles. 4. Systolic and diastolic pressures and their low- and respiratory-frequency spectral powers increased, and R-R intervals and their respiratory-frequency spectral power decreased progressively with the tilt angle. Low-frequency R-R interval spectral power did not change. 5. The cross-spectral phase angle between systolic pressures and R-R intervals remained constant and consistently negative at the low frequency, but shifted progressively from positive to negative at the respiratory frequency during tilt. The arterial baroreflex modulus, calculated from low-frequency cross-spectra, decreased at high tilt angles. 6. Our results document changes of baroreflex responses during upright tilt, which may reflect leftward movement of subjects on their arterial pressure sympathetic and vagal response relations. The intensity, but not the centre frequency of low

  8. Sunspot positions, areas, and group tilt angles for 1611-1631 from observations by Christoph Scheiner

    NASA Astrophysics Data System (ADS)

    Arlt, R.; Senthamizh Pavai, V.; Schmiel, C.; Spada, F.

    2016-11-01

    Aims: Digital images of observations printed in the books Rosa Ursina sive solis and Prodromus pro sole mobili by Christoph Scheiner, as well as the drawings from Scheiner's letters to Marcus Welser, are analysed to obtain information on the positions and sizes of sunspots that appeared before the Maunder minimum. Methods: In most cases, the given orientation of the ecliptic is used to set up the heliographic coordinate system for the drawings. Positions and sizes are measured manually on screen. Very early drawings have no indication of their orientation. A rotational matching using common spots of adjacent days is used in some cases, while in other cases, the assumption that images were aligned with a zenith-horizon coordinate system appeared to be the most probable. Results: In total, 8167 sunspots were measured. A distribution of sunspot latitudes versus time (butterfly diagram) is obtained for Scheiner's observations. The observations of 1611 are very inaccurate, the drawings of 1612 have at least an indication of their orientation, while the remaining part of the spot positions from 1618-1631 have good to very good accuracy. We also computed 697 tilt angles of apparently bipolar sunspot groups observed in the period 1618-1631. We find that the average tilt angle of nearly 4 degrees is not significantly different from 20th-century values. Data on the sunspot position and area are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A104

  9. Controlled growth of 3C-SiC and 6H-SiC films on low-tilt-angle vicinal (0001) 6H-SiC wafers

    NASA Technical Reports Server (NTRS)

    Powell, J. A.; Petit, J. B.; Edgar, J. H.; Jenkins, I. G.; Matus, L. G.

    1991-01-01

    It has been found that, with proper pregrowth surface treatment, 6H-SiC single-crystal films can be grown by chemical vapor deposition (CVD) at 1450 C on vicinal (0001) 6H-SiC with tilt angles as small as 0.1 deg. Previously, tilt angles of greater than 1.5 deg were required to achieve 6H on 6H at this growth temperature. In addition, 3C-SiC could be induced to grow within selected regions on the 6H substrate. the 3C regions contained few (or zero) double-positioning boundaries and a low density of stacking faults. A new growth model is proposed to explain the control of SiC polytype in this epitaxial film growth process.

  10. Segmentation decreases the magnitude of the tilt illusion

    PubMed Central

    Qiu, Cheng; Kersten, Daniel; Olman, Cheryl A.

    2013-01-01

    In the tilt illusion, the perceived orientation of a target grating depends strongly on the orientation of a surround. When the orientations of the center and surround gratings differ by a small angle, the center grating appears to tilt away from the surround orientation (repulsion), whereas for a large difference in angle, the center appears to tilt toward the surround orientation (attraction). In order to understand how segmentation/perceptual grouping of the center and surround affect the magnitude of the tilt illusion, we conducted three psychophysical experiments in which we measured observers' perception of center orientation as a function of center-surround relative contrast, relative disparity depth, and geometric features such as occlusion and collinearity. All of these manipulations affected the strength of perceived orientation bias in the center. Our results suggest that if stronger segmentation/perceptual grouping is induced between the center and surround, the tilt repulsion bias decreases/increases. A grouping-dependent tilt illusion plays an important role in visual search and detection by enhancing the sensitivity of our visual system to feature discrepancies, especially in relatively homogenous environments. PMID:24259671

  11. Roll tracking effects of G-vector tilt and various types of motion washout

    NASA Technical Reports Server (NTRS)

    Jex, H. R.; Magdaleno, R. E.; Junker, A. M.

    1978-01-01

    In a dogfight scenario, the task was to follow the target's roll angle while suppressing gust disturbances. All subjects adopted the same behavioral strategies in following the target while suppressing the gusts, and the MFP-fitted math model response was generally within one data symbol width. The results include the following: (1) comparisons of full roll motion (both with and without the spurious gravity tilt cue) with the static case. These motion cues help suppress disturbances with little net effect on the visual performance. Tilt cues were clearly used by the pilots but gave only small improvement in tracking errors. (2) The optimum washout (in terms of performance close to real world, similar behavioral parameters, significant motion attenuation (60 percent), and acceptable motion fidelity) was the combined attenuation and first-order washout. (3) Various trends in parameters across the motion conditions were apparent, and are discussed with respect to a comprehensive model for predicting adaptation to various roll motion cues.

  12. [Evaluation of psychological fear in children undergoing head-up tilt test].

    PubMed

    Chu, Wei-Hong; Wu, Li-Jia; Wang, Cheng; Lin, Ping; Li, Fang; Zhu, Li-Ping; Ran, Jing; Zou, Run-Mei; Liu, De-Yu

    2014-03-01

    To investigate the effects of different tilt angles of head-up tilt test (HUTT) and different responses to HUTT on the psychological fear in children undergoing the test. HUTT was performed on children with unexplained syncope or pre-syncope (107 cases: 52 males and 55 females), aged 5.5-17.8 years (mean 12.0±2.8 years). All subjects were randomly assigned to undergo HUTT at an angle of 60°, 70° or 80°; the negative cases underwent sublingual nitroglycerin-provocation HUTT at the same tilt angle. The Wong-Baker Faces Pain Rating Scale was used for self-assessment of psychological fear in subjects during HUTT at the end point of the test. The positive rate, hemodynamic changes and distribution of response types showed no significant differences between children at tilt angles of 60°, 70° and 80° (P>0.05). The greater the tilt angle, the higher the degree of psychological fear in children undergoing the test, but there were no significant differences between them (P>0.05). The degree of psychological fear in children who showed a positive response to HUTT (n=76) was significantly higher than that in children who showed a negative response (n=31) (P<0.01). HUTT can cause psychological fear in children undergoing the test, and the degree of psychological fear increases in children tested at tilt angles from 60° to 80°, but the differences have no statistical significance. A positive response to HUTT can significantly increase the psychological fear in children.

  13. A Sensitivity Study of the Impact of Installation Parameters and System Configuration on the Performance of Bifacial PV Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marion, William F; Deline, Christopher A; Asgharzadeh, Amir

    In this paper, we present the effect of installation parameters (tilt angle, height above ground, and albedo) on the bifacial gain and energy yield of three south-facing photovoltaic (PV) system configurations: a single module, a row of five modules, and five rows of five modules utilizing RADIANCE-based ray tracing model. We show that height and albedo have a direct impact on the performance of bifacial systems. However, the impact of the tilt angle is more complicated. Seasonal optimum tilt angles are dependent on parameters such as height, albedo, size of the system, weather conditions, and time of the year. Formore » a single bifacial module installed in Albuquerque, NM, USA (35 degrees N) with a reasonable clearance (~1 m) from the ground, the seasonal optimum tilt angle is lowest (~5 degrees) for the summer solstice and highest (~65 degrees) for the winter solstice. For larger systems, seasonal optimum tilt angles are usually higher and can be up to 20 degrees greater than that for a single module system. Annual simulations also indicate that for larger fixed-tilt systems installed on a highly reflective ground (such as snow or a white roofing material with an albedo of ~81%), the optimum tilt angle is higher than the optimum angle of the smaller size systems. We also show that modules in larger scale systems generate lower energy due to horizon blocking and large shadowing area cast by the modules on the ground. For albedo of 21%, the center module in a large array generates up to 7% less energy than a single bifacial module. To validate our model, we utilize measured data from Sandia National Laboratories' fixed-tilt bifacial PV testbed and compare it with our simulations.« less

  14. A tilted and warped inner accretion disc around a spinning black hole: an analytical solution

    NASA Astrophysics Data System (ADS)

    Chakraborty, Chandrachur; Bhattacharyya, Sudip

    2017-08-01

    Inner accretion disc around a black hole provides a rare, natural probe to understand the fundamental physics of the strong gravity regime. A possible tilt of such a disc, with respect to the black hole spin equator, is important. This is because such a tilt affects the observed spectral and timing properties of the disc X-ray emission via Lense-Thirring precession, which could be used to test the theoretical predictions regarding the strong gravity. Here, we analytically solve the steady, warped accretion disc equation of Scheurer and Feiler, and find an expression of the radial profile of the disc tilt angle. In our exact solution, considering a prograde disc around a slowly spinning black hole, we include the inner part of the disc, which was not done earlier in this formalism. Such a solution is timely, as a tilted inner disc has recently been inferred from X-ray spectral and timing features of the accreting black hole H1743-322. Our tilt angle radial profile expression includes observationally measurable parameters, such as black hole mass and Kerr parameter, and the disc inner edge tilt angle Win, and hence can be ideal to confront observations. Our solution shows that the disc tilt angle in 10-100 gravitational radii is a significant fraction of the disc outer edge tilt angle, even for Win = 0. Moreover, tilt angle radial profiles have humps in ˜10-1000 gravitational radii for some sets of parameter values, which should have implications for observed X-ray features.

  15. Experimental study on evaluation and optimization of tilt angle of parallel-plate electrodes using electrocoagulation device for oily water demulsification.

    PubMed

    Liu, Yang; Jiang, Wen-Ming; Yang, Jie; Li, Yu-Xing; Chen, Ming-Can; Li, Jian-Na

    2017-08-01

    Tilt angle of parallel-plate electrodes (APE) is very important as it improves the economy of diffusion controlled Electrocoagulation (EC) processes. This study aimed to evaluate and optimize APE of a self-made EC device including integrally rotary electrodes, at a fixed current density of 120 Am -2 . The APEs investigated in this study were selected at 0°, 30°, 45°, 60°, 90°, and a special value (α (d) ) which was defined as a special orientation of electrode when the upper end of anode and the lower end of cathode is in a line vertical to the bottom of reactor. Experiments were conducted to determine the optimum APE for demulsification process using four evaluation indexes, as: oil removal efficiency in the center between electrodes; energy consumption and Al consumption, and besides, a novel universal evaluation index named as evenness index of oil removal efficiency employed to fully reflect distribution characteristics of demulsification efficiency. At a given plate spacing of 4 cm, the optimal APE was found to be α (d) because of its potential of enhancing the mass transfer process within whole EC reactor without addition, external mechanical stirring energy, and finally the four evaluation indexed are 97.07%, 0.11 g Al g -1 oil, 2.99 kwhkg -1 oil, 99.97% and 99.97%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 2D tilting MEMS micro mirror integrating a piezoresistive sensor position feedback

    NASA Astrophysics Data System (ADS)

    Lani, S.; Bayat, D.; Despont, M.

    2015-02-01

    An integrated position sensor for a dual-axis electromagnetic tilting mirror is presented. This tilting mirror is composed of a silicon based mirror directly assembled on a silicon membrane supported by flexible beams. The position sensors are constituted by 4 Wheatstone bridges of piezoresistors which are fabricated by doping locally the flexible beams. A permanent magnet is attached to the membrane and the scanner is mounted above planar coils deposited on a ceramic substrate to achieve electromagnetic actuation. The performances of the piezoresistive sensors are evaluated by measuring the output signal of the piezoresistors as a function of the tilt of the mirror and the temperature. White light interferometry was performed for all measurement to measure the exact tilt angle. The minimum detectable angle with such sensors was 30µrad (around 13bits) in the range of the minimum resolution of the interferometer. The tilt reproducibility was 0.0186%, obtained by measuring the tilt after repeated actuations with a coil current of 50mA during 30 min and the stability over time was 0.05% in 1h without actuation. The maximum measured tilt angle was 6° (mechanical) limited by nonlinearity of the MEMS system.

  17. Development of a high resolution optical-fiber tilt sensor by F-P filter

    NASA Astrophysics Data System (ADS)

    Pan, Jianjun; Nan, Qiuming; Li, Shujie; Hao, Zhonghua

    2017-04-01

    A high-resolution tilt sensor is developed, which is composed of a pair of optical fiber collimators and a simple pendulum with an F-P filter. The tilt angle is measured by demodulating the shift of center wavelength of F-P filter, which is caused by incidence angle changing. The relationship between tilted angle and the center wavelength is deduced. Calibration experiment results also confirm the deduction, and show that it is easy to obtain a high resolution. Setting the initial angle to 6degree, the measurement range is ±3degree, its average sensitivity is 1104pm/degree, and its average resolution is as high as 0.0009degree.

  18. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    NASA Astrophysics Data System (ADS)

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-04-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems.

  19. Magnetic-assisted triboelectric nanogenerators as self-powered visualized omnidirectional tilt sensing system

    PubMed Central

    Han, Mengdi; Zhang, Xiao-Sheng; Sun, Xuming; Meng, Bo; Liu, Wen; Zhang, Haixia

    2014-01-01

    The triboelectric nanogenerator (TENG) is a promising device in energy harvesting and self-powered sensing. In this work, we demonstrate a magnetic-assisted TENG, utilizing the magnetic force for electric generation. Maximum power density of 541.1 mW/m2 is obtained at 16.67 MΩ for the triboelectric part, while the electromagnetic part can provide power density of 649.4 mW/m2 at 16 Ω. Through theoretical calculation and experimental measurement, linear relationship between the tilt angle and output voltage at large angles is observed. On this basis, a self-powered omnidirectional tilt sensor is realized by two magnetic-assisted TENGs, which can measure the magnitude and direction of the tilt angle at the same time. For visualized sensing of the tilt angle, a sensing system is established, which is portable, intuitive, and self-powered. This visualized system greatly simplifies the measure process, and promotes the development of self-powered systems. PMID:24770490

  20. Investigation of an optical sensor for small tilt angle detection of a precision linear stage

    NASA Astrophysics Data System (ADS)

    Saito, Yusuke; Arai, Yoshikazu; Gao, Wei

    2010-05-01

    This paper presents evaluation results of the characteristics of the angle sensor based on the laser autocollimation method for small tilt angle detection of a precision linear stage. The sensor consists of a laser diode (LD) as the light source, and a quadrant photodiode (QPD) as the position-sensing detector. A small plane mirror is mounted on the moving table of the stage as a target mirror for the sensor. This optical system has advantages of high sensitivity, fast response speed and the ability for two-axis angle detection. On the other hand, the sensitivity of the sensor is determined by the size of the optical spot focused on the QPD, which is a function of the diameter of the laser beam projected onto the target mirror. Because the diameter is influenced by the divergence of the laser beam, this paper focuses on the relationship between the sensor sensitivity and the moving position of the target mirror (sensor working distance) over the moving stroke of the stage. The main error components that influence the sensor sensitivity are discussed and the optimal conditions of the optical system of the sensor are analyzed. The experimental result about evaluation of the effective working distance is also presented.

  1. Distinguishable circumferential inclined direction tilt sensor based on fiber Bragg grating with wide measuring range and high accuracy

    NASA Astrophysics Data System (ADS)

    Jiang, Shanchao; Wang, Jing; Sui, Qingmei

    2015-11-01

    One novel distinguishable circumferential inclined direction tilt sensor is demonstrated by incorporating two strain sensitivity fiber Bragg gratings (FBGs) with two orthogonal triangular cantilever beam and using one fiber Bragg grating (FBG) as temperature compensation element. According to spatial vector and space geometry, theory calculation model of the proposed FBG tilt sensor which can be used to obtain the azimuth and tile angle of the inclined direction is established. To obtain its measuring characteristics, calibration experiment on one prototype of the proposed FBG tilt sensor is carried out. After temperature sensitivity experiment data analysis, the proposed FBG tilt sensor exhibits excellent temperature compensation characteristics. In 2-D tilt angle experiment, tilt measurement sensitivities of these two strain sensitivity FBGs are 140.85°/nm and 101.01°/nm over a wide range of 60º. Further, azimuth and tile angle of the inclined direction can be obtained by the proposed FBG tilt sensor which is verified in circumferential angle experiment. Experiment data show that relative errors of azimuth are 0.55% (positive direction) and 1.14% (negative direction), respectively, and relative errors of tilt angle are all less than 3%. Experiment results confirm that the proposed distinguishable circumferential inclined direction tilt sensor based on FBG can achieve azimuth and tile angle measurement with wide measuring range and high accuracy.

  2. DSS 15, 45, and 65 34-meter high efficiency antenna radio frequency performance enhancement by tilt added to the subreflector during elevation angle changes

    NASA Technical Reports Server (NTRS)

    Katow, M. S.

    1990-01-01

    The focusing adjustments of the subreflectors of an az-el Cassegrainian antenna that uses only linear motions have always ended in lateral offsets of the phase centers at the subreflector's focus points at focused positions, which have resulted in small gain losses. How lateral offsets at the two focus points were eliminated by tilting the subreflector, resulting in higher radio frequency (RF) efficiencies at all elevation angles rotated from the rigging angles are described.

  3. Simulation of Cardiovascular Response to the Head-Up/Head-Down Tilt at Different Angles

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Lu, Hong-Bing; Jiao, Chun; Zhang, Li-Fan

    2008-06-01

    The disappearance of hydrostatic pressure is the original factor that causes the changes of cardiovascular system under microgravity. The hydrostatical changes can be simulated by postural changes. Especially the head-down position can be used to simulate the effects of microgravity. The goal of this investigation was to develop a mathematical model for simulation of the human cardiovascular responses to acute and prolonged exposure under microgravity environment. We were particularly interested in the redistribution of transmural pressures, flows, blood volume, and the consequent alterations in local hemodynamics in different cardiovascular compartments during acute exposure and chronic adjustments. As a preliminary study, we first developed a multi-element, distributed hemodynamic model of human cardiovascular system, and verified the model to simulate cardiovascular changes during head up/down tilt at various angles.

  4. Evaluating Tilt for Wind Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annoni, Jennifer; Scholbrock, Andrew K.; Churchfield, Matthew J.

    The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and three-turbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array,more » the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.« less

  5. Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohu; Fu, Ceji

    2018-04-01

    The wavevector of electromagnetic wave propagation in a hexagonal boron nitride (hBN) slab can be controlled by tilting its optical axis. This property can be used to manipulate the absorption in a hBN slab. By carefully analyzing the dependence of the absorptivity of a thin hBN slab on the tilted angle of its optical axis, we propose a structure that can realize great absorptivity enhancement in a band by stacking hBN slabs of different tilted angles. Our numerical results show that the absorptivity of a structure made of 91 stacked hBN slabs can be achieved higher than 0.94 in the wavenumber range from 1367 to 1580 cm-1 when the tilted angles of the slabs are properly arranged. The strong absorption is attributed to the combination of impedance matching at the slab interfaces and enlarged wavevectors in the slabs. This work reveals a novel way to realize strong absorption with anisotropic materials for applications in areas such as thermal radiative energy harvesting and conversion.

  6. Imaging tilted transversely isotropic media with a generalised screen propagator

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Il; Byun, Joongmoo; Seol, Soon Jee

    2015-01-01

    One-way wave equation migration is computationally efficient compared with reverse time migration, and it provides a better subsurface image than ray-based migration algorithms when imaging complex structures. Among many one-way wave-based migration algorithms, we adopted the generalised screen propagator (GSP) to build the migration algorithm. When the wavefield propagates through the large velocity variation in lateral or steeply dipping structures, GSP increases the accuracy of the wavefield in wide angle by adopting higher-order terms induced from expansion of the vertical slowness in Taylor series with each perturbation term. To apply the migration algorithm to a more realistic geological structure, we considered tilted transversely isotropic (TTI) media. The new GSP, which contains the tilting angle as a symmetric axis of the anisotropic media, was derived by modifying the GSP designed for vertical transversely isotropic (VTI) media. To verify the developed TTI-GSP, we analysed the accuracy of wave propagation, especially for the new perturbation parameters and the tilting angle; the results clearly showed that the perturbation term of the tilting angle in TTI media has considerable effects on proper propagation. In addition, through numerical tests, we demonstrated that the developed TTI-GS migration algorithm could successfully image a steeply dipping salt flank with high velocity variation around anisotropic layers.

  7. A Novel Displacement and Tilt Detection Method Using Passive UHF RFID Technology.

    PubMed

    Lai, Xiaozheng; Cai, Zhirong; Xie, Zeming; Zhu, Hailong

    2018-05-21

    The displacement and tilt angle of an object are useful information for wireless monitoring applications. In this paper, a low-cost detection method based on passive radio frequency identification (RFID) technology is proposed. This method uses a standard ultrahigh-frequency (UHF) RFID reader to measure the phase variation of the tag response and detect the displacement and tilt angle of RFID tags attached to the targeted object. An accurate displacement result can be detected by the RFID system with a linearly polarized (LP) reader antenna. Based on the displacement results, an accurate tilt angle can also be detected by the RFID system with a circularly polarized (CP) reader antenna, which has been proved to have a linear relationship with the phase parameter of the tag’s backscattered wave. As far as accuracy is concerned, the mean absolute error (MAE) of displacement is less than 2 mm and the MAE of the tilt angle is less than 2.5° for an RFID system with 500 mm working range.

  8. Effect of aperture geometry on heat transfer in tilted partially open cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsayed, M.M.; Chakroun, W.

    1999-11-01

    Heat transfer in cavities is receiving increasing attention because of the various applications in engineering; e.g., passive solar heating, energy conservation in buildings, solar concentrating receivers, and electronic equipment. Here, convection from a square, tilted partially open cavity was investigated experimentally. The experiment was carried out to study the effect of the aperture geometry on the heat transfer between the cavity and the surrounding air. Four different geometrical arrangements for the opening were investigated: (1) high wall slit, (2) low wall slit, (3) centered wall slit, and (4) uniform wall slots. Each opening arrangement was studied at opening ratios (i.e.,more » ratio of opening height to cavity height) of 0.25, 0.5, and 0.75. The average heat transfer coefficient between the cavity and the surrounding air was estimated for each geometrical arrangement for tilt angles ranging from {minus}90 deg to +90 deg with increments of 15 deg and at a constant heat flux Grashof number of 5.5 x 10{sup 8}. The results showed that for tilt angles between 90 and 75 deg, the heat transfer coefficient has a small value that is independent of the geometrical arrangement of the opening. The value of the heat transfer coefficient increases sharply with decreasing tilt angle until an angle value of zero degrees is reached. The increase in the heat transfer coefficient continues in the negative range of tilt angle but not in the same rate as in the positive range of the tilt angle. The uniform slot arrangement gave in general higher heat transfer coefficient than the other three arrangements of the opening. Large differences in the heat transfer coefficient were observed between the high and the low wall slits where the high wall slit is found to transfer more heat to the surroundings than the low wall slit. Correlations were developed to predict the average Nusselt number of the cavity in terms of the opening ratio and the cavity tilt angle for cavities

  9. On-track test of tilt control strategies for less motion sickness on tilting trains

    NASA Astrophysics Data System (ADS)

    Persson, Rickard; Kufver, Björn; Berg, Mats

    2012-07-01

    Carbody tilting is today a mature and inexpensive technology that permits higher train speeds in horizontal curves, thus shortening travel time. However, tilting trains run a greater risk of causing motion sickness than non-tilting ones. It is likely that the difference in motions between the two train types contributes to the observed difference in risk of motion sickness. Decreasing the risk of motion sickness has until now been equal to increasing the discomfort related to quasi-static lateral acceleration. But, there is a difference in time perception between discomfort caused by quasi-static quantities and motion sickness, which opens up for new solutions. One proposed strategy is to let the local track conditions influence the tilt and give each curve its own optimised tilt angle. This is made possible by new tilt algorithms, storing track data and using a positioning system to select the appropriate data. The present paper reports from on-track tests involving more than 100 test subjects onboard a tilting train. A technical approach is taken evaluating the effectiveness of the new tilt algorithms and the different requirements on quasi-static lateral acceleration and lateral jerk in relative terms. The evaluation verifies that the rms values important for motion sickness can be influenced without changing the requirements on quasi-static lateral acceleration and lateral jerk. The evaluation shows that reduced quantities of motions assumed to have a relation to motion sickness also lead to a reduction in experienced motion sickness. However, a limitation of applicability is found as the lowest risk of motion sickness was not recorded for the test case with motions closest to those of a non-tilting train. An optimal level of tilt, different from no tilt at all, is obtained. This non-linear relation has been observed by other researchers in laboratory tests.

  10. Radiographic cup anteversion measurement corrected from pelvic tilt.

    PubMed

    Wang, Liao; Thoreson, Andrew R; Trousdale, Robert T; Morrey, Bernard F; Dai, Kerong; An, Kai-Nan

    2017-11-01

    The purpose of this study was to develop a novel technique to improve the accuracy of radiographic cup anteversion measurement by correcting the influence of pelvic tilt. Ninety virtual total hip arthroplasties were simulated from computed tomography data of 6 patients with 15 predetermined cup orientations. For each simulated implantation, anteroposterior (AP) virtual pelvic radiographs were generated for 11 predetermined pelvic tilts. A linear regression model was created to capture the relationship between radiographic cup anteversion angle error measured on AP pelvic radiographs and pelvic tilt. Overall, nine hundred and ninety virtual AP pelvic radiographs were measured, and 90 linear regression models were created. Pearson's correlation analyses confirmed a strong correlation between the errors of conventional radiographic cup anteversion angle measured on AP pelvic radiographs and the magnitude of pelvic tilt (P < 0.001). The mean of 90 slopes and y-intercepts of the regression lines were -0.8 and -2.5°, which were applied as the general correction parameters for the proposed tool to correct conventional cup anteversion angle from the influence of pelvic tilt. The current method proposes to measure the pelvic tilt on a lateral radiograph, and to use it as a correction for the radiographic cup anteversion measurement on an AP pelvic radiograph. Thus, both AP and lateral pelvic radiographs are required for the measurement of pelvic posture-integrated cup anteversion. Compared with conventional radiographic cup anteversion, the errors of pelvic posture-integrated radiographic cup anteversion were reduced from 10.03 (SD = 5.13) degrees to 2.53 (SD = 1.33) degrees. Pelvic posture-integrated cup anteversion measurement improves the accuracy of radiographic cup anteversion measurement, which shows the potential of further clarifying the etiology of postoperative instability based on planar radiographs. Copyright © 2017 IPEM. Published by Elsevier Ltd

  11. Evaluating Tilt for Wind Farms: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annoni, Jennifer; Scholbrock, Andrew; Churchfield, Matthew

    The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and threeturbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array,more » the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.« less

  12. Fabrication and Characterization of Tilted Fiber Optic Bragg Grating Filters over Various Wavelengths

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Jackson, Kurt V.; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber Optic Bragg Grating taps are fabricated and characterized at various wavelengths using a modified Talbot interferometric technique. Gratings are fabricated by tilting the photosensitive fiber to angles up to 45 degrees w.r.t. the writing angle. Diffraction characteristics of the tilted grating is monitored in first and second orders.

  13. Defining Optimal Head-Tilt Position of Resuscitation in Neonates and Young Infants Using Magnetic Resonance Imaging Data

    PubMed Central

    Bhalala, Utpal S.; Hemani, Malvi; Shah, Meehir; Kim, Barbara; Gu, Brian; Cruz, Angelo; Arunachalam, Priya; Tian, Elli; Yu, Christine; Punnoose, Joshua; Chen, Steven; Petrillo, Christopher; Brown, Alisa; Munoz, Karina; Kitchen, Grant; Lam, Taylor; Bosemani, Thangamadhan; Huisman, Thierry A. G. M.; Allen, Robert H.; Acharya, Soumyadipta

    2016-01-01

    Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0–28 days) and young infants (age: 29 days–4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144–150°. PMID:27003759

  14. Defining Optimal Head-Tilt Position of Resuscitation in Neonates and Young Infants Using Magnetic Resonance Imaging Data.

    PubMed

    Bhalala, Utpal S; Hemani, Malvi; Shah, Meehir; Kim, Barbara; Gu, Brian; Cruz, Angelo; Arunachalam, Priya; Tian, Elli; Yu, Christine; Punnoose, Joshua; Chen, Steven; Petrillo, Christopher; Brown, Alisa; Munoz, Karina; Kitchen, Grant; Lam, Taylor; Bosemani, Thangamadhan; Huisman, Thierry A G M; Allen, Robert H; Acharya, Soumyadipta

    2016-01-01

    Head-tilt maneuver assists with achieving airway patency during resuscitation. However, the relationship between angle of head-tilt and airway patency has not been defined. Our objective was to define an optimal head-tilt position for airway patency in neonates (age: 0-28 days) and young infants (age: 29 days-4 months). We performed a retrospective study of head and neck magnetic resonance imaging (MRI) of neonates and infants to define the angle of head-tilt for airway patency. We excluded those with an artificial airway or an airway malformation. We defined head-tilt angle a priori as the angle between occipito-ophisthion line and ophisthion-C7 spinous process line on the sagittal MR images. We evaluated medical records for Hypoxic Ischemic Encephalopathy (HIE) and exposure to sedation during MRI. We analyzed MRI of head and neck regions of 63 children (53 neonates and 10 young infants). Of these 63 children, 17 had evidence of airway obstruction and 46 had a patent airway on MRI. Also, 16/63 had underlying HIE and 47/63 newborn infants had exposure to sedative medications during MRI. In spontaneously breathing and neurologically depressed newborn infants, the head-tilt angle (median ± SD) associated with patent airway (125.3° ± 11.9°) was significantly different from that of blocked airway (108.2° ± 17.1°) (Mann Whitney U-test, p = 0.0045). The logistic regression analysis showed that the proportion of patent airways progressively increased with an increasing head-tilt angle, with > 95% probability of a patent airway at head-tilt angle 144-150°.

  15. Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability.

    PubMed

    Morrison, Jessica; Imboden, Matthias; Little, Thomas D C; Bishop, D J

    2015-04-06

    MEMS micromirrors have proven to be very important optical devices with applications ranging from steerable mirrors for switches and cross-connects to spatial light modulators for correcting optical distortions. Usually beam steering and focusing are done with different MEMS devices and tilt angles in excess of 10 degrees are seldom obtained. Here we describe a single MEMS device that combines tip/tilt, piston mode and varifocal capability into a single, low cost device with very large tilt angles. Our device consists of a 400 micron diameter mirror driven with thermal bimorphs. We have demonstrated deflection angles of ± 40 degrees along both axes, a tunable focal length which varies between -0.48 mm to + 20.5 mm and a piston mode range of 300 microns - four separately controllable degrees of freedom in a single device. Potential applications range from smart lighting to optical switches and devices for telecom systems.

  16. Human perceptual overestimation of whole body roll tilt in hypergravity

    PubMed Central

    Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2014-01-01

    Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally. PMID:25540216

  17. On the equilibrium charge density at tilt grain boundaries

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Clarke, D. R.

    1998-05-01

    The equilibrium charge density and free energy of tilt grain boundaries as a function of their misorientation is computed using a Monte Carlo simulation that takes into account both the electrostatic and configurational energies associated with charges at the grain boundary. The computed equilibrium charge density increases with the grain-boundary angle and approaches a saturation value. The equilibrium charge density at large-angle grain boundaries compares well with experimental values for large-angle tilt boundaries in GaAs. The computed grain-boundary electrostatic energy is in agreement with the analytical solution to a one-dimensional Poisson equation at high donor densities but indicates that the analytical solution overestimates the electrostatic energy at lower donor densities.

  18. Cell separation using tilted-angle standing surface acoustic waves

    PubMed Central

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-01-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150

  19. Cell separation using tilted-angle standing surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-09-09

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.

  20. Combined scanning transmission electron microscopy tilt- and focal series.

    PubMed

    Dahmen, Tim; Baudoin, Jean-Pierre; Lupini, Andrew R; Kübel, Christian; Slusallek, Philipp; de Jonge, Niels

    2014-04-01

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt-focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller "missing wedge" artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  1. Simulation study of MEMS piezoelectric vibration energy harvester based on c-axis tilted AlN thin film for performance improvement

    NASA Astrophysics Data System (ADS)

    Kong, Lingfeng; Zhang, Jinhui; Wang, Huiyuan; Ma, Shenglin; Li, Fang; Wang, Qing-Ming; Qin, Lifeng

    2016-12-01

    In this paper, a MEMS piezoelectric cantilevered vibration energy harvester based on c-axis tilted AlN thin film is investigated. Based on basic piezoelectric equations and static analysis of cantilever beam, the equations for generated energy (E) and open circuit voltage (Vo) were derived, and simulations were carried out to study the effects of geometry parameters and c-axis tilted angle. Results show that E and Vo of energy harvesters are greatly dependent on c-axis tilted angle and geometry parameters, while the coupling between c-axis tilted angle and geometry parameters is not strong. For a given structure size, E and Vo can be almost simultaneously improved by controlling c-axis tilted angle; compared with the case of normal c-axis angle, E with optimal c-axis tilted angle can be amplified by more than 3 times, and the Vo is amplified by about 2 times. E or Vo could be further improved by geometry parameters, while there is trade-off between them. These results can be used for the design and application of piezoelectric cantilevered vibration energy harvester.

  2. Relationship Between Anterior Lamina Cribrosa Surface Tilt and Glaucoma Development in Myopic Eyes.

    PubMed

    Lee, Eun Jung; Han, Jong Chul; Kee, Changwon

    2017-05-01

    To evaluate the anterior lamina cribrosa (LC) surface tilt angle in myopic eyes and associate it with glaucoma development. In this retrospective study, medical records of myopic patients referred for glaucoma examination from July 1, 2012 to March 30, 2016 were reviewed. Comprehensive ophthalmic examination including spectral-domain optical coherence tomography were performed. We measured the angle of anterior LC surface tilt against Bruch's membrane opening from optical coherence tomography images at the center of the clinical optic disc margin. In horizontal and vertical sections, the angles were defined as α and β, respectively. Patients were grouped according to the presence of glaucomatous damage and factors including optic nerve head morphologic parameters and LC tilt angles were compared between the 2 groups. Among 138 patients originally enrolled, 102 patients were finally analyzed. One eye from 1 patient was randomly chosen. Fifty-five eyes had glaucoma and 47 were normal. The degree of myopia and all optic nerve head morphologic parameters were not significantly different between the 2 groups. However, |α| and |β| were significantly larger in the glaucoma group (all P<0.001), and significances were maintained in multivariate analysis (P<0.001). Larger anterior LC surface tilt angles were related to the presence of glaucoma in normal-pressure myopic eyes. Angulation of the LC against Bruch's membrane opening plane might be associated with increased glaucoma susceptibility in myopic eyes. Further investigations are warranted before clinical utilization of LC tilt as glaucoma susceptibility biomarker.

  3. Experimental confirmation of the atomic force microscope cantilever stiffness tilt correction

    NASA Astrophysics Data System (ADS)

    Gates, Richard S.

    2017-12-01

    The tilt angle (angle of repose) of an AFM cantilever relative to the surface it is interrogating affects the effective stiffness of the cantilever as it analyzes the surface. For typical AFMs and cantilevers that incline from 10° to 15° tilt, this is thought to be a 3%-7% stiffness increase correction. While the theoretical geometric analysis of this effect may have reached a consensus that it varies with cos-2 θ, there is very little experimental evidence to confirm this using AFM cantilevers. Recently, the laser Doppler vibrometry thermal calibration method utilized at NIST has demonstrated sufficient stiffness calibration accuracy, and precision to allow a definitive experimental confirmation of the particular trigonometric form of this tilt effect using a commercial microfabricated AFM cantilever specially modified to allow strongly tilted (up to 15°) effective cantilever stiffness measurements.

  4. Sheathless focusing and separation of microparticles using tilted angle travelling surface acoustic waves.

    PubMed

    Ahmed, Husnain; Destgeer, Ghulam; Park, Jinsoo; Afzal, Muhammad; Sung, Hyung Jin

    2018-06-18

    The sheathless focusing and separation of microparticles is an important pre-processing step in various biochemical assays in which enriched sample isolation is critical. Most previous microfluidic particle separation techniques have used a sheath flow to achieve efficient sample focusing. The sheath flow diluted the analyte, and required additional microchannels and accurate flow control. We demonstrated a tilted angle travelling surface acoustic wave (taTSAW)-based sheathless focusing and separation of particles in a continuous flow. The proposed device consisted of a piezoelectric substrate with a pair of interdigitated transducers (IDTs) deposited at two different angles relative to the flow direction. A Y-shaped polydimethylsiloxane (PDMS) microchannel having one inlet and two outlet ports was positioned on top of the IDTs such that the acoustic energy coupling into the fluid was maximized and wave attenuation by the PDMS walls was minimized. The two IDTs independently produced high-frequency taTSAWs, which propagated at ±30° with respect to the flow direction and imparted a direct acoustic radiation force onto the target particles. A sample mixture containing 4.8 and 3.2 µm particles was focused and then separated by the actuation of the IDTs at 194 and 136 MHz frequencies, respectively, without using an additional sheath flow. The proposed taTSAW-based particle separation device offered a high purity > 99% at the both outlets over a wide range of flow speeds (up to 83.3 mm/s).

  5. Determining the vortex tilt relative to a superconductor surface

    DOE PAGES

    Kogan, V. G.; Kirtley, J. R.

    2017-11-20

    Here, it is of interest to determine the exit angle of a vortex from a superconductor surface, since this affects the intervortex interactions and their consequences. Two ways to determine this angle are to image the vortex magnetic fields above the surface, or the vortex core shape at the surface. In this work we evaluate the field h(x,y,z) above a flat superconducting surface x,y and the currents J(x,y) at that surface for a straight vortex tilted relative to the normal to the surface, for both the isotropic and anisotropic cases. In principle, these results can be used to determine themore » vortex exit tilt angle from analyses of magnetic field imaging or density of states data.« less

  6. Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor.

    PubMed

    Lee, Cheng-Ling; Shih, Wen-Cheng; Hsu, Jui-Ming; Horng, Jing-Shyang

    2014-10-06

    This work proposes a novel, highly sensitive and directional fiber tilt sensor that is based on an asymmetrical dual tapered fiber Mach-Zehnder interferometer (ADTFMZI). The fiber-optic tilt sensor consists of two abrupt tapers with different tapered waists into which are incorporated a set of iron spheres to generate an asymmetrical strain in the ADTFMZI that is correlated with the tilt angle and the direction of inclination. Owing to the asymmetrical structure of the dual tapers, the proposed sensor can detect the non-horizontal/horizontal state of a structure and whether the test structure is tilted to clockwise or counterclockwise by measuring the spectral responses. Experimental results show that the spectral wavelengths are blue-shifted and red-shifted when the sensor tilts to clockwise (-θ) and counterclockwise ( + θ), respectively. Tilt angle sensitivities of about 335 pm/deg. and 125 pm/deg. are achieved in the -θ and + θ directions, respectively, when the proposed sensing scheme is utilized.

  7. Method to fabricate a tilted logpile photonic crystal

    DOEpatents

    Williams, John D.; Sweatt, William C.

    2010-10-26

    A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.

  8. Variability of Retinal Thickness Measurements in Tilted or Stretched Optical Coherence Tomography Images

    PubMed Central

    Uji, Akihito; Abdelfattah, Nizar Saleh; Boyer, David S.; Balasubramanian, Siva; Lei, Jianqin; Sadda, SriniVas R.

    2017-01-01

    Purpose To investigate the level of inaccuracy of retinal thickness measurements in tilted and axially stretched optical coherence tomography (OCT) images. Methods A consecutive series of 50 eyes of 50 patients with age-related macular degeneration were included in this study, and Cirrus HD-OCT images through the foveal center were used for the analysis. The foveal thickness was measured in three ways: (1) parallel to the orientation of the A-scan (Tx), (2) perpendicular to the retinal pigment epithelium (RPE) surface in the instrument-displayed aspect ratio image (Ty), and (3) thickness measured perpendicular to the RPE surface in a native aspect ratio image (Tz). Mathematical modeling was performed to estimate the measurement error. Results The measurement error was larger in tilted images with a greater angle of tilt. In the simulation, with axial stretching by a factor of 2, Ty/Tz ratio was > 1.05 at a tilt angle between 13° to 18° and 72° to 77°, > 1.10 at a tilt angle between 19° to 31° and 59° to 71°, and > 1.20 at an angle ranging from 32° to 58°. Of note with even more axial stretching, the Ty/Tz ratio is even larger. Tx/Tz ratio was smaller than the Ty/Tz ratio at angles ranging from 0° to 54°. The actual patient data showed good agreement with the simulation. The Ty/Tz ratio was greater than 1.05 (5% error) at angles ranging from 13° to 18° and 72° to 77°, greater than 1.10 (10% error) angles ranging from 19° to 31° and 59° to 71°, and greater than 1.20 (20% error) angles ranging from 32° to 58° in the images axially stretched by a factor of 2 (b/a = 2), which is typical of most OCT instrument displays. Conclusions Retinal thickness measurements obtained perpendicular to the RPE surface were overestimated when using tilted and axially stretched OCT images. Translational Relevance If accurate measurements are to be obtained, images with a native aspect ratio similar to microscopy must be used. PMID:28299239

  9. Scanning transmission electron microscopy through-focal tilt-series on biological specimens.

    PubMed

    Trepout, Sylvain; Messaoudi, Cédric; Perrot, Sylvie; Bastin, Philippe; Marco, Sergio

    2015-10-01

    Since scanning transmission electron microscopy can produce high signal-to-noise ratio bright-field images of thick (≥500 nm) specimens, this tool is emerging as the method of choice to study thick biological samples via tomographic approaches. However, in a convergent-beam configuration, the depth of field is limited because only a thin portion of the specimen (from a few nanometres to tens of nanometres depending on the convergence angle) can be imaged in focus. A method known as through-focal imaging enables recovery of the full depth of information by combining images acquired at different levels of focus. In this work, we compare tomographic reconstruction with the through-focal tilt-series approach (a multifocal series of images per tilt angle) with reconstruction with the classic tilt-series acquisition scheme (one single-focus image per tilt angle). We visualised the base of the flagellum in the protist Trypanosoma brucei via an acquisition and image-processing method tailored to obtain quantitative and qualitative descriptors of reconstruction volumes. Reconstructions using through-focal imaging contained more contrast and more details for thick (≥500 nm) biological samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Anisotropic mean-square displacements in two-dimensional colloidal crystals of tilted dipoles

    NASA Astrophysics Data System (ADS)

    Froltsov, V. A.; Likos, C. N.; Löwen, H.; Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.

    2005-03-01

    Superparamagnetic colloidal particles confined to a flat horizontal air-water interface in an external magnetic field, which is tilted relative to the interface, form anisotropic two-dimensional crystals resulting from their mutual dipole-dipole interactions. Using real-space experiments and harmonic lattice theory we explore the mean-square displacements of the particles in the directions parallel and perpendicular to the in-plane component of the external magnetic field as a function of the tilt angle. We find that the anisotropy of the mean-square displacement behaves nonmonotonically as a function of the tilt angle and does not correlate with the structural anisotropy of the crystal.

  11. Modelling of the UV Index on vertical and 40° tilted planes for different orientations.

    PubMed

    Serrano, D; Marín, M J; Utrillas, M P; Tena, F; Martínez-Lozano, J A

    2012-02-01

    In this study, estimated data of the UV Index on vertical planes are presented for the latitude of Valencia, Spain. For that purpose, the UVER values have been generated on vertical planes by means of four different geometrical models a) isotropic, b) Perez, c) Gueymard, d) Muneer, based on values of the global horizontal UVER and the diffuse horizontal UVER, measured experimentally. The UVER values, obtained by any model, overestimate the experimental values for all orientations, with the exception of the Perez model for the East plane. The results show statistical values of the MAD parameter (Mean Absolute Deviation) between 10% and 25%, the Perez model being the one that obtained a lower MAD for all levels. As for the statistic RMSD parameter (Root Mean Square Deviation), the results show values between 17% and 32%, and again the Perez model provides the best results in all vertical planes. The difference between the estimated UV Index and the experimental UV Index, for vertical and 40° tilted planes, was also calculated. 40° is an angle close to the latitude of Burjassot, Valencia, (39.5°), which, according to various studies, is the optimum angle to capture maximum radiation on tilted planes. We conclude that the models provide a good estimate of the UV Index, as they coincide or differ in one unit compared to the experimental values in 99% of cases, and this is valid for all orientations. Finally, we examined the relation between the UV Index on vertical and 40° tilted planes, both the experimental and estimated by the Perez model, and the experimental UV Index on a horizontal plane at 12 GMT. Based on the results, we can conclude that it is possible to estimate with a good approximation the UV Index on vertical and 40° tilted planes in different directions on the basis of the experimental horizontal UVI value, thus justifying the interest of this study. This journal is © The Royal Society of Chemistry and Owner Societies 2012

  12. Perception of the upright and susceptibility to motion sickness as functions of angle of tilt and angular velocity in off-vertical rotation. [human tolerance to angular accelerations

    NASA Technical Reports Server (NTRS)

    Miller, E. F., II; Graybiel, A.

    1973-01-01

    Motion sickness susceptibility of four normal subjects was measured in terms of duration of exposure necessary to evoke moderate malaise (MIIA) as a function of velocity in a chair rotated about a central axis tilted 10 deg with respect to gravitational upright. The subjects had little or no susceptibility to this type of rotation at 2.5 and 5.0 rpm, but with further increases in rate, the MIIA endpoint was always reached and with ever shorter test durations. Minimal provocative periods for all subjects were found at 15 or 20 rpm. Higher rotational rates dramatically reversed the vestibular stressor effect, and the subjects as a group tended to reach a plateau of relatively low susceptibility at 40 and 45 rpm. At these higher velocities, furthermore, the subjects essentially lost their sensation of being tilted off vertical. In the second half of the study, the effect of tilt angle was varied while the rotation rate was maintained at a constant 17.5 rpm. Two subjects were completely resistant to symptoms of motion sickness when rotated at 2.5 deg off vertical; with greater off-vertical angles, the susceptibility of all subjects increased sharply at first, then tapered off in a manner reflecting a Fechnerian function.

  13. Correcting the vertical component of ocean bottom seismometers for the effects of tilt and compliance

    NASA Astrophysics Data System (ADS)

    Bell, S. W.; Forsyth, D. W.

    2013-12-01

    constant, but we observe significant day-to-day variation in tilt angle, requiring the calculation of a tilt transfer function for each individual day for optimum removal of bottom current noise. In removing the compliance noise, there is some distortion of the signal. We show how to correct for this distortion using theoretical and empirical transfer functions between pressure and displacement records for seismic signals.

  14. Echocardiograms during six hours of bedrest at head-down and head-up tilt and during space flight

    NASA Technical Reports Server (NTRS)

    Lathers, C. M.; Riddle, J. M.; Mulvagh, S. L.; Mukai, C.; Diamandis, P. H.; Dussack, L. G.; Bungo, M. W.; Charles, J. B.

    1993-01-01

    Left ventricular end-diastolic volume increased after 4 1/2 to 6 hours of space flight, but was significantly decreased after 5 to 6 days of space flight. To determine the role of acute gravitational effects in this phenomenon, responses to a 6-hour bedrest model of 0 gravity (G; 5 degrees head-down tilt) were compared with those of fractional gravity loads of 1/6 G, 1/3 G, and 2/3 G by using head-up tilts of 10 degrees, 20 degrees, and 42 degrees, respectively. On 4 different days, six healthy male subjects were tilted at one of the four angles for 6 hours. Cardiac dimensions and volumes were determined from two-dimensional and M-mode echocardiograms in the left lateral decubitus position at control (0), 2, 4, and 6 hours. Stroke volume decreased with time (P < .05) for all tilt angles when compared with control. Ejection fraction (EF) at -5 degrees was greater than at +20 degrees and +42 degrees (not significant); EF at +10 degrees was greater than at +42 degrees (not significant). For the tilt angles of -5 degrees, +10 degrees, and +20 degrees, mean heart rate decreased during the first 2 hours, and returned to control or was slightly elevated above control (+20 degrees) by 6 hours (not significant). At the +42 degrees angle of tilt, heart rate was increased above control at hours 2, 4, and 6. There were no significant differences in cardiac output at any time point for any tilt angle.(ABSTRACT TRUNCATED AT 250 WORDS).

  15. Measurement of Transcranial Distance During Head-Down Tilt Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Torikoshi, Shigeyo; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Bowley, S.; Yost, W. T.; Hargens, Alan R.

    1995-01-01

    Exposure to microgravity probably elevates blood pressure and flow in the head which may increase intracranial volume (ICV) and pressure (ICP). Due to the slightly compliant nature of the cranium, any increase of ICP will increase ICV and transcranial distance. We used a noninvasive ultrasound technique to measure transcranial distance (frontal to occipital) during head-down tilt. Seven subjects (ages 26-53) underwent the following tilt angles: 90 deg. upright, 30 deg., 0 deg., -6 deg., -10 deg., -6 deg., 0 deg., 30 deg., and 90 deg. Each angle was maintained for 1 min. Ultrasound wave frequency was collected continuously and transcranial distance was calculated (Delta(x) = x(Delta)f/f, where x is path length and f is frequency of the wave) for each tilt angle. Frequency decreased from 503.687 kHz (90 deg. upright) to 502.619 kHz (-10 deg.). These frequencies translated to an increased transcranial distance of 0.403 mm. Although our data suggest a significant increase in transcranial distance during head-down tilt, this apparent increase may result, in part, from head-down tilt-induced subcutaneous edema or cutaneous blood volume elevation. In three subjects, when the above protocol was repeated with an ace bandage wrapped around the head to minimize such edema, the increased transcranial distance from 90 deg. to -10 deg. was reduced by 0.174 mm. Further development of the technique to quantify bone-to-bone expansion unconfounded by cutaneous fluid is necessary. Therefore, this ultrasound technique may provide measurements of changes in cranial dimensions during microgravity.

  16. Improved hydrostatic pressure sample injection by tilting the microchip towards the disposable miniaturized CE device.

    PubMed

    Wang, Wei; Zhou, Fang; Zhao, Liang; Zhang, Jian-Rong; Zhu, Jun-Jie

    2008-02-01

    A simple method of hydrostatic pressure sample injection towards a disposable microchip CE device was developed. The liquid level in the sample reservoir was higher than that in the sample waste reservoir (SWR) by tilting microchip and hydrostatic pressure was generated, the sample was driven to pass through injection channel into SWR. After sample loading, the microchip was levelled for separation under applied high separation voltage. Effects of tilted angle, initial liquid height and injection duration on electrophoresis were investigated. With enough injection duration, the injection result was little affected by tilted angle and initial liquid heights in the reservoirs. Injection duration for obtaining a stable sample plug was mainly dependent on the tilted angle rather than the initial height of liquid. Experimental results were consistent with theoretical prediction. Fluorescence observation and electrochemical detection of dopamine and catechol were employed to verify the feasibility of tilted microchip hydrostatic pressure injection. Good reproducibility of this injection method was obtained. Because the instrumentation was simplified and no additional hardware was needed in this technology, the proposed method would be potentially useful in disposable devices.

  17. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging.

    PubMed

    Hagen, Wim J H; Wan, William; Briggs, John A G

    2017-02-01

    Cryo-electron tomography (cryoET) allows 3D structural information to be obtained from cells and other biological samples in their close-to-native state. In combination with subtomogram averaging, detailed structures of repeating features can be resolved. CryoET data is collected as a series of images of the sample from different tilt angles; this is performed by physically rotating the sample in the microscope between each image. The angles at which the images are collected, and the order in which they are collected, together are called the tilt-scheme. Here we describe a "dose-symmetric tilt-scheme" that begins at low tilt and then alternates between increasingly positive and negative tilts. This tilt-scheme maximizes the amount of high-resolution information maintained in the tomogram for subsequent subtomogram averaging, and may also be advantageous for other applications. We describe implementation of the tilt-scheme in combination with further data-collection refinements including setting thresholds on acceptable drift and improving focus accuracy. Requirements for microscope set-up are introduced, and a macro is provided which automates the application of the tilt-scheme within SerialEM. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Capillary force on a tilted cylinder: Atomic Force Microscope (AFM) measurements.

    PubMed

    Kosgodagan Acharige, Sébastien; Laurent, Justine; Steinberger, Audrey

    2017-11-01

    The capillary force in situations where the liquid meniscus is asymmetric, such as the one around a tilted object, has been hitherto barely investigated even though these situations are very common in practice. In particular, the capillary force exerted on a tilted object may depend on the dipping angle i. We investigate experimentally the capillary force that applies on a tilted cylinder as a function of its dipping angle i, using a home-built tilting Atomic Force Microscope (AFM) with custom made probes. A micrometric-size rod is glued at the end of an AFM cantilever of known stiffness, whose deflection is measured when the cylindrical probe is dipped in and retracted from reference liquids. We show that a torque correction is necessary to understand the measured deflection. We give the explicit expression of this correction as a function of the probes' geometrical parameters, so that its magnitude can be readily evaluated. The results are compatible with a vertical capillary force varying as 1/cosi, in agreement with a recent theoretical prediction. Finally, we discuss the accuracy of the method for measuring the surface tension times the cosine of the contact angle of the liquid on the probe. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. D-shaped tilted fiber Bragg grating using magnetic fluid for magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Ying, Yu; Zhang, Rui; Si, Guang-Yuan; Wang, Xin; Qi, Yuan-Wei

    2017-12-01

    In our work, a numerical investigation of a magnetic field sensor based on a D-shaped tilted fiber Bragg grating and magnetic fluid is performed. The sensing probe is constructed by placing the magnetic fluid film on the flat surface of the D-shaped tilted fiber Bragg grating. We investigate the resonance wavelengths of the proposed structure with different tilted angles of grating ranging from 0° to 20°, and analyze the magnetic field sensing characteristics. The simulation results show that the optical fiber sensor exhibits optimal transmission characteristics with a tilted angle of 8°. The wavelength sensitivity of the magnetic field sensor is as high as -0.18nm/Oe in the range of 30Oe-270Oe, and it demonstrates a linearity up to R2= -0.9998. Such sensor has potential applications in determining magnetic sensing field.

  20. Tilted Liquid Crystal Alignment on Asymmetrically Grooved Porous Alumina Film

    NASA Astrophysics Data System (ADS)

    Maeda, Tsuyoshi; Hiroshima, Kohki

    2005-06-01

    This paper reports the achievement of tilted liquid crystal (LC) alignment on an anodic porous alumina (APA) film using microgrooves with asymmetric shapes and dozens of minute pores. The microgrooves with asymmetric shapes were formed by a rubbing technique. The minute pores were then produced by anodization. The LC pretilt angle was controlled by the shapes of the microgrooves and pores. The LC director was orientated in the same inclining direction as that of a rubbed polyimide (PI) film. The pretilt angle was in the range of 20 to 90°. This tilted LC alignment remains very stable against external forces such as thermal shock and intense light.

  1. Reverse time migration in tilted transversely isotropic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Linbing; Rector III, James W.; Hoversten, G. Michael

    2004-07-01

    This paper presents a reverse time migration (RTM) method for the migration of shot records in tilted transversely isotropic (TTI) media. It is based on the tilted TI acoustic wave equation that was derived from the dispersion relation. The RTM is a full depth migration allowing for velocity to vary laterally as well as vertically and has no dip limitations. The wave equation is solved by a tenth-order finite difference scheme. Using 2D numerical models, we demonstrate that ignoring the tilt angle will introduce both lateral and vertical shifts in imaging. The shifts can be larger than 0.5 wavelength inmore » the vertical direction and 1.5 wavelength in the lateral direction.« less

  2. Film sensor based on cascaded tilted long-period and tilted fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Sang, Jiangang; Gu, Zhengtian; Ling, Qiang; Feng, Wenbin

    2018-06-01

    A film sensor based on a tilted long-period fiber grating (TLPFG) inserted before a tilted fiber Bragg grating (TFBG) is proposed. The sensor is described theoretically using the transfer matrix method. This structure has two reflected peaks in the reflection spectrum. One peak is for the selected recoupled cladding mode of azimuthal order l = 2 and the other one is for the coupled core mode. The tilt angles of the TLPFG and TFBG and the mode order of the l = 2 cladding mode mainly determine the reflected power of the recoupled-(l = 2) cladding-mode peak in the reflection spectrum. By analyzing the relation between the film parameters (film refractive index and film thickness) and reflection spectrum, the characteristics of the film sensor are studied. The results show that this film sensor has a high sensitivity to the film parameters and increases the sensitivity of the film refractive index by two orders of magnitude in comparison with the normal cascaded long-period fiber grating (LPFG) and the fiber Bragg grating (FBG). The resolutions of the refractive index and the thickness of the sensing film are predicted to be 10‑6 and 10‑3 nm.

  3. Perception of self-tilt in a true and illusory vertical plane

    NASA Technical Reports Server (NTRS)

    Groen, Eric L.; Jenkin, Heather L.; Howard, Ian P.; Oman, C. M. (Principal Investigator)

    2002-01-01

    A tilted furnished room can induce strong visual reorientation illusions in stationary subjects. Supine subjects may perceive themselves upright when the room is tilted 90 degrees so that the visual polarity axis is kept aligned with the subject. This 'upright illusion' was used to induce roll tilt in a truly horizontal, but perceptually vertical, plane. A semistatic tilt profile was applied, in which the tilt angle gradually changed from 0 degrees to 90 degrees, and vice versa. This method produced larger illusory self-tilt than usually found with static tilt of a visual scene. Ten subjects indicated self-tilt by setting a tactile rod to perceived vertical. Six of them experienced the upright illusion and indicated illusory self-tilt with an average gain of about 0.5. This value is smaller than with true self-tilt (0.8), but comparable to the gain of visually induced self-tilt in erect subjects. Apparently, the contribution of nonvisual cues to gravity was independent of the subject's orientation to gravity itself. It therefore seems that the gain of visually induced self-tilt is smaller because of lacking, rather than conflicting, nonvisual cues. A vector analysis is used to discuss the results in terms of relative sensory weightings.

  4. Assessment of the degree of pelvic tilt within a normal asymptomatic population.

    PubMed

    Herrington, Lee

    2011-12-01

    In clinical practice the degree of pelvic tilt is commonly assessed because of its reported relationship to pelvic, spinal and lower limb pathologies. There is little normative data presented within the literature establishing typical findings within an asymptomatic population from which to make comparisons in pathological populations. The aim of this study was to report typical pelvic angle in an asymptomatic populations and also the degree of side-to-side asymmetry which might exist within the pelvis. Pelvic angle was measured by finding the angle from horizontal of a line between the anterior superior and posterior superior iliac spines of the ilium using a PALM palpation meter in 120 healthy subjects (65 males, 55 females) with a mean age of 23.8(2.1) years. 85% of males and 75% of females presented with an anterior pelvic tilt, 6% of males and 7% of females with a posterior tilt and 9% of males and 18% of females presented as neutral. There was significant difference in pelvic angle between sides for males (p = 0.002) but a non-significant difference between sides for females (p = 0.314). But the difference in angle for males between sides was less than the smallest detectable difference statistic found in the reliability study, so most likely to be due to measurement error. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Modulation of internal estimates of gravity during and after prolonged roll-tilts.

    PubMed

    Tarnutzer, Alexander A; Bertolini, Giovanni; Bockisch, Christopher J; Straumann, Dominik; Marti, Sarah

    2013-01-01

    Perceived direction of gravity, as assessed by the subjective visual vertical (SVV), shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56 yo) repetitively adjusted a luminous arrow to the SVV over periods of 5 min while upright, roll-tilted (± 45°, ± 90°), and immediately after returning to upright. Significant (p<0.05) drifts (median absolute drift-amplitude: 10°/5 min) were found in 71% (± 45°) and 78% (± 90°) of runs. At ± 90° roll-tilt significant increases in absolute adjustment errors were more likely (76%), whereas significant increases (56%) and decreases (44%) were about equally frequent at ± 45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71 sec) was noted in 47% of all runs (all subjects pooled). No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central

  6. Tilt angle measurement with a Gaussian-shaped laser beam tracking

    NASA Astrophysics Data System (ADS)

    Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr; Lazar, Josef; Číp, Ondrej

    2014-05-01

    We have addressed the challenge to carry out the angular tilt stabilization of a laser guiding mirror which is intended to route a laser beam with a high energy density. Such an application requires good angular accuracy as well as large operating range, long term stability and absolute positioning. We have designed an instrument for such a high precision angular tilt measurement based on a triangulation method where a laser beam with Gaussian profile is reflected off the stabilized mirror and detected by an image sensor. As the angular deflection of the mirror causes a change of the beam spot position, the principal task is to measure the position on the image chip surface. We have employed a numerical analysis of the Gaussian intensity pattern which uses the nonlinear regression algorithm. The feasibility and performance of the method were tested by numeric modeling as well as experimentally. The experimental results indicate that the assembled instrument achieves a measurement error of 0.13 microradian in the range +/-0.65 degrees over the period of one hour. This corresponds to the dynamic range of 1:170 000.

  7. Oral rehabilitation with tilted dental implants: A metaanalysis

    PubMed Central

    Peñarrocha-Oltra, David; Candel-Marti, Eugenia; Peñarrocha-Diago, Maria

    2012-01-01

    Objective: To compare the course of patients treated with tilted implants versus those treated conventionally with axial implants, analyzing the success rate and marginal bone loss. Material and Methods: A PubMed search was made using the key words “tilted implants”, “angled implants”, “angulated implants”, “inclined implants” and “maxillary atrophy.” A review was made of the articles published between 1999-2010. The inclusion criteria were the use of tilted implants, clinical series involving at least 10 patients, and a minimum follow-up of 12 months after prosthetic loading. The exclusion criteria were isolated clinical cases, studies with missing data, and publications in languages other than English or Spanish. The metaanalysis finally included 13 articles: 7 retrospective studies and 6 prospective studies. Results: On analyzing the success rate in the retrospective studies, two reported a higher success rate with tilted implants; one a higher success rate with axial implants; and two reported similar success rates with both implants. On analyzing the success rate in the prospective studies, two reported a higher success rate with tilted implants; two a higher success rate with axial implants; and two reported similar success rates with both implants. On examining marginal bone loss, three studies reported greater bone loss with axial implants and one with tilted implants. Conclusions: There was no evidence of differences in success rate between tilted and axial implants in either the prospective or retrospective studies subjected to review. The marginal bone loss observed with the tilted and axial implants likewise proved very similar. It thus can be deduced that tilted implants exhibit the same evolutive behavior as axial implants. Key words:Axial implants, tilted implants, maxillary atrophy, tilted implants. PMID:22322494

  8. Orientation of selective effects of body tilt on visually induced perception of self-motion.

    PubMed

    Nakamura, S; Shimojo, S

    1998-10-01

    We examined the effect of body posture upon visually induced perception of self-motion (vection) with various angles of observer's tilt. The experiment indicated that the tilted body of observer could enhance perceived strength of vertical vection, while there was no effect of body tilt on horizontal vection. This result suggests that there is an interaction between the effects of visual and vestibular information on perception of self-motion.

  9. Tilt anisoplanatism in extended turbulence propagation

    NASA Astrophysics Data System (ADS)

    Magee, Eric P.; Whiteley, Matthew R.; Das, Shashikala T.; Welsh, Byron M.

    2003-04-01

    The use of high-energy laser (HEL) weapon systems in tactical air-to-ground target engagements offers great promise for revolutionizing the USAF's war-fighting capabilities. Laser directed-energy systems will enable ultra-precision strike with minimal collateral damage and significant stand-off range for the aerial platform. The tactical directed energy application differs in many crucial ways from the conventional approach used in missile defense. Tactical missions occur at much lower altitudes and involve look-down to low-contrast ground targets instead of a high-contrast boosting missile. At these lower altitudes, the strength of atmospheric turbulence is greatly enhanced. Although the target slant ranges are much shorter, tactical missions may still involve moderate values of the Rytov number (0.1-0.5), and small isoplanatic angles compared to the diffraction angle. With increased density of air in the propagation path, and the potential for slow-moving or stationary ground targets, HEL-induced thermal blooming will certainly be a concern. In order to minimize the errors induced by tracking through thermal blooming, offset aimpoint tracking can be used. However, this will result in significant tilt anisoplanatism, thus degrading beam stabilization on target. In this paper we investigate the effects of extended turbulence on tracking (or tilt) anisoplanatism using theory and wave optics simulations. The simulations show good agreement with geometric optics predictions at angles larger than about 5 micro-radians (asymptotic regime) while at smaller angles the agreement is poor. We present a theoretical basis for this observation.

  10. Random Vibration Analysis of the Tip-tilt System in the GMT Fast Steering Secondary Mirror

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Don; Kim, Young-Soo; Kim, Ho-Sang; Lee, Chan-Hee; Lee, Won Gi

    2017-09-01

    A random vibration analysis was accomplished on the tip-tilt system of the fast steering secondary mirror (FSM) for the Giant Magellan Telescope (GMT). As the FSM was to be mounted on the top end of the secondary truss and disturbed by the winds, dynamic effects of the FSM disturbances on the tip-tilt correction performance was studied. The coupled dynamic responses of the FSM segments were evaluated with a suggested tip-tilt correction modeling. Dynamic equations for the tip-tilt system were derived from the force and moment equilibrium on the segment mirror and the geometric compatibility conditions with four design parameters. Statically stationary responses for the tip-tilt actuations to correct the wind-induced disturbances were studied with two design parameters based on the spectral density function of the star image errors in the frequency domain. Frequency response functions and root mean square values of the dynamic responses and the residual star image errors were numerically calculated for the off-axis and on-axis segments of the FSM. A prototype of on-axis segment of the FSM was developed for tip-tilt actuation tests to confirm the ratio of tip-tilt force to tip-tilt angle calculated from the suggested dynamic equations of the tip-tilt system. Tip-tilt actuation tests were executed at 4, 8 and 12 Hz by measuring displacements of piezoelectric actuators and reaction forces acting on the axial supports. The derived ratios of rms tip-tilt force to rms tip-tilt angle from tests showed a good correlation with the numerical results. The suggested process of random vibration analysis on the tip-tilt system to correct the wind-induced disturbances of the FSM segments would be useful to advance the FSM design and upgrade the capability to achieve the least residual star image errors by understanding the details of dynamics.

  11. A method of solving tilt illumination for multiple distance phase retrieval

    NASA Astrophysics Data System (ADS)

    Guo, Cheng; Li, Qiang; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun

    2018-07-01

    Multiple distance phase retrieval is a technique of using a series of intensity patterns to reconstruct a complex-valued image of object. However, tilt illumination originating from the off-axis displacement of incident light significantly impairs its imaging quality. To eliminate this affection, we use cross-correlation calibration to estimate oblique angle of incident light and a Fourier-based strategy to correct tilted illumination effect. Compared to other methods, binary and biological object are both stably reconstructed in simulation and experiment. This work provides a simple but beneficial method to solve the problem of tilt illumination for lens-free multi-distance system.

  12. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    PubMed Central

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-01-01

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975

  13. Determination of optimum viewing angles for the angular normalization of land surface temperature over vegetated surface.

    PubMed

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-03-27

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.

  14. Modulation of Internal Estimates of Gravity during and after Prolonged Roll-Tilts

    PubMed Central

    Tarnutzer, Alexander A.; Bertolini, Giovanni; Bockisch, Christopher J.; Straumann, Dominik; Marti, Sarah

    2013-01-01

    Perceived direction of gravity, as assessed by the subjective visual vertical (SVV), shows roll-angle dependent errors that drift over time and a bias upon return to upright. According to Bayesian observer theory, the estimated direction of gravity is derived from the posterior probability distribution by combining sensory input and prior knowledge about earth-vertical in a statistically optimal fashion. Here we aimed to further characterize the stability of SVV during and after prolonged roll-tilts. Specifically we asked whether the post-tilt bias is related to the drift pattern while roll-tilted. Twenty-nine healthy human subjects (23-56yo) repetitively adjusted a luminous arrow to the SVV over periods of 5min while upright, roll-tilted (±45°, ±90°), and immediately after returning to upright. Significant (p<0.05) drifts (median absolute drift-amplitude: 10°/5min) were found in 71% (±45°) and 78% (±90°) of runs. At ±90° roll-tilt significant increases in absolute adjustment errors were more likely (76%), whereas significant increases (56%) and decreases (44%) were about equally frequent at ±45°. When returning to upright, an initial bias towards the previous roll-position followed by significant exponential decay (median time-constant: 71sec) was noted in 47% of all runs (all subjects pooled). No significant correlations were found between the drift pattern during and immediately after prolonged roll-tilt. We conclude that the SVV is not stable during and after prolonged roll-tilt and that the direction and magnitude of drift are individually distinct and roll-angle-dependent. Likely sensory and central adaptation and random-walk processes contribute to drift while roll-tilted. Lack of correlation between the drift and the post-tilt bias suggests that it is not the inaccuracy of the SVV estimate while tilted that determines post-tilt bias, but rather the previous head-roll orientation relative to gravity. We therefore favor central adaptation, most

  15. Power Flow Angles for Slanted Finger Surface Acoustic Wave Filters on Langasite Substrate

    NASA Astrophysics Data System (ADS)

    Goto, Mikihiro; Yatsuda, Hiromi; Chiba, Takao

    2007-07-01

    Power flow angles (PFAs) on a langasite (LGS) substrate with Euler angles of (0{\\degree}, 138.5{\\degree}, \\psi), \\psi=25.7 to 27.7° are investigated for slanted finger interdigital transducer (SFIT) surface acoustic wave (SAW) filters by an electrical and optical methods. In the electrical method, several tilted SFIT SAW filters with different tilt angles for (0{\\degree}, 138.5{\\degree}, \\psi) LGS substrates were designed, and the frequency responses of the filters were measured. In the optical method, the PFAs were directly measured by optical probing for a parallel interdigital transducer (IDT) with wide propagation area on the substrate. As a result, a good correlation between electrical and optical measurements of the PFAs is obtained, but the calculated PFAs are slightly different from the measured PFAs. A good frequency response of a tilted 380 MHz SFIT SAW filter with an appropriate tilt angle corresponding to the PFA on the substrate is obtained even though the aperture is small.

  16. A study of the cornering forces generated by aircraft tires on a tilted, free-swiveling nose gear

    NASA Technical Reports Server (NTRS)

    Daugherty, R. H.; Stubbs, S. M.

    1985-01-01

    An experimental investigation was conducted to study the effect of various parameters on the cornering forces produced by a rolling aircraft tire installed on a tilted, free-swiveling nose gear. The parameters studied included tilt angle, trial, tire inflation pressure, rake angle, vertical load, and whether or not a twin tire configuration corotates. These parameters were evaluated by measuring the cornering force produced by an aircraft tire installed on the nose gear of a modified vehicle as it was towed slowly. Cornering force coefficient increased with increasing tilt angle. Increasing trial or rake angle decreased the magnitude of the cornering force coefficient. Tire inflation pressure had no effect on the cornering force coefficient. Increasing vertical load decreased the cornering force coefficient. When the tires of a twin tire system rotated independently, the cornering force coefficients were the same as those for the single-tire configuration. When the twin tire system was made to corotate, however, the cornering force coefficients increased significantly.

  17. Scaling analysis and SE simulation of the tilted cylinder-interface capillary interaction

    NASA Astrophysics Data System (ADS)

    Gao, S. Q.; Zhang, X. Y.; Zhou, Y. H.

    2018-06-01

    The capillary interaction induced by a tilted cylinder and interface is the basic configuration of many complex systems, such as micro-pillar arrays clustering, super-hydrophobicity of hairy surface, water-walking insects, and fiber aggregation. We systematically analyzed the scaling laws of tilt angle, contact angle, and cylinder radius on the contact line shape by SE simulation and experiment. The following in-depth analysis of the characteristic parameters (shift, stretch and distortion) of the deformed contact lines reveals the self-similar shape of contact line. Then a general capillary force scaling law is proposed to incredibly grasp all the simulated and experimental data by a quite straightforward ellipse approximation approach.

  18. The importance of prostate bed tilt during postprostatectomy intensity-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Linda J., E-mail: Linda.Bell1@health.nsw.gov.au; Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales; Cox, Jennifer

    2014-10-01

    Variations in rectal and bladder filling can create a tilt of the prostate bed, which generates the potential for a geographic miss during postprostatectomy radiotherapy. The aim of this study is to assess the effect that bladder and rectum filling has on planning target volume angle, to determine a method to assess prostate bed tilt leading to potential geographic miss, and to discuss possible implementation issues. The cone-beam computed tomography images (n = 377) of 40 patients who received postprostatectomy radiotherapy with intensity-modulated radiotherapy were reviewed. The amount of tilt in the prostate bed was defined as the angle changemore » between 2 surgical clips, one in the upper prostate bed and another in the lower. A potential geographic miss was defined as movement of any clip of more than 1 cm in any direction or 0.5 cm posteriorly when aligned to bone anatomy. Variations in bladder and rectum size were correlated with the degree of prostate bed tilt, and the rate of potential geographic miss was determined. A possible clinical use of prostate bed tilt was then assessed for different imaging techniques. A tilt of more than 10° was seen in 20.2% of images, which resulted in a 57.9% geographic miss rate of the superior clip. When tilt remained within 10°, there was only a 9% rate of geographic miss. Potential geographic miss of the inferior surgical clip was rare, occurring in only 1.9% of all images reviewed. The most common occurrence when the prostate bed tilt increased by more than 10° was a smaller bladder and larger rectum (6.4% of all images). The most common occurrence when the prostate bed tilt decreased by more than 10° was a larger bladder and smaller rectum (1.3% of all images). Significant prostate bed tilt (>± 10°) occurred in more than 20% of images, creating a 58% rate of geographic miss. Greatest prostate bed tilt occurred when the bladder size increased or reduced by more than 2 cm or the superior rectum size increased by

  19. Controlling soliton excitations in Heisenberg spin chains through the magic angle.

    PubMed

    Lu, Jing; Zhou, Lan; Kuang, Le-Man; Sun, C P

    2009-01-01

    We study the nonlinear dynamics of collective excitation in an N -site XXZ quantum spin chain, which is manipulated by an oblique magnetic field. We show that, when the tilted field is applied along the magic angle, theta_{0}=+/-arccossqrt[13] , the anisotropic Heisenberg spin chain becomes isotropic and thus an freely propagating spin wave is stimulated. Also, in the regime of tilted angles larger and smaller than the magic angle, two types of nonlinear excitations appear: bright and dark solitons.

  20. Monitoring of unstable slopes by MEMS tilting sensors and its application to early warning

    NASA Astrophysics Data System (ADS)

    Towhata, I.; Uchimura, T.; Seko, I.; Wang, L.

    2015-09-01

    The present paper addresses the newly developed early warning technology that can help mitigate the slope failure disasters during heavy rains. Many studies have been carried out in the recent times on early warning that is based on rainfall records. Although those rainfall criteria of slope failure tells the probability of disaster on a regional scale, it is difficult for them to judge the risk of particular slopes. This is because the rainfall intensity is spatially too variable to forecast and the early warning based on rainfall alone cannot take into account the effects of local geology, hydrology and topography that vary spatially as well. In this regard, the authors developed an alternative technology in which the slope displacement/deformation is monitored and early warning is issued when a new criterion is satisfied. The new MEMS-based sensor monitors the tilting angle of an instrument that is embedded at a very shallow depth and the record of the tilting angle corresponds to the lateral displacement at the slope surface. Thus, the rate of tilting angle that exceeds a new criterion value implies an imminent slope failure. This technology has been validated against several events of slope failures as well as against a field rainfall test. Those validations have made it possible to determine the criterion value of the rate of tilting angle to be 0.1 degree/hour. The advantage of the MEMS tilting sensor lies in its low cost. Hence, it is possible to install many low-cost sensors over a suspected slope in which the precise range of what is going to fall down during the next rainfall is unknown. In addition to the past validations, this paper also introduces a recent application to a failed slope in the Izu Oshima Island where a heavy rainfall-induced slope failure occurred in October, 2013.

  1. Tilted Thick-Disk Accretion onto a Kerr Black Hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fragile, P C; Anninos, P

    2003-12-12

    We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M{sup 2} = +0.9 (prograde disk). The black hole is then instantaneously tilted, through a change in the metric, by an angle {beta}{sub 0}. In this Letter we report results with {beta}{sub 0} = 0, 15, and 30{sup o}.more » The disk is allowed to respond to the Lense-Thirring precession of the tilted black hole. We find that the disk settles into a quasi-static, twisted, warped configuration with Lense-Thirring precession dominating out to a radius analogous to the Bardeen-Petterson transition in tilted Keplerian disks.« less

  2. Modifying the hip abduction angle during bridging exercise can facilitate gluteus maximus activity.

    PubMed

    Kang, Sun-Young; Choung, Sung-Dae; Jeon, Hye-Seon

    2016-04-01

    To investigate how the erector spinae (ES) and gluteus maximus (GM) muscle activity and the anterior pelvic tilt angle change with different hip abduction angles during a bridging exercise. Twenty healthy participants (10 males and 10 females, aged 21.6 ± 1.6) voluntarily participated in this study. Surface electromyography (EMG) signals were recorded from the ES and GM during bridging at three hip abduction angles: 0°, 15°, and 30°. Simultaneously, the anterior pelvic tilt angle was measured using Image J software. The EMG amplitude of the GM muscle and the GM/ES EMG ratio were greatest at 30° hip abduction, followed by 15° and then 0° hip abduction during the bridging exercise. In contrast, the ES EMG amplitude at 30° hip abduction was significantly lesser than that at 0° and 15° abduction. Additionally, the anterior pelvic tilt angle was significantly lower at 30° hip abduction than at 0° or 15°. Bridging with 30° hip abduction can be recommended as an effective method to selectively facilitate GM muscle activity, minimize compensatory ES muscle activity, and decrease the anterior pelvic tilt angle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Design rules for a compact and low-cost optical position sensing of MOEMS tilt mirrors based on a Gaussian-shaped light source

    NASA Astrophysics Data System (ADS)

    Baumgart, Marcus; Tortschanoff, Andreas

    2013-05-01

    A tilt mirror's deflection angle tracking setup is examined from a theoretical point of view. The proposed setup is based on a simple optical approach and easily scalable. Thus, the principle is especially of interest for small and fast oscillating MEMS/MOEMS based tilt mirrors. An experimentally established optical scheme is used as a starting point for accurate and fast mirror angle-position detection. This approach uses an additional layer, positioned under the MOEMS mirror's backside, consisting of a light source in the center and two photodetectors positioned symmetrical around the center. The mirror's back surface is illuminated by the light source and the intensity change due to mirror tilting is tracked via the photodiodes. The challenge of this method is to get a linear relation between the measured intensity and the current mirror tilt angle even for larger angles. State-of-the-art MOEMS mirrors achieve angles up to ±30°, which exceeds the linear angle approximations. The use of an LED, small laser diode or VCSEL as a lightsource is appropriate due to their small size and inexpensive price. Those light sources typically emit light with a Gaussian intensity distribution. This makes an analytical prediction of the expected detector signal quite complicated. In this publication an analytical simulation model is developed to evaluate the influence of the main parameters for this optical mirror tilt-sensor design. An easy and fast to calculate value directly linked to the mirror's tilt-angle is the "relative differential intensity" (RDI = (I1 - I2) / (I1 + I2)). Evaluation of its slope and nonlinear error highlights dependencies between the identified parameters for best SNR and linearity. Also the energy amount covering the detector area is taken into account. Design optimizing rules are proposed and discussed based on theoretical considerations.

  4. SU-E-T-230: Creating a Large Number of Focused Beams with Variable Patient Head Tilt to Improve Dose Fall-Off for Brain Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, J; Ma, L

    2015-06-15

    Purpose: To develop a treatment delivery and planning strategy by increasing the number of beams to minimize dose to brain tissue surrounding a target, while maximizing dose coverage to the target. Methods: We analyzed 14 different treatment plans via Leksell PFX and 4C. For standardization, single tumor cases were chosen. Original treatment plans were compared with two optimized plans. The number of beams was increased in treatment plans by varying tilt angles of the patient head, while maintaining original isocenter and the beam positions in the x-, y- and z-axes, collimator size, and beam blocking. PFX optimized plans increased beammore » numbers with three pre-set tilt angles, 70, 90, 110, and 4C optimized plans increased beam numbers with tilt angles increasing arbitrarily from range of 30 to 150 degrees. Optimized treatment plans were compared dosimetrically with original treatment plans. Results: Comparing total normal tissue isodose volumes between original and optimized plans, the low-level percentage isodose volumes decreased in all plans. Despite the addition of multiple beams up to a factor of 25, beam-on times for 1 tilt angle versus 3 or more tilt angles were comparable (<1 min.). In 64% (9/14) of the studied cases, the volume percentage decrease by >5%, with the highest value reaching 19%. The addition of more tilt angles correlates to a greater decrease in normal brain irradiated volume. Selectivity and coverage for original and optimized plans remained comparable. Conclusion: Adding large number of additional focused beams with variable patient head tilt shows improvement for dose fall-off for brain radiosurgery. The study demonstrates technical feasibility of adding beams to decrease target volume.« less

  5. Dynamics of formation of low-angle tilt boundaries in metals and alloys at high loading rates

    NASA Astrophysics Data System (ADS)

    Gutkin, M. Yu.; Rzhavtsev, E. A.

    2015-12-01

    A computer model has been developed in which the process of formation of low-angle tilt boundaries and fragmentation of initial subgrains during shock loading of metals and alloys is clearly demonstrated by the of two-dimensional discrete dislocation-disclination dynamics method. The formation and evolution of such grains proceeds under the action of an external stress and the stress field of grain boundary disclinations distributed on the subgrain boundaries. With the D16 aluminum alloy as an example, three cases of fragmented structures formed in accordance with the initial configuration of the disclination ensemble have been considered for a dipole, quadrupole, and arbitrary octupole of wedge disclinations. It has been shown that, in all these cases, the formation of a stable fragmented structure requires a stress of ~0.5 GPa and time of 10 ns. The main results of computer simulation (the finite form of a fragmented structure, typical level of applied stress, and small fragmentation time) agree well with known experimental results on shock compression of the D16 aluminum alloy.

  6. Cranial diameter pulsations measured by non-invasive ultrasound decrease with tilt

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    INTRODUCTION: Intracranial pressure (ICP) may play a significant role in physiological responses to microgravity by contributing to the nausea associated with microgravity exposure. However, effects of altered gravity on ICP in astronauts have not been investigated, primarily due to the invasiveness of currently available techniques. We have developed an ultrasonic device that monitors changes in cranial diameter pulsation non-invasively so that we can evaluate ICP dynamics in astronauts during spaceflight. This study was designed to demonstrate the feasibility of our ultrasound technique under the physiological condition in which ICP dynamics are changed due to altered gravitational force. METHODS: Six healthy volunteers were placed at 60 degrees head-up, 30 degrees headup, supine, and 15 degrees head-down positions for 3 min at each angle. We measured arterial blood pressure (ABP) with a finger pressure cuff, and cranial diameter pulsation with a pulsed phase lock loop device (PPLL). RESULTS: Analysis of covariance demonstrated that amplitudes of cranial diameter pulsations were significantly altered with the angle of tilt (p < 0.001). The 95% confidence interval for linear regression coefficients of the cranial diameter pulsation amplitudes with tilt angle was 0.862 to 0.968. However, ABP amplitudes did not show this relationship. DISCUSSION: Our noninvasive ultrasonic technique reveals that the amplitude of cranial diameter pulsation decreases as a function of tilt angle, suggesting that ICP pulsation follows the same relationship. It is demonstrated that the PPLL device has a sufficient sensitivity to detect changes non-invasively in ICP pulsation caused by altered gravity.

  7. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise and Functional Electrical Stimulation during Head-Up Tilt.

    PubMed

    Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena

    2016-01-01

    Introduction: Tilt tables enable early mobilization of patients by providing verticalization. But there is a high risk of orthostatic hypotension provoked by verticalization, especially after neurological diseases such as spinal cord injury. Robot-assisted tilt tables might be an alternative as they add passive robotic leg exercise (PE) that can be enhanced with functional electrical stimulation (FES) to the verticalization, thus reducing the risk of orthostatic hypotension. We hypothesized that the influence of PE on the cardiovascular system during verticalization (i.e., head-up tilt) depends on the verticalization angle, and FES strengthens the PE influence. To test our hypotheses, we investigated the PE effects on the cardiovascular parameters heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) at different angles of verticalization in a healthy population. Methods: Ten healthy subjects on a robot-assisted tilt table underwent four different study protocols while HR, sBP, and dBP were measured: (1) head-up tilt to 60° and 71° without PE; (2) PE at 20°, 40°, and 60° of head-up tilt; (3) PE while constant FES intensity was applied to the leg muscles, at 20°, 40°, and 60° of head-up tilt; (4) PE with variation of the applied FES intensity at 0°, 20°, 40°, and 60° of head-up tilt. Linear mixed models were used to model changes in HR, sBP, and dBP responses. Results: The models show that: (1) head-up tilt alone resulted in statistically significant increases in HR and dBP, but no change in sBP. (2) PE during head-up tilt resulted in statistically significant changes in HR, sBP, and dBP, but not at each angle and not always in the same direction (i.e., increase or decrease of cardiovascular parameters). Neither adding (3) FES at constant intensity to PE nor (4) variation of FES intensity during PE had any statistically significant effects on the cardiovascular parameters. Conclusion: The effect of PE on the cardiovascular system during

  8. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise and Functional Electrical Stimulation during Head-Up Tilt

    PubMed Central

    Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena

    2016-01-01

    Introduction: Tilt tables enable early mobilization of patients by providing verticalization. But there is a high risk of orthostatic hypotension provoked by verticalization, especially after neurological diseases such as spinal cord injury. Robot-assisted tilt tables might be an alternative as they add passive robotic leg exercise (PE) that can be enhanced with functional electrical stimulation (FES) to the verticalization, thus reducing the risk of orthostatic hypotension. We hypothesized that the influence of PE on the cardiovascular system during verticalization (i.e., head-up tilt) depends on the verticalization angle, and FES strengthens the PE influence. To test our hypotheses, we investigated the PE effects on the cardiovascular parameters heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) at different angles of verticalization in a healthy population. Methods: Ten healthy subjects on a robot-assisted tilt table underwent four different study protocols while HR, sBP, and dBP were measured: (1) head-up tilt to 60° and 71° without PE; (2) PE at 20°, 40°, and 60° of head-up tilt; (3) PE while constant FES intensity was applied to the leg muscles, at 20°, 40°, and 60° of head-up tilt; (4) PE with variation of the applied FES intensity at 0°, 20°, 40°, and 60° of head-up tilt. Linear mixed models were used to model changes in HR, sBP, and dBP responses. Results: The models show that: (1) head-up tilt alone resulted in statistically significant increases in HR and dBP, but no change in sBP. (2) PE during head-up tilt resulted in statistically significant changes in HR, sBP, and dBP, but not at each angle and not always in the same direction (i.e., increase or decrease of cardiovascular parameters). Neither adding (3) FES at constant intensity to PE nor (4) variation of FES intensity during PE had any statistically significant effects on the cardiovascular parameters. Conclusion: The effect of PE on the cardiovascular system during

  9. Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meot, F.; Huang, H.

    2015-06-15

    A possible origin of a 14 deg y-normal spin n → 0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.

  10. Numerical tilting compensation in microscopy based on wavefront sensing using transport of intensity equation method

    NASA Astrophysics Data System (ADS)

    Hu, Junbao; Meng, Xin; Wei, Qi; Kong, Yan; Jiang, Zhilong; Xue, Liang; Liu, Fei; Liu, Cheng; Wang, Shouyu

    2018-03-01

    Wide-field microscopy is commonly used for sample observations in biological research and medical diagnosis. However, the tilting error induced by the oblique location of the image recorder or the sample, as well as the inclination of the optical path often deteriorates the imaging quality. In order to eliminate the tilting in microscopy, a numerical tilting compensation technique based on wavefront sensing using transport of intensity equation method is proposed in this paper. Both the provided numerical simulations and practical experiments prove that the proposed technique not only accurately determines the tilting angle with simple setup and procedures, but also compensates the tilting error for imaging quality improvement even in the large tilting cases. Considering its simple systems and operations, as well as image quality improvement capability, it is believed the proposed method can be applied for tilting compensation in the optical microscopy.

  11. Calculation of the Target Lumbar Lordosis Angle for Restoring an Optimal Pelvic Tilt in Elderly Patients With Adult Spinal Deformity.

    PubMed

    Yamato, Yu; Hasegawa, Tomohiko; Kobayashi, Sho; Yasuda, Tatsuya; Togawa, Daisuke; Arima, Hideyuki; Oe, Shin; Iida, Takahiro; Matsumura, Akira; Hosogane, Naobumi; Matsumoto, Morio; Matsuyama, Yukihiro

    2016-02-01

    This investigation consisted of a cross-sectional study and a retrospective multicenter case series. This investigation sought to identify the ideal lumbar lordosis (LL) angle for restoring an optimal pelvic tilt (PT) in patients with adult spinal deformity (ASD). To achieve successful corrective fusion in ASD patients with sagittal imbalance, it is essential to correct the sagittal spinal alignment and obtain a suitable pelvic inclination. We determined the LL angle that would restore the optimal PT following ASD surgery. The cross-sectional study included 184 elderly volunteers (mean age 64 years) with an Oswestry Disability Index score less than 20%. The relationship between PT or LL and the pelvic incidence (PI) in normal individuals was investigated. The second study included 116 ASD patients (mean age 66 years) who underwent thoracolumbar corrective fusion at 1 of 4 spine centers. The postoperative PT values were calculated using the parameters measured. On the basis of these studies, an ideal LL angle was determined. In the cross-sectional study, the linear regression equation for the optimal PT as a function of PI was "optimal PT = 0.47 × PI - 7.5." In the second study, the postoperative PT was determined as a function of PI and corrected LL, using the equation "postoperative PT = 0.7 × PI - 0.5 × corrected LL + 8.1." The target LL angle was determined by mathematically equalizing the PTs of these 2 equations: "target LL = 0.45 × PI + 31.8." The ideal LL angle can be determined using the equation "LL = 0.45 × PI + 31.8," which can be used as a reference during surgical planning in ASD cases. 4.

  12. Design and control of 2-axis tilting actuator for endoscope using ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Joo; Kim, Chul-Jin; Park, No-Cheol; Yang, Hyun-Seok; Park, Young-Pil

    2009-03-01

    In field of endoscopy, in order to overcome limitation in conventional endoscopy, capsule endoscope has been developed and has been recently applied in medical field in hospital. However, since capsule endoscope moves passively through GI tract by peristalsis, it is not able to control direction of head including camera. It is possible to miss symptoms of disease. Therefore, in this thesis, 2-Axis Tilting Actuator for Endoscope, based on Ionic Polymer Metal Composites (IPMC), is presented. In order to apply to capsule endoscope, the actuator material should satisfy a size, low energy consumption and low working voltage. Since IPMC is emerging material that exhibits a large bending deflection at low voltage, consume low energy and it can be fabricated in any size or any shape, IPMC are selected as an actuator. The system tilts camera module of endoscope to reduce invisible area of the intestines and a goal of tilting angle is selected to be an angle of 5 degrees for each axis. In order to control tiling angle, LQR controller and the full order observer is designed.

  13. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading

    NASA Astrophysics Data System (ADS)

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-09-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.

  14. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading.

    PubMed

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-09-19

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.

  15. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading

    PubMed Central

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-01-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors. PMID:27641908

  16. Tilt correction for intracavity mirror of laser with an unstable resonator

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Xu, Bing; Yang, Wei

    2005-12-01

    The influence on outcoupled mode by introducing intracavity tilt-perturbation in confocal unstable resonator is analyzed. The intracavity mode properties and Zernike-aberration coefficient of intrcavity mirror's maladjustment are calculated theoretically. The experimental results about the relations of intracavity mirror maladjustment and the properties of mode aberration are presented by adopting Hartmann-Shack wavefront sensor. The results show that the intracavity perturbation of the concave mirror has more remarkable effect on outcoupled beam-quality than that of the convex mirror. For large Fresnel-number resonator, the tilt angle of intracavity mirror has a close linear relationship with extracavity Zernike tilt coefficient. The ratio of tilt aberration coefficient approaches to the magnification of unstable resonator if equivalent perturbation is applied to concave mirror and convex mirror respectively. Furthermore, astigmatism and defocus aberration also increase with the augment of tilt aberration of beam mode. So intracavity phase-corrected elements used in unstable resonator should be close to the concave mirror. Based these results, a set of automatic control system of intracavity tilt aberration is established and the aberration-corrected results are presented and analyzed in detail.

  17. Optimum filters for narrow-band frequency modulation.

    NASA Technical Reports Server (NTRS)

    Shelton, R. D.

    1972-01-01

    The results of a computer search for the optimum type of bandpass filter for low-index angle-modulated signals are reported. The bandpass filters are discussed in terms of their low-pass prototypes. Only filter functions with constant numerators are considered. The pole locations for the optimum filters of several cases are shown in a table. The results are fairly independent of modulation index and bandwidth.

  18. Magnetic domains in Tb-Fe-Co thin films under anisotropy tilt

    NASA Astrophysics Data System (ADS)

    Talapatra, A.; Umadevi, K.; Arout Chelvane, J.; Mohanty, J.; Jayalakshmi, V.

    2018-04-01

    Tailoring of magnetic domains of Tb-Fe-Co thin films with rapid thermal processing has been reported in this paper. While the as-deposited films show elongated, inter-connected domains with high out-of-plane magnetic phase contrast, the rapid thermal processed films at 550 °C with different time intervals display deterioration of magnetic contrast. A longitudinal extension of domains has been observed with the processing time of 5 min. With subsequent increase in processing time, the domain patterns exhibit considerable decrease in magnetic phase difference combined with strong intermixing between two oppositely magnetized areas. The out-of-plane magnetic contrast is seen to be very weak for the Tb-Fe-Co film processed for 30 min. The domain morphology and the contrast variation have been modeled with micromagnetic simulations, considering the in-plane (along xz plane) tilt of anisotropy axis. The ground state energy profile and the variation in magnetic properties indicate the threshold tilt angle to be around 30 ° wherein the in-plane and out-of-plane squareness ratio and coercivities are comparable and hence the system shows a spin re-orientation behavior at higher tilt angles.

  19. Effects of external feedback about body tilt: Influence on the Subjective Proprioceptive Horizon.

    PubMed

    Bringoux, L; Bourdin, C; Nougier, V; Raphel, C

    2006-11-06

    The present study investigated a cognitive aspect upon spatial perception, namely the impact of a true or false verbal feedback (FB) about the magnitude of body tilt on Subjective Proprioceptive Horizon (SPH) estimates. Subjects were asked to set their extended arm normal to gravity for different pitch body tilts up to 9 degrees . True FB were provided at all body tilt angles, whereas false FB were provided only at 6 degrees backward and 6 degrees forward body tilts for half of the trials. Our data confirmed previous results about the egocentric influence of body tilt itself upon SPH: estimates were linearly lowered with forward tilts and elevated with backward tilts. In addition, results showed a significant effect of the nature of the external FB provided to the subjects. When subjects received a false FB inducing a 3 degrees forward bias relative to physical body tilt, they set their SPH consequently higher than when they received a false FB inducing a 3 degrees backward bias. These findings clearly indicated that false cognitive information about body tilt might significantly modify the judgement of a geocentric direction of space, such as the SPH. This may have deleterious repercussions in aeronautics when pilots have to localize external objects relative to earth-based directions in darkened environments.

  20. Acute Effects of Hamstring Stretching on Sagittal Spinal Curvatures and Pelvic Tilt

    PubMed Central

    López-Miñarro, Pedro A.; Muyor, José M.; Belmonte, Felipe; Alacid, Fernando

    2012-01-01

    The aim of this study was to determine acute effects of hamstring stretching in thoracic and lumbar spinal curvatures and pelvic tilt. Fifty-five adults (29.24 ± 7.41 years) were recruited for this study. Subjects performed a hamstring stretching protocol consisting of four exercises. The session consisted of 3 sets of each exercise and subjects held the position for 20 seconds with a 30-second rest period between sets and exercises. Thoracic and lumbar spinal angles and pelvic tilt were measured with a SpinalMouse in relaxed standing, sit-and-reach test and Macrae & Wright position. Hamstring extensibility was determined by active straight leg raise test and sit-and-reach score. All measures were performed before and immediately after the hamstring stretching protocol. Active straight leg raise angle and sitand-reach score significantly improved immediately after the stretching protocol (p<0.001). Greater anterior pelvic tilt (p<0.001) and lumbar flexion (p<0.05) and a smaller thoracic kyphosis in the sit-and-reach (p<0.001) were found after the stretching protocol. However, stretching produced no significant change on spinal curvatures or pelvic tilt in standing and maximal trunk flexion with knees flexed. In conclusion, static stretching of the hamstring is associated to an immediate change in the sagittal spinal curvatures and pelvic position when performing trunk flexion with knees extended, so that allowing for greater lumbar flexion and anterior pelvic tilt and lower thoracic kyphosis. Hamstring stretching is recommended prior to sport activities involving trunk flexion with the knees straight. PMID:23486214

  1. Magnetic configurations of the tilted current sheets in magnetotail

    NASA Astrophysics Data System (ADS)

    Shen, C.; Rong, Z. J.; Li, X.; Dunlop, M.; Liu, Z. X.; Malova, H. V.; Lucek, E.; Carr, C.

    2008-11-01

    In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of weak

  2. Extension-twist coupling of composite circular tubes with application to tilt rotor blade design

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.

    1987-01-01

    This investigation was conducted to determine if twist deformation required for the design of full-scale extension-twist-coupled tilt-rotor blades can be achieved within material design limit loads, and to demonstrate the accuracy of a coupled-beam analysis in predicting twist deformations. Two extension-twist-coupled tilt-rotor blade designs were developed based on theoretically optimum aerodynamic twist distributions. The designs indicated a twist rate requirement of between .216 and .333 deg/in. Agreement between axial tests and analytical predictions was within 10 percent at design limit loads. Agreement between the torsion tests and predictions was within 11 percent.

  3. Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit.

    PubMed

    Lu, Huihui; Lee, Jun Su; Zhao, Yan; Scarcella, Carmelo; Cardile, Paolo; Daly, Aidan; Ortsiefer, Markus; Carroll, Lee; O'Brien, Peter

    2016-07-25

    In this article we describe a cost-effective approach for hybrid laser integration, in which vertical cavity surface emitting lasers (VCSELs) are passively-aligned and flip-chip bonded to a Si photonic integrated circuit (PIC), with a tilt-angle optimized for optical-insertion into standard grating-couplers. A tilt-angle of 10° is achieved by controlling the reflow of the solder ball deposition used for the electrical-contacting and mechanical-bonding of the VCSEL to the PIC. After flip-chip integration, the VCSEL-to-PIC insertion loss is -11.8 dB, indicating an excess coupling penalty of -5.9 dB, compared to Fibre-to-PIC coupling. Finite difference time domain simulations indicate that the penalty arises from the relatively poor match between the VCSEL mode and the grating-coupler.

  4. Equilibrium contact angle or the most-stable contact angle?

    PubMed

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation. © 2013 Elsevier B.V. All rights reserved.

  5. Magnetic domain-wall tilting due to domain-wall speed asymmetry

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Yun; Park, Min-Ho; Park, Yong-Keun; Kim, Joo-Sung; Nam, Yoon-Seok; Hwang, Hyun-Seok; Kim, Duck-Ho; Je, Soong-Geun; Min, Byoung-Chul; Choe, Sug-Bong

    2018-04-01

    Broken symmetries in diverse systems generate a number of intriguing phenomena and the analysis on such broken symmetries often provides decisive clues for exploring underlying physics in the systems. Recently, in magnetic thin-film systems, the Dzyaloshinskii-Moriya interaction (DMI)—induced by the broken symmetry of structural inversion—accounts for various chiral phenomena, which are of timely issues in spintronics. Here, we report an experimental observation on unexpected tilting of magnetic domain walls (DWs) due to the broken symmetry under the application of the magnetic field transverse to the magnetic wire systems. It has been predicted that the DMI possibly causes such DW tilting in the direction of the energy minimization. However, very interestingly, experimental observation reveals that the DW tilting does not follow the prediction based on the energy minimization, even for the tilting direction. Instead, the DW tilting is governed by the DW speed asymmetry that is initiated by the DW pinning at wire edges. A simple analytic model is proposed in consideration of the DW speed asymmetry at wire edges, which successfully explains the experimental observation of the DW tilting directions and angles, as confirmed by numerical simulation. The present study manifests the decisive role of the DW pinning with the DW speed asymmetry, which determines the DW configuration and consequently, the dynamics.

  6. Dynamic calibration of pan-tilt-zoom cameras for traffic monitoring.

    PubMed

    Song, Kai-Tai; Tai, Jen-Chao

    2006-10-01

    Pan-tilt-zoom (PTZ) cameras have been widely used in recent years for monitoring and surveillance applications. These cameras provide flexible view selection as well as a wider observation range. This makes them suitable for vision-based traffic monitoring and enforcement systems. To employ PTZ cameras for image measurement applications, one first needs to calibrate the camera to obtain meaningful results. For instance, the accuracy of estimating vehicle speed depends on the accuracy of camera calibration and that of vehicle tracking results. This paper presents a novel calibration method for a PTZ camera overlooking a traffic scene. The proposed approach requires no manual operation to select the positions of special features. It automatically uses a set of parallel lane markings and the lane width to compute the camera parameters, namely, focal length, tilt angle, and pan angle. Image processing procedures have been developed for automatically finding parallel lane markings. Interesting experimental results are presented to validate the robustness and accuracy of the proposed method.

  7. How do visual and postural cues combine for self-tilt perception during slow pitch rotations?

    PubMed

    Scotto Di Cesare, C; Buloup, F; Mestre, D R; Bringoux, L

    2014-11-01

    Self-orientation perception relies on the integration of multiple sensory inputs which convey spatially-related visual and postural cues. In the present study, an experimental set-up was used to tilt the body and/or the visual scene to investigate how these postural and visual cues are integrated for self-tilt perception (the subjective sensation of being tilted). Participants were required to repeatedly rate a confidence level for self-tilt perception during slow (0.05°·s(-1)) body and/or visual scene pitch tilts up to 19° relative to vertical. Concurrently, subjects also had to perform arm reaching movements toward a body-fixed target at certain specific angles of tilt. While performance of a concurrent motor task did not influence the main perceptual task, self-tilt detection did vary according to the visuo-postural stimuli. Slow forward or backward tilts of the visual scene alone did not induce a marked sensation of self-tilt contrary to actual body tilt. However, combined body and visual scene tilt influenced self-tilt perception more strongly, although this effect was dependent on the direction of visual scene tilt: only a forward visual scene tilt combined with a forward body tilt facilitated self-tilt detection. In such a case, visual scene tilt did not seem to induce vection but rather may have produced a deviation of the perceived orientation of the longitudinal body axis in the forward direction, which may have lowered the self-tilt detection threshold during actual forward body tilt. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Tilt error in cryospheric surface radiation measurements at high latitudes: a model study

    NASA Astrophysics Data System (ADS)

    Bogren, Wiley Steven; Faulkner Burkhart, John; Kylling, Arve

    2016-03-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response fore optic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high-latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can, respectively introduce up to 2.7, 8.1, and 13.5 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo. Simulations including a cloud layer demonstrate decreasing tilt error with increasing cloud optical depth.

  9. Tilted wheel satellite attitude control with air-bearing table experimental results

    NASA Astrophysics Data System (ADS)

    Inumoh, Lawrence O.; Forshaw, Jason L.; Horri, Nadjim M.

    2015-12-01

    Gyroscopic actuators for satellite control have attracted significant research interest over the years, but their viability for the control of small satellites has only recently started to become clear. Research on variable speed gyroscopic actuators has long been focused on single gimbal actuators; double gimbal actuators typically operate at constant wheel spin rate and allow tilt angle ranges far larger than the ranges needed to operate most satellite missions. This research examines a tilted wheel, a newly proposed type of inertial actuator that can generate torques in all three principal axes of a rigid satellite using a spinning wheel and a double tilt mechanism. The tilt mechanism tilts the angular momentum vector about two axes providing two degree of freedom control, while variation of the wheel speed provides the third. The equations of motion of the system lead to a singularity-free system during nominal operation avoiding the need for complex steering logic. This paper describes the hardware design of the tilted wheel and the experimental setup behind both standalone and spherical air-bearing tables used to test it. Experimental results from the air bearing table are provided with the results depicting the high performance capabilities of the proposed actuator in torque generation.

  10. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise during Head-Up Tilt: A Pilot Study in Neurological Patients

    PubMed Central

    Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena

    2017-01-01

    Introduction: Robot-assisted tilt table therapy was proposed for early rehabilitation and mobilization of patients after diseases such as stroke. A robot-assisted tilt table with integrated passive robotic leg exercise (PE) mechanism has the potential to prevent orthostatic hypotension usually provoked by verticalization. In a previous study with rather young healthy subjects [average age: 25.1 ± 2.6 years (standard deviation)], we found that PE effect on the cardiovascular system depends on the verticalization angle of the robot-assisted tilt table. In the current study, we investigated in an older population of neurological patients (a) whether they show the same PE effects as younger healthy population on the cardiovascular system at different tilt angles, (b) whether changing the PE frequency (i.e., stepping speed) influences the PE effect on the cardiovascular system, (c) whether PE could prevent orthostatic hypotension, and finally, (d) whether PE effect is consistent from day to day. Methods: Heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) in response to PE at two different tilt angles (α = 20°, 60°) with three different PE frequencies (i.e., 0, 24, and 48 steps per minute) of 10 neurological patients [average age: 68.4 ± 13.5 years (standard deviation)] were measured on 2 consecutive days. Linear mixed models were used to develop statistical models and analyze the repeated measurements. Results: The models show that: PE significantly increased sBP and dBP but had no significant effect on HR. (a) Similar to healthy subjects the effect of PE on sBP was dependent on the tilt angle with higher tilt angles resulting in a higher increase. Head-up tilting alone significantly increased HR and dBP but resulted in a non-significant drop in sBP. PE, in general, had a more additive effect on increasing BP. (b) The effect of PE was not influenced by its speed. (c) Neither during head-up tilt alone nor in combination with PE did participants

  11. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise during Head-Up Tilt: A Pilot Study in Neurological Patients.

    PubMed

    Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena

    2017-01-01

    Introduction: Robot-assisted tilt table therapy was proposed for early rehabilitation and mobilization of patients after diseases such as stroke. A robot-assisted tilt table with integrated passive robotic leg exercise (PE) mechanism has the potential to prevent orthostatic hypotension usually provoked by verticalization. In a previous study with rather young healthy subjects [average age: 25.1 ± 2.6 years (standard deviation)], we found that PE effect on the cardiovascular system depends on the verticalization angle of the robot-assisted tilt table. In the current study, we investigated in an older population of neurological patients (a) whether they show the same PE effects as younger healthy population on the cardiovascular system at different tilt angles, (b) whether changing the PE frequency (i.e., stepping speed) influences the PE effect on the cardiovascular system, (c) whether PE could prevent orthostatic hypotension, and finally, (d) whether PE effect is consistent from day to day. Methods: Heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) in response to PE at two different tilt angles (α = 20°, 60°) with three different PE frequencies (i.e., 0, 24, and 48 steps per minute) of 10 neurological patients [average age: 68.4 ± 13.5 years (standard deviation)] were measured on 2 consecutive days. Linear mixed models were used to develop statistical models and analyze the repeated measurements. Results: The models show that: PE significantly increased sBP and dBP but had no significant effect on HR. (a) Similar to healthy subjects the effect of PE on sBP was dependent on the tilt angle with higher tilt angles resulting in a higher increase. Head-up tilting alone significantly increased HR and dBP but resulted in a non-significant drop in sBP. PE, in general, had a more additive effect on increasing BP. (b) The effect of PE was not influenced by its speed. (c) Neither during head-up tilt alone nor in combination with PE did participants

  12. Tilt sensor based on intermodal photonic crystal fiber interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotong; Ni, Kai; Zhao, Chunliu; Ye, Manping; Jin, Yongxing

    2014-09-01

    A tilt sensor based on an intermodal photonic crystal fiber (PCF) interferometer is demonstrated. The sensor consists of a tubular filled with NaCl aqueous solutions and an intermodal PCF interferometer, which is formed by using a short PCF with two single-mode fibers (SMFs) spliced at both ends, and the air-holes in the splice regions are fully collapsed. The intermodal PCF interferometer is fixed in a rigid glass tubular with a slant orientation, and a half of the PCF is immersed in the NaCl aqueous solutions, while the other half is exposed in air. When tilting the tubular, the length of the PCF immersed changes so that the transmission spectrum moves. Therefore, by monitoring the wavelength shift, the tilt angle can be achieved. In the experiment, a 0.8-cm-length intermodal PCF interferometer was adopted. The sensitivity of the proposed sensor was obtained from -1.5461 nm/° to -30.1244 nm/° when measuring from -35.1° to 37.05°.

  13. Vortex flow structures and interactions for the optimum thrust efficiency of a heaving airfoil at different mean angles of attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martín-Alcántara, A.; Fernandez-Feria, R.; Sanmiguel-Rojas, E.

    The thrust efficiency of a two-dimensional heaving airfoil is studied computationally for a low Reynolds number using a vortex force decomposition. The auxiliary potentials that separate the total vortex force into lift and drag (or thrust) are obtained analytically by using an elliptic airfoil. With these auxiliary potentials, the added-mass components of the lift and drag (or thrust) coefficients are also obtained analytically for any heaving motion of the airfoil and for any value of the mean angle of attack α. The contributions of the leading- and trailing-edge vortices to the thrust during their down- and up-stroke evolutions are computedmore » quantitatively with this formulation for different dimensionless frequencies and heave amplitudes (St{sub c} and St{sub a}) and for several values of α. Very different types of flows, periodic, quasi-periodic, and chaotic described as St{sub c}, St{sub a}, and α, are varied. The optimum values of these parameters for maximum thrust efficiency are obtained and explained in terms of the interactions between the vortices and the forces exerted by them on the airfoil. As in previous numerical and experimental studies on flapping flight at low Reynolds numbers, the optimum thrust efficiency is reached for intermediate frequencies (St{sub c} slightly smaller than one) and a heave amplitude corresponding to an advance ratio close to unity. The optimal mean angle of attack found is zero. The corresponding flow is periodic, but it becomes chaotic and with smaller average thrust efficiency as |α| becomes slightly different from zero.« less

  14. Prediction of the optimum surface orientation angles to achieve maximum solar radiation using Particle Swarm Optimization in Sabha City Libya

    NASA Astrophysics Data System (ADS)

    Mansour, F. A.; Nizam, M.; Anwar, M.

    2017-02-01

    This research aims to predict the optimum surface orientation angles in solar panel installation to achieve maximum solar radiation. Incident solar radiation is calculated using koronakis mathematical model. Particle Swarm Optimization (PSO) is used as computational method to find optimum angle orientation for solar panel installation in order to get maximum solar radiation. A series of simulation has been carried out to calculate solar radiation based on monthly, seasonally, semi-yearly and yearly period. South-facing was calculated also as comparison of proposed method. South-facing considers azimuth of 0°. Proposed method attains higher incident predictions than South-facing that recorded 2511.03 kWh/m2for monthly. It were about 2486.49 kWh/m2, 2482.13 kWh/m2and 2367.68 kWh/m2 for seasonally, semi-yearly and yearly. South-facing predicted approximately 2496.89 kWh/m2, 2472.40 kWh/m2, 2468.96 kWh/m2, 2356.09 kWh/m2for monthly, seasonally, semi-yearly and yearly periods respectively. Semi-yearly is the best choice because it needs twice adjustments of solar panel in a year. Yet it considers inefficient to adjust solar panel position in every season or monthly with no significant solar radiation increase than semi-yearly and solar tracking device still considers costly in solar energy system. PSO was able to predict accurately with simple concept, easy and computationally efficient. It has been proven by finding the best fitness faster.

  15. Reply to "Comment on 'Origin of tilted-phase generation in systems of ellipsoidal molecules with dipolar interactions' "

    NASA Astrophysics Data System (ADS)

    Bose, Tushar Kanti; Saha, Jayashree

    2014-04-01

    In a recent article [T. K. Bose and J. Saha, Phys. Rev. E 86, 050701 (2012), 10.1103/PhysRevE.86.050701], we have presented the results of a Monte Carlo simulation study of the systems of dipolar Gay-Berne ellipsoids where two terminal antiparallel dipoles are placed symmetrically on the long axis of each ellipsoid, and the results revealed the combined contribution of dipolar separation and transverse orientations in controlling the tilt angle in the tilted hexatic smectic phase. The tilt angle changed from zero to a significant value, in the case of transverse dipoles, with a change in the dipolar separation. In the related comment, Madhusudana [preceding Comment, Phys. Rev. E 89, 046501 (2014), 10.1103/PhysRevE.89.046501] has claimed that the physical origin of the molecular tilt in the significantly tilted phases found in the simulations is similar to that proposed by McMillan [Phys. Rev. A 8, 1921 (1973), 10.1103/PhysRevA.8.1921]. Here, we explain that the claim is not correct and make it clear that the two compared pictures are quite different. In the preceding Comment, Madhusudana has also suggested an alternative explanation for tilt generation in the simulations by criticizing the original one proposed by us. We argue here in support of the original explanation and clarify that his explanation does not follow the simulation results.

  16. Optimization and limit of a tilt manipulation stage based on the electrowetting-on-dielectric principle

    NASA Astrophysics Data System (ADS)

    Tan, Xiao; Tao, Zhi; Suzuki, Kenji; Li, Haiwang

    2017-12-01

    This work designed a new tilt manipulation stage based on the electrowetting-on-dielectric (EWOD) principle as the actuating mechanism and investigated the performance of that stage. The stage was fabricated using a universal MEMS (Micro-Electro-Mechanical System) fabrication method. In the previously demonstrated form of this device, the tilt stage consisted of a top plate that functions as a mirror, a bottom plate that was designed for changing the shape of water droplets, and supporters that were fixed between the top and bottom plate. That device was actuated by a voltage applied to the bottom plate, resulting in a static electric force actuating the shape change in the droplets by moving the top plate in the vertical direction. Previous experimental results indicated that that device can tilt at up to ±1.8°, with a resolution of 7 μm in displacement and 0.05° in angle. By selecting the best combination of the dielectric layer, the tilt angle was maximized. The new device, fabricated using a common and straightforward fabrication method, avoids deflection of the top plate and grounding in the bottom plate. Because of the limit of Teflon and other MEMS materials, this device has a tilt angle in the range of 3.2-3.5° according to the experimental data for friction and the EWOD device limit, which is close to 1.8°. This paper also describe the investigation of the effects of various parameters, e.g., various dielectric materials, thicknesses, and droplet type and volume, on the performance of the stage. The results indicate that the apparent frictions coefficient of the solid-liquid interface may remain constant, i.e., the friction force is proportional to the normal support force and the apparent frictions coefficient.

  17. Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)

    2014-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.

  18. Tilt angle dependence of backscattering enhancements from organ pipe modes of open water-filled cylinders: Measurements and models

    NASA Astrophysics Data System (ADS)

    Osterhoudt, Curtis F.; Marston, Philip L.

    2003-04-01

    A simple target for simulating narrow low-frequency resonances of cylinders is an open metal pipe completely filled with water. We have previously described how the high-Q organ-pipe modes having a pressure node near each end are easily observed in backscattering experiments with small cylinders [C. F. Osterhoudt and P. L. Marston, J. Acoust. Soc. Am. 110, 2773 (2001)]. The resonance occurs because of the strong reflection of internal acoustic waves from the open ends of the pipe [H. Levine and J. Schwinger, Phys. Rev. 73, 383-406 (1948)]. In the present research, the dependence of the backscattering amplitude on the orientation of the cylinder is measured and modeled. The tilt angle dependence is affected by the symmetry of the organ pipe mode. An approximation was also developed for the backscattering amplitude at high Q resonances based on energy conservation, reciprocity, and the optical theorem. While this analysis applies to cylinders suspended in water away from boundaries, the organ-pipe modes studied may be useful for investigating scattering processes for buried or partially buried cylinders. [Research supported in part by ONR.

  19. Gravito-Inertial Force Resolution in Perception of Synchronized Tilt and Translation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Holly, Jan; Zhang, Guen-Lu

    2011-01-01

    the GIF-resolution hypothesis even when the gravito-inertial force vector remains aligned with the body during periodic motion. Perception is also consistent with GIF-resolution in the opposite condition, when the gravito-inertial force vector angle is enhanced by synchronized tilt and translation.

  20. Development of a metrological atomic force microscope with a tip-tilting mechanism for 3D nanometrology

    NASA Astrophysics Data System (ADS)

    Kizu, Ryosuke; Misumi, Ichiko; Hirai, Akiko; Kinoshita, Kazuto; Gonda, Satoshi

    2018-07-01

    A metrological atomic force microscope with a tip-tilting mechanism (tilting-mAFM) has been developed to expand the capabilities of 3D nanometrology, particularly for high-resolution topography measurements at the surfaces of vertical sidewalls and for traceable measurements of nanodevice linewidth. In the tilting-mAFM, the probe tip is tilted from vertical to 16° at maximum such that the probe tip can touch and trace the vertical sidewall of a nanometer-scale structure; the probe of a conventional atomic force microscope cannot reach the vertical surface because of its finite cone angle. Probe displacement is monitored in three axes by using high-resolution laser interferometry, which is traceable to the SI unit of length. A central-symmetric 3D scanner with a parallel spring structure allows probe scanning with extremely low interaxial crosstalk. A unique technique for scanning vertical sidewalls was also developed and applied. The experimental results indicated high repeatability in the scanned profiles and sidewall angle measurements. Moreover, the 3D measurement of a line pattern was demonstrated, and the data from both sidewalls were successfully stitched together with subnanometer accuracy. Finally, the critical dimension of the line pattern was obtained.

  1. The multiple roles of small-angle tilt grain boundaries in annihilating radiation damage in SiC

    DOE PAGES

    Jiang, Hao; Wang, Xing; Szlufarska, Izabela

    2017-02-09

    Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled andmore » can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. As a result, when defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.« less

  2. The multiple roles of small-angle tilt grain boundaries in annihilating radiation damage in SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Wang, Xing; Szlufarska, Izabela

    Lattice defects generated by radiation damage can diffuse to grain boundaries (GBs) and be annihilated at GBs. However, the precise role of GBs in annihilating the segregated defects remains unclear. Here, we employed multi-scale models to determine how interstitials are annihilated at small-angle tilt GBs (STGBs) in SiC. First of all, we found the pipe diffusion of interstitials in STGBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, we found both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled andmore » can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of STGBs in annihilating radiation damage. This model includes defect flux to GBs, pipe diffusion in STGBs, and the interaction of defects with jogs. The model predicts the role of STGBs in annihilating defects depends on the rate of defects segregation to and diffusion along STGBs. STGBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. As a result, when defect diffusivity is low, most of the defects segregated to STGBs are annihilated by dislocation climb.« less

  3. A pilot investigation into the effects of different office chairs on spinal angles.

    PubMed

    Annetts, S; Coales, P; Colville, R; Mistry, D; Moles, K; Thomas, B; van Deursen, R

    2012-05-01

    To investigate the effects of four office chairs on the postural angles of the lumbopelvic and cervical regions. Which chair(s) produce an "ideal" spinal posture? An experimental same subject design was used involving healthy subjects (n = 14) who conducted a typing task whilst sitting on four different office chairs; two "dynamic" chairs (Vari-Kneeler and Swopper), and two static chairs (Saddle and Standard Office with back removed). Data collection was via digital photogrammetry, measuring pelvic and lumbar angles, neck angle and head tilt which were then analysed within MatLab. A repeated measures ANOVA with Bonferroni corrections for multiple comparisons was conducted. Statistically significant differences were identified for posterior pelvic tilt and lumbar lordosis between the Vari-Kneeler and Swopper chairs (p = 0.006, p = 0.001) and the Vari-Kneeler and Standard Office chairs (p = 0.000, 0.000); and also for neck angle and head tilt between the Vari-Kneeler and Swopper chairs (p = 0.000, p = 0.000), the Vari-Kneeler and Saddle chairs (p = 0.002, p = 0.001), the Standard Office and Swopper chairs (p = 0.000, p = 0.000), and the Standard Office and Saddle chairs (p = 0.005, p = 0.001). This study confirms a within region association between posterior pelvic tilt and lumbar lordosis, and between neck angle and head tilt. It was noted that an ideal lumbopelvic position does not always result in a corresponding ideal cervical position resulting in a spinal alignment mismatch. In this study, the most appropriate posture for the lumbopelvic region was produced by the Saddle chair and for the cervical region by both the Saddle and Swopper chairs. No chair consistently produced an ideal posture across all regions, although the Saddle chair created the best posture of those chairs studied. Chair selection should be based on individual need.

  4. Dynamic of charged planar geometry in tilted and non-tilted frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharif, M., E-mail: msharif.math@pu.edu.pk; Zaeem Ul Haq Bhatti, M., E-mail: mzaeem.math@pu.edu.pk

    2015-05-15

    We investigate the dynamics of charged planar symmetry with an anisotropic matter field subject to a radially moving observer called a tilted observer. The Einstein-Maxwell field equations are used to obtain a relation between non-tilted and tilted frames and between kinematical and dynamical quantities. Using the Taub mass formalism and conservation laws, two evolution equations are developed to analyze the inhomogeneities in the tilted congruence. It is found that the radial velocity (due to the tilted observer) and the electric charge have a crucial effect on the inhomogeneity factor. Finally, we discuss the stability in the non-tilted frame in themore » pure diffusion case and examine the effects of the electromagnetic field.« less

  5. High thermoelectric properties of (Sb, Bi)2Te3 nanowire arrays by tilt-structure engineering

    NASA Astrophysics Data System (ADS)

    Tan, Ming; Hao, Yanming; Deng, Yuan; Chen, Jingyi

    2018-06-01

    In this paper, we present an innovative tilt-structure design concept for (Sb, Bi)2Te3 nanowire array assembled by high-quality nanowires with well oriented growth, utilizing a simple vacuum thermal evaporation technique. The unusual tilt-structure (Sb, Bi)2Te3 nanowire array with a tilted angle of 45° exhibits a high thermoelectric dimensionless figure-of-merit ZT = 1.72 at room temperature. The relatively high ZT value in contrast to that of previously reported (Sb, Bi)2Te3 materials and the vertical (Sb, Bi)2Te3 nanowire arrays evidently reveals the crucial role of the unique tilt-structure in favorably influencing carrier and phonon transport properties, resulting in a significantly improved ZT value. The transport mechanism of such tilt-structure is proposed and investigated. This method opens a new approach to optimize nano-structure in thin films for next-generation thermoelectric materials and devices.

  6. Deformation analysis of tilted primary mirror for an off-axis beam compressor

    NASA Astrophysics Data System (ADS)

    Clark, James H., III; Penado, F. Ernesto; Dugdale, Joel

    2011-09-01

    The Navy Prototype Optical Interferometer (NPOI), located near Flagstaff, Arizona, is a ground-based interferometer that collects and transports stellar radiation from six primary flat collectors, known as siderostats, through a common vacuum relay system to a beam combiner where the beams are combined, fringes are obtained and modulated, and data are recorded for further analysis. The current number of observable stellar objects can increase from 6,000 to approximately 47,000 with the addition of down-tilting beam compressors in the optical train. The increase in photon collection area from the beam compressors opens the sky to many additional and fainter stars. The siderostats are capable of redirecting 35 cm stellar beams into the vacuum relay system. Sans beam compressors, any portion of the beam greater than the capacity of the vacuum transport system, 12.5 cm, is wasted. Engineering analysis of previously procured as-built beam compressor optics show the maximum allowable primary mirror surface sag, resulting in λ/10 peak-to-valley wavefront aberration, occurs at 2.8° down-tilt angle. At the NPOI operational down-tilt angle of 20° the wavefront aberration reduces to an unacceptable λ/4. A design modification concept that reduces tilt-induced sag was investigated. Four outwardly applied 4-lb forces on the rear surface of the mirror reduce the sag from 155 nm to 32 nm at 20° down-tilt and reduce peak-to-valley wavefront deviation to λ/8.6. This preliminary effort indicates that this solution path is a viable and economic way to repair an expensive set of optical components. However, it requires further work to optimize the locations, magnitudes, and quantity of the forces within this system and their influence on the mirror surface.

  7. Relationship between mechanical factors and pelvic tilt in adults with and without low back pain.

    PubMed

    Król, Anita; Polak, Maciej; Szczygieł, Elżbieta; Wójcik, Paweł; Gleb, Klaudia

    2017-01-01

    The assessment of the lumbo-pelvic complex parameters is the basic procedure during the examination of the patients with low back pain syndrome (LBP). The aim of the study was to define the relationship between pelvic tilt and following factors: age, BMI, ability to activate deep abdominal muscles, iliopsoas and hamstrings muscles length, lumbar lordosis and thoracic kyphosis angle value, in adults with and without low back pain. The study covered a group of 60 female students aged 20-26. Average age was 22 years ± 1.83 (median = 22.5 years). In order to investigate the relationship between the anterior pelvic tilt and the analysed variables, simple linear regression and multiple linear regression were carried out. Individuals with and without pain differed significantly in terms of age, p < 0.001. There was a statistically significant relationship between the anterior pelvic tilt and the LBP (R2 = 0.07, p = 0.049) and the lumbar lordosis (R2 = 0.13, p = 0.02). The position of the pelvis depends on age, angle value of lumbar lordosis and BMI. Individuals with and without pain differed significantly in terms of the anterior pelvic tilt. The risk of LBP incidence increased with age in the study group.

  8. A study on difference and importance of sacral slope and pelvic sacral angle that affect lumbar curvature.

    PubMed

    Choi, Seyoung; Lee, Minsun; Kwon, Byongan

    2014-01-01

    Individual pelvic sacral angle was measured, compared and analyzed for the 6 male and female adults who were diagnosed with lumbar spinal stenosis, foraminal stenosis and mild spondylolisthesis in accordance with spinal parameters, pelvic parameters and occlusion state of sacroiliac joint presented by the author of this thesis based on the fact that the degree of lumbar excessive lordosis that was one of the causes for lumbar pain was determined by sacral slope. The measured values were compared with the standard values of the average normal range from 20 s to 40 s of normal Koreans stated in the study on the change in lumbar lordosis angle, lumbosacral angle and sacral slope in accordance with the age by Oh et al. [5] and sacral slope and pelvic sacral slope of each individual of the subjects for measurement were compared. Comparing the difference between the two tilt angles possessed by an individual is a comparison to determine how much the sacroiliac joint connecting pelvis and sacral vertebrae compensated and corrected the sacral vertebrae slope by pelvic tilt under the condition of synarthrodial joint.Under the condition that the location conforming to the line in which the sagittal line of gravity connects with pelvic ASIS and pubic pubic tuberele is the neutral location of pelvic tilt, sacral slope being greater than pelvic sacral slope means pelvic anterior tilting, whereas sacral slope being smaller than pelvic sacral slope means pelvic posterior tilting. On that account, male B, female A and female C had a pelvic posterior tilting of 16 degrees, 1 degree and 5 degrees respectively, whereas male A, male C and female B had a pelvic anterior tilting of 3 degrees, 9 degrees and 4 degrees respectively. In addition, the 6 patients the values of lumbar lordosis angle, lumbosacral angle and sacral slope that were almost twice as much as the normal standard values of Koreans. It is believed that this is because the pelvic sacral slope maintaining an angle that is

  9. Tilt and Translation Motion Perception during Off Vertical Axis Rotation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Reschke, Millard F.; Clement, Gilles

    2006-01-01

    The effect of stimulus frequency on tilt and translation motion perception was studied during constant velocity off-vertical axis rotation (OVAR), and compared to the effect of stimulus frequency on eye movements. Fourteen healthy subjects were rotated in darkness about their longitudinal axis 10deg and 20deg off-vertical at 0.125 Hz, and 20deg offvertical at 0.5 Hz. Oculomotor responses were recorded using videography, and perceived motion was evaluated using verbal reports and a joystick with four degrees of freedom (pitch and roll tilt, mediallateral and anteriorposterior translation). During the lower frequency OVAR, subjects reported the perception of progressing along the edge of a cone. During higher frequency OVAR, subjects reported the perception of progressing along the edge of an upright cylinder. The modulation of both tilt recorded from the joystick and ocular torsion significantly increased as the tilt angle increased from 10deg to 20deg at 0.125 Hz, and then decreased at 0.5 Hz. Both tilt perception and torsion slightly lagged head orientation at 0.125 Hz. The phase lag of torsion increased at 0.5 Hz, while the phase of tilt perception did not change as a function of frequency. The amplitude of both translation perception recorded from the joystick and horizontal eye movements was negligible at 0.125 Hz and increased as a function of stimulus frequency. While the phase lead of horizontal eye movements decreased at 0.5 Hz, the phase of translation perception did not vary with stimulus frequency and was similar to the phase of tilt perception during all conditions. During dynamic linear acceleration in the absence of other sensory input (canal, vision) a change in stimulus frequency alone elicits similar changes in the amplitude of both self motion perception and eye movements. However, in contrast to the eye movements, the phase of both perceived tilt and translation motion is not altered by stimulus frequency. We conclude that the neural processing

  10. General Relativistic Magnetohydrodynamics Simulations of Tilted Black Hole Accretion Flows and Their Radiative Properties

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Gammie, C. F.; Dolence, J.; Noble, S. C.

    2013-01-01

    We perform global General Relativistic Magnetohydrodynamics (GRMHD) simulations of non-radiative, magnetized disks that are initially tilted with respect to the black hole's spin axis. We run the simulations with different size and tilt angle of the tori for 2 different resolutions. We also perform radiative transfer using Monte Carlo based code that includes synchrotron emission, absorption and Compton scattering to obtain spectral energy distribution and light curves. Similar work was done by Fragile et al. (2007) and Dexter & Fragile (2012) to model the super massive black hole SgrA* with tilted accretion disks. We compare our results of fully conservative hydrodynamic code and spectra that include X-ray, with their results.

  11. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    PubMed

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  12. Automated particle correspondence and accurate tilt-axis detection in tilted-image pairs

    DOE PAGES

    Shatsky, Maxim; Arbelaez, Pablo; Han, Bong-Gyoon; ...

    2014-07-01

    Tilted electron microscope images are routinely collected for an ab initio structure reconstruction as a part of the Random Conical Tilt (RCT) or Orthogonal Tilt Reconstruction (OTR) methods, as well as for various applications using the "free-hand" procedure. These procedures all require identification of particle pairs in two corresponding images as well as accurate estimation of the tilt-axis used to rotate the electron microscope (EM) grid. Here we present a computational approach, PCT (particle correspondence from tilted pairs), based on tilt-invariant context and projection matching that addresses both problems. The method benefits from treating the two problems as a singlemore » optimization task. It automatically finds corresponding particle pairs and accurately computes tilt-axis direction even in the cases when EM grid is not perfectly planar.« less

  13. Tilt testing results are influenced by tilt protocol.

    PubMed

    Zyśko, Dorota; Fedorowski, Artur; Nilsson, David; Rudnicki, Jerzy; Gajek, Jacek; Melander, Olle; Sutton, Richard

    2016-07-01

    It is unknown how the return to supine position influences duration of loss of consciousness (LOC) and cardioinhibition during tilt test. Retrospective analysis of two datasets containing records of patients who underwent tilt testing for unexplained syncope in two centres was performed. Patients, totalling 1232, were included in the study: 262 in a Swedish centre and 970 patients in a Polish centre. In Sweden, tilt table with tilt-down time (TDT) of 18 s was used (Group II). In Poland, two different tilt tables were used, one of them with TDT of 10 s (Group I, n = 325), and the other with TDT of 47 s (Group III, n = 645). Cardioinhibitory reflex occurred most frequently in Group III, whereas number of pauses >3 s, frequency of very long asystole ≥30 s, and the total duration of pauses >3 s demonstrated a trend to increase from Group I to III. Duration of LOC in Groups II and III was significantly longer compared with Group I (32.0 and 33.7 s vs. 16.4 s). In the multivariate-adjusted regression model, cardioinhibitory reflex was predicted by tilt-table model (odds ratio per model with increasing TDT: 1.40; 95% confidence interval, 1.19-1.64; P < 0.0001), whereas LOC duration was longer with increasing TDT (P < 0.0001) and age (P < 0.0001). Longer TDT during induced vasovagal syncope increases the prevalence of cardioinhibitory reflex and prolongs the duration of LOC. Tilt-down time does not affect asystolic pause duration but delay may lead to occurrence of multiple pauses, higher frequency of very long asystole, and longer total asystole duration. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  14. Influences of the extensor portion of the gluteus maximus muscle on pelvic tilt before and after the performance of a fatigue protocol.

    PubMed

    Alvim, Felipe C; Peixoto, Jennifer G; Vicente, Eduardo J D; Chagas, Paula S C; Fonseca, Diogo S

    2010-01-01

    There is a lack of data in the literature for determining the influences of the extensor portion of the gluteus maximus muscle on pelvic tilting and, thus, on lumbar stability. To assess the influences of the extensor portion of the gluteus maximus muscle on pelvic tilt. Ten healthy young subjects were recruited, with a body mass index (BMI) below 24.9 kg/m(2) and leg length discrepancy below 1 cm. The BMI, pelvic perimeter and lower-limb lengths were assessed and, subsequently, the degrees of hemi-pelvic tilt and asymmetry between them were analyzed using lateral view photographs of the subjects in a standing position, using SAPO (Software for Postural Assessment). Next, fatigue was induced in the extensor portion of the gluteus maximus muscle on the dominant side, and after that the hemi-pelvic tilt and the asymmetry between the hemi-pelvises were reassessed. The Pearson r and Student t tests were conducted at the significance level of alpha=0.05. There were no significant correlations between the confounding variables and asymmetry of the hemi-pelvic angles. There were significant changes in the hemi-pelvic angle of the dominant side (t=3.760; p=0.004). Fatigue in the extensor portion of the gluteus maximus muscle can generate increases in the tilt angle of the ipsilateral pelvis.

  15. Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair

    NASA Astrophysics Data System (ADS)

    Décréau, P. M. E.; Kougblénou, S.; Lointier, G.; Rauch, J.-L.; Trotignon, J.-G.; Vallières, X.; Canu, P.; Rochel Grimald, S.; El-Lemdani Mazouz, F.; Darrouzet, F.

    2013-11-01

    The Cluster mission operated a "tilt campaign" during the month of May 2008. Two of the four identical Cluster spacecraft were placed at a close distance (~50 km) from each other and the spin axis of one of the spacecraft pair was tilted by an angle of ~46°. This gave the opportunity, for the first time in space, to measure global characteristics of AC electric field, at the sensitivity available with long boom (88 m) antennas, simultaneously from the specific configuration of the tilted pair of satellites and from the available base of three satellites placed at a large characteristic separation (~1 RE). This paper describes how global characteristics of radio waves, in this case the configuration of the electric field polarization ellipse in 3-D-space, are identified from in situ measurements of spin modulation features by the tilted pair, validating a novel experimental concept. In the event selected for analysis, non-thermal continuum (NTC) waves in the 15-25 kHz frequency range are observed from the Cluster constellation placed above the polar cap. The observed intensity variations with spin angle are those of plane waves, with an electric field polarization close to circular, at an ellipticity ratio e = 0.87. We derive the source position in 3-D by two different methods. The first one uses ray path orientation (measured by the tilted pair) combined with spectral signature of magnetic field magnitude at source. The second one is obtained via triangulation from the three spacecraft baseline, using estimation of directivity angles under assumption of circular polarization. The two results are not compatible, placing sources widely apart. We present a general study of the level of systematic errors due to the assumption of circular polarization, linked to the second approach, and show how this approach can lead to poor triangulation and wrong source positioning. The estimation derived from the first method places the NTC source region in the dawn sector, at a

  16. Tilted membrane panel: A new module concept to maximize the impact of air bubbles for membrane fouling control in microalgae harvesting.

    PubMed

    Eliseus, A; Bilad, M R; Nordin, N A H M; Putra, Z A; Wirzal, M D H

    2017-10-01

    Microalgae harvesting using membrane technology is challenging because of its high fouling propensity. As an established fouling mitigation technique, efficacy of air bubbles can be improved by maximizing the impact of shear-rates in scouring foulant. In this study, it is achieved by tilting the membrane panel. We investigate the effect of tilting angle, switching period as well as aeration rate during microalgal broth filtration. Results show that higher tilting angles (up to 20°) improve permeability of up to 2.7 times of the vertical panel. In addition, operating a one-sided panel is better than a two-sided panel, in which the later involved switching mode. One-sided membrane panel only require a half of area, yet its performance is comparable with of a large-scale module. This tilted panel can lead to significant membrane cost reductions and eventually improves the competitiveness of membrane technology for microalgae harvesting application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Computer-based simulation of the Bielschowsky head-tilt test using the SEE++ software system.

    PubMed

    Kaltofen, Thomas; Buchberger, Michael; Priglinger, Siegfried

    2008-01-01

    Latest measurements of the vestibulo-ocular reflex (VOR) allowed the integration of the simulation of the Bielschowsky head-tilt test (BHTT) into the SEE++ software system. SEE++ realizes a biomechanical model of the human eye in order to simulate eye motility disorders and strabismus surgeries. With the addition of the BHTT it can now also be used for differential-diagnostic simulations of complex disorders (e.g., superior oblique palsies). In order to simulate the BHTT in SEE++, the user can freely choose the desired head-tilt angle from -45 degrees to +45 degrees. The chosen angle is shown in the 3D view with a human body model and is also used in the calculation of the Hess-Lancaster test. The integration of the BHTT offers an additional improvement of the possibilities for simulating eye motility disorders. Moreover, SEE++ allows the creation of a video of the "virtual patient" while tilting the head from one side to the other, which shows dynamic changes in the simulated Hess-diagrams. Comparisons of simulation results with patient-measured data showed a good correlation between the simulated and the measured data. Further comparisons with patient data are planned.

  18. Conservative GRMHD simulations of moderately thin, tilted accretion disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teixeira, Danilo Morales; Fragile, P. Chris; Zhuravlev, Viacheslav V.

    2014-12-01

    This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work, we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for bothmore » prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bardeen-Petterson alignment for prograde disks may be rather small, only including very thin disks. Unlike our previous work, we find no evidence for standing shocks in our simulated tilted disks. We ascribe this to the black hole spin, tilt angle, and disk scale height all being small in these simulations. We also add to the growing body of literature pointing out that the turbulence driven by the magnetorotational instability in global simulations of accretion disks is not isotropic. Finally, we provide a comparison between our moderately thin, untilted reference simulation and other numerical simulations of thin disks in the literature.« less

  19. Subsurface bending and reorientation of tilted vortex lattices in bulk isotropic superconductors due to Coulomb-like repulsion at the surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, E.; Guillamón, I.; Galvis, J. A.

    Here, we study vortex lattices (VLs) in superconducting weak-pinning platelet-like single crystals of β–Bi 2Pd in tilted magnetic fields with a scanning tunneling microscope. We show that vortices exit the sample perpendicular to the surface and are thus bent beneath the surface. The structure and orientation of the tilted VLs in the bulk are, for large tilt angles, strongly affected by Coulomb-type intervortex repulsion at the surface due to stray magnetic fields.

  20. Subsurface bending and reorientation of tilted vortex lattices in bulk isotropic superconductors due to Coulomb-like repulsion at the surface

    DOE PAGES

    Herrera, E.; Guillamón, I.; Galvis, J. A.; ...

    2017-11-03

    Here, we study vortex lattices (VLs) in superconducting weak-pinning platelet-like single crystals of β–Bi 2Pd in tilted magnetic fields with a scanning tunneling microscope. We show that vortices exit the sample perpendicular to the surface and are thus bent beneath the surface. The structure and orientation of the tilted VLs in the bulk are, for large tilt angles, strongly affected by Coulomb-type intervortex repulsion at the surface due to stray magnetic fields.

  1. Tilt-Pair Analysis of Images from a Range of Different Specimens in Single-Particle Electron Cryomicroscopy

    PubMed Central

    Henderson, Richard; Chen, Shaoxia; Chen, James Z.; Grigorieff, Nikolaus; Passmore, Lori A.; Ciccarelli, Luciano; Rubinstein, John L.; Crowther, R. Anthony; Stewart, Phoebe L.; Rosenthal, Peter B.

    2011-01-01

    The comparison of a pair of electron microscope images recorded at different specimen tilt angles provides a powerful approach for evaluating the quality of images, image-processing procedures, or three-dimensional structures. Here, we analyze tilt-pair images recorded from a range of specimens with different symmetries and molecular masses and show how the analysis can produce valuable information not easily obtained otherwise. We show that the accuracy of orientation determination of individual single particles depends on molecular mass, as expected theoretically since the information in each particle image increases with molecular mass. The angular uncertainty is less than 1° for particles of high molecular mass (∼ 50 MDa), several degrees for particles in the range 1–5 MDa, and tens of degrees for particles below 1 MDa. Orientational uncertainty may be the major contributor to the effective temperature factor (B-factor) describing contrast loss and therefore the maximum resolution of a structure determination. We also made two unexpected observations. Single particles that are known to be flexible showed a wider spread in orientation accuracy, and the orientations of the largest particles examined changed by several degrees during typical low-dose exposures. Smaller particles presumably also reorient during the exposure; hence, specimen movement is a second major factor that limits resolution. Tilt pairs thus enable assessment of orientation accuracy, map quality, specimen motion, and conformational heterogeneity. A convincing tilt-pair parameter plot, where 60% of the particles show a single cluster around the expected tilt axis and tilt angle, provides confidence in a structure determined using electron cryomicroscopy. PMID:21939668

  2. Association of spinal deformity and pelvic tilt with gait asymmetry in adolescent idiopathic scoliosis patients: Investigation of ground reaction force.

    PubMed

    Park, Yang Sun; Lim, Young Tae; Koh, Kyung; Kim, Jong Moon; Kwon, Hyun Joon; Yang, Ji Seung; Shim, Jae Kun

    2016-07-01

    Adolescent idiopathic scoliosis is a prevalent orthopedic problem in children ages 10 to 16years. Although genetic, physiological and biomechanical factors are considered to contribute to the onset and progression of adolescent idiopathic scoliosis, the underlying mechanisms are not yet clear. The purpose of this study was to investigate the association between spinal deformity and inter-leg ground reaction force asymmetry during walking in adolescent idiopathic scoliosis patients. Fourteen patients (3 males and 11 females) participated in this study. Maximum Cobb's angle, adjusted Cobb's angle, and pelvic tilt were calculated from X-ray images. Asymmetry indices between legs were also calculated from ground reaction force magnitude and time variables from their preferred speed walking. Pearson coefficients of correlation were used to investigate associations of asymmetry indices with angle variables. Asymmetry indices of ground reaction force magnitudes positively correlated with adjusted Cobb's angle and maximum Cobb's angle mainly during the peak of braking phase, average of braking phase, while asymmetry indices of ground reaction force time variables showed no significant correlation with adjusted or maximum Cobb's angle. In contrast, asymmetry indices of ground reaction force time variables positively correlated with pelvic tilt during stance phase. We concluded that the spinal deformity of adolescent idiopathic scoliosis patients estimated using the maximum and adjusted Cobb's angles is generally associated with greater asymmetry of ground reaction force magnitudes in walking, while the pelvic tilt is associated with the greater asymmetry of ground reaction force time variables. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Angle Performance on Optima XE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Jonathan; Satoh, Shu

    2011-01-07

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were ablemore » to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1{sigma}). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.« less

  4. Hyperbolic umbilic caustics from oblate water drops with tilted illumination: Observations

    NASA Astrophysics Data System (ADS)

    Jobe, Oli; Thiessen, David B.; Marston, Philip L.

    2017-11-01

    Various groups have reported observations of hyperbolic umbilic diffraction catastrophe patterns in the far-field scattering by oblate acoustically levitated drops with symmetric illumination. In observations of that type the drop's symmetry axis is vertical and the illuminating light beam (typically an expanded laser beam) travels horizontally. In the research summarized here, scattering patterns in the primary rainbow region and drop measurements were recorded with vertically tilted laser beam illumination having a grazing angle as large as 4 degrees. The findings from these observations may be summarized as follows: (a) It remains possible to adjust the drop aspect ratio (diameter/height) = D/H so as to produce a V-shaped hyperbolic umbilic focal section (HUFS) in the far-field scattering. (b) The shift in the required D/H was typically an increase of less than 1% and was quadratic in the tilt. (c) The apex of the V-shaped HUFS was shifted vertically by an amount proportional to the tilt with a coefficient close to unity. The levitated drops had negligible up-down asymmetry. Our method of investigation should be useful for other generalized rainbows with tilted illumination.

  5. Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field

    DOE PAGES

    Lin, Shi-Zeng; Saxena, Avadh

    2015-11-03

    Here we study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is non-circular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chain like structure. Lastly, the dynamical response ofmore » the non-circular skyrmions depends on the direction of external currents.« less

  6. Evidence of monotropic hexatic tilted smectic phase in the phase sequence of ferroelectric liquid crystal

    NASA Astrophysics Data System (ADS)

    Różycka, Anna; Deptuch, Aleksandra; Jaworska-Gołąb, Teresa; Węgłowska, Dorota; Marzec, Monika

    2018-02-01

    Physical properties of a new ferroelectric liquid crystal have been studied by complementary methods: differential scanning calorimetry, polarizing optical microscopy, dielectric and X-ray diffraction. It was found that next to enantiotropic ferroelectric smectic C* phase, the monotropic smectic phase appears at cooling. X-ray diffraction measurements allowed to identify this phase as hexatic tilted smectic. Temperature dependence of spontaneous polarization, tilt angle of molecules and switching time were found in both liquid crystalline phases at cooling. Based on the dielectric results, the dielectric processes were identified as Goldstone mode in the smectic C* phase, whereas as the bond-orientation-like phason and the bulk domain mode in the monotropic hexatic tilted smectic phase.

  7. Tilt-effect of holograms and images displayed on a spatial light modulator.

    PubMed

    Harm, Walter; Roider, Clemens; Bernet, Stefan; Ritsch-Marte, Monika

    2015-11-16

    We show that a liquid crystal spatial light modulator (LCOS-SLM) can be used to display amplitude images, or phase holograms, which change in a pre-determined way when the display is tilted, i.e. observed under different angles. This is similar to the tilt-effect (also called "latent image effect") known from various security elements ("kinegrams") on credit cards or bank notes. The effect is achieved without any specialized optical components, simply by using the large phase shifting capability of a "thick" SLM, which extends over several multiples of 2π, in combination with the angular dependence of the phase shift. For hologram projection one can use the fact that the phase of a monochromatic wave is only defined modulo 2π. Thus one can design a phase pattern extending over several multiples of 2π, which transforms at different readout angles into different 2π-wrapped phase structures, due to the angular dependence of the modulo 2π operation. These different beams then project different holograms at the respective readout angles. In amplitude modulation mode (with inserted polarizer) the intensity of each SLM pixel oscillates over several periods when tuning its control voltage. Since the oscillation period depends on the readout angle, it is possible to find a certain control voltage which produces two (or more) selectable gray levels at a corresponding number of pre-determined readout angles. This is done with all SLM pixels individually, thus constructing different images for the selected angles. We experimentally demonstrate the reconstruction of multiple (Fourier- and Fresnel-) holograms, and of different amplitude images, by readout of static diffractive patterns in a variable angular range between 0° and 60°.

  8. Temperature-insensitive refractive index sensor based on tilted moiré FBG with high resolution.

    PubMed

    Wang, Tao; Liu, Kun; Jiang, Junfeng; Xue, Meng; Chang, Pengxiang; Liu, Tiegen

    2017-06-26

    We proposed and fabricated a tilted moiré FBG (TMFBG), whose grating section was made up of two consecutive scribed TFBGs. By adjusting the Bragg wavelengths and the tilt angles of the two TFBGs, the two cladding mode combs of the transmission spectrum are non-overlapped. When the TMFBG was used for refractive index detection, its resolution can reach 2 × 10 -7 RIU, which is an order of magnitude higher than that of a single TFBG. And this result also has a good performance of temperature-insensitivity.

  9. Method for Determining Optimum Injector Inlet Geometry

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill (Inventor); Trinh, Huu P. (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  10. Tilt Error in Cryospheric Surface Radiation Measurements at High Latitudes: A Model Study

    NASA Astrophysics Data System (ADS)

    Bogren, W.; Kylling, A.; Burkhart, J. F.

    2015-12-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in-situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response foreoptic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250nm to 4500nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high latitude albedo measurement with a solar zenith angle of 60◦, a sensor tilted by 1, 3, and 5◦ can respectively introduce up to 2.6, 7.7, and 12.8% error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo.

  11. Numerical method for angle-of-incidence correction factors for diffuse radiation incident photovoltaic modules

    DOE PAGES

    Marion, Bill

    2017-03-27

    Here, a numerical method is provided for solving the integral equation for the angle-of-incidence (AOI) correction factor for diffuse radiation incident photovoltaic (PV) modules. The types of diffuse radiation considered include sky, circumsolar, horizon, and ground-reflected. The method permits PV module AOI characteristics to be addressed when calculating AOI losses associated with diffuse radiation. Pseudo code is provided to aid users in the implementation, and results are shown for PV modules with tilt angles from 0° to 90°. Diffuse AOI losses are greatest for small PV module tilt angles. Including AOI losses associated with the diffuse irradiance will improve predictionsmore » of PV system performance.« less

  12. Biomechanical evaluation of implant-supported prosthesis with various tilting implant angles and bone types in atrophic maxilla: A finite element study.

    PubMed

    Gümrükçü, Zeynep; Korkmaz, Yavuz Tolga; Korkmaz, Fatih Mehmet

    2017-07-01

    The purpose of this study is to evaluate and compare bone stress that occurs as a result of using vertical implants with simultaneous sinus augmentation with bone stress generated from oblique implants without sinus augmentation in atrophic maxilla. Six, three-dimensional (3D) finite element (FE) models of atrophic maxilla were generated with SolidWorks software. The maxilla models were varied for two different bone types. Models 2a, 2b and 2c represent maxilla models with D2 bone type. Models 3a, 3b and 3c represent maxilla models with D3 bone type. Five implants were embedded in each model with different configurations for vertical implant insertion with sinus augmentation: Model 2a/Model 3a, 30° tilted insertion; Model 2b/Model 3b and 45° tilted insertion; Model 2c/Model 3c. A 150 N load was applied obliquely on the hybrid prosthesis. The maximum von Mises stress values were comparatively evaluated using color scales. The von Mises stress values predicted by the FE models were higher for all D3 bone models in both cortical and cancellous bone. For the vertical implant models, lower stress values were found in cortical bone. Tilting of the distal implants by 30° increased the stress in the cortical layer compared to vertical implant models. Tilting of the distal implant by 45° decreased the stress in the cortical bone compared to the 30° models, but higher stress values were detected in the 45° models compared to the vertical implant models. Augmentation should be the first treatment option in atrophic maxilla in terms of biomechanics. Tilted posterior implants can create higher stress values than vertical posterior implants. During tilting implant planning, the use of a 45° tilted implant results in better biomechanical performance in peri-implant bone than 30° tilted implant due to the decrease in cantilever length. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Respective contribution of orientation contrast and illusion of self-tilt to the rod-and-frame effect.

    PubMed

    Cian, C; Esquivié, D; Barraud, P A; Raphel, C

    1995-01-01

    The visual angle subtended by the frame seems to be an important determinant of the contribution of orientation contrast and illusion of self-tilt (ie vection) to the rod-and-frame effect. Indeed, the visuovestibular factor (which produces vection) seems to be predominant in large displays and the contrast effect in small displays. To determine how these two phenomena are combined to account for the rod-and-frame effect, independent estimates of the magnitude of each component in relation to the angular size subtended by the display were examined. Thirty-five observers were exposed to three sets of experimental situations: body-adjustment test (illusion of self-tilt only), the tilt illusion (contrast only) and the rod-and-frame test, each display subtending 7, 12, 28, and 45 deg of visual angle. Results showed that errors recorded in the three situations increased linearly with the angular size. Whatever the size of the frame, both mechanisms, contrast effect (tilt illusion) and illusory effect on self-orientation (body-adjustment test), are always present. However, rod-and-frame errors became greater at a faster rate than the other two effects as the size of teh stimuli became larger. Neither one nor the other independent phenomenen, nor the combined effect could fully account for the rod-and-frame effect whatever the angular size of the apparatus.

  14. High-speed reference-beam-angle control technique for holographic memory drive

    NASA Astrophysics Data System (ADS)

    Yamada, Ken-ichiro; Ogata, Takeshi; Hosaka, Makoto; Fujita, Koji; Okuyama, Atsushi

    2016-09-01

    We developed a holographic memory drive for next-generation optical memory. In this study, we present the key technology for achieving a high-speed transfer rate for reproduction, that is, a high-speed control technique for the reference beam angle. In reproduction in a holographic memory drive, there is the issue that the optimum reference beam angle during reproduction varies owing to distortion of the medium. The distortion is caused by, for example, temperature variation, beam irradiation, and moisture absorption. Therefore, a reference-beam-angle control technique to position the reference beam at the optimum angle is crucial. We developed a new optical system that generates an angle-error-signal to detect the optimum reference beam angle. To achieve the high-speed control technique using the new optical system, we developed a new control technique called adaptive final-state control (AFSC) that adds a second control input to the first one derived from conventional final-state control (FSC) at the time of angle-error-signal detection. We established an actual experimental system employing AFSC to achieve moving control between each page (Page Seek) within 300 µs. In sequential multiple Page Seeks, we were able to realize positioning to the optimum angles of the reference beam that maximize the diffracted beam intensity. We expect that applying the new control technique to the holographic memory drive will enable a giga-bit/s-class transfer rate.

  15. Experimental Study of Structure of Low Density Jet Impinging on Tilt Plate by LIF and PSP

    NASA Astrophysics Data System (ADS)

    Fujimoto, Tetsuo; Sato, Kimihiko; Naniwa, Shuji; Inoue, Tomoyuki; Nakashima, Kouji

    2000-07-01

    The structure of low density jets impinging on a tilt plate is studied by hybrid use of LIF and PSP. The jet through an orifice flows into low pressure chamber of 0.12 Torr and impinges on to the tilt plate with angle from jet axis 45 or 60 or 90. A horizontal plane including the jet axis is visualized by LIF of seeded Iodine molecule, scanning a laser beam along the jet axis. On the other hand, the pressure distribution on the tilt plate is visualized by PSP. In comparing the results of the two methods, the shock wave system is analyzed. Deformation of the Mach disk and the barrel shock are confirmed.

  16. Steering Dynamics of Tilting Narrow Track Vehicle with Passive Front Wheel Design

    NASA Astrophysics Data System (ADS)

    TAN, Jeffrey Too Chuan; ARAKAWA, Hiroki; SUDA, Yoshihiro

    2016-09-01

    In recent years, narrow track vehicle has been emerged as a potential candidate for the next generation of urban transportation system, which is greener and space effective. Vehicle body tilting has been a symbolic characteristic of such vehicle, with the purpose to maintain its stability with the narrow track body. However, the coordination between active steering and vehicle tilting requires considerable driving skill in order to achieve effective stability. In this work, we propose an alternative steering method with a passive front wheel that mechanically follows the vehicle body tilting. The objective of this paper is to investigate the steering dynamics of the vehicle under various design parameters of the passive front wheel. Modeling of a three-wheel tilting narrow track vehicle and multibody dynamics simulations were conducted to study the effects of two important front wheel design parameters, i.e. caster angle and trail toward the vehicle steering dynamics in steering response time, turning radius, steering stability and resiliency towards external disturbance. From the results of the simulation studies, we have verified the relationships of these two front wheel design parameters toward the vehicle steering dynamics.

  17. Tilt and Translation Motion Perception during Pitch Tilt with Visual Surround Translation

    NASA Technical Reports Server (NTRS)

    O'Sullivan, Brita M.; Harm, Deborah L.; Reschke, Millard F.; Wood, Scott J.

    2006-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Previous studies suggest that multisensory integration is critical for discriminating linear accelerations arising from tilt and translation head motion. Visual input is especially important at low frequencies where canal input is declining. The NASA Tilt Translation Device (TTD) was designed to recreate postflight orientation disturbances by exposing subjects to matching tilt self motion with conflicting visual surround translation. Previous studies have demonstrated that brief exposures to pitch tilt with foreaft visual surround translation produced changes in compensatory vertical eye movement responses, postural equilibrium, and motion sickness symptoms. Adaptation appeared greatest with visual scene motion leading (versus lagging) the tilt motion, and the adaptation time constant appeared to be approximately 30 min. The purpose of this study was to compare motion perception when the visual surround translation was inphase versus outofphase with pitch tilt. The inphase stimulus presented visual surround motion one would experience if the linear acceleration was due to foreaft self translation within a stationary surround, while the outofphase stimulus had the visual scene motion leading the tilt by 90 deg as previously used. The tilt stimuli in these conditions were asymmetrical, ranging from an upright orientation to 10 deg pitch back. Another objective of the study was to compare motion perception with the inphase stimulus when the tilts were asymmetrical relative to upright (0 to 10 deg back) versus symmetrical (10 deg forward to 10 deg back). Twelve subjects (6M, 6F, 22-55 yrs) were tested during 3 sessions separated by at least one week. During each of the three sessions (out-of-phase asymmetrical, in-phase asymmetrical, inphase symmetrical), subjects were exposed to visual surround translation

  18. Magnetic Configurations of the Tilted Current Sheets and Dynamics of Their Flapping in Magnetotail

    NASA Astrophysics Data System (ADS)

    Shen, C.; Rong, Z. J.; Li, X.; Dunlop, M.; Liu, Z. X.; Malova, H. V.; Lucek, E.; Carr, C.

    2009-04-01

    Based on multiple spacecraft measurements, the geometrical structures of tilted current sheet and tail flapping waves have been analyzed and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the magnetic equatorial plane, while the tilted current sheet may lean severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, its half thickness is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail thick current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1RE, while the neutral sheet may be very thin, with its half thickness being several tenths ofRE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45

  19. Slow changing postural cues cancel visual field dependence on self-tilt detection.

    PubMed

    Scotto Di Cesare, C; Macaluso, T; Mestre, D R; Bringoux, L

    2015-01-01

    Interindividual differences influence the multisensory integration process involved in spatial perception. Here, we assessed the effect of visual field dependence on self-tilt detection relative to upright, as a function of static vs. slow changing visual or postural cues. To that aim, we manipulated slow rotations (i.e., 0.05° s(-1)) of the body and/or the visual scene in pitch. Participants had to indicate whether they felt being tilted forward at successive angles. Results show that thresholds for self-tilt detection substantially differed between visual field dependent/independent subjects, when only the visual scene was rotated. This difference was no longer present when the body was actually rotated, whatever the visual scene condition (i.e., absent, static or rotated relative to the observer). These results suggest that the cancellation of visual field dependence by dynamic postural cues may rely on a multisensory reweighting process, where slow changing vestibular/somatosensory inputs may prevail over visual inputs. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Tilt changes of short duration

    USGS Publications Warehouse

    McHugh, Stuart

    1976-01-01

    Section I of this report contains a classification scheme for short period tilt data. For convenience, all fluctuations in the local tilt field of less than 24 hours duration will be designated SP (i.e., short period) tilt events. Three basic categories of waveshape appearance are defined, and the rules for naming the waveforms are outlined. Examples from tilt observations at four central California sites are provided. Section II contains some coseismic tilt data. Fourteen earthquakes in central California, ranging in magnitude from 2.9 to 5.2, were chosen for study on four tiltmeters within 10 source dimensions of the epicenters. The raw records from each of the four tiltmeters at the times of the earthquakes were photographed and are presented in this section. Section III contains documentation of computer programs used in the analysis of the short period tilt data. Program VECTOR computes the difference vector of a tilt event and displays the sequence of events as a head-to-tail vector plot. Program ONSTSP 1) requires two component digitized tilt data as input, 2) scales and plots the data, and 3) computes and displays the amplitude, azimuth, and normalized derivative of the tilt amplitude. Program SHARPS computes the onset sharpness, (i.e., the normalized derivative of the tilt amplitude at the onset of the tilt event) as a function of source-station distance from a model of creep-related tilt changes. Program DSPLAY plots the digitized data.

  1. Vector mode conversion based on tilted fiber Bragg grating in ring-core fibers

    NASA Astrophysics Data System (ADS)

    Mi, Yuean; Ren, Guobin; Gao, Yixiao; Li, Haisu; Zhu, Bofeng; Liu, Yu

    2018-03-01

    We propose a vector mode conversion approach based on tilted fiber Bragg grating (TFBG) written in ring-core fiber with effective separation of eigenmodes. The mode coupling properties of TFBG are numerically investigated. It is shown that under the constraint of phase matching, the conversion of high-order vector modes could be achieved at specific wavelengths. Moreover, the polarization of incident light and tilt angle of TFBG play critical roles in mode coupling process. The proposed TFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for fibers based OAM beam generation and fiber lasers with vortex beams output.

  2. Sensor fusion for structural tilt estimation using an acceleration-based tilt sensor and a gyroscope

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Park, Jong-Woong; Spencer, B. F., Jr.; Moon, Do-Soo; Fan, Jiansheng

    2017-10-01

    A tilt sensor can provide useful information regarding the health of structural systems. Most existing tilt sensors are gravity/acceleration based and can provide accurate measurements of static responses. However, for dynamic tilt, acceleration can dramatically affect the measured responses due to crosstalk. Thus, dynamic tilt measurement is still a challenging problem. One option is to integrate the output of a gyroscope sensor, which measures the angular velocity, to obtain the tilt; however, problems arise because the low-frequency sensitivity of the gyroscope is poor. This paper proposes a new approach to dynamic tilt measurements, fusing together information from a MEMS-based gyroscope and an acceleration-based tilt sensor. The gyroscope provides good estimates of the tilt at higher frequencies, whereas the acceleration measurements are used to estimate the tilt at lower frequencies. The Tikhonov regularization approach is employed to fuse these measurements together and overcome the ill-posed nature of the problem. The solution is carried out in the frequency domain and then implemented in the time domain using FIR filters to ensure stability. The proposed method is validated numerically and experimentally to show that it performs well in estimating both the pseudo-static and dynamic tilt measurements.

  3. Octahedral tilt independent magnetism in confined GdTiO3 films

    NASA Astrophysics Data System (ADS)

    Need, R. F.; Isaac, B. J.; Kirby, B. J.; Borchers, J. A.; Stemmer, S.; Wilson, Stephen D.

    2018-03-01

    Low temperature polarized neutron reflectometry measurements are presented, exploring the evolution of ferrimagnetism in thin GdTiO3 films embedded within a SrTiO3 matrix. In GdTiO3 films thinner than ˜4 nm, the TiO6 octahedral tilts endemic to GdTiO3 coherently relax toward the undistorted, cubic phase of SrTiO3. Our measurements indicate that the ferrimagnetic state within the GdTiO3 layers survives as these TiO6 octahedral tilts are suppressed. Furthermore, our data suggest that layers of suppressed magnetization (i.e., magnetic dead layers) develop within the GdTiO3 layer at each GdTiO3/SrTiO3 interface and explain the apparent magnetization suppression observed in thin GdTiO3 films when using volume-averaged techniques. Our data show that the low temperature magnetic moment inherent to the core GdTiO3 layers is only weakly impacted as the octahedral tilt angles are suppressed by more than 50% and the t2 g bandwidth is dramatically renormalized.

  4. Investigation of peak pressure index parameters for people with spinal cord injury using wheelchair tilt-in-space and recline: methodology and preliminary report.

    PubMed

    Lung, Chi-Wen; Yang, Tim D; Crane, Barbara A; Elliott, Jeannette; Dicianno, Brad E; Jan, Yih-Kuen

    2014-01-01

    The purpose of this study was to determine the effect of the sensel window's location and size when calculating the peak pressure index (PPI) of pressure mapping with varying degrees of wheelchair tilt-in-space (tilt) and recline in people with spinal cord injury (SCI). Thirteen power wheelchair users were recruited into this study. Six combinations of wheelchair tilt (15°, 25°, and 35°) and recline (10° and 30°) were used by the participants in random order. Displacements of peak pressure and center of pressure were extracted from the left side of the mapping system. Normalized PPI was computed for three sensel window dimensions (3 sensels × 3 sensels, 5 × 5, and 7 × 7). At least 3.33 cm of Euclidean displacement of peak pressures was observed in the tilt and recline. For every tilt angle, peak pressure displacement was not significantly different between 10° and 30° recline, while center of pressure displacement was significantly different (P < .05). For each recline angle, peak pressure displacement was not significantly different between pairs of 15°, 25°, and 35° tilt, while center of pressure displacement was significantly different between 15° versus 35° and 25° versus 35°. Our study showed that peak pressure displacement occurs in response to wheelchair tilt and recline, suggesting that the selected sensel window locations used to calculate PPI should be adjusted during changes in wheelchair configuration.

  5. Tilted fuel cell apparatus

    DOEpatents

    Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.

    2005-04-12

    Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.

  6. Correction of broadband snow albedo measurements affected by unknown slope and sensor tilts

    NASA Astrophysics Data System (ADS)

    Weiser, Ursula; Olefs, Marc; Schöner, Wolfgang; Weyss, Gernot; Hynek, Bernhard

    2016-04-01

    Geometric effects induced by the underlying terrain slope or by tilt errors of the radiation sensors lead to an erroneous measurement of snow or ice albedo. Consequently, artificial diurnal albedo variations in the order of 1-20 % are observed. The present paper proposes a general method to correct tilt errors of albedo measurements in cases where tilts of both the sensors and the slopes are not accurately measured or known. We demonstrate that atmospheric parameters for this correction model can either be taken from a nearby well-maintained and horizontally levelled measurement of global radiation or alternatively from a solar radiation model. In a next step the model is fitted to the measured data to determine tilts and directions of sensors and the underlying terrain slope. This then allows us to correct the measured albedo, the radiative balance and the energy balance. Depending on the direction of the slope and the sensors a comparison between measured and corrected albedo values reveals obvious over- or underestimations of albedo. It is also demonstrated that differences between measured and corrected albedo are generally highest for large solar zenith angles.

  7. On the effect of tilted roof reflectors in Martin-Puplett spectrometers

    NASA Astrophysics Data System (ADS)

    Schillaci, Alessandro; de Bernardis, Paolo

    2012-01-01

    In this paper we analyze theoretically and experimentally the effect of tilt of the roof mirrors in a double pendulum Martin-Puplett Polarizing Interferometer (MPI), focusing on the polarization of the interfering beams. In principle, the tilt affects the efficiency and polarimetric properties of the interferometer. The case of a moderate resolution spectrometer is analysed in detail. Using the Stokes formalism we recover the analytical expressions for the orientation angle and the ellipticity of the beam reflected from a metallic surface, and we compute these quantities for the roof-mirror of a MPI. We find that the polarization rotation and depolarization are small. Using the Jones formalism we propagate their effect on the measured interferogram and spectrum, and demonstrate that the performance degradation is small compared to other systematic effects.

  8. Wavelength Scanning with a Tilting Interference Filter for Glow-Discharge Elemental Imaging.

    PubMed

    Storey, Andrew P; Ray, Steven J; Hoffmann, Volker; Voronov, Maxim; Engelhard, Carsten; Buscher, Wolfgang; Hieftje, Gary M

    2017-06-01

    Glow discharges have long been used for depth profiling and bulk analysis of solid samples. In addition, over the past decade, several methods of obtaining lateral surface elemental distributions have been introduced, each with its own strengths and weaknesses. Challenges for each of these techniques are acceptable optical throughput and added instrumental complexity. Here, these problems are addressed with a tilting-filter instrument. A pulsed glow discharge is coupled to an optical system comprising an adjustable-angle tilting filter, collimating and imaging lenses, and a gated, intensified charge-coupled device (CCD) camera, which together provide surface elemental mapping of solid samples. The tilting-filter spectrometer is instrumentally simpler, produces less image distortion, and achieves higher optical throughput than a monochromator-based instrument, but has a much more limited tunable spectral range and poorer spectral resolution. As a result, the tilting-filter spectrometer is limited to single-element or two-element determinations, and only when the target spectral lines fall within an appropriate spectral range and can be spectrally discerned. Spectral interferences that result from heterogeneous impurities can be flagged and overcome by observing the spatially resolved signal response across the available tunable spectral range. The instrument has been characterized and evaluated for the spatially resolved analysis of glow-discharge emission from selected but representative samples.

  9. TILTING TABLE AREA, PDP ROOM, LEVEL +27’, LOOKING NORTHWEST. TILTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TILTING TABLE AREA, PDP ROOM, LEVEL +27’, LOOKING NORTHWEST. TILTING TABLE MARKED BY WHITE ELECTRICAL CORD IN LOWER LEFT CENTER - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  10. Gradual tilting of crystallographic orientation and configuration of dislocations in GaN selectively grown by vapour phase epitaxy methods

    PubMed

    Kuwan; Tsukamoto; Taki; Horibuchi; Oki; Kawaguchi; Shibata; Sawaki; Hiramatsu

    2000-01-01

    Cross-sectional transmission electron microscope (TEM) observation was performed for selectively grown gallium nitride (GaN) in order to examine the dependence of GaN microstructure on the growth conditions. The GaN films were grown by hydride vapour phase epitaxy (HVPE) or metalorganic vapour phase epitaxy (MOVPE) on GaN covered with a patterned mask. Thin foil specimens for TEM observation were prepared with focused ion beam (FIB) machining apparatus. It was demonstrated that the c-axis of GaN grown over the terrace of the mask tilts towards the centre of the terrace when the GaN is grown in a carrier gas of N2. The wider terrace results in a larger tilting angle if other growth conditions are identical. The tilting is attributed to 'horizontal dislocations' (HDs) generated during the overgrowth of GaN on the mask terrace. The HDs in HVPE-GaN have a semi-loop shape and are tangled with one another, while those in MOVPE-GaN are straight and lined up to form low-angle grain boundaries.

  11. Endogenous indole-3-acetic acid and ethylene evolution in tilted Metasequoia glyptostroboides stems in relation to compression-wood formation.

    PubMed

    Du, Sheng; Sugano, Mami; Tsushima, Miho; Nakamura, Teruko; Yamamoto, Fukuju

    2004-04-01

    Eight-year-old Metasequoia glyptostroboides seedlings were tilted at a 45 degrees angle to induce compression-wood formation on the lower side of the stems. After 2 weeks of treatment, half of the seedlings were sampled and the remaining half were tilted to the opposite orientation to exchange the upper and lower sides and were kept for 2 more weeks until sampled. Cambium-emitted ethylene was analyzed by gas chromatography with flame-ionization detection. Endogenous indole-3-acetic acid (IAA) was measured by gas chromatography-mass spectrometry. Tracheid production and compression-wood formation were determined by light microscopy. Anatomical studies showed that tracheid production was promoted and compression-wood tracheids always developed on the gravitationally lower side of tilted stems in both the original tilting and the subsequent reverse-tilting periods. These were accompanied by an increase in IAA content in and an accelerated ethylene-evolution rate from the cambial region of the same side.

  12. Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.

    2008-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize

  13. Optimum Design of High-Speed Prop-Rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; McCarthy, Thomas Robert

    1993-01-01

    An integrated multidisciplinary optimization procedure is developed for application to rotary wing aircraft design. The necessary disciplines such as dynamics, aerodynamics, aeroelasticity, and structures are coupled within a closed-loop optimization process. The procedure developed is applied to address two different problems. The first problem considers the optimization of a helicopter rotor blade and the second problem addresses the optimum design of a high-speed tilting proprotor. In the helicopter blade problem, the objective is to reduce the critical vibratory shear forces and moments at the blade root, without degrading rotor aerodynamic performance and aeroelastic stability. In the case of the high-speed proprotor, the goal is to maximize the propulsive efficiency in high-speed cruise without deteriorating the aeroelastic stability in cruise and the aerodynamic performance in hover. The problems studied involve multiple design objectives; therefore, the optimization problems are formulated using multiobjective design procedures. A comprehensive helicopter analysis code is used for the rotary wing aerodynamic, dynamic and aeroelastic stability analyses and an algorithm developed specifically for these purposes is used for the structural analysis. A nonlinear programming technique coupled with an approximate analysis procedure is used to perform the optimization. The optimum blade designs obtained in each case are compared to corresponding reference designs.

  14. Optical mode engineering and high power density per facet length (>8.4 kW/cm) in tilted wave laser diodes

    NASA Astrophysics Data System (ADS)

    Ledentsov, N. N.; Shchukin, V. A.; Maximov, M. V.; Gordeev, N. Y.; Kaluzhniy, N. A.; Mintairov, S. A.; Payusov, A. S.; Shernyakov, Yu. M.

    2016-03-01

    Tilted Wave Lasers (TWLs) based on optically coupled thin active waveguide and thick passive waveguide offer an ultimate solution for thick-waveguide diode laser, preventing catastrophic optical mirror damage and thermal smile in laser bars, providing robust operation in external cavity modules thus enabling wavelength division multiplexing and further increase in brightness enabling direct applications of laser diodes in the mainstream material processing. We show that by proper engineering of the waveguide one can realize high performance laser diodes at different tilt angles of the vertical lobes. Two vertical lobes directed at various angles (namely, +/-27° or +/-9°) to the junction plane are experimentally realized by adjusting the compositions and the thicknesses of the active and the passive waveguide sections. The vertical far field of a TWL with the two +/-9° vertical beams allows above 95% of all the power to be concentrated within a vertical angle below 25°, the fact which is important for laser stack applications using conventional optical coupling schemes. The full width at half maximum of each beam of the value of 1.7° evidences diffraction- limited operation. The broad area (50 μm) TWL chips at the cavity length of 1.5 mm reveal a high differential efficiency ~90% and a current-source limited pulsed power >42W for as-cleaved TWL device. Thus the power per facet length in a laser bar in excess of 8.4 kW/cm can be realized. Further, an ultimate solution for the smallest tilt angle is that where the two vertical lobes merge forming a single lobe directed at the zero angle is proposed.

  15. The HAMP Signal Relay Domain Adopts Multiple Conformational States through Collective Piston and Tilt Motions

    PubMed Central

    Zhu, Lizhe; Bolhuis, Peter G.; Vreede, Jocelyne

    2013-01-01

    The HAMP domain is a linker region in prokaryotic sensor proteins and relays input signals to the transmitter domain and vice versa. Functional as a dimer, the structure of HAMP shows a parallel coiled-coil motif comprising four helices. To date, it is unclear how HAMP can relay signals from one domain to another, although several models exist. In this work, we use molecular simulation to test the hypothesis that HAMP adopts different conformations, one of which represents an active, signal-relaying configuration, and another an inactive, resting state. We first performed molecular dynamics simulation on the prototype HAMP domain Af1503 from Archaeoglobus fulgidus. We explored its conformational space by taking the structure of the A291F mutant disabling HAMP activity as a starting point. These simulations revealed additional conformational states that differ in the tilt angles between the helices as well as the relative piston shifts of the helices relative to each other. By enhancing the sampling in a metadynamics set up, we investigated three mechanistic models for HAMP signal transduction. Our results indicate that HAMP can access additional conformational states characterized by piston motion. Furthermore, the piston motion of the N-terminal helix of one monomer is directly correlated with the opposite piston motion of the C-terminal helix of the other monomer. The change in piston motion is accompanied by a change in tilt angle between the monomers, thus revealing that HAMP exhibits a collective motion, i.e. a combination of changes in tilt angles and a piston-like displacement. Our results provide insights into the conformational changes that underlie the signaling mechanism involving HAMP. PMID:23468603

  16. Full fusion of proximal thoracic curve helps to prevent postoperative cervical tilt in Lenke type 2 adolescent idiopathic scoliosis patients with right-elevated shoulder.

    PubMed

    Jiang, Jun; Qian, Bang-Ping; Qiu, Yong; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang

    2017-08-23

    To date, no study had reported the phenomenon of deteriorated postoperative cervical tilt in Lenke type 2 adolescent idiopathic scoliosis patients. The purpose of this study is to evaluate the cervical tilt in Lenke type 2 adolescent idiopathic scoliosis patients with right-elevated shoulder treated by either full fusion or partial/non fusion of the proximal thoracic curve. A total of 30 Lenke type 2 AIS patients with preoperative right-elevated shoulder underwent posterior spinal instrumentation from 2009 to 2011 were included in this study. All the subjects were divided into 2 groups according to the selection of upper instrumented vertebra. There were 14 cases proximally fused to T1 or T2 (Group A) and 16 cases proximally fused to T3 or below (Group B). Both standing anteroposterior and sagittal X-ray films of the spine obtained preoperatively, one week after the operation, and at a minimum of two-year follow-up were analyzed with respect to the following parameters: cervical tilt, T1 tilt, proximal thoracic Cobb angle, main thoracic Cobb angle, apical vertebral translation of proximal thoracic curve, apical vertebral translation of main thoracic curve, radiographic shoulder height, cervical lordosis, proximal thoracic kyphosis and main thoracic kyphosis. Most (83.3%) of the patients in these two groups gained satisfactory shoulder balance after surgery. However, the cervical tilt significantly improved in group A (p < 0.001) but deteriorated in group B (p < 0.001). In group A, the decrease of cervical tilt significantly positively correlated with that of T1 tilt (p < 0.001). In group B, the increase of cervical tilt significantly positively correlated with both the increase of T1 tilt (p < 0.001) and the increase of apical vertebral translation of proximal thoracic curve (p < 0.05). Lenke type 2 AIS patients with right-elevated shoulder gain improved shoulder but deteriorated cervical tilt after partial/non fusion of proximal thoracic curve. Full

  17. Tilts in strong ground motion

    USGS Publications Warehouse

    Graizer, V.

    2006-01-01

    Most instruments used in seismological practice to record ground motion are pendulum seismographs, velocigraphs, or accelerographs. In most cases it is assumed that seismic instruments are only sensitive to the translational motion of the instrument's base. In this study the full equation of pendulum motion, including the inputs of rotations and tilts, is considered. It is shown that tilting the accelerograph's base can severely impact its response to the ground motion. The method of tilt evaluation using uncorrected strong-motion accelerograms was first suggested by Graizer (1989), and later tested in several laboratory experiments with different strong-motion instruments. The method is based on the difference in the tilt sensitivity of the horizontal and vertical pendulums. The method was applied to many of the strongest records of the Mw 6.7 Northridge earthquake of 1994. Examples are shown when relatively large tilts of up to a few degrees occurred during strong earthquake ground motion. Residual tilt extracted from the strong-motion record at the Pacoima Dam-Upper Left Abutment reached 3.1?? in N45??E direction, and was a result of local earthquake-induced tilting due to high-amplitude shaking. This value is in agreement with the residual tilt measured by using electronic level a few days after the earthquake. The method was applied to the building records from the Northridge earthquake. According to the estimates, residual tilt reached 2.6?? on the ground floor of the 12-story Hotel in Ventura. Processing of most of the strongest records of the Northridge earthquake shows that tilts, if happened, were within the error of the method, or less than about 0.5??.

  18. Abrupt Upper-Plate Tilting Upon Slab-Transition-Zone Collision

    NASA Astrophysics Data System (ADS)

    Crameri, F.; Lithgow-Bertelloni, C. R.

    2017-12-01

    During its sinking, the remnant of a surface plate crosses and interacts with multiple boundaries in Earth's interior. The most-prominent dynamic interaction arises at the upper-mantle transition zone where the sinking plate is strongly affected by the higher-viscosity lower mantle. Within our numerical model, we unravel, for the first time, that this very collision of the sinking slab with the transition zone induces a sudden, dramatic downward tilt of the upper plate towards the subduction trench. The slab-transition zone collision sets parts of the higher-viscosity lower mantle in motion. Naturally, this then induces an overall larger return flow cell that, at its onset, tilts the upper plate abruptly by around 0.05 degrees and over around 10 Millions of years. Such a significant and abrupt variation in surface topography should be clearly visible in temporal geologic records of large-scale surface elevation and might explain continental-wide tilting as observed in Australia since the Eocene or North America during the Phanerozoic. Unravelling this crucial mantle-lithosphere interaction was possible thanks to state-of-the-art numerical modelling (powered by StagYY; Tackley 2008, PEPI) and post-processing (powered by StagLab; www.fabiocrameri.ch/software). The new model that is introduced here to study the dynamically self-consistent temporal evolution of subduction features accurate subduction-zone topography, robust single-sided plate sinking, stronger plates close to laboratory values, an upper-mantle phase transition and, crucially, simple continents at a free surface. A novel, fully-automated post-processing includes physical model diagnostics like slab geometry, mantle flow pattern, upper-plate tilt angle and trench location.

  19. Human Ocular Counter-Rolling and Roll Tilt Perception during Off-Vertical Axis Rotation after Spaceflight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Denise, Pierre; Reschke, Millard; Wood, Scott J.

    2007-01-01

    Ocular counter-rolling (OCR) induced by whole body tilt in roll has been explored after spaceflight as an indicator of the adaptation of the otolith function to microgravity. It has been claimed that the overall pattern of OCR responses during static body tilt after spaceflight is indicative of a decreased role of the otolith function, but the results of these studies have not been consistent, mostly due to large variations in the OCR within and across individuals. By contrast with static head tilt, off-vertical axis rotation (OVAR) presents the advantage of generating a sinusoidal modulation of OCR, allowing averaged measurements over several cycles, thus improving measurement accuracy. Accordingly, OCR and the sense of roll tilt were evaluated in seven astronauts before and after spaceflight during OVAR at 45 /s in darkness at two angles of tilt (10 and 20 ). There was no significant difference in OCR during OVAR immediately after landing compared to preflight. However, the amplitude of the perceived roll tilt during OVAR was significantly larger immediately postflight, and then returned to control values in the following days. Since the OCR response is predominantly attributed to the shearing force exerted on the utricular macula, the absence of change in OCR postflight suggests that the peripheral otolith organs function normally after short-term spaceflight. However, the increased sense of roll tilt indicates an adaptation in the central processing of gravitational input, presumably related to a re-weigthing of the internal representation of gravitational vertical as a result of adaptation to microgravity.

  20. Thermal behavior of an active electronic dome contained in a tilted hemispherical enclosure and subjected to nanofluidic Cu-water free convection

    NASA Astrophysics Data System (ADS)

    Baïri, A.; Laraqi, N.; Adeyeye, K.

    2018-03-01

    This study examines the thermal behavior of a hemispherical electronic component subjected to a natural nanofluidic convective flow. During its operation, this active dome generates a high power, leading to Rayleigh number values reaching 4.56×109 . It is contained in a hemispherical enclosure and the space between the dome and the cupola is filled with a monophasic water-based copper nanofluid whose volume fraction varies between 0 (pure water) and 10%. According to the intended application, the disc of the enclosure may be tilted at an angle ranging from 0° to 180° (horizontal disc with dome facing upwards and downwards, respectively). The numerical solution has been obtained by means of the volume control method. The surface average temperature of the dome has been determined for many configurations obtained by combining the Rayleigh number, the cavity's tilt angle and the nanofluid volume fraction which vary in wide ranges. The temperature fields presented for several configurations confirm the effects of natural convection. The results clearly highlight the effects of these influence parameters on the thermal state of the assembly. The study shows that some combinations of the Rayleigh-tilt angle-volume fraction are incompatible with a normal operating system at steady state and that a thermoregulation is required. The correlation of the temperature-Rayleigh-Prandtl-angle type proposed in this work allows to easily carry out the thermal dimensioning of the considered electronic assembly.

  1. Is neck tilt and shoulder imbalance the same phenomenon? A prospective analysis of 89 adolescent idiopathic scoliosis patients (Lenke type 1 and 2).

    PubMed

    Kwan, Mun Keong; Wong, Kai Ann; Lee, Chee Kean; Chan, Chris Yin Wei

    2016-02-01

    To introduce a new clinical neck tilt grading and to investigate clinically and radiologically whether neck tilt and shoulder imbalance is the same phenomenon in AIS patients. 89 AIS Lenke 1 and 2 cases were assessed prospectively using the new clinical neck tilt grading. Shoulder imbalance and neck tilt were correlated with coracoid height difference (CHD), clavicle\\rib intersection distance (CRID), clavicle angle (CA), radiographic shoulder height (RSH), T1 tilt and cervical axis. Mean age was 17.2 ± 3.8 years old. 66.3 % were Lenke type 1 and 33.7 % were type 2 curves. Strong intraobserver (0.79) and interobserver (0.75) agreement of the clinical neck tilt grading was noted. No significant correlation was observed between clinical neck tilt and shoulder imbalance (0.936). 56.3 % of grade 3 neck tilt, 50.0 % grade 2 neck tilt patients had grade 0 shoulder imbalance. In patients with grade 2 shoulder imbalance, 42.9 % had grade 0, 35.7 % grade 1, 14.3 % grade 2 and only 7.1 % had grade 3 neck tilt. CHD, CRID, CA and RSH correlated with shoulder imbalance. T1 tilt and cervical axis measurements correlated with neck tilt. In conclusion, neck tilt is distinct from shoulder imbalance. Clinical neck tilt has poor correlation with clinical shoulder imbalance. Clinical neck tilt grading correlated with cervical axis and T1 tilt whereas clinical shoulder grading correlated with CHD, RSH CRID and CA.

  2. Influence of hamstring muscles extensibility on spinal curvatures and pelvic tilt in highly trained cyclists.

    PubMed

    Muyor, José M; Alacid, Fernando; López-Miñarro, Pedro A

    2011-09-01

    The purpose of this study was to determine the influence of hamstring muscles extensibility in standing, maximal trunk flexion with knees extended and on the bicycle in lower handlebar-hands position of highly trained cyclists. Ninety-six cyclists were recruited for the study (mean ± SD, age: 30.36 ± 5.98 years). Sagittal spinal curvatures and pelvic tilt were measured in the standing position, maximal trunk flexion with knees extended (sit-and-reach test) and while sitting on a bicycle in lower handlebar-hand position using a Spinal Mouse system. Hamstring muscles extensibility was determined in both legs by passive straight leg raise test (PSLR). The sample was divided into three groups according to PSLR angle: (1) reduced extensibility (PSLR < 80º; n = 30), (2) moderate hamstring extensibility group (PSLR = 80º - 90º; n = 35), and (3) high hamstring extensibility (PSLR = > 90º; n = 31). ANOVA analysis showed significant differences among groups for thoracic (p < 0.001) and pelvic tilt (p < 0.001) angles in the sit-and-reach test. No differences were found between groups for standing and on the bicycle position. Post hoc analysis showed significant differences in all pairwise comparisons for thoracic angle (p < 0.01) and pelvic angle (p < 0.001) in the sit-and-reach test. No differences were found in lumbar angle in any posture. In conclusion, the hamstring muscles extensibility influence the thoracic and pelvic postures when maximal trunk flexion with knees extended is performed, but not when cyclists are seated on their bicycles.

  3. Influence of Hamstring Muscles Extensibility on Spinal Curvatures and Pelvic Tilt in Highly Trained Cyclists

    PubMed Central

    Muyor, José M.; Alacid, Fernando; López-Miñarro, Pedro A.

    2011-01-01

    The purpose of this study was to determine the influence of hamstring muscles extensibility in standing, maximal trunk flexion with knees extended and on the bicycle in lower handlebar-hands position of highly trained cyclists. Ninety-six cyclists were recruited for the study (mean ± SD, age: 30.36 ± 5.98 years). Sagittal spinal curvatures and pelvic tilt were measured in the standing position, maximal trunk flexion with knees extended (sit-and-reach test) and while sitting on a bicycle in lower handlebar-hand position using a Spinal Mouse system. Hamstring muscles extensibility was determined in both legs by passive straight leg raise test (PSLR). The sample was divided into three groups according to PSLR angle: (1) reduced extensibility (PSLR < 80º; n = 30), (2) moderate hamstring extensibility group (PSLR = 80º – 90º; n = 35), and (3) high hamstring extensibility (PSLR = > 90º; n = 31). ANOVA analysis showed significant differences among groups for thoracic (p < 0.001) and pelvic tilt (p < 0.001) angles in the sit-and-reach test. No differences were found between groups for standing and on the bicycle position. Post hoc analysis showed significant differences in all pairwise comparisons for thoracic angle (p < 0.01) and pelvic angle (p < 0.001) in the sit-and-reach test. No differences were found in lumbar angle in any posture. In conclusion, the hamstring muscles extensibility influence the thoracic and pelvic postures when maximal trunk flexion with knees extended is performed, but not when cyclists are seated on their bicycles PMID:23486997

  4. Long-period tilt-induced accelerations associated with hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Milkereit, Claus; Dahm, Torsten; Cesca, Simone; Lopez, Jose; Nooshiri, Nima; Zang, Arno

    2017-04-01

    In 2015, several small scale hydrofracture experiments have been performed in situ from a horizontal borehole in a mine gallery in granitic rock. The hydrofracture experiments were monitored by a bundle of different near field sensors covering a broad range of frequencies (see Zang et al., Geophys. J. Int. (2017) 208, 790-813, doi: 10.1093/gji/ggw430). We installed broad band sensors in the gallery close to the fracture experiments, and observed clear long period transients on the horizontal components, with timing and polarity correlated with the opening and closing of the fractures. We interpret the broadband signals as tilt-induced excursions. The broadband signals have been measured independent whether high frequency acoustic emission have been observed or not during the individual fracture experiments. They are thus an independent measure of the success of a hydrofracture experiment and the parameter of the newly formed cracks. In this study we show that most tilt-induced long-period signals can be modeled by a rectangular crack with constant opening in an elastic full space, as first order approximation. From theoretical forward modeling, we proof that the tilt has a higher sensitivity to resolve the strike of the fracture than the displacement field. With this model, we retrieve the strike of the fractures from the tilt observed at a single sensor. The results indicate that the strike angles of the hydrofractures change systematically with the distance to the gallery wall, indicating a rotation of the principal stresses close to the free surface of the gallery. The rotation trend is similar to the one observed in previous hydrofracture experiments in mines. We compare the strength of the modeled tensile cracks, i.e. opening times crack area, with the volume of the injected fluid, and discuss the general resolving power of tilt signals for source parameter fractures. The temporal evolution of the opening and closure of the fractures is discussed.

  5. UV-Vis reflection spectroscopy under variable angle incidence at the air-liquid interface.

    PubMed

    Roldán-Carmona, Cristina; Rubia-Payá, Carlos; Pérez-Morales, Marta; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2014-03-07

    The UV-Vis reflection spectroscopy (UV-Vis-RS) in situ at the air-liquid interface provides information about tilt and aggregation of chromophores in Langmuir monolayers. This information is particularly important given in most cases the chromophore is located at the polar region of the Langmuir monolayer. This region of the Langmuir monolayers has been hardly accessible by other experimental techniques. In spite of its enormous potential, the application of UV-Vis-RS has been limited mainly to reflection measurements under light normal incidence or at lower incidence angles than the Brewster angle. Remarkably, this technique is quite sensitive to the tilt of the chromophores at values of incidence angles close to or larger than the Brewster angle. Therefore, a novel method to obtain the order parameter of the chromophores at the air-liquid interface by using s- and p-polarized radiation at different incidence angles is proposed. This method allowed for the first time the experimental observation of the two components with different polarization properties of a single UV-Vis band at the air-liquid interface. The method of UV-Vis spectroscopy under variable angle incidence is presented as a new tool for obtaining rich detailed information on Langmuir monolayers.

  6. View-angle-dependent AIRS Cloudiness and Radiance Variance: Analysis and Interpretation

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.

    2013-01-01

    Upper tropospheric clouds play an important role in the global energy budget and hydrological cycle. Significant view-angle asymmetry has been observed in upper-level tropical clouds derived from eight years of Atmospheric Infrared Sounder (AIRS) 15 um radiances. Here, we find that the asymmetry also exists in the extra-tropics. It is larger during day than that during night, more prominent near elevated terrain, and closely associated with deep convection and wind shear. The cloud radiance variance, a proxy for cloud inhomogeneity, has consistent characteristics of the asymmetry to those in the AIRS cloudiness. The leading causes of the view-dependent cloudiness asymmetry are the local time difference and small-scale organized cloud structures. The local time difference (1-1.5 hr) of upper-level (UL) clouds between two AIRS outermost views can create parts of the observed asymmetry. On the other hand, small-scale tilted and banded structures of the UL clouds can induce about half of the observed view-angle dependent differences in the AIRS cloud radiances and their variances. This estimate is inferred from analogous study using Microwave Humidity Sounder (MHS) radiances observed during the period of time when there were simultaneous measurements at two different view-angles from NOAA-18 and -19 satellites. The existence of tilted cloud structures and asymmetric 15 um and 6.7 um cloud radiances implies that cloud statistics would be view-angle dependent, and should be taken into account in radiative transfer calculations, measurement uncertainty evaluations and cloud climatology investigations. In addition, the momentum forcing in the upper troposphere from tilted clouds is also likely asymmetric, which can affect atmospheric circulation anisotropically.

  7. Calculations of the flow past bluff bodies, including tilt-rotor wing sections at alpha = 90 deg

    NASA Technical Reports Server (NTRS)

    Raghavan, V.; Mccroskey, W. J.; Baeder, J. D.; Van Dalsem, W. R.

    1990-01-01

    An attempt was made to model in two dimensions the effects of rotor downwash on the wing of the tilt-rotor aircraft and to compute the drag force on airfoils at - 90 deg angle of attack, using a well-established Navier-Stokes code. However, neither laminar nor turbulent calculations agreed well with drag and base-pressure measurements at high Reynolds numbers. Therefore, further efforts were concentrated on bluff-body flows past various shapes at low Reynolds numbers, where a strong vortex shedding is observed. Good results were obtained for a circular cylinder, but the calculated drag of a slender ellipse at right angles to the freestream was significantly higher than experimental values reported in the literature for flat plates. Similar anomalous results were obtained on the tilt-rotor airfoils, although the qualitative effects of flap deflection agreed with the wind tunnel data. The ensemble of results suggest that there may be fundamental differences in the vortical wakes of circular cylinders and noncircular bluff bodies.

  8. Angle performance on optima MDxt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Jonathan; Kamenitsa, Dennis

    2012-11-06

    Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightlymore » tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).« less

  9. Flatness metrology based on small-angle deflectometric procedures with electronic tiltmeters

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Laubach, S.; Schulz, M.

    2017-06-01

    The measurement of optical flats, e. g. synchrotron or XFEL mirrors, with single nanometer topography uncertainty is still challenging. At PTB, we apply for this task small-angle deflectometry in which the angle between the direction of the beam sent to the surface and the beam detected is small. Conventional deflectometric systems measure the surface angle with autocollimators whose light beam also represents the straightness reference. An advanced flatness metrology system was recently implemented at PTB that separates the straightness reference task from the angle detection task. We call it `Exact Autocollimation Deflectometric Scanning' because the specimen is slightly tilted in such a way that at every scanning position the specimen is `exactly' perpendicular to the reference light beam directed by a pentaprism to the surface under test. The tilt angle of the surface is then measured with an additional autocollimator. The advantage of the EADS method is that the two tasks (straightness reference and measurement of surface slope) are separated and each of these can be optimized independently. The idea presented in this paper is to replace this additional autocollimator by one or more electro-mechanical tiltmeters, which are typically faster and have a higher resolution than highly accurate commercially available autocollimators. We investigate the point stability and the linearity of a highly accurate electronic tiltmeter. The pros and cons of using tiltmeters in flatness metrology are discussed.

  10. Determinants of Motion Sickness in Tilting Trains: Coriolis/Cross-Coupling Stimuli and Tilt Delay

    PubMed Central

    Bertolini, Giovanni; Durmaz, Meek Angela; Ferrari, Kim; Küffer, Alexander; Lambert, Charlotte; Straumann, Dominik

    2017-01-01

    Faster trains require tilting of the cars to counterbalance the centrifugal forces during curves. Motion sensitive passengers, however, complain of discomfort and overt motion sickness. A recent study comparing different control systems in a tilting train, suggested that the delay of car tilts relative to the curve of the track contributes to motion sickness. Other aspects of the motion stimuli, like the lateral accelerations and the car jitters, differed between the tested conditions and prevented a final conclusion on the role of tilt delay. Nineteen subjects were tested on a motorized 3D turntable that simulated the roll tilts during yaw rotations experienced on a tilting train, isolating them from other motion components. Each session was composed of two consecutive series of 12 ideal curves that were defined on the bases of recordings during an actual train ride. The simulated car tilts started either at the beginning of the curve acceleration phase (no-delay condition) or with 3 s of delay (delay condition). Motion sickness was self-assessed by each subject at the end of each series using an analog motion sickness scale. All subjects were tested in both conditions. Significant increases of motion sickness occurred after the first sequence of 12 curves in the delay condition, but not in the no-delay condition. This increase correlated with the sensitivity of motion sickness, which was self-assessed by each subject before the experiment. The second sequence of curve did not lead to a significant further increase of motion sickness in any condition. Our results demonstrate that, even if the speed and amplitude are as low as those experienced on tilting trains, a series of roll tilts with a delay relative to the horizontal rotations, isolated from other motion stimuli occurring during a travel, generate Coriolis/cross-coupling stimulations sufficient to rapidly induce motion sickness in sensitive individuals. The strength and the rapid onset of the motion

  11. Reducing tilt-to-length coupling for the LISA test mass interferometer

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; Schuster, S.; Lieser, M.; Zwetz, M.; Chwalla, M.; Danzmann, K.; Fernández Barránco, G.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Schwarze, T. S.; Wanner, G.; Ward, H.

    2018-05-01

    Objects sensed by laser interferometers are usually not stable in position or orientation. This angular instability can lead to a coupling of angular tilt to apparent longitudinal displacement—tilt-to-length coupling (TTL). In LISA this is a potential noise source for both the test mass interferometer and the long-arm interferometer. We have experimentally investigated TTL coupling in a setup representative for the LISA test mass interferometer and used this system to characterise two different imaging systems (a two-lens design and a four-lens design) both designed to minimise TTL coupling. We show that both imaging systems meet the LISA requirement of  ±25 μm rad‑1 for interfering beams with relative angles of up to  ±300 μrad. Furthermore, we found a dependency of the TTL coupling on beam properties such as the waist size and location, which we characterised both theoretically and experimentally.

  12. Large Eddy Simulations of the Tilted Rig Experiment: A Two-dimensional Rayleigh-Taylor Instability Case

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Denissen, Nicholas A.; Reisner, Jon M.; Andrews, Malcolm J.

    2012-11-01

    The tilted rig experiment is a derivative of the rocket rig experiment designed to investigate turbulent mixing induced by the Rayleigh-Taylor (RT) instability. A tank containing two fluids of different densities is accelerated downwards between two parallel guiding rods by rocket motors. The acceleration is such that the pressure and density gradients face opposite directions at the fluids interface, creating a Rayleigh-Taylor unstable configuration. The rig is tilted such that the tank is initially at an angle and the acceleration is not perpendicular to the fluids interface when the rockets fire. This results in a two dimensional Rayleigh-Taylor instability case where the fluids experience RT mixing and a bulk overturning motion. The tilted rig is therefore a valuable experiment to help calibrating two-dimensional mixing models. Large Eddy Simulations of the tilted rig experiments will be compared to available experimental results. A study of the behavior of turbulence variables relevant to turbulence modeling will be presented. LA-UR 12-23829. This work was performed for the U.S. Department of Energy by Los Alamos National Laboratory under Contract No.DEAC52- 06NA2-5396.

  13. Experimental investigation of optimum beam size for FSO uplink

    NASA Astrophysics Data System (ADS)

    Kaushal, Hemani; Kaddoum, Georges; Jain, Virander Kumar; Kar, Subrat

    2017-10-01

    In this paper, the effect of transmitter beam size on the performance of free space optical (FSO) communication has been determined experimentally. Irradiance profile for varying turbulence strength is obtained using optical turbulence generating (OTG) chamber inside laboratory environment. Based on the results, an optimum beam size is investigated using the semi-analytical method. Moreover, the combined effects of atmospheric scintillation and beam wander induced pointing errors are considered in order to determine the optimum beam size that minimizes the bit error rate (BER) of the system for a fixed transmitter power and link length. The results show that the optimum beam size for FSO uplink depends upon Fried parameter and outer scale of the turbulence. Further, it is observed that the optimum beam size increases with the increase in zenith angle but has negligible effect with the increase in fade threshold level at low turbulence levels and has a marginal effect at high turbulence levels. Finally, the obtained outcome is useful for FSO system design and BER performance analysis.

  14. Effect of air-entry angle on performance of a 2-stroke-cycle compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Earle, Sherod L; Dutee, Francis J

    1937-01-01

    An investigation was made to determine the effect of variations in the horizontal and vertical air-entry angles on the performance characteristics of a single-cylinder 2-stroke-cycle compression-ignition test engine. Performance data were obtained over a wide range of engine speed, scavenging pressure, fuel quantity, and injection advance angle with the optimum guide vanes. Friction and blower-power curves are included for calculating the indicated and net performances. The optimum horizontal air-entry angle was found to be 60 degrees from the radial and the optimum vertical angle to be zero, under which conditions a maximum power output of 77 gross brake horsepower for a specific fuel consumption of 0.52 pound per brake horsepower-hour was obtained at 1,800 r.p.m. and 16-1/2 inches of Hg scavenging pressure. The corresponding specific output was 0.65 gross brake horsepower per cubic inch of piston displacement. Tests revealed that the optimum scavenging pressure increased linearly with engine speed. The brake mean effective pressure increased uniformly with air quantity per cycle for any given vane angle and was independent of engine speed and scavenging pressure.

  15. Dislocation nucleation from symmetric tilt grain boundaries in body-centered cubic vanadium

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Su, Yanqing

    2018-05-01

    We perform molecular dynamics (MD) simulations with two interatomic potentials to study dislocation nucleation from six symmetric tilt grain boundaries (GB) using bicrystal models in body-centered cubic vanadium. The influences of the misorientation angle are explored in the context of activated slip systems, critical resolved shear stress (CRSS), and GB energy. It is found that for four GBs, the activated slip systems are not those with the highest Schmid factor, i.e., the Schmid law breaks down. For all misorientation angles, the bicrystal is associated with a lower CRSS than their single crystalline counterparts. Moreover, the GB energy decreases in compressive loading at the yield point with respect to the undeformed configuration, in contrast to tensile loading.

  16. An analysis of temperature effect in a finite journal bearing with spatial tilt and viscous dissipation

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Mullen, R. L.; Hendricks, R. C.

    1984-01-01

    The analysis presented herein deals with the evaluation of the pressure, velocity, and temperature profiles in a finite-length plane journal bearing. The geometry of the case under study consists of a spatially tilted shaft. The two-dimensional Reynolds equation accounts for the variation of the clearance gap h with x and z and is used to model the pressure field. The latter is solved for a variety of shaft tilt angles and then used to calculate the two-dimensional flow field. Finally, the flow field is used in the energy equation to solve for the film temperature profile, when the effect of viscous dissipation is taken into account.

  17. Fabrication of Fiber-Optic Tilted Bragg Grating Filter in 40 nm Range with A Single Phase Mask

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber-optic Bragg grating filters are fabricated with a range of Bragg wavelength between 1296 and 1336 nm, using a single phase mask. 30 mW of continuous-wave light at 244 nm is used from a frequency-doubled argon-ion laser having an intracavity etalon. Gratings are fabricated by tilting the photosensitive fiber with respect to the phase mask up to an angle of 15 degrees. The variation of Bragg wavelength with the fiber-tilt is explained with a simple formula. High spatial coherence of 244 nm light makes it possible to displace the fiber as much as 6 mm in front of the phase mask and tilt the fiber by as much as 15 degrees. This results in nearly constant band-width and near 100% reflectively for all gratings throughout the 40 nm range.

  18. Head tilt during driving.

    PubMed

    Zikovitz, D C; Harris, L R

    1999-05-01

    In order to distinguish between the use of visual and gravito-inertial force reference frames, the head tilt of drivers and passengers were measured as they went around corners at various speeds. The visual curvature of the corners were thus dissociated from the magnitude of the centripetal forces (0.30-0.77 g). Drivers' head tilts were highly correlated with the visually-available estimate of the curvature of the road (r2=0.86) but not with the centripetal force (r2<0.1). Passengers' head tilts were inversely correlated with the lateral forces (r2=0.3-0.7) and seem to reflect a passive sway. The strong correlation of the tilt of drivers' heads with a visual aspect of the road ahead, supports the use of a predominantly visual reference frame for the driving task.

  19. Tilt perception during dynamic linear acceleration.

    PubMed

    Seidman, S H; Telford, L; Paige, G D

    1998-04-01

    Head tilt is a rotation of the head relative to gravity, as exemplified by head roll or pitch from the natural upright orientation. Tilt stimulates both the otolith organs, owing to shifts in gravitational orientation, and the semicircular canals in response to head rotation, which in turn drive a variety of behavioral and perceptual responses. Studies of tilt perception typically have not adequately isolated otolith and canal inputs or their dynamic contributions. True tilt cannot readily dissociate otolith from canal influences. Alternatively, centrifugation generates centripetal accelerations that simulate tilt, but still entails a rotatory (canal) stimulus during important periods of the stimulus profiles. We reevaluated the perception of head tilt in humans, but limited the stimulus to linear forces alone, thus isolating the influence of otolith inputs. This was accomplished by employing a centrifugation technique with a variable-radius spinning sled. This allowed us to accelerate the sled to a constant angular velocity (128 degrees/s), with the subject centered, and then apply dynamic centripetal accelerations after all rotatory perceptions were extinguished. These stimuli were presented in the subjects' naso-occipital axis by translating the subjects 50 cm eccentrically either forward or backward. Centripetal accelerations were thus induced (0.25 g), which combined with gravity to yield a dynamically shifting gravitoinertial force simulating pitch-tilt, but without actually rotating the head. A magnitude-estimation task was employed to characterize the dynamic perception of pitch-tilt. Tilt perception responded sluggishly to linear acceleration, typically reaching a peak after 10-30 s. Tilt perception also displayed an adaptation phenomenon. Adaptation was manifested as a per-stimulus decline in perceived tilt during prolonged stimulation and a reversal aftereffect upon return to zero acceleration (i.e., recentering the subject). We conclude that otolith

  20. A New Higher-Order Composite Theory for Analysis and Design of High Speed Tilt-Rotor Blades

    NASA Technical Reports Server (NTRS)

    McCarthy, Thomas Robert

    1996-01-01

    A higher-order theory is developed to model composite box beams with arbitrary wall thicknesses. The theory, based on a refined displacement field, represents a three-dimensional model which approximates the elasticity solution. Therefore, the cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are automatically included in the formulation. The model accurately captures the transverse shear stresses through the thickness of each wall while satisfying all stress-free boundary conditions. Several numerical results are presented to validate the present theory. The developed theory is then used to model the load carrying member of a tilt-rotor blade which has thick-walled sections. The composite structural analysis is coupled with an aerodynamic analysis to compute the aeroelastic stability of the blade. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt-rotor aircraft. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem and a hybrid approximate analysis is used to reduce the computational effort. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt-rotor blade.

  1. Experimental determination of optimum gutter brush parameters and road sweeping criteria for different types of waste.

    PubMed

    Abdel-Wahab, Magd M; Wang, Chong; Vanegas-Useche, Libardo V; Parker, Graham A

    2011-06-01

    The removal ability of gutter brushes for road sweeping for various debris types and different sweeping parameters is studied through experimental tests. The brushing test rig used comprises two commercial gutter brushes, a concrete test bed, and an asphalt test road with a gutter of 0.25 cm width and 10° slope. The brush-surface contact area is determined by sweeping sand on the concrete test bed. Sweeping problems are identified and discussed, and sweeping criteria for the different debris types are suggested. Also, optimum sweeping parameters are proposed for each debris type. In addition, debris removal mechanisms are discussed and analysed. The results indicate that for large heavy debris such as stones and gravel, it is not difficult to achieve large removal forces, because the steel bristles are relatively stiff. Conversely, high removal forces are not needed for particles of millimetre or micron sizes, but bristle curvature has to be appropriate to remove particles from road concavities. Finally, it is found that mud, especially dry mud on a rough surface, is the hardest debris to sweep, requiring a brush with a large tilt angle and a very large penetration to produce large removal forces. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Optimum Strategies for Selecting Descent Flight-Path Angles

    NASA Technical Reports Server (NTRS)

    Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)

    2016-01-01

    An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.

  3. Large scale wind tunnel investigation of a folding tilt rotor

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A twenty-five foot diameter folding tilt rotor was tested in a large scale wind tunnel to determine its aerodynamic characteristics in unfolded, partially folded, and fully folded configurations. During the tests, the rotor completed over forty start/stop sequences. After completing the sequences in a stepwise manner, smooth start/stop transitions were made in approximately two seconds. Wind tunnel speeds up through seventy-five knots were used, at which point the rotor mast angle was increased to four degrees, corresponding to a maneuver condition of one and one-half g.

  4. The relation between chondromalacia patella and meniscal tear and the sulcus angle/ trochlear depth ratio as a powerful predictor.

    PubMed

    Resorlu, Hatice; Zateri, Coskun; Nusran, Gurdal; Goksel, Ferdi; Aylanc, Nilufer

    2017-01-01

    To investigate the relation between chondromalacia patella and the sulcus angle/trochlear depth ratio as a marker of trochlear morphology. In addition, we also planned to show the relationship between meniscus damage, subcutaneous adipose tissue thickness as a marker of obesity, patellar tilt angle and chondromalacia patella. Patients with trauma, rheumatologic disease, a history of knee surgery and patellar variations such as patella alba and patella baja were excluded. Magnetic resonance images of the knees of 200 patients were evaluated. Trochlear morphology from standardized levels, patellar tilt angle, lateral/medial facet ratio, subcutaneous adipose tissue thickness from 3 locations and meniscus injury were assessed by two specialist radiologists. Retropatellar cartilage was normal in 108 patients (54%) at radiological evaluation, while chondromalacia patella was determined in 92 (46%) cases. Trochlear sulcus angle and prepatellar subcutaneous adipose tissue thickness were significantly high in patients with chondromalacia patella, while trochlear depth and lateral patellar tilt angle were low. The trochlear sulcus angle/trochlear depth ratio was also high in chondromalacia patella and was identified as an independent risk factor at regression analysis. Additionally, medial meniscal tear was observed in 35 patients (38%) in the chondromalacia patella group and in 27 patients (25%) in the normal group, the difference being statistically significant (P = 0.033). An increased trochlear sulcus angle/trochlear depth ratio is a significant predictor of chondromalacia patella. Medial meniscus injury is more prevalent in patients with chondromalacia patella in association with impairment in knee biomechanics and the degenerative process.

  5. High brightness angled cavity quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightestmore » QCL to date.« less

  6. Tilt observations using borehole tiltmeters. I - Analysis of tidal and secular tilt

    NASA Astrophysics Data System (ADS)

    Levine, Judah; Meertens, Charles; Busby, Robert

    1989-01-01

    A borehole tiltmeter that uses two horizontal pendulums with periods of 1 sec is described, together with the methods developed for recording and analyzing data obtained with this tiltmeter. The results of measurements made at seven sites in Colorado and Wyoming to evaluate the secular tilt, the tides, and the coherence between nearby instruments are presented. Significant coherance was found between tilts at intermediate periods (from 0.5 to 2 cycles per day) measured by closely spaced instruments, but the long-period tilts showed less correlation. The measurements of the earth tides in Colorado were found to agree well with values predicted on the basis of simple first-order models.

  7. Experimental measurements of heat transfer coefficient in a partially/fully opened tilted cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakroun, W.; Elsayed, M.M.; Al-Fahed, S.F.

    1997-11-01

    An experimental investigation was carried out to determine the heat transfer coefficient from a rectangular tilted cavity to the ambient due to the buoyancy driven flow in the cavity. The cavity is partially or fully open from one side. All the walls of the cavity are adiabatic except the wall facing the cavity opening which is heated at a constant heat flux. Air was used as the cavity fluid and the experiments were carried out at a flux Grashof number of 5.5 {times} 10{sup 8}. The tilt angle of the cavity, measured from the vertical direction, was changed between {minus}90more » deg to +90 deg in 15 deg increments. Also, geometries of aspect ratio (height-to-width of cavity) of 1.0, 0.5, and 0.25 and of opening ratio (opening height to cavity height) of 1.0, 0.5, and 0.25 were considered in the study. The results are presented in terms of the average Nusselt number for different values of the above experimental parameters. Conclusions are derived for the effect of changing the tilt angle, the aspect ratio, or the opening ratio of the cavity on the average heat transfer coefficient between the cavity and the ambient air. Buoyancy-driven flow in rectangular cavities has been widely investigated by many researchers. This geometry is of special interest in many solar applications such as in solar passive heating, solar concentrators, and solar central receivers. The importance of the geometry extends to other engineering applications such as electronic equipment, fire research, and energy conservation in buildings.« less

  8. Setup and evaluation of a sensor tilting system for dimensional micro- and nanometrology

    NASA Astrophysics Data System (ADS)

    Schuler, Alexander; Weckenmann, Albert; Hausotte, Tino

    2014-06-01

    Sensors in micro- and nanometrology show their limits if the measurement objects and surfaces feature high aspect ratios, high curvature and steep surface angles. Their measurable surface angle is limited and an excess leads to measurement deviation and not detectable surface points. We demonstrate a principle to adapt the sensor's working angle during the measurement keeping the sensor in its optimal working angle. After the simulation of the principle, a hardware prototype was realized. It is based on a rotary kinematic chain with two rotary degrees of freedom, which extends the measurable surface angle to ±90° and is combined with a nanopositioning and nanomeasuring machine. By applying a calibration procedure with a quasi-tactile 3D sensor based on electrical near-field interaction the systematic position deviation of the kinematic chain is reduced. The paper shows for the first time the completed setup and integration of the prototype, the performance results of the calibration, the measurements with the prototype and the tilting principle, and finishes with the interpretation and feedback of the practical results.

  9. Displacement, distance, and shape measurements of fast-rotating rough objects by two mutually tilted interference fringe systems.

    PubMed

    Günther, Philipp; Kuschmierz, Robert; Pfister, Thorsten; Czarske, Jürgen W

    2013-05-01

    The precise distance measurement of fast-moving rough surfaces is important in several applications such as lathe monitoring. A nonincremental interferometer based on two mutually tilted interference fringe systems has been realized for this task. The distance is coded in the phase difference between the generated interference signals corresponding to the fringe systems. Large tilting angles between the interference fringe systems are necessary for a high sensitivity. However, due to the speckle effect at rough surfaces, different envelopes and phase jumps of the interference signals occur. At large tilting angles, these signals become dissimilar, resulting in a small correlation coefficient and a high measurement uncertainty. Based on a matching of illumination and receiving optics, the correlation coefficient and the phase difference estimation have been improved significantly. For axial displacement measurements of recurring rough surfaces, laterally moving with velocities of 5 m/s, an uncertainty of 110 nm has been attained. For nonrecurring surfaces, a distance measurement uncertainty of 830 nm has been achieved. Incorporating the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects results. Since the measurement uncertainty of the displacement, distance, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects, such as crankshafts, camshafts, vacuum pump shafts, or turning parts of lathes.

  10. The role of van der Waals interaction in the tilted binding of amine molecules to the Au(111) surface

    NASA Astrophysics Data System (ADS)

    Le, Duy; Aminpour, Maral; Kiejna, Adam; Rahman, Talat S.

    2012-06-01

    We present the results of ab initio electronic structure calculations for the adsorption characteristics of three amine molecules on Au(111), which show that the inclusion of van der Waals interactions between the isolated molecule and the surface leads in general to good agreement with experimental data on the binding energies. Each molecule, however, adsorbs with a small tilt angle (between -5 and 9°). For the specific case of 1,4-diaminobenzene (BDA) our calculations reproduce the larger tilt angle (close to 24°) measured by photoemission experiments, when intermolecular (van der Waals) interactions (for about 8% coverage) are included. These results point not only to the important contribution of van der Waals interactions to molecule-surface binding energy, but also that of intermolecular interactions, often considered secondary to that between the molecule and the surface, in determining the adsorption geometry and pattern formation.

  11. Comparison of decentration and tilt between one piece and three piece polymethyl methacrylate intraocular lenses

    PubMed Central

    Hayashi, K.; Hayashi, H.; Nakao, F.; Hayashi, F.

    1998-01-01

    BACKGROUND—The extent of the decentration and tilt was prospectively compared between one piece polymethyl methacrylate (PMMA) and three piece PMMA intraocular lenses (IOLs) which were implanted in the capsular bag after performing continuous curvilinear capsulorhexis.
METHODS—91 patients underwent a one piece PMMA IOL implantation in one eye as well as the implantation of the three piece PMMA IOL with polyvinylidene fluoride loops in the opposite eye. The length of the lens decentration and the angle of the tilt were quantitated using the anterior eye segment analysis system (EAS-1000) at 1 week as well as 1, 3, and 6 months postoperatively.
RESULTS—The mean length of the decentration in the one piece IOL was smaller than that in the three piece IOL at 1 week (p=0.0092), 1 month (p=0.0044), 3 months (p=0.0069), and 6 months (p=0.0010) postoperatively. However, no significant difference was found in the degree of the tilt between the two types of IOLs throughout the observation periods.
CONCLUSION—These results clarified that the one piece PMMA IOL with rigid PMMA haptics implanted in the capsular bag provides a better centration than the three piece PMMA IOL with flexible haptics, whereas the tilt was the same between the two types of IOLs.

 Keywords: intraocular lens; decentration; tilt; continuous curvilinear capsulorhexis PMID:9640193

  12. The perception of roll tilt in pilots during a simulated coordinated turn in a gondola centrifuge.

    PubMed

    Tribukait, Arne; Grönkvist, Mikael; Eiken, Ola

    2011-05-01

    It has previously been reported that nonpilots underestimate the roll tilt angle after acceleration in a gondola centrifuge. The aim of the present work was to elucidate the significance of flight experience for roll tilt perception based on vestibular information. The subjective visual horizontal (SVH) was measured by means of an adjustable luminous line in darkness. Eight nonpilots (N), nine fighter pilots (F), and eight helicopter pilots (H) underwent two centrifuge runs (2 G, 5 min) heading forward and backward, respectively. The roll position of the gondola (60 degrees at 2 G) was controlled so that the subject was always upright with respect to the gravitoinertial force. Upon acceleration of the centrifuge there was a tilt of the SVH in a direction compensatory to the inclination of the gondola. This tilt was larger in the forward position [N: 17.2 +/- 6.4 degrees, F: 31.2 +/- 16.4 degrees, H: 33.6 +/- 18.2 degrees (means +/- SD)] than in the backward position (N: -5.0 +/- 6.8 degrees, F: -12.2 +/- 17.4 degrees, H: -10.4 +/- 15.4 degrees). In N the tilt declined with time, approaching zero by the end of the 2-G plateau. In the pilots it was significantly larger and did not decline. Flight experience results in an increased ability to perceive the roll tilt during movement along a curved path. That this can be revealed in a centrifuge might suggest that acceleration of the centrifuge constitutes a movement pattern which is similar, from a vestibular point of view, to that of an airplane entering a coordinated turn.

  13. The use of the T1 sagittal angle in predicting overall sagittal balance of the spine.

    PubMed

    Knott, Patrick T; Mardjetko, Steven M; Techy, Fernando

    2010-11-01

    A balanced sagittal alignment of the spine has been shown to strongly correlate with less pain, less disability, and greater health status scores. To restore proper sagittal balance, one must assess the position of the occiput relative to the sacrum. The assessment of spinal balance preoperatively can be challenging, whereas predicting postoperative balance is even more difficult. This study was designed to evaluate and quantify multiple factors that influence sagittal balance. Retrospective analysis of existing spinal radiographs. A retrospective review of 52 adult spine patient records was performed. All patients had full-column digital radiographs that showed all the important skeletal landmarks necessary for accurate measurement. The average age of the patient was 53 years. Both genders were equally represented. The radiographs were measured using standard techniques to obtain the following parameters: scoliosis in the coronal plane; lordosis or kyphosis of the cervical, thoracic, and lumbar spine; the T1 sagittal angle (angle between a horizontal line and the superior end plate of T1); the angle of the dens in the sagittal plane; the angle of the dens in relation to the occiput; the sacral slope; the pelvic incidence; the femoral-sacral angle; and finally, the sagittal vertical axis (SVA) measured from both the dens of C2 and from C7. It was found that the SVA when measured from the dens was on average 16 mm farther forward than the SVA measured from C7 (p<.0001). The dens plumb line (SVA(dens)) was then used in the study. An analysis was done to examine the relationship between SVA(dens) and each of the other measurements. The T1 sagittal angle was found to have a moderate positive correlation (r=0.65) with SVA(dens), p<.0001, indicating that the amount of sagittal T1 tilt can be used as a good predictor of overall sagittal balance. When examining the other variables, it was found that cervical lordosis had a weak correlation (r=0.37) with SVA(dens) that was

  14. Investigation of Blade Angle of an Open Cross-Flow Runner

    NASA Astrophysics Data System (ADS)

    Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi

    2015-04-01

    The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.

  15. Two-Lens, Anamorphic, Brewster-Angle, Fourier-Transform Relay

    NASA Astrophysics Data System (ADS)

    Berggren, Ralph R.

    1987-06-01

    A two-lens system provides a simple and versatile means to relay a laser beam. The pair of lenses can provide true volume imaging, reproducing both amplitude and phase of the input beam. By using cylindrical lenses it is possible to change the aspect ratio of the beam. By adjusting the cylindrical curvatures, it is possible to minimize reflections by tilting the lenses at the Brewster angle.

  16. Integrated polymer polarization rotator based on tilted laser ablation

    NASA Astrophysics Data System (ADS)

    Poulopoulos, Giannis; Kalavrouziotis, Dimitrios; Missinne, Jeroen; Bosman, Erwin; Van Steenberge, Geert; Apostolopoulos, Dimitrios; Avramopoulos, Hercules

    2017-02-01

    The ubiquitous need for compact, low-cost and mass production photonic devices, for next generation photonic enabled applications, necessitates the development of integrated components exhibiting functionalities that are, to date, carried out by free space elements or standard fiber equipment. The polarization rotator is a typical example of such tendency, as it is a crucial part of the PBS operation of future transceiver modules that leverage polarization multiplexing schemes for increasing the optical network capacity. Up to now, a variety of integrated polarization rotating concepts has been proposed and reported, relying, mainly, on special waveguide crossection configurations for achieving the rotation. Nevertheless, most of those concepts employ SiPh or III-V integration platforms, significantly increasing the fabrication complexity required for customizing the waveguide crossection, which in turn leads to either prohibitively increased cost or compromised quality and performance. In this manuscript we demonstrate the extensive design of a low-cost integrated polymer polarization rotator employing a right-trapezoidal waveguide interfaced to standard square polymer waveguides. First the crossection of the waveguide is defined by calculating and analyzing the components of the hybrid modes excited in the waveguide structure, using a Finite Difference mode solver. Mode overlaps between the fundamental polymer mode and each hybrid mode reveal the optimum lateral offset between the square polymer and the trapezoidal waveguide that ensures both minimum interface loss and maximized polarization rotation performance. The required trapezoidal waveguide length is obtained through EigenMode Expansion (EME) propagation simulations, while more than 95% maximum theoretical conversion efficiency is reported over the entire C-band, resulting to more than 13dB polarization extinction ratio. The polarization rotator design relies on the development of angled polymer waveguide

  17. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this…

  18. The Josephson plasma resonance in Bi2Sr2CaCu2O8 in a tilted field

    NASA Astrophysics Data System (ADS)

    Bayrakci, S.; Tsui, Ophelia K. C.; Ong, N. P.; Kishio, K.; Watauchi, S.

    1999-04-01

    The dependence of the Josephson plasma frequency ωp in Bi2Sr2CaCu2O8 on a tilted field H is reported. Measurements over a large range of B and tilt angle θ allow a detailed comparison with a recent calculation by Koshelev. With a slight modification of the model, close agreement is obtained. From the fits, we find values for the in-plane correlation length and the zero-field critical current density Jc0 (4600 A/cm2 at 30 K). An analogy to Bragg diffraction is described, as well as a picture for the fractional-exponent behavior of ωp vs. H

  19. Hot-carrier degradation in deep-submicrometer nMOSFETs: lightly doped drain vs. large angle tilt implanted drain

    NASA Astrophysics Data System (ADS)

    Rafí, J. M.; Campabadal, F.

    2001-08-01

    The hot-carrier degradation of lightly doped drain (LDD) and large angle tilt implanted drain (LATID) nMOSFETs of a 0.35 μm CMOS technology is analysed and compared by means of I-V characterisation and charge pumping current measurements. LATID nMOSFETs are found to exhibit a significant improvement in terms of both, current drivability and hot-carrier immunity at maximum substrate current condition. The different factors which can be responsible for this improved hot-carrier resistance are investigated. It is shown that this must be attributed to a reduction of the maximum lateral electric field along the channel, but not to a minor generation of physical damage for a given electric field or to a reduced I-V susceptibility to a given amount of generated damage. Further to this analysis, the hot-carrier degradation comparison between LDD and LATID devices is extended to the whole range of gate-stress regimes and the effects of short electron injection (SEI) and short hole injection (SHI) phases on hot-carrier-stressed devices are analysed. Apart from a significant improved resistance to hot-carrier effects registered for LATID devices, a similar behaviour is observed for the two types of architectures. In this way, SEI phases are found to be an efficient tool for revealing part of the damage generated in stresses at low gate voltages, whereas the performance of a first SHI phase after stress at high gate bias is found to result in a significant additional degradation of the devices. This enhanced degradation is attributed to a sudden interface states build-up occurring in both, LDD and LATID devices, near the Si/spacer interface only under the first hot-hole injection condition.

  20. Motion analysis of wheelchair propulsion movements in hemiplegic patients: effect of a wheelchair cushion on suppressing posterior pelvic tilt.

    PubMed

    Kawada, Kyohei; Matsuda, Tadamitsu; Takanashi, Akira; Miyazima, Shigeki; Yamamoto, Sumiko

    2015-03-01

    [Purpose] This study sought to ascertain whether, in hemiplegic patients, the effect of a wheelchair cushion to suppress pelvic posterior tilt when initiating wheelchair propulsion would continue in subsequent propulsions. [Subjects] Eighteen hemiplegic patients who were able to propel a wheelchair in a seated position participated in this study. [Methods] An adjustable wheelchair was fitted with a cushion that had an anchoring function, and a thigh pad on the propulsion side was removed. Propulsion movements from the seated position without moving through three propulsion cycles were measured using a three-dimensional motion analysis system, and electromyography was used to determine the angle of pelvic posterior tilt, muscle activity of the biceps femoris long head, and propulsion speed. [Results] Pelvic posterior tilt could be suppressed through the three propulsion cycles, which served to increase propulsion speed. Muscle activity of the biceps femoris long head was highest when initiating propulsion and decreased thereafter. [Conclusion] The effect of the wheelchair cushion on suppressing pelvic posterior tilt continued through three propulsion cycles.

  1. Motion analysis of wheelchair propulsion movements in hemiplegic patients: effect of a wheelchair cushion on suppressing posterior pelvic tilt

    PubMed Central

    Kawada, Kyohei; Matsuda, Tadamitsu; Takanashi, Akira; Miyazima, Shigeki; Yamamoto, Sumiko

    2015-01-01

    [Purpose] This study sought to ascertain whether, in hemiplegic patients, the effect of a wheelchair cushion to suppress pelvic posterior tilt when initiating wheelchair propulsion would continue in subsequent propulsions. [Subjects] Eighteen hemiplegic patients who were able to propel a wheelchair in a seated position participated in this study. [Methods] An adjustable wheelchair was fitted with a cushion that had an anchoring function, and a thigh pad on the propulsion side was removed. Propulsion movements from the seated position without moving through three propulsion cycles were measured using a three-dimensional motion analysis system, and electromyography was used to determine the angle of pelvic posterior tilt, muscle activity of the biceps femoris long head, and propulsion speed. [Results] Pelvic posterior tilt could be suppressed through the three propulsion cycles, which served to increase propulsion speed. Muscle activity of the biceps femoris long head was highest when initiating propulsion and decreased thereafter. [Conclusion] The effect of the wheelchair cushion on suppressing pelvic posterior tilt continued through three propulsion cycles. PMID:25931688

  2. Tilting at wave beams: a new perspective on the St Andrew's Cross

    NASA Astrophysics Data System (ADS)

    Akylas, T. R.; Kataoka, T.; Ghaemsaidi, S. J.; Holzenberger, N.; Peacock, T.

    2017-11-01

    The generation of internal gravity waves by a vertically oscillating cylinder that is tilted to the horizontal in a stratified fluid of constant buoyancy frequency, is investigated theoretically and experimentally. This forcing arrangement leads to a variant of the classical St Andrew's Cross that has certain unique features: (i) radiation of wave beams is limited due to a lower cut-off frequency set by the cylinder tilt angle to the horizontal; (ii) the response is essentially three-dimensional, as end effects eventually come into play when the cut-off frequency is approached, however long a cylinder might be. These results follow from kinematic considerations and are also confirmed by laboratory experiments. The kinematic analysis, moreover, suggests a resonance phenomenon near the cut-off frequency, where viscous and nonlinear effects are likely to play an important part. This scenario is examined by an asymptotic model as well as experimentally. Supported in part by NSF Grant DMS-1512925.

  3. Multidisciplinary Optimization of Tilt Rotor Blades Using Comprehensive Composite Modeling Technique

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; McCarthy, Thomas R.; Rajadas, John N.

    1997-01-01

    An optimization procedure is developed for addressing the design of composite tilt rotor blades. A comprehensive technique, based on a higher-order laminate theory, is developed for the analysis of the thick composite load-carrying sections, modeled as box beams, in the blade. The theory, which is based on a refined displacement field, is a three-dimensional model which approximates the elasticity solution so that the beam cross-sectional properties are not reduced to one-dimensional beam parameters. Both inplane and out-of-plane warping are included automatically in the formulation. The model can accurately capture the transverse shear stresses through the thickness of each wall while satisfying stress free boundary conditions on the inner and outer surfaces of the beam. The aerodynamic loads on the blade are calculated using the classical blade element momentum theory. Analytical expressions for the lift and drag are obtained based on the blade planform with corrections for the high lift capability of rotor blades. The aerodynamic analysis is coupled with the structural model to formulate the complete coupled equations of motion for aeroelastic analyses. Finally, a multidisciplinary optimization procedure is developed to improve the aerodynamic, structural and aeroelastic performance of the tilt rotor aircraft. The objective functions include the figure of merit in hover and the high speed cruise propulsive efficiency. Structural, aerodynamic and aeroelastic stability criteria are imposed as constraints on the problem. The Kreisselmeier-Steinhauser function is used to formulate the multiobjective function problem. The search direction is determined by the Broyden-Fletcher-Goldfarb-Shanno algorithm. The optimum results are compared with the baseline values and show significant improvements in the overall performance of the tilt rotor blade.

  4. Magic tilt angle for stabilizing two-dimensional solitons by dipole-dipole interactions

    NASA Astrophysics Data System (ADS)

    Chen, Xing-You; Chuang, You-Lin; Lin, Chun-Yan; Wu, Chien-Ming; Li, Yongyao; Malomed, Boris A.; Lee, Ray-Kuang

    2017-10-01

    In the framework of the Gross-Pitaevskii equation, we study the formation and stability of effectively two-dimensional solitons in dipolar Bose-Einstein condensates (BECs), with dipole moments polarized at an arbitrary angle θ relative to the direction normal to the system's plane. Using numerical methods and the variational approximation, we demonstrate that unstable Townes solitons, created by the contact attractive interaction, may be completely stabilized (with an anisotropic shape) by the dipole-dipole interaction (DDI), in the interval θcr<θ ≤π /2 . The stability boundary θcr weakly depends on the relative strength of the DDI, remaining close to the magic angle θm=arccos(1 /√{3 }) . The results suggest that DDIs provide a generic mechanism for the creation of stable BEC solitons in higher dimensions.

  5. Low speed tests of a fixed geometry inlet for a tilt nacelle V/STOL airplane

    NASA Technical Reports Server (NTRS)

    Syberg, J.; Koncsek, J. L.

    1977-01-01

    Test data were obtained with a 1/4 scale cold flow model of the inlet at freestream velocities from 0 to 77 m/s (150 knots) and angles of attack from 45 deg to 120 deg. A large scale model was tested with a high bypass ratio turbofan in the NASA/ARC wind tunnel. A fixed geometry inlet is a viable concept for a tilt nacelle V/STOL application. Comparison of data obtained with the two models indicates that flow separation at high angles of attack and low airflow rates is strongly sensitive to Reynolds number and that the large scale model has a significantly improved range of separation-free operation.

  6. Highly sensitive twist sensor based on tilted fiber Bragg grating of polarization-dependent properties

    NASA Astrophysics Data System (ADS)

    Lu, Yanfang; Shen, Changyu; Chen, Debao; Chu, Jinlei; Wang, Qiang; Dong, Xinyong

    2014-10-01

    The transmission intensity of the tilted fiber Bragg grating (TFBG) is strongly dependent on the polarization properties of the TFBG. The polarization characteristic of the cladding modes can be used for twist measuring. In this paper, a highly sensitive fiber twist sensor is proposed. The transmission intensity on the strong loss wavelength showed a quasi-sin θ changing with the twist angle ranging from 0° to 180° for S- or P-polarized input. A high sensitivity of 0.299 dB/° is achieved, which is almost 17.9 times higher than that of the current similar existing twist sensor. The twist angle can be measured precisely with the matrix.

  7. Computationally derived rules for persistence of C60 nanowires on recumbent pentacene bilayers.

    PubMed

    Cantrell, Rebecca A; James, Christine; Clancy, Paulette

    2011-08-16

    The tendency for C(60) nanowires to persist on two monolayers of recumbent pentacene is studied using molecular dynamics (MD) simulations. A review of existing experimental literature for the tilt angle adopted by pentacene on noble metal surfaces shows that studies cover a limited range from 55° to 90°, motivating simulation studies of essentially the entire range of tilt angles (10°-90°) to predict the optimum surface tilt angle for C(60) nanowire formation. The persistence of a 1D nanowire depends sensitively on this tilt angle, the amount of initial tensile strain, and the presence of surface step edges. At room temperature, C(60) nanowires oriented along the pentacene short axes persist for several nanoseconds and are more likely to occur if they reside between, or within, pentacene rows for ϕ ≤ ∼60°. The likelihood of this persistence increases the smaller the tilt angle. Nanowires oriented along the long axes of pentacene molecules are unlikely to form. The limit of stability of nanowires was tested by raising the temperature to 400 K. Nanowires located between pentacene rows survived this temperature rise, but those located initially within pentacene rows are only stable in the range ϕ(1) = 30°-50°. Flatter pentacene surfaces, that is, tilt angles above about 60°, are subject to disorder caused by C(60) molecules "burrowing" into the pentacene surface. An initial strain of 5% applied to the C(60) nanowires significantly decreases the likelihood of nanowire persistence. In contrast, any appreciable surface roughness, even by half a monolayer in height of a third pentacene monolayer, strongly enhances the likelihood of nanowire formation due to the strong binding energy of C(60) molecules to step edges.

  8. Expecting ankle tilts and wearing an ankle brace influence joint control in an imitated ankle sprain mechanism during walking.

    PubMed

    Gehring, Dominic; Wissler, Sabrina; Lohrer, Heinz; Nauck, Tanja; Gollhofer, Albert

    2014-03-01

    A thorough understanding of the functional aspects of ankle joint control is essential to developing effective injury prevention. It is of special interest to understand how neuromuscular control mechanisms and mechanical constraints stabilize the ankle joint. Therefore, the aim of the present study was to determine how expecting ankle tilts and the application of an ankle brace influence ankle joint control when imitating the ankle sprain mechanism during walking. Ankle kinematics and muscle activity were assessed in 17 healthy men. During gait rapid perturbations were applied using a trapdoor (tilting with 24° inversion and 15° plantarflexion). The subjects either knew that a perturbation would definitely occur (expected tilts) or there was only the possibility that a perturbation would occur (potential tilts). Both conditions were conducted with and without a semi-rigid ankle brace. Expecting perturbations led to an increased ankle eversion at foot contact, which was mediated by an altered muscle preactivation pattern. Moreover, the maximal inversion angle (-7%) and velocity (-4%), as well as the reactive muscle response were significantly reduced when the perturbation was expected. While wearing an ankle brace did not influence muscle preactivation nor the ankle kinematics before ground contact, it significantly reduced the maximal ankle inversion angle (-14%) and velocity (-11%) as well as reactive neuromuscular responses. The present findings reveal that expecting ankle inversion modifies neuromuscular joint control prior to landing. Although such motor control strategies are weaker in their magnitude compared with braces, they seem to assist ankle joint stabilization in a close-to-injury situation. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Apparatus for raising or tilting a micromechanical structure

    DOEpatents

    Allen, James J [Albuquerque, NM

    2008-09-09

    An active hinge apparatus is disclosed which can be used to raise a micromechanical structure (e.g. a plate or micromirror) on a substrate. The active hinge apparatus utilizes one or more of teeth protruding outward from an axle which also supports the micromechanical structure on one end thereof. A rack is used to engage the teeth and rotate the axle to raise the micromechanical structure and tilt the structure at an angle to the substrate. Motion of the rack is provided by an actuator which can be a mechanically-powered actuator, or alternately an electrostatic comb actuator or a thermal actuator. A latch can be optionally provided in the active hinge apparatus to lock the micromechanical structure in an "erected" position.

  10. Deformation of a free interface pierced by a tilted cylinder

    NASA Astrophysics Data System (ADS)

    Raufaste, C.; Kirstetter, G.; Celestini, F.; Cox, S. J.

    2012-07-01

    We investigate the interaction between an infinite cylinder and a free fluid-fluid interface governed only by its surface tension. We study the deformation of an initially flat interface when it is deformed by the presence of a cylindrical object, tilted at an arbitrary angle, that the interface “totally wets”. Our simulations predict all significant quantities such as the interface shape, the position of the contact line, and the force exerted by the interface on the cylinder. These results are compared with an experimental study of the penetration of a soap film by a cylindrical liquid jet. This dynamic situation exhibits all the characteristics of a totally wetting interface. We show that whatever the inclination, the force is always perpendicular to the plane of the interface, and its amplitude diverges as the inclination angle increases. Such results should bring new insights in both fluid and solid mechanics, from animal locomotion to surface micro-processing.

  11. Thermoregulatory response to intraoperative head-down tilt.

    PubMed

    Nakajima, Yasufumi; Mizobe, Toshiki; Matsukawa, Takashi; Sessler, Daniel I; Kitamura, Yoshihiro; Tanaka, Yoshifumi

    2002-01-01

    Thermoregulation interacts with cardiovascular regulation within the central nervous system. We therefore evaluated the effects of head-down tilt on intraoperative thermal and cardiovascular regulation. Thirty-two patients undergoing lower-abdominal surgery were randomly assigned to the 1) supine, 2) 15 degrees -20 degrees head-down tilt, 3) leg-up, or 4) combination of leg-up and head-down tilt position. Core temperature and forearm minus fingertip skin-temperature gradients (an index of peripheral vasoconstriction) were monitored for 3 h after the induction of combined general and lumbar epidural anesthesia. We also determined cardiac output and central-venous and esophageal pressures. Neither right atrial transmural pressure nor cardiac index was altered in the Head-Down Tilt group, but both increased significantly in the Leg-Up groups. The vasoconstriction threshold was reduced in both leg-up positions but was not significantly decreased by head-down tilt. Final core temperatures were 35.2 degrees C +/- 0.2 degrees C (mean +/- SEM) in the Supine group, 35.0 degrees C +/- 0.2 degrees C in the Head-Down Tilt group, 34.2 degrees C +/- 0.2 degrees C in the Leg-Up group (P < 0.05 compared with supine), and 34.3 degrees C +/- 0.2 degrees C when leg-up and head-down tilt were combined (P < 0.05 compared with supine). These results confirm that elevating the legs increases right atrial transmural pressure, reduces the vasoconstriction threshold, and aggravates intraoperative hypothermia. Surprisingly, maintaining a head-down tilt did not increase right atrial pressure. Intraoperative hypothermia is exaggerated when patients are maintained in the leg-up position because the vasoconstriction threshold is reduced. However, head-down tilt (Trendelenburg position) does not reduce the vasoconstriction threshold or aggravate hypothermia. The head-down tilt position thus does not require special perioperative thermal precautions or management unless the leg-up position is used

  12. Modal propagation angles in ducts with soft walls and their connection with suppressor performance

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1979-01-01

    The angles of propagation of the wave fronts associated with duct modes are derived for a cylindrical duct with soft walls (acoustic suppressors) and a uniform steady flow. The angle of propagation with respect to the radial coordinate (angle of incidence on the wall) is shown to be a better correlating parameter for the optimum wall impedance of spinning modes than the previously used mode cutoff ratio. Both the angle of incidence upon the duct wall and the propagation angle with respect to the duct axis are required to describe the attenuation of a propagating mode. Using the modal propagation angles, a geometric acoustics approach to suppressor acoustic performance was developed. Results from this approximate method were compared to exact modal propagation calculations to check the accuracy of the approximate method. The results are favorable except in the immediate vicinity of the modal optimum impedance where the approximate method yields about one-half of the exact maximum attenuation.

  13. A mathematical simulation model of a 1985-era tilt-rotor passenger aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.; Widdison, C. A.

    1976-01-01

    A mathematical model for use in real-time piloted simulation of a 1985-era tilt rotor passenger aircraft is presented. The model comprises the basic six degrees-of-freedom equations of motion, and a large angle of attack representation of the airframe and rotor aerodynamics, together with equations and functions used to model turbine engine performance, aircraft control system and stability augmentation system. A complete derivation of the primary equations is given together with a description of the modeling techniques used. Data for the model is included in an appendix.

  14. Demodulation method for tilted fiber Bragg grating refractometer with high sensitivity

    NASA Astrophysics Data System (ADS)

    Pham, Xuantung; Si, Jinhai; Chen, Tao; Wang, Ruize; Yan, Lihe; Cao, Houjun; Hou, Xun

    2018-05-01

    In this paper, we propose a demodulation method for refractive index (RI) sensing with tilted fiber Bragg gratings (TFBGs). It operates by monitoring the TFBG cladding mode resonance "cut-off wavelengths." The idea of a "cut-off wavelength" and its determination method are introduced. The RI sensitivities of TFBGs are significantly enhanced in certain RI ranges by using our demodulation method. The temperature-induced cross sensitivity is eliminated. We also demonstrate a parallel-double-angle TFBG (PDTFBG), in which two individual TFBGs are inscribed in the fiber core in parallel using a femtosecond laser and a phase mask. The RI sensing range of the PDTFBG is significantly broader than that of a conventional single-angle TFBG. In addition, its RI sensitivity can reach 1023.1 nm/refractive index unit in the 1.4401-1.4570 RI range when our proposed demodulation method is used.

  15. Portable mini-chamber for temperature dependent studies using small angle and wide angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Dev, Arun Singh; Kumar, Dileep; Potdar, Satish; Pandit, Pallavi; Roth, Stephan V.; Gupta, Ajay

    2018-04-01

    The present work describes the design and performance of a vacuum compatible portable mini chamber for temperature dependent GISAXS and GIWAXS studies of thin films and multilayer structures. The water cooled body of the chamber allows sample annealing up to 900 K using ultra high vacuum compatible (UHV) pyrolytic boron nitride heater, thus making it possible to study the temperature dependent evolution of structure and morphology of two-dimensional nanostructured materials. Due to its light weight and small size, the chamber is portable and can be accommodated at synchrotron facilities worldwide. A systematic illustration of the versatility of the chamber has been demonstrated at beamline P03, PETRA-III, DESY, Hamburg, Germany. Temperature dependent grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) measurements were performed on oblique angle deposited Co/Ag multilayer structure, which jointly revealed that the surface diffusion in Co columns in Co/Ag multilayer enhances by increasing temperature from RT to ˜573 K. This results in a morphology change from columnar tilted structure to densely packed morphological isotropic multilayer.

  16. An Iterative, Geometric, Tilt Correction Method for Radiation and Albedo Observed by Automatic Weather Stations on Snow-Covered Surfaces: Application to Greenland

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zender, C. S.; van As, D.; Smeets, P.; van den Broeke, M.

    2015-12-01

    Surface melt and mass loss of Greenland Ice Sheet may play crucial roles in global climate change due to their positive feedbacks and large fresh water storage. With few other regular meteorological observations available in this extreme environment, measurements from Automatic Weather Stations (AWS) are the primary data source for the surface energy budget studies, and for validating satellite observations and model simulations. However, station tilt, due to surface melt and compaction, results in considerable biases in the radiation and thus albedo measurements by AWS. In this study, we identify the tilt-induced biases in the climatology of surface radiative flux and albedo, and then correct them based on geometrical principles. Over all the AWS from the Greenland Climate Network (GC-Net), the Kangerlussuaq transect (K-transect) and the Programme for Monitoring of the Greenland Ice Sheet (PROMICE), only ~15% of clear days have the correct solar noon time, with the largest bias to be 3 hours. Absolute hourly biases in the magnitude of surface insolation can reach up to 200 W/m2, with daily average exceeding 100 W/m2. The biases are larger in the accumulation zone due to the systematic tilt at each station, although variabilities of tilt angles are larger in the ablation zone. Averaged over the whole Greenland Ice Sheet in the melting season, the absolute bias in insolation is ~23 W/m2, enough to melt 0.51 m snow water equivalent. We estimate the tilt angles and their directions by comparing the simulated insolation at a horizontal surface with the observed insolation by these tilted AWS under clear-sky conditions. Our correction reduces the RMSE against satellite measurements and reanalysis by ~30 W/m2 relative to the uncorrected data, with correlation coefficients over 0.95 for both references. The corrected diurnal changes of albedo are more smooth, with consistent semi-smiling patterns (see Fig. 1). The seasonal cycles and annual variabilities of albedo are in

  17. Numerical Modeling of the Global Atmosphere

    NASA Technical Reports Server (NTRS)

    Arakawa, Akio; Mechoso, Carlos R.

    1996-01-01

    Under this grant, we continued development and evaluation of the updraft downdraft model for cumulus parameterization. The model includes the mass, rainwater and vertical momentum budget equations for both updrafts and downdrafts. The rainwater generated in an updraft falls partly inside and partly outside the updraft. Two types of stationary solutions are identified for the coupled rainwater budget and vertical momentum equations: (1) solutions for small tilting angles, which are unstable; (2) solutions for large tilting angles, which are stable. In practical applications, we select the smallest stable tilting angle as an optimum value. The model has been incorporated into the Arakawa-Schubert (A-S) cumulus parameterization. The results of semi-prognostic and single-column prognostic tests of the revised A-S parameterization show drastic improvement in predicting the humidity field. Cheng and Arakawa presents the rationale and basic design of the updraft-downdraft model, together with these test results. Cheng and Arakawa, on the other hand gives technical details of the model as implemented in current version of the UCLA GCM.

  18. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Realization of Fine Tip Tilting by 16-Step Line Tilting

    NASA Astrophysics Data System (ADS)

    Ding, Lu; Chen, Ying-Tian; Hu, Sen; Zhang, Yang

    2010-07-01

    Following Chen's method [Common. Theor. Phys. 52 (2009) 549] to use 8-step line tilting to realize tip tilting, to achieve finer rotation, it is discovered that a 16-step line tilting method may realize a rotation two order smaller than that achieved by 8-step.

  19. Ducted turbine theory with right angled ducts

    NASA Astrophysics Data System (ADS)

    McLaren-Gow, S.; Jamieson, P.; Graham, J. M. R.

    2014-06-01

    This paper describes the use of an inviscid approach to model a ducted turbine - also known as a diffuser augmented turbine - and a comparison of results with a particular one-dimensional theory. The aim of the investigation was to gain a better understanding of the relationship between a real duct and the ideal diffuser, which is a concept that is developed in the theory. A range of right angled ducts, which have a rim for a 90° exit angle, were modelled. As a result, the performance of right angled ducts has been characterised in inviscid flow. It was concluded that right angled ducts cannot match the performance of their associated ideal diffuser and that the optimum rotor loading for these turbines varies with the duct dimensions.

  20. Tilt rotor hover aeroacoustics

    NASA Technical Reports Server (NTRS)

    Coffen, Charles David

    1992-01-01

    The methodology, results, and conclusions of a study of tilt rotor hover aeroacoustics and aerodynamics are presented. Flow visualization and hot wire velocity measurement were performed on a 1/12-scale model of the XV-15 Tilt Rotor Aircraft in hover. The wing and fuselage below the rotor cause a complex recirculating flow. Results indicate the physical dimensions and details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Discrete frequency harmonic thickness and the loading noise mechanism were predicted using WOPWOP for the standard metal blades and the Advanced Technology Blades. The recirculating flow created by the wing below the rotor is a primary sound mechanism for a hovering tilt rotor. The effects of dynamic blade response should be included for fountain flow conditions which produce impulsive blade loading. Broadband noise mechanisms were studied using Amiet's method with azimuthally varying turbulence characteristics derived from the measurements. The recirculating fountain flow with high turbulence levels in the recirculating zone is the dominant source of broadband noise for a hovering rotor. It is shown that tilt rotor hover aeroacoustic noise mechanisms are now understood. Noise predictions can be made based on reasonably accurate aerodynamic models developed here.

  1. A strategy for advancing tilt-rotor technology

    NASA Technical Reports Server (NTRS)

    Morlok, Edward K.; Schoendorfer, David L.

    1985-01-01

    Tilt-rotor technology has many features which make it a very promising development in aviation which might have application to a wide variety of transportation and logistics situations. However, aside from military applications and rather specialized industrial applications, little is known regarding the potential of tilt-rotor for commercial transportation and hence it is difficult to plan a development program which would gain support and be likely to produce a stream of significant benefits. The purpose is to attempt to provide some of this information in a manner that would be useful for preparing a strategy for development of tilt-rotor aircraft technology. Specifically, the objectives were: to identify promising paths of development and deployment of tilt-rotor aircraft technology in the air transportation system considering both benefits and disbenefits, and to identify any particular groups that are likely to benefit significantly and propose plans for gaining their support of research and development of this technology. Potential advantages of the tilt-rotor technology in the context of air transportation as a door-to-door system were identified, and then promising paths of development of such tilt-rotor systems were analyzed. These then lead to recommendations for specific studies, information dissemination and development of awareness of the tilt-rotor among specific transport-related groups.

  2. Fast auto-acquisition tomography tilt series by using HD video camera in ultra-high voltage electron microscope.

    PubMed

    Nishi, Ryuji; Cao, Meng; Kanaji, Atsuko; Nishida, Tomoki; Yoshida, Kiyokazu; Isakozawa, Shigeto

    2014-11-01

    series of 61 images within 30 minutes. Accuracy and repeatability were good enough to practical use (Figure 1). We successfully reduced the total acquisition time of a tomography tilt series in half than before.jmicro;63/suppl_1/i25/DFU066F1F1DFU066F1Fig. 1.Objective lens current change with a tilt angle during acquisition of tomography series (Sample: a rat hepatocyte, thickness: 2 m, magnification: 4k, acc. voltage: 2 MV). Tilt angle range is ±60 degree with 2 degree step angle. Two series were acquired in the same area. Both data were almost same and the deviation was smaller than the minimum step by manual, so auto-focus worked well. We also developed a computer-aided three dimensional (3D) visualization and analysis software for electron tomography "HawkC" which can sectionalize the 3D data semi-automatically[5,6]. If this auto-acquisition system is used with IMOD reconstruction software[7] and HawkC software, we will be able to do on-line UHVEM tomography. The system would help pathology examination in the future.This work was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, under a Grant-in-Aid for Scientific Research (Grant No. 23560024, 23560786), and SENTAN, Japan Science and Technology Agency, Japan. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Predicting wettability behavior of fluorosilica coated metal surface using optimum neural network

    NASA Astrophysics Data System (ADS)

    Taghipour-Gorjikolaie, Mehran; Valipour Motlagh, Naser

    2018-02-01

    The interaction between variables, which are effective on the surface wettability, is very complex to predict the contact angles and sliding angles of liquid drops. In this paper, in order to solve this complexity, artificial neural network was used to develop reliable models for predicting the angles of liquid drops. Experimental data are divided into training data and testing data. By using training data and feed forward structure for the neural network and using particle swarm optimization for training the neural network based models, the optimum models were developed. The obtained results showed that regression index for the proposed models for the contact angles and sliding angles are 0.9874 and 0.9920, respectively. As it can be seen, these values are close to unit and it means the reliable performance of the models. Also, it can be inferred from the results that the proposed model have more reliable performance than multi-layer perceptron and radial basis function based models.

  4. Effect of Wind Flow on Convective Heat Losses from Scheffler Solar Concentrator Receivers

    NASA Astrophysics Data System (ADS)

    Nene, Anita Arvind; Ramachandran, S.; Suyambazhahan, S.

    2018-05-01

    Receiver is an important element of solar concentrator system. In a Scheffler concentrator, solar rays get concentrated at focus of parabolic dish. While radiation losses are more predictable and calculable since strongly related to receiver temperature, convective looses are difficult to estimate in view of additional factors such as wind flow direction, speed, receiver geometry, prior to current work. Experimental investigation was carried out on two geometries of receiver namely cylindrical and conical with 2.7 m2 Scheffler to find optimum condition of tilt to provide best efficiency. Experimental results showed that as compared to cylindrical receiver, conical receiver gave maximum efficiency at 45° tilt angle. However effect of additional factors like wind speed, wind direction on especially convective losses could not be separately seen. The current work was undertaken to investigate further the same two geometries using computation fluid dynamics using FLUENT to compute convective losses considering all variables such at tilt angle of receiver, wind velocity and wind direction. For cylindrical receiver, directional heat transfer coefficient (HTC) is remarkably high to tilt condition meaning this geometry is critical to tilt leading to higher convective heat losses. For conical receiver, directional average HTC is remarkably less to tilt condition leading to lower convective heat loss.

  5. Investigation of Heat and Mass Transfer and Irreversibility Phenomena Within a Three-Dimensional Tilted Enclosure for Different Shapes

    NASA Astrophysics Data System (ADS)

    Oueslati, F.; Ben-Beya, B.

    2018-01-01

    Three-dimensional thermosolutal natural convection and entropy generation within an inclined enclosure is investigated in the current study. A numerical method based on the finite volume method and a full multigrid technique is implemented to solve the governing equations. Effects of various parameters, namely, the aspect ratio, buoyancy ratio, and tilt angle on the flow patterns and entropy generation are predicted and discussed.

  6. Scattering attributes of one-dimensional semiconducting oxide nanomaterials individually probed for varying light-matter interaction angles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Daniel S.; Singh, Manpreet; Zhou, Hebing

    2015-10-12

    We report the characteristic optical responses of one-dimensional semiconducting oxide nanomaterials by examining the individual nanorods (NRs) of ZnO, SnO{sub 2}, indium tin oxide, and zinc tin oxide under precisely controlled, light-matter interaction geometry. Scattering signals from a large set of NRs of the different types are evaluated spatially along the NR length while varying the NR tilt angle, incident light polarization, and analyzer rotation. Subsequently, we identify material-indiscriminate, NR tilt angle- and incident polarization-dependent scattering behaviors exhibiting continuous, intermittent, and discrete responses. The insight gained from this study can advance our fundamental understanding of the optical behaviors of themore » technologically useful nanomaterials and, at the same time, promote the development of highly miniaturized, photonic and bio-optical devices utilizing the spatially controllable, optical responses of the individual semiconducting oxide NRs.« less

  7. Optimum structure of Whipple shield against hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Lee, M.

    2014-05-01

    Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.

  8. Large-Scale Wind-Tunnel Tests of an Airplane Model with an Unswept, Tilt Wing of Aspect Ratio 5.5, and with Four Propellers and Blowing Flaps

    NASA Technical Reports Server (NTRS)

    Weiberg, James A.; Holzhauser, Curt A.

    1961-01-01

    Tests were made of a large-scale tilt-wing deflected-slipstream VTOL airplane with blowing-type BLC trailing-edge flaps. The model was tested with flap deflections of 0 deg. without BLC, 50 deg. with and without BLC, and 80 deg. with BLC for wing-tilt angles of 0, 30, and 50 deg. Included are results of tests of the model equipped with a leading-edge flap and the results of tests of the model in the presence of a ground plane.

  9. Vertical tilts of tropospheric waves - Observations and theory

    NASA Technical Reports Server (NTRS)

    Ebisuzaki, Wesley

    1991-01-01

    Two methods are used to investigate the vertical tilts of planetary waves as functions of zonal wavenumber and frequency. The vertical tilts are computed by cross-spectral analysis of the geopotential heights at different pressures. In the midlatitude troposphere, the eastward-moving waves had a westward tilt with height, as expected, but the westward-moving waves with frequencies higher than 0.2/d showed statistically significant eastward vertical tilts. For a free Rossby wave, this implies that the Eliassen-Palm flux is downward along with its energy propagation. A downward energy propagation suggests an upper-level source of these waves. It is proposed that the eastward-tilting waves were forced by the nonlinear interaction of stationary waves and baroclinically unstable cyclone-scale waves. The predicted vertical tilt and phase speed were consistent with the observations. In addition, simulations of a general circulation model were analyzed. In the control run, eastward-tilting waves disappeared when the sources of stationary waves were removed. This is consistent with the present theory.

  10. Reasons for using power tilt: perspectives from clients and therapists.

    PubMed

    Titus, Laura C; Miller Polgar, Janice

    2018-02-01

    A power tilt wheelchair allows independence in changing body position to address a variety of needs throughout the day; however, literature and clinical practice suggest that actual use varies greatly. This grounded theory study examined how power tilt was used in daily life from the perspectives of adults who used power tilt and therapists who prescribed this technology. A constant comparative approach was used to collect and analyze interview data from five people who use power tilt and six therapists who prescribe this technology. This paper presents the findings specific to understanding the reasons why power tilt was used, focusing on the relationships between tilt use and (1) the reasons for use, (2) the reasons for prescribing power tilt and (3) the associated amplitudes of tilt. This study advances knowledge related to how power tilt is used in daily life by elucidating that how the reasons for use are conceptualized is complex. The three relationships related to the reason for power tilt use identified in this paper have the potential to influence the quality of communication about power tilt use in clinical practice between therapist and client and in research between researcher and participant. Implications for Rehabilitation: Understanding the inconsistencies and variations in how power tilt is used in daily life is dependent on exploring the reasons beyond the words or terms expressed to describe use. Reasons for tilt use are context dependent, particularly the activity occurring at the time of tilt use, the associated amplitude of tilt and the influence of other reasons occurring at the same time.

  11. Three-dimensional microelectromechanical tilting platform operated by gear-driven racks

    DOEpatents

    Klody, Kelly A.; Habbit, Jr., Robert D.

    2005-11-01

    A microelectromechanical (MEM) tiltable-platform apparatus is disclosed which utilizes a light-reflective platform (i.e. a micromirror) which is supported above a substrate by flexures which can be bent upwards to tilt the platform in any direction over an angle of generally .+-.10 degrees using a gear-driven rack attached to each flexure. Each rack is driven by a rotary microengine (i.e. a micromotor); and an optional thermal actuator can be used in combination with each microengine for initially an initial uplifting of the platform away from the substrate. The MEM apparatus has applications for optical switching (e.g. between a pair of optical fibers) or for optical beam scanning.

  12. Static roll-tilt over 5 minutes locally distorts the internal estimate of direction of gravity.

    PubMed

    Tarnutzer, A A; Bockisch, C J; Straumann, D; Marti, S; Bertolini, G

    2014-12-01

    The subjective visual vertical (SVV) indicates perceived direction of gravity. Even in healthy human subjects, roll angle-dependent misestimations, roll overcompensation (A-effect, head-roll > 60° and <135°) and undercompensation (E-effect, head-roll < 60°), occur. Previously, we demonstrated that, after prolonged roll-tilt, SVV estimates when upright are biased toward the preceding roll position, which indicates that perceived vertical (PV) is shifted by the prior tilt (Tarnutzer AA, Bertolini G, Bockisch CJ, Straumann D, Marti S. PLoS One 8: e78079, 2013). Hypothetically, PV in any roll position could be biased toward the previous roll position. We asked whether such a "global" bias occurs or whether the bias is "local". The SVV of healthy human subjects (N = 9) was measured in nine roll positions (-120° to +120°, steps = 30°) after 5 min of roll-tilt in one of two adaptation positions (±90°) and compared with control trials without adaptation. After adapting, adjustments were shifted significantly (P < 0.05) toward the previous adaptation position for nearby roll-tilted positions (±30°, ±60°) and upright only. We computationally simulated errors based on the sum of a monotonically increasing function (producing roll undercompensation) and a mixture of Gaussian functions (representing roll overcompensation centered around PV). In combination, the pattern of A- and E-effects could be generated. By shifting the function representing local overcompensation toward the adaptation position, the experimental postadaptation data could be fitted successfully. We conclude that prolonged roll-tilt locally distorts PV rather than globally shifting it. Short-term adaptation of roll overcompensation may explain these shifts and could reflect the brain's strategy to optimize SVV estimates around recent roll positions. Thus postural stability can be improved by visually-mediated compensatory responses at any sustained body-roll orientation. Copyright © 2014 the

  13. Aurelia aurita bio-inspired tilt sensor

    NASA Astrophysics Data System (ADS)

    Smith, Colin; Villanueva, Alex; Priya, Shashank

    2012-10-01

    The quickly expanding field of mobile robots, unmanned underwater vehicles, and micro-air vehicles urgently needs a cheap and effective means for measuring vehicle inclination. Commonly, tilt or inclination has been mathematically derived from accelerometers; however, there is inherent error in any indirect measurement. This paper reports a bio-inspired tilt sensor that mimics the natural balance organ of jellyfish, called the ‘statocyst’. Biological statocysts from the species Aurelia aurita were characterized by scanning electron microscopy to investigate the morphology and size of the natural sensor. An artificial tilt sensor was then developed by using printed electronics that incorporates a novel voltage divider concept in conjunction with small surface mount devices. This sensor was found to have minimum sensitivity of 4.21° with a standard deviation of 1.77°. These results open the possibility of developing elegant tilt sensor architecture for both air and water based platforms.

  14. Influence of the tilt angle of Percutaneous Aortic Prosthesis on Velocity and Shear Stress Fields

    PubMed Central

    Gomes, Bruno Alvares de Azevedo; Camargo, Gabriel Cordeiro; dos Santos, Jorge Roberto Lopes; Azevedo, Luis Fernando Alzuguir; Nieckele, Ângela Ourivio; Siqueira-Filho, Aristarco Gonçalves; de Oliveira, Glaucia Maria Moraes

    2017-01-01

    Background Due to the nature of the percutaneous prosthesis deployment process, a variation in its final position is expected. Prosthetic valve placement will define the spatial location of its effective orifice in relation to the aortic annulus. The blood flow pattern in the ascending aorta is related to the aortic remodeling process, and depends on the spatial location of the effective orifice. The hemodynamic effect of small variations in the angle of inclination of the effective orifice has not been studied in detail. Objective To implement an in vitro simulation to characterize the hydrodynamic blood flow pattern associated with small variations in the effective orifice inclination. Methods A three-dimensional aortic phantom was constructed, reproducing the anatomy of one patient submitted to percutaneous aortic valve implantation. Flow analysis was performed by use of the Particle Image Velocimetry technique. The flow pattern in the ascending aorta was characterized for six flow rate levels. In addition, six angles of inclination of the effective orifice were assessed. Results The effective orifice at the -4º and -2º angles directed the main flow towards the anterior wall of the aortic model, inducing asymmetric and high shear stress in that region. However, the effective orifice at the +3º and +5º angles mimics the physiological pattern, centralizing the main flow and promoting a symmetric distribution of shear stress. Conclusion The measurements performed suggest that small changes in the angle of inclination of the percutaneous prosthesis aid in the generation of a physiological hemodynamic pattern, and can contribute to reduce aortic remodeling. PMID:28793046

  15. Ideal-Magnetohydrodynamic-Stable Tilting in Field-Reversed Configurations

    NASA Astrophysics Data System (ADS)

    Kanno, Ryutaro; Ishida, Akio; Steinhauer, Loren

    1995-02-01

    The tilting mode in field-reversed configurations (FRC) is examined using ideal-magnetohydrodynamic stability theory. Tilting, a global mode, is the greatest threat for disruption of FRC confinement. Previous studies uniformly found tilting to be unstable in ideal theory: the objective here is to ascertain if stable equilibria were overlooked in past work. Solving the variational problem with the Rayleigh-Ritz technique, tilting-stable equilibria are found for sufficiently hollow current profile and sufficient racetrackness of the separatrix shape. Although these equilibria were not examined previously, the present conclusion is quite surprising. Consequently checks of the method are offered. Even so it cannot yet be claimed with complete certainty that stability has been proved: absolute confirmation of ideal-stable tilting awaits the application of more complete methods.

  16. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2003-04-08

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  17. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2004-07-06

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  18. Standard (head-down tilt) versus modified (without head-down tilt) postural drainage in infants and young children with cystic fibrosis.

    PubMed

    Freitas, Diana A; Chaves, Gabriela Ss; Santino, Thayla A; Ribeiro, Cibele Td; Dias, Fernando Al; Guerra, Ricardo O; Mendonça, Karla Mpp

    2018-03-09

    Postural drainage is used primarily in infants with cystic fibrosis from diagnosis up to the moment when they are mature enough to actively participate in self-administered treatments. However, there is a risk of gastroesophageal reflux associated with this technique.This is an update of a review published in 2015. To compare the effects of standard postural drainage (15º to 45º head-down tilt) with modified postural drainage (15º to 30º head-up tilt) with regard to gastroesophageal reflux in infants and young children up to six years old with cystic fibrosis in terms of safety and efficacy. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Cystic Fibrosis Trials Register. We also searched the reference lists of relevant articles and reviews. Additional searches were conducted on ClinicalTrials.gov and on the WHO International Clinical Trials Registry Platform for any planned, ongoing and unpublished studies.The date of the most recent literature searches: 19 June 2017. We included randomised controlled studies that compared two postural drainage regimens (standard and modified postural drainage) with regard to gastroesophageal reflux in infants and young children (up to and including six years old) with cystic fibrosis. We used standard methodological procedures expected by Cochrane. Two review authors independently identified studies for inclusion, extracted outcome data and assessed risk of bias. We resolved disagreements by consensus or by involving a third review author. We contacted study authors to obtain missing or additional information. The quality of the evidence was assessed using GRADE. Two studies, involving a total of 40 participants, were eligible for inclusion in the review. We included no new studies in the 2018 update. The included studies were different in terms of the age of participants, the angle of tilt, the reported outcomes, the number of sessions and the study duration. The following outcomes were measured

  19. Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovino, F. A.; Larciprete, M. C.; Belardini, A.

    2009-06-22

    We investigated noncollinear second harmonic generation form zinc oxide films, grown on glass substrates by dual ion beam sputtering technique. At a fixed incidence angle, the generated signal is investigated by scanning the polarization state of both fundamental beams. We show that the map of the generated signal as a function of polarization states of both pump beams, together with the analytical curves, allows to retrieve the orientation of the optical axis and eventually, its angular tilt, with respect to the surface normal.

  20. Complete 360° circumferential SSOCT gonioscopy of the iridocorneal angle

    NASA Astrophysics Data System (ADS)

    McNabb, Ryan P.; Kuo, Anthony N.; Izatt, Joseph A.

    2014-02-01

    The ocular iridocorneal angle is generally an optically inaccessible area when viewed directly through the cornea due to the high angle of incidence required and the large index of refraction difference between air and cornea (nair = 1.000 and ncornea = 1.376) resulting in total internal reflection. Gonioscopy allows for viewing of the angle by removing the aircornea interface through the use of a special contact lens on the eye. Gonioscopy is used clinically to visualize the angle directly but only en face. Optical coherence tomography (OCT) has been used to image the angle and deeper structures via an external approach. Typically, this imaging technique is performed by utilizing a conventional anterior segment OCT scanning system. However, instead of imaging the apex of the cornea, either the scanner or the subject is tilted such that the corneoscleral limbus is orthogonal to the optical axis of the scanner requiring multiple volumes to obtain complete circumferential coverage of the ocular angle. We developed a novel gonioscopic OCT (GOCT) system that images the entire ocular angle within a single volume via an "internal" approach through the use of a custom radially symmetric gonioscopic contact lens. We present, to our knowledge, the first complete 360° circumferential volumes of the iridocorneal angle from a direct, internal approach.

  1. Effects of head-down tilt on fluid and electrolyte balance

    NASA Technical Reports Server (NTRS)

    Volicer, L.; Jean-Charles, R.; Chobanian, A. V.

    1976-01-01

    The metabolic effects of -5 deg tilt were studied in eight normal individuals. Exposure to tilt for 24 hr increased sodium excretion and decreased plasma volume. Plasma renin activity and plasma aldosterone levels were not significantly different from supine values during the first 6 hr of tilting, but were increased significantly at the end of the 24-hr tilt period. Creatinine clearance and potassium balance were not affected by the tilt. These findings indicate that head-down tilt induces a sodium diuresis and stimulation of the renin-angiotensin-aldosterone system.

  2. Ocular characteristics associated with the location of focal lamina cribrosa defects in open-angle glaucoma patients.

    PubMed

    Park, H-Yl; Hwang, Y S; Park, C K

    2017-04-01

    PurposeTo investigate the clinical characteristics according to the location of focal lamina cribrosa (LC) defects and its associated ocular features.Patients and methodsA total of 139 open-angle glaucoma patients underwent Spectralis optical coherence tomography (OCT) with enhanced depth imaging. Alterations in the contour of the LC were investigated to find focal LC defects. The location of the visible LC defect from the neural canal wall (far-peripheral and mid-peripheral) and clock-hour position (superotemporal, temporal and inferotemporal) were classified. Disc ovality ratio and disc-foveal angle were measured from disc and retinal nerve fiber layer (RNFL) photographs. The disc tilt degree was measured using a Heidelberg Retina Tomograph (HRT) III system. The en face OCT image of the disc scans was registered to the disc and RNFL photographs, to determine whether the focal LC defects corresponded spatially to the glaucomatous damage location.ResultsEyes with far-peripheral LC defects were significantly myopic and had a higher disc ovality ratio. The disc tilt degree obtained by HRT revealed significant temporal disc tilt in eyes with temporal LC defects (P<0.001). Eyes with inferotemporal LC defects had a significantly larger disc-foveal angle (P=0.027). The inferotemporal LC defects corresponded to the location of glaucomatous damage in 81.6%; however, only 46.2% of eyes with a superotemporal LC defect and 3.2% of eyes with a temporal LC defect corresponded spatially with the glaucomatous damage location.ConclusionsThe clinical characteristics and association with glaucomatous damage location were different according to the location of focal LC defect.

  3. User's instructions for the GE cardiovascular model to simulate LBNP and tilt experiments, with graphic capabilities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The present form of this cardiovascular model simulates both 1-g and zero-g LBNP (lower body negative pressure) experiments and tilt experiments. In addition, the model simulates LBNP experiments at any body angle. The model is currently accessible on the Univac 1110 Time-Shared System in an interactive operational mode. Model output may be in tabular form and/or graphic form. The graphic capabilities are programmed for the Tektronix 4010 graphics terminal and the Univac 1110.

  4. Angle comparison using an autocollimator

    NASA Astrophysics Data System (ADS)

    Geckeler, Ralf D.; Just, Andreas; Vasilev, Valentin; Prieto, Emilio; Dvorácek, František; Zelenika, Slobodan; Przybylska, Joanna; Duta, Alexandru; Victorov, Ilya; Pisani, Marco; Saraiva, Fernanda; Salgado, Jose-Antonio; Gao, Sitian; Anusorn, Tonmueanwai; Leng Tan, Siew; Cox, Peter; Watanabe, Tsukasa; Lewis, Andrew; Chaudhary, K. P.; Thalmann, Ruedi; Banreti, Edit; Nurul, Alfiyati; Fira, Roman; Yandayan, Tanfer; Chekirda, Konstantin; Bergmans, Rob; Lassila, Antti

    2018-01-01

    Autocollimators are versatile optical devices for the contactless measurement of the tilt angles of reflecting surfaces. An international key comparison (KC) on autocollimator calibration, EURAMET.L-K3.2009, was initiated by the European Association of National Metrology Institutes (EURAMET) to provide information on the capabilities in this field. The Physikalisch-Technische Bundesanstalt (PTB) acted as the pilot laboratory, with a total of 25 international participants from EURAMET and from the Asia Pacific Metrology Programme (APMP) providing measurements. This KC was the first one to utilise a high-resolution electronic autocollimator as a standard. In contrast to KCs in angle metrology which usually involve the full plane angle, it focused on relatively small angular ranges (+/-10 arcsec and +/-1000 arcsec) and step sizes (10 arcsec and 0.1 arcsec, respectively). This document represents the approved final report on the results of the KC. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Strong valley Zeeman effect of dark excitons in monolayer transition metal dichalcogenides in a tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Van der Donck, M.; Zarenia, M.; Peeters, F. M.

    2018-02-01

    The dependence of the excitonic photoluminescence (PL) spectrum of monolayer transition metal dichalcogenides (TMDs) on the tilt angle of an applied magnetic field is studied. Starting from a four-band Hamiltonian we construct a theory which quantitatively reproduces the available experimental PL spectra for perpendicular and in-plane magnetic fields. In the presence of a tilted magnetic field, we demonstrate that the dark exciton PL peaks brighten due to the in-plane component of the magnetic field and split for light with different circular polarizations as a consequence of the perpendicular component of the magnetic field. This splitting is more than twice as large as the splitting of the bright exciton peaks in tungsten-based TMDs. We propose an experimental setup that will allow for accessing the predicted splitting of the dark exciton peaks in the PL spectrum.

  6. Systematic ionospheric electron density tilts (SITs) at mid-latitudes and their associated HF bearing errors

    NASA Astrophysics Data System (ADS)

    Tedd, B. L.; Strangeways, H. J.; Jones, T. B.

    1985-11-01

    Systematic ionospheric tilts (SITs) at midlatitudes and the diurnal variation of bearing error for different transmission paths are examined. An explanation of diurnal variations of bearing error based on the dependence of ionospheric tilt on solar zenith angle and plasma transport processes is presented. The effect of vertical ion drift and the momentum transfer of neutral winds is investigated. During the daytime the transmissions are low and photochemical processes control SITs; however, at night transmissions are at higher heights and spatial and temporal variations of plasma transport processes influence SITs. A HF ray tracing technique which uses a three-dimensional ionospheric model based on predictions to simulate SIT-induced bearing errors is described; poor correlation with experimental data is observed and the causes for this are studied. A second model based on measured vertical-sounder data is proposed. Model two is applicable for predicting bearing error for a range of transmission paths and correlates well with experimental data.

  7. Preoperative posterior tilt of at least 20° increased the risk of fixation failure in Garden-I and -II femoral neck fractures.

    PubMed

    Dolatowski, Filip C; Adampour, Mina; Frihagen, Frede; Stavem, Knut; Erik Utvåg, Stein; Hoelsbrekken, Sigurd Erik

    2016-06-01

    Background and purpose - It has been suggested that preoperative posterior tilt of the femoral head may increase the risk of fixation failure in Garden-I and -II femoral neck fractures. To investigate this association, we studied a cohort of 322 such patients. Patients and methods - Patients treated with internal fixation between 2005 and 2012 were retrospectively identified using hospital records and the digital image bank. 2 raters measured the preoperative posterior tilt angle and categorized it into 3 groups: < 10°, 10-20°, and ≥ 20°. The inter-rater reliability (IRR) was determined. Patients were observed until September 2013 (with a minimum follow-up of 18 months) or until failure of fixation necessitating salvage arthroplasty. The risk of fixation failure was assessed using competing-risk regression analysis, adjusting for time to surgery. Results - Patients with a posterior tilt of ≥ 20° had a higher risk of fixation failure: 19% (8/43) as compared to 11% (14/127) in the 10-20° category and 6% (9/152) in the < 10° category (p = 0.03). Posterior tilt of ≥ 20° increased the risk of fixation failure, with an adjusted hazard ratio of 3.4 (95% CI: 1.3-8.9; p = 0.01). The interclass correlation coefficient for angular measurements of posterior tilt was 0.90 (95% CI: 0.87-0.92), and the IRR for the categorization of posterior tilt into 3 groups was 0.76 (95% CI: 0.69-0.81). Interpretation - Preoperative posterior tilt of ≥ 20° in Garden-I and -II femoral neck fractures increased the risk of fixation failure necessitating salvage arthroplasty. The reliability of the methods that we used to measure posterior tilt ranged from good to excellent.

  8. Investigation of fiber tilt in paperboard

    Treesearch

    John M. Considine; David W. Vahey

    2008-01-01

    The introduction of short, tilted rods to reinforce polymer composite laminates has resulted in near doubling the strength of lap shear specimens. Paperboard is predominantly a multi-layered structure, similar to composite laminates in many ways. Improved bonding between layers should have a positive influence on mechanical performance. Tilted fibers, or z-direction...

  9. Observation of a commensurate array of flux chains in tilted flux lattices in Bi-Sr-Ca-Cu-O single crystals

    NASA Astrophysics Data System (ADS)

    Bolle, C. A.; Gammel, P. L.; Grier, D. G.; Murray, C. A.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.

    1991-01-01

    We report the observation of a novel flux-lattice structure, a commensurate array of flux-line chains. Our experiments consist of the magnetic decoration of the flux lattices in single crystals of Ba-Sr-Ca-Cu-O where the magnetic field is applied at an angle with respect to the conducting planes. For a narrow range of angles, the equilibrium structure is one with uniformly spaced chains with a higher line density of vortices than the background lattice. Our observations are in qualitative agreement with theories which suggest that, in strongly anisotropic materials the vortices develop an attractive interaction in tilted magnetic fields.

  10. Transient cardio-respiratory responses to visually induced tilt illusions

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Ramsdell, C. D.; Mullen, T. J.; Oman, C. M.; Harm, D. L.; Paloski, W. H.

    2000-01-01

    Although the orthostatic cardio-respiratory response is primarily mediated by the baroreflex, studies have shown that vestibular cues also contribute in both humans and animals. We have demonstrated a visually mediated response to illusory tilt in some human subjects. Blood pressure, heart and respiration rate, and lung volume were monitored in 16 supine human subjects during two types of visual stimulation, and compared with responses to real passive whole body tilt from supine to head 80 degrees upright. Visual tilt stimuli consisted of either a static scene from an overhead mirror or constant velocity scene motion along different body axes generated by an ultra-wide dome projection system. Visual vertical cues were initially aligned with the longitudinal body axis. Subjective tilt and self-motion were reported verbally. Although significant changes in cardio-respiratory parameters to illusory tilts could not be demonstrated for the entire group, several subjects showed significant transient decreases in mean blood pressure resembling their initial response to passive head-up tilt. Changes in pulse pressure and a slight elevation in heart rate were noted. These transient responses are consistent with the hypothesis that visual-vestibular input contributes to the initial cardiovascular adjustment to a change in posture in humans. On average the static scene elicited perceived tilt without rotation. Dome scene pitch and yaw elicited perceived tilt and rotation, and dome roll motion elicited perceived rotation without tilt. A significant correlation between the magnitude of physiological and subjective reports could not be demonstrated.

  11. Contact angle and surface tension measurements of a five-ring polyphenyl ether

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1985-01-01

    Contact angle measurements were performed for a five-ring polyphenyl ether isomeric mixture on M-50 steel in a dry nitrogen atmosphere. Two different techniques were used: (1) a tilting plate apparatus, and (2) a sessile drop apparatus. Measurements were made for the temperature range 25 to 190 C. Surface tension was measured by a differential maximum bubble pressure technique over the range 23 to 220C in room air. The critical surface energy of spreading (gamma (sub c)) was determined for the polyphenyl ether by plotting the cosine of the contact angle (theta) versus the surface tension (gamma (sub LV)). The straight line intercept at cosine theta = 1 is defined as gamma (sub c). Gamma (sub c) was found to be 30.1 dyn/cm for the tilting plate technique and 31.3 dyn/cm for the sessile drop technique. These results indicate that the polyphenyl ether is inherently autophobic (i.e., it will not spread on its own surface film until its surface tension is less than gamma (sub c). This phenomenon is discussed in light of the wettability and wear problems encountered with this fluid.

  12. Contact angle and surface tension measurements of a five-ring polyphenyl ether

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1986-01-01

    Contact angle measurements were performed for a five-ring polyphenyl ether isomeric mixture on M-50 steel in a dry nitrogen atmosphere. Two different techniques were used: (1) a tilting plate apparatus, and (2) a sessile drop apparatus. Measurements were made for the temperature range 25 to 190 C. Surface tension was measured by a differential maximum bubble pressure technique over the range 23 to 220 C in room air. The critical surface energy of spreading (gamma /sub c/) was determined for the polyphenyl ether by plotting the cosine of the contact angle (theta) versus the surface tension (gamma /sub LV/). The straight line intercept at cosine theta = 1 is defined as gamma (sub c). Gamma (sub c) was found to be 30.1 dyn/cm for the tilting plate technique and 31.3 dyn/cm for the sessile drop technique. These results indicate that the polyphenyl ether is inherently autophobic (i.e., it will not spread on its own surface film until its surface tension is less than gamma /sub c/). This phenomenon is discussed in light of the wettability and wear problems encountered with this fluid.

  13. Correction of Pelvic Tilt and Pelvic Rotation in Cup Measurement after THA - An Experimental Study.

    PubMed

    Schwarz, Timo Julian; Weber, Markus; Dornia, Christian; Worlicek, Michael; Renkawitz, Tobias; Grifka, Joachim; Craiovan, Benjamin

    2017-09-01

    Purpose  Accurate assessment of cup orientation on postoperative pelvic radiographs is essential for evaluating outcome after THA. Here, we present a novel method for correcting measurement inaccuracies due to pelvic tilt and rotation. Method  In an experimental setting, a cup was implanted into a dummy pelvis, and its final position was verified via CT. To show the effect of pelvic tilt and rotation on cup position, the dummy was fixed to a rack to achieve a tilt between + 15° anterior and -15° posterior and 0° to 20° rotation to the contralateral side. According to Murray's definitions of anteversion and inclination, we created a novel corrective procedure to measure cup position in the pelvic reference frame (anterior pelvic plane) to compensate measurement errors due to pelvic tilt and rotation. Results  The cup anteversion measured on CT was 23.3°; on AP pelvic radiographs, however, variations in pelvic tilt (± 15°) resulted in anteversion angles between 11.0° and 36.2° (mean error 8.3°± 3.9°). The cup inclination was 34.1° on CT and ranged between 31.0° and 38.7° (m. e. 2.3°± 1.5°) on radiographs. Pelvic rotation between 0° and 20° showed high variation in radiographic anteversion (21.2°-31.2°, m. e. 6.0°± 3.1°) and inclination (34.1°-27.2°, m. e. 3.4°± 2.5°). Our novel correction algorithm for pelvic tilt reduced the mean error in anteversion measurements to 0.6°± 0.2° and in inclination measurements to 0.7° (SD± 0.2). Similarly, the mean error due to pelvic rotation was reduced to 0.4°± 0.4° for anteversion and to 1.3°± 0.8 for inclination. Conclusion  Pelvic tilt and pelvic rotation may lead to misinterpretation of cup position on anteroposterior pelvic radiographs. Mathematical correction concepts have the potential to significantly reduce these errors, and could be implemented in future radiological software tools. Key Points   · Pelvic tilt and rotation influence cup

  14. Post-coronagraphic tip-tilt sensing for vortex phase masks: The QACITS technique

    NASA Astrophysics Data System (ADS)

    Huby, E.; Baudoz, P.; Mawet, D.; Absil, O.

    2015-12-01

    Context. Small inner working angle coronagraphs, such as the vortex phase mask, are essential to exploit the full potential of ground-based telescopes in the context of exoplanet detection and characterization. However, the drawback of this attractive feature is a high sensitivity to pointing errors, which degrades the performance of the coronagraph. Aims: We propose a tip-tilt retrieval technique based on the analysis of the final coronagraphic image, hereafter called Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing (QACITS). Methods: Under the assumption of small phase aberrations, we show that the behavior of the vortex phase mask can be simply described from the entrance pupil to the Lyot stop plane with Zernike polynomials. This convenient formalism is used to establish the theoretical basis of the QACITS technique. We performed simulations to demonstrate the validity and limits of the technique, including the case of a centrally obstructed pupil. Results: The QACITS technique principle is validated with experimental results in the case of an unobstructed circular aperture, as well as simulations in presence of a central obstruction. The typical configuration of the Keck telescope (24% central obstruction) has been simulated with additional high order aberrations. In these conditions, our simulations show that the QACITS technique is still adapted to centrally obstructed pupils and performs tip-tilt retrieval with a precision of 5 × 10-2λ/D when wavefront errors amount to λ/ 14 rms and 10-2λ/D for λ/ 70 rms errors (with λ the wavelength and D the pupil diameter). Conclusions: We have developed and demonstrated a tip-tilt sensing technique for vortex coronagraphs. The implementation of the QACITS technique is based on the analysis of the scientific image and does not require any modification of the original setup. Current facilities equipped with a vortex phase mask can thus directly benefit from this technique to improve the contrast

  15. Dynamics of thin-skinned fold and thrust belts with a tilted detachment

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Kaus, Boris J. P.; Epard, Jean-Luc

    2014-05-01

    The formation of the Jura fold and thrust belt is linked to the Alpine orogeny. However, it is still a matter of debate why the Jura was formed tens of kilometres far away from the active deformation front while the Molasse basin that lies in between remained mostly undeformed. Progressive thickening of the Molasse basin due to its infill with sediments, and the existence of a tilted potential detachment level at the Triassic evaporitic units, have been pushed forward as the main causes for the detachment of the Molasse basin and the consequent jump of the deformation front from the Alpine front to the position of the Jura at around 22 Ma or later (e.g Willett and Schlunegger, 2010). In order to better understand the dynamics of a thin-skinned fold and thrust belt with a tilted detachment we have performed systematic forward numerical simulations with the 2D thermo-mechanical finite element code MILAMIN_VEP. The modelled setup consists of a tilted detachment, overlain by a sedimentary cover of constant thickness and a wedge shaped basin infill that makes the initial surface slope of the system to be zero. In this study we have tested the importance of the following factors in the dynamics of such a fold and thrust belt evolution: 1) the applied boundary conditions 2) the angle of a uniformly tilted detachment 3) the end displacement of a curved detachment with a flexural foreland basin profile. The implications of the studied factors are discussed for the case of the Jura-Molasse system. Acknowledgements Funding was provided by the European Research Council under the European Community's Seventh Framework program (FP7/2007-2013) ERC Grant agreement #258830. References Willett, S.D. and Schlunegger, F. 2010, The last phase of deposition in the Swiss Molasse Basin: from foredeep to negative-alpha basin. Basin Research 22, 623-639, doi: 10.1111/j.1365-2117.2009.00435.x

  16. Tilt Nacelle Vertical and Short Takeoff and Landing Engine

    NASA Image and Video Library

    1979-03-21

    Center Director John McCarthy, left, and researcher Al Johns pose with a one-third scale model of a Grumman Aerospace tilt engine nacelle for Vertical and Short Takeoff and Landing (V/STOL) in the 9- by 15-Foot Low Speed Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying tilt nacelle and inlet issues for several years. One area of concern was the inlet flow separation during the transition from horizontal to vertical flight. The separation of air flow from the inlet’s internal components could significantly stress the fan blades or cause a loss of thrust. In 1978 NASA researchers Robert Williams and Al Johns teamed with Grumman’s H.C. Potonides to develop a series of tests in the Lewis 9- by 15-foot tunnel to study a device designed to delay the flow separation by blowing additional air into the inlet. A jet of air, supplied through the hose on the right, was blown over the inlet surfaces. The researchers verified that the air jet slowed the flow separation. They found that the blowing on boundary layer control resulted in a doubling of the angle-of-attack and decreases in compressor blade stresses and fan distortion. The tests were the first time the concept of blowing air for boundary layer control was demonstrated. Boundary layer control devices like this could result in smaller and lighter V/STOL inlets.

  17. Study of a Car Body Tilting System Using a Variable Link Mechanism: Fundamental Characteristics of Pendulum Motion and Strategy for Perfect Tilting

    NASA Astrophysics Data System (ADS)

    Yoshida, Hidehisa; Nagai, Masao

    This paper analyzes the fundamental dynamic characteristics of a tilting railway vehicle using a variable link mechanism for compensating both the lateral acceleration experienced by passengers and the wheel load imbalance between the inner and outer rails. The geometric relations between the center of rotation, the center of gravity, and the positions of all four links of the tilting system are analyzed. Then, equations of the pendulum motions of the railway vehicle body with a four-link mechanism are derived. A theoretically discussion is given on the geometrical shapes employed in the link mechanism that can simultaneously provide zero lateral acceleration and zero wheel load fluctuation. Then, the perfect tilting condition, which is the control target of the feedforward tilting control, is derived from the linear equation of tilting motion.

  18. How precise can atoms of a nanocluster be located in 3D using a tilt series of scanning transmission electron microscopy images?

    PubMed

    Alania, M; De Backer, A; Lobato, I; Krause, F F; Van Dyck, D; Rosenauer, A; Van Aert, S

    2017-10-01

    In this paper, we investigate how precise atoms of a small nanocluster can ultimately be located in three dimensions (3D) from a tilt series of images acquired using annular dark field (ADF) scanning transmission electron microscopy (STEM). Therefore, we derive an expression for the statistical precision with which the 3D atomic position coordinates can be estimated in a quantitative analysis. Evaluating this statistical precision as a function of the microscope settings also allows us to derive the optimal experimental design. In this manner, the optimal angular tilt range, required electron dose, optimal detector angles, and number of projection images can be determined. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The opposition and tilt effects of Saturn’s rings from HST observations

    NASA Astrophysics Data System (ADS)

    Salo, Heikki; French, Richard G.

    2010-12-01

    The two major factors contributing to the opposition brightening of Saturn's rings are (i) the intrinsic brightening of particles due to coherent backscattering and/or shadow hiding on their surfaces, and (ii) the reduced interparticle shadowing when the solar phase angle α → 0°. We utilize the extensive set of Hubble Space Telescope observations (Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 199-223) for different elevation angles B and wavelengths λ to disentangle these contributions. We assume that the intrinsic contribution is independent of B, so that any B dependence of the phase curves is due to interparticle shadowing, which must also act similarly for all λ's. Our study complements that of Poulet et al. (Poulet, F., Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 224), who used a subset of data for a single B ˜ 10°, and the French et al. (French, R.G., Verbiscer, A., Salo, H., McGhee, C.A., Dones, L. [2007b] PASP 119, 623-642) study for the B ˜ 23° data set that included exact opposition. We construct a grid of dynamical/photometric simulation models, with the method of Salo and Karjalainen (Salo and Karjalainen [2003]. Icarus 164, 428-460), and use these simulations to fit the elevation-dependent part of opposition brightening. Eliminating the modeled interparticle component yields the intrinsic contribution to the opposition effect: for the B and A rings it is almost entirely due to coherent backscattering; for the C ring, an intraparticle shadow hiding contribution may also be present. Based on our simulations, the width of the interparticle shadowing effect is roughly proportional to B. This follows from the observation that as B decreases, the scattering is primarily from the rarefied low filling factor upper ring layers, whereas at larger B's the dense inner parts are visible. Vertical segregation of particle sizes further enhances this effect. The elevation angle dependence of interparticle shadowing also explains most

  20. Efficacy of tilt training in patients with vasovagal syncope.

    PubMed

    Gajek, Jacek; Zyśko, Dorota; Mazurek, Walentyna

    2006-06-01

    Besides pharmacological therapy and pacemaker implantation, tilt training is a promising method of treatment in patients with vasovagal syncope (VVS). Tilt training is usually offered to patients with malignant or recurrent VVS which impairs their quality of life and carries a risk of injury. To assess the efficacy of tilt training in patients with VVS. The study group consisted of 40 patients (29 females, 11 males, aged 36.6+/-14 years, range 18-57 years) who underwent tilt training using tilt table testing according to the Westminster protocol. The mean number of syncopal episodes prior to the initiation of tilt training was 6.5+/-4.9 (range 0-20); 3 patients had a history of very frequent faints. According to the VASIS classification, type I VVS (mixed) was diagnosed in 17 patients, type II (cardioinhibitory) in 22 subjects, and type III (vasodepressive) in one patient. Mean follow-up duration was 35.1+/-13.5 months. The control group, which did not undergo the tilt testing programme, consisted of 29 patients with VVS (25 females, 4 males, mean age 44.2+/-15.0 years) who had a mean of 3.3+/-3.2 (range 0-12) syncopal episodes in the past (p <0.05 vs study group); 6 of these patients had only pre-syncopal episodes. Type I VVS was diagnosed in 23 controls and type II VVS in 6 control subjects (syncope occurred during the passive phase of tilt testing in 7 subjects, whereas the remaining 22 fainted during NTG infusion). Of the patients from the study group, 3 underwent pacemaker implantation at the time of the initiation of tilt training. At the end of follow-up, 31 (77.5%) patients remained free from syncope recurrences, 5 had syncopal episodes during the initial phase of tilt training, whereas the remaining 4 continued to suffer from syncopal episodes. Out of 3 patients with presyncope, 2 had no syncope recurrences whereas 1 patient continued to have presyncopal attacks. Out of 3 patients with pacemakers, 1 reported activation of pacing in the interventional mode

  1. Multiple incidence angle SIR-B experiment over Argentina

    NASA Technical Reports Server (NTRS)

    Cimino, Jobea; Casey, Daren; Wall, Stephen; Brandani, Aldo; Domik, Gitta; Leberl, Franz

    1986-01-01

    The Shuttle Imaging Radar (SIR-B), the second synthetic aperture radar (SAR) to fly aboard a shuttle, was launched on October 5, 1984. One of the primary goals of the SIR-B experiment was to use multiple incidence angle radar images to distinguish different terrain types through the use of their characteristic backscatter curves. This goal was accomplished in several locations including the Chubut Province of southern Argentina. Four descending image acquisitions were collected providing a multiple incidence angle image set. The data were first used to assess stereo-radargrammetric techniques. A digital elevation model was produced using the optimum pair of multiple incidence angle images. This model was then used to determine the local incidence angle of each picture element to generate curves of relative brightness vs. incidence angle. Secondary image products were also generated using the multi-angle data. The results of this work indicate that: (1) various forest species and various structures of a single species may be discriminated using multiple incidence angle radar imagery, and (2) it is essential to consider the variation in backscatter due to a variable incidence angle when analyzing and comparing data collected at varying frequencies and polarizations.

  2. Diagnosing Postural Tachycardia Syndrome: Comparison of Tilt Test versus Standing Hemodynamics

    PubMed Central

    Plash, Walker B; Diedrich, André; Biaggioni, Italo; Garland, Emily M; Paranjape, Sachin Y; Black, Bonnie K; Dupont, William D; Raj, Satish R

    2012-01-01

    Postural tachycardia syndrome (POTS) is characterized by increased heart rate (ΔHR) of ≥30 bpm with symptoms related to upright posture. Active stand (STAND) and passive head-up tilt (TILT) produce different physiological responses. We hypothesized these different responses would affect the ability of individuals to achieve the POTS HR increase criterion. Patients with POTS (n=15) and healthy controls (n=15) underwent 30 min of TILT and STAND testing. ΔHR values were analyzed at 5 min intervals. Receiver Operating Characteristics analysis was performed to determine optimal cut point values of ΔHR for both TILT and STAND. TILT produced larger ΔHR than STAND for all 5 min intervals from 5 min (38±3 bpm vs. 33±3 bpm; P=0.03) to 30 min (51±3 bpm vs. 38±3 bpm; P<0.001). Sensitivity (Sn) of the 30 bpm criterion was similar for all tests (TILT-10=93%, STAND-10=87%, TILT30=100%, and STAND30=93%). Specificity (Sp) of the 30 bpm criterion was less at both 10 and 30 min for TILT (TILT10=40%, TILT30=20%) than STAND (STAND10=67%, STAND30=53%). The optimal ΔHR to discriminate POTS at 10 min were 38 bpm (TILT) and 29 bpm (STAND), and at 30 min were 47 bpm (TILT) and 34 bpm (STAND). Orthostatic tachycardia was greater for TILT (with lower specificity for POTS diagnosis) than STAND at 10 and 30 min. The 30 bpm ΔHR criterion is not suitable for 30 min TILT. Diagnosis of POTS should consider orthostatic intolerance criteria and not be based solely on orthostatic tachycardia regardless of test used. PMID:22931296

  3. Proline Kink Angle Distributions for GWALP23 in Lipid Bilayers of Different Thickness†

    PubMed Central

    Rankenberg, Johanna M.; Vostrikov, Vitaly V.; DuVall, Christopher D.; Greathouse, Denise V.; Koeppe, Roger E.; Grant, Christopher V.; Opella, Stanley J.

    2013-01-01

    By using selected 2H and 15N labels, we have examined the influence of a central proline residue upon the properties of a defined peptide that spans lipid bilayer membranes by solid-state NMR spectroscopy. For this purpose, GWALP23 (acetyl-GGALW5LALALALALALALW19LAGA-ethanolamide) is a suitable model peptide that employs—for the purpose of interfacial anchoring—only one tryptophan residue on either end of a central alpha-helical core sequence. Because of its systematic behavior in lipid bilayer membranes of differing thickness (see J. Biol. Chem. 285, 31723), we utilize GWALP23 as a well-characterized framework for introducing guest residues within a transmembrane sequence; for example, a central proline yields acetyl-GGALW5LALALAP12ALALALW19LAGA-ethanolamide. We synthesized the GWALP23-P12 with specifically placed 2H and 15N labels for solid-state NMR spectroscopy, and examined the peptide orientation and segmental tilt in oriented DMPC lipid bilayer membranes using combined (2H)-GALA and (15N-1H) high resolution separated local field methods. In DMPC bilayer membranes, the peptide segments N-terminal and C-terminal to the proline are both tilted substantially with respect to the bilayer normal, by about 34° and 29° (± 5°), respectively. While the tilt increases for both segments when proline is present, the range and extent of the individual segment motions are comparable or less than those of the entire GWALP23 peptide in bilayer membranes. In DMPC, the proline induces a kink of about 30° (± 5°), with an apparent helix unwinding or “swivel” angle of about 70°. In DLPC and DOPC, based on 2H NMR data only, the kink angle and swivel angle probability distributions overlap those of DMPC, yet the most probable kink angle appears somewhat smaller than in DMPC. As has been described for GWALP23 itself, the C-terminal helix ends before Ala-21 in the phospholipids DMPC and DLPC, yet remains intact through Ala-21 in DOPC. The dynamics of bilayer

  4. Anomalous Nernst and thermal Hall effects in tilted Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Ferreiros, Yago; Zyuzin, A. A.; Bardarson, Jens H.

    2017-09-01

    We study the anomalous Nernst and thermal Hall effects in a linearized low-energy model of a tilted Weyl semimetal, with two Weyl nodes separated in momentum space. For inversion symmetric tilt, we give analytic expressions in two opposite limits: For a small tilt, corresponding to a type-I Weyl semimetal, the Nernst conductivity is finite and independent of the Fermi level; for a large tilt, corresponding to a type-II Weyl semimetal, it acquires a contribution depending logarithmically on the Fermi energy. This result is in a sharp contrast to the nontilted case, where the Nernst response is known to be zero in the linear model. The thermal Hall conductivity similarly acquires Fermi surface contributions, which add to the Fermi level-independent, zero-tilt result, and is suppressed as one over the tilt parameter at half filling in the type-II phase. In the case of inversion-breaking tilt, with the tilting vector of equal modulus in the two Weyl cones, all Fermi surface contributions to both anomalous responses cancel out, resulting in zero Nernst conductivity. We discuss two possible experimental setups, representing open and closed thermoelectric circuits.

  5. Comparing non-invasive scapular tracking methods across elevation angles, planes of elevation and humeral axial rotations.

    PubMed

    Grewal, T-J; Cudlip, A C; Dickerson, C R

    2017-12-01

    Altered scapular motions premeditate shoulder impingement and other musculoskeletal disorders. Divergent experimental conditions in previous research precludes rigorous comparisons of non-invasive scapular tracking techniques. This study evaluated scapular orientation measurement methods across an expanded range of humeral postures. Scapular medial/lateral rotation, anterior/posterior tilt and protraction/retraction was measured using an acromion marker cluster (AMC), a scapular locator, and a reference stylus. Motion was captured using reflective markers on the upper body, as well as on the AMC, locator and stylus. A combination of 5 arm elevation angles, 3 arm elevation planes and 3 arm axial rotations was examined. Measurement method interacted with elevation angle and plane of elevation for all three scapular orientation directions (p < 0.01). Method of measurement interacted with axial rotation in anterior/posterior tilt and protraction/retraction (p < 0.01). The AMC had strong agreement with the reference stylus than the locator for the majority of humeral elevations, planes and axial rotations. The AMC underestimated lateral rotation, with the largest difference of ∼2° at 0° elevation. Both the locator and AMC overestimated posterior tilt at high arm elevation by up to 7.4°. Misestimations from using the locator could be enough to potentially obscure meaningful differences in scapular rotations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Octahedral tilting instabilities in inorganic halide perovskites

    NASA Astrophysics Data System (ADS)

    Bechtel, Jonathon S.; Van der Ven, Anton

    2018-02-01

    Dynamic instabilities, stabilized by anharmonic interactions in cubic and tetragonal halide perovskites at high temperature, play a role in the electronic structure and optoelectronic properties of halide perovskites. In particular, inorganic and hybrid perovskite materials undergo structural phase transitions associated with octahedral tilts of the metal-halide octahedra. We investigate the structural instabilities present in inorganic Cs M X3 perovskites with Pb or Sn on the metal site and Br or I on the X site. Defining primary order parameters in terms of symmetry-adapted collective displacement modes and secondary order parameters in terms of symmetrized Hencky strain components, we unravel the coupling between octahedral tilt modes and macroscopic strains as well as the role of A -site displacements in perovskite phase stability. Symmetry-allowed secondary strain order parameters are enumerated for the 14 unique perovskite tilt systems. Using first-principles calculations to explore the Born-Oppenheimer energy surface in terms of symmetrized order parameters, we find coupling between octahedral tilting and A -site displacements is necessary to stabilize P n m a ground states. Additionally, we show that the relative stability of an inorganic halide perovskite tilt system correlates with the volume decrease from the high-symmetry cubic phase to the low-symmetry distorted phase.

  7. Tilted pillar array fabrication by the combination of proton beam writing and soft lithography for microfluidic cell capture: Part 1 Design and feasibility.

    PubMed

    Rajta, Istvan; Huszánk, Robert; Szabó, Atilla T T; Nagy, Gyula U L; Szilasi, Szabolcs; Fürjes, Peter; Holczer, Eszter; Fekete, Zoltan; Járvás, Gabor; Szigeti, Marton; Hajba, Laszlo; Bodnár, Judit; Guttman, Andras

    2016-02-01

    Design, fabrication, integration, and feasibility test results of a novel microfluidic cell capture device is presented, exploiting the advantages of proton beam writing to make lithographic irradiations under multiple target tilting angles and UV lithography to easily reproduce large area structures. A cell capture device is demonstrated with a unique doubly tilted micropillar array design for cell manipulation in microfluidic applications. Tilting the pillars increased their functional surface, therefore, enhanced fluidic interaction when special bioaffinity coating was used, and improved fluid dynamic behavior regarding cell culture injection. The proposed microstructures were capable to support adequate distribution of body fluids, such as blood, spinal fluid, etc., between the inlet and outlet of the microfluidic sample reservoirs, offering advanced cell capture capability on the functionalized surfaces. The hydrodynamic characteristics of the microfluidic systems were tested with yeast cells (similar size as red blood cells) for efficient capture. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Stabilizing windings for tilting and shifting modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardin, S.C.; Christensen, U.R.

    1982-02-26

    This invention provides simple, inexpensive, independent and passive, conducting loops for stabilizing a plasma ring having externally produced equilibrium fields on opposite sides of the plasma ring and internal plasma currents that interact to tilt and/or shift the plasma ring relative to the externally produced equilibrium field so as to produce unstable tilting and/or shifting modes in the plasma ring. More particularly this invention provides first and second passive conducting loops for containing first and second induced currents in first and second directions corresponding to the amplitude and directions of the unstable tilting and/or shifting modes in the plasma ring.more » To this end, the induced currents provide additional magnetic fields for producing restoring forces and/or restoring torques for counteracting the tilting and/or shifting modes when the conducting loops are held fixed in stationary positions relative to the externally produced equilibrium fields on opposite sides of the plasma ring.« less

  9. Changes in Pelvic Incidence, Pelvic Tilt, and Sacral Slope in Situations of Pelvic Rotation.

    PubMed

    Jin, Hai-Ming; Xu, Dao-Liang; Xuan, Jun; Chen, Jiao-Xiang; Chen, Kai; Goswami, Amit; Chen, Yu; Kong, Qiu-Yan; Wang, Xiang-Yang

    2017-08-01

    Digitally reconstructed radiograph-based study. Using a computer-based method to determine what degree of pelvic rotation is acceptable for measuring the pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). The effectiveness of a geometrical formula used to calculate the angle of pelvic rotation proposed in a previous article was assessed. It is unclear whether PI, PT, and SS are valid with pelvic rotation while acquiring a radiograph. Ten 3-dimensionally reconstructed models were established with software and placed in a neutral orientation to orient all of the bones in a standing position. Next, 140 digitally reconstructed radiographs were obtained by rotating the models around the longitudinal axis of each pelvis in the software from 0 to 30 degrees at 2.5-degree intervals. PI, PT, and SS were measured. The rotation angle was considered to be acceptable when the change in the measured angle (compared with the "correct" position) was <6 degrees. The rotation angle (α) on the images was calculated by a geometrical formula. Consistency between the measured value and the set angle was assessed. The acceptable maximum angle of rotation for reliable measurements of PI was 17.5 degrees, and the changes in PT and SS were within an acceptable range (<6 degrees) when the pelvic rotation increased from 0 to 30 degrees. The effectiveness of the geometrical formula was shown by the consistency between the set and the calculated rotation angles of the pelvis (intraclass correlation coefficient=0.99). Our study provides insight into the influence of pelvic rotation on the PI, PT, and SS. PI changes with pelvic rotation. The acceptable maximum angle for reliable values of PI, PT, and SS was 17.5 degrees, and the rotation angle of the pelvis on a lateral spinopelvic radiograph can be calculated reliably.

  10. Influence of the nozzle angle on refrigeration performance of a gas wave refrigerator

    NASA Astrophysics Data System (ADS)

    Liu, P.; Zhu, Y.; Wang, H.; Zhu, C.; Zou, J.; Wu, J.; Hu, D.

    2017-05-01

    A gas wave refrigerator (GWR) is a novel refrigerating device that refrigerates a medium by shock waves and expansion waves generated by gas pressure energy. In a typical GWR, the injection energy losses between the nozzle and the expansion tube are essential factors which influence the refrigeration efficiency. In this study, numerical simulations are used to analyze the underlying mechanism of the injection energy losses. The results of simulations show that the vortex loss, mixing energy loss, and oblique shock wave reflection loss are the main factors contributing to the injection energy losses in the expansion tube. Furthermore, the jet angle of the gas is found to dominate the injection energy losses. Therefore, the optimum jet angle is theoretically calculated based on the velocity triangle method. The value of the optimum jet angle is found to be 4^{circ }, 8^{circ }, and 12^{circ } when the refrigeration efficiency is the first-order, second-order, and third-order maximum value over all working ranges of jet frequency, respectively. Finally, a series of experiments are conducted with the jet angle ranging from -4^{circ } to 12^{circ } at a constant expansion ratio. The results indicate the optimal jet angle obtained by the experiments is in good agreement with the calculated value. The isentropic refrigeration efficiency increased by about 4 % after the jet angle was optimized.

  11. Introducer curving technique for the prevention of tilting of transfemoral Günther Tulip inferior vena cava filter.

    PubMed

    Xiao, Liang; Huang, De-sheng; Shen, Jing; Tong, Jia-jie

    2012-01-01

    To determine whether the introducer curving technique is useful in decreasing the degree of tilting of transfemoral Tulip filters. The study sample group consisted of 108 patients with deep vein thrombosis who were enrolled and planned to undergo thrombolysis, and who accepted transfemoral Tulip filter insertion procedure. The patients were randomly divided into Group C and Group T. The introducer curving technique was Adopted in Group T. The post-implantation filter tilting angle (ACF) was measured in an anteroposterior projection. The retrieval hook adhering to the vascular wall was measured via tangential cavogram during retrieval. The overall average ACF was 5.8 ± 4.14 degrees. In Group C, the average ACF was 7.1 ± 4.52 degrees. In Group T, the average ACF was 4.4 ± 3.20 degrees. The groups displayed a statistically significant difference (t = 3.573, p = 0.001) in ACF. Additionally, the difference of ACF between the left and right approaches turned out to be statistically significant (7.1 ± 4.59 vs. 5.1 ± 3.82, t = 2.301, p = 0.023). The proportion of severe tilt (ACF ≥ 10°) in Group T was significantly lower than that in Group C (9.3% vs. 24.1%, χ(2) = 4.267, p = 0.039). Between the groups, the difference in the rate of the retrieval hook adhering to the vascular wall was also statistically significant (2.9% vs. 24.2%, χ(2) = 5.030, p = 0.025). The introducer curving technique appears to minimize the incidence and extent of transfemoral Tulip filter tilting.

  12. Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating.

    PubMed

    Zhou, Wenjun; Mandia, David J; Barry, Seán T; Albert, Jacques

    2015-04-15

    The absolute refractive indices (RIs) of water and other liquids are determined with an uncertainty of ±0.001 at near-infrared wavelengths by using the tilted fiber Bragg grating (TFBG) cladding mode resonances of a standard single-mode fiber to measure the critical angle for total internal reflection at the interface between the fiber and its surroundings. The necessary condition to obtain absolute RIs (instead of measuring RI changes) is a thorough characterization of the dispersion of the core mode effective index of the TFBG across the full range of its cladding mode resonance spectrum. This technique is shown to be competitive with the best available measurements of the RIs of water and NaCl solutions at wavelengths in the vicinity of 1550 nm.

  13. Prediction of Unsteady Blade Surface Pressures on an Advanced Propeller at an Angle of Attack

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1989-01-01

    The numerical solution of the unsteady, three-dimensional, Euler equations is considered in order to obtain the blade surface pressures of an advanced propeller at an angle of attack. The specific configuration considered is the SR7L propeller at cruise conditions with a 4.6 deg inflow angle corresponding to the plus 2 deg nacelle tilt of the Propeller Test Assessment (PTA) flight test condition. The results indicate nearly sinusoidal response of the blade loading, with angle of attack. For the first time, detailed variations of the chordwise loading as a function of azimuthal angle are presented. It is observed that the blade is lightly loaded for part of the revolution and shocks appear from hub to about 80 percent radial station for the highly loaded portion of the revolution.

  14. Prediction of unsteady blade surface pressures on an advanced propeller at an angle of attack

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Groeneweg, J. F.

    1989-01-01

    The paper considers the numerical solution of the unsteady, three-dimensional, Euler equations to obtain the blade surface pressures of an advanced propeller at an angle of attack. The specific configuration considered is the SR7L propeller at cruise conditions with a 4.6 deg inflow angle corresponding to the +2 deg nacelle tilt of the Propeller Test Assessment (PTA) flight test condition. The results indicate nearly sinusoidal response of the blade loading, with angle of attack. For the first time, detailed variations of the chordwise loading as a function of azimuthal angle are presented. It is observed that the blade is lightly loaded for part of the revolution and shocks appear from hub to about 80 percent radial station for the highly loaded portion of the revolution.

  15. A study of the influence of air-knife tilting on coating thickness in hot-dip galvanizing

    NASA Astrophysics Data System (ADS)

    Cho, Tae-Seok; Kwon, Young-Doo; Kwon, Soon-Bum

    2009-09-01

    Gas wiping is a decisive operation in hot-dip galvanizing process. In special, it has a crucial influence on the thickness and uniformity in coating film, but may be subsequently responsible for the problem of splashing. The progress of industry demands continuously the reduction of production costs which may relate directly with the increase of coating speed, and the speed up of coating results in the increase of stagnation pressure in gas wiping system in final. It is known that the increase of stagnation pressure may accompany a harmful problem of splashing in general. Together with these, also, from the view point of energy consumption, it is necessary to design a nozzle optimally. And there is known that the downward tilting of nozzle using in air knife system is effective to prevent in somewhat the harmful problem of splashing. In these connections, first, we design a nozzle with constant expansion rate. Next, for the case of actual coating conditions in field, the effects of tilting of the constant expansion rate nozzle are investigated by numerical analysis. Under the present numerical conditions, it was turned out that the nozzle of constant expansion rate of p = having a downward jet angle of 5° is the most effective to diminish the onset of splashing, while the influence of small tilting of the nozzle on impinging wall pressure itself is not so large.

  16. An integrated optimum design approach for high speed prop rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.

    1995-01-01

    The objective is to develop an optimization procedure for high-speed and civil tilt-rotors by coupling all of the necessary disciplines within a closed-loop optimization procedure. Both simplified and comprehensive analysis codes are used for the aerodynamic analyses. The structural properties are calculated using in-house developed algorithms for both isotropic and composite box beam sections. There are four major objectives of this study. (1) Aerodynamic optimization: The effects of blade aerodynamic characteristics on cruise and hover performance of prop-rotor aircraft are investigated using the classical blade element momentum approach with corrections for the high lift capability of rotors/propellers. (2) Coupled aerodynamic/structures optimization: A multilevel hybrid optimization technique is developed for the design of prop-rotor aircraft. The design problem is decomposed into a level for improved aerodynamics with continuous design variables and a level with discrete variables to investigate composite tailoring. The aerodynamic analysis is based on that developed in objective 1 and the structural analysis is performed using an in-house code which models a composite box beam. The results are compared to both a reference rotor and the optimum rotor found in the purely aerodynamic formulation. (3) Multipoint optimization: The multilevel optimization procedure of objective 2 is extended to a multipoint design problem. Hover, cruise, and take-off are the three flight conditions simultaneously maximized. (4) Coupled rotor/wing optimization: Using the comprehensive rotary wing code CAMRAD, an optimization procedure is developed for the coupled rotor/wing performance in high speed tilt-rotor aircraft. The developed procedure contains design variables which define the rotor and wing planforms.

  17. Flight Investigation of the Stability and Control Characteristics of a 1/4-Scale Model of a Tilt-Wing Vertical-Take-Off-and-Landing Aircraft

    NASA Technical Reports Server (NTRS)

    Tosti, Louis P.

    1959-01-01

    An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a tilt-wing vertical-take-off-and-landing aircraft with the use of a remotely controlled 1/4-scale free-flight model. The model had two propellers with hinged (flapping) blades mounted on the wing which could be tilted up to an incidence angle of nearly 90 deg for vertical take-off and landing. The investigation consisted of hovering flights in still air, vertical take-offs and landings, and slow constant-altitude transitions from hovering to forward flight. The stability and control characteristics of the model were generally satisfactory except for the following characteristics. In hovering flight, the model had an unstable pitching oscillation of relatively long period which the pilots were able to control without artificial stabilization but which could not be considered entirely satisfactory. At very low speeds and angles of wing incidence on the order of 70 deg, the model experienced large nose-up pitching moments which severely limited the allowable center-of-gravity range.

  18. Making structured metals transparency for broadband and wide-incidence-angle electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Fan, Renhao; Peng, Ruwen; Huang, Xianrong; Wang, Mu

    2014-03-01

    Very recently, we have demonstrated that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic (EM) waves under oblique incidence. However, the oblique-incidence geometry, is inconvenient for the technological applications. To overcome this drawback, here we instead use oblique metal gratings with optimal tilt angles to achieve normal-incidence broadband transparence for EM waves. Further we use two-dimensional periodic metallic cuboids to achieve broadband and broad-angle high transmission and antireflection. By introducing such metallic cuboids arrays into silicon solar cells, we find that high performance of light trapping in the cells can be obtained with a significant enhancement of the ultimate quantum efficiency. The structured metals, which achieve broadband and broad-angle high transmission for EM waves, may have many other potential applications, such as transparent conducting panels, white-beam polarizers, and stealth objects.

  19. Roll-Tilt Perception Using a Somatosensory Bar Task

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Wade, S. W.; Arshi, A.

    1999-01-01

    Visual estimates of roll-tilt perception during static roll-tilt are confounded by an offset due to the ocular counterroll that simultaneously occurs. An alternative, non-visual ('somatosensory') measure of roll-tilt perception was developed which is not contaminated by this offset. The aims of this study were to determine: 1) inter-subject variability of somatosensory settings across test session in normal subjects and patients with unilateral or bilateral vestibular loss and 2) intra-subject variability of settings across test session in normal subjects.

  20. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.

    PubMed

    Chen, Zhen; Dorfman, Kevin D

    2014-02-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The natural angle between the hand and handle and the effect of handle orientation on wrist radial/ulnar deviation during maximal push exertions.

    PubMed

    Young, Justin G; Lin, Jia-Hua; Chang, Chien-Chi; McGorry, Raymond W

    2013-01-01

    The purpose of this experiment was to quantify the natural angle between the hand and a handle, and to investigate three design factors: handle rotation, handle tilt and between-handle width on the natural angle as well as resultant wrist radial/ulnar deviation ('RUD') for pushing tasks. Photographs taken of the right upper limb of 31 participants (14 women and 17 men) performing maximal seated push exertions on different handles were analysed. Natural hand/handle angle and RUD were assessed. It was found that all of the three design factors significantly affected natural handle angle and wrist RUD, but participant gender did not. The natural angle between the hand and the cylindrical handle was 65 ± 7°. Wrist deviation was reduced for handles that were rotated 0° (horizontal) and at the narrow width (31 cm). Handles that were tilted forward 15° reduced radial deviation consistently (12-13°) across handle conditions. Manual materials handling (MMH) tasks involving pushing have been related to increased risk of musculoskeletal injury. This study shows that handle orientation influences hand and wrist posture during pushing, and suggests that the design of push handles on carts and other MMH aids can be improved by adjusting their orientation to fit the natural interface between the hand and handle.

  2. Study of the retardance of a birefringent waveplate at tilt incidence by Mueller matrix ellipsometer

    NASA Astrophysics Data System (ADS)

    Gu, Honggang; Chen, Xiuguo; Zhang, Chuanwei; Jiang, Hao; Liu, Shiyuan

    2018-01-01

    Birefringent waveplates are indispensable optical elements for polarization state modification in various optical systems. The retardance of a birefringent waveplate will change significantly when the incident angle of the light varies. Therefore, it is of great importance to study such field-of-view errors on the polarization properties, especially the retardance of a birefringent waveplate, for the performance improvement of the system. In this paper, we propose a generalized retardance formula at arbitrary incidence and azimuth for a general plane-parallel composite waveplate consisting of multiple aligned single waveplates. An efficient method and corresponding experimental set-up have been developed to characterize the retardance versus the field-of-view angle based on a constructed spectroscopic Mueller matrix ellipsometer. Both simulations and experiments on an MgF2 biplate over an incident angle of 0°-8° and an azimuthal angle of 0°-360° are presented as an example, and the dominant experimental errors are discussed and corrected. The experimental results strongly agree with the simulations with a maximum difference of 0.15° over the entire field of view, which indicates the validity and great potential of the presented method for birefringent waveplate characterization at tilt incidence.

  3. Diagnosing postural tachycardia syndrome: comparison of tilt testing compared with standing haemodynamics.

    PubMed

    Plash, Walker B; Diedrich, André; Biaggioni, Italo; Garland, Emily M; Paranjape, Sachin Y; Black, Bonnie K; Dupont, William D; Raj, Satish R

    2013-01-01

    POTS (postural tachycardia syndrome) is characterized by an increased heart rate (ΔHR) of ≥30 bpm (beats/min) with symptoms related to upright posture. Active stand (STAND) and passive head-up tilt (TILT) produce different physiological responses. We hypothesized these different responses would affect the ability of individuals to achieve the POTS HR increase criterion. Patients with POTS (n=15) and healthy controls (n=15) underwent 30 min of tilt and stand testing. ΔHR values were analysed at 5 min intervals. ROC (receiver operating characteristic) analysis was performed to determine optimal cut point values of ΔHR for both tilt and stand. Tilt produced larger ΔHR than stand for all 5 min intervals from 5 min (38±3 bpm compared with 33±3 bpm; P=0.03) to 30 min (51±3 bpm compared with 38±3 bpm; P<0.001). Sn (sensitivity) of the 30 bpm criterion was similar for all tests (TILT10=93%, STAND10=87%, TILT30=100%, and STAND30=93%). Sp (specificity) of the 30 bpm criterion was less at both 10 and 30 min for tilt (TILT10=40%, TILT30=20%) than stand (STAND10=67%, STAND30=53%). The optimal ΔHR to discriminate POTS at 10 min were 38 bpm (TILT) and 29 bpm (STAND), and at 30 min were 47 bpm (TILT) and 34 bpm (STAND). Orthostatic tachycardia was greater for tilt (with lower Sp for POTS diagnosis) than stand at 10 and 30 min. The 30 bpm ΔHR criterion is not suitable for 30 min tilt. Diagnosis of POTS should consider orthostatic intolerance criteria and not be based solely on orthostatic tachycardia regardless of test used.

  4. Three dimensional eye movements of squirrel monkeys following postrotatory tilt

    NASA Technical Reports Server (NTRS)

    Merfeld, D. M.; Young, L. R.; Paige, G. D.; Tomko, D. L.

    1993-01-01

    Three-dimensional squirrel monkey eye movements were recorded during and immediately following rotation around an earth-vertical yaw axis (160 degrees/s steady state, 100 degrees/s2 acceleration and deceleration). To study interactions between the horizontal angular vestibulo-ocular reflex (VOR) and head orientation, postrotatory VOR alignment was changed relative to gravity by tilting the head out of the horizontal plane (pitch or roll tilt between 15 degrees and 90 degrees) immediately after cessation of motion. Results showed that in addition to post rotatory horizontal nystagmus, vertical nystagmus followed tilts to the left or right (roll), and torsional nystagmus followed forward or backward (pitch) tilts. When the time course and spatial orientation of eye velocity were considered in three dimensions, the axis of eye rotation always shifted toward alignment with gravity, and the postrotatory horizontal VOR decay was accelerated by the tilts. These phenomena may reflect a neural process that resolves the sensory conflict induced by this postrotatory tilt paradigm.

  5. Nonnormality increases variance of gravity waves trapped in a tilted box

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Borcia, Ion Dan; Krebs, Andreas

    2017-04-01

    We study the prototype problem of internal gravity waves in a square domain tilted with respect to the gravity vector by an angle theta. Only when theta is zero regular normal modes exist, for all other angles wave attractors and singularities dominate the flow. We show that the linear operator of the governing PDE becomes non-normal for nonzero theta giving rise to non-modal transient growth. This growth depends on the underlying norm: for the variance norm significant growth rates can be found whereas for the energy norm, no growth is possible since there is no source for energy (in contrast to shear fows, for which the mean flow feeds the perturbations). We continue by showing that the nonnormality of the system matrix is increasing with theta and reaches a maximum when theta is 45 degree. Moreover, the growth rate is increasing as can be expected from the increasing nonnormality of the matrix. Our results imply that at least the most simple wave attractors can be seen as those initial flow fields that gain most of the variance during a given time period.

  6. Large optics inspection, tilting, and washing stand

    DOEpatents

    Ayers, Marion Jay [Brentwood, CA; Ayers, Shannon Lee [Brentwood, CA

    2010-08-24

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  7. Large optics inspection, tilting, and washing stand

    DOEpatents

    Ayers, Marion Jay; Ayers, Shannon Lee

    2012-10-09

    A large optics stand provides a risk free means of safely tilting large optics with ease and a method of safely tilting large optics with ease. The optics are supported in the horizontal position by pads. In the vertical plane the optics are supported by saddles that evenly distribute the optics weight over a large area.

  8. Polymeric waveguide array with 45 degree slopes fabricated by bottom side tilted exposure

    NASA Astrophysics Data System (ADS)

    Lin, Xiaohui; Dou, Xinyuan; Wang, Alan X.; Chen, Ray T.

    2011-01-01

    This paper demonstrated a practical fabrication process of polymeric waveguide array (12 channels) with 50μm(W)×50μm(H)×23mm(L) dimension and mirror embedded 45° degree slopes for vertical coupling purpose. The entire process contained three main parts: a SU8 pre-mold with 45° slope, a PDMS mold and the final waveguide array device. The key step of fabricating the pre-mold included a bottom side tilted exposure of SU8 photo resist. By placing the sample upside down, tilting by 58.7° and immersing into DI water, the ultraviolet (UV) beam that shined vertically was directed to go through from the bottom of the glass substrate into top side SU8 resist with 45° angle to form the surface. This method was able to guarantee no-gap contact between the mask pattern and the photo resist when exposing. By comparing the process complexity and achieved structure of the top and bottom side exposure, the later was proved to be a promising method for making high quality tilted structure without any tailing effect. The reversed PDMS mold was then fabricated on the SU8 pre-mold. The PDMS mold was used to imprint the cladding layer of the waveguide array. After metal deposition, core filling and top cladding layer coating, the final polymeric waveguide array device was achieved. For performance evaluation, 850nm laser beam from VCSEL was modulated to 10Gbps signals and vertically coupled into the waveguide array. The eye diagrams revealed high Q factor when transmitting signals along these waveguide array.

  9. Effects of Volar Tilt, Wrist Extension, and Plate Position on Contact Between Flexor Pollicis Longus Tendon and Volar Plate.

    PubMed

    Wurtzel, Caroline N Wolfe; Burns, Geoffrey T; Zhu, Andy F; Ozer, Kagan

    2017-12-01

    Volar plates positioned at, or distal to, the watershed line have been shown to have a higher incidence of attritional rupture of the flexor pollicis longus (FPL). In this study, we aimed to evaluate the effect of wrist extension and volar tilt on the contact between the plate and the FPL tendon in a cadaver model. We hypothesized that, following volar plate application, loss of native volar tilt increases the contact between the FPL and the plate at lower degrees of wrist extension. A volar locking plate was applied on 6 fresh-frozen cadavers. To determine the contact between the plate and the FPL tendon, both structures were wrapped with copper wire and circuit conductivity was monitored throughout wrist motion. A lateral wrist radiograph was obtained at each circuit closure, indicating tendon-plate contact. Baseline measurements were obtained with plate positioned at Soong grades 0, 1, and 2. An extra-articular osteotomy was made and contact was recorded at various volar tilt angles (+5°, 0°, -5°, -10°, -15°, and -20°) in 3 different plate positions. A blinded observer measured the degree of wrist extension on all lateral radiographs. Data were analyzed using linear mixed-effects regression model. Plates placed distal to the watershed line had the most contact throughout wrist range of motion. Significantly, less wrist extension was required for contact in wrists with neutral or dorsal tilt and in distally placed volar plates. Volar tilt, wrist extension, and plate position were 3 independent risk factors determining contact between plate and tendon. Loss of volar tilt, increased wrist extension, and higher Soong grade plate position result in greater contact between wire-wrapped FPL tendon and plate. The FPL/plate contact chart generated in this study may be used to assess the risk of rupture in the clinical setting. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  10. Age, splanchnic vasoconstriction, and heat stress during tilting

    NASA Technical Reports Server (NTRS)

    Minson, C. T.; Wladkowski, S. L.; Pawelczyk, J. A.; Kenney, W. L.

    1999-01-01

    During upright tilting, blood is translocated to the dependent veins of the legs and compensatory circulatory adjustments are necessary to maintain arterial pressure. For examination of the effect of age on these responses, seven young (23 +/- 1 yr) and seven older (70 +/- 3 yr) men were head-up tilted to 60 degrees in a thermoneutral condition and during passive heating with water-perfused suits. Measurements included heart rate (HR), cardiac output (Qc; acetylene rebreathing technique), central venous pressure (CVP), blood pressures, forearm blood flow (venous occlusion plethysmography), splanchnic and renal blood flows (indocyanine green and p-aminohippurate clearance), and esophageal and mean skin temperatures. In response to tilting in the thermoneutral condition, CVP and stroke volume decreased to a greater extent in the young men, but HR increased more, such that the fall in Qc was similar between the two groups in the upright posture. The rise in splanchnic vascular resistance (SVR) was greater in the older men, but the young men increased forearm vascular resistance (FVR) to a greater extent than the older men. The fall in Qc during combined heat stress and tilting was greater in the young compared with older men. Only four of the young men versus six of the older men were able to finish the second tilt without becoming presyncopal. In summary, the older men relied on a greater increase in SVR to compensate for a reduced ability to constrict the skin and muscle circulations (as determined by changes in FVR) during head-up tilting.

  11. WIYN tip-tilt module performance

    NASA Astrophysics Data System (ADS)

    Claver, Charles F.; Corson, Charles; Gomez, R. Richard, Jr.; Daly, Philip N.; Dryden, David M.; Abareshi, Behzod

    2003-02-01

    The WIYN Tip-Tilt Module (WTTM) is an addition to the existing Instrument Adapter System (IAS) providing a high performance optical-NIR image stabilized port on the WIYN 3.5m telescope. The WTTM optical system uses a 3-mirror off-axis design along with a high bandwidth tilt mirror. The WTTM is a reimaging system with 15% magnification producing a 4x4 arcminute field of view and near diffraction limited imagery from 400-2000nm. The optics are diamond turned in electroless Nickel over an Aluminum substrate. The WTTM opto-mechanical assembly was designed and built using the principals of the "build-to-print" technique, where the entire system is fabricated and assembled to tolerance with no adjustments. A unique high performance error sensor, using an internal mirrorlette array that feeds 4 fiber coupled avalanche photodiode photon counters, provides the tilt signal. The system runs under the Real-Time Linux operating system providing a maximum closed loop rate of 3khz. In this paper we report on the successful lab testing, verification of the "build-to-print" technique and on telescope performance of the WTTM.

  12. Characterizing crustal and uppermost mantle anisotropy with a depth-dependent tilted hexagonally symmetric elastic tensor: theory and examples

    NASA Astrophysics Data System (ADS)

    Feng, L.; Xie, J.; Ritzwoller, M. H.

    2017-12-01

    Two major types of surface wave anisotropy are commonly observed by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We describe a method of inversion that interprets simultaneous observations of radial and azimuthal anisotropy under the assumption of a hexagonally symmetric elastic tensor with a tilted symmetry axis defined by dip and strike angles. With a full-waveform numerical solver based on the spectral element method (SEM), we verify the validity of the forward theory used for the inversion. We also present two examples, in the US and Tibet, in which we have successfully applied the tomographic method to demonstrate that the two types of apparent anisotropy can be interpreted jointly as a tilted hexagonally symmetric medium.

  13. Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Shen, Changyu; Zhang, Yang; Zhou, Wenjun; Albert, Jacques

    2014-02-01

    A fiber twist sensor based on the surface plasmon resonance (SPR) effect of an Au-coated tilted fiber Bragg grating (TFBG) is proposed. The SPR response to the twist effect on an Au-coated TFBG (immersing in distilled water) is studied theoretically and experimentally. The results show that the transmission power around the wavelength of SPR changes with the twist angle. For the twist ranging from 0° to 180° in clockwise or anti-clockwise directions, the proposed sensor shows sensitivities of 0.037 dBm/° (S-polarized) and 0.039 dBm/° (P-polarized), which are almost 7.5 times higher than that of the current similar existing twist sensor.

  14. Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.

    2011-01-01

    We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, <20 cm radius) in a darkened room is utilized to elicit otolith reflexes in the lateral plane without concordant canal or visual cues. A Tilt-Translation Sled (TTS) is capable of synchronizing pitch tilt with fore-aft translation to align the resultant gravitoinertial vector with the longitudinal body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a

  15. Proline kink angle distributions for GWALP23 in lipid bilayers of different thicknesses.

    PubMed

    Rankenberg, Johanna M; Vostrikov, Vitaly V; DuVall, Christopher D; Greathouse, Denise V; Koeppe, Roger E; Grant, Christopher V; Opella, Stanley J

    2012-05-01

    By using selected (2)H and (15)N labels, we have examined the influence of a central proline residue on the properties of a defined peptide that spans lipid bilayer membranes by solid-state nuclear magnetic resonance (NMR) spectroscopy. For this purpose, GWALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-ethanolamide) is a suitable model peptide that employs, for the purpose of interfacial anchoring, only one tryptophan residue on either end of a central α-helical core sequence. Because of its systematic behavior in lipid bilayer membranes of differing thicknesses [Vostrikov, V. V., et al. (2010) J. Biol. Chem. 285, 31723-31730], we utilize GWALP23 as a well-characterized framework for introducing guest residues within a transmembrane sequence; for example, a central proline yields acetyl-GGALW(5)LALALAP(12)ALALALW(19)LAGA-ethanolamide. We synthesized GWALP23-P12 with specifically placed (2)H and (15)N labels for solid-state NMR spectroscopy and examined the peptide orientation and segmental tilt in oriented DMPC lipid bilayer membranes using combined (2)H GALA and (15)N-(1)H high-resolution separated local field methods. In DMPC bilayer membranes, the peptide segments N-terminal and C-terminal to the proline are both tilted substantially with respect to the bilayer normal, by ~34 ± 5° and 29 ± 5°, respectively. While the tilt increases for both segments when proline is present, the range and extent of the individual segment motions are comparable to or smaller than those of the entire GWALP23 peptide in bilayer membranes. In DMPC, the proline induces a kink of ~30 ± 5°, with an apparent helix unwinding or "swivel" angle of ~70°. In DLPC and DOPC, on the basis of (2)H NMR data only, the kink angle and swivel angle probability distributions overlap those of DMPC, yet the most probable kink angle appears to be somewhat smaller than in DMPC. As has been described for GWALP23 itself, the C-terminal helix ends before Ala(21) in the phospholipids DMPC and DLPC yet

  16. Numerical Simulations of Naturally Tilted, Retrogradely Precessing, Nodal Superhumping Accretion Disks

    NASA Astrophysics Data System (ADS)

    Montgomery, M. M.

    2012-02-01

    Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.

  17. Correlation between length and tilt of lipid tails

    NASA Astrophysics Data System (ADS)

    Kopelevich, Dmitry I.; Nagle, John F.

    2015-10-01

    It is becoming recognized from simulations, and to a lesser extent from experiment, that the classical Helfrich-Canham membrane continuum mechanics model can be fruitfully enriched by the inclusion of molecular tilt, even in the fluid, chain disordered, biologically relevant phase of lipid bilayers. Enriched continuum theories then add a tilt modulus κθ to accompany the well recognized bending modulus κ. Different enrichment theories largely agree for many properties, but it has been noticed that there is considerable disagreement in one prediction; one theory postulates that the average length of the hydrocarbon chain tails increases strongly with increasing tilt and another predicts no increase. Our analysis of an all-atom simulation favors the latter theory, but it also shows that the overall tail length decreases slightly with increasing tilt. We show that this deviation from continuum theory can be reconciled by consideration of the average shape of the tails, which is a descriptor not obviously includable in continuum theory.

  18. Performance optimization of evacuated tube collector for solar cooling of a house in hot climate

    NASA Astrophysics Data System (ADS)

    Ghoneim, Adel A.

    2018-02-01

    Evacuating the space connecting cover and absorber significantly improves evacuated tube collector (ETC) performance. So, ETCs are progressively utilised all over the world. The main goal of current study is to explore ETC thermal efficiency in hot and severe climate like Kuwait weather conditions. A collector test facility was installed to record ETC thermal performance for one-year period. An extensively developed model for ETCs is presented, employing complete optical and thermal assessment. This study analyses separately optics and heat transfer in the evacuated tubes, allowing the analysis to be extended to different configurations. The predictions obtained are in agreement with experimental. The optimum collector parameters (collector tube length and diameter, mass flow rate and collector tilt angle) are determined. The present results indicate that the optimum tube length is 1.5 m, as at this length a significant improvement is achieved in efficiency for different tube diameters studied. Finally, the heat generated from ETCs is used for solar cooling of a house. Results of the simulation of cooling system indicate that an ETC of area 54 m2, tilt angle of 25° and storage tank volume of 2.1 m3 provides 80% of air-conditioning demand in a house located in Kuwait.

  19. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  20. Does osteoporosis reduce the primary tilting stability of cementless acetabular cups?

    PubMed

    von Schulze Pellengahr, Christoph; von Engelhardt, Lars V; Wegener, Bernd; Müller, Peter E; Fottner, Andreas; Weber, Patrick; Ackermann, Ole; Lahner, Matthias; Teske, Wolfram

    2015-04-21

    Cementless hip cups need sufficient primary tilting stability to achieve osseointegration. The aim of the study was to assess differences of the primary implant stability in osteoporotic bone and in bone with normal bone density. To assess the influence of different cup designs, two types of threaded and two types of press-fit cups were tested. The maximum tilting moment for two different cementless threaded cups and two different cementless press-fit cups was determined in macerated human hip acetabuli with reduced (n=20) and normal bone density (n=20), determined using Q-CT. The tilting moments for each cup were determined five times in the group with reduced bone density and five times in the group with normal bone density, and the respective average values were calculated. The mean maximum extrusion force of the threaded cup Zintra was 5670.5 N (max. tilting moment 141.8 Nm) in bone with normal density and.5748.3 N (max. tilting moment 143.7 Nm) in osteoporotic bone. For the Hofer Imhof (HI) threaded cup it was 7681.5 N (192.0 Nm) in bone with normal density and 6828.9 N (max. tilting moment 170.7 Nm) in the group with osteoporotic bone. The mean maximum extrusion force of the macro-textured press-fit cup Metallsockel CL was 3824.6 N (max. tilting moment 95.6 Nm) in bone with normal and 2246.2 N (max. tilting moment 56.2 Nm) in osteoporotic bone. For the Monoblock it was 1303.8 N (max. tilting moment 32.6 Nm) in normal and 1317 N (max. tilting moment 32.9 Nm) in osteoporotic bone. There was no significance. A reduction of the maximum tilting moment in osteoporotic bone of the ESKA press-fit cup Metallsockel CL was noticed. Results on macerated bone specimens showed no statistically significant reduction of the maximum tilting moment in specimens with osteoporotic bone density compared to normal bone, neither for threaded nor for the press-fit cups. With the limitation that the results were obtained using macerated bone, we could not detect any restrictions for

  1. Position, Attitude, and Fault-Tolerant Control of Tilting-Rotor Quadcopter

    NASA Astrophysics Data System (ADS)

    Kumar, Rumit

    The aim of this thesis is to present algorithms for autonomous control of tilt-rotor quadcopter UAV. In particular, this research work describes position, attitude and fault tolerant control in tilt-rotor quadcopter. Quadcopters are one of the most popular and reliable unmanned aerial systems because of the design simplicity, hovering capabilities and minimal operational cost. Numerous applications for quadcopters have been explored all over the world but very little work has been done to explore design enhancements and address the fault-tolerant capabilities of the quadcopters. The tilting rotor quadcopter is a structural advancement of traditional quadcopter and it provides additional actuated controls as the propeller motors are actuated for tilt which can be utilized to improve efficiency of the aerial vehicle during flight. The tilting rotor quadcopter design is accomplished by using an additional servo motor for each rotor that enables the rotor to tilt about the axis of the quadcopter arm. Tilting rotor quadcopter is a more agile version of conventional quadcopter and it is a fully actuated system. The tilt-rotor quadcopter is capable of following complex trajectories with ease. The control strategy in this work is to use the propeller tilts for position and orientation control during autonomous flight of the quadcopter. In conventional quadcopters, two propellers rotate in clockwise direction and other two propellers rotate in counter clockwise direction to cancel out the effective yawing moment of the system. The variation in rotational speeds of these four propellers is utilized for maneuvering. On the other hand, this work incorporates use of varying propeller rotational speeds along with tilting of the propellers for maneuvering during flight. The rotational motion of propellers work in sync with propeller tilts to control the position and orientation of the UAV during the flight. A PD flight controller is developed to achieve various modes of the

  2. Sedimentary basins reconnaissance using the magnetic Tilt-Depth method

    USGS Publications Warehouse

    Salem, A.; Williams, S.; Samson, E.; Fairhead, D.; Ravat, D.; Blakely, R.J.

    2010-01-01

    We compute the depth to the top of magnetic basement using the Tilt-Depth method from the best available magnetic anomaly grids covering the continental USA and Australia. For the USA, the Tilt-Depth estimates were compared with sediment thicknesses based on drilling data and show a correlation of 0.86 between the datasets. If random data were used then the correlation value goes to virtually zero. There is little to no lateral offset of the depth of basinal features although there is a tendency for the Tilt-Depth results to be slightly shallower than the drill depths. We also applied the Tilt-Depth method to a local-scale, relatively high-resolution aeromagnetic survey over the Olympic Peninsula of Washington State. The Tilt-Depth method successfully identified a variety of important tectonic elements known from geological mapping. Of particular interest, the Tilt-Depth method illuminated deep (3km) contacts within the non-magnetic sedimentary core of the Olympic Mountains, where magnetic anomalies are subdued and low in amplitude. For Australia, the Tilt-Depth estimates also give a good correlation with known areas of shallow basement and sedimentary basins. Our estimates of basement depth are not restricted to regional analysis but work equally well at the micro scale (basin scale) with depth estimates agreeing well with drill hole and seismic data. We focus on the eastern Officer Basin as an example of basin scale studies and find a good level of agreement between previously-derived basin models. However, our study potentially reveals depocentres not previously mapped due to the sparse distribution of well data. This example thus shows the potential additional advantage of the method in geological interpretation. The success of this study suggests that the Tilt-Depth method is useful in estimating the depth to crystalline basement when appropriate quality aeromagnetic anomaly data are used (i.e. line spacing on the order of or less than the expected depth to

  3. A Survey of Exoplanetary Spin-Orbit Angles

    NASA Astrophysics Data System (ADS)

    Winn, Josh

    2010-02-01

    Are the orbits of exoplanets aligned with the spin axes of their parent stars? One might expect a close alignment, but some of the proposed migration mechanisms predict otherwise. Indeed at least 4 planets with strongly tilted orbits are now known, including the first case of a retrograde or polar orbit. This raises the questions of how commonly misalignments occur, and which types of planets have them. We request 10 half-nights with Keck/HIRES spread over 2010A and 2010B, to measure spin-orbit angles for 9 exoplanets spanning a range of masses, periods, and eccentricities. Our measurement is based on the Rossiter-McLaughlin effect: the anomalous Doppler shift observed during planetary transits.

  4. A Survey of Exoplanetary Spin-Orbit Angles

    NASA Astrophysics Data System (ADS)

    Winn, Josh

    2010-08-01

    Are the orbits of exoplanets aligned with the spin axes of their parent stars? One might expect a close alignment, but some of the proposed migration mechanisms predict otherwise. Indeed at least 4 planets with strongly tilted orbits are now known, including the first case of a retrograde or polar orbit. This raises the questions of how commonly misalignments occur, and which types of planets have them. We request 4 half-nights with Keck/HIRES spread over the 2010B semester, to measure spin-orbit angles for 4 exoplanets spanning a range of masses, periods, and eccentricities. Our measurement is based on the Rossiter-McLaughlin effect: the anomalous Doppler shift observed during planetary transits.

  5. Contact angle measurements of a polyphenyl ether to 190 C on M-50 steel

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1981-01-01

    Contact angle measurements were performed for a polyphenyl ether on steel in nitrogen. A tilting plate and a sessile drop apparatus were used. Surface tension was measured with a maximum bubble pressure apparatus. Critical surface energies of spreading were found to be 30.1 and 31.3 dynes/cm. It was concluded that the polyphenyl ether is inherently autophobic and will not spread on its own surface film.

  6. An Experimental Study of Dependence of Optimum TBM Cutter Spacing on Pre-set Penetration Depth in Sandstone Fragmentation

    NASA Astrophysics Data System (ADS)

    Han, D. Y.; Cao, P.; Liu, J.; Zhu, J. B.

    2017-12-01

    Cutter spacing is an essential parameter in the TBM design. However, few efforts have been made to study the optimum cutter spacing incorporating penetration depth. To investigate the influence of pre-set penetration depth and cutter spacing on sandstone breakage and TBM performance, a series of sequential laboratory indentation tests were performed in a biaxial compression state. Effects of parameters including penetration force, penetration depth, chip mass, chip size distribution, groove volume, specific energy and maximum angle of lateral crack were investigated. Results show that the total mass of chips, the groove volume and the observed optimum cutter spacing increase with increasing pre-set penetration depth. It is also found that the total mass of chips could be an alternative means to determine optimum cutter spacing. In addition, analysis of chip size distribution suggests that the mass of large chips is dominated by both cutter spacing and pre-set penetration depth. After fractal dimension analysis, we found that cutter spacing and pre-set penetration depth have negligible influence on the formation of small chips and that small chips are formed due to squeezing of cutters and surface abrasion caused by shear failure. Analysis on specific energy indicates that the observed optimum spacing/penetration ratio is 10 for the sandstone, at which, the specific energy and the maximum angle of lateral cracks are smallest. The findings in this paper contribute to better understanding of the coupled effect of cutter spacing and pre-set penetration depth on TBM performance and rock breakage, and provide some guidelines for cutter arrangement.

  7. The impact of particle shape on friction angle and resulting critical shear stress: an example from a coarse-grained, steep, megatidal beach

    NASA Astrophysics Data System (ADS)

    Stark, N.; Hay, A. E.; Cheel, R.; Lake, C. B.

    2013-12-01

    The impact of particle shape on the friction angle, and the resulting critical shear stress on sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1:10) of the mixed sand-gravel beach at Advocate Harbour was found stable in large-scale morphology over decades, despite a high tidal range of ten meters or more, and strong shorebreak action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape. Exceptionally high friction angles of the material were determined using direct shear, ranging from φ ≈ 41-46°, while the round to angular gravel was characterized by φ = 33°. The addition of 25% of the elliptic sand to the gravel led to an immediate increase of the friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, being characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray in a tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being 7° steeper than the latest gravel motion initiation. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the friction angles of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beachface.

  8. Optimum three-dimensional atmospheric entry from the analytical solution of Chapman's exact equations

    NASA Technical Reports Server (NTRS)

    Busemann, A.; Vinh, N. X.; Culp, R. D.

    1974-01-01

    The general solution for the optimum three-dimensional aerodynamic control of a lifting vehicle entering a planetary atmosphere is developed. A set of dimensionless variables, modified Chapman variables, is introduced. The resulting exact equations of motion, referred to as Chapman's exact equations, have the advantage that they are completely free of the physical characteristics of the vehicle. Furthermore, a completely general lift-drag relationship is used in the derivation. The results obtained apply to any type of vehicle of arbitrary weight, dimensions and shape, having an arbitrary drag polar, and entering any planetary atmosphere. The aerodynamic controls chosen are the lift coefficient and the bank angle. General optimum control laws for these controls are developed. Several earlier particular solutions are shown to be special cases of this general result. Results are valid for both free and constrained terminal position.

  9. High-resolution brain SPECT imaging by combination of parallel and tilted detector heads.

    PubMed

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Morimoto, Yuichi; Kobashi, Keiji; Ueno, Yuichiro

    2015-10-01

    To improve the spatial resolution of brain single-photon emission computed tomography (SPECT), we propose a new brain SPECT system in which the detector heads are tilted towards the rotation axis so that they are closer to the brain. In addition, parallel detector heads are used to obtain the complete projection data set. We evaluated this parallel and tilted detector head system (PT-SPECT) in simulations. In the simulation study, the tilt angle of the detector heads relative to the axis was 45°. The distance from the collimator surface of the parallel detector heads to the axis was 130 mm. The distance from the collimator surface of the tilted detector heads to the origin on the axis was 110 mm. A CdTe semiconductor panel with a 1.4 mm detector pitch and a parallel-hole collimator were employed in both types of detector head. A line source phantom, cold-rod brain-shaped phantom, and cerebral blood flow phantom were evaluated. The projection data were generated by forward-projection of the phantom images using physics models, and Poisson noise at clinical levels was applied to the projection data. The ordered-subsets expectation maximization algorithm with physics models was used. We also evaluated conventional SPECT using four parallel detector heads for the sake of comparison. The evaluation of the line source phantom showed that the transaxial FWHM in the central slice for conventional SPECT ranged from 6.1 to 8.5 mm, while that for PT-SPECT ranged from 5.3 to 6.9 mm. The cold-rod brain-shaped phantom image showed that conventional SPECT could visualize up to 8-mm-diameter rods. By contrast, PT-SPECT could visualize up to 6-mm-diameter rods in upper slices of a cerebrum. The cerebral blood flow phantom image showed that the PT-SPECT system provided higher resolution at the thalamus and caudate nucleus as well as at the longitudinal fissure of the cerebrum compared with conventional SPECT. PT-SPECT provides improved image resolution at not only upper but also at

  10. NEuclid: a long-range tilt-immune homodyne interferometer

    NASA Astrophysics Data System (ADS)

    Bradshaw, M. J.; Speake, C. C.

    2017-11-01

    The new Easy to Use Compact Laser Interferometric Device (nEUCLID) is a polarisation-based homodyne interferometer with substantially unequal arms that is tolerant to target mirror tilt. The design has no active components, uses standard optical components of 25 mm diameter, has a working distance of 706 mm and a reference arm-length of 21 mm. nEUCLID optics have a footprint of 210 x 190 x 180 mm, and has a tolerance to target mirror tilt of +/- 0.5 degrees, made possible by a novel new retro-reflector design [1]. nEUCLID was built to a set of specifications laid down by Airbus Defence and Space, who required a lowmass, low-power device to measure displacement with nanometre accuracy for space applications. At the University of Birmingham we have previously built a smaller, more compact tilt-insensitive homodyne interferometer - the EUCLID [2, 3, 4] - which has a working distance of 6 mm, a working range of +/- 3 mm, and a tilt range of +/- 1° [2]. We created a new optical design to allow a much larger working distance to be achieved (as discussed in Section II) and used this in a new interferometer - the nEUCLID. Section II describes the interferometer in detail; how nEUCLID is tilt insensitive, and the optical configuration. Section III states the design specifications from Airbus Defence and Space and the components used in the final design. The output interference pattern from nEUCLID, and how it has been corrected with a meniscus lens, is also discussed. In Section IV we discuss the results demonstrating the tilt immunity range, and the sensitivity of the device. Section V describes several potential applications of nEUCLID, and Section VI draws together our conclusions.

  11. Sweat patterns differ between tilt-induced reflex syncope and tilt-induced anxiety among youth.

    PubMed

    Heyer, Geoffrey L; Harvey, Rebecca A; Islam, Monica P

    2016-08-01

    Profound sweating can occur with reflex-syncope and with emotional distress, but little is known about the similarities and differences between these sweat responses when they occur during orthostatic challenge. We sought to characterize and compare the sweat patterns related to tilt-induced syncope, presyncope, anxiety, and normal tilt testing. In a prospective observational study, quantitative sweat rate was measured from the abdomen, forearm, ankle, and thigh during head-upright tilt. Sweat characteristics were compared across tilt diagnoses of syncope, presyncope, anxiety, and normal testing. When anxiety and syncope/presyncope occurred during the same study (separated by ≥6 min), both were diagnosed. Our cohort comprised150 patients (15.1 ± 2.3 years; 82.9 % female) with 156 diagnoses: 76 with reflex-syncope, 31 with presyncope, 23 with anxiety, and 26 with normal results. All syncope/presyncope patients and 20 (87 %) of the anxiety patients had corresponding sweat responses. Minimal or negligible sweating occurred among patients with normal tests. Neither basal sweat (19.4 ± 4.7 versus 18.3 ± 3.7 versus 18.5 ± 3.7 nL/min/cm(2)) nor peak sweat (171 ± 47.4 versus 149.4 ± 64.4 versus 154.4 ± 59.2 nL/min/cm(2)) differed between patients with syncope, presyncope, or anxiety, p = .32 and p = .12, respectively. However, the qualitative sweat patterns related to syncope/presyncope (diffuse, smoothly contoured, symmetrical, single peaks) differed considerably from the sweat patterns related to anxiety (heterogeneous, asymmetrical, roughly contoured single-peak, multi-peak, or progressive sweat changes). The sweat patterns related to syncope/presyncope are distinguishable from the sweat patterns related to anxiety. Recognition of the different sweat patterns can inform how signs and symptoms are interpreted during clinical orthostatic challenge.

  12. Method of wavefront tilt correction for optical heterodyne detection systems under strong turbulence

    NASA Astrophysics Data System (ADS)

    Xiang, Jing-song; Tian, Xin; Pan, Le-chun

    2014-07-01

    Atmospheric turbulence decreases the heterodyne mixing efficiency of the optical heterodyne detection systems. Wavefront tilt correction is often used to improve the optical heterodyne mixing efficiency. But the performance of traditional centroid tracking tilt correction is poor under strong turbulence conditions. In this paper, a tilt correction method which tracking the peak value of laser spot on focal plane is proposed. Simulation results show that, under strong turbulence conditions, the performance of peak value tracking tilt correction is distinctly better than that of traditional centroid tracking tilt correction method, and the phenomenon of large antenna's performance inferior to small antenna's performance which may be occurred in centroid tracking tilt correction method can also be avoid in peak value tracking tilt correction method.

  13. Gaia: focus, straylight and basic angle

    NASA Astrophysics Data System (ADS)

    Mora, A.; Biermann, M.; Bombrun, A.; Boyadjian, J.; Chassat, F.; Corberand, P.; Davidson, M.; Doyle, D.; Escolar, D.; Gielesen, W. L. M.; Guilpain, T.; Hernandez, J.; Kirschner, V.; Klioner, S. A.; Koeck, C.; Laine, B.; Lindegren, L.; Serpell, E.; Tatry, P.; Thoral, P.

    2016-07-01

    The Gaia all-sky astrometric survey is challenged by several issues affecting the spacecraft stability. Amongst them, we find the focus evolution, straylight and basic angle variations Contrary to pre-launch expectations, the image quality is continuously evolving, during commissioning and the nominal mission. Payload decontaminations and wavefront sensor assisted refocuses have been carried out to recover optimum performance. An ESA-Airbus DS working group analysed the straylight and basic angle issues and worked on a detailed root cause analysis. In parallel, the Gaia scientists have also analysed the data, most notably comparing the BAM signal to global astrometric solutions, with remarkable agreement. In this contribution, a status review of these issues will be provided, with emphasis on the mitigation schemes and the lessons learned for future space missions where extreme stability is a key requirement.

  14. Tilting-filter measurements in dayglow rocket photometry.

    PubMed

    Schaeffer, R C; Fastie, W G

    1972-10-01

    A rocket-borne photometer containing two tilting-filter channels for the measurement of the [OI] lambdalambda6300-A and 5577A emission lines in the day airglow is described. The results of one flight substantiate the employment of tilting filters to determine accurate corrections for background continuum and provide reliable height profiles of emission intensity down to approximately 90 km. Discussions on the calibration of the instrument and its baffling against sunlight are also presented.

  15. Tilted orthodontic micro implants: a photoelastic stress analysis.

    PubMed

    Çehreli, Seçil; Özçırpıcı, Ayça Arman; Yılmaz, Alev

    2013-10-01

    The aim of this study was to examine peri-implant stresses around orthodontic micro implants upon torque-tightening and static load application by quasi-three-dimensional photoelastic stress analysis. Self-tapping orthodontic micro implants were progressively inserted into photoelastic models at 30, 45, 70, and 90 degrees and insertion torques were measured. Stress patterns (isochromatic fringe orders) were recorded by the quasi-three-dimensional photoelastic method using a circular polariscope after insertion and 250 g static force application. Torque-tightening of implants generated peri-implant stresses. Upon insertion, 90 degree placed implants displayed the lowest and homogeneous stress distribution followed by 30, 70, and 45 degree tilted implants. Static loading did not dramatically alter stress fields around the implants tested. The highest alteration in stress distribution was observed for the 90 degree placed implant, while 70 degree tilted implant had the lowest stresses among tilted implants. Torque-tightening of orthodontic micro implants creates a stress field that is not dramatically altered after application of static lateral moderate orthodontic loads, particularly at the cervical region of tilted implants.

  16. Correlational Effects of the Molecular-Tilt Configuration and the Intermolecular van der Waals Interaction on the Charge Transport in the Molecular Junction.

    PubMed

    Shin, Jaeho; Gu, Kyungyeol; Yang, Seunghoon; Lee, Chul-Ho; Lee, Takhee; Jang, Yun Hee; Wang, Gunuk

    2018-06-25

    Molecular conformation, intermolecular interaction, and electrode-molecule contacts greatly affect charge transport in molecular junctions and interfacial properties of organic devices by controlling the molecular orbital alignment. Here, we statistically investigated the charge transport in molecular junctions containing self-assembled oligophenylene molecules sandwiched between an Au probe tip and graphene according to various tip-loading forces ( F L ) that can control the molecular-tilt configuration and the van der Waals (vdW) interactions. In particular, the molecular junctions exhibited two distinct transport regimes according to the F L dependence (i.e., F L -dependent and F L -independent tunneling regimes). In addition, the charge-injection tunneling barriers at the junction interfaces are differently changed when the F L ≤ 20 nN. These features are associated to the correlation effects between the asymmetry-coupling factor (η), the molecular-tilt angle (θ), and the repulsive intermolecular vdW force ( F vdW ) on the molecular-tunneling barriers. A more-comprehensive understanding of these charge transport properties was thoroughly developed based on the density functional theory calculations in consideration of the molecular-tilt configuration and the repulsive vdW force between molecules.

  17. Geometric approach to the design of an imaging probe to evaluate the iridocorneal angle structures

    NASA Astrophysics Data System (ADS)

    Hong, Xun Jie Jeesmond; V. K., Shinoj; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2017-06-01

    Photographic imaging methods allow the tracking of anatomical changes in the iridocorneal angle structures and the monitoring of treatment responses overtime. In this work, we aim to design an imaging probe to evaluate the iridocorneal angle structures using geometrical optics. We first perform an analytical analysis on light propagation from the anterior chamber of the eye to the exterior medium using Snell's law. This is followed by adopting a strategy to achieve uniform near field irradiance, by simplifying the complex non-rotational symmetric irradiance distribution of LEDs tilted at an angle. The optimization is based on the geometric design considerations of an angled circular ring array of 4 LEDs (or a 2 × 2 square LED array). The design equation give insights on variable parameters such as the illumination angle of the LEDs, ring array radius, viewing angle of the LEDs, and the working distance. A micro color CCD video camera that has sufficient resolution to resolve the iridocorneal angle structures at the required working distance is then chosen. The proposed design aspects fulfil the safety requirements recommended by the International Commission on Non-ionizing Radiation Protection.

  18. V/STOL tilt rotor aircraft study. Volume 6: Preliminary design of a composite wing for tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.; Badri-Nath, Y.

    1973-01-01

    The results of a study of the use of composite materials in the wing of a tilt rotor aircraft are presented. An all-metal tilt rotor aircraft was first defined to provide a basis for comparing composite with metal structure. A configuration study was then done in which the wing of the metal aircraft was replaced with composite wings of varying chord and thickness ratio. The results of this study defined the design and performance benefits obtainable with composite materials. Based on these results the aircraft was resized with a composite wing to extend the weight savings to other parts of the aircraft. A wing design was then selected for detailed structural analysis. A development plan including costs and schedules to develop this wing and incorporate it into a proposed flight research tilt rotor vehicle has been devised.

  19. On cat's eyes and multiple disjoint cells natural convection flow in tall tilted cavities

    NASA Astrophysics Data System (ADS)

    Báez, Elsa; Nicolás, Alfredo

    2014-10-01

    Natural convection fluid flow in air-filled tall tilted cavities is studied numerically with a direct projection method applied on the unsteady Boussinesq approximation in primitive variables. The study is focused on the so called cat's eyes and multiple disjoint cells as the aspect ratio A and the angle of inclination ϕ of the cavity vary. Results have already been reported with primitive and stream function-vorticity variables. The former are validated with the latter ones, which in turn were validated through mesh size and time-step independence studies. The new results complemented with the previous ones lead to find out the fluid motion and heat transfer invariant properties of this thermal phenomenon, which is the novelty here.

  20. Inner core tilt and polar motion

    NASA Astrophysics Data System (ADS)

    Dumberry, Mathieu; Bloxham, Jeremy

    2002-11-01

    A tilted inner core permits exchange of angular momentum between the core and the mantle through gravitational and pressure torques and, as a result, changes in the direction of Earth's axis of rotation with respect to the mantle. We have developed a model to calculate the amplitude of the polar motion that results from an equatorial torque at the inner core boundary which tilts the inner core out of alignment with the mantle. We specifically address the issue of the role of the inner core tilt in the decade polar motion known as the Markowitz wobble. We show that a decade polar motion of the same amplitude as the observed Markowitz wobble requires a torque of 1020 N m which tilts the inner core by 0.07 degrees. This result critically depends on the viscosity of the inner core; for a viscosity less than 5 × 1017 Pa s, larger torques are required. We investigate the possibility that a torque of 1020 N m with decadal periodicity can be produced by electromagnetic coupling between the inner core and torsional oscillations of the flow in the outer core. We demonstrate that a radial magnetic field at the inner core boundary of 3 to 4 mT is required to obtain a torque of such amplitude. The resulting polar motion is eccentric and polarized, in agreement with the observations. Our model suggests that equatorial torques at the inner core boundary might also excite the Chandler wobble, provided there exists a physical mechanism that can generate a large torque at a 14 month period.

  1. The Optic Nerve Head in Primary Open-Angle Glaucoma Eyes With High Myopia: Characteristics and Association With Visual Field Defects.

    PubMed

    Chen, Li-Wei; Lan, Yu-Wen; Hsieh, Jui-Wen

    2016-06-01

    To evaluate the morphologic characteristics of optic neuropathy and its association with visual field (VF) defects in primary open-angle glaucoma (POAG) eyes with high myopia. In this cross-sectional study, we reviewed data from 375 Taiwanese patients (375 eyes) of POAG, ages 20 to 60 years. Optic disc photographs were used for planimetric measurements of morphologic variables. The myopic refraction was divided into high myopia (<-6.0 D) and nonhigh myopia (moderate myopia to hyperopia). The optic disc area was classified as moderate (1.59 to 2.85 mm), large, and small. Differences in characteristics between groups, correlations with the disc area, and factors associated with VF defects were determined. Of the 142 highly myopic eyes, 33 (23%) had a large disc, 26 (18%) had a small disc, and 55 (39%) had a tilted disc. Large discs had a higher cup-to-disc (C/D) area ratio and a higher tilt ratio; small discs had a smaller rim area and a lower tilt ratio (all P<0.05). Characteristics associated with high myopia included a smaller rim area, a higher C/D area ratio, and a lower tilt ratio (all P<0.001). In logistic regression, the refraction, the C/D area ratio, the rim area, and the tilt ratio (all P<0.05) were associated with VF defects. In Taiwanese individuals with POAG, our study found that tilted, large, or small discs were prevalent in highly myopic eyes. Of these characteristics, only the disc tilt and high myopia by itself were associated with the severity of glaucomatous optic neuropathy.

  2. Skin cooling maintains cerebral blood flow velocity and orthostatic tolerance during tilting in heated humans

    NASA Technical Reports Server (NTRS)

    Wilson, Thad E.; Cui, Jian; Zhang, Rong; Witkowski, Sarah; Crandall, Craig G.

    2002-01-01

    Orthostatic tolerance is reduced in the heat-stressed human. The purpose of this project was to identify whether skin-surface cooling improves orthostatic tolerance. Nine subjects were exposed to 10 min of 60 degrees head-up tilting in each of four conditions: normothermia (NT-tilt), heat stress (HT-tilt), normothermia plus skin-surface cooling 1 min before and throughout tilting (NT-tilt(cool)), and heat stress plus skin-surface cooling 1 min before and throughout tilting (HT-tilt(cool)). Heating and cooling were accomplished by perfusing 46 and 15 degrees C water, respectively, though a tube-lined suit worn by each subject. During HT-tilt, four of nine subjects developed presyncopal symptoms resulting in the termination of the tilt test. In contrast, no subject experienced presyncopal symptoms during NT-tilt, NT-tilt(cool), or HT-tilt(cool). During the HT-tilt procedure, mean arterial blood pressure (MAP) and cerebral blood flow velocity (CBFV) decreased. However, during HT-tilt(cool), MAP, total peripheral resistance, and CBFV were significantly greater relative to HT-tilt (all P < 0.01). No differences were observed in calculated cerebral vascular resistance between the four conditions. These data suggest that skin-surface cooling prevents the fall in CBFV during upright tilting and improves orthostatic tolerance, presumably via maintenance of MAP. Hence, skin-surface cooling may be a potent countermeasure to protect against orthostatic intolerance observed in heat-stressed humans.

  3. Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law

    PubMed Central

    Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen

    2015-01-01

    Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. PMID:26433027

  4. Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law.

    PubMed

    Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen

    2015-11-01

    Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Observation of the enhanced backscattering of light by the end of a tilted dielectric cylinder owing to the caustic merging transition

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Zhang, Yibing; Thiessen, David B.

    2003-01-01

    The scattering of light by obliquely illuminated circular dielectric cylinders was previously demonstrated to be enhanced by a merger of Airy caustics at a critical tilt angle. [Appl. Opt. 37, 1534 (1998)]. A related enhancement is demonstrated here for backward and near-backward scattering for cylinders cut with a flat end perpendicular to the cylinder's axis. It is expected that merged caustics will enhance the backscattering by clouds of randomly oriented circular cylinders that have appropriately flat ends.

  6. Novel tilt-curvature coupling in lipid membranes

    NASA Astrophysics Data System (ADS)

    Terzi, M. Mert; Deserno, Markus

    2017-08-01

    On mesoscopic scales, lipid membranes are well described by continuum theories whose main ingredients are the curvature of a membrane's reference surface and the tilt of its lipid constituents. In particular, Hamm and Kozlov [Eur. Phys. J. E 3, 323 (2000)] have shown how to systematically derive such a tilt-curvature Hamiltonian based on the elementary assumption of a thin fluid elastic sheet experiencing internal lateral pre-stress. Performing a dimensional reduction, they not only derive the basic form of the effective surface Hamiltonian but also express its emergent elastic couplings as trans-membrane moments of lower-level material parameters. In the present paper, we argue, though, that their derivation unfortunately missed a coupling term between curvature and tilt. This term arises because, as one moves along the membrane, the curvature-induced change of transverse distances contributes to the area strain—an effect that was believed to be small but nevertheless ends up contributing at the same (quadratic) order as all other terms in their Hamiltonian. We illustrate the consequences of this amendment by deriving the monolayer and bilayer Euler-Lagrange equations for the tilt, as well as the power spectra of shape, tilt, and director fluctuations. A particularly curious aspect of our new term is that its associated coupling constant is the second moment of the lipid monolayer's lateral stress profile—which within this framework is equal to the monolayer Gaussian curvature modulus, κ¯ m. On the one hand, this implies that many theoretical predictions now contain a parameter that is poorly known (because the Gauss-Bonnet theorem limits access to the integrated Gaussian curvature); on the other hand, the appearance of κ¯ m outside of its Gaussian curvature provenance opens opportunities for measuring it by more conventional means, for instance by monitoring a membrane's undulation spectrum at short scales.

  7. Novel tilt-curvature coupling in lipid membranes.

    PubMed

    Terzi, M Mert; Deserno, Markus

    2017-08-28

    On mesoscopic scales, lipid membranes are well described by continuum theories whose main ingredients are the curvature of a membrane's reference surface and the tilt of its lipid constituents. In particular, Hamm and Kozlov [Eur. Phys. J. E 3, 323 (2000)] have shown how to systematically derive such a tilt-curvature Hamiltonian based on the elementary assumption of a thin fluid elastic sheet experiencing internal lateral pre-stress. Performing a dimensional reduction, they not only derive the basic form of the effective surface Hamiltonian but also express its emergent elastic couplings as trans-membrane moments of lower-level material parameters. In the present paper, we argue, though, that their derivation unfortunately missed a coupling term between curvature and tilt. This term arises because, as one moves along the membrane, the curvature-induced change of transverse distances contributes to the area strain-an effect that was believed to be small but nevertheless ends up contributing at the same (quadratic) order as all other terms in their Hamiltonian. We illustrate the consequences of this amendment by deriving the monolayer and bilayer Euler-Lagrange equations for the tilt, as well as the power spectra of shape, tilt, and director fluctuations. A particularly curious aspect of our new term is that its associated coupling constant is the second moment of the lipid monolayer's lateral stress profile-which within this framework is equal to the monolayer Gaussian curvature modulus, κ¯ m . On the one hand, this implies that many theoretical predictions now contain a parameter that is poorly known (because the Gauss-Bonnet theorem limits access to the integrated Gaussian curvature); on the other hand, the appearance of κ¯ m outside of its Gaussian curvature provenance opens opportunities for measuring it by more conventional means, for instance by monitoring a membrane's undulation spectrum at short scales.

  8. Effect of inlet cone pipe angle in catalytic converter

    NASA Astrophysics Data System (ADS)

    Amira Zainal, Nurul; Farhain Azmi, Ezzatul; Arifin Samad, Mohd

    2018-03-01

    The catalytic converter shows significant consequence to improve the performance of the vehicle start from it launched into production. Nowadays, the geometric design of the catalytic converter has become critical to avoid the behavior of backpressure in the exhaust system. The backpressure essentially reduced the performance of vehicles and increased the fuel consumption gradually. Consequently, this study aims to design various models of catalytic converter and optimize the volume of fluid flow inside the catalytic converter by changing the inlet cone pipe angles. Three different geometry angles of the inlet cone pipe of the catalytic converter were assessed. The model is simulated in Solidworks software to determine the optimum geometric design of the catalytic converter. The result showed that by decreasing the divergence angle of inlet cone pipe will upsurge the performance of the catalytic converter.

  9. A tilting wind tunnel for fire behavior studies

    Treesearch

    David R. Weise

    1994-01-01

    The combined effects of wind velocity and slope on wildland fire behavior can be studied in the laboratory using a tilting wind tunnel. The tilting wind tunnel requires a commercially available fan to induce wind and can be positioned to simulate heading and backing fires spreading up and down slope. The tunnel is portable and can be disassembled for transport using a...

  10. Effect of Pitch Tilt on Vertical Optokinetic Nystagmus,

    DTIC Science & Technology

    1996-09-23

    Naval Aerospace Medical Research Laboratory NAMRL-1394 EFFECT OF PITCH TILT ON VERTICAL OPTOKINETIC NYSTAGMUS M. J. Correia, O. I. Kolev, A...MEDICAL RESEARCH LABORATORY 51 HOVEY ROAD, PENSACOLA, FL 32508-1046 NAMRL-1394 EFFECT OF PITCH TILT ON VERTICAL OPTOKINETIC NYSTAGMUS M. J...Florida Pensacola, Florida Approved for public release; distribution unlimited. ABSTRACT Vertical optokinetic nystagmus (VOKN) and VOKN after

  11. Analysis and synthesis of intonation using the Tilt model.

    PubMed

    Taylor, P

    2000-03-01

    This paper introduces the Tilt intonational model and describes how this model can be used to automatically analyze and synthesize intonation. In the model, intonation is represented as a linear sequence of events, which can be pitch accents or boundary tones. Each event is characterized by continuous parameters representing amplitude, duration, and tilt (a measure of the shape of the event). The paper describes an event detector, in effect an intonational recognition system, which produces a transcription of an utterance's intonation. The features and parameters of the event detector are discussed and performance figures are shown on a variety of read and spontaneous speaker independent conversational speech databases. Given the event locations, algorithms are described which produce an automatic analysis of each event in terms of the Tilt parameters. Synthesis algorithms are also presented which generate F0 contours from Tilt representations. The accuracy of these is shown by comparing synthetic F0 contours to real F0 contours. The paper concludes with an extensive discussion on linguistic representations of intonation and gives evidence that the Tilt model goes a long way to satisfying the desired goals of such a representation in that it has the right number of degrees of freedom to be able to describe and synthesize intonation accurately.

  12. The optimum spanning catenary cable

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.

    2015-03-01

    A heavy cable spans two points in space. There exists an optimum cable length such that the maximum tension is minimized. If the two end points are at the same level, the optimum length is 1.258 times the distance between the ends. The optimum lengths for end points of different heights are also found.

  13. The lateral/directional stability characteristics of a four-propeller tilt-wing V/STOL model in low-speed steep descent. M.S. Thesis - Princeton Univ., N.J.

    NASA Technical Reports Server (NTRS)

    Dicarlo, D. J.

    1971-01-01

    Lateral-directional dynamic stability derivatives are presented for a O.1-scale model of the XC-142A tilt-wing transport. The tests involved various descending flight conditions achieved at constant speed and wing incidence by varying the vehicle angle of attack. The propeller blade angle and the speed were also changed in the steepest descent case. The experimental data were analyzed assuming that the dynamic motions of the vehicle may be described by linearized equations, with the lateral-directional characteristics of the full-scale aircraft also presented and discussed. Results from this experimental investigation indicated that the full-scale aircraft would have a stable lateral-directional motion in level flight, with the dynamic motion becoming less stable as the descent angle was increased.

  14. Destabilization of Human Balance Control by Static and Dynamic Head Tilts

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Wood, Scott J.; Feiveson, Alan H.; Black, F. Owen; Hwang, Emma Y.; Reschke, Millard F.

    2004-01-01

    To better understand the effects of varying head movement frequencies on human balance control, 12 healthy adult humans were studied during static and dynamic (0.14,0.33,0.6 Hz) head tilts of +/-30deg in the pitch and roll planes. Postural sway was measured during upright stance with eyes closed and altered somatosensory inputs provided by a computerized dynamic posturography (CDP) system. Subjects were able to maintain upright stance with static head tilts, although postural sway was increased during neck extension. Postural stability was decreased during dynamic head tilts, and the degree of destabilization varied directly with increasing frequency of head tilt. In the absence of vision and accurate foot support surface inputs, postural stability may be compromised during dynamic head tilts due to a decreased ability of the vestibular system to discern the orientation of gravity.

  15. Correlation between Geometrically Induced Oxygen Octahedral Tilts and Multiferroic Behaviors in BiFeO 3 Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sung Su; Kim, Young-Min; Lee, Hyun-Jae

    The equilibrium position of atoms in a unit cell is directly connected to crystal functionalities, e.g., ferroelectricity, ferromagnetism, and piezoelectricity. The artificial tuning of the energy landscape can involve repositioning atoms as well as manipulating the functionalities of perovskites (ABO 3), which are good model systems to test this legacy. Mechanical energy from external sources accommodating various clamping substrates is utilized to perturb the energy state of perovskite materials fabricated on the substrates and consequently change their functionalities; however, this approach yields undesired complex behaviors of perovskite crystals, such as lattice distortion, displacement of B atoms, and/or tilting of oxygenmore » octahedra. Owing to complimentary collaborations between experimental and theoretical studies, the effects of both lattice distortion and displacement of B atoms are well understood so far, which leaves us a simple question: Can we exclusively control the positions of oxygen atoms in perovskites for functionality manipulation? Here the artificial manipulation of oxygen octahedral tilt angles within multiferroic BiFeO 3 thin films using strong oxygen octahedral coupling with bottom SrRuO 3 layers is reported, which opens up new possibilities of oxygen octahedral engineering.« less

  16. Correlation between Geometrically Induced Oxygen Octahedral Tilts and Multiferroic Behaviors in BiFeO 3 Films

    DOE PAGES

    Lee, Sung Su; Kim, Young-Min; Lee, Hyun-Jae; ...

    2018-03-26

    The equilibrium position of atoms in a unit cell is directly connected to crystal functionalities, e.g., ferroelectricity, ferromagnetism, and piezoelectricity. The artificial tuning of the energy landscape can involve repositioning atoms as well as manipulating the functionalities of perovskites (ABO 3), which are good model systems to test this legacy. Mechanical energy from external sources accommodating various clamping substrates is utilized to perturb the energy state of perovskite materials fabricated on the substrates and consequently change their functionalities; however, this approach yields undesired complex behaviors of perovskite crystals, such as lattice distortion, displacement of B atoms, and/or tilting of oxygenmore » octahedra. Owing to complimentary collaborations between experimental and theoretical studies, the effects of both lattice distortion and displacement of B atoms are well understood so far, which leaves us a simple question: Can we exclusively control the positions of oxygen atoms in perovskites for functionality manipulation? Here the artificial manipulation of oxygen octahedral tilt angles within multiferroic BiFeO 3 thin films using strong oxygen octahedral coupling with bottom SrRuO 3 layers is reported, which opens up new possibilities of oxygen octahedral engineering.« less

  17. Physiological and behavioral effects of tilt-induced body fluid shifts

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Tjernstrom, O.; Ivarsson, A.; Gulledge, W. L.; Poston, R. L.

    1983-01-01

    This paper addresses the 'fluid shift theory' of space motion sickness. The primary purpose of the research was the development of procedures to assess individual differences in response to rostral body fluid shifts on earth. Experiment I examined inner ear fluid pressure changes during head-down tilt in intact human beings. Tilt produced reliable changes. Differences among subjects and between ears within the same subject were observed. Experiment II examined auditory threshold changes during tilt. Tilt elicited increased auditory thresholds, suggesting that sensory depression may result from increased inner ear fluid pressure. Additional observations on rotation magnitude estimation during head-down tilt, which indicate that rostral fluid shifts may depress semicircular canal activity, are briefly described. The results of this research suggest that the inner ear pressure and auditory threshold shift procedures could be used to assess individual differences among astronauts prior to space flight. Results from the terrestrial observations could be related to reported incidence/severity of motion sickness in space and used to evaluate the fluid shift theory of space motion sickness.

  18. A somatostatin analog improves tilt table tolerance by decreasing splanchnic vascular conductance

    PubMed Central

    Florian, J. P.; Curren, M. J.; Pawelczyk, J. A.

    2012-01-01

    Splanchnic hemodynamics and tilt table tolerance were assessed after an infusion of placebo or octreotide acetate, a somatostatin analog whose vascular effects are largely confined to the splanchnic circulation. We hypothesized that reductions in splanchnic blood flow (SpBF) and splanchnic vascular conductance (SpVC) would be related to improvements in tilt table tolerance. In randomized, double-blind, crossover trials, hemodynamic variables were collected in 14 women and 16 men during baseline, 70° head-up tilt (HUT), and recovery. A repeated-measures analysis of variance was used to compare changes from baseline with respect to sex and condition. HUT elicited an increase in heart rate and decreases in mean arterial pressure, cardiac index, stroke index, and systemic vascular conductance. Additionally, SpVC and non-SpVC were lower during HUT. Octreotide reduced SpBF and SpVC and increased systemic vascular conductance and non-SpVC. Changes in SpBF and SpVC between supine and HUT were smaller in women (P < 0.05). Tilt table tolerance was increased after administration of octreotide [median tilt time: 15.7 vs. 37.0 min (P < 0.05) and 21.8 vs. 45.0 min (P < 0.05) for women and men, respectively]. A significant relationship existed between change (Δ) in SpBF (placebo-octreotide) and Δtilt time in women (Δtilt time = 2.5–0.0083 ΔSpBF, P < 0.01), but not men (Δtilt time = 3.41–0.0008 ΔSpBF, P = 0.59). In conclusion, administration of octreotide acetate improved tilt table tolerance, which was associated with a decrease in SpVC. In women, but not men, the magnitude of reduction in SpBF was positively associated with improvements in tilt tolerance. PMID:22345429

  19. Satellite Vibration Testing: Angle optimisation method to Reduce Overtesting

    NASA Astrophysics Data System (ADS)

    Knight, Charly; Remedia, Marcello; Aglietti, Guglielmo S.; Richardson, Guy

    2018-06-01

    Spacecraft overtesting is a long running problem, and the main focus of most attempts to reduce it has been to adjust the base vibration input (i.e. notching). Instead this paper examines testing alternatives for secondary structures (equipment) coupled to the main structure (satellite) when they are tested separately. Even if the vibration source is applied along one of the orthogonal axes at the base of the coupled system (satellite plus equipment), the dynamics of the system and potentially the interface configuration mean the vibration at the interface may not occur all along one axis much less the corresponding orthogonal axis of the base excitation. This paper proposes an alternative testing methodology in which the testing of a piece of equipment occurs at an offset angle. This Angle Optimisation method may have multiple tests but each with an altered input direction allowing for the best match between all specified equipment system responses with coupled system tests. An optimisation process that compares the calculated equipment RMS values for a range of inputs with the maximum coupled system RMS values, and is used to find the optimal testing configuration for the given parameters. A case study was performed to find the best testing angles to match the acceleration responses of the centre of mass and sum of interface forces for all three axes, as well as the von Mises stress for an element by a fastening point. The angle optimisation method resulted in RMS values and PSD responses that were much closer to the coupled system when compared with traditional testing. The optimum testing configuration resulted in an overall average error significantly smaller than the traditional method. Crucially, this case study shows that the optimum test campaign could be a single equipment level test opposed to the traditional three orthogonal direction tests.

  20. Sagittal plane tilting deformity of the patellofemoral joint: a new concept in patients with chondromalacia patella.

    PubMed

    Aksahin, Ertugrul; Aktekin, Cem Nuri; Kocadal, Onur; Duran, Semra; Gunay, Cüneyd; Kaya, Defne; Hapa, Onur; Pepe, Murad

    2017-10-01

    The aims of this study were to evaluate sagittal plane alignment in patients with chondromalacia patella via magnetic resonance imaging (MRI), analyse the relationships between the location of the patellar cartilaginous lesions and sagittal alignment and finally investigate the relationships between the sagittal plane malalignment and patellofemoral loadings using by finite element analysis. Fifty-one patients who were diagnosed with isolated modified Outerbridge grade 3-4 patellar chondromalacia based on MRI evaluation and 51 control subjects were evaluated. Chondromalacia patella patients were divided into three subgroups according to the chondral lesion location as superior, middle and inferior. The patella-patellar tendon angle (P-PT) was used for evaluation of sagittal alignment of patellofemoral joint. Each subgroup was compared with control group by using P-PT angle. To investigate the biomechanical effects of sagittal plane malpositioning on patellofemoral joint, bone models were created at 30°, 60° and 90° knee flexion by using mean P-PT angles, which obtained from patients with chondromalacia patellae and control subjects. The total loading and contact area values of the patellofemoral joints were investigated by finite element analysis. The mean age of all participants was 52.9 ± 8.2 years. The mean P-PT angle was significantly lower in chondromalacia group (142.1° ± 3.6°) compared to control group (144.5° ± 5.3°) (p = 0.008). Chondral lesions were located in superior, middle and inferior zones in 16, 20 and 15 patients, respectively. The mean P-PT angles in patients with superior (141.8 ± 2.7) and inferior subgroups (139.2 ± 2.3) were significantly lower than the values in the control group (p < 0.05). The contact area values were detected higher in models with chondromalacia than in the control models at the same flexion degrees. There were increased loadings at 30° and 90° flexions in the sagittal patellar tilt models

  1. The impact of particle shape on the angle of internal friction and the implications for sediment dynamics at a steep, mixed sand-gravel beach

    NASA Astrophysics Data System (ADS)

    Stark, N.; Hay, A. E.; Cheel, R.; Lake, C. B.

    2014-08-01

    The impact of particle shape on the angle of internal friction, and the resulting impact on beach sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1 : 10) of the mixed sand-gravel beach at Advocate Harbour is stable in large-scale morphology over decades, despite a high tidal range of 10 m or more, and intense shore-break action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape (Corey Shape Index, CSI ≈ 0.2-0.6). High angles of internal friction of this material were determined using direct shear, ranging from φ ≈ 41 to 49°, while the round to angular gravel was characterized as φ = 33°. The addition of 25% of the elliptic plate-like sand-sized material to the gravel led to an immediate increase in friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of resistance to shear and, thus, shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray submerged in a water-filled tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being ≥7° steeper than for motion initiation of the gravel mixtures. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the angles of internal friction of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how

  2. A Cadaveric Analysis of the Optimal Radiographic Angle for Evaluating Trochlear Depth.

    PubMed

    Weinberg, Douglas Stanley; Gilmore, Allison; Guraya, Sahejmeet S; Wang, David M; Liu, Raymond W

    2017-02-01

    Disorders of the patellofemoral joint are common. Diagnosis and management often involves the use tangential imaging of the patella and trochlear grove, with the sunrise projection being the most common. However, imaging protocols vary between institutions, and limited data exist to determine which radiographic projections provide optimal visualization of the trochlear groove at its deepest point. Plain radiographs of 48 cadaveric femora were taken at various beam-femur angles and the maximum trochlear depth was measured; a tilt-board apparatus was used to elevate the femur in 5-degree increments between 40 and 75 degrees. A corollary experiment was undertaken to investigate beam-femur angles osteologically: digital representations of each bone were created with a MicroScribe digitizer, and trochlear depth was measured on all specimens at beam-femur angles from 0 to 75 degrees. The results of the radiographic and digitizer experiments showed that the maximum trochlear grove depth occurred at a beam-femur angle of 50 degrees. These results suggest that the optimal beam-femur angle for visualizing maximum trochlear depth is 50 degrees. This is significantly lower than the beam-femur angle of 90 degrees typically used in the sunrise projection. Clinicians evaluating trochlear depth on sunrise projections may be underestimating maximal depth and evaluating a nonarticulating portion of the femur. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Velocity dependence of vestibular information for postural control on tilting surfaces

    PubMed Central

    Kluzik, JoAnn; Hlavacka, Frantisek

    2016-01-01

    Vestibular information is known to be important for postural stability on tilting surfaces, but the relative importance of vestibular information across a wide range of surface tilt velocities is less clear. We compared how tilt velocity influences postural orientation and stability in nine subjects with bilateral vestibular loss and nine age-matched, control subjects. Subjects stood on a force platform that tilted 6 deg, toes-up at eight velocities (0.25 to 32 deg/s), with and without vision. Results showed that visual information effectively compensated for lack of vestibular information at all tilt velocities. However, with eyes closed, subjects with vestibular loss were most unstable within a critical tilt velocity range of 2 to 8 deg/s. Subjects with vestibular deficiency lost their balance in more than 90% of trials during the 4 deg/s condition, but never fell during slower tilts (0.25–1 deg/s) and fell only very rarely during faster tilts (16–32 deg/s). At the critical velocity range in which falls occurred, the body center of mass stayed aligned with respect to the surface, onset of ankle dorsiflexion was delayed, and there was delayed or absent gastrocnemius inhibition, suggesting that subjects were attempting to actively align their upper bodies with respect to the moving surface instead of to gravity. Vestibular information may be critical for stability at velocities of 2 to 8 deg/s because postural sway above 2 deg/s may be too fast to elicit stabilizing responses through the graviceptive somatosensory system, and postural sway below 8 deg/s may be too slow for somatosensory-triggered responses or passive stabilization from trunk inertia. PMID:27486101

  4. Interacting tilt and kink instabilities in repelling current channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keppens, R.; Porth, O.; Xia, C., E-mail: rony.keppens@wis.kuleuven.be

    2014-11-01

    We present a numerical study in resistive magnetohydrodynamics (MHD) where the initial equilibrium configuration contains adjacent, oppositely directed, parallel current channels. Since oppositely directed current channels repel, the equilibrium is liable to an ideal magnetohydrodynamic tilt instability. This tilt evolution, previously studied in planar settings, involves two magnetic islands or flux ropes, which on Alfvénic timescales undergo a combined rotation and separation. This in turn leads to the creation of (near) singular current layers, posing severe challenges to numerical approaches. Using our open-source grid-adaptive MPI-AMRVAC software, we revisit the planar evolution case in compressible MHD, as well as its extensionmore » to two-and-a-half-dimensional (2.5D) and full three-dimensional (3D) scenarios. As long as the third dimension can be ignored, pure tilt evolutions result that are hardly affected by out of plane magnetic field components. In all 2.5D runs, our simulations do show secondary tearing type disruptions throughout the near singular current sheets in the far nonlinear saturation regime. In full 3D runs, both current channels can be liable to additional ideal kink deformations. We discuss the effects of having both tilt and kink instabilities acting simultaneously in the violent, reconnection-dominated evolution. In 3D, both the tilt and the kink instabilities can be stabilized by tension forces. As a concrete space plasma application, we argue that interacting tilt-kink instabilities in repelling current channels provide a novel route to initiate solar coronal mass ejections, distinctly different from the currently favored pure kink or torus instability routes.« less

  5. From catʼs eyes to multiple disjoint natural convection flow in tall tilted cavities: A direct primitive variables approach

    NASA Astrophysics Data System (ADS)

    Báez, Elsa; Nicolás, Alfredo

    2013-11-01

    Natural convection fluid flow in air-filled tall tilted cavities is studied numerically with a new direct projection method on the Boussinesq approximation in primitive variables. The study deals with “cat's eyes” instabilities and multiple disjoint cells as the aspect ratio A and the angle of inclination ϕ of the cavity vary. The flows are validated with those reported before using the stream function-vorticity variables. New cases, A=12 and 20 varying ϕ, lead to get more insight on the physical phenomenon.

  6. Effect of tilt on strong motion data processing

    USGS Publications Warehouse

    Graizer, V.M.

    2005-01-01

    In the near-field of an earthquake the effects of the rotational components of ground motion may not be negligible compared to the effects of translational motions. Analyses of the equations of motion of horizontal and vertical pendulums show that horizontal sensors are sensitive not only to translational motion but also to tilts. Ignoring this tilt sensitivity may produce unreliable results, especially in calculations of permanent displacements and long-period calculations. In contrast to horizontal sensors, vertical sensors do not have these limitations, since they are less sensitive to tilts. In general, only six-component systems measuring rotations and accelerations, or three-component systems similar to systems used in inertial navigation assuring purely translational motion of accelerometers can be used to calculate residual displacements. ?? 2004 Elsevier Ltd. All rights reserved.

  7. Nondissipative optimum charge regulator

    NASA Technical Reports Server (NTRS)

    Rosen, R.; Vitebsky, J. N.

    1970-01-01

    Optimum charge regulator provides constant level charge/discharge control of storage batteries. Basic power transfer and control is performed by solar panel coupled to battery through power switching circuit. Optimum controller senses battery current and modifies duty cycle of switching circuit to maximize current available to battery.

  8. Head tilt produced by hemilabyrinthectomy does not depend on the direct vestibulospinal tracts.

    PubMed

    Fukushima, K; Fukushima, J; Kato, M

    1988-01-01

    Head tilt is one of the most characteristic and enduring symptoms produced by hemilabyrinthectomy and is compensated by the central nervous system with time. In order to study the central mechanisms of compensation of the head tilt, it is first necessary to understand how it is produced. However, its mechanism remains unknown. Experiments were performed in cats to examine whether the direct vestibulocollic pathways are responsible for the head tilt, as suggested by some authors. Hemilabyrinthectomies produced a characteristic head tilt in cats in which the medial and/or one lateral vestibulospinal tracts (VSTs) had been interrupted. The lesions of the medial VST did not influence the preexisting head tilt produced by hemilabyrinthectomies. These results suggest that the head tilt produced by hemilabyrinthectomies does not depend on the activity of the VSTs.

  9. Spatiotopic coding during dynamic head tilt

    PubMed Central

    Turi, Marco; Burr, David C.

    2016-01-01

    Humans maintain a stable representation of the visual world effortlessly, despite constant movements of the eyes, head, and body, across multiple planes. Whereas visual stability in the face of saccadic eye movements has been intensely researched, fewer studies have investigated retinal image transformations induced by head movements, especially in the frontal plane. Unlike head rotations in the horizontal and sagittal planes, tilting the head in the frontal plane is only partially counteracted by torsional eye movements and consequently induces a distortion of the retinal image to which we seem to be completely oblivious. One possible mechanism aiding perceptual stability is an active reconstruction of a spatiotopic map of the visual world, anchored in allocentric coordinates. To explore this possibility, we measured the positional motion aftereffect (PMAE; the apparent change in position after adaptation to motion) with head tilts of ∼42° between adaptation and test (to dissociate retinal from allocentric coordinates). The aftereffect was shown to have both a retinotopic and spatiotopic component. When tested with unpatterned Gaussian blobs rather than sinusoidal grating stimuli, the retinotopic component was greatly reduced, whereas the spatiotopic component remained. The results suggest that perceptual stability may be maintained at least partially through mechanisms involving spatiotopic coding. NEW & NOTEWORTHY Given that spatiotopic coding could play a key role in maintaining visual stability, we look for evidence of spatiotopic coding after retinal image transformations caused by head tilt. To this end, we measure the strength of the positional motion aftereffect (PMAE; previously shown to be largely spatiotopic after saccades) after large head tilts. We find that, as with eye movements, the spatial selectivity of the PMAE has a large spatiotopic component after head rotation. PMID:27903636

  10. The tip/tilt tracking sensor based on multi-anode photo-multiplier tube

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-yu; Rao, Chang-hui; Tian, Yu; Wei, Kai

    2013-09-01

    Based on the demands of high sensitivity, precision and frame rate of tip/tilt tracking sensors in acquisition, tracking and pointing (ATP) systems for satellite-ground optical communications, this paper proposes to employ the multiple-anode photo-multiplier tubes (MAPMTs) in tip/tilt tracking sensors. Meanwhile, an array-type photon-counting system was designed to meet the requirements of the tip/tilt tracking sensors. The experiment results show that the tip/tilt tracking sensors based on MAPMTs can achieve photon sensitivity and high frame rate as well as low noise.

  11. Novel theory for propagation of tilted Gaussian beam through aligned optical system

    NASA Astrophysics Data System (ADS)

    Xia, Lei; Gao, Yunguo; Han, Xudong

    2017-03-01

    A novel theory for tilted beam propagation is established in this paper. By setting the propagation direction of the tilted beam as the new optical axis, we establish a virtual optical system that is aligned with the new optical axis. Within the first order approximation of the tilt and off-axis, the propagation of the tilted beam is studied in the virtual system instead of the actual system. To achieve more accurate optical field distributions of tilted Gaussian beams, a complete diffraction integral for a misaligned optical system is derived by using the matrix theory with angular momentums. The theory demonstrates that a tilted TEM00 Gaussian beam passing through an aligned optical element transforms into a decentered Gaussian beam along the propagation direction. The deviations between the peak intensity axis of the decentered Gaussian beam and the new optical axis have linear relationships with the misalignments in the virtual system. ZEMAX simulation of a tilted beam through a thick lens exposed to air shows that the errors between the simulation results and theoretical calculations of the position deviations are less than 2‰ when the misalignments εx, εy, εx', εy' are in the range of [-0.5, 0.5] mm and [-0.5, 0.5]°.

  12. Simulations of Micropumps Based on Tilted Flexible Fibers

    NASA Astrophysics Data System (ADS)

    Hancock, Matthew; Elabbasi, Nagi; Demirel, Melik

    2015-11-01

    Pumping liquids at low Reynolds numbers is challenging because of the principle of reversibility. We report here a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla valves, check valves). We demonstrate proof-of-concept with 2D and 3D fluid-structure interaction (FSI) simulations in COMSOL Multiphysics®of micropumps consisting of a source for oscillatory fluidic motion, e.g. a piston, and a channel lined with tilted flexible rods or sheets to provide rectification. When flow is against the rod tilt direction, the rods bend backward, narrowing the channel and increasing flow resistance; when flow is in the direction of rod tilt, the rods bend forward, widening the channel and decreasing flow resistance. The 2D and 3D simulations involve moving meshes whose quality is maintained by prescribing the mesh displacement on guide surfaces positioned on either side of each flexible structure. The prescribed displacement depends on structure bending and maintains mesh quality even for large deformations. Simulations demonstrate effective pumping even at Reynolds numbers as low as 0.001. Because rod rigidity may be specified independently of Reynolds number, in principle, rod rigidity may be reduced to enable pumping at arbitrarily low Reynolds numbers.

  13. A comparison of reflector antenna designs for wide-angle scanning

    NASA Technical Reports Server (NTRS)

    Zimmerman, M.; Lee, S. W.; Houshmand, B.; Rahmatsamii, Y.; Acosta, R. J.

    1989-01-01

    Conventional reflector antennas are typically designed for up to + or - 20 beamwidths scan. An attempt was made to stretch this scan range to some + or - 300 beamwidths. Six single and dual reflector antennas were compared. It is found that a symmetrical parabolic reflector with f/D = 2 and a single circular waveguide feed has the minimum scan loss (only 0.6 dB at Theta sub 0 = 8 deg, or a 114 beamwidths scan). The scan is achieved by tilting the parabolic reflector by an angle equal to the half-scan angle. The f/D may be shortened if a cluster 7 to 19 elements instead of one element is used for the feed. The cluster excitation is adjusted for each new beam scan direction to compensate for the imperfect field distribution over the reflector aperture. The antenna can be folded into a Cassegrain configuration except that, due to spillover and blockage considerations, the amount of folding achievable is small.

  14. Absolute Measurement of Tilts via Fourier Analysis of Interferograms

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2004-01-01

    The Fourier method of interferogram analysis requires the introduction of a constant tilt into the inteferogram to serve as a 'carrier signal' for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.

  15. Absolute Measurement of Tilts via Fourier Analysis of Interferograms

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2004-01-01

    The Fourier method of interferogram analysis requires the introduction of a constant tilt into the interferogram to serve as a carrier signal for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.

  16. Radar cross section models for limited aspect angle windows

    NASA Astrophysics Data System (ADS)

    Robinson, Mark C.

    1992-12-01

    This thesis presents a method for building Radar Cross Section (RCS) models of aircraft based on static data taken from limited aspect angle windows. These models statistically characterize static RCS. This is done to show that a limited number of samples can be used to effectively characterize static aircraft RCS. The optimum models are determined by performing both a Kolmogorov and a Chi-Square goodness-of-fit test comparing the static RCS data with a variety of probability density functions (pdf) that are known to be effective at approximating the static RCS of aircraft. The optimum parameter estimator is also determined by the goodness of-fit tests if there is a difference in pdf parameters obtained by the Maximum Likelihood Estimator (MLE) and the Method of Moments (MoM) estimators.

  17. Effect of microwave-enhanced superconductivity in YBa{sub 2}Cu{sub 3}O{sub 7} bi-crystalline grain boundary weak-links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, C.M.; Chen, C.M.; Lin, H.C.

    1994-12-31

    We have studied systematically the effect of microwave irradiation on the temperature dependent resistivity R(T) and the current-voltage (I-V) characteristics of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bicrystalline grain boundary weak-links (GBWLs), with grain boundary of three different tilt angles. The superconducting transition temperature, T{sub c}, has significant enhancement upon microwave irradiation. The microwave enhanced T{sub c} is increased as a function of incidence microwave power, but limited to an optimum power level. The GBWLs of 45{degrees} tilt boundary has shown to be most sensitive to the microwave irradiation power, and the GBWLs of 36.8{degrees} tilt boundary has displayed a moderatemore » response. In contrast, no enhancement of T{sub c} was observed in the GBWLs of 24{degrees} tilt boundary, as well as in the uniform films. Under the microwave irradiation, the R(T) dependence is hysteretic as the transition taken from superconducting state to normal state and vice versa. Mechanisms associated with the redistribution of nonequilibrium quasiparticles under microwave irradiation are discussed.« less

  18. Effect of microwave-enhanced superconductivity in YBa2Cu3O7 Bi-crystalline grain bounda ry weak-links

    NASA Technical Reports Server (NTRS)

    Fu, C. M.; Chen, C. M.; Lin, H. C.; Wu, K. H.; Juang, J. Y.; Uen, T. M.; Gou, Y. S.

    1995-01-01

    We have studied systematically the effect of microwave irradiation on the temperature dependent resistivity (R(I) and the current-voltage (I-V) characteristics of YBa2Gu3O(7 - x) (YBCO) bicrystalline grain boundary weak-links (GBWL's), with grain boundary of three different tilt angles. The superconducting transition temperature, T(sub c), has significant enhancement upon microwave irradiation. The microwave enhanced T(sub c) is increased as a function of incident microwave power, but limited to an optimum power level. The GBWL's of 45 deg tilt boundary has shown to be most sensitive to the microwave irradiation power, and the GBWL's of 36.8 deg tilt boundary has displayed a moderate response. In contrast, no enhancement of T(sub c) was observed in the GBWL's of 24 deg tilt boundary, as well as in the uniform films. Under the microwave irradiation, the R(T) dependent is hystertic as the transition taken from superconducting state to normal state and vice versa. Mechanisms associated with the redistribution of nonequilibrium quasiparticles under microwave irradiation are discussed.

  19. Borehole Tilt Measurements at the Charlevoix Observatory, Quebec.

    DTIC Science & Technology

    1983-01-31

    1q. KEY WORDS (Continue on reverse side it necessary end identify by block number) Borehole tiltmeter Earthquakes Tidal, secular and transient tilts 20...ABSTRACT (Continue on reverse side If necessary and Identify by block number) An array of three Bodenseewerk Gbp borehole tiltmeters has been...established to measure tidal, transient and secular tilting of the Earth’s surface in the Charlevoix region of Quebec. Two of the tiltmeters operate at a

  20. Limited-angle tomography for analyzer-based phase-contrast X-ray imaging

    PubMed Central

    Majidi, Keivan; Wernick, Miles N; Li, Jun; Muehleman, Carol; Brankov, Jovan G

    2014-01-01

    Multiple-Image Radiography (MIR) is an analyzer-based phase-contrast X-ray imaging method (ABI), which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to

  1. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-07-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  2. The Effect of Angle Restriction on the Topological Characteristics of Minicircle Networks

    NASA Astrophysics Data System (ADS)

    Arsuaga, J.; Diao, Y.; Hinson, K.

    2012-01-01

    Networks of topologically linked minicircle polymers are found in diverse natural systems and are a subject of intense research in nanotechonology. In a recent report the authors introduced a new theoretical model to study the effects of polymer density on the formation and on the topological properties of minicircle networks. Three key topological characteristics were identified in the formation and characterization of a network: the critical percolation density, the average saturation density and the mean valence of the network. In this work we report how these characteristics change when an orientation bias is imposed on the minicircles forming the network. We observe that such restrictions have significant effects on the key topological characteristics of the network. In particular while the effects of restriction of the tilting angle can be predicted we find that those of the azimuthal angle can have somewhat unexpected results.

  3. Estimating 3D tilt from local image cues in natural scenes

    PubMed Central

    Burge, Johannes; McCann, Brian C.; Geisler, Wilson S.

    2016-01-01

    Estimating three-dimensional (3D) surface orientation (slant and tilt) is an important first step toward estimating 3D shape. Here, we examine how three local image cues from the same location (disparity gradient, luminance gradient, and dominant texture orientation) should be combined to estimate 3D tilt in natural scenes. We collected a database of natural stereoscopic images with precisely co-registered range images that provide the ground-truth distance at each pixel location. We then analyzed the relationship between ground-truth tilt and image cue values. Our analysis is free of assumptions about the joint probability distributions and yields the Bayes optimal estimates of tilt, given the cue values. Rich results emerge: (a) typical tilt estimates are only moderately accurate and strongly influenced by the cardinal bias in the prior probability distribution; (b) when cue values are similar, or when slant is greater than 40°, estimates are substantially more accurate; (c) when luminance and texture cues agree, they often veto the disparity cue, and when they disagree, they have little effect; and (d) simplifying assumptions common in the cue combination literature is often justified for estimating tilt in natural scenes. The fact that tilt estimates are typically not very accurate is consistent with subjective impressions from viewing small patches of natural scene. The fact that estimates are substantially more accurate for a subset of image locations is also consistent with subjective impressions and with the hypothesis that perceived surface orientation, at more global scales, is achieved by interpolation or extrapolation from estimates at key locations. PMID:27738702

  4. An electronic pan/tilt/zoom camera system

    NASA Technical Reports Server (NTRS)

    Zimmermann, Steve; Martin, H. Lee

    1991-01-01

    A camera system for omnidirectional image viewing applications that provides pan, tilt, zoom, and rotational orientation within a hemispherical field of view (FOV) using no moving parts was developed. The imaging device is based on the effect that from a fisheye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high speed electronic circuitry. An incoming fisheye image from any image acquisition source is captured in memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. As a result, this device can accomplish the functions of pan, tilt, rotation, and zoom throughout a hemispherical FOV without the need for any mechanical mechanisms. A programmable transformation processor provides flexible control over viewing situations. Multiple images, each with different image magnifications and pan tilt rotation parameters, can be obtained from a single camera. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment.

  5. On simultaneous tilt and creep observations on the San Andreas Fault

    USGS Publications Warehouse

    Johnston, M.J.S.; McHugh, S.; Burford, S.

    1976-01-01

    THE installation of an array of tiltmeters along the San Andreas Fault 1 has provided an excellent opportunity to study the amplitude and spatial scale of the tilt fields associated with fault creep. We report here preliminary results from, and some implications of, a search for interrelated surface tilts and creep event observations at four pairs of tiltmeters and creepmeters along an active 20-km stretch of the San Andreas Fault. We have observed clear creep-related tilts above the instrument resolution (10 -8 rad) only on a tiltmeter less than 0.5 km from the fault. The tilt events always preceded surface creep observations by 2-12 min, and were not purely transient in character. ?? 1975 Nature Publishing Group.

  6. Optimum flight paths of turbojet aircraft

    NASA Technical Reports Server (NTRS)

    Miele, Angelo

    1955-01-01

    The climb of turbojet aircraft is analyzed and discussed including the accelerations. Three particular flight performances are examined: minimum time of climb, climb with minimum fuel consumption, and steepest climb. The theoretical results obtained from a previous study are put in a form that is suitable for application on the following simplifying assumptions: the Mach number is considered an independent variable instead of the velocity; the variations of the airplane mass due to fuel consumption are disregarded; the airplane polar is assumed to be parabolic; the path curvatures and the squares of the path angles are disregarded in the projection of the equation of motion on the normal to the path; lastly, an ideal turbojet with performance independent of the velocity is involved. The optimum Mach number for each flight condition is obtained from the solution of a sixth order equation in which the coefficients are functions of two fundamental parameters: the ratio of minimum drag in level flight to the thrust and the Mach number which represents the flight at constant altitude and maximum lift-drag ratio.

  7. Long-term assessment of tilt of glued intraocular lenses: an optical coherence tomography analysis 5 years after surgery.

    PubMed

    Kumar, Dhivya Ashok; Agarwal, Amar; Agarwal, Athiya; Chandrasekar, Radika; Priyanka, Vijetha

    2015-01-01

    Long-term assessment of the optic position of glued transscleral fixated intraocular lens (IOL) with optical coherence tomography (OCT). Prospective observational case series. Patients with a minimum 5 years' follow-up after glued IOL surgery were included. Postoperatively, IOL position was examined by anterior segment OCT (Carl Zeiss Meditec) and the scans were analyzed in 2 axes (180°-0° and 270°-90°) using MatLab (Mathworks). Best-corrected visual acuity (BCVA; Snellen's charts), Orbscan, retinoscopy, refraction, and slit-lamp biomicroscopy were performed. The distance between the iris margin and the anterior IOL optic (D1, D2), slope of the line across the iris and IOL, the slope ratio between the IOL and iris, IOL tilt, and optic surface changes were determined and correlated with the astigmatism and vision. A total of 60 eyes (mean follow-up of 5.9±0.2 years; range, 5-6 years) were evaluated. There was a significant correlation (P = 0.000) between the slope of iris and the IOL in horizontal and vertical axes. The mean D1 and D2 were 0.94 ± 0.36 and 0.95 ± 0.36 mm, respectively. Nine of 60 eyes (15%) had pigment dispersed on the IOL surface. Twenty-one eyes (35%) had optic tilt detected on OCT and 65% of eyes had no optic tilt. The mean angle between the IOL and the iris was noted to be 3.2 ± 2.7° and 2.9 ± 2.6° in horizontal and vertical axes, respectively. The mean ocular residual astigmatism (ORA) was 0.53 ± 0.5 diopters. There was no difference in the ORA between the eyes with and without tilt (P = 0.762). There was no correlation (P = 0.348) between the ORA and BCVA. Position of the IOL was not dependent on the type of lens, age of the patient, or the preoperative surgical indication. Long-term analysis with OCT demonstrated good IOL positioning without any significant optic tilt in patients with glued IOL fixation. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  8. TILTING TABLE AREA, PDP ROOM, LEVEL +27’, LOOKING SOUTHWEST, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TILTING TABLE AREA, PDP ROOM, LEVEL +27’, LOOKING SOUTHWEST, SHOWING TILTING TABLE, MARKED BY WHITE ELECTRICAL CORD - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  9. Robust tilt and lock mechanism for hopping actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salton, Jonathan R.; Buerger, Stephen; Dullea, Kevin J.

    A tilt and lock apparatus that includes a tilt servomechanism, a spiral torsion spring, a lock wheel, and a lock hook is described herein. The spiral torsion spring is mechanically coupled to the tilt servomechanism and the lock wheel (which includes an opening). When a shaft is positioned through the opening, rotation of the lock wheel is in unison with rotation of the shaft. An external surface of the lock wheel includes one or more grooves. The lock hook includes a head that engages and disengages the grooves. The lock wheel is stationary when the head engages one of themore » grooves and is rotatable when the head disengages the grooves. The head and the grooves are geometrically aligned when engaged to prevent creation of a force that acts to disengage the head responsive to an applied force acting on the shaft.« less

  10. Modeling Flow Past a Tilted Vena Cava Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, M A; Wang, S L

    Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside amore » model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.« less

  11. Tilting history of the San Manuel-Kalamazoo porphyry system, southeastern Arizona

    USGS Publications Warehouse

    Force, E.R.; Dickinson, W.R.; Hagstrum, J.T.

    1995-01-01

    The Laramide San Manuel-Kalamazoo porphyry system of Arizona has been pivotal in concepts of both extensional tectonics and alteration-mineralization zoning. This paper reexamines the tilting history in light of new work in the region and reinterprets the geometry of the deposit. The porphyry mineralization occurs in and near an intrusion of Laramide San Manuel porphyry in Precambrian Oracle Granite. The area has an extremely complicated history of Tertiary crustal extension and fanglomerate deposition, but the blocks containing the two main fragments of the original orebody were involved in only the later parts of this history and are less tilted than other nearby blocks. Originally horizontal features of mid-Tertiary age are tilted about 30??, those of Laramide age about 35??, and those of pre-Laramide age about 45?? to the northeast. Paleomagnetism of the porphyry intrusion itself suggests tilting of about 33??. The data thus suggest that postemplacement tilt of the Laramide porphyry system was 30?? to 35?? and that virtually all of it was mid-Tertiary in age. -from Authors

  12. Design and Development of Tilting Rotary Furnace

    NASA Astrophysics Data System (ADS)

    Sai Varun, V.; Tejesh, P.; Prashanth, B. N.

    2018-02-01

    Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken

  13. Assessment of Optimum Value for Dip Angle and Locking Rate Parameters in Makran Subduction Zone

    NASA Astrophysics Data System (ADS)

    Safari, A.; Abolghasem, A. M.; Abedini, N.; Mousavi, Z.

    2017-09-01

    Makran subduction zone is one of the convergent areas that have been studied by spatial geodesy. Makran zone is located in the South Eastern of Iran and South of Pakistan forming the part of Eurasian-Arabian plate's border where oceanic crust in the Arabian plate (or in Oman Sea) subducts under the Eurasian plate ( Farhoudi and Karig, 1977). Due to lack of historical and modern tools in the area, a sampling of sparse measurements of the permanent GPS stations and temporary stations (campaign) has been conducted in the past decade. Makran subduction zone from different perspectives has unusual behaviour: For example, the Eastern and Western parts of the region have very different seismicity and also dip angle of subducted plate is in about 2 to 8 degrees that this value due to the dip angle in other subduction zone is very low. In this study, we want to find the best possible value for parameters that differs Makran subduction zone from other subduction zones. Rigid block modelling method was used to determine these parameters. From the velocity vectors calculated from GPS observations in this area, block model is formed. These observations are obtained from GPS stations that a number of them are located in South Eastern Iran and South Western Pakistan and a station located in North Eastern Oman. According to previous studies in which the locking depth of Makran subduction zone is 38km (Frohling, 2016), in the preparation of this model, parameter value of at least 38 km is considered. With this function, the amount of 2 degree value is the best value for dip angle but for the locking rate there is not any specified amount. Because the proposed model is not sensitive to this parameter. So we can not expect big earthquakes in West of Makran or a low seismicity activity in there but the proposed model definitely shows the Makran subduction layer is locked.

  14. Optimum stacking sequence design of laminated composite circular plates with curvilinear fibres by a layer-wise optimization method

    NASA Astrophysics Data System (ADS)

    Guenanou, A.; Houmat, A.

    2018-05-01

    The optimum stacking sequence design for the maximum fundamental frequency of symmetrically laminated composite circular plates with curvilinear fibres is investigated for the first time using a layer-wise optimization method. The design variables are two fibre orientation angles per layer. The fibre paths are constructed using the method of shifted paths. The first-order shear deformation plate theory and a curved square p-element are used to calculate the objective function. The blending function method is used to model accurately the geometry of the circular plate. The equations of motion are derived using Lagrange's method. The numerical results are validated by means of a convergence test and comparison with published values for symmetrically laminated composite circular plates with rectilinear fibres. The material parameters, boundary conditions, number of layers and thickness are shown to influence the optimum solutions to different extents. The results should serve as a benchmark for optimum stacking sequences of symmetrically laminated composite circular plates with curvilinear fibres.

  15. L-tryptophan-induced electron transport across supported lipid bilayers: an alkyl-chain tilt-angle, and bilayer-symmetry dependence.

    PubMed

    Sarangi, Nirod Kumar; Patnaik, Archita

    2012-12-21

    Molecular orientation-dependent electron transport across supported 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers (SLBs) on semiconducting indium tin oxide (ITO) is reported with an aim towards potential nanobiotechnological applications. A bifunctional strategy is adopted to form symmetric and asymmetric bilayers of DPPC that interact with L-tryptophan, and are analyzed by surface manometry and atomic force microscopy. Polarization-dependent real-time Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) analysis of these SLBs reveals electrostatic, hydrogen-bonding, and cation-π interactions between the polar head groups of the lipid and the indole side chains. Consequently, a molecular tilt arises from the effective interface dipole, facilitating electron transport across the ITO-anchored SLBs in the presence of an internal Fe(CN)(6)(4-/3-) redox probe. The incorporation of tryptophan enhances the voltammetric features of the SLBs. The estimated electron-transfer rate constants for symmetric and asymmetric bilayers (k(s) = 2.0×10(-2) and 2.8×10(-2) s(-1)) across the two-dimensional (2D) ordered DPPC/tryptophan SLBs are higher compared to pure DPPC SLBs (k(s) = 3.2×10(-3) and 3.9×10(-3) s(-1)). In addition, they are molecular tilt-dependent, as it is the case with the standard apparent rate constants k(app)(0), estimated from electrochemical impedance spectroscopy and bipotentiostatic experiments with a Pt ultramicroelectrode. Lower magnitudes of k(s) and k(app)(0) imply that electrochemical reactions across the ITO-SLB electrodes are kinetically limited and consequently governed by electron tunneling across the SLBs. Standard theoretical rate constants (k(th)(0)) accrued upon electron tunneling comply with the potential-independent electron-tunneling coefficient β = 0.15 Å(-1). Insulator-semiconductor transitions moving from a liquid-expanded to a condensed 2D-phase state of the SLBs are noted, adding a new dimension

  16. Evaluation of various procedures transposing global tilted irradiance to horizontal surface irradiance

    NASA Astrophysics Data System (ADS)

    Housmans, Caroline; Bertrand, Cédric

    2017-02-01

    Many transposition models have been proposed in the literature to convert solar irradiance on the horizontal plane to that on a tilted plane. The inverse process, i.e. the conversion from tilted to horizontal is investigated here based upon seven months of in-plane global solar irradiance measurements recorded on the roof of the Royal Meteorological Institute of Belgium's radiation tower in Uccle (Longitude 4.35° E, Latitude 50.79° N). Up to three pyranometers mounted on inclined planes of different tilts and orientations were involved in the inverse transposition process. Our results indicate that (1) the tilt to horizontal irradiance conversion is improved when measurements from more than one tilted pyranometer are considered (i.e. by using a multi-pyranometer approach) and (2) the improvement from using an isotropic model to anisotropic models in the inverse transposition problem is not significant.

  17. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media

    PubMed Central

    Chen, Zhen; Dorfman, Kevin D.

    2013-01-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such “tilted” post arrays is superior to the standard “un-tilted” approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the “free path”, i.e., the average distance of ballistic trajectories of point sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. PMID:23868490

  18. Magneto-transport studies of a few hole GaAs double quantum dot in tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Studenikin, Sergei; Bogan, Alex; Tracy, Lisa; Gaudreau, Louis; Sachrajda, Andy; Korkusinski, Marek; Reno, John; Hargett, Terry

    Compared to equivalent electron devices, single-hole spins interact weakly with lattice nuclear spins leading to extended quantum coherence times. This makes p-type Quantum Dots (QD) particularly attractive for practical quantum devices such as qubit circuits, quantum repeaters, quantum sensors etc. where long coherence time is required. Another property of holes is the possibility to tune their g-factor as a result of the strong anisotropy of the valance band. Hole g-factors can be conveniently tuned in situ from a large value to almost zero by tilting the magnetic field relative to the 2D hole gas surface normal. In this work we explore high-bias magneto-transport properties of a p-type double quantum dot (DQD) device fabricated from a GaAs/AlGaAs heterostructures using lateral split-gate technology. A charge detection technique is used to monitor number of holes and tune the p-DQD in a single hole regime around (1,1) and (2,0) occupation states where Pauli spin-blockaded transport is expected. Four states are identified in quantizing magnetic fields within the high-bias current stripe - three-fold triplet and a singlet which allows determining effective heavy hole g-factor as a function of the tilt angle from 90 to 0 degrees.

  19. Calculating the Optimum Angle of Filament-Wound Pipes in Natural Gas Transmission Pipelines Using Approximation Methods.

    PubMed

    Reza Khoshravan Azar, Mohammad; Emami Satellou, Ali Akbar; Shishesaz, Mohammad; Salavati, Bahram

    2013-04-01

    Given the increasing use of composite materials in various industries, oil and gas industry also requires that more attention should be paid to these materials. Furthermore, due to variation in choice of materials, the materials needed for the mechanical strength, resistance in critical situations such as fire, costs and other priorities of the analysis carried out on them and the most optimal for achieving certain goals, are introduced. In this study, we will try to introduce appropriate choice for use in the natural gas transmission composite pipelines. Following a 4-layered filament-wound (FW) composite pipe will consider an offer our analyses under internal pressure. The analyses' results will be calculated for different combinations of angles 15 deg, 30 deg, 45 deg, 55 deg, 60 deg, 75 deg, and 80 deg. Finally, we will compare the calculated values and the optimal angle will be gained by using the Approximation methods. It is explained that this layering is as the symmetrical.

  20. Changes in Tilt of Mars Axis

    NASA Image and Video Library

    2011-11-21

    Modern-day Mars experiences cyclical changes in climate and, consequently, ice distribution. Unlike Earth, the obliquity or tilt of Mars changes substantially on timescales of hundreds of thousands to millions of years.

  1. Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension.

    PubMed

    Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar

    2014-08-01

    Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.

  2. Determination of structure tilting in magnetized plasmas—Time delay estimation in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guszejnov, Dávid; Bencze, Attila; Zoletnik, Sándor

    2013-06-15

    Time delay estimation (TDE) is a well-known technique to investigate poloidal flows in fusion plasmas. The present work is an extension of the earlier works of Bencze and Zoletnik [Phys. Plasmas 12, 052323 (2005)] and Tal et al.[Phys. Plasmas 18, 122304 (2011)]. From the prospective of the comparison of theory and experiment, it seems to be important to estimate the statistical properties of the TDE based on solid mathematical groundings. This paper provides analytic derivation of the variance of the TDE using a two-dimensional model for coherent turbulent structures in the plasma edge and also gives an explicit method formore » determination of the tilt angle of structures. As a demonstration, this method is then applied to the results of a quasi-2D Beam Emission Spectroscopy measurement performed at the TEXTOR tokamak.« less

  3. Mantle dynamics of continent-wide tilting of Australia

    NASA Astrophysics Data System (ADS)

    Dicaprio, L.; Gurnis, M.; Muller, R. D.

    2009-12-01

    Australia is distinctive in that during the Cenozoic it experienced first order, broad-scale vertical motions unrelated to normal orogenic processes. The progressive continent-wide tilting down to the northeast is attributed to the horizontal motion of the continent over subducted slabs. We use plate tectonic reconstructions and a model of mantle convection to quantitatively link the geological evolution of the continent to mantle convection. The passage of slabs beneath the Southwest Pacific since 50 Ma is modeled numerically, and the results are compared to geologic observations of anomalous topography. Models show that Australia undergoes a 300 m northeast downward tilt as it approaches and overrides subducted slabs between Melanesia and the active margin along the Loyalty and proto-Tonga Kermadec subduction systems. This pattern of dynamic subsidence is consistent with observations of continent wide tilting and may indicate that during the Cenozoic Australia moved northward away from a relatively hot mantle anomaly presently located beneath Antarctica.

  4. Do tilt-in-space wheelchairs increase occupational engagement: a critical literature review.

    PubMed

    Harrand, Jenny; Bannigan, Katrina

    2016-01-01

    A wheelchair can enhance the quality of life of an individual with limited mobility, poor trunk control and stability, by enabling activity and participation and so occupational engagement. High specification wheelchairs which can tilt-in-space enable the position of users to be altered to suit activity and context. Despite tilt-in-space wheelchairs being expensive little is known about their therapeutic value. A critical literature review of the evidence was undertaken to evaluate whether the use of tilt-in-space increases occupational engagement. A wide ranging search strategy identified 170 articles which were screened using inclusion criteria. The eligible literature (n = 6) was analysed thematically using open coding. The majority of the participants used tilt-in-space but the data was too heterogeneous to combine. Measures of occupational engagement were not used so the therapeutic value could not be assessed. There is a lack of high quality evidence about the therapeutic benefits of tilt-in-space wheelchairs. Given the expense associated with providing these wheelchairs, and the increase in their provision, research is needed to justify provision of high specification wheelchairs to meet the occupational needs of users within the limited resources of health and social care. Implications for Rehabilitation Tilt-in-space wheelchairs. Wheelchairs are an important and essential assistive device for promoting independence and function. Suggests there are benefits for tilt-in-space wheelchairs. Identifies the need for additional large scale research.

  5. Growth Assisted by Glancing Angle Deposition: A New Technique to Fabricate Highly Porous Anisotropic Thin Films.

    PubMed

    Sanchez-Valencia, Juan Ramon; Longtin, Remi; Rossell, Marta D; Gröning, Pierangelo

    2016-04-06

    We report a new methodology based on glancing angle deposition (GLAD) of an organic molecule in combination with perpendicular growth of a second inorganic material. The resulting thin films retain a very well-defined tilted columnar microstructure characteristic of GLAD with the inorganic material embedded inside the columns. We refer to this new methodology as growth assisted by glancing angle deposition or GAGLAD, since the material of interest (here, the inorganic) grows in the form of tilted columns, though it is deposited under a nonglancing configuration. As a "proof of concept", we have used silver and zinc oxide as the perpendicularly deposited material since they usually form ill-defined columnar microstructures at room temperature by GLAD. By means of our GAGLAD methodology, the typical tilted columnar microstructure can be developed for materials that otherwise do not form ordered structures under conventional GLAD. This simple methodology broadens significantly the range of materials where control of the microstructure can be achieved by tuning the geometrical deposition parameters. The two examples presented here, Ag/Alq3 and ZnO/Alq3, have been deposited by physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD), respectively: two different vacuum techniques that illustrate the generality of the proposed technique. The two type of hybrid samples present very interesting properties that demonstrate the potentiality of GAGLAD. On one hand, the Ag/Alq3 samples present highly optical anisotropic properties when they are analyzed with linearly polarized light. To our knowledge, these Ag/Alq3 samples present the highest angular selectivity reported in the visible range. On the other hand, ZnO/Alq3 samples are used to develop highly porous ZnO thin films by using Alq3 as sacrificial material. In this way, antireflective ZnO samples with very low refractive index and extinction coefficient have been obtained.

  6. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten

    PubMed Central

    Chen, Nanjun; Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Zhou, Hong-Bo; Jin, Shuo; Ran, Guang; Lu, Guang-Hong; Gao, Fei

    2016-01-01

    The harsh irradiation environment poses serious threat to the structural integrity of leading candidate for plasma-facing materials, tungsten (W), in future nuclear fusion reactors. It is thus essential to understand the radiation-induced segregation of native defects and impurities to defect sinks, such as grain boundaries (GBs), by quantifying the segregation energetics. In this work, molecular statics simulations of a range of equilibrium and metastable [100] symmetric tilt GBs are carried out to explore the energetics of vacancy segregation. We show that the low-angle GBs have larger absorption length scales over their high-angle counterparts. Vacancy sites that are energetically unfavorable for segregation are found in all GBs. The magnitudes of minimum segregation energies for the equilibrium GBs vary from −2.61 eV to −0.76 eV depending on the GB character, while those for the metastable GB states tend to be much lower. The significance of vacancy delocalization in decreasing the vacancy segregation energies and facilitating GB migration has been discussed. Metrics such as GB energy and local stress are used to interpret the simulation results, and correlations between them have been established. This study contributes to the possible application of polycrystalline W under irradiation in advanced nuclear fusion reactors. PMID:27874047

  7. Variation in functional pelvic tilt in patients undergoing total hip arthroplasty.

    PubMed

    Pierrepont, J; Hawdon, G; Miles, B P; Connor, B O'; Baré, J; Walter, L R; Marel, E; Solomon, M; McMahon, S; Shimmin, A J

    2017-02-01

    The pelvis rotates in the sagittal plane during daily activities. These rotations have a direct effect on the functional orientation of the acetabulum. The aim of this study was to quantify changes in pelvic tilt between different functional positions. Pre-operatively, pelvic tilt was measured in 1517 patients undergoing total hip arthroplasty (THA) in three functional positions - supine, standing and flexed seated (the moment when patients initiate rising from a seated position). Supine pelvic tilt was measured from CT scans, standing and flexed seated pelvic tilts were measured from standardised lateral radiographs. Anterior pelvic tilt was assigned a positive value. The mean pelvic tilt was 4.2° (-20.5° to 24.5°), -1.3° (-30.2° to 27.9°) and 0.6° (-42.0° to 41.3°) in the three positions, respectively. The mean sagittal pelvic rotation from supine to standing was -5.5° (-21.8° to 8.4°), from supine to flexed seated was -3.7° (-48.3° to 38.6°) and from standing to flexed seated was 1.8° (-51.8° to 39.5°). In 259 patients (17%), the extent of sagittal pelvic rotation could lead to functional malorientation of the acetabular component. Factoring in an intra-operative delivery error of ± 5° extends this risk to 51% of patients. Planning and measurement of the intended position of the acetabular component in the supine position may fail to predict clinically significant changes in its orientation during functional activities, as a consequence of individual pelvic kinematics. Optimal orientation is patient-specific and requires an evaluation of functional pelvic tilt pre-operatively. Cite this article: Bone Joint J 2017;99-B:184-91. ©2017 The British Editorial Society of Bone & Joint Surgery.

  8. Tilted string cosmologies

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-04-01

    Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.

  9. Switching PD-based sliding mode control for hovering of a tilting-thruster underwater robot.

    PubMed

    Jin, Sangrok; Bak, Jeongae; Kim, Jongwon; Seo, TaeWon; Kim, Hwa Soo

    2018-01-01

    This paper presents a switching PD-based sliding mode control (PD-SMC) method for the 6-degree-of-freedom (DOF) hovering motion of the underwater robot with tilting thrusters. Four thrusters of robot can be tilted simultaneously in the horizontal and vertical directions, and the 6-DOF motion is achieved by switching between two thruster configurations. Therefore, the tilting speed of thruster becomes the most essential parameter to determine the stability of hovering motion. Even though the previous PD control ensures stable hovering motion within a certain ranges of tilting speed, a PD-SMC is suggested in this paper by combining PD control with sliding mode control in order to achieve acceptable hovering performance even at the much lower tilting speeds. Also, the sign function in the sliding mode control is replaced by a sigmoid function to reduce undesired chattering. Simulations show that while PD control is effective only for tilting duration of 600 ms, the PD-based sliding mode control can guarantee the stable hovering motion of underwater robot even for the tilting duration of up to 1500 ms. Extensive experimental results confirm the hovering performance of the proposed PD-SMC method is much superior to that of PD method for much larger tilting durations.

  10. Automation of Random Conical Tilt and Orthogonal Tilt Data Collection using Feature Based Correlation

    PubMed Central

    Yoshioka, Craig; Pulokas, James; Fellmann, Denis; Potter, Clinton S.; Milligan, Ronald A.; Carragher, Bridget

    2007-01-01

    Visualization by electron microscopy has provided many insights into the composition, quaternary structure, and mechanism of macromolecular assemblies. By preserving samples in stain or vitreous ice it is possible to image them as discrete particles, and from these images generate three-dimensional structures. This ‘single-particle’ approach suffers from two major shortcomings; it requires an initial model to reconstitute 2D data into a 3D volume, and it often fails when faced with conformational variability. Random conical tilt (RCT) and orthogonal tilt (OTR) are methods developed to overcome these problems, but the data collection required, particularly for vitreous ice specimens, is difficult and tedious. In this paper we present an automated approach to RCT/OTR data collection that removes the burden of manual collection and offers higher quality and throughput than is otherwise possible. We show example datasets collected under stain and cryo conditions and provide statistics related to the efficiency and robustness of the process. Furthermore, we describe the new algorithms that make this method possible, which include new calibrations, improved targeting and feature-based tracking. PMID:17524663

  11. Effects of Vestibular Loss on Orthostatic Responses to Tilts in the Pitch Plane

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Serrador, Jorge M.; Black, F. Owen; Rupert,Angus H.; Schlegel, Todd T.

    2004-01-01

    The purpose of this study was to determine the extent to which vestibular loss might impair orthostatic responses to passive tilts in the pitch plane in human subjects. Data were obtained from six subjects having chronic bilateral vestibular loss and six healthy individuals matched for age, gender, and body mass index. Vestibular loss was assessed with a comprehensive battery including dynamic posturography, vestibulo-ocular and optokinetic reflexes, vestibular evoked myogenic potentials, and ocular counterrolling. Head up tilt tests were conducted using a motorized two-axis table that allowed subjects to be tilted in the pitch plane from either a supine or prone body orientation at a slow rate (8 deg/s). The sessions consisted of three tilts, each consisting of20 min rest in a horizontal position, tilt to 80 deg upright for 10 min, and then return to the horizontal position for 5 min. The tilts were performed in darkness (supine and prone) or in light (supine only). Background music was used to mask auditory orientation cues. Autonomic measurements included beat-to-beat recordings of blood pressure (Finapres), heart rate (ECG), cerebral blood flow velocity in the middle cerebral artery (transcranial Doppler), end tidal CO2, respiratory rate and volume (Respritrace), and stroke volume (impedance cardiography). For both patients and control subjects, cerebral blood flow appeared to exhibit the most rapid adjustment following transient changes in posture. Outside of a greater cerebral hypoperfusion in patients during the later stages of tilt, responses did not differ dramatically between the vestibular loss and control subjects, or between tilts performed in light and dark room conditions. Thus, with the 'exception of cerebrovascular regulation, we conclude that orthostatic responses during slow postural tilts are not substantially impaired in humans following chronic loss of vestibular function, a result that might reflect compensation by nonvisual graviceptor

  12. Downforce variation dependence of angle of incidence modification for the rear wing of high speed vehicles

    NASA Astrophysics Data System (ADS)

    Tarulescu, R.; Tarulescu, S.; Leahu, C.

    2017-10-01

    The conventional downforce devices (with fixed geometry) of high speed vehicles have parameters such as area, angle of incidence and head resistance coefficients, all with constant values. The downforce is proportional with the square of movement speed and the power consumed for the neutralization of aerodynamic road resistance is proportional with the cube of speed. The authors carried out an analytical study of downforce, adjustable/monitored by optimum incidence (modification of incidence angle of rear wing for performance improvement).

  13. Mental rotation of letters, body parts and scenes during whole-body tilt: role of a body-centered versus a gravitational reference frame.

    PubMed

    Bock, Otmar L; Dalecki, Marc

    2015-04-01

    It is known that in mental-rotation tasks, subjects mentally transform the displayed material until it appears "upright" and then make a judgment. Here we evaluate, by using three typical mental rotation tasks with different degrees of embodiment, whether "upright" is coded to a gravitational or egocentric reference frame, or a combination of both. Observers stood erect or were whole-body tilted by 60°, with their left ear down. In either posture, they saw stimuli presented at different orientation angles in their frontal plane: in condition LETTER, they judged whether the stimuli were normal or mirror-reversed letters, in condition HAND whether they represented a left or a right hand, and in condition SCENE whether a weapon laid left or right in front of a displayed person. Data confirm that reaction times are modulated by stimulus orientation angle, and the modulation curve in LETTER and HAND differs from that in SCENE. More importantly, during 60° body tilt, the modulation curve shifted 12° away from the gravitational towards the egocentric vertical reference; this shift was comparable in all three conditions and independent of the degree of embodiment. We conclude that mental rotation in all conditions relied on a similar spatial reference, which seems to be a weighted average of the gravitational and the egocentric vertical, with a higher weight given to the former. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Tilt to horizontal global solar irradiance conversion: application to PV systems data

    NASA Astrophysics Data System (ADS)

    Housmans, Caroline; Leloux, Jonathan; Bertrand, Cédric

    2017-04-01

    Many transposition models have been proposed in the literature to convert solar irradiance on the horizontal plane to that on a tilted plane requiring that at least two of the three solar components (i.e. global, direct and diffuse) are known. When only global irradiance measurements are available, the conversion from horizontal to tilted planes is still possible but in this case transposition models have to be coupled with decomposition models (i.e. models that predict the direct and diffuse components from the global one). Here, two different approaches have been considered to solve the reverse process, i.e. the conversion from tilted to horizontal: (i) one-sensor approach and (ii) multi-sensors approach. Because only one tilted plane is involved in the one-sensor approach, a decomposition model need to be coupled with a transposition model to solve the problem. By contrast, at least two tilted planes being considered in the multi-sensors approach, only a transposition model is required to perform the conversion. First, global solar irradiance measurements recorded on the roof of the Royal Meteorological Institute of Belgium's radiation tower in Uccle were used to evaluate the performance of both approaches. Four pyranometers (one mounted in the horizontal plane and three on inclined surfaces with different tilts and orientations) were involved in the validation exercise. Second, the inverse transposition was applied to tilted global solar irradiance values retrieved from the energy production registered at residential PV systems located in the vicinity of Belgian radiometric stations operated by RMI (for validation purposes).

  15. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.

    Here, we present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact withmore » electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.« less

  16. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Zong, Q.; Zhou, X.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S.; Spence, H. E.; Blake, J. B.; Reeves, G. D.

    2017-12-01

    We present an analysis of "boomerang-shaped" pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90º pitch angle electrons, the phase change of the flux modulations across energy exceeds 180º, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wave field reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift-resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

  17. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    NASA Astrophysics Data System (ADS)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X. R.; Liu, Y.; Fu, S. Y.; Spence, H. E.; Blake, J. B.; Reeves, G. D.

    2017-08-01

    We present an analysis of "boomerang-shaped" pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.

  18. Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions

    DOE PAGES

    Hao, Y. X.; Zong, Q. -G.; Zhou, X. -Z.; ...

    2017-07-10

    Here, we present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on 7 June 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90° pitch angle electrons, the phase change of the flux modulations across energy exceeds 180° and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact withmore » electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy gain with the modified ULF wavefield reproduce the observed boomerang stripes and modulations in the electron energy spectrogram. The study of boomerang stripes and their relationship to drift resonance taking place at a location different from the observation point adds new understanding of the processes controlling the dynamics of the outer radiation belt.« less

  19. Simulation validation of the XV-15 tilt-rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Hanson, G. D.; Churchill, G. B.

    1984-01-01

    The results of a simulation validation program of the XV-15 tilt-rotor research aircraft are detailed, covering such simulation aspects as the mathematical model, visual system, motion system, cab aural system, cab control loader system, pilot perceptual fidelity, and generic tilt rotor applications. Simulation validation was performed for the hover, low-speed, and sideward flight modes, with consideration of the in-ground rotor effect. Several deficiencies of the mathematical model and the simulation systems were identified in the course of the simulation validation project, and some were corrected. It is noted that NASA's Vertical Motion Simulator used in the program is an excellent tool for tilt-rotor and rotorcraft design, development, and pilot training.

  20. Monitoring of Cyclic Steam Stimulation by Inversion of Surface Tilt Measurements

    NASA Astrophysics Data System (ADS)

    Maharramov, M.; Zoback, M. D.

    2014-12-01

    Temperature and pressure changes associated with the cyclic steam simulation (CSS) used in heavy oil production from sands are accompanied by significant deformation. Inversion of geomechanical data may provide a potentially powerful reservoir monitoring tool where geomechanical effects are significant. Induced pore pressure changes can be inverted from measurable surface deformations by solving an inverse problem of poroelasticity. In this work, we apply this approach to estimating pore pressure changes from surface tilt measurements at a heavy oil reservoir undergoing cyclic steam simulation. Steam was injected from November 2007 through January 2008. Surface tilt measurements were collected from 25 surface tilt stations during this period. The injection ran in two overlapping phases: Phase 1 ran from the beginning of the injection though mid-December, and Phase 2 overlapped with Phase 1 and ran through the beginning of January. During Phase 1 steam was injected in the western part of the reservoir, followed by injection in the eastern part in Phase 2. The pore pressure evolution was inverted from daily tilt measurements using regularized constrained least squares fitting, the results are shown on the plot. Estimated induced pore pressure change (color scale), observed daily incremental tilts (green arrows) and modeled daily incremental tilts (red arrows) are shown in three panels corresponding to two and five weeks of injection, and the end of injection period. DGPS measurements available for a single location were used as an additional inversion constraint. The results indicate that the pore pressure increase in the reservoir follows the same pattern as the steam injection, from west to east. This qualitative behaviour is independent of the amount of regularization, indirectly validating our inversion approach. Patches of lower pressure appear to be stable with regard to regularization and may provide valuable insight into the efficiency of steam injection

  1. Can pelvic tilt be predicated by the sacrofemoral-pubic angel in patients with thoracolumbar kyphosis secondary to ankylosing spondylitis?

    PubMed

    Hu, Jun; Ji, Ming-liang; Qian, Bang-ping; Qiu, Yong; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang; Jiang, Jun

    2014-11-01

    A retrospective radiographical study. To construct a predictive model for pelvic tilt (PT) based on the sacrofemoral-pubic (SFP) angle in patients with thoracolumbar kyphosis secondary to ankylosing spondylitis (or AS). PT is a key pelvic parameter in the regulation of spine sagittal alignment that can be used to plan the appropriate osteotomy angle in patients with AS with thoracolumbar kyphosis. However, it could be difficult to measure PT in patients with femoral heads poorly visualized on lateral radiographs. Previous studies showed that the SFP angle could be used to evaluate PT in adult patients with scoliosis. However, this method has not been validated in patients with AS. A total of 115 patients with AS with thoracolumbar kyphosis were included. Full-length anteroposterior and lateral spine radiographs were all available, with spinal and pelvic anatomical landmarks clearly identified. PT, SFP angle, and global kyphosis were measured. The patients were randomly divided into group A (n=65) and group B (n=50). In group A, the predictive model for PT was constructed by the results of the linear regression analysis. In group B, the predictive ability and accuracy of the predictive model were investigated. In group A, the Pearson correlation analysis revealed a strong correlation between the SFP angle and PT (r=0.852; P<0.001). The predictive model for PT was constructed as PT=72.3-0.82×(SFP angle). In group B, PT was predicted by the model with a mean error of 4.6° (SD=4.5°) with a predictive value of 78%. PT can be accurately predicted by the SFP angle using the current model: PT=72.3-0.82×(SFP angle), when the femur heads are poorly visualized on lateral radiographs in patients with AS with thoracolumbar kyphosis. 4.

  2. Effective laser-induced breakdown spectroscopy (LIBS) detection using double pulse at optimum configuration.

    PubMed

    Choi, Soo Jin; Yoh, Jack J

    2011-08-01

    A short laser pulse is irradiated on a sample to create a highly energetic plasma that emits light of a specific peak wavelength according to the material. By identifying different peaks for the analyzed samples, their chemical composition can be rapidly determined. The characteristics of the laser-induced breakdown spectroscopy (LIBS) plasma are strongly dependent on the ambient conditions. Research aimed at enhancing LIBS intensity is of great benefit in advancing LIBS for the exploration of harsh environments. By using double-pulse LIBS, the signal intensity of Al and Ca lines was enhanced by five times compared to the single-pulse signal. Also, the angles of the target and detector are adjusted to simulate samples of arbitrary shape. We verified that there exists an optimal angle at which specific elements of a test sample may be detected with stronger signal intensity. We provide several optimum configurations for the LIBS system for maximizing the signal intensity for the analysis of a nonstandard aluminum sample.

  3. Combined influence of visual scene and body tilt on arm pointing movements: gravity matters!

    PubMed

    Scotto Di Cesare, Cécile; Sarlegna, Fabrice R; Bourdin, Christophe; Mestre, Daniel R; Bringoux, Lionel

    2014-01-01

    Performing accurate actions such as goal-directed arm movements requires taking into account visual and body orientation cues to localize the target in space and produce appropriate reaching motor commands. We experimentally tilted the body and/or the visual scene to investigate how visual and body orientation cues are combined for the control of unseen arm movements. Subjects were asked to point toward a visual target using an upward movement during slow body and/or visual scene tilts. When the scene was tilted, final pointing errors varied as a function of the direction of the scene tilt (forward or backward). Actual forward body tilt resulted in systematic target undershoots, suggesting that the brain may have overcompensated for the biomechanical movement facilitation arising from body tilt. Combined body and visual scene tilts also affected final pointing errors according to the orientation of the visual scene. The data were further analysed using either a body-centered or a gravity-centered reference frame to encode visual scene orientation with simple additive models (i.e., 'combined' tilts equal to the sum of 'single' tilts). We found that the body-centered model could account only for some of the data regarding kinematic parameters and final errors. In contrast, the gravity-centered modeling in which the body and visual scene orientations were referred to vertical could explain all of these data. Therefore, our findings suggest that the brain uses gravity, thanks to its invariant properties, as a reference for the combination of visual and non-visual cues.

  4. Combined Influence of Visual Scene and Body Tilt on Arm Pointing Movements: Gravity Matters!

    PubMed Central

    Scotto Di Cesare, Cécile; Sarlegna, Fabrice R.; Bourdin, Christophe; Mestre, Daniel R.; Bringoux, Lionel

    2014-01-01

    Performing accurate actions such as goal-directed arm movements requires taking into account visual and body orientation cues to localize the target in space and produce appropriate reaching motor commands. We experimentally tilted the body and/or the visual scene to investigate how visual and body orientation cues are combined for the control of unseen arm movements. Subjects were asked to point toward a visual target using an upward movement during slow body and/or visual scene tilts. When the scene was tilted, final pointing errors varied as a function of the direction of the scene tilt (forward or backward). Actual forward body tilt resulted in systematic target undershoots, suggesting that the brain may have overcompensated for the biomechanical movement facilitation arising from body tilt. Combined body and visual scene tilts also affected final pointing errors according to the orientation of the visual scene. The data were further analysed using either a body-centered or a gravity-centered reference frame to encode visual scene orientation with simple additive models (i.e., ‘combined’ tilts equal to the sum of ‘single’ tilts). We found that the body-centered model could account only for some of the data regarding kinematic parameters and final errors. In contrast, the gravity-centered modeling in which the body and visual scene orientations were referred to vertical could explain all of these data. Therefore, our findings suggest that the brain uses gravity, thanks to its invariant properties, as a reference for the combination of visual and non-visual cues. PMID:24925371

  5. Steep head-down tilt has persisting effects on the distribution of pulmonary blood flow.

    PubMed

    Henderson, A Cortney; Levin, David L; Hopkins, Susan R; Olfert, I Mark; Buxton, Richard B; Prisk, G Kim

    2006-08-01

    Head-down tilt has been shown to increase lung water content in animals and alter the distribution of ventilation in humans; however, its effects on the distribution of pulmonary blood flow in humans are unknown. We hypothesized that head-down tilt would increase the heterogeneity of pulmonary blood flow in humans, an effect analogous to the changes seen in the distribution of ventilation, by increasing capillary hydrostatic pressure and fluid efflux in the lung. To test this, we evaluated changes in the distribution of pulmonary blood flow in seven normal subjects before and after 1 h of 30 degrees head-down tilt using the magnetic resonance imaging technique of arterial spin labeling. Data were acquired in triplicate before tilt and at 10-min intervals for 1 h after tilt. Pulmonary blood flow heterogeneity was quantified by the relative dispersion (standard deviation/mean) of signal intensity for all voxels within the right lung. Relative dispersion was significantly increased by 29% after tilt and remained elevated during the 1 h of measurements after tilt (0.84 +/- 0.06 pretilt, 1.09 +/- 0.09 calculated for all time points posttilt, P < 0.05). We speculate that the mechanism most likely responsible for our findings is that increased pulmonary capillary pressures and fluid efflux in the lung resulting from head-down tilt alters regional blood flow distribution.

  6. Coherent field propagation between tilted planes.

    PubMed

    Stock, Johannes; Worku, Norman Girma; Gross, Herbert

    2017-10-01

    Propagating electromagnetic light fields between nonparallel planes is of special importance, e.g., within the design of novel computer-generated holograms or the simulation of optical systems. In contrast to the extensively discussed evaluation between parallel planes, the diffraction-based propagation of light onto a tilted plane is more burdensome, since discrete fast Fourier transforms cannot be applied directly. In this work, we propose a quasi-fast algorithm (O(N 3  log N)) that deals with this problem. Based on a proper decomposition into three rotations, the vectorial field distribution is calculated on a tilted plane using the spectrum of plane waves. The algorithm works on equidistant grids, so neither nonuniform Fourier transforms nor an explicit complex interpolation is necessary. The proposed algorithm is discussed in detail and applied to several examples of practical interest.

  7. 3D single-molecule super-resolution microscopy with a tilted light sheet.

    PubMed

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-01-09

    Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.

  8. Conformational response of the phosphatidylcholine headgroup to bilayer surface charge: torsion angle constraints from dipolar and quadrupolar couplings in bicelles.

    PubMed

    Semchyschyn, Darlene J; Macdonald, Peter M

    2004-02-01

    The effects of bilayer surface charge on the conformation of the phosphocholine group of phosphatidylcholine were investigated using a torsion angle analysis of quadrupolar and dipolar splittings in, respectively, (2)H and (13)C NMR spectra of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) labelled in the phosphocholine group with either deuterons (POPC-alpha-d(2), POPC-beta-d(2) and POPC-gamma-d(9)) or carbon-13 (POPC-alpha-(13)C and POPC-alphabeta-(13)C(2)) and incorporated into magnetically aligned bicelles containing various amounts of either the cationic amphiphile 1,2-dimyristoyl-3-trimethylammoniumpropane (DMTAP) or the anionic amphiphile 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG). Three sets of quadrupolar splittings, one from each of the three deuteron labelling positions, and three sets of dipolar splittings ((13)C(alpha)-(31)P, (13)C(alpha)-(13)C(beta), (13)C(beta)-(14)N), were measured at each surface charge, along with the (31)P residual chemical shift anisotropy. The torsion angle analysis assumed fast anisotropic rotation of POPC about its long molecular axis, thus projecting all NMR interactions onto that director axis of motion. Dipolar, quadrupolar and chemical shift anisotropies were calculated as a function of the phosphocholine internal torsion angles by first transforming into a common reference frame affixed to the phosphocholine group prior to motional averaging about the director axis. A comparison of experiment and calculation provided the two order parameters specifying the director orientation relative to the molecule, plus the torsion angles alpha(3), alpha(4) and alpha(5). Surface charge was found to have little effect on the torsion angle alpha(5) (rotations about C(alpha)-C(beta)), but to have large and inverse effects on torsion angles alpha(3) [rotations about P-O(11)] and alpha(4) [rotations about O(11)-C(alpha)], yielding a net upwards tilt of the P-N vector in the presence of cationic surface charge, and a

  9. Direct and Inverse Kinematics of a Novel Tip-Tilt-Piston Parallel Manipulator

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad

    2004-01-01

    Closed-form direct and inverse kinematics of a new three degree-of-freedom (DOF) parallel manipulator with inextensible limbs and base-mounted actuators are presented. The manipulator has higher resolution and precision than the existing three DOF mechanisms with extensible limbs. Since all of the manipulator actuators are base-mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. The manipulator is suitable for alignment applications where only tip, tilt, and piston motions are significant. The direct kinematics of the manipulator is reduced to solving an eighth-degree polynomial in the square of tangent of half-angle between one of the limbs and the base plane. Hence, there are at most 16 assembly configurations for the manipulator. In addition, it is shown that the 16 solutions are eight pairs of reflected configurations with respect to the base plane. Numerical examples for the direct and inverse kinematics of the manipulator are also presented.

  10. Turbine vane leading edge gas film cooling with spanwise angled coolant holes

    NASA Technical Reports Server (NTRS)

    Hanus, G. J.; Lecuyer, M. R.

    1976-01-01

    An experimental film cooling study was conducted on a 3x size model turbine vane. Injection at the leading edge was from a single row of holes angled in a spanwise direction for two configurations of holes at 18 or 35 deg to the surface. The reduction in the local Stanton number for injection at a coolant-to-mainstream density ratio of 2.18 was calculated from heat flux measurements downstream of injection. Results indicate that optimum cooling occurs near a coolant-to-mainstream velocity ratio of 0.5. Shallow injection angles appear to be most beneficial when injecting into a highly accelerated mainstream.

  11. Optimal Pitch Thrust-Vector Angle and Benefits for all Flight Regimes

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Bolonkin, Alexander

    2000-01-01

    The NASA Dryden Flight Research Center is exploring the optimum thrust-vector angle on aircraft. Simple aerodynamic performance models for various phases of aircraft flight are developed and optimization equations and algorithms are presented in this report. Results of optimal angles of thrust vectors and associated benefits for various flight regimes of aircraft (takeoff, climb, cruise, descent, final approach, and landing) are given. Results for a typical wide-body transport aircraft are also given. The benefits accruable for this class of aircraft are small, but the technique can be applied to other conventionally configured aircraft. The lower L/D aerodynamic characteristics of fighters generally would produce larger benefits than those produced for transport aircraft.

  12. Pseudo-cat's eye for improved tilt-immune interferometry.

    PubMed

    Speake, Clive C; Bradshaw, Miranda J

    2015-08-20

    We present a new simple optical design for a cat's eye retroreflector. We describe the design of the new optical configuration and its use in tilt-immune interferometry where it enables the tracking of the displacement of a plane target mirror with minimum sensitivity to its tilt about axes orthogonal to the interferometer's optical axis. In this application the new cat's eye does not behave as a perfect retroreflector and we refer to it as a "pseudo"-cat's eye (PCE). The device allows, for the first time, tilt-immune interferometric displacement measurements in cases where the nominal distance to the target mirror is significantly larger than the length of the cat's eye. We describe the general optical characteristics of the PCE and compare its performance in our application with that of a conventional cat's eye optical configuration using ABCD matrices and Zemax analyses. We further suggest a simple modification to the design that would enable the PCE to behave as a perfect cat's eye, and this design may provide an advantageous solution for other applications.

  13. Planar microlens with front-face angle: design, fabrication, and characterization

    NASA Astrophysics Data System (ADS)

    Al Hafiz, Md. Abdullah; Michael, Aron; Kwok, Chee-Yee

    2016-07-01

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3 ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500 μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  14. Tilt recorded by a portable broadband seismograph: The 2003 eruption of Anatahan Volcano, Mariana Islands

    USGS Publications Warehouse

    Wiens, D.A.; Pozgay, S.H.; Shore, P.J.; Sauter, A.W.; White, R.A.

    2005-01-01

    The horizontal components of broadband seismographs are highly sensitive to tilt, suggesting that commonly deployed portable broadband seismic sensors may record important tilt information associated with volcanic eruptions. We report on a tilt episode that coincides with the first historical eruption of Anatahan volcano on May 10, 2003. The tilt was recorded by a Strekheisen STS-2 seismograph deployed in an underground insulated chamber 7 km west of the active vent. An ultra-long period signal with a dominant period of several hours was recorded on the E-W component beginning at 06:20 GMT on May 10, which coincides with the onset of continuous volcano-tectonic (VT) seismicity and is one hour prior to the eruption time estimated by the Volcanic Ash Advisory Center. The signal is much smaller on the N-S component and absent on the vertical component, suggesting it results from tilt that is approximately radial with respect to the active vent. An estimate of tilt as a function of time is recovered by deconvolving the record to acceleration and dividing by the acceleration of gravity. The record indicates an initial episode of tilt downward away from the volcanic center from 06:20-09:30 GMT, which we interpret as inflation of the shallow volcanic source. The tilt reverses, recording deflation, from 09:30 until 17:50, after which the tilt signal becomes insignificant. The inflation corresponds to a period of numerous VT events, whereas fewer events were recorded during the deflation episode, and the VT events subsequently resumed after the end of the deflationary tilt. The maximum tilt of 2 microradians can be used to estimate the volume of the source inflation (???2 million in m3), assuming a simple Mogi source model. These calculations are consistent with other estimates of source volume if reasonable source depths are assumed. Examination of broadband records of other eruptions may disclose further previously unrecognized tilt signals. Copyright 2005 by the American

  15. A strange result in the measurement of the angles of arrival of the first and second echoes from the ionosphere at high radio frequencies

    NASA Astrophysics Data System (ADS)

    MacGibbon, J.; Whitehead, J. D.; From, W. R.

    1989-03-01

    Angle-of-arrival measurements were obtained for first echoes (those directly reflected from the ionosphere) and second echoes (those twice reflected from the ionosphere with an intermediate reflection from the ground). Unexpectedly, the off-vertical angle-of-arrival of the second echo was found to be consistently less than that of the first echo for much of the time. It is suggested that rapid phase variations caused by the change in the tilt of the ionosphere prevented recognition of the second echo by the present radar system for echoes reflected from rough terrain.

  16. Spatial coding of eye movements relative to perceived earth and head orientations during static roll tilt

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Paloski, W. H.; Reschke, M. F.

    1998-01-01

    This purpose of this study was to examine the spatial coding of eye movements during static roll tilt (up to +/-45 degrees) relative to perceived earth and head orientations. Binocular videographic recordings obtained in darkness from eight subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the true earth and head orientations. We found that both variability and curvature of gaze trajectories increased with roll tilt. The trajectories of eye movements made along the perceived earth-horizontal (PEH) were more accurate than movements along the perceived head-horizontal (PHH). The trajectories of both PEH and PHH saccades tended to deviate in the same direction as the head tilt. The deviations in gaze trajectories along the perceived earth-vertical (PEV) and perceived head-vertical (PHV) were both similar to the PHH orientation, except that saccades along the PEV deviated in the opposite direction relative to the head tilt. The magnitude of deviations along the PEV, PHH, and PHV corresponded to perceptual overestimations of roll tilt obtained from verbal reports. Both PEV gaze trajectories and perceptual estimates of tilt orientation were different following clockwise rather than counterclockwise tilt rotation; however, the PEH gaze trajectories were less affected by the direction of tilt rotation. Our results suggest that errors in gaze trajectories along PEV and perceived head orientations increase during roll tilt in a similar way to perceptual errors of tilt orientation. Although PEH and PEV gaze trajectories became nonorthogonal during roll tilt, we conclude that the spatial coding of eye movements during roll tilt is overall more accurate for the perceived earth reference frame than for the perceived head reference frame.

  17. Visual discrimination of local surface structure: slant, tilt, and curvedness.

    PubMed

    Norman, J Farley; Todd, James T; Norman, Hideko F; Clayton, Anna Marie; McBride, T Ryan

    2006-03-01

    In four experiments, observers were required to discriminate interval or ordinal differences in slant, tilt, or curvedness between designated probe points on randomly shaped curved surfaces defined by shading, texture, and binocular disparity. The results reveal that discrimination thresholds for judgments of slant or tilt typically range between 4 degrees and 10 degrees; that judgments of one component are unaffected by simultaneous variations in the other; and that the individual thresholds for either the slant or tilt components of orientation are approximately equal to those obtained for judgments of the total orientation difference between two probed regions. Performance was much worse, however, for judgments of curvedness, and these judgments were significantly impaired when there were simultaneous variations in the shape index parameter of curvature.

  18. Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight

    NASA Technical Reports Server (NTRS)

    Levine, Benjamin D.; Pawelczyk, James A.; Ertl, Andrew C.; Cox, James F.; Zuckerman, Julie H.; Diedrich, Andre; Biaggioni, Italo; Ray, Chester A.; Smith, Michael L.; Iwase, Satoshi; hide

    2002-01-01

    Orthostatic intolerance is common when astronauts return to Earth: after brief spaceflight, up to two-thirds are unable to remain standing for 10 min. Previous research suggests that susceptible individuals are unable to increase their systemic vascular resistance and plasma noradrenaline concentrations above pre-flight upright levels. In this study, we tested the hypothesis that adaptation to the microgravity of space impairs sympathetic neural responses to upright posture on Earth. We studied six astronauts approximately 72 and 23 days before and on landing day after the 16 day Neurolab space shuttle mission. We measured heart rate, arterial pressure and cardiac output, and calculated stroke volume and total peripheral resistance, during supine rest and 10 min of 60 deg upright tilt. Muscle sympathetic nerve activity was recorded in five subjects, as a direct measure of sympathetic nervous system responses. As in previous studies, mean (+/- S.E.M.) stroke volume was lower (46 +/- 5 vs. 76 +/- 3 ml, P = 0.017) and heart rate was higher (93 +/- 1 vs. 74 +/- 4 beats min(-1), P = 0.002) during tilt after spaceflight than before spaceflight. Total peripheral resistance during tilt post flight was higher in some, but not all astronauts (1674 +/- 256 vs. 1372 +/- 62 dynes s cm(-5), P = 0.32). No crew member exhibited orthostatic hypotension or presyncopal symptoms during the 10 min of postflight tilting. Muscle sympathetic nerve activity was higher post flight in all subjects, in supine (27 +/- 4 vs. 17 +/- 2 bursts min(-1), P = 0.04) and tilted (46 +/- 4 vs. 38 +/- 3 bursts min(-1), P = 0.01) positions. A strong (r(2) = 0.91-1.00) linear correlation between left ventricular stroke volume and muscle sympathetic nerve activity suggested that sympathetic responses were appropriate for the haemodynamic challenge of upright tilt and were unaffected by spaceflight. We conclude that after 16 days of spaceflight, muscle sympathetic nerve responses to upright tilt are normal.

  19. Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight

    PubMed Central

    Levine, Benjamin D; Pawelczyk, James A; Ertl, Andrew C; Cox, James F; Zuckerman, Julie H; Diedrich, André; Biaggioni, Italo; Ray, Chester A; Smith, Michael L; Iwase, Satoshi; Saito, Mitsuru; Sugiyama, Yoshiki; Mano, Tadaaki; Zhang, Rong; Iwasaki, Kenichi; Lane, Lynda D; Buckey, Jay C; Cooke, William H; Baisch, Friedhelm J; Robertson, David; Eckberg, Dwain L; Blomqvist, C Gunnar

    2002-01-01

    Orthostatic intolerance is common when astronauts return to Earth: after brief spaceflight, up to two-thirds are unable to remain standing for 10 min. Previous research suggests that susceptible individuals are unable to increase their systemic vascular resistance and plasma noradrenaline concentrations above pre-flight upright levels. In this study, we tested the hypothesis that adaptation to the microgravity of space impairs sympathetic neural responses to upright posture on Earth. We studied six astronauts ∼72 and 23 days before and on landing day after the 16 day Neurolab space shuttle mission. We measured heart rate, arterial pressure and cardiac output, and calculated stroke volume and total peripheral resistance, during supine rest and 10 min of 60 deg upright tilt. Muscle sympathetic nerve activity was recorded in five subjects, as a direct measure of sympathetic nervous system responses. As in previous studies, mean (± s.e.m.) stroke volume was lower (46 ± 5 vs. 76 ± 3 ml, P = 0.017) and heart rate was higher (93 ± 1 vs. 74 ± 4 beats min−1, P = 0.002) during tilt after spaceflight than before spaceflight. Total peripheral resistance during tilt post flight was higher in some, but not all astronauts (1674 ± 256 vs. 1372 ± 62 dynes s cm−5, P = 0.32). No crew member exhibited orthostatic hypotension or presyncopal symptoms during the 10 min of postflight tilting. Muscle sympathetic nerve activity was higher post flight in all subjects, in supine (27 ± 4 vs. 17 ± 2 bursts min−1, P = 0.04) and tilted (46 ± 4 vs. 38 ± 3 bursts min−1, P = 0.01) positions. A strong (r2 = 0.91–1.00) linear correlation between left ventricular stroke volume and muscle sympathetic nerve activity suggested that sympathetic responses were appropriate for the haemodynamic challenge of upright tilt and were unaffected by spaceflight. We conclude that after 16 days of spaceflight, muscle sympathetic nerve responses to upright tilt are normal. PMID:11773340

  20. Contribution of perfusion pressure to vascular resistance response during head-up tilt

    NASA Technical Reports Server (NTRS)

    Imadojemu, V. A.; Lott, M. E.; Gleeson, K.; Hogeman, C. S.; Ray, C. A.; Sinoway, L. I.

    2001-01-01

    We measured brachial and femoral artery flow velocity in eight subjects and peroneal and median muscle sympathetic nerve activity (MSNA) in five subjects during tilt testing to 40 degrees. Tilt caused similar increases in MSNA in the peroneal and median nerves. Tilt caused a fall in femoral artery flow velocity, whereas no changes in flow velocity were seen in the brachial artery. Moreover, with tilt, the increase in the vascular resistance employed (blood pressure/flow velocity) was greater and more sustained in the leg than in the arm. The ratio of the percent increase in vascular resistance in leg to arm was 2.5:1. We suggest that the greater vascular resistance effects in the leg were due to an interaction between sympathetic nerve activity and the myogenic response.