[Oral controlled release dosage forms].
Mehuys, Els; Vervaet, Chris
2010-06-01
Several technologies to control drug release from oral dosage forms have been developed. Drug release can be regulated in several ways: sustained release, whereby the drug is released slowly over a prolonged period of time, postponed release, whereby drug release is delayed until passage from the stomach into the intestine (via enteric coating), and targeted release, whereby the drug is targeted to a specific location of the gastrointestinal tract. This article reviews the various oral controlled release dosage forms on the market.
Slama, Hichem; Fery, Patrick; Verheulpen, Denis; Vanzeveren, Nathalie; Van Bogaert, Patrick
2015-07-01
Long-acting medications have been developed and approved for use in the treatment of attention-deficit hyperactivity disorder (ADHD). These compounds are intended to optimize and maintain symptoms control throughout the day. We tested prolonged effects of osmotic-release oral system methylphenidate on both attention and inhibition, in the late afternoon. A double-blind, randomized, placebo-controlled study was conducted in 36 boys (7-12 years) with ADHD and 40 typically developing children. The ADHD children received an individualized dose of placebo or osmotic-release oral system methylphenidate. They were tested about 8 hours after taking with 2 continuous performance tests (continuous performance test-X [CPT-X] and continuous performance test-AX [CPT-AX]) and a counting Stroop. A positive effect of osmotic-release oral system methylphenidate was present in CPT-AX with faster and less variable reaction times under osmotic-release oral system methylphenidate than under placebo, and no difference with typically developing children. In the counting Stroop, we found a decreased interference with osmotic-release oral system methylphenidate but no difference between children with ADHD under placebo and typically developing children. © The Author(s) 2014.
Ikegami, Kengo; Tagawa, Kozo; Osawa, Takashi
2006-09-01
To determine the usefulness of monkey as an animal model, bioavailability and in vivo release behaviors of theophylline (TP) after oral administration of controlled-release beads in dogs, monkeys, and minipigs were evaluated. Controlled-release beads were prepared using a centrifugal-fluid type granulator, that is, CF-granulator, and Ethylcellulose (EC) was used as controlled-release coating agent. Aqueous solution and EC-coated beads, which contained TP were orally administered to animals after at least 1-week intervals. In dogs and minipigs, their relative bioavailabilities of EC-coated beads were 33.1% and 47.0%, respectively, and in vivo TP release from EC-coated beads in the gastrointestinal tract of dogs and minipigs were not reflected in vitro data. In monkeys, relative bioavailability of EC-coated beads was 80.0% and the highest among the three species, and release amount of TP from EC-coated beads at 24 h after oral administration was 82.8% and 92.4%, which was almost correlated to in vitro data. Therefore, the discrepancy of the relative bioavailability in three species is considered to be due to the difference of in vivo release behavior of TP. The monkey may be useful animal model for bioavailability studies of controlled-release dosage forms of TP from the viewpoint of in vitro-in vivo release correlation. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.
Gesquiere, Ina; Darwich, Adam S; Van der Schueren, Bart; de Hoon, Jan; Lannoo, Matthias; Matthys, Christophe; Rostami, Amin; Foulon, Veerle; Augustijns, Patrick
2015-11-01
The aim of the present study was to evaluate the disposition of metoprolol after oral administration of an immediate and controlled-release formulation before and after Roux-en-Y gastric bypass (RYGB) surgery in the same individuals and to validate a physiologically based pharmacokinetic (PBPK) model for predicting oral bioavailability following RYGB. A single-dose pharmacokinetic study of metoprolol tartrate 200 mg immediate release and controlled release was performed in 14 volunteers before and 6-8 months after RYGB. The observed data were compared with predicted results from the PBPK modelling and simulation of metoprolol tartrate immediate and controlled-release formulation before and after RYGB. After administration of metoprolol immediate and controlled release, no statistically significant difference in the observed area under the curve (AUC(0-24 h)) was shown, although a tendency towards an increased oral exposure could be observed as the AUC(0-24 h) was 32.4% [95% confidence interval (CI) 1.36, 63.5] and 55.9% (95% CI 5.73, 106) higher following RYGB for the immediate and controlled-release formulation, respectively. This could be explained by surgery-related weight loss and a reduced presystemic biotransformation in the proximal gastrointestinal tract. The PBPK values predicted by modelling and simulation were similar to the observed data, confirming its validity. The disposition of metoprolol from an immediate-release and a controlled-release formulation was not significantly altered after RYGB; there was a tendency to an increase, which was also predicted by PBPK modelling and simulation. © 2015 The British Pharmacological Society.
Gesquiere, Ina; Darwich, Adam S; Van der Schueren, Bart; de Hoon, Jan; Lannoo, Matthias; Matthys, Christophe; Rostami, Amin; Foulon, Veerle; Augustijns, Patrick
2015-01-01
Aims The aim of the present study was to evaluate the disposition of metoprolol after oral administration of an immediate and controlled-release formulation before and after Roux-en-Y gastric bypass (RYGB) surgery in the same individuals and to validate a physiologically based pharmacokinetic (PBPK) model for predicting oral bioavailability following RYGB. Methods A single-dose pharmacokinetic study of metoprolol tartrate 200 mg immediate release and controlled release was performed in 14 volunteers before and 6–8 months after RYGB. The observed data were compared with predicted results from the PBPK modelling and simulation of metoprolol tartrate immediate and controlled-release formulation before and after RYGB. Results After administration of metoprolol immediate and controlled release, no statistically significant difference in the observed area under the curve (AUC0–24 h) was shown, although a tendency towards an increased oral exposure could be observed as the AUC0–24 h was 32.4% [95% confidence interval (CI) 1.36, 63.5] and 55.9% (95% CI 5.73, 106) higher following RYGB for the immediate and controlled-release formulation, respectively. This could be explained by surgery-related weight loss and a reduced presystemic biotransformation in the proximal gastrointestinal tract. The PBPK values predicted by modelling and simulation were similar to the observed data, confirming its validity. Conclusions The disposition of metoprolol from an immediate-release and a controlled-release formulation was not significantly altered after RYGB; there was a tendency to an increase, which was also predicted by PBPK modelling and simulation. PMID:25917170
Kadam, A. U.; Sakarkar, D. M.; Kawtikwar, P. S.
2008-01-01
An oral controlled release suspension of chlorpheniramine maleate was prepared using ion-exchange resin technology. A strong cation exchange resin Indion 244 was utilized for the sorption of the drug and the drug resinates was evaluated for various physical and chemical parameters. The drug-resinate complex was microencapsulated with a polymer Eudragit RS 100 to further retard the release characteristics. Both the drug-resinate complex and microencapsulated drug resinate were suspended in a palatable aqueous suspension base and were evaluated for controlled release characteristic. Stability study indicated that elevated temperature did not alter the sustained release nature of the dosage form indicating that polymer membrane surrounding the core material remained intact throughout the storage period. PMID:20046790
Janssen, T J; Guelen, P J; Vree, T B; Botterblom, M H; Valducci, R
1988-01-01
The bioavailability of a new ambroxol sustained release preparation (75 mg) based on a dialyzing membrane for controlled release was studied in healthy volunteers after single and multiple oral dose in comparison with a standard sustained release formulation in a cross-over study under carefully controlled conditions. Plasma concentrations of ambroxol were measured by means of a HPLC method. Based on AUC data both preparations are found to be bioequivalent, but show different plasma concentration profiles. The test preparation showed a more pronounced sustained release profile than the reference preparation (single dose) resulting in significantly higher steady state plasma levels.
Simulated food effects on drug release from ethylcellulose: PVA-PEG graft copolymer-coated pellets.
Muschert, Susanne; Siepmann, Florence; Leclercq, Bruno; Carlin, Brian; Siepmann, Juergen
2010-02-01
Food effects might substantially alter drug release from oral controlled release dosage forms in vivo. The robustness of a novel type of controlled release film coating was investigated using various types of release media and two types of release apparatii. Importantly, none of the investigated conditions had a noteworthy impact on the release of freely water-soluble diltiazem HCl or slightly water-soluble theophylline from pellets coated with ethylcellulose containing small amounts of PVA-PEG graft copolymer. In particular, the presence of significant amounts of fats, carbohydrates, surfactants, bile salts, and calcium ions in the release medium did not alter drug release. Furthermore, changes in the pH and differences in the mechanical stress the dosage forms were exposed to did not affect drug release from the pellets. The investigated film coatings allowing for oral controlled drug delivery are highly robust in vitro and likely to be poorly sensitive to classical food effects in vivo.
Applications of Natural Polymeric Materials in Solid Oral Modified-Release Dosage Forms.
Li, Liang; Zhang, Xin; Gu, Xiangqin; Mao, Shirui
2015-01-01
Solid oral modified-release dosage forms provide numerous advantages for drug delivery compared to dosage forms where the drugs are released and absorbed rapidly following ingestion. Natural polymers are of particular interest as drug carriers due to their good safety profile, biocompatibility, biodegradability, and rich sources. This review described the current applications of important natural polymers, such as chitosan, alginate, pectin, guar gum, and xanthan gum, in solid oral modified-release dosage forms. It was shown that natural polymers have been widely used to fabricate solid oral modified-release dosage forms such as matrix tablets, pellets and beads, and especially oral drug delivery systems such as gastroretentive and colon drug delivery systems. Moreover, chemical modifications could overcome the shortcomings associated with the use of natural polymers, and the combination of two or more polymers presented further advantages compared with that of single polymer. In conclusion, natural polymers and modified natural polymers have promising applications in solid oral modified-release dosage forms. However, commercial products based on them are still limited. To accelerate the application of natural polymers in commercial products, in vivo behavior of natural polymers-based solid oral modified-release dosage forms should be deeply investigated, and meanwhile quality of the natural polymers should be controlled strictly, and the influence of formulation and process parameters need to be understood intensively.
El Nabarawi, Mohamed A; Teaima, Mahmoud H; Abd El-Monem, Rehab A; El Nabarawy, Nagla A; Gaber, Dalia A
2017-01-01
To prolong the residence time of dosage forms within the gastrointestinal tract until all drug is released at the desired rate is one of the real challenges for oral controlled-release drug delivery systems. This study was designed to develop a controlled-release floating matrix tablet and floating raft system of Mebeverine HCl (MbH) and evaluate different excipients for their floating behavior and in vitro controlled-release profiles. Oral pharmacokinetics of the optimum matrix tablet, raft system formula, and marketed Duspatalin® 200 mg retard as reference were studied in beagle dogs. The optimized tablet formula (FT-10) and raft system formula (FRS-11) were found to float within 34±5 sec and 15±7 sec, respectively, and both remain buoyant over a period of 12 h in simulated gastric fluid. FT-10 (Compritol/HPMC K100M 1:1) showed the slowest drug release among all prepared tablet formulations, releasing about 80.2% of MbH over 8 h. In contrast, FRS-11 (Sodium alginate 3%/HPMC K100M 1%/Precirol 2%) had the greatest retardation, providing sustained release of 82.1% within 8 h. Compared with the marketed MbH product, the Cmax of FT-10 was almost the same, while FRS-11 maximum concentration was higher. The tmax was 3.33, 2.167, and 3.0 h for marketed MbH product, FT-10, and FRS-11, respectively. In addition, the oral bioavailability experiment showed that the relative bioavailability of the MbH was 104.76 and 116.01% after oral administration of FT-10 and FRS-11, respectively, compared to marketed product. These results demonstrated that both controlled-released floating matrix tablet and raft system would be promising gastroretentive delivery systems for prolonging drug action. PMID:28435220
El Nabarawi, Mohamed A; Teaima, Mahmoud H; Abd El-Monem, Rehab A; El Nabarawy, Nagla A; Gaber, Dalia A
2017-01-01
To prolong the residence time of dosage forms within the gastrointestinal tract until all drug is released at the desired rate is one of the real challenges for oral controlled-release drug delivery systems. This study was designed to develop a controlled-release floating matrix tablet and floating raft system of Mebeverine HCl (MbH) and evaluate different excipients for their floating behavior and in vitro controlled-release profiles. Oral pharmacokinetics of the optimum matrix tablet, raft system formula, and marketed Duspatalin ® 200 mg retard as reference were studied in beagle dogs. The optimized tablet formula (FT-10) and raft system formula (FRS-11) were found to float within 34±5 sec and 15±7 sec, respectively, and both remain buoyant over a period of 12 h in simulated gastric fluid. FT-10 (Compritol/HPMC K100M 1:1) showed the slowest drug release among all prepared tablet formulations, releasing about 80.2% of MbH over 8 h. In contrast, FRS-11 (Sodium alginate 3%/HPMC K100M 1%/Precirol 2%) had the greatest retardation, providing sustained release of 82.1% within 8 h. Compared with the marketed MbH product, the C max of FT-10 was almost the same, while FRS-11 maximum concentration was higher. The t max was 3.33, 2.167, and 3.0 h for marketed MbH product, FT-10, and FRS-11, respectively. In addition, the oral bioavailability experiment showed that the relative bioavailability of the MbH was 104.76 and 116.01% after oral administration of FT-10 and FRS-11, respectively, compared to marketed product. These results demonstrated that both controlled-released floating matrix tablet and raft system would be promising gastroretentive delivery systems for prolonging drug action.
Claeys, Bart; Vervaeck, Anouk; Hillewaere, Xander K D; Possemiers, Sam; Hansen, Laurent; De Beer, Thomas; Remon, Jean Paul; Vervaet, Chris
2015-02-01
This study evaluated thermoplastic polyurethanes (TPUR) as matrix excipients for the production of oral solid dosage forms via hot melt extrusion (HME) in combination with injection molding (IM). We demonstrated that TPURs enable the production of solid dispersions - crystalline API in a crystalline carrier - at an extrusion temperature below the drug melting temperature (Tm) with a drug content up to 65% (wt.%). The release of metoprolol tartrate was controlled over 24h, whereas a complete release of diprophylline was only possible in combination with a drug release modifier: polyethylene glycol 4000 (PEG 4000) or Tween 80. No burst release nor a change in tablet size and geometry was detected for any of the formulations after dissolution testing. The total matrix porosity increased gradually upon drug release. Oral administration of TPUR did not affect the GI ecosystem (pH, bacterial count, short chain fatty acids), monitored via the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). The high drug load (65 wt.%) in combination with (in vitro and in vivo) controlled release capacity of the formulations, is noteworthy in the field of formulations produced via HME/IM. Copyright © 2014 Elsevier B.V. All rights reserved.
Controlling Release of Integral Lipid Nanoparticles Based on Osmotic Pump Technology.
Tian, Zhiqiang; Yu, Qin; Xie, Yunchang; Li, Fengqian; Lu, Yi; Dong, Xiaochun; Zhao, Weili; Qi, Jianping; Wu, Wei
2016-08-01
To achieve controlled release of integral nanoparticles by the osmotic pump strategy using nanostructured lipid carriers (NLCs) as model nanoparticles. NLCs was prepared by a hot-homogenization method, transformed into powder by lyophilization, and formulated into osmotic pump tablets (OPTs). Release of integral NLCs was visualized by live imaging after labeling with a water-quenching fluorescent probe. Effects of formulation variables on in vitro release characteristics were evaluated by measuring the model drug fenofibrate. Pharmacokinetics were studied in beagle dogs using the core tablet and a micronized fenofibrate formulation as references. NLCs are released through the release orifices of the OPTs as integral nanoparticles. Near zero-order kinetics can be achieved by optimizing the influencing variables. After oral administration, decreased C max and steady drug levels for as long as over 24 h are observed. NLC-OPTs show an oral bioavailability of the model drug fenofibrate similar to that of the core tablets, which is about 1.75 folds that of a fast-release formulation. Controlled release of integral NLCs is achieved by the osmotic pump strategy.
Mirhashemi, AmirHossein; Jahangiri, Sahar; Kharrazifard, MohammadJavad
2018-02-05
Corrosion resistance is an important requirement for orthodontic appliances. Nickel and chromium may be released from orthodontic wires and can cause allergic reactions and cytotoxicity when patients use various mouthwashes to whiten their teeth. Our study aimed to assess the release of nickel and chromium ions from nickel titanium (NiTi) and stainless steel (SS) orthodontic wires following the use of four common mouthwashes available on the market. This in vitro, experimental study was conducted on 120 orthodontic appliances for one maxillary quadrant including five brackets, one band and half of the required length of SS, and NiTi wires. The samples were immersed in Oral B, Oral B 3D White Luxe, Listerine, and Listerine Advance White for 1, 6, 24, and 168 h. The samples immersed in distilled water served as the control group. Atomic absorption spectroscopy served to quantify the amount of released ions. Nickel ions were released from both wires at all time-points; the highest amount was in Listerine and the lowest in Oral B mouthwashes. The remaining two solutions were in-between this range. The process of release of chromium from the SS wire was the same as that of nickel. However, the release trend in NiTi wires was not uniform. Listerine caused the highest release of ions. Listerine Advance White, Oral B 3D White Luxe, and distilled water were the same in terms of ion release. Oral B showed the lowest amount of ion release.
Qi, Xiaole; Chen, Haiyan; Rui, Yao; Yang, Fengjiao; Ma, Ning; Wu, Zhenghong
2015-07-15
To prolong the residence time of dosage forms within gastrointestinal trace until all drug released at desired rate was one of the real challenges for oral controlled-release drug delivery system. Herein, we developed a fine floating tablet via compression coating of hydrophilic polymer (hydroxypropyl cellulose) combined with effervescent agent (sodium bicarbonate) to achieve simultaneous control of release rate and location of ofloxacin. Sodium alginate was also added in the coating layer to regulate the drug release rate. The effects of the weight ratio of drug and the viscosity of HPC on the release profile were investigated. The optimized formulations were found to immediately float within 30s and remain lastingly buoyant over a period of 12 h in simulated gastric fluid (SGF, pH 1.2) without pepsin, indicating a satisfactory floating and zero-order drug release profile. In addition, the oral bioavailability experiment in New Zealand rabbits showed that, the relative bioavailability of the ofloxacin after administrated of floating tablets was 172.19%, compared to marketed common release tablets TaiLiBiTuo(®). These results demonstrated that those controlled-released floating tables would be a promising gastro-retentive delivery system for drugs acting in stomach. Copyright © 2015 Elsevier B.V. All rights reserved.
Yi, Tao; Wan, Jiangling; Xu, Huibi; Yang, Xiangliang
2008-08-07
The objective of this work was the development of a controlled release system based on self-microemulsifying mixture aimed for oral delivery of poorly water-soluble drugs. HPMC-based particle formulations were prepared by spray drying containing a model drug (nimodipine) of low water solubility and hydroxypropylmethylcellulose (HPMC) of high viscosity. One type of formulations contained nimodipine mixed with HPMC and the other type of formulations contained HPMC and nimodipine dissolved in a self-microemulsifying system (SMES) consisting of ethyl oleate, Cremophor RH 40 and Labrasol. Based on investigation by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction, differences were found in the particle structure between both types of formulations. In vitro release was performed and characterized by the power law. Nimodipine release from both types of formulations showed a controlled release profile and the two power law parameters, n and K, correlated to the viscosity of HPMC. The parameters were also influenced by the presence of SMES. For the controlled release solid SMES, oil droplets containing dissolved nimodipine diffused out of HPMC matrices following exposure to aqueous media. Thus, it is possible to control the in vitro release of poorly soluble drugs from solid oral dosage forms containing SMES.
Microencapsulation: A promising technique for controlled drug delivery.
Singh, M N; Hemant, K S Y; Ram, M; Shivakumar, H G
2010-07-01
MICROPARTICLES OFFER VARIOUS SIGNIFICANT ADVANTAGES AS DRUG DELIVERY SYSTEMS, INCLUDING: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed.
Microencapsulation: A promising technique for controlled drug delivery
Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G.
2010-01-01
Microparticles offer various significant advantages as drug delivery systems, including: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed. PMID:21589795
Biologic assessment of antiseptic mouthwashes using a three-dimensional human oral mucosal model.
Moharamzadeh, Keyvan; Franklin, Kirsty L; Brook, Ian M; van Noort, Richard
2009-05-01
The biologic safety profile of oral health care products is often assumed on the basis of simplistic test models such as monolayer cell culture systems. We developed and characterized a tissue-engineered human oral mucosal model, which was proven to represent a potentially more informative and more clinically relevant alternative for the biologic assessment of mouthwashes. The aim of this study was to evaluate the biologic effects of alcohol-containing mouthwashes on an engineered human oral mucosal model. Three-dimensional (3D) models were engineered by the air/liquid interface culture technique using human oral fibroblasts and keratinocytes. The models were exposed to phosphate buffered saline (negative control), triethylene glycol dimethacrylate (positive control), cola, and three types of alcohol-containing mouthwashes. The biologic response was recorded using basic histology; a cell proliferation assay; 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tissue-viability assay; transmission electron microscopy (TEM) analysis; and the measurement of release of interleukin (IL)-1beta by enzyme-linked immunosorbent assay. Statistical analysis showed that there was no significant difference in tissue viability among the mouthwashes, cola, and negative control groups. However, exposure to the positive control significantly reduced the tissue viability and caused severe cytotoxic epithelial damage as confirmed by histology and TEM analysis. A significant increase of IL-1beta release was observed with the positive control and, to a lesser extent, with two of the tested mouthrinses. The 3D human oral mucosal model can be a suitable model for the biologic testing of mouthwashes. The alcohol-containing mouthwashes tested in this study do not cause significant cytotoxic damage and may slightly stimulate IL-1beta release.
Franca, Juçara R; De Luca, Mariana P; Ribeiro, Tatiana G; Castilho, Rachel O; Moreira, Allyson N; Santos, Vagner R; Faraco, André A G
2014-12-12
Dental caries is the most prevalent oral disease in several Asian and Latin American countries. It is an infectious disease and different types of bacteria are involved in the process. Synthetic antimicrobials are used against this disease; however, many of these substances cause unwarranted undesirable effects like vomiting, diarrhea and tooth staining. Propolis, a resinous substance collected by honeybees, has been used to control the oral microbiota. So, the objective of this study was to develop and characterize sustained-release propolis-based chitosan varnish useful on dental cariogenic biofilm prevention, besides the in vitro antimicrobial activity. Three formulations of propolis - based chitosan varnish (PCV) containing different concentrations (5%, 10% and 15%) were produced by dissolution of propolis with chitosan on hydro-alcoholic vehicle. Bovine teeth were used for testing adhesion of coatings and to observe the controlled release of propolis associated with varnish. It was characterized by infrared spectroscopy, scanning electron microscopy, casting time, diffusion test in vitro antimicrobial activity and controlled release. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were tested for the main microorganisms involved in the cariogenic biofilm through the microdilution test in 96-well plates. The formulations presented a tooth surface adherence and were able to form films very fast on bovine tooth surface. Also, propolis-based chitosan varnishes have shown antimicrobial activity similar to or better than chlorhexidine varnish against all oral pathogen bacteria. All microorganisms were sensitive to propolis varnish and chitosan. MIC and MBC for microorganisms of cariogenic biofilme showed better results than chlorhexidine. Propolis active components were released for more than one week. All developed formulations turn them, 5%, 10% and 15% propolis content varnish, into products suitable for clinical application on dental caries prevention field, deserving clinical studies to confirm its in vivo activity.
Kim, Jeong Tae; Barua, Sonia; Kim, Hyeongmin; Hong, Seong-Chul; Yoo, Seung-Yup; Jeon, Hyojin; Cho, Yeongjin; Gil, Sangwon; Oh, Kyungsoo; Lee, Jaehwi
2017-07-01
In this study, the effect of particle size of genistein-loaded solid lipid particulate systems on drug dissolution behavior and oral bioavailability was investigated. Genistein-loaded solid lipid microparticles and nanoparticles were prepared with glyceryl palmitostearate. Except for the particle size, other properties of genistein-loaded solid lipid microparticles and nanoparticles such as particle composition and drug loading efficiency and amount were similarly controlled to mainly evaluate the effect of different particle sizes of the solid lipid particulate systems on drug dissolution behavior and oral bioavailability. The results showed that genistein-loaded solid lipid microparticles and nanoparticles exhibited a considerably increased drug dissolution rate compared to that of genistein bulk powder and suspension. The microparticles gradually released genistein as a function of time while the nanoparticles exhibited a biphasic drug release pattern, showing an initial burst drug release, followed by a sustained release. The oral bioavailability of genistein loaded in solid lipid microparticles and nanoparticles in rats was also significantly enhanced compared to that in bulk powders and the suspension. However, the bioavailability from the microparticles increased more than that from the nanoparticles mainly because the rapid drug dissolution rate and rapid absorption of genistein because of the large surface area of the genistein-solid lipid nanoparticles cleared the drug to a greater extent than the genistein-solid lipid microparticles did. Therefore, the findings of this study suggest that controlling the particle size of solid-lipid particulate systems at a micro-scale would be a promising strategy to increase the oral bioavailability of genistein.
Cytokine production by oral and peripheral blood neutrophils in adult periodontitis.
Galbraith, G M; Hagan, C; Steed, R B; Sanders, J J; Javed, T
1997-09-01
Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) also possess bone-resorptive properties, and are generally considered to play a role in the pathogenesis of periodontal disease. In the present study, TNF-alpha and IL-1 beta production by oral and peripheral blood polymorphonuclear leukocytes (PMN) was examined in 40 patients with adult periodontitis and 40 orally healthy matched controls. Oral PMN released considerable amounts of both cytokines in unstimulated culture, and there was no difference between patients and controls when the cytokine levels were corrected for cell number. However, when the effect of disease activity was examined, cytokine release by oral PMN was found to be greatest in patients with advanced periodontitis. Within the healthy control group, IL-1 beta production by oral PMN was significantly higher in males (Mann-Whitney test, P = 0.0008). Examination of IL-1 beta production by peripheral blood PMN exposed to recombinant human granulocyte-macrophage colony stimulating factor revealed no difference between the patient and control groups. In contrast, IL-1 beta production by peripheral blood PMN was significantly reduced in patients with advanced disease (Mann-Whitney test, P = 0.02), and peripheral PMN IL-1 beta synthesis was greater in female controls (Mann-Whitney test, P = 0.054). No effect of race on cytokine production could be discerned in patients or controls. These results indicate that several factors influence cytokine production in oral health and disease, and that a dichotomy in cytokine gene expression exists between oral and peripheral blood PMN in adult periodontitis.
Jing, Zi-Wei; Ma, Zhi-Wei; Li, Chen; Jia, Yi-Yang; Luo, Min; Ma, Xi-Xi; Zhou, Si-Yuan; Zhang, Bang-Le
2017-02-15
The covalently cross-linked chitosan-poly(ethylene glycol) 1540 derivatives have been developed as a controlled release system with potential for the delivery of protein drug. The swelling characteristics of the hydrogels based on these derivatives as the function of different PEG content and the release profiles of a model protein (bovine serum albumin, BSA) from the hydrogels were evaluated in simulated gastric fluid with or without enzyme in order to simulate the gastrointestinal tract conditions. The derivatives cross-linked with difunctional PEG 1540 -dialdehyde via reductive amination can swell in alkaline pH and remain insoluble in acidic medium. The cumulative release amount of BSA was relatively low in the initial 2h and increased significantly at pH 7.4 with intestinal lysozyme for additional 12h. The results proved that the release-and-hold behavior of the cross-linked CS-PEG 1540 H-CS hydrogel provided a swell and intestinal enzyme controlled release carrier system, which is suitable for oral protein drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Therapeutic applications of hydrogels in oral drug delivery
Sharpe, Lindsey A; Daily, Adam M; Horava, Sarena D; Peppas, Nicholas A
2015-01-01
Introduction Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications. Areas covered This review provides a wide perspective on the therapeutic use of hydrogels in oral delivery systems. General features and advantages of hydrogels are addressed, with more considerable focus on stimuli-responsive systems that respond to pH or enzymatic changes in the gastrointestinal environment to achieve controlled drug release. Specific examples of therapeutics are given. Last, in vitro and in vivo methods to evaluate hydrogel performance are discussed. Expert opinion Hydrogels are excellent candidates for oral drug delivery, due to the number of adaptable parameters that enable controlled delivery of diverse therapeutic molecules. However, further work is required to more accurately simulate physiological conditions and enhance performance, which is important to achieve improved bioavailability and increase commercial interest. PMID:24848309
A review on oral liquid as an emerging technology in controlled drug delivery system.
Torne, Sangmesh Raosaheb; Sheela, Angappan; Sarada, N C
2017-12-03
The oral liquid drug delivery system (OLDDS) remains as the primary choice of dosage form, though challenging, for the pharmaceutical scientists. In the last two decades, Oral Liquid Controlled Release (OLCR) formulation has gained a lot of attention because of its advantages over the conventional dosage forms. The world of nanotechnology has paved multiple ways to administer the drug through oral cavity in liquid dosage form with an additional advantage of control over the release. In the current study, the various approaches towards the same have been discussed comprehensively to understand the different mechanisms of OLCR. This review also emphasizes on the existing techniques and the developments that have been made to improve on its efficacy including various formulation related factors. It also provides valuable insights into the role of polymers in the development of OLCR formulation that can be used in the management of Gastroesophageal reflux disease (GERD). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
To Flavor or Not to Flavor Extemporaneous Omeprazole Liquid.
Chuong, Monica C; Taglieri, Catherine A; Kerr, Stephen G
2017-01-01
Omeprazole is a proton pump inhibitor used to treat the symptoms of gastro esophageal reflux disease, ulcers, excess stomach acid, infection with Helicobacter pylori, and to control the gastric side effects of various drugs. The approved dosage forms in the U.S. are powder in compounding kits, delayed-release granules for oral suspension, oral delayed-release tablets, and oral delayed-release capsules. An extemporaneously compounded unsweetened oral liquid method, published in the International Journal of Pharmaceutical Compounding, was found to be commonly used by pharmacists. This project investigated the robustness of the compendium omeprazole high-performance liquid chromatographic assay in evaluating an oral liquid made from commercial delayed-release pellets, the potency of extemporaneously compounded solutions having a 1.125% v/v flavored versus unflavored samples stored at controlled cold temperatures at different time points, and examining the absorption spectrum of the flavoring agent. As part of the study, stability-indication testing was also conducted. The studies indicate that the chromatographic area under the plasma concentration-time curve of both study groups remained over 90% of the label claim during the follow-up period. The flavor did not significantly impact the pH of the oral liquid. This study further identified (1) an increase in resilient foam formation in the flavored liquid, potentially hindering dosing accuracy, (2) omeprazole is oxidized easily by 3% hydrogen peroxide, and (3) flavoring agent absorbs in an ultraviolet visible spectroscopy spectral range often used in assay detectors for quantification of drug molecules, and could interfere with assay protocols of the same. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Stimuli sensitive polymethacrylic acid microparticles (PMAA)--oral insulin delivery.
Victor, Sunita Prem; Sharma, Chandra P
2002-10-01
This study investigated polymethacrylic acid (PMAA) microparticles for controlled release of Insulin in oral administration. The microparticles were characterised by scanning electron microscopy (SEM) for morphological studies. The swelling behaviour and drug release profile in various pH media were studied. The % swelling of gels was found to be inversely related to the amount of crosslinker added. Inclusion complex of betaCD and Insulin was studied using polyacrylamide gel electrophoresis (PAGE). Optimum complexation was obtained in the ratio 100 mg betaCD: 200 IU Insulin. The release pattern of Insulin from Insulin-betaCD complex encapsulated PMAA microparticles showed release of Insulin for more than seven hours.
Dry elixir formulations of dexibuprofen for controlled release and enhanced oral bioavailability.
Kim, Seo-Ryung; Kim, Jin-Ki; Park, Jeong-Sook; Kim, Chong-Kook
2011-02-14
The objective of this study was to achieve an optimal formulation of dexibuprofen dry elixir (DDE) for the improvement of dissolution rate and bioavailability. To control the release rate of dexibuprofen, Eudragit(®) RS was employed on the surface of DDE resulting in coated dexibuprofen dry elixir (CDDE). Physicochemical properties of DDE and CDDE such as particle size, SEM, DSC, and contents of dexibuprofen and ethanol were characterized. Pharmacokinetic parameters of dexibuprofen were evaluated in the rats after oral administration. The DDE and CDDE were spherical particles of 12 and 19 μm, respectively. The dexibuprofen and ethanol contents in the DDE were dependent on the amount of dextrin and maintained for 90 days. The dissolution rate and bioavailability of dexibuprofen loaded in dry elixir were increased compared with those of dexibuprofen powder. Moreover, coating DDE with Eudragit(®) RS retarded the dissolution rate of dexibuprofen from DDE without reducing the bioavailability. Our results suggest that CDDE may be potential oral dosage forms to control the release and to improve the bioavailability of poorly water-soluble dexibuprofen. Copyright © 2010 Elsevier B.V. All rights reserved.
A porphyrin-based metal–organic framework as a pH-responsive drug carrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Wenxin; Hu, Quan; Jiang, Ke
A low cytotoxic porphyrin-based metal–organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)−2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without “burst effect”. The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery. - Graphical abstract: The porous crystals PCN-221 with pore openings (MOF) PCN-221 was prepared exhibiting low cytotoxicity. PCN-221 showed high drug Methotrexatemore » loading and controlled pH-responsive release of Methotrexate. - Highlights: • A porphyrin-based metal–organic framework (MOF) PCN-221 was prepared showing low cytotoxicity. • PCN-221 showed high drug Methotrexate loading. • PCN-221 showed controlled pH-responsive release of Methotrexate.« less
Tavakoli, Naser; Minaiyan, Mohsen; Tabbakhian, Majid; Pendar, Yaqub
2014-01-01
Repaglinide, an oral antidiabetic agent, has a rapid onset of action and short half-life of approximately 1 h. Designing a controlled release dosage form of the drug is required to maintain its therapeutic blood level and to eliminate its adverse effects, particularly the hypoglycaemia. Repaglinide sustained release matrix pellets consisting of Avicel, lactose and different polymers were prepared using extrusion-spheronisation method. The effect of different formulation components on in vitro drug release were evaluated using USP apparatus (paddle) for 12 h in phosphate buffer. The optimised formulation was orally administrated to normal and STZ induced diabetic rats. Most pellet formulations had acceptable physical properties with regard to size distribution, flowability and friability. Repaglinide pellets comprising Avicel 50%, lactose 47% and SLS 1% were released 94% of its drug content after 12 h. The optimised formulation was able to decrease blood glucose level in normal rats and those with diabetes throughout 8-12 h.
Recent advances in oral pulsatile drug delivery.
Kalantzi, Lida E; Karavas, Evangelos; Koutris, Efthimios X; Bikiaris, Dimitrios N
2009-01-01
Pulsatile drug delivery aims to release drugs on a programmed pattern i.e.: at appropriate time and/or at appropriate site of action. Currently, it is gaining increasing attention as it offers a more sophisticated approach to the traditional sustained drug delivery i.e: a constant amount of drug released per unit time or constant blood levels. Technically, pulsatile drug delivery systems administered via the oral route could be divided into two distinct types, the time controlled delivery systems and the site-specific delivery systems. The simplest pulsatile formulation is a two layer press coated tablet consisted of polymers with different dissolution rates. Homogenicity of the coated barrier is mandatory in order to assure the predictability of the lag time. The disadvantage of such formulation is that the rupture time cannot be always adequately manipulated as it is strongly correlated with the physicochemical properties of the polymer. Gastric retentive systems, systems where the drug is released following a programmed lag phase, chronopharmaceutical drug delivery systems matching human circadian rhythms, multiunit or multilayer systems with various combinations of immediate and sustained-release preparation, are all classified under pulsatile drug delivery systems. On the other hand, site-controlled release is usually controlled by factors such as the pH of the target site, the enzymes present in the intestinal tract and the transit time/pressure of various parts of the intestine. In this review, recent patents on pulsatile drug delivery of oral dosage forms are summarized and discussed.
The use of thiolated polymers as carrier matrix in oral peptide delivery--proof of concept.
Bernkop-Schnürch, Andreas; Pinter, Yvonne; Guggi, Davide; Kahlbacher, Hermann; Schöffmann, Gudrun; Schuh, Maximilian; Schmerold, Ivo; Del Curto, Maria Dorly; D'Antonio, Mauro; Esposito, Pierandrea; Huck, Christian
2005-08-18
It was the aim of this study to develop an oral delivery system for the peptide drug antide. The stability of the therapeutic peptide towards gastrointestinal peptidases was evaluated. The therapeutic agent and the permeation mediator glutathione were embedded in the thiolated polymer chitosan-4-thio-butylamidine conjugate (chitosan-TBA conjugate) and compressed to tablets. Drug release studies were performed in the dissolution test apparatus according to the Pharmacopoeia Europea using the paddle method and demineralized water as release medium. In order to avoid mucoadhesion of these delivery systems already in the oral cavity and oesophagus tablets were coated with a triglyceride. These tablets were orally given to pigs (weight: 50+/-2 kg; Edelschwein Pietrain). Moreover, antide was administered intravenously, subcutaneously and orally in solution. Results showed stability of antide towards pepsin, trypsin and chymotrypsin. In contrast, antide was rapidly degraded by elastase. Consequently a stomach-targeted delivery system was designed. Drug release studies demonstrated an almost zero-order controlled release of antide over 8 h. In vivo studies demonstrated a relative bioavailability of 34.4% for the subcutaneous administration. Oral administration of antide in solution led to no detectable concentrations of the drug in plasma at all. In contrast, administering antide being incorporated in the thiolated polymer resulted in a significant uptake of the peptide. The absolute and relative bioavailability was determined to be 1.1% and 3.2%, respectively.
Drug delivery systems with modified release for systemic and biophase bioavailability.
Leucuta, Sorin E
2012-11-01
This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.
Ruiz, Sara Melisa Arciniegas; Olvera, Lilia Gutiérrez; Chacón, Sara del Carmen Caballero; Estrada, Dinorah Vargas
2015-04-01
To determine the pharmacokinetics of doxycycline hyclate administered orally in the form of experimental formulations with different proportions of acrylic acid-polymethacrylate-based matrices. 30 healthy adult dogs. In a crossover study, dogs were randomly assigned (in groups of 10) to receive a single oral dose (20 mg/kg) of doxycycline hyclate without excipients (control) or extended-release formulations (ERFs) containing doxycycline, acrylic acid polymer, and polymethacrylate in the following proportions: 1:0.5:0.0075 (ERF1) or 1:1:0.015 (ERF2). Serum concentrations of doxycycline were determined for pharmacokinetic analysis before and at several intervals after each treatment. Following oral administration to the study dogs, each ERF resulted in therapeutic serum doxycycline concentrations for 48 hours, whereas the control treatment resulted in therapeutic serum doxycycline concentrations for only 24 hours. All pharmacokinetic parameters for ERF1 and ERF2 were significantly different; however, findings for ERF1 did not differ significantly from those for the control treatment. Results indicated that both ERFs containing doxycycline, acrylic acid polymer, and polymethacrylate had an adequate pharmacokinetic-pharmacodynamic relationship for a time-dependent drug and a longer release time than doxycycline alone following oral administration in dogs. Given the minimum effective serum doxycycline concentration of 0.26 μg/mL, a dose interval of 48 hours can be achieved for each tested ERF. This minimum inhibitory concentration has the potential to be effective against several susceptible bacteria involved in important infections in dogs. Treatment of dogs with either ERF may have several benefits over treatment with doxycycline alone.
Modulating drug release from gastric-floating microcapsules through spray-coating layers.
Lee, Wei Li; Tan, Jun Wei Melvin; Tan, Chaoyang Nicholas; Loo, Say Chye Joachim
2014-01-01
Floating dosage forms with prolonged gastric residence time have garnered much interest in the field of oral delivery. However, studies had shown that slow and incomplete release of hydrophobic drugs during gastric residence period would reduce drug absorption and cause drug wastage. Herein, a spray-coated floating microcapsule system was developed to encapsulate fenofibrate and piroxicam, as model hydrophobic drugs, into the coating layers with the aim of enhancing and tuning drug release rates. Incorporating fenofibrate into rubbery poly(caprolactone) (PCL) coating layer resulted in a complete and sustained release for up to 8 h, with outermost non-drug-holding PCL coating layer serving as a rate-controlling membrane. To realize a multidrug-loaded system, both hydrophilic metformin HCl and hydrophobic fenofibrate were simultaneously incorporated into these spray-coated microcapsules, with metformin HCl and fenofibrate localized within the hollow cavity of the capsule and coating layer, respectively. Both drugs were observed to be completely released from these coated microcapsules in a sustained manner. Through specific tailoring of coating polymers and their configurations, piroxicam loaded in both the outer polyethylene glycol and inner PCL coating layers was released in a double-profile manner (i.e. an immediate burst release as the loading dose, followed by a sustained release as the maintenance dose). The fabricated microcapsules exhibited excellent buoyancy in simulated gastric fluid, and provided controlled and sustained release, thus revealing its potential as a rate-controlled oral drug delivery system.
Sembower, Mark A.; Ertischek, Michelle D.; Buchholtz, Chloe; Dasgupta, Nabarun; Schnoll, Sidney H.
2013-01-01
This article examines rates of nonmedical use and diversion of extended-release amphetamine and extended-release oral methylphenidate in the United States. Prescription dispensing data were sourced from retail pharmacies. Nonmedical use data were collected from the Researched Abuse, Diversion and Addiction-Related Surveillance (RADARS) System Drug Diversion Program and Poison Center Program. Drug diversion trends nearly overlapped for extended-release amphetamine and extended-release oral methylphenidate. Calls to poison centers were generally similar; however, calls regarding extended-release amphetamine trended slightly lower than those for extended-release oral methylphenidate. Data suggest similar diversion and poison center call rates for extended-release amphetamine and extended-release oral methylphenidate. PMID:23480245
Controlled-release systemic delivery - a new concept in cancer chemoprevention
2012-01-01
Many chemopreventive agents have encountered bioavailability issues in pre-clinical/clinical studies despite high oral doses. We report here a new concept utilizing polycaprolactone implants embedded with test compounds to obtain controlled systemic delivery, circumventing oral bioavailability issues and reducing the total administered dose. Compounds were released from the implants in vitro dose dependently and for long durations (months), which correlated with in vivo release. Polymeric implants of curcumin significantly inhibited tissue DNA adducts following the treatment of rats with benzo[a]pyrene, with the total administered dose being substantially lower than typical oral doses. A comparison of bioavailability of curcumin given by implants showed significantly higher levels of curcumin in the plasma, liver and brain 30 days after treatment compared with the dietary route. Withaferin A implants resulted in a nearly 60% inhibition of lung cancer A549 cell xenografts, but no inhibition occurred when the same total dose was administered intraperitoneally. More than 15 phytochemicals have been tested successfully by this formulation. Together, our data indicate that this novel implant-delivery system circumvents oral bioavailability issues, provides continuous delivery for long durations and lowers the total administered dose, eliciting both chemopreventive/chemotherapeutic activities. This would also allow the assessment of activity of minor constituents and synthetic metabolites, which otherwise remain uninvestigated in vivo. PMID:22696595
Hanif, Muhammad; Zaman, Muhammad
2017-03-20
Mucoadhesion is an important property that helps oral drug delivery system to remain attached with buccal mucosa and hence to improve the delivery of the drug. The current study was designed to achieve the thiol modification of Arabinoxylan (ARX) and to develop a mucoadhesive oral film for the improved delivery of tizanidine hydrochloride (TZN HCl). Synthesis of thiolated arabinoxylan (TARX) was accomplished by esterification of ARX with thioglycolic acid (TGA). TARX was further used for the development of mucoadhesive oral films which were prepared by using a solvent casting technique. Formulation of the films was designed and optimized by using central composite design (CCRD), selecting TARX (X 1 ) and glycerol (X 2 ) as variables. Prepared film formulations were evaluated for mechanical strength, ex-vivo mucoadhesion, in-vitro drug release, ex-vivo drug permeation, surface morphology and drug contents. Thiolation of ARX was confirmed by fourier transform infra-red spectroscopy (FTIR) as a peak related to thiol group appeared at 2516 cm -1 . The claim of successful thiolation of ARX was strengthened by the presence of 2809.003 ± 1.03 μmoles of thiol contents per gram of the polymer, which was determined by Ellman's reagent method. From the results, it was observed that the films were of satisfactory mechanical strength and mucoadhesiveness with folding endurance greater than 300 and mucoadhesive strength 11.53 ± 0.17 N, respectively. Reasonable drug retention was observed during in-vitro dissolution (85.03% cumulative drug release) and ex-vivo permeation (78.90% cumulative amount of permeated drug) studies conducted for 8 h. Effects of varying concentrations of both polymer and plasticizer on prepared mucoadhesive oral films were evaluated by ANOVA and it was observed that glycerol can enhanced the dissolution as well as permeation of the drug while TARX has opposite impact on these parameters. In nutshell, TARX in combination with glycerolwas found to be suitable for the development of controlled release mucoadhesive oral films of TZN HCl. Schematic diagram showing conversion of ARX to TARX, TARX to oral film and evaluation of fabricated oral film.
Bajpai, S K; Jadaun, Mamta; Bajpai, M; Jyotishi, Pooja; Shah, Farhan Ferooz; Tiwari, Seema
2017-11-01
In the present work, Doxycycline loaded gum acacia (GA)/poly(sodium acrylate) (SA) hydrogels were prepared for the oral drug delivery of model drug Doxycycline. The hydrogels were characterized by X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR) scanning electron microscopy (SEM) and Zeta potential. The dynamic release of Doxycycline was investigated in the physiological fluids at 37°C. Various kinetic models such as Power function model, Schott model and Higuchi model were applied to interpret the release data. Schott model was found to be most fitted. The Doxycycline loaded hydrogels were tested for their antibacterial action against E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.
pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms.
Liu, Lin; Yao, WenDong; Rao, YueFeng; Lu, XiaoYang; Gao, JianQing
2017-11-01
Oral administration is a desirable alternative of parenteral administration due to the convenience and increased compliance to patients, especially for chronic diseases that require frequent administration. The oral drug delivery is a dynamic research field despite the numerous challenges limiting their effective delivery, such as enzyme degradation, hydrolysis and low permeability of intestinal epithelium in the gastrointestinal (GI) tract. pH-Responsive carriers offer excellent potential as oral therapeutic systems due to enhancing the stability of drug delivery in stomach and achieving controlled release in intestines. This review provides a wide perspective on current status of pH-responsive oral drug delivery systems prepared mainly with organic polymers or inorganic materials, including the strategies used to overcome GI barriers, the challenges in their development and future prospects, with focus on technology trends to improve the bioavailability of orally delivered drugs, the mechanisms of drug release from pH-responsive oral formulations, and their application for drug delivery, such as protein and peptide therapeutics, vaccination, inflammatory bowel disease (IBD) and bacterial infections.
Plasma peptide YY (PYY) in dumping syndrome.
Adrian, T E; Long, R G; Fuessl, H S; Bloom, S R
1985-12-01
The newly isolated hormonal peptide PYY is mainly localized to endocrine cells of the lower intestinal mucosa. The release of PYY by oral glucose was studied in six patients with the dumping syndrome to ascertain the effect of this condition on PYY release. Plasma PYY concentrations were greatly increased following oral glucose in patients with the dumping syndrome compared with healthy controls. In a separate series of experiments, the effect of somatostatin infusion on the PYY release by glucose in these patients was investigated. The release of PYY was completely blocked by infusion of somatostatin, and its release from the bowel in normal subjects may therefore be modulated by local somatostatin in the gut. PYY has been shown to inhibit gastric acid secretion and emptying, at plasma concentrations similar to those seen after glucose, in patients with the dumping syndrome. PYY may therefore be a factor involved in the pathophysiological changes associated with this condition.
Development of orally disintegrating tablets comprising controlled-release multiparticulate beads
2012-01-01
Melperone is an atypical antipsychotic agent that has shown a wide spectrum of neuroleptic properties, particularly effective in the treatment of senile dementia and Parkinson’s-associated psychosis, and is marketed in Europe as an immediate-release (IR) tablet and syrup. An orally disintegrating tablet (ODT) dosage form would be advantageous for patients who experience difficulty in swallowing large tablets or capsules or those who experience dysphagia. Controlled-release (CR) capsule and ODT formulations containing melperone HCl were developed with target in vitro release profiles suitable for a once-daily dosing regimen. Both dosage forms allow for the convenient production of dose-proportional multiple strengths. Two ODT formulations exhibiting fast and medium release profiles and one medium release profile capsule formulation (each 50 mg) were tested in vivo using IR syrup as the reference. The two medium release formulations were shown to be bioequivalent to each other and are suitable for once-daily dosing. Based on the analytical and organoleptic test results, as well as the blend uniformity and in-process compression data at various compression forces using coated beads produced at one-tenth (1/10) commercial scale, both formulations in the form of CR capsules and CR ODTs have shown suitability for progression into further clinical development. PMID:22356215
Gavini, E; Alamanni, M C; Cossu, M; Giunchedi, P
2005-08-01
Controlled release dosage forms based on tabletted microspheres containing fresh artichoke Cynara scolymus extract were performed for the oral administration of a nutritional supplement. Microspheres were prepared using a spray-drying technique; lactose or hypromellose have been chosen as excipients. Microspheres were characterized in terms of encapsulated extract content, size and morphology. Qualitative and quantitative composition of the extract before and after the spray process was determined. Compressed matrices (tablets) were prepared by direct compression of the spray-dried microspheres. In vitro release tests of microparticles and tablets prepared were carried out in both acidic and neutral media. Spray-drying is a good method to prepare microspheres containing the artichoke extract. The microspheres encapsulate an amount of extract close to the theoretical value. Particle size analyses indicate that the microparticles have dvs of approximately 6-7 microm. Electronic microscopy observations reveal that particles based on lactose have spherical shape and particles containing hypromellose are almost collapsed. The hydroalcoholic extract is stable to the microsphere production process: its polyphenolic composition (qualitative and quantitative) did not change after spraying. In vitro release studies show that microparticles characterized by a quick polyphenolic release both in acidic and neutral media due to the high water solubility of the carrier lactose. On the contrary, microspheres based hypromellose release only 20% of the loaded extract at pH 1.2 in 2 h and the total amount of polyphenols is released only after about further 6 h at pH 6.8. Matrices prepared tabletting lactose microspheres and hypromellose microparticles in the weight ratio 1:1 show a slow release rate, that lasts approximately 24 h. This one-a-day sustained release formulation containing Cynara scolymus extract could be proposed as a nutraceutical controlled release dosage form for oral administration.
A porphyrin-based metal-organic framework as a pH-responsive drug carrier
NASA Astrophysics Data System (ADS)
Lin, Wenxin; Hu, Quan; Jiang, Ke; Yang, Yanyu; Yang, Yu; Cui, Yuanjing; Qian, Guodong
2016-05-01
A low cytotoxic porphyrin-based metal-organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without "burst effect". The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery.
Ijaz, Hira; Qureshi, Junaid; Danish, Zeeshan; Zaman, Muhammad; Abdel-Daim, Mohamed; Hanif, Muhammad; Waheed, Imran; Mohammad, Imran Shair
2015-11-01
The purpose of this study was to introduce the technology for the development of rate-controlled oral drug delivery system to overcome various physiological problems. Several approaches are being used for the purpose of increasing the gastric retentive time, including floating drug delivery system. Gastric floating lisinopril maleate and metoprolol tartrate bilayer tablets were formulated by direct compression method using the sodium starch glycolate, crosscarmellose sodium for IR layer. Eudragit L100, pectin, acacia as sustained release polymers in different ratios for SR metoprolol tartrate layer and sodium bicarbonate, citric acid as gas generating agents for the floating extended release layer. The floating bilayer tablets of lisinopril maleate and metoprolol tartrate were designed to overcome the various problems associated with conventional oral dosage form. Floating tablets were evaluated for floating lag time, drug contents and in-vitro dissolution profile and different kinetic release models were applied. It was clear that the different ratios of polymers affected the drug release and floating time. L2 and M4 showed good drug release profile and floating behavior. The linear regression and model fitting showed that all formulation followed Higuchi model of drug release model except M4 that followed zero order kinetic. From the study it is evident that a promising controlled release by floating bilyer tablets of lisinopril maleate and metoprolol tartrate can be developed successfully.
Oral sustained-release suspension based on a lauryl sulfate salt/complex.
Kasashima, Yuuki; Uchida, Shinya; Yoshihara, Keiichi; Yasuji, Takehiko; Sako, Kazuhiro; Namiki, Noriyuki
2016-12-30
The objective of this study was to evaluate the feasibility of lauryl sulfate (LS) salt/complex as a novel carrier in oral sustained-release suspensions. Mirabegron, which has a pH-dependent solubility, was selected as the model drug. Sodium lauryl sulfate (SLS) was bound to mirabegron in a stoichiometric manner to form an LS salt/complex. LS salt/complex formulation significantly reduced the solubility of mirabegron and helped mirabegron achieve sustained-release over a wide range of pH conditions. Microparticles containing the LS salt/complex were prepared by spray drying with the aqueous dispersion of ethylcellulose (Aquacoat ® ECD). The diameter of the microparticles was less than 200μm, which will help avoid a gritty taste. In vitro results indicated the microparticles had slower dissolution profiles than the LS salt/complex. The dissolution rate could be controlled flexibly by changing the amount of Aquacoat ® ECD. The microparticle suspension retained the desired sustained-release property and dissolution profile after being stored for 30days at 40°C. In addition, the suspension displayed sustained-release behavior in dogs without a pronounced C max peak, which will help prevent side effects. These results suggest that microparticles containing LS salt/complex may be useful as a novel sustained-release suspension for oral delivery. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Ying; Wu, Xin; Mi, Yushuai; Zhang, Bimeng; Gu, Shengying; Liu, Gaolin; Li, Xiaoyu
2017-11-01
This article reports a promising approach to enhance the oral delivery of nuciferine (NUC), improve its aqueous solubility and bioavailability, and allow its controlled release as well as inhibiting lipid accumulation. NUC-loaded poly lactic-co-glycolic acid nanoparticles (NUC-PLGA-NPs) were prepared according to a solid/oil/water (s/o/w) emulsion technique due to the water-insolubility of NUC. PLGA exhibited excellent loading capacity for NUC with adjustable dosing ratios. The drug loading and encapsulation efficiency of optimized formulation were 8.89 ± 0.71 and 88.54 ± 7.08%, respectively. NUC-PLGA-NPs exhibited a spherical morphology with average size of 150.83 ± 5.72 nm and negative charge of -22.73 ± 1.63 mV, which are suitable for oral administration. A sustained NUC released from NUC-PLGA-NPs with an initial exponential release owing to the surface associated drug followed by a slower release of NUC, which was entrapped in the core. In addition, ∼77 ± 6.67% was released in simulating intestinal juice, while only about 45.95 ± 5.2% in simulating gastric juice. NUC-PLGA-NPs are more efficient against oleic acid (OA)-induced hepatic steatosis in HepG 2 cells when compared to naked NUC (n-NUC, *p < 0.05). The oral bioavailability of NUC-PLGA-NPs group was significantly higher (**p < 0.01) and a significantly decreased serum levels of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C), as well as a higher concentration of high-density lipoprotein cholesterol (HDL-C) was observed, compared with that of n-NUC treated group. These findings suggest that NUC-PLGA-NPs hold great promise for sustained and controlled drug delivery with improved bioavailability to alleviating lipogenesis.
The use of colloidal microgels for the controlled delivery of proteins and peptides
NASA Astrophysics Data System (ADS)
Cornelius, Victoria J.; Snowden, Martin J.; Mitchell, John C.
2007-01-01
Colloidal microgels may be used for the absorption and controlled release of confirmationally sensitive molecules such as proteins and peptides. These monodisperse microgels are easily prepared in a single pot reaction from e.g. Nisopropylacrylamide, butyl acrylate and methacrylic acid in the presence of a cross-linking agent and a suitable free radical initiator. The resultant materials display dramatic conformational changes in aqueous dispersion in response to changes in e.g. environmental pH. Colloidal microgels are capable of absorbing a range of different proteins and peptides at one pH, affording them protection by changing the conformation of the microgel following a pH change. A further change in environmental pH will allow the microgel to adopt a more extended confirmation and therefore allow the release of the encapsulated material. In the case of e.g. insulin this would offer the possibility of an oral delivery route. At the pH of stomach the microgel adopts a compact conformation, "protecting" the protein from denaturation. As the pH increases passing into the GI tract, the microgel changes its conformation to a more expanded form and thereby allows the protein to be released. Colloidal microgels offer an opportunity for the controlled release of conformationally sensitive protein and peptide molecules via an oral route.
Zhang, Yanzhuo; Zhao, Qinfu; Zhu, Wufu; Zhang, Lihua; Han, Jin; Lin, Qisi; Ai, Fengwei
2015-07-01
A novel mesoporous carbon/lipid bilayer nanocomposite (MCLN) with a core-shell structure was synthesized and characterized as an oral drug delivery system for poorly water-soluble drugs. The objective of this study was to investigate the potential of MCLN-based formulation to modulate the in vitro release and in vivo absorption of a model drug, nimodipine (NIM). NIM-loaded MCLN was prepared by a procedure involving a combination of thin-film hydration and lyophilization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area analysis, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were employed to characterize the NIM-loaded MCLN formulation. The effect of MCLN on cell viability was assessed using the MTT assay. In addition, the oral bioavailability of NIM-loaded MCLN in beagle dogs was compared with that of the immediate-release formulation, Nimotop®. Our results demonstrate that the NIM-loaded MCLN formulation exhibited a typical sustained release pattern. The NIM-loaded MCLN formulation achieved a greater degree of absorption and longer lasting plasma drug levels compared with the commercial formulation. The relative bioavailability of NIM for NIM-loaded MCLN was 214%. MCLN exhibited negligible toxicity. The data reported herein suggest that the MCLN matrix is a promising carrier for controlling the drug release rate and improving the oral absorption of poorly water-soluble drugs.
Sevgi, Ferhan; Kaynarsoy, Buket; Ozyazici, Mine; Pekcetin, Cetin; Ozyurt, Dogan
2008-01-01
The new mefenamic acid-alginate bead formulation prepared by ionotropic gelation method using 3 x 2(2) factorial design has shown adequate controlled release properties in vitro. In the present study, the irritation effects of mefenamic acid (MA), a prominent non-steroidal anti-inflammatory (NSAI) drug, were evaluated on rat gastric and duodenal mucosa when suspended in 0.5% (w/v) sodiumcarboxymethylcellulose (NaCMC) solution and loaded in alginate beads. Wistar albino rats weighing 200 +/- 50 g were used during in vivo animal studies. In this work, biodegradable controlled release MA beads and free MA were evaluated according to the degree of gastric or duodenal damage following oral administration in rats. The gastric and duodenal mucosa was examined for any haemorrhagic changes. Formulation code A10 showing both Case II transport and zero order drug release and t(50) % value of 5.22 h was chosen for in vivo animal studies. For in vivo trials, free MA (100 mgkg(-1)), blank and MA (100 mgkg(-1)) loaded alginate beads (formulation code A10) were suspended in 0.5% (w/v) NaCMC solution and each group was given to six rats orally by gavage. NaCMC solution was used as a control in experimental studies. In vivo data showed that the administration of MA in alginate beads prevented the gastric lesions.
Li, XueMing; Xu, YuanLong; Chen, GuoGuang; Wei, Ping; Ping, QiNeng
2008-01-01
The objective of the present study was to incorporate the hydrophilic anti-cancer drug 5-Fluorouracil(5-FU) into poly(lactide-co-glycolide) (PLGA) nanoparticles(NP) to improve the oral bioavailability. Owing to the high solubility of 5-FU in basic water, the water-in-oil-in-water (w/o/w) emulsification process has been chosen as one of the most appropriate method for the encapsulation of 5-FU, and the ammonia solution was used as the inner aqueous phase solvent to increase the solubility of 5-FU. In order to reach submicron size as well as increasing the grade of monodispersity compared to previous preparation techniques, we prepared 5-FU loaded PLGA-NP by a high-pressure emulsification-solvent evaporation process. The PLGA-NPs were characterized with respect to their morphology, particle size, size distribution, 5-FU encapsulation efficiency, in vitro and in vivo studies in rats. In vitro release of 5-FU from nanoparticles appeared to have two components with an initial rapid release due to the surface associated drug and followed by a slower exponential release of 5-FU, which was dissolved in the core. The in vivo research was studied in male Sprague-Dawley rats after an oral 5-FU dose of 45 mg/kg. Single oral administration of 5-FU loaded PLGA-NP to rats produced bioavailability, which was statistically higher than 5-FU solution as negative control. And the MRT (mean residence time) of 5-FU loaded PLGA-NP was significantly (P < 0.05) modified. Thus, it is possible to design a controlled drug delivery system for oral 5-FU delivery, improving therapy efficiency by possible reduction of time intervals between peroral administrations and reduction of local gastrointestinal side effects.
Hanauer, Stephen B; Sandborn, William J; Dallaire, Christian; Archambault, André; Yacyshyn, Bruce; Yeh, Chyon; Smith-Hall, Nancy
2007-01-01
BACKGROUND: Delayed-release oral mesalamine 2.4 g/day to 4.8 g/day has been shown to be effective in treating mildly to moderately active ulcerative colitis (UC), but it is unknown whether an initial dose of 4.8 g/day is more effective than 2.4 g/day in patients with mildly to moderately active UC and in the subgroup with moderate disease. PATIENTS AND METHODS: A six-week, multicentre, randomized, double-blind, controlled trial assessing the safety and clinical efficacy of a new dose (ASCEND I) of medication randomly assigned 301 adults with mildly to moderately active UC to delayed-release oral mesalamine 2.4 g/day (400 mg tablet [n=154]) or 4.8 g/day (800 mg tablet [n=147]). The primary efficacy end point was overall improvement (ie, treatment success), defined as complete remission or response to therapy from baseline to week 6. Primary safety end points were adverse events and laboratory evaluations. Data were also analyzed separately for the prespecified subgroup of patients with moderate UC at baseline. RESULTS: Treatment success was not statistically different between the treatment groups at week 6; 51% of the group (77 of 150) who received delayed-release oral mesalamine 2.4 g/day and 56% of the group (76 of 136) who received 4.8 g/day reached the efficacy end point (P=0.441). Among the moderate disease subgroup, however, the higher initial dose was more effective; 57% of patients (53 of 93) given delayed-release oral mesalamine 2.4 g/day and 72% of patients (55 of 76) given 4.8 g/day achieved treatment success (P=0.0384). Both regimens were well tolerated. CONCLUSIONS: Delayed-release oral mesalamine is an effective and well-tolerated initial therapy in patients with mildly to moderately active UC, and a 4.8 g/day dose may enhance treatment success rates in patients with moderate disease compared with mesalamine 2.4 g/day. PMID:18080055
Durán-Lobato, Matilde; Carrillo-Conde, Brenda; Khairandish, Yasmine; Peppas, Nicholas A.
2015-01-01
Oral drug delivery is a route of choice for vaccine administration because of its noninvasive nature and thus efforts have focused on efficient delivery of vaccine antigens to mucosal sites. An effective oral vaccine delivery system must protect the antigen from degradation upon mucosal delivery, penetrate mucosal barriers, and control the release of the antigen and costimulatory and immunomodulatory agents to specific immune cells (i.e., APCs). In this paper, mannan-modified pH-responsive P(HEMA-co-MAA) nanogels were synthesized and assessed as carriers for oral vaccination. The nanogels showed pH-sensitive properties, entrapping and protecting the loaded cargo at low pH values, and triggered protein release after switching to intestinal pH values. Surface decoration with mannan as carbohydrate moieties resulted in enhanced internalization by macrophages as well as increasing the expression of relevant costimulatory molecules. These findings indicate that mannan-modified P(HEMA-co-MAA) nanogels are a promising approach to a more efficacious oral vaccination regimen. PMID:24955658
Antovska, Packa; Ugarkovic, Sonja; Petruševski, Gjorgji; Stefanova, Bosilka; Manchevska, Blagica; Petkovska, Rumenka; Makreski, Petre
2017-11-01
Development, experimental design and in vitro in vivo correlation (IVIVC) of controlled-release matrix formulation. Development of novel oral controlled delivery system for indapamide hemihydrate, optimization of the formulation by experimental design and evaluation regarding IVIVC on a pilot scale batch as a confirmation of a well-established formulation. In vitro dissolution profiles of controlled-release tablets of indapamide hemihydrate from four different matrices had been evaluated in comparison to the originator's product Natrilix (Servier) as a direction for further development and optimization of a hydroxyethylcellulose-based matrix controlled-release formulation. A central composite factorial design had been applied for the optimization of a chosen controlled-release tablet formulation. The controlled-release tablets with appropriate physical and technological properties had been obtained with a matrix: binder concentration variations in the range: 20-40w/w% for the matrix and 1-3w/w% for the binder. The experimental design had defined the design space for the formulation and was prerequisite for extraction of a particular formulation that would be a subject for transfer on pilot scale and IVIV correlation. The release model of the optimized formulation has shown best fit to the zero order kinetics depicted with the Hixson-Crowell erosion-dependent mechanism of release. Level A correlation was obtained.
Chavda, H.V.; Patel, M.S.; Patel, C.N.
2012-01-01
The objective of the present study was to design an oral controlled drug delivery system for sparingly soluble diclofenac sodium (DCL) using guar gum as triple-layer matrix tablets. Matrix tablet granules containing 30% (D1), 40% (D2) or 50% (D3) of guar gum were prepared by the conventional wet granulation technique. Matrix tablets of diclofenac sodium were prepared by compressing three layers one by one. Centre layer of sandwich like structure was incorporated with matrix granules containing DCL which was covered on either side by guar gum granule layers containing either 70, 80 or 87% of guar gum as release retardant layers. The tablets were evaluated for hardness, thickness, drug content, and drug release studies. To ascertain the kinetics of drug release, the dissolution profiles were fitted to various mathematical models. The in vitro drug release from proposed system was best explained by the Hopfenberg model indicating that the release of drug from tablets displayed heterogeneous erosion. D3G3, containing 87% of guar gum in guar gum layers and 50% of guar gum in DCL matrix granule layer was found to provide the release rate for prolonged period of time. The results clearly indicate that guar gum could be a potential hydrophilic carrier in the development of oral controlled drug delivery systems. PMID:23181081
Zheng, Bin; Yang, Shuang; Fan, Chunyu; Bi, Ye; Du, Lin; Zhao, Lingzhi; Lee, Robert J; Teng, Lesheng; Teng, Lirong; Xie, Jing
2016-05-01
The present systematic study focused to investigate the oleic acid derivative of branched polyethylenimine (bPEI-OA)-functionalized proliposomes for improving the oral delivery of extract of Ginkgo biloba (GbE). The GbE proliposomes were prepared by a spray drying method at varying ratios of egg yolk phosphatidylcholine and cholesterol, and the optimized formulation was tailored with bPEI-OA to obtain bPEI-OA-functionalized proliposomes. The formulations were characterized for particle size, zeta potential, and entrapment efficiency. The release of GbE from proliposomes exhibited a sustained release. And the release rate was regulated by changing the amount of bPEI-OA on the proliposomes. The physical state characterization studies showed some interactions between GbE and other materials, such as hydrogen bonds and van der Waals forces during the process of preparation of proliposomes. The in situ single-pass perfusion and oral bioavailability studies were performed in rats. The significant increase in absorption constant (Ka) and apparent permeability coefficient (Papp) from bPEI-OA-functionalized proliposomes indicated the importance of positive charge for effective uptake across the gastrointestinal tract. The oral bioavailability of bPEI-OA-functionalized proliposomes was remarkable enhanced in comparison with control and conventional proliposomes. The bPEI-OA-functionalized proliposomes showed great potential of improving oral absorption of GbE as a suitable carrier.
McClements, David Julian; Xiao, Hang
2014-07-25
The oral bioavailability of many lipophilic bioactive agents (pharmaceuticals and nutraceuticals) is limited due to various physicochemical and physiological processes: poor release from food or drug matrices; low solubility in gastrointestinal fluids; metabolism or chemical transformation within the gastrointestinal tract; low epithelium cell permeability. The bioavailability of these agents can be improved by specifically designing food matrices that control their release, solubilization, transport, metabolism, and absorption within the gastrointestinal tract. This article discusses the impact of food composition and structure on oral bioavailability, and how this knowledge can be used to design excipient foods for improving the oral bioavailability of lipophilic bioactives. Excipient foods contain ingredients or structures that may have no bioactivity themselves, but that are able to promote the bioactivity of co-ingested bioactives. These bioactives may be lipophilic drugs in pharmaceutical preparations (such as capsules, pills, or syrups) or nutraceuticals present within food matrices (such as natural or processed foods and beverages).
Sakloetsakun, Duangkamon; Dünnhaupt, Sarah; Barthelmes, Jan; Perera, Glen; Bernkop-Schnürch, Andreas
2013-10-01
The aim of the study is to develop a self-nanoemulsifying drug delivery system (SNEDDS) based on thiolated chitosan for oral insulin administration. The preparations were characterized by particle size, entrapment efficiency, stability and drug release. Serum insulin concentrations were determined after oral administration of all formulations. Insulin SNEDDS formulation was served as control. The optimized SNEDDS consists of 65% (w/w) miglyol 840, 25% (w/w) cremophor EL, 10% (w/w) co-solvents (a mixture of DMSO and glycerol). The formulations in the presence or absence of insulin (5mg/mL) were spherical with the size range between 80 and 160 nm. Entrapment efficiency of insulin increased significantly when the thiolated chitosan was employed (95.14±2.96%), in comparison to the insulin SNEDDS (80.38±1.22%). After 30 min, the in vitro release profile of insulin from the nanoemulsions was markedly increased compared to the control. In vivo results showed that insulin/thiolated chitosan SNEDDS displayed a significant increase in serum insulin (p-value=0.02) compared to oral insulin solution. A new strategy to combine SNEDDS and thiolated chitosan described in the study would therefore be a promising and innovative approach to improve oral bioavailability of insulin. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Kamikura, Keita; Minatoya, Tsutomu; Terada-Nakaishi, Michiko; Yamamoto, Shoko; Sakai, Yasuo; Furusawa, Toshitake; Matsushima, Yuta; Unuma, Hidero
2017-09-01
It has been experimentally proven that orally ingested collagen-derived tripeptides (Ctp) are quickly absorbed in the body and effectively promote the regeneration of connective tissues including bone and skin. Ctp are capable to activate osteoblasts and fibroblasts, which eventually promotes tissue regeneration. Based on these findings, a hypothesis was formulated in this study that direct delivery of Ctp to bone defect would also facilitate tissue regeneration as well as oral administration. To test the hypothesis, we prepared a bone augmentation material with the ability to slowly release Ctp, and investigated its in vivo bone regeneration efficacy. The implant material was porous β-tricalcium phosphate (β-TCP) scaffold which was coated with a co-precipitated layer of bone-like hydroxyapatite and Ctp. The β-TCP was impregnated with approximately 0.8%(w/w) Ctp. Then, the Ctp-modified β-TCP was implanted into bone defects of Wistar rats to evaluate in vivo efficacy of Ctp directly delivered from the material to the bone defects. The control was pristine porous β-TCP. In vitro tests showed that Ctp were steadily released from the co-precipitated layer for approximately two weeks. The Ctp-modified scaffolds significantly promoted new bone formation in vivo in their vicinity as compared with pristine β-TCP scaffolds; 6 weeks after the implantation, Ctp-modified scaffolds promoted twice as much bone formation as the control implants. Consequently, we achieved the slow and steady release of Ctp, and found that direct delivery of Ctp from implant materials was effective for bone regeneration as well as oral administration. A β-TCP scaffold capable of slowly releasing bone-enhancing substances significantly promoted bone formation.
Furgang, David; Sreenivasan, Prem K; Zhang, Yun Po; Fine, Daniel H; Cummins, Diane
2003-09-01
This investigation examined the in vitro and ex vivo antimicrobial effects of a new dentifrice, Colgate Total Advanced Fresh, formulated with triclosan/copolymer/sodium fluoride, on oral bacteria, including those odorigenic bacteria implicated in bad breath. The effects of Colgate Total Advanced Fresh were compared to commercially available fluoride dentifrices that served as controls. Three experimental approaches were undertaken for these studies. In the first approach, the dentifrice formulations were tested in vitro against 13 species of oral bacteria implicated in bad breath. The second approach examined the antimicrobial activity derived from dentifrice that was adsorbed to and released from hydroxyapatite disks. In this approach, dentifrice-treated hydroxyapatite disks were immersed in a suspension of bacteria, and reduction in bacterial viability from the release of bioactive agents from hydroxyapatite was determined. The third approach examined the effect of treating bacteria immediately after their removal from the oral cavity of 11 adult human volunteers. This ex vivo study examined the viability of cultivable oral bacteria after dentifrice treatment for 2 minutes. Antimicrobial effects were determined by plating Colgate Total Advanced Fresh and control-dentifrice-treated samples on enriched media (for all cultivable oral bacteria) and indicator media (for hydrogen-sulfide-producing organisms), respectively. Results indicated that the antimicrobial effects of Colgate Total Advanced Fresh were significantly greater than either of the other dentifrices for all 13 oral odorigenic bacterial strains tested in vitro (P < or = 0.05). In the second approach, Colgate Total Advanced Fresh-treated hydroxyapatite disks were significantly more active in reducing bacterial growth than the other dentifrices tested (P < or = 0.05). Finally, ex vivo treatment of oral bacteria with Colgate Total Advanced Fresh demonstrated a 90.9% reduction of all oral cultivable bacteria and a 91.5% reduction of oral bacteria producing hydrogen sulfide compared with the control dentifrice. In conclusion, these results, taken together with the significant reductions in clinical malodor scores by Colgate Total Advanced Fresh demonstrated in organoleptic studies, strongly suggest that this dentifrice kills the bacteria that are implicated in the cause of bad breath.
Dongari-Bagtzoglou, A; Kashleva, H; Villar, C Cunha
2004-12-01
Oral epithelial cells are primary targets of Candida albicans in the oropharynx and may regulate the inflammatory host response to this pathogen. This investigation studied the mechanisms underlying interleukin-1alpha (IL-1alpha) release by oral epithelial cells and the role of IL-1alpha in regulating the mucosal inflammatory response to C. albicans. Infected oral epithelial cells released processed IL-1alpha protein in culture supernatants. The IL-1alpha generated was stored intracellularly and was released upon cell lysis. This was further supported by the fact that different C. albicans strains induced variable IL-1alpha release, depending on their cytolytic activity. IL-1alpha from C. albicans-infected oral epithelial cells upregulated proinflammatory cytokine secretion (IL-8 and GM-CSF) in uninfected oral epithelial or stromal cells. Our studies suggest that production of IL-1alpha, IL-8 and GM-CSF may take place in the oral mucosa in response to lytic infection of epithelial cells with C. albicans. This process can act as an early innate immune surveillance system and may contribute to the clinicopathologic signs of infection in the oral mucosa.
Snyder, Christin N.; Clark, Richard V.; Caricofe, Ralph B.; Bush, Mark A.; Roth, Mara Y.; Page, Stephanie T.; Bremner, William J.; Amory, John K.
2011-01-01
Oral administration of testosterone might be useful for the treatment of testosterone deficiency. However, current “immediate-release” formulations of oral testosterone exhibit suboptimal pharmacokinetics, with supraphysiologic peaks of testosterone and its metabolite, dihydrotestosterone (DHT), immediately after dosing. To dampen these peaks, we have developed 2 novel modified-release formulations of oral testosterone designed to slow absorption from the gut and improve hormone delivery. We studied these testosterone formulations in 16 normal young men enrolled in a 2-arm, open-label clinical trial. Three hundred-mg and 600-mg doses of immediate-release and modified fast-release or slow-release formulations were administered sequentially to 8 normal men rendered hypogonadal by the administration of the gonadotropin-releasing hormone antagonist acyline. Blood for measurement of serum testosterone, DHT, and estradiol was obtained before and 0.5, 1, 2, 3, 4, 6, 8, 12, and 24 hours after each dose. A second group of 8 men was studied with the coadministration of 1 mg of the 5α-reductase inhibitor finasteride daily throughout the treatment period. Serum testosterone was increased with all formulations of oral testosterone. The modified slow-release formulation significantly delayed the postdose peaks of serum testosterone and reduced peak concentrations of serum DHT compared with the immediate-release formulation. The addition of finasteride further increased serum testosterone and decreased serum DHT. We conclude that the oral modified slow-release testosterone formulation exhibits superior pharmacokinetics compared with immediate-release oral testosterone both alone and in combination with finasteride. This formulation might have efficacy for the treatment of testosterone deficiency. PMID:20378927
NASA Astrophysics Data System (ADS)
Bhunia, Tridib; Goswami, Luna; Chattopadhyay, Dipankar; Bandyopadhyay, Abhijit
2011-08-01
Extremely fast release of diltiazem hydrochloride (water soluble, anti anginal drug used to treat chest pain) together with its faster erosion has been the primary problem in conventional oral therapy. It has been addressed in this paper by encapsulating the drug in electron beam irradiated various poly (vinyl alcohol) hydrogel membranes and delivering it through transdermal route. Results show excellent control over the release of diltiazem hydrochloride through these membranes subject to their physico-mechanicals.
Zhang, Xi; Yi, Yueneng; Qi, Jianping; Lu, Yi; Tian, Zhiqiang; Xie, Yunchang; Yuan, Hailong; Wu, Wei
2013-08-16
It is very important to enhance the absorption simultaneously while designing controlled release delivery systems for poorly water-soluble and poorly permeable drugs (BCS IV). In this study, controlled release of cyclosporine (CyA) was achieved by the osmotic release strategy taking advantage of the absorption-enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDSs). The liquid SNEDDS consisting of Labrafil M 1944CS, Transcutol P and Cremophor EL was absorbed by the osmotic tablet core excipients (sucrose, lactose monohydrate, polyethylene oxide, and partly pregelatinized starch) and then transformed into osmotic tablets. Near zero-order release could be achieved for CyA-loaded nanoemulsions reconstituted from the SNEDDS. In general, the influencing factor study indicated that the release rate increased with increase of inner osmotic pressure, ratio of osmotic agent to suspending agent, content of pore-forming agent, and size of release orifice, whereas the thickness of the membrane impeded the release of CyA nanoemulsion. Pharmacokinetic study showed steady blood CyA profiles with prolonged Tmax and MRT, and significantly reduced Cmax for self-nanoemulsifying osmotic pump tablet (SNEOPT) in comparison with highly fluctuating profiles of the core tablet and Sandimmune Neoral(®). However, similar oral bioavailability was observed for either controlled release or non-controlled release formulations. It was concluded that simultaneous controlling on CyA release and absorption-enhancing had been achieved by a combination of osmotic tablet and SNEDDS. Copyright © 2013 Elsevier B.V. All rights reserved.
Chen, Hui-Xing; Yang, Shi; Ning, Ye; Shao, Hai-Hao; Ma, Meng; Tian, Ru-Hui; Liu, Yu-Fei; Gao, Wei-Qiang; Li, Zheng; Xia, Wei-Liang
2017-01-01
Testicular prostheses have been used to deal with anorchia for nearly 80 years. Here, we evaluated a novel testicular prosthesis that can controllably release hormones to maintain physiological levels of testosterone in vivo for a long time. Silastic testicular prostheses with controlled release of testosterone (STPT) with different dosages of testosterone undecanoate (TU) were prepared and implanted into castrated Sprague-Dawley rats. TU oil was applied by oral administration to a separate group of castrated rats. Castrated untreated and sham-operated groups were used as controls. Serum samples from every group were collected to measure the levels of testosterone (T), follicle-stimulating hormone and luteinizing hormone (LH). Maximum intracavernous penile pressure (ICPmax) was recorded. The prostates and seminal vesicles were weighed and subjected to histology, and a terminal dexynucleotidyl transferase-mediated UTP nick end labeling (TUNEL) assay was used to evaluate apoptosis. Our results revealed that the weights of these tissues and the levels of T and LH showed significant statistical differences in the oral administration and TU replacement groups compared with the castrated group (P < 0.05). Compared with the sham-operated group, the ICPmax, histology and TUNEL staining for apoptosis, showed no significant differences in the hormone replacement groups implanted with medium and high doses of STPT. Our results suggested that this new STPT could release TU stably through its double semi-permeable membranes with excellent biocompatibility. The study provides a new approach for testosterone replacement therapy. PMID:27174160
Garner, S; Barbour, M E
2015-07-01
Chlorhexidine (CHX) is in widespread use as a topical antimicrobial agent. Within the field of oral medicine, it is used in the prevention of ventilator-associated pneumonia as well as in the treatment of oral candidosis and microbial-associated lichenoid reactions. The objective of this study was to develop a strategy for controlled, sustained topical delivery of CHX using nanoparticle technology. Chlorhexidine was applied to hydroxyapatite, selected as a tooth analogue, as conventional CHX digluconate solutions and as aqueous suspensions of CHX hexametaphosphate nanoparticles with total CHX concentrations of 1, 2.2 and 5 mM. Soluble CHX release from the treated hydroxyapatite was monitored over a period of 7 days. A repeated-measures ANOVA with post hoc LSD test indicated that CHX release was 2-3× greater, and sustained for longer, when CHX was delivered as CHX hexametaphosphate nanoparticles than in aqueous solution with 2.2 and 5 mM CHX (P = 0.020 and 0.013, respectively), but there was no statistically significant difference at 1 mM CHX (P = 0.172). Chlorhexidine hexametaphosphate nanoparticles increased both the local dose and duration of soluble CHX delivery when applied to hydroxyapatite surfaces. This may provide a means to deliver a sustained dose of CHX with less frequent interventions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Film coatings for oral pulsatile release.
Maroni, Alessandra; Zema, Lucia; Loreti, Giulia; Palugan, Luca; Gazzaniga, Andrea
2013-12-05
Pulsatile delivery is generally intended as a release of the active ingredient that is delayed for a programmable period of time to meet particular chronotherapeutic needs and, in the case of oral administration, also target distal intestinal regions, such as the colon. Most oral pulsatile delivery platforms consist in coated formulations wherein the applied polymer serves as the release-controlling agent. When exposed to aqueous media, the coating initially performs as a protective barrier and, subsequently, undergoes a timely failure based on diverse mechanisms depending on its physico-chemical and formulation characteristics. Indeed, it may be ruptured because of the gradual expansion of the core, swell and/or erode due to the glassy-rubbery polymer transition or become permeable thus allowing the drug molecules to diffuse outwards. Otherwise, when the coating is a semipermeable membrane provided with one or more orifices, the drug is released through the latter as a result of an osmotic water influx. The vast majority of pulsatile delivery systems described so far have been prepared by spray-coating, which offers important versatility and feasibility advantages over other techniques such as press- and dip-coating. In the present article, the design, manufacturing and performance of spray-coated pulsatile delivery platforms is thus reviewed. Copyright © 2013 Elsevier B.V. All rights reserved.
Manguso, Francesco; Bennato, Raffaele; Lombardi, Giovanni; Riccio, Elisabetta; Costantino, Giuseppe; Fries, Walter
2016-01-01
We performed a systematic review and meta-analysis of all the available evidence comparing efficacy and safety of oral prolonged released beclomethasone dipropionate (BDP) to active oral controls in patients with mild-to-moderate ulcerative colitis (UC). A subgroup-analysis compared the effectiveness of BDP and 5-ASA. Literature research was performed in different databases, as well as manual search to identify abstracts from international meetings with data not included in extensive publications. Experts in the field and companies involved in BDP development and manufacture were contacted to identify unpublished studies used for registration purposes. Dichotomous data were pooled to obtain odds ratio meta-analysis. Five randomized controlled trials that compared oral BDP 5mg/day vs. all oral active controls in treating UC were identified as eligible. Efficacy and safety have been addressed after 4-week treatment period. One study evaluated efficacy and safety of BDP vs. prednisone and 4 of BDP vs. 5-ASA. Treatment with oral BDP 5 mg/day induces a significant better clinical response compared to oral 5-ASA (OR 1.86, 95% CI = 1.23-2.82, P = 0.003). The effect is detectable even when the comparison to prednisone is added (OR 1.41, 95% CI = 1.03-1.93, P = 0.03). Data on remission indicate that the potential clinical efficacy of BDP may be better than 5-ASA (OR 1.55, 95% CI = 1.00-2.40, P = 0.05). This difference is lost when the comparison with prednisone is added (OR 1.30, 95% CI = 0.76-2.23, P = 0.34). The safety analysis showed no differences between BDP and 5-ASA (OR 0.55, 95% CI = 0.24-1.27, P = 0.16). The lack of difference is maintained even when the study with prednisone is added (OR 0.67, 95% CI = 0.44-1.01, P = 0.06). However, the trend of difference is clear and indicates a more favourable safety profile of BDP compared to 5-ASA and PD. Oral prolonged release BDP showed a superior efficacy vs. oral 5-ASA in inducing clinical improvement of mild-to-moderate UC with a similar safety profile.
Talapan-Manikoth, Pravija; Jenkins, Rosemary
2013-01-01
Orally taken tablets in different formulations continue to have a central role in the treatment of various psychiatric and medical conditions. In order to improve compliance, reduce the frequency of taking medications and minimize the peaks and troughs associated with certain immediate-release formulations, pharmaceutical companies have developed a number of novel methods of delivering oral solid dosage medications in the form of controlled-release (CR) formulations. Some CR formulations have been associated with pharmacobezoars and false-positive findings on certain physical investigations. Though CR drugs are commonly used in psychiatry, clinicians appear to have a limited understanding of how they are released for absorption once ingested. Some have insoluble parts that are excreted in faeces as ‘ghost pills’. Due to lack of awareness of this phenomenon to both patients and the physicians, anxiety has ensued in some patients. Some clinicians have been puzzled or have been dismissive when faced with curious patients wanting to know more after they had observed tablet-like looking structures in faeces. We present two cases from our clinical setting and a few drawn from the World Wide Web to highlight the role of CR medications and their association with the ghost pill phenomenon. The mechanisms involved in drug release relevant to psychiatry medications are also briefly reviewed. The ghost pill phenomenon occurs with certain CR medications. This is a normal and expected outcome related to drug-release mechanisms of some of these products. It is inevitable that some patients will see what looks like tablets or capsules in faeces. Raising awareness of this phenomenon among clinicians would facilitate discussions and information sharing at the initial process of medication prescribing. Awareness among patients and carers would also help to allay anxiety. PMID:25083252
Kalyanasundaram, M.; Mathew, Nisha; Elango, A.; Padmanabhan, V.
2011-01-01
Background & objectives: DPE-28, a substituted diphenyl ether (2,6-ditertiarybutyl phenyl-2’,4’-dinitro phenyl ether) was reported to exhibit promising insect growth regulating activity against Culex quinquefasciatus, the vector of lymphatic filariasis. A controlled release formulation (CRF) of DPE-28 has been developed to control Cx. quinquefasciatus in its breeding habitats. Toxicity of DPE-28, safety to non-target mosquito predators and the release profile of the CRF of DPE-28 are studied and discussed. Methods: The acute oral and dermal toxicity was tested in male and female Wistar rats as per the Organization for Economic Cooperation and Development (OECD) guidelines 425 and 402 respectively. The toxicity of DPE-28 to non-target predators was tested as per the reported procedure from this laboratory. The CRF of DPE-28 was prepared by following the reported procedure developed at this laboratory earlier. The concentration of DPE-28 released from the CRF was monitored by HPLC by constructing a calibration graph by plotting the peak area in the Y-axis and the concentration of DPE-28 in the X-axis. Results: DPE-28 has been tested for acute oral toxicity and found to be moderately toxic with LD50 value of 1098 mg/kg body weight (b.w). The results of the acute dermal toxicity and skin irritation studies reveal that DPE-28 is safe and non-irritant. DPE-28 when tested at 0.4 mg/litre against non-target mosquito predators did not produce any mortality. The release profile of the active ingredient DPE-28 from the CRF by HPLC technique showed that the average daily release (ADR) of DPE-28 ranged from 0.07 to 5.0 mg/litre during first four weeks. Thereafter the matrix started eroding and the ADR ranged from 5 to 11 mg/litre during the remaining 5 wk. The cumulative release of active ingredient showed that > 90 per cent of the active ingredient was released from the matrix. Interpretation & conclusions: The controlled release matrix of DPE-28 was thus found to inhibit the adult emergence (>80%) of Cx. quinquefasciatus for a period of nine weeks. The CRF of DPE-28 may play a useful role in field and may be recommended for mosquito control programme after evaluating the same under field conditions. PMID:21727665
Limmatvapirat, Sontaya; Limmatvapirat, Chutima; Puttipipatkhachorn, Satit; Nunthanid, Jurairat; Luangtana-anan, Manee; Sriamornsak, Pornsak
2008-08-01
A new oral-controlled release matrix tablet based on shellac polymer was designed and developed, using metronidazole (MZ) as a model drug. The shellac-based matrix tablets were prepared by wet granulation using different amounts of shellac and lactose. The effect of annealing temperature and pH of medium on drug release from matrix tablets was investigated. The increased amount of shellac and increased annealing temperature significantly affected the physical properties (i.e., tablet hardness and tablet disintegration) and MZ release from the matrix tablets. The in-situ polymerization played a major role on the changes in shellac properties during annealing process. Though the shellac did not dissolve in acid medium, the MZ release in 0.1N HCl was faster than in pH 7.3 buffer, resulting from a higher solubility of MZ in acid medium. The modulation of MZ release kinetics from shellac-based matrix tablets could be accomplished by varying the amount of shellac or annealing temperature. The release kinetics was shifted from relaxation-controlled release to diffusion-controlled release when the amount of shellac or the annealing temperature was increased.
Release of motilin by oral and intravenous nutrients in man.
Christofides, N D; Bloom, S R; Besterman, H S; Adrian, T E; Ghatei, M A
1979-01-01
Motilin is a hormonal peptide found in the duodenum and jejunum which potently influences gastrointestinal tract motility. Its role in human physiology is not yet established. After a standard hospital lunch the plasma concentration of motilin showed a small, transient, but significant rise in 28 healthy subjects. Individual food components either stimulated (oral fat) or suppressed release (oral glucose). Plasma motilin levels were, in addition, altered to an equal extent by intravenous nutrients, with glucose and amino acids suppressing release, and intravenous fat causing a significant rise in plasma concentration. These results demonstrate a consistent response to food stimuli, whether oral or intravenous. The release mechanism appears to be complicated and after a balanced meal, containing food components which both stimulate and suppress release, there is only a small net change. PMID:428820
21 CFR 520.1450c - Morantel tartrate sustained-release trilaminate cylinder/sheet.
Code of Federal Regulations, 2010 CFR
2010-04-01
... cartridge to each animal at the start of the grazing season. (2) Indications for use. For control of the... Oesophagostomum radiatum. (3) Limitations. Administer orally with the dosing gun to all cattle that will be grazing the same pasture. Effectiveness of the drug product is dependent upon continuous control of the...
21 CFR 520.1450c - Morantel tartrate sustained-release trilaminate cylinder/sheet.
Code of Federal Regulations, 2011 CFR
2011-04-01
... cartridge to each animal at the start of the grazing season. (2) Indications for use. For control of the... Oesophagostomum radiatum. (3) Limitations. Administer orally with the dosing gun to all cattle that will be grazing the same pasture. Effectiveness of the drug product is dependent upon continuous control of the...
21 CFR 520.1450c - Morantel tartrate sustained-release trilaminate cylinder/sheet.
Code of Federal Regulations, 2013 CFR
2013-04-01
... cartridge to each animal at the start of the grazing season. (2) Indications for use. For control of the... Oesophagostomum radiatum. (3) Limitations. Administer orally with the dosing gun to all cattle that will be grazing the same pasture. Effectiveness of the drug product is dependent upon continuous control of the...
21 CFR 520.1450c - Morantel tartrate sustained-release trilaminate cylinder/sheet.
Code of Federal Regulations, 2014 CFR
2014-04-01
... cartridge to each animal at the start of the grazing season. (2) Indications for use. For control of the... Oesophagostomum radiatum. (3) Limitations. Administer orally with the dosing gun to all cattle that will be grazing the same pasture. Effectiveness of the drug product is dependent upon continuous control of the...
21 CFR 520.1450c - Morantel tartrate sustained-release trilaminate cylinder/sheet.
Code of Federal Regulations, 2012 CFR
2012-04-01
... cartridge to each animal at the start of the grazing season. (2) Indications for use. For control of the... Oesophagostomum radiatum. (3) Limitations. Administer orally with the dosing gun to all cattle that will be grazing the same pasture. Effectiveness of the drug product is dependent upon continuous control of the...
A study on maize proteins as a potential new tablet excipient.
Georget, Dominique M R; Barker, Susan A; Belton, Peter S
2008-06-01
This investigation has examined the use of zein proteins from maize as the major component in oral controlled-release tablets, such formulations often being required to improve patient compliance. Tablets containing ground zein proteins, calcium hydrogen orthophosphate, polyvinyl pyrrolidone, theophylline and magnesium stearate were produced by wet granulation and compression on a single station tablet press and were compared to directly compressed tablets based on zein proteins, calcium hydrogen orthophosphate and theophylline. Non invasive techniques such as Fourier Transform infrared spectroscopy and Fourier Transform Raman spectroscopy were employed to investigate any changes in the secondary structure of zein proteins during tablet production. Random coils, alpha helices and beta sheets predominated and their relative content remained unaffected during grinding, wet granulation and compression, indicating that formulations based on zeins will be robust, i.e. insensitive to minor changes in the production conditions. Drug release from the tablets was studied using a standard pharmacopoeial dissolution test. Dissolution profiles in water, 0.1M HCl (pH=1) and phosphate buffer (pH=6.8) show that only a limited amount of theophylline was released after 4.5h, suggesting that zein proteins could act as a potential vehicle for oral controlled drug release. Analysis of the theophylline release profiles using the Peppas and Sahlin model reveals that diffusion and polymer relaxation occurred in acidic (pH=1) and buffered (pH=6.8) conditions for wet granulated tablets, whereas diffusion was predominant in directly compressed tablets. In conclusion, the present study has shown that zeins can be successfully used as a pharmaceutical excipient, and in particular as a matrix in monolithic controlled release tablets.
Gelatin device for the delivery of growth factors involved in endochondral ossification.
Ahrens, Lucas A J; Vonwil, Daniel; Christensen, Jon; Shastri, V Prasad
2017-01-01
Controlled release drug delivery systems are well established as oral and implantable dosage forms. However, the controlled release paradigm can also be used to present complex soluble signals responsible for cellular organization during development. Endochondral ossification (EO), the developmental process of bone formation from a cartilage matrix is controlled by several soluble signals with distinct functions that vary in structure, molecular weight and stability. This makes delivering them from a single vehicle rather challenging. Herein, a gelatin-based delivery system suitable for the delivery of small molecules as well as recombinant human (rh) proteins (rhWNT3A, rhFGF2, rhVEGF, rhBMP4) is reported. The release behavior and biological activity of the released molecules was validated using analytical and biological assays, including cell reporter systems. The simplicity of fabrication of the gelatin device should foster its adaptation by the diverse scientific community interested in interrogating developmental processes, in vivo.
Gelatin device for the delivery of growth factors involved in endochondral ossification
Ahrens, Lucas A. J.; Vonwil, Daniel; Christensen, Jon
2017-01-01
Controlled release drug delivery systems are well established as oral and implantable dosage forms. However, the controlled release paradigm can also be used to present complex soluble signals responsible for cellular organization during development. Endochondral ossification (EO), the developmental process of bone formation from a cartilage matrix is controlled by several soluble signals with distinct functions that vary in structure, molecular weight and stability. This makes delivering them from a single vehicle rather challenging. Herein, a gelatin-based delivery system suitable for the delivery of small molecules as well as recombinant human (rh) proteins (rhWNT3A, rhFGF2, rhVEGF, rhBMP4) is reported. The release behavior and biological activity of the released molecules was validated using analytical and biological assays, including cell reporter systems. The simplicity of fabrication of the gelatin device should foster its adaptation by the diverse scientific community interested in interrogating developmental processes, in vivo. PMID:28380024
Lu, Cheng; Lu, Yi; Chen, Jian; Zhang, Wentong; Wu, Wei
2007-05-01
Development of sustained delivery systems for herbal medicines was very difficult because of their complexity in composition. The concept of synchronized release from sustained release systems, which is characterized by release of multiple components in their original ratio that defines a herbal medicine, served as the basis for keeping the original pharmacological activity. In this study, erodible matrix systems based on glyceryl monostearate and polyethylene glycol 6000 or poloxamer 188 were prepared to perform strict control on synchronized release of the five active components of silymarin, i.e. taxifolin, silychrystin, silydianin, isosilybin and silybin. The matrix system was prepared by a melt fusion method. Synchronized release was achieved with high similarity factor f(2) values between each two of the five components. Erosion profiles of the matrix were in good correlation with release profiles of the five components, showing erosion-controlled release mechanisms. Through tuning some of the formulation variables, the system can be adjusted for synchronized and sustained release of silymarin for oral administration. In vitro hemolysis study indicated that the synchronized release samples showed a much better stabilizing effect on erythrocyte membrane.
Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels.
Valo, Hanna; Arola, Suvi; Laaksonen, Päivi; Torkkeli, Mika; Peltonen, Leena; Linder, Markus B; Serimaa, Ritva; Kuga, Shigenori; Hirvonen, Jouni; Laaksonen, Timo
2013-09-27
Highly porous nanocellulose aerogels prepared by freeze-drying from various nanofibrillar cellulose (NFC) hydrogels are introduced as nanoparticle reservoirs for oral drug delivery systems. Here we show that beclomethasone dipropionate (BDP) nanoparticles coated with amphiphilic hydrophobin proteins can be well integrated into the NFC aerogels. NFCs from four different origins are introduced and compared to microcrystalline cellulose (MCC). The nanocellulose aerogel scaffolds made from red pepper (RC) and MCC release the drug immediately, while bacterial cellulose (BC), quince seed (QC) and TEMPO-oxidized birch cellulose-based (TC) aerogels show sustained drug release. Since the release of the drug is controlled by the structure and interactions between the nanoparticles and the cellulose matrix, modulation of the matrix formers enable a control of the drug release rate. These nanocomposite structures can be very useful in many pharmaceutical nanoparticle applications and open up new possibilities as carriers for controlled drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.
Effect of two hydrophobic polymers on the release of gliclazide from their matrix tablets.
Hussain, Talib; Saeed, Tariq; Mumtaz, Ahmad M; Javaid, Zeeshan; Abbas, Khizar; Awais, Azeema; Idrees, Hafiz Arfat
2013-01-01
Gliclazide is an oral hypoglycemic agent, indicated in non insulin dependent diabetes mellitus and in patients with diabetic retinopathy. It has good tolerability and is a short acting sulfonyl urea that requires large dose to maintain the blood glucose level. So development of a sustained release formulation of gliclazide (GLZ) is required for better patient compliance. This study was conducted to assess the effects of different drug polymer ratios on the release profile of gliclazide from the matrix. Oral matrix tablets of gliclazide were prepared by hot melt method, using pure and blended mixture of glyceryl monostearate (GMS) and stearic acid (SA) in different ratios. In vitro release pattern was studied for 8 h in phosphate buffer media (pH 7.4). Different kinetic models including zero order, first order, Higuchi and Peppas were applied to evaluate drug release behavior. Drug excipient compatibility was evaluated by scanning with DSC and FTIR. Higuchi model was found the most appropriate model for describing the release profile of GLZ and non-Fickian release was found predominant mechanism of drug release. The release of drug from the matrix was greatly controlled by GMS while SA appeared to facilitate the release of drug from matrix tablets. FTIR results showed no chemical interaction between drug and the polymers, and DSC results indicated amorphous state of GLZ and polymers without significant complex formation. The results indicate that matrix tablets of gliclazide using glyceryl monostearate and stearic acid showed marked sustained release properties.
Frank, Damian; Eyres, Graham T; Piyasiri, Udayasika; Cochet-Broch, Maeva; Delahunty, Conor M; Lundin, Leif; Appelqvist, Ingrid M
2015-10-21
The density and composition of a food matrix affect the rates of oral breakdown and in-mouth flavor release as well as the overall sensory experience. Agar gels of increasing concentration (1.0, 1.7, 2.9, and 5% agarose) with and without added fat (0, 2, 5, and 10%) were spiked with seven aroma volatiles. Differences in oral processing and sensory perception were systematically measured by a trained panel using a discrete interval time intensity method. Volatile release was measured in vivo and in vitro by proton transfer reaction mass spectrometry. Greater oral processing was required as agar gel strength increased, and the intensity of flavor-related sensory attributes decreased. Volatile release was inversely related to gel strength, showing that physicochemical phenomena were the main mechanisms underlying the perceived sensory changes. Fat addition reduced the amount of oral processing and had differential effects on release, depending on the fat solubility or lipophilicity of the volatiles.
Rossi Neto, João Manoel; Gun, Carlos; Ramos, Rui Fernando; de Almeida, Antonio Flavio Sanchez; Issa, Mario; Amato, Vivian Lener; Dinkhuysen, Jarbas J.; Piegas, Leopoldo Soares
2013-01-01
Introduction Biochemical markers of myocardial injury are frequently altered after cardiac surgery. So far there is no evidence whether oral beta-blockers may reduce myocardial injury after coronary artery bypass grafting. Objective To determine if oral administration of prophylactic metoprolol reduces the release of cardiac troponin I in isolated coronary artery bypass grafting, not complicated by new Q waves. Methods A prospective randomized study, including 68 patients, divided in 2 groups: Group A (n=33, control) and B (n=35, beta-blockers). In group B, metoprolol tartrate was administered 200 mg/day. The myocardial injury was assessed by troponin I with 1 hour and 12 hours after coronary artery bypass grafting. Results No significant difference between groups regarding pre-surgical, surgical, complication in intensive care (15% versus 14%, P=0.92) and the total number of hospital events (21% versus 14%, P=0.45) was observed. The median value of troponin I with 12 hours in the study population was 3.3 ng/ml and was lower in group B than in group A (2.5 ng/ml versus 3.7 ng/ml, P<0,05). In the multivariate analysis, the variables that have shown to be independent predictors of troponin I release after 12 hours were: no beta-blockers administration and number of vessels treated. Conclusion The results of this study in uncomplicated coronary artery bypass grafting, comparing the postoperative release of troponin I at 12 hours between the control group and who used oral prophylactic metoprolol for at least 72 hours, allow to conclude that there was less myocardial injury in the betablocker group, giving some degree of myocardial protection. PMID:24598948
Zhu, Ying; Tang, Ren-Kuan; Zhao, Peng; Zhu, Shi-sheng; Li, Yong-guo; Li, Jian-bo
2012-05-01
Several trials have demonstrated that oral delayed-release mesalamine might be administered once daily. We aimed to conduct a meta-analysis to investigate this. A comprehensive and multiple-source literature search was carried out. Only randomized-controlled trials (RCTs) were investigated by comparing a once daily-dosing regime with a divided (twice or thrice daily)-dosing regime of oral delayed-release mesalamine formulations for induction or maintenance of remission in patients with mild-to-moderate ulcerative colitis. The quality of RCTs was assessed using the Jadad scores. Meta-analysis of pooled odds ratios was carried out using Review Manager 5.1. Nine RCTs were finally included. With regard to meta-analyses for induction trials, there were no significant differences for all comparisons between the once daily and the divided groups, including maintenance of just clinical remission (P=0.52) and just endoscopic remission (P=0.23), maintenance of combined clinical and endoscopic remission (P=0.78), and the overall incidence of adverse events (P=0.61). With regard to meta-analyses for maintenance trials, there were also no significant differences for all comparisons between once daily and divided groups, including maintenance of just clinical remission (P=0.73) and just endoscopic remission (P=0.43), maintenance of combined clinical and endoscopic remission (P=0.43), the overall incidence of adverse events (P=0.12) as well as compliance with the prescribed medication (P=0.34). The present work showed that oral delayed-release mesalazine administered as a single or a divided dose demonstrated a good safety profile, which was well tolerated and effective as either maintenance or induction treatment. High clinical and/or endoscopic remission rates can be achieved with once-daily dosing.
Cui, Fude; Shi, Kai; Zhang, Liqiang; Tao, Anjin; Kawashima, Yoshiaki
2006-08-28
Biodegradable nanoparticles loaded with insulin-phospholipid complex were prepared by a novel reverse micelle-solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of insulin, and biodegradable polymers as carrier materials to control drug release. Solubilization study, IR and X-ray diffraction analysis were employed to prove the complex formation. The effects of key parameters such as polymer/SPC weight ratio, organic phase and polymer type on the properties of the nanoparticles were investigated. Spherical particles of 200 nm mean diameter and a narrow size distribution were obtained under optimal conditions. The drug entrapment efficiency was up to 90%. The in vitro drug release was characterized by an initial burst and subsequent delayed release in both pH 6.8 and pH 1.2 dissolution mediums. The specific modality of drug release, i.e., free or SPC-combined, was investigated in the aid of ultracentrifugation and ultrafiltration methods. The influence of polymer type on the drug release was also discussed. The pharmacological effects of the nanoparticles made of PLGA 50/50 (Av.Mw 9500) were further evaluated to confirm their potential suitability for oral delivery. Intragastric administration of the 20 IU/kg nanoparticles reduced fasting plasma glucose levels to 57.4% within the first 8 h of administration and this continued for 12 h. PK/PD analysis indicated that 7.7% of oral bioavailability relative to subcutaneous injection was obtained.
Gao, Yikun; Xie, Yuling; Sun, Hongrui; Zhao, Qinfu; Zheng, Xin; Wang, Siling; Jiang, Tongying
2016-01-01
To explore the effect of the pore size of three-dimensionally ordered macroporous chitosan-silica (3D-CS) matrix on the solubility, drug release, and oral bioavailability of the loaded drug. 3D-CS matrices with pore sizes of 180 nm, 470 nm, and 930 nm were prepared. Nimodipine (NMDP) was used as the drug model. The morphology, specific surface area, and chitosan mass ratio of the 3D-CS matrices were characterized before the effect of the pore size on drug crystallinity, solubility, release, and in vivo pharmacokinetics were investigated. With the pore size of 3D-CS matrix decreasing, the drug crystallinity decreased and the aqueous solubility increased. The drug release was synthetically controlled by the pore size and chitosan content of 3D-CS matrix in a pH 6.8 medium, while in a pH 1.2 medium the erosion of the 3D-CS matrix played an important role in the decreased drug release rate. The area under the curve of the drug-loaded 3D-CS matrices with pore sizes of 930 nm, 470 nm, and 180 nm was 7.46-fold, 5.85-fold, and 3.75-fold larger than that of raw NMDP respectively. Our findings suggest that the oral bioavailability decreased with a decrease in the pore size of the matrix.
Schwach-Abdellaoui, Khadija; Moreau, Marinette; Schneider, Marc; Boisramć, Bernard; Gurny, Robert
2002-11-06
In animal health care, current therapeutic regimens for gastrointestinal disorders require repeated oral or parenteral dosage forms of anti-emetic agents. However, fluctuations of plasma concentrations produce severe side effects. The aim of this work is to develop a subcutaneous and biodegradable controlled release system containing metoclopramide (MTC). Semi-solid poly(ortho ester)s (POE) prepared by a transesterification reaction between trimethyl orthoacetate and 1,2,6,-hexanetriol were investigated as injectable bioerodible polymers for the controlled release of MTC. MTC is present in the polymeric matrix as a solubilised form and it is released rapidly from the POE by erosion and diffusion because of its acidic character and its high hydrosolubility. If a manual injection is desired, only low molecular weight can be used. However, low molecular weight POEs release the drug rapidly. In order to extend polymer lifetime and decrease drug release rate, a sparingly water-soluble base Mg(OH)(2) was incorporated to the formulation. It was possible to produce low molecular weight POE that can be manually injected and releasing MTC over a period of several days.
Ramazanzadeh, Barat Ali; Ahrari, Farzaneh; Sabzevari, Berahman; Habibi, Samaneh
2014-01-01
Background and aims. This study aimed to investigate release of nickel ion from three types of nickel-titanium-based wires in the as-received state and after immersion in a simulated oral environment. Materials and methods. Forty specimens from each of the single-strand NiTi (Rematitan "Lite"), multi-strand NiTi (SPEED Supercable) and Copper NiTi (Damon Copper NiTi) were selected. Twenty specimens from each type were used in the as-received state and the others were kept in deflected state at 37ºC for 2 months followed by autoclave sterilization. The as-received and recycled wire specimens were immersed in glass bottles containing 1.8 mL of artificial saliva for 28 days and the amount of nickel ion released into the electrolyte was determined using atomic absorption spectrophotometry. Results. The single-strand NiTi released the highest quantity of nickel ion in the as-received state and the multi-strand NiTi showed the highest ion release after oral simulation. The quantity of nickelion released from Damon Copper NiTi was the lowest in both conditions. Oral simulation followed by sterilization did not have a significant influence on nickel ion release from multi-strand NiTi and Damon Copper NiTi wires, but single-strand NiTi released statistically lower quantities of nickel ion after oral simulation. Conclusion. The multi-strand nature of Supercable did not enhance the potential of corrosion after immersion in the simulated oral environment. In vitro use of nickel-titanium-based archwires followed by sterilization did not significantly increase the amount of nickel ion released from these wires. PMID:25093049
Salvioni, Lucia; Fiandra, Luisa; Del Curto, Maria Dorly; Mazzucchelli, Serena; Allevi, Raffaele; Truffi, Marta; Sorrentino, Luca; Santini, Benedetta; Cerea, Matteo; Palugan, Luca; Corsi, Fabio; Colombo, Miriam
2016-08-01
In this study, insulin-containing nanoparticles were loaded into pellet cores and orally administered to diabetic rats. Polyethylene imine-based nanoparticles, either placebo or loaded with insulin, were incorporated by extrusion and spheronization technology into cores that were subsequently coated with three overlapping layers and a gastroresistant film. The starting and coated systems were evaluated in vitro for their physico-technololgical characteristics, as well as disintegration and release performance. Nanoparticles-loaded cores showed homogeneous particle size distribution and shape. When a superdisintegrant and a soluble diluent were included in the composition enhanced disintegration and release performance were observed. The selected formulations, coated either with enteric or three-layer films, showed gastroresistant and release delayed behavior in vitro, respectively. The most promising formulations were finally tested for their hypoglycemic effect in diabetic rats. Only the nanoformulations loaded into the three-layer pellets were able to induce a significant hypoglycemic activity in diabetic rats. Our results suggest that this efficient activity could be attributed to a retarded release of insulin into the distal intestine, characterized by relatively low proteolytic activity and optimal absorption. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dube, T S; Ranpise, N S; Ranade, A N
2014-01-01
The objective of the present study was to fabricate and evaluate a multiparticulate oral gastroretentive dosage form of baclofen characterized by a central large cavity (hollow core) promoting unmitigated floatation with practical applications to alleviate the signs and symptoms of spasticity and muscular rigidity. Solvent diffusion and evaporation procedure were applied to prepare floating microspheres with a central large cavity using various combinations of ethylcellulose (release retardant) and HPMC K4M (release modifier) dissolved in a mixture of dichloromethane and methanol (2:1). The obtained microspheres (700-1000 µm) exhibit excellent floating ability (86 ± 2.00%) and release characteristics with entrapment efficiency of 95.2 ± 0.32%. Microspheres fabricated with ethylcellulose to HPMC K4M in the ratio 8.5:1.5 released 98.67% of the entrapped drug in 12 h. Muscle relaxation caused by baclofen microspheres impairs the rotarod performance for more than 12 h. Abdominal X-ray images showed that the gastroretention period of the floating barium sulfate- labeled microspheres was no less than 10 h. The buoyant baclofen microspheres provide a promising gastroretentive drug delivery system to deliver baclofen in spastic patients with a sustained release rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters-Golden, M.; Shelly, C.
1988-12-01
We examined the effect of in vitro incubation with the oral gold compound auranofin (AF) on arachidonic acid (AA) release and metabolism by rat alveolar macrophages (AMs). AF stimulated dose- and time-dependent release of /sup 14/C-AA from prelabeled AMs, which reached 4.7 +/- 0.3% (mean +/- SEM) of incorporated radioactivity at 10 micrograms/ml for 90 min, as compared to 0.5 +/- 0.1% release following control incubation for 90 min (p less than 0.001). Similar dose- and time-dependent synthesis of thromboxane (Tx) A2 (measured as TxB2) and prostaglandin (PG) E2 was demonstrated by radioimmunoassay of medium from unlabeled cultures, reaching 18-foldmore » and 9-fold, respectively, of the control values at 10 micrograms/ml AF for 90 min (p less than 0.001 for both). AF-induced TxB2 and PGE2 synthesis was inhibited by indomethacin as well as by pretreatment with methylprednisolone. No increase in the synthesis of immunoreactive leukotrienes (LT) B4 or C4 was noted at any dose or time of AF. High performance liquid chromatographic separation of /sup 14/C-eicosanoids synthesized by prelabeled AMs confirmed that AF induced the release of free AA and its metabolism to cyclooxygenase, but not 5-lipoxygenase, metabolites. The ability of AF to trigger macrophage AA metabolism may be relevant to the exacerbation of certain inflammatory processes which sometimes accompany gold therapy.« less
Pu, Huayin; Chen, Ling; Li, Xiaoxi; Xie, Fengwei; Yu, Long; Li, Lin
2011-05-25
An oral colon-targeting controlled release system based on resistant starch acetate (RSA) as a film-coating material was developed. The RSA was successfully synthesized, and its digestion resistibility could be improved by increasing the degree of substitution (DS), which was favorable for the colon-targeting purpose. As a delivery carrier material, the characteristics of RSA were investigated by polarized light microscopy, FTIR spectroscopy, and X-ray diffraction. The results revealed a decrease of the crystallinity of RSA and a change of its crystalline structure from B + V hydrid type to V type. To evaluate the colon-targeting release performance, the RSA film-coated pellets loaded with different bioactive components were prepared by extrusion-spheronization and then by fluid bed coating. The effects of the DS, plasticizer content, and coating thickness of the RSA film and those of the content and molecular weight of the loaded bioactive component on the colon-targeting release performance of the resulting delivery system were investigated. By adjusting the DS, the coating thickness, and the plasticizer content of the RSA film, either the pellets loaded with a small molecular bioactive component such as 5-aminosalicylic acid or those with a macromolecular bioactive peptide or protein such as bovine serum albumin, hepatocyte growth-promoting factor, or insulin showed a desirable colon-targeting release performance. The release percentage was less than 12% in simulated upper gastrointestinal tract and went up to 70% over a period of 40 h in simulated colonic fluid. This suggests that the delivery system based on RSA film has an excellent colon-targeting release performance and the universality for a wide range of bioactive components.
Genina, Natalja; Fors, Daniela; Vakili, Hossein; Ihalainen, Petri; Pohjala, Leena; Ehlers, Henrik; Kassamakov, Ivan; Haeggström, Edward; Vuorela, Pia; Peltonen, Jouko; Sandler, Niklas
2012-10-09
We combined conventional inkjet printing technology with flexographic printing to fabricate drug delivery systems with accurate doses and tailored drug release. Riboflavin sodium phosphate (RSP) and propranolol hydrochloride (PH) were used as water-soluble model drugs. Three different paper substrates: A (uncoated woodfree paper), B (triple-coated inkjet paper) and C (double-coated sheet fed offset paper) were used as porous model carriers for drug delivery. Active pharmaceutical ingredient (API) containing solutions were printed onto 1 cm × 1 cm substrate areas using an inkjet printer. The printed APIs were coated with water insoluble polymeric films of different thickness using flexographic printing. All substrates were characterized with respect to wettability, surface roughness, air permeability, and cell toxicity. In addition, content uniformity and release profiles of the produced solid dosage forms before and after coating were studied. The substrates were nontoxic for the human cell line assayed. Substrate B was smoothest and least porous. The properties of substrates B and C were similar, whereas those of substrate A differed significantly from those of B, C. The release kinetics of both printed APIs was slowest from substrate B before and after coating with the water insoluble polymer film, following by substrate C, whereas substrate A showed the fastest release. The release rate decreased with increasing polymer coating film thickness. The printed solid dosage forms showed excellent content uniformity. So, combining the two printing technologies allowed fabricating controlled-release oral dosage forms that are challenging to produce using a single technique. The approach opens up new perspectives in the manufacture of flexible doses and tailored drug-delivery systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Osmotic Drug Delivery System as a Part of Modified Release Dosage Form
Keraliya, Rajesh A.; Patel, Chirag; Patel, Pranav; Keraliya, Vipul; Soni, Tejal G.; Patel, Rajnikant C.; Patel, M. M.
2012-01-01
Conventional drug delivery systems are known to provide an immediate release of drug, in which one can not control the release of the drug and can not maintain effective concentration at the target site for longer time. Controlled drug delivery systems offer spatial control over the drug release. Osmotic pumps are most promising systems for controlled drug delivery. These systems are used for both oral administration and implantation. Osmotic pumps consist of an inner core containing drug and osmogens, coated with a semipermeable membrane. As the core absorbs water, it expands in volume, which pushes the drug solution out through the delivery ports. Osmotic pumps release drug at a rate that is independent of the pH and hydrodynamics of the dissolution medium. The historical development of osmotic systems includes development of the Rose-Nelson pump, the Higuchi-Leeper pumps, the Alzet and Osmet systems, the elementary osmotic pump, and the push-pull system. Recent advances include development of the controlled porosity osmotic pump, and systems based on asymmetric membranes. This paper highlights the principle of osmosis, materials used for fabrication of pumps, types of pumps, advantages, disadvantages, and marketed products of this system. PMID:22852100
Oral bioaccessibility testing and read-across hazard assessment of nickel compounds.
Henderson, Rayetta G; Cappellini, Danielle; Seilkop, Steven K; Bates, Hudson K; Oller, Adriana R
2012-06-01
In vitro metal ion bioaccessibility, as a measure of bioavailability, can be used to read-across toxicity information from data-rich, source substances to data-poor, target substances. To meet the data requirements for oral systemic toxicity endpoints under the REACH Regulation in Europe, 12 nickel substances underwent bioaccessibility testing in stomach and intestinal fluids. A read-across paradigm was developed based on the correlation between gastric bioaccessibility and in vivo acute oral toxicity. The oral LD₅₀ values were well predicted by nickel release (R² = 0.91). Samples releasing <48% available nickel (mgNi released/mg available Ni × 100) are predicted to have an LD₅₀ > 2000 mg/kg; while samples releasing > 76% available nickel are expected to have an LD₅₀ between 300 and 2000 mg/kg. The hazard classifications (European Regulation on Classification, Labelling and Packaging of Chemical Substances and Mixtures) for all oral systemic endpoints were evaluated based on read-across from three source nickel compounds (sulfate, subsulfide, oxide). Samples releasing < 48% available nickel were read-across from nickel oxides and subsulfide. Samples releasing > 76% Ni were read-across from nickel sulfate. This assessment suggests that nickel chloride and dihydroxide should be less stringently classified and nickel sulfamate should receive a more stringent classification for oral systemic endpoints than currently assigned. Copyright © 2012 Elsevier Inc. All rights reserved.
Ruijschop, Rianne M A J; Zijlstra, Nicolien; Boelrijk, Alexandra E M; Dijkstra, Annereinou; Burgering, Maurits J M; Graaf, Cees de; Westerterp-Plantenga, Margriet S
2011-01-01
The brain response to a retro-nasally sensed food odour signals the perception of food and it is suggested to be related to satiation. It is hypothesised that consuming food either in multiple small bite sizes or with a longer durations of oral processing may evoke substantial oral processing per gram consumed and an increase in transit time in the oral cavity. This is expected to result in a higher cumulative retro-nasal aroma stimulation, which in turn may lead to increased feelings of satiation and decreased food intake. Using real-time atmospheric pressure chemical ionisation-MS, in vivo retro-nasal aroma release was assessed for twenty-one young, healthy and normal-weight subjects consuming dark chocolate-flavoured custard. Subjects were exposed to both free or fixed bite size (5 and 15 g) and durations of oral processing before swallowing (3 and 9 s) in a cross-over design. For a fixed amount of dark chocolate-flavoured custard, consumption in multiple small bite sizes resulted in a significantly higher cumulative extent of retro-nasal aroma release per gram consumed compared with a smaller amount of large bite sizes. In addition, a longer duration of oral processing tended to result in a higher cumulative extent of retro-nasal aroma release per gram consumed compared with a short duration of oral processing. An interaction effect of bite size and duration of oral processing was not observed. In conclusion, decreasing bite size or increasing duration of oral processing led to a higher cumulative retro-nasal aroma stimulation per gram consumed. Hence, adapting bite size or duration of oral processing indicates that meal termination can be accelerated by increasing the extent of retro-nasal aroma release and, subsequently, the satiation.
Jannin, V; Pochard, E; Chambin, O
2006-02-17
Lipid excipients are usually used for the development of sustained-release formulations. When used in relatively high quantities, Precirol ATO 5 imparts sustained-release properties to solid oral dosage forms, by forming a lipid matrix. To control or adjust the drug release kinetics from such lipid matrix however, one must often resort to complementary ingredients or techniques. This study investigates the influence of poloxamers (Lutrol) included in lipid matrices composed of glyceryl palmitostearate (Precirol ATO 5) on their dissolution performance and their stability. The addition of these hydrophilic polymers in the lipid matrix increased the amount of theophylline released thanks to the swelling of the hydrophilic polymer and the creation of a porous network into the inert lipid matrix. The grade and the quantity of Lutrol could modulate the extent of drug release. Theophylline was released mainly by the matrix erosion but also by diffusion through the pores as suggested by the Peppas' model. Moreover, the addition of Lutrol enhanced the stability during storage. The theophylline release was quite steady after 6 months in different conditions (temperature and humidity). Thus, the mixture of glyceryl palmitostearate and poloxamers is an approach with many advantages for the development of controlled-release formulations by capsule molding.
MRI as a tool for evaluation of oral controlled release dosage forms.
Dorożyński, Przemysław P; Kulinowski, Piotr; Młynarczyk, Anna; Stanisz, Greg J
2012-02-01
The magnetic resonance imaging (MRI) studies of controlled-release (CR) dosage forms can be roughly divided into two groups. The first comprises studies performed in static conditions (small solvent volumes and ambient temperature). Such studies have provided insight into molecular phenomena in hydrating polymeric matrices. The second group covers research performed in dynamic conditions (medium flow or stirring) related to drug dissolution. An important issue is supplementation of the MRI results with data obtained by complementary techniques, such as X-ray microtomography (μCT). As we discuss here, an understanding of the mechanism underlying the release of the drug from the dosage form will lead to the development of detailed, molecularly defined, CR dosage forms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Preparation and In Vitro/In Vivo Evaluation of Vinpocetine Elementary Osmotic Pump System
Ning, Meiying; Zhou, Yue; Chen, Guojun; Mei, Xingguo
2011-01-01
Preparation and in vitro and in vivo evaluation of vinpocetine (VIN) elementary osmotic pump (EOP) formulations were investigated. A method for the preparation of VIN elementary osmotic pump tablet was obtained by adding organic acid additives to increase VIN solubility. VIN was used as the active pharmaceutical ingredient, lactose and mannitol as osmotic agent. Citric acid was used as increasing API solubility and without resulting in the API degradation. It is found that the VIN release rate was increasing with the citric acid amount at a constant range. Cellulose acetate 398-3 was employed as semipermeable membrane containing polyethylene glycol 6000 and diethyl-o-phthalate as pore-forming agent and plasticizer for controlling membrane permeability. In addition, a clear difference between the pharmacokinetic patterns of VIN immediate release and VIN elementary osmotic pump formulations was revealed. The area under the plasma concentration-time curve after oral administration of elementary osmotic pump formulations was equivalent to VIN immediate release formulation. Furthermore, significant differences found for mean residence time, elimination half-life, and elimination rate constant values corroborated prolonged release of VIN from elementary osmotic pump formulations. These results suggest that the VIN osmotic pump controlled release tablets have marked controlled release characters and the VIN osmotic pump controlled release tablets and the normal tablets were bioequivalent. PMID:21577257
Akhlaq, Muhammad; Khan, Gul Majid; Jan, Syed Umer; Wahab, Abdul; Hussain, Abid; Nawaz, Asif; Abdelkader, Hamdy
2014-11-01
Diclofenac sodium (DCL-Na) conventional oral tablets exhibit serious side effects when given for a longer period leading to noncompliance. Controlled release matrix tablets of diclofenac sodium were formulated using simple blending (F-1), solvent evaporation (F-2) and co-precipitation techniques (F-3). Ethocel® Standard 7 FP Premium Polymer (15%) was used as a release controlling agent. Drug release study was conducted in 7.4 pH phosphate buffer solutions as dissolution medium in vitro. Pharmacokinetic parameters were evaluated using albino rabbits. Solvent evaporation technique was found to be the best release controlling technique thereby prolonging the release rate up to 24 hours. Accelerated stability studies of the optimized test formulation (F-2) did not show any significant change (p<0.05) in the physicochemical characteristics and release rate when stored for six months. A simple and rapid method was developed for DCL-Na active moiety using HPLC-UV at 276nm. The optimized test tablets (F-2) significantly (p<0.05) exhibited peaks plasma concentration (cmax=237.66±1.98) and extended the peak time (tmax=4.63±0.24). Good in-vitro in vivo correlation was found (R(2)=0.9883) against drug absorption and drug release. The study showed that once-daily controlled release matrix tablets of DCL-Na were successfully developed using Ethocel® Standard 7 FP Premium.
Bennato, Raffaele; Lombardi, Giovanni; Riccio, Elisabetta; Costantino, Giuseppe; Fries, Walter
2016-01-01
Background and Aim We performed a systematic review and meta-analysis of all the available evidence comparing efficacy and safety of oral prolonged released beclomethasone dipropionate (BDP) to active oral controls in patients with mild-to-moderate ulcerative colitis (UC). A subgroup-analysis compared the effectiveness of BDP and 5-ASA. Methods Literature research was performed in different databases, as well as manual search to identify abstracts from international meetings with data not included in extensive publications. Experts in the field and companies involved in BDP development and manufacture were contacted to identify unpublished studies used for registration purposes. Dichotomous data were pooled to obtain odds ratio meta-analysis. Results Five randomized controlled trials that compared oral BDP 5mg/day vs. all oral active controls in treating UC were identified as eligible. Efficacy and safety have been addressed after 4-week treatment period. One study evaluated efficacy and safety of BDP vs. prednisone and 4 of BDP vs. 5-ASA. Treatment with oral BDP 5 mg/day induces a significant better clinical response compared to oral 5-ASA (OR 1.86, 95% CI = 1.23–2.82, P = 0.003). The effect is detectable even when the comparison to prednisone is added (OR 1.41, 95% CI = 1.03–1.93, P = 0.03). Data on remission indicate that the potential clinical efficacy of BDP may be better than 5-ASA (OR 1.55, 95% CI = 1.00–2.40, P = 0.05). This difference is lost when the comparison with prednisone is added (OR 1.30, 95% CI = 0.76–2.23, P = 0.34). The safety analysis showed no differences between BDP and 5-ASA (OR 0.55, 95% CI = 0.24–1.27, P = 0.16). The lack of difference is maintained even when the study with prednisone is added (OR 0.67, 95% CI = 0.44–1.01, P = 0.06). However, the trend of difference is clear and indicates a more favourable safety profile of BDP compared to 5-ASA and PD. Conclusions Oral prolonged release BDP showed a superior efficacy vs. oral 5-ASA in inducing clinical improvement of mild-to-moderate UC with a similar safety profile. PMID:27846307
Incorporation of beads into oral films for buccal and oral delivery of bioactive molecules.
Castro, Pedro M; Sousa, Flávia; Magalhães, Rui; Ruiz-Henestrosa, Victor Manuel Pizones; Pilosof, Ana M R; Madureira, Ana Raquel; Sarmento, Bruno; Pintado, Manuela E
2018-08-15
The association of alginate beads and guar-gum films in a single delivery system was idealized to promote a more effective buccal and oral delivery of bioactive molecules. A response surface method (experimental design approach) was performed to obtain optimal formulations of alginate beads to be incorporated into guar gum oral films as combined buccal and oral delivery systems for caffeine delivery. The combined formulation was further characterized regarding physicochemical properties, drug release, cell viability and buccal permeability. Beads average size, determined by dynamic light scattering (DLS), was of 3.37 ± 6.36 μm. Film thickness was set to 62 μm. Scanning electron microscopy micrographs revealed that beads were evenly distributed onto the film matrix and beads size was in accordance to data obtained from DLS analysis. Evaluation of Fourier-transform infrared spectra did not indicate the formation of new covalent bonds between the matrix of guar-gum films, alginate beads and caffeine. In vitro release assays by dialysis membrane allowed understanding that the combination of guar-gum films and alginate beads assure a slower release of caffeine when compared with the delivery profile of free caffeine from alginate beads or guar-gum films alone. MTT assay, performed on human buccal carcinoma TR146 cell line, allowed concluding that neither guar-gum film, alginate beads nor guar-gum film incorporated into alginate beads significantly compromised cell viability after 12 h of exposure. As demonstrated by in vitro permeability assay using TR146 human buccal carcinoma cell lines, combination of guar-gum films and alginate beads also promoted a slower release and, thus, lower apparent permeability (1.15E-05 ± 3.50E-06) than for caffeine solution (2.68E-05 ± 7.30E-06), guar-gum film (3.12E-05 ± 4.70E-06) or alginate beads (2.01E-05 ± 3.90E-06). The conjugation of alginate beads within an orodispersible film matrix represents an effective oral/buccal delivery system that induces a controlled release along with an enhanced intimate contact with cell layers that may promote higher in vivo bioavailability of carried drugs. Copyright © 2018. Published by Elsevier Ltd.
Apelin targets gut contraction to control glucose metabolism via the brain
Fournel, Audren; Drougard, Anne; Duparc, Thibaut; Marlin, Alysson; Brierley, Stuart M; Castro, Joel; Le-Gonidec, Sophie; Masri, Bernard; Colom, André; Lucas, Alexandre; Rousset, Perrine; Cenac, Nicolas; Vergnolle, Nathalie; Valet, Philippe; Cani, Patrice D; Knauf, Claude
2017-01-01
Objective The gut–brain axis is considered as a major regulatory checkpoint in the control of glucose homeostasis. The detection of nutrients and/or hormones in the duodenum informs the hypothalamus of the host's nutritional state. This process may occur via hypothalamic neurons modulating central release of nitric oxide (NO), which in turn controls glucose entry into tissues. The enteric nervous system (ENS) modulates intestinal contractions in response to various stimuli, but the importance of this interaction in the control of glucose homeostasis via the brain is unknown. We studied whether apelin, a bioactive peptide present in the gut, regulates ENS-evoked contractions, thereby identifying a new physiological partner in the control of glucose utilisation via the hypothalamus. Design We measured the effect of apelin on electrical and mechanical duodenal responses via telemetry probes and isotonic sensors in normal and obese/diabetic mice. Changes in hypothalamic NO release, in response to duodenal contraction modulated by apelin, were evaluated in real time with specific amperometric probes. Glucose utilisation in tissues was measured with orally administrated radiolabeled glucose. Results In normal and obese/diabetic mice, glucose utilisation is improved by the decrease of ENS/contraction activities in response to apelin, which generates an increase in hypothalamic NO release. As a consequence, glucose entry is significantly increased in the muscle. Conclusions Here, we identify a novel mode of communication between the intestine and the hypothalamus that controls glucose utilisation. Moreover, our data identified oral apelin administration as a novel potential target to treat metabolic disorders. PMID:26565000
Antigen-specific histamine release in dogs with food hypersensitivity.
Ishida, Rinei; Masuda, Kenichi; Sakaguchi, Masahiro; Kurata, Keigo; Ohno, Koichi; Tsujimoto, Hajime
2003-03-01
An in vitro evidence of IgE-mediated hypersensitivity to food allergens was detected by positive results of antigen-specific histamine release in dogs with food hypersensitivity. Eight dogs were diagnosed to have food hypersensitivity based on identification of offending food allergens with food elimination followed by oral food provocation. The percentages of histamine release against the stimulation of offending food allergens in the cases ranged from 2.1% to 70.9%. Six of the 8 cases showed histamine release higher than those of healthy control dogs. Four dogs showed relatively high histamine release at the percentage beyond 10% that was compatible with a positive value of histamine release in humans with food hypersensitivity. These findings would suggest that IgE-mediated hypersensitivity against food allergens could be involved in canine food hypersensitivity.
Winter, Harland S; Krzeski, Piotr; Heyman, Melvin B; Ibarguen-Secchia, Eduardo; Iwanczak, Barbara; Kaczmarski, Maciej; Kierkus, Jaroslaw; Kolaček, Sanja; Osuntokun, Bankole; Quiros, J Antonio; Shah, Manoj; Yacyshyn, Bruce; Dunnmon, Preston M
2014-12-01
The aim of the study was to assess the safety and efficacy of high- and low-dose oral, delayed-release mesalamine in a randomized, double-blind, active control study of children with mild-to-moderately active ulcerative colitis. Patients ages 5 to 17 years, with a Pediatric Ulcerative Colitis Activity Index (PUCAI) score of ≥ 10 to ≤ 55 and a truncated Mayo Score of ≥ 1 for both rectal bleeding and stool frequency, were enrolled. They received body weight-dependent doses of oral, delayed-release mesalamine for 6 weeks in a low- (27-71 mg · g(-1) · day(-1)) or high-dose group (53-118 mg · g(-1) · day(-1)). The primary endpoint was treatment success, defined as the proportion of patients who achieved remission (PUCAI score <10) or partial response (PUCAI score ≥ 10 with a decrease from baseline by ≥ 20 points). Secondary endpoints included truncated Mayo Score and global assessment of change of disease activity. The modified intent-to-treat population included 81 of 83 patients enrolled. Treatment success by PUCAI was achieved by 23 of 41 (56%) and 22 of 40 (55%) patients in the mesalamine low- and high-dose groups, respectively (P = 0.924). Truncated Mayo Score (low-dose 30 [73%] and high-dose 28 [70%] patients) and other efficacy results did not differ between the groups. The type and severity of adverse events were consistent with those reported in previous studies of adults with ulcerative colitis and did not differ between groups. Both low- and high-dose oral, delayed-release mesalamine doses were equally effective as short-term treatment of mild-to-moderately active ulcerative colitis in children, without a specific benefit or risk to using either dose.
Dissolution testing of orally disintegrating tablets.
Kraemer, Johannes; Gajendran, Jayachandar; Guillot, Alexis; Schichtel, Julian; Tuereli, Akif
2012-07-01
For industrially manufactured pharmaceutical dosage forms, product quality tests and performance tests are required to ascertain the quality of the final product. Current compendial requirements specify a disintegration and/or a dissolution test to check the quality of oral solid dosage forms. These requirements led to a number of compendial monographs for individual products and, at times, the results obtained may not be reflective of the dosage form performance. Although a general product performance test is desirable for orally disintegrating tablets (ODTs), the complexity of the release controlling mechanisms and short time-frame of release make such tests difficult to establish. For conventional oral solid dosage forms (COSDFs), disintegration is often considered to be the prerequisite for subsequent dissolution. Hence, disintegration testing is usually insufficient to judge product performance of COSDFs. Given the very fast disintegration of ODTs, the relationship between disintegration and dissolution is worthy of closer scrutiny. This article reviews the current status of dissolution testing of ODTs to establish the product quality standards. Based on experimental results, it appears that it may be feasible to rely on the dissolution test without a need for disintegration studies for selected ODTs on the market. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
Ueda, S; Ibuki, R; Kawamura, A; Murata, S; Takahashi, T; Kimura, S; Hata, T
1994-01-01
Time-Controlled Explosion System (TES) has the time-controlled drug release property with a pre-designed lag time. The drug release from the system is initiated by destruction of the membrane. In this study, metoprolol tartrate was used as a model drug. After five types of TES with different in vitro lag times were orally administrated to dogs, plasma metoprolol concentration was monitored. There existed a good correlation between in vitro and in vivo lag time, while the extent of absorbed metoprolol decreased with prolongation of lag time. Next, the in vivo drug release behavior was directly investigated using five different colored TES with a lag time of two hours. Each TES was consecutively administrated to the fasted dogs at predetermined intervals. The amount of metoprolol released was monitored by recovering the administered TES from the gastrointestinal trace. The in vivo release profile corresponded with the in vitro one. It is demonstrated that TES can release the drug in in vivo conditions similarly to in vitro. Based on these results, the decrease of the absorption is suggested to be caused by increased hepatic first-pass metabolism of the drug due to the retarded release rate with longer lag time.
Sechi, Mario; Syed, Deeba N; Pala, Nicolino; Mariani, Alberto; Marceddu, Salvatore; Brunetti, Antonio; Mukhtar, Hasan; Sanna, Vanna
2016-11-01
The bioactive flavonoid fisetin (FS) is a diet-derived antioxidant that is being increasingly investigated for its health-promoting effects. Unfortunately, the poor physicochemical and pharmacokinetic properties affect and limit the clinical application. In this study, novel polymeric nanoparticles (NPs), based on Poly-(ε-caprolactone) (PCL) and PLGA-PEG-COOH, encapsulating FS were formulated as suitable oral controlled release systems. Results showed NPs having a mean diameter of 140-200nm, and a percent loading of FS ranging from 70 to 82%. In vitro release studies revealed that NPs are able to protect and preserve the release of FS in gastric simulated conditions, also controlling the release in the intestinal medium. Moreover, the DPPH and ABTS scavenging capacity of FS, as well as α-glucosidase inhibition activity, that resulted about 20-fold higher than commercial Acarbose, were retained during nanoencapsulation process. In summary, our developed NPs can be proposed as an attractive delivery system to control the release of antioxidant and anti-hyperglycemic FS for nutraceutical and/or therapeutic application. Copyright © 2016 Elsevier B.V. All rights reserved.
Oral controlled release optimization of pellets prepared by extrusion-spheronization processing.
Bianchini, R; Vecchio, C
1989-06-01
Controlled release high dosage forms of a typical drug such as Indobufen were prepared as multiple-unit doses by employing extrusion-spheronization processing and subsequently film coating operations. The effects of drug particle size, drug/binder ratio, extruder screen size and preparation reproducibility on the physical properties of the spherical granules were evaluated. Controlled release optimization was obtained on the same granules by coating with polymeric membranes of different thickness consisting of water-soluble and insoluble substances. Film coating was applied from an organic solution using pan coating technique. The drug diffusion is allowed by dissolution of part of the membrane leaving small channels of the polymer coat. Further preparations were conducted to evaluate coatings applied from aqueous dispersion (pseudolatex) using air suspension coating technique. In this system the drug diffusion is governed by the intrinsic pore network of the membrane. The most promising preparations having the desired in vitro release, were metered into hard capsules to obtain the drug unit dosage. Accelerated stability tests were carried out to assess the influence of time and the other storage parameters on the drug release profile.
Wickham, Robert J; Park, Jinwoo; Nunes, Eric J; Addy, Nii A
2015-08-12
Rapid, phasic dopamine (DA) release in the mammalian brain plays a critical role in reward processing, reinforcement learning, and motivational control. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique with high spatial and temporal (sub-second) resolution that has been utilized to examine phasic DA release in several types of preparations. In vitro experiments in single-cells and brain slices and in vivo experiments in anesthetized rodents have been used to identify mechanisms that mediate dopamine release and uptake under normal conditions and in disease models. Over the last 20 years, in vivo FSCV experiments in awake, freely moving rodents have also provided insight of dopaminergic mechanisms in reward processing and reward learning. One major advantage of the awake, freely moving preparation is the ability to examine rapid DA fluctuations that are time-locked to specific behavioral events or to reward or cue presentation. However, one limitation of combined behavior and voltammetry experiments is the difficulty of dissociating DA effects that are specific to primary rewarding or aversive stimuli from co-occurring DA fluctuations that mediate reward-directed or other motor behaviors. Here, we describe a combined method using in vivo FSCV and intra-oral infusion in an awake rat to directly investigate DA responses to oral tastants. In these experiments, oral tastants are infused directly to the palate of the rat--bypassing reward-directed behavior and voluntary drinking behavior--allowing for direct examination of DA responses to tastant stimuli.
Methotrexate-loaded porous polymeric adsorbents as oral sustained release formulations.
Wang, Xiuyan; Yan, Husheng
2017-09-01
Methotrexate as a model drug with poor aqueous solubility was adsorbed into porous polymeric adsorbents, which was used as oral sustained release formulations. In vitro release assay in simulated gastrointestinal fluids showed that the methotrexate-loaded adsorbents showed distinct sustained release performance. The release rate increased with increase in pore size of the adsorbents. In vivo pharmacokinetic study showed that the maximal plasma methotrexate concentrations after oral administration of free methotrexate and methotrexate-loaded DA201-H (a commercial porous polymeric adsorbent) to rats occurred at 40min and 5h post-dose, respectively; and the plasma concentrations decreased to 22% after 5h for free methotrexate and 44% after 24h for methotrexate-loaded DA201-H, respectively. The load of methotrexate into the porous polymeric adsorbents not only resulted in obvious sustained release, but also enhanced the oral bioavailability of methotrexate. The areas under the curve, AUC 0-24 and AUC 0-inf , for methotrexate-loaded DA201-H increased 3.3 and 7.7 times, respectively, compared to those for free methotrexate. Copyright © 2017 Elsevier B.V. All rights reserved.
Didanosine comes as extended-release (long-acting) capsules and as an oral solution (liquid) to take by mouth. The oral solution is usually ... minutes before or 2 hours after eating. The extended-release capsules are usually taken once a day ...
Elbaz, Nancy M; Khalil, Islam A; Abd-Rabou, Ahmed A; El-Sherbiny, Ibrahim M
2016-11-01
This study reports a promising approach to enhance the oral delivery of propolis, improve its aqueous solubility and bioavailability, and allow its controlled release as well as enhancing its anticancer activity. Propolis was standardized then its solubility was improved via formulation into optimized solid dispersion (SD) matrices, and its release was controlled through incorporation into nanoparticles (NPs) of optimized composition followed by further inclusion into chitosan (Cs) microparticles. The anticancer activity of the newly developed propolis-loaded nano-in-microparticles (NIMs) was evaluated against human liver cancer (HepG2) and human colorectal cancer (HCT 116) cells. The prepared SDs, NPs and NIMs were characterized using SEM, TEM, DLS, FTIR, DSC and UV-vis spectrophotometry. The therapeutic efficiency of formulated propolis was bio-assessed via cytotoxicity measurements, mitochondrial dysfunction, apoptosis-induced cell death and cell cycle arrest. The results demonstrated a considerable enhancement in propolis solubility with a controlled release profile in different GIT environments. In-vitro cytotoxicity studies showed that the propolis-loaded NIMs induce more cytotoxic effect on HepG2 cells than HCT-116 cells and mediated three-fold higher therapeutic efficiency than free propolis. The apoptosis assay indicated that the propolis-loaded NIMs induce apoptosis of HepG2 cells and significantly decrease their number in the proliferative G0/G1, S and G2/M phases. Copyright © 2016 Elsevier B.V. All rights reserved.
EMERGING MICROTECHNOLOGIES FOR THE DEVELOPMENT OF ORAL DRUG DELIVERY DEVICES
Chirra, Hariharasudhan D.; Desai, Tejal A.
2012-01-01
The development of oral drug delivery platforms for administering therapeutics in a safe and effective manner across the gastrointestinal epithelium is of much importance. A variety of delivery systems such as enterically coated tablets, capsules, particles, and liposomes have been developed to improve oral bioavailability of drugs. However, orally administered drugs suffer from poor localization and therapeutic efficacy due to various physiological conditions such as low pH, and high shear intestinal fluid flow. Novel platforms combining controlled release, improved adhesion, tissue penetration, and selective intestinal targeting may overcome these issues and potentially diminish the toxicity and high frequency of administration associated with conventional oral delivery. Microfabrication along with appropriate surface chemistry, provide a means to fabricate these platforms en masse with flexibility in tailoring the shape, size, reservoir volume, and surface characteristics of microdevices. Moreover, the same technology can be used to include integrated circuit technology and sensors for designing sophisticated autonomous drug delivery devices that promise to significantly improve point of care diagnostic and therapeutic medical applications. This review sheds light on some of the fabrication techniques and addresses a few of the microfabricated devices that can be effectively used for controlled oral drug delivery applications. PMID:22981755
Evaluation of synthetic zeolites as oral delivery vehicle for anti-inflammatory drugs
Khodaverdi, Elham; Honarmandi, Reza; Alibolandi, Mona; Baygi, Roxana Rafatpanah; Hadizadeh, Farzin; Zohuri, Gholamhossein
2014-01-01
Objective(s): In this research, zeolite X and zeolite Y were used as vehicle to prepare intestine targeted oral delivery systems of indomethacin and ibuprofen. Materials and Methods: A soaking procedure was implemented to encapsulate indomethacin or ibuprofen within synthetic zeolites. Gravimetric methods and IR spectra of prepared formulations were used to assess drug loading efficiencies into zeolite structures. Scanning Electron Microscopy (SEM) was also utilized to determine morphologies changes in synthetic zeolites after drug loading. At the next stage, dissolution studies were used to predict the in vivo performance of prepared formulations at HCl 0.1 N and PBS pH 6.5 as simulated gastric fluid (SGF) and simulated intestine fluid (SIF), respectively. Results: Drug loadings of prepared formulations was determined between 24-26 % w/w. Dissolution tests at SGF were shown that zeolites could retain acidic model drugs in their porous structures and can be able to limit their release into the stomach. On the other hand, all prepared formulations completely released model drugs during 3 hr in simulated intestine fluid. Conclusion: Obtained results indicated zeolites could potentially be able to release indomethacin and ibuprofen in a sustained and controlled manner and reduced adverse effects commonly accompanying oral administrations of NSAIDs. PMID:24967062
Walker, Jessica; Imboeck, Julia Maria; Walker, Joel Michael; Maitra, Amarnath; Haririan, Hady; Rausch-Fan, Xiaohui; Dodds, Michael; Inui, Taichi; Somoza, Veronika
2016-01-01
Inflammatory diseases of the periodontal tissues are known health problems worldwide. Therefore, anti-inflammatory active compounds are used in oral care products to reduce long-term inflammation. In addition to inducing inflammation, pathogen attack leads to an increased production of reactive oxygen species (ROS), which may lead to oxidative damage of macromolecules. Magnolia officinalis L. bark extract (MBE) has been shown to possess antioxidant and anti-inflammatory potential in vitro. In the present study, the influence of MBE-fortified chewing gum on the resistance against lipopolysaccharide (LPS)-induced inflammation and oxidative stress of oral epithelial cells was investigated in a four-armed parallel designed human intervention trial with 40 healthy volunteers. Ex vivo stimulation of oral epithelial cells with LPS from Porphyromonas gingivalis for 6[Formula: see text]h increased the mRNA expression and release of the pro-inflammatory cytokines IL-1[Formula: see text], IL-[Formula: see text], IL-8, MIP-1[Formula: see text], and TNF[Formula: see text]. Chewing MBE-fortified gum for 10[Formula: see text]min reduced the ex vivo LPS-induced increase of IL-8 release by 43.8 [Formula: see text] 17.1% at the beginning of the intervention. In addition, after the two-week intervention with MBE-fortified chewing gum, LPS-stimulated TNF[Formula: see text] release was attenuated by 73.4 [Formula: see text] 12.0% compared to chewing regular control gum. This increased resistance against LPS-induced inflammation suggests that MBE possesses anti-inflammatory activity in vivo when added to chewing gum. In contrast, the conditions used to stimulate an immune response of oral epithelial cells failed to induce oxidative stress, measured by catalase activity, or oxidative DNA damage.
Design of poly(mPEGMA-co-MAA) hydrogel-based mPEG-b-PCL nanoparticles for oral meloxicam delivery.
Shi, Yongli; Liu, Zhaomin; Yang, Yaxing; Xu, Xiaojie; Li, Yan; Li, Tong
2017-07-01
To enhance the therapeutic effects of meloxicam (MLX), we developed an oral MLX-loaded poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles@hydrogel (MLX-NPs@hydrogel) preparation. The MLX-NPs were fabricated via a solvent evaporation method, and their morphologies were observed by a JEM-1011 transmission electron microscope (TEM). The poly(mPEGMA-co-MAA) hydrogels were synthesized, and studies on their pH sensibilities were carried out in pH1.2, 6.8, and 7.4 buffers. The final MLX-NPs@hydrogel preparation was obtained by immersing the hydrogels in the MLX-NPs suspensions (pH7.4) for 48h. The thermodynamic properties and cytotoxicity of the MLX-NPs@hydrogel preparation were also studied. TEM images illustrated that mPEG-b-PCL NPs had a uniform size distribution. The poly(mPEGMA-co-MAA) hydrogels showed an excellent pH-sensibility. Thermal gravity analysis (TGA) data suggested that the protection of hydrogels improved the stability of mPEG-b-PCL NPs. The release studies revealed that MLX-NPs@hydrogel could deliver the MLX-NPs into alkalescent environment (e.g. intestinal tract). Then, the medicated NPs released MLX at a sustained release profile. Such preparation could overcome the drawbacks of oral MLX, and enhance its therapeutic effects. Therefore, the NPs@hydrogel was a promising sustained-controlled release matrix. Copyright © 2017 Elsevier B.V. All rights reserved.
2012-01-01
Background Nutritional supplements designed to increase adenosine 5′-triphosphate (ATP) concentrations are commonly used by athletes as ergogenic aids. ATP is the primary source of energy for the cells, and supplementation may enhance the ability to maintain high ATP turnover during high-intensity exercise. Oral ATP supplements have beneficial effects in some but not all studies examining physical performance. One of the remaining questions is whether orally administered ATP is bioavailable. We investigated whether acute supplementation with oral ATP administered as enteric-coated pellets led to increased concentrations of ATP or its metabolites in the circulation. Methods Eight healthy volunteers participated in a cross-over study. Participants were given in random order single doses of 5000 mg ATP or placebo. To prevent degradation of ATP in the acidic environment of the stomach, the supplement was administered via two types of pH-sensitive, enteric-coated pellets (targeted at release in the proximal or distal small intestine), or via a naso-duodenal tube. Blood ATP and metabolite concentrations were monitored by HPLC for 4.5 h (naso-duodenal tube) or 7 h (pellets) post-administration. Areas under the concentration vs. time curve were calculated and compared by paired-samples t-tests. Results ATP concentrations in blood did not increase after ATP supplementation via enteric-coated pellets or naso-duodenal tube. In contrast, concentrations of the final catabolic product of ATP, uric acid, were significantly increased compared to placebo by ~50% after administration via proximal-release pellets (P = 0.003) and naso-duodenal tube (P = 0.001), but not after administration via distal-release pellets. Conclusions A single dose of orally administered ATP is not bioavailable, and this may explain why several studies did not find ergogenic effects of oral ATP supplementation. On the other hand, increases in uric acid after release of ATP in the proximal part of the small intestine suggest that ATP or one of its metabolites is absorbed and metabolized. Uric acid itself may have ergogenic effects, but this needs further study. Also, more studies are needed to determine whether chronic administration of ATP will enhance its oral bioavailability. PMID:22510240
Evaluation of extemporaneous oral itraconazole suspensions by dissolution profiles mapping.
Tong, Henry H Y; Chan, Hokman; Du, Zhen; Zheng, Ying
2010-01-01
The objective of this study was to evaluate by dissolution profiles mapping five extemporaneous oral itraconazole suspensions reported in the literature. Dissolution profiles of the extemporaneous oral itraconazole preparations were mapped and correlated with their reported clinical data therein. Four out of five extemporaneous preparations had either too early or insufficient release of itraconazole during the dissolution study, potentially limiting the in vivo oral bioavailability in patients. Dissolution profiles in the remaining extemporaneous preparation was closely similar to that in commercial itraconazole capsules. Based on the reported clinical data and dissolution results in this study, the extemporaneous preparation proposed in a study by Ong and Fobes seems to be the most reasonable choice for our patients. Dissolution profile evaluation is an important quality-control parameter during the evaluation of extemporaneous preparations by pharmacists.
Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery
Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya
2012-01-01
Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236
Van Os, E C; Zins, B J; Sandborn, W J; Mays, D C; Tremaine, W J; Mahoney, D W; Zinsmeister, A R; Lipsky, J J
1996-01-01
BACKGROUND: 6-Mercaptopurine and its prodrug azathioprine are effective medications for refractory inflammatory bowel disease. However, use of these drugs has been limited by concerns about their toxicity. Colonic delivery of azathioprine may reduce its systemic bioavailability and limit toxicity. AIM: To determine the bioavailability of 6-mercaptopurine after administration of azathioprine via three colonic delivery formulations. METHODS: Twenty four healthy human subjects each received 50 mg of azathioprine by one of four delivery formulations (each n = 6): oral; delayed release oral; hydrophobic rectal foam; and hydrophilic rectal foam. All subjects also received a 50 mg dose of intravenous azathioprine during a separate study period. Plasma concentrations of 6-mercaptopurine were determined by high pressure liquid chromatography. RESULTS: The bioavailabilities of 6-mercaptopurine after colonic azathioprine administration via delayed release oral, hydrophobic rectal foam, and hydrophilic rectal foam (7%, 5%, 1%; respectively) were significantly lower than the bioavailability of 6-mercaptopurine after oral azathioprine administration (47%) by Wilcoxon rank sum pairwise comparison. CONCLUSIONS: Azathioprine delivered to the colon by delayed release oral and rectal foam formulations considerably reduced systemic 6-mercaptopurine bioavailability. The therapeutic potential of these colonic delivery methods, which can potentially limit toxicity by local delivery of high doses of azathioprine, should be investigated in patients with inflammatory bowel disease. PMID:8881811
NASA Astrophysics Data System (ADS)
Chen, Yu-Lei; Zhu, Sha; Zhang, Lei; Feng, Pei-Jian; Yao, Xi-Kuang; Qian, Cheng-Gen; Zhang, Can; Jiang, Xi-Qun; Shen, Qun-Dong
2016-02-01
Healthy weight loss represents a real challenge when obesity is increasing in prevalence. Herein, we report a conjugated polymer nanocarrier for smart deactivation of lipase and thus balancing calorie intake. After oral administration, the nanocarrier is sensitive to lipase in the digestive tract and releases orlistat, which deactivates the enzyme and inhibits fat digestion. It also creates negative feedback to control the release of itself. The nanocarrier smartly regulates activity of the lipase cyclically varied between high and low levels. In spite of high fat diet intervention, obese mice receiving a single dose of the nanocarrier lose weight over eight days, whereas a control group continues the tendency to gain weight. Daily intragastric administration of the nanocarrier leads to lower weight of livers or fat pads, smaller adipocyte size, and lower total cholesterol level than that of the control group. Near-infrared fluorescence of the nanocarrier reveals its biodistribution.Healthy weight loss represents a real challenge when obesity is increasing in prevalence. Herein, we report a conjugated polymer nanocarrier for smart deactivation of lipase and thus balancing calorie intake. After oral administration, the nanocarrier is sensitive to lipase in the digestive tract and releases orlistat, which deactivates the enzyme and inhibits fat digestion. It also creates negative feedback to control the release of itself. The nanocarrier smartly regulates activity of the lipase cyclically varied between high and low levels. In spite of high fat diet intervention, obese mice receiving a single dose of the nanocarrier lose weight over eight days, whereas a control group continues the tendency to gain weight. Daily intragastric administration of the nanocarrier leads to lower weight of livers or fat pads, smaller adipocyte size, and lower total cholesterol level than that of the control group. Near-infrared fluorescence of the nanocarrier reveals its biodistribution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06721a
Boswellia gum resin/chitosan polymer composites: Controlled delivery vehicles for aceclofenac.
Jana, Sougata; Laha, Bibek; Maiti, Sabyasachi
2015-01-01
This study was undertaken to evaluate the effect of Boswellia gum resin on the properties of glutaraldehyde (GA) crosslinked chitosan polymer composites and their potential as oral delivery vehicles for a non-steroidal anti-inflammatory drug, aceclofenac. The incorporation of resinous material caused a significant improvement in drug entrapment efficiency (∼40%) of the polymer composites. Fourier transform infrared (FTIR) spectroscopic analysis confirmed the formation of chitosan-gum resin composites and did not show any evidence of drug-polymer chemical interaction. Field emission scanning electron microscopy (FE-SEM) suggested the formation of particulate polymer composites up to chitosan:gum resin mass ratio of 1:3. Only 8-17% drug was released into HCl solution (pH 1.2) in 2h. The drug release rate of polymer composites was faster in phosphate buffer solution (pH 6.8). The composites released ∼60-68% drug load in 7h. In same duration, the drug release rate suddenly boosted up to 92% as the concentration of gum resin in the composites was raised to 80%. The drug release mechanism deviated from non-Fickian to case-II type with increasing resin concentration in the composites. Hence, GA-treated Boswellia resin-chitosan composites could be considered as alternative vehicles for oral delivery of aceclofenac. Copyright © 2015 Elsevier B.V. All rights reserved.
Baek, Jong-Suep; Tee, Jie Kai; Pang, Yi Yun; Tan, Ern Yu; Lim, Kah Leong; Ho, Han Kiat; Loo, Say Chye Joachim
2018-06-01
Oral administration of levodopa (LD) is the gold standard in managing Parkinson's disease (PD). Although LD is the most effective drug in treating PD, chronic administration of LD induces levodopa-induced dyskinesia. A continuous and sustained provision of LD to the brain could, therefore, reduce peak-dose dyskinesia. In commercial oral formulations, LD is co-administrated with an AADC inhibitor (carbidopa) and a COMT inhibitor (entacapone) to enhance its bioavailability. Nevertheless, patients are known to take up to five tablets a day because of poor sustained-releasing capabilities that lead to fluctuations in plasma concentrations. To achieve a prolonged release of LD with the aim of improving its bioavailability, floatable spray-coated microcapsules containing all three PD drugs were developed. This gastro-retentive delivery system showed sustained release of all PD drugs, at similar release kinetics. Pharmacokinetics study was conducted and this newly developed formulation showed a more plateaued delivery of LD that is void of the plasma concentration fluctuations observed for the control (commercial formulation). At the same time, measurements of LD and dopamine of mice administered with this formulation showed enhanced bioavailability of LD. This study highlights a floatable, sustained-releasing delivery system in achieving improved pharmacokinetics data compared to a commercial formulation.
Gavin, Amy; Pham, Jimmy TH; Wang, Dawei; Brownlow, Bill; Elbayoumi, Tamer A
2015-01-01
Oral cavity and oropharyngeal cancers are considered the eighth most common cancer worldwide, with relatively poor prognosis (62% of patients surviving 5 years, after diagnosis). The aim of this study was to develop a proof-of-concept mucoadhesive lozenge/buccal tablet, as a potential platform for direct sustained delivery of therapeutic antimitotic nanomedicines. Our system would serve as an adjuvant therapy for oral cancer patients undergoing full-scale diagnostic and operative treatment plans. We utilized lipid-based nanocarriers, namely nanoemulsions (NEs), containing mixed-polyethoxylated emulsifiers and a tocopheryl moiety–enriched oil phase. Prototype NEs, loaded with the proapoptotic lipophilic drug genistein (Gen), were further processed into buccal tablet formulations. The chitosan polyelectrolyte solution overcoat rendered NE droplets cationic, by acting as a mucoadhesive interfacial NE layer. With approximate size of 110 nm, the positively charged chitosan-layered NE (+25 mV) vs negatively charged chitosan-free/primary aqueous NE (−28 mV) exhibited a controlled-release profile and effective mucoadhesion for liquid oral spray prototypes. When punch-pressed, porous NE-based buccal tablets were physically evaluated for hardness, friability, and swelling in addition to ex vivo tissue mucoadhesion force and retention time measurements. Chitosan-containing NE tablets were found equivalent to primary NE and placebo tablets in compression tests, yet significantly superior in all ex vivo adhesion and in vitro release assays (P≤0.05). Following biocompatibility screening of prototype chitosan-layered NEs, substantial anticancer activity of selected cationic Gen-loaded NE formulations, against two oropahryngeal carcinomas, was observed. The data strongly indicate the potential of such nanomucoadhesive systems as maintenance therapy for oral cancer patients awaiting surgical removal, or postresection of identified cancerous lesions. PMID:25759580
Controlled release hydrophilic matrix tablet formulations of isoniazid: design and in vitro studies.
Hiremath, Praveen S; Saha, Ranendra N
2008-01-01
The aim of the present investigation was to develop oral controlled release matrix tablet formulations of isoniazid using hydroxypropyl methylcellulose (HPMC) as a hydrophilic release retardant polymer and to study the influence of various formulation factors like proportion of the polymer, polymer viscosity grade, compression force, and release media on the in vitro release characteristics of the drug. The formulations were developed using wet granulation technology. The in vitro release studies were performed using US Pharmacopoeia type 1 apparatus (basket method) in 900 ml of pH 7.4 phosphate buffer at 100 rpm. The release kinetics was analyzed using Korsmeyer-Peppas model. The release profiles were also analyzed using statistical method (one-way analysis of variance) and f (2) metric values. The release profiles found to follow Higuchi's square root kinetics model irrespective of the polymer ratio and the viscosity grade used. The results in the present investigation confirm that the release rate of the drug from the HPMC matrices is highly influenced by the drug/HPMC ratio and viscosity grade of the HPMC. Also, the effect of compression force and release media was found to be significant on the release profiles of isoniazid from HPMC matrix tablets. The release mechanism was found to be anomalous non-Fickian diffusion in all the cases. In the present investigation, a series of controlled release formulations of isoniazid were developed with different release rates and duration so that these formulations could further be assessed from the in vivo bioavailability studies. The formulations were found to be stable and reproducible.
Wulff, R; Rappen, G-M; Koziolek, M; Garbacz, G; Leopold, C S
2015-09-18
The objective of this study was to investigate the suitability of "Eudragit® RL/Eudragit® L55" (RL/L55) blend coatings for a pH-independent release of acidic drugs. A coating for ketoprofen and naproxen mini tablets was developed showing constant drug release rate under pharmacopeial two-stage test conditions for at least 300 min. To simulate drug release from the mini tablets coated with RL/L55 blends in the gastrointestinal (GI) tract, drug release profiles in Hanks buffer pH 6.8 were recorded and compared with drug release profiles in compendial media. RL/L55 blend coatings showed increased drug permeability in Hanks buffer pH 6.8 compared to phosphate buffer pH 6.8 due to its higher ion concentration. However, drug release rates of acidic drugs were lower in Hanks buffer pH 6.8 because of the lower buffer capacity resulting in reduced drug solubility. Further dissolution tests were performed in Hanks buffer using pH sequences simulating the physiological pH conditions in the GI tract. Drug release from mini tablets coated with an RL/L55 blend (8:1) was insensitive to pH changes of the medium within the pH range of 5.8-7.5. It was concluded that coatings of RL/L55 blends show a high potential for application in coated oral drug delivery systems with a special focus on pH-independent release of acidic drugs. Copyright © 2015 Elsevier B.V. All rights reserved.
Loche, S; Carta, D; Muntoni, A C; Corda, R; Pintor, C
1993-10-01
We have evaluated the effect of oral administration of arginine chlorhydrate on the growth hormone response to growth hormone releasing hormone in a group of nine short prepubertal children (six boys and four girls). Arginine chlorhydrate 10 g, administered orally 60 min before an i.v. bolus injection of growth hormone releasing hormone 1-29, 1 microgram/kg, significantly enhanced the growth hormone response to the neuropeptide, confirming the results of previous studies which used the i.v. route. Furthermore, our data strengthen the view that the effects of arginine chlorhydrate on growth hormone secretion are mediated by inhibition of endogenous somatostatin release.
Design and in vivo evaluation of a patch system based on thiolated polymers.
Hoyer, Herbert; Greindl, Melanie; Bernkop-Schnürch, Andreas
2009-02-01
A new oral patch delivery system has been designed to increase the overall oral bioavailability of drugs within the gastrointestinal tract. The patch system consists of four layered films: a mucoadhesive matrix layer, a water insoluble backing layer, a middle layer and an enteric surface layer. The separation layer between the two matrix layers contained lactose, starch and confectioners' sugar. The matrix layer, exhibiting a diameter of 2.5 mm and a weight of 5 mg, comprised Polycarbophil-cysteine conjugate (49%), fluoresceine isothiocyanate-dextran (26%), glutathione (5%), and mannitol (20%). A standard tablet formulation consisting of the same matrix served as control. Entire fluoresceine isothiocyanate-dextran (FD(4)) was released from the delivery system within 2 h. For in vivo studies patch systems were administered orally to male Sprague-Dawley rats. Maximum FD(4) concentration in blood of the patch system was 46.1 +/- 8.9 ng/mL and was reached 3 h after administration. In contrast c(max) of control tablets displayed 50.5 +/- 14.9 ng/mL after 2 h and the absorption of FD(4) after administration in oral solution was negligible. The absolute bioavailability of orally administered patch systems and control tablets was 0.54% and 0.32% respectively. Results of this study indicate that a prolonged and higher oral bioavailability of FD(4) is obtained with patches than with tablets.
Development of extended release dosage forms using non-uniform drug distribution techniques.
Huang, Kuo-Kuang; Wang, Da-Peng; Meng, Chung-Ling
2002-05-01
Development of an extended release oral dosage form for nifedipine using the non-uniform drug distribution matrix method was conducted. The process conducted in a fluid bed processing unit was optimized by controlling the concentration gradient of nifedipine in the coating solution and the spray rate applied to the non-pareil beads. The concentration of nifedipine in the coating was controlled by instantaneous dilutions of coating solution with polymer dispersion transported from another reservoir into the coating solution at a controlled rate. The USP dissolution method equipped with paddles at 100 rpm in 0.1 N hydrochloric acid solution maintained at 37 degrees C was used for the evaluation of release rate characteristics. Results indicated that (1) an increase in the ethyl cellulose content in the coated beads decreased the nifedipine release rate, (2) incorporation of water-soluble sucrose into the formulation increased the release rate of nifedipine, and (3) adjustment of the spray coating solution and the transport rate of polymer dispersion could achieve a dosage form with a zero-order release rate. Since zero-order release rate and constant plasma concentration were achieved in this study using the non-uniform drug distribution technique, further studies to determine in vivo/in vitro correlation with various non-uniform drug distribution dosage forms will be conducted.
Lam, Pik-Ling; Lee, Kenneth Ka-Ho; Wong, Raymond Siu-Ming; Cheng, Gregory Yin Ming; Cheng, Shuk Yan; Yuen, Marcus Chun-Wah; Lam, Kim-Hung; Gambari, Roberto; Kok, Stanton Hon-Lung; Chui, Chung-Hin
2012-05-01
Recently, we demonstrated the safety use of calendula oil/chitosan microcapsules as a carrier for both oral and topical deliveries. We also reported the improved biological activity towards skin cells and Staphylococcus aureus of phyllanthin containing chitosan microcapsules. However, the possibility of both oral and topical applications was still necessary to be further studied. Here we investigated that both oral and topical applications of chitosan-based microcapsules were tested using hydrocortisone succinic acid (HSA) and 5-fluorouracil (5-FU), respectively. The drug loading efficiency, particle size, surface morphology and chemical compositions of both drug loaded microcapsules were confirmed by UV-vis spectrophotometer, particle size analyzer, scanning electron microscope and Fourier transform infrared spectroscopy. The in vitro release studies revealed that both HSA and 5-FU could be released form chitosan microcapsules. The mean adrenocorticotropic hormone concentration in HSA loaded microcapsule mice plasma was detected to be lower than that of water control. One hundred micrograms per milliliter of 5-FU containing microcapsules exhibited a stronger growth inhibition towards skin keratinocytes than that of free 5-FU. In vitro drug delivery model demonstrated the delivery of 5-FU from microcapsule treated textiles into nude mice skin. Further uses of the drug loaded microcapsules may provide an efficiency deliverable tool for both oral and topical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Design and in vivo evaluation of a patch delivery system for insulin based on thiolated polymers.
Grabovac, Vjera; Föger, Florian; Bernkop-Schnürch, Andreas
2008-02-04
The aim of this study was to develop and evaluate a novel three-layered oral delivery system for insulin in vivo. The patch system consisted of a mucoadhesive layer, a water insoluble backing layer made of ethylcellulose and an enteric coating made of Eudragit. Drug release studies were performed in media mimicking stomach and intestinal fluids. For in vivo studies patch systems were administered orally to conscious non-diabetic rats. Orally administered insulin in aqueous solution was used as control. After the oral administration of the patch systems a decrease of glucose and increase of insulin blood levels were measured. The mucoadhesive layer, exhibiting a diameter of 2.5mm and a weight of 5mg, comprised polycarbophil-cysteine conjugate (49%), bovine insulin (26%), gluthatione (5%) and mannitol (20%). 74.8+/-4.8% of insulin was released from the delivery system over 6h. Six hours after administration of the patch system mean maximum decrease of blood glucose level of 31.6% of the initial value could be observed. Maximum insulin concentration in blood was 11.3+/-6.2ng/ml and was reached 6h after administration. The relative bioavailability of orally administered patch system versus subcutaneous injection was 2.2%. The results indicate that the patch system provides enhancement of intestinal absorption and thereby offers a promising strategy for peroral peptide delivery.
Biomaterials for the programming of cell growth in oral tissues: The possible role of APA.
Salerno, Marco; Giacomelli, Luca; Larosa, Claudio
2011-01-06
Examples of programmed tissue response after the interaction of cells with biomaterials are a hot topic in current dental research. We propose here the use of anodic porous alumina (APA) for the programming of cell growth in oral tissues. In particular, APA may trigger cell growth by the controlled release of specific growth factors and/or ions. Moreover, APA may be used as a scaffold to promote generation of new tissue, due to the high interconnectivity of pores and the high surface roughness displayed by this material.
Yaqoob, Ayesha; Ahmad, Mahmood; Mahmood, Asif; Sarfraz, Rai Muhammad
2016-11-01
Aim of present study was to develop metoprolol matrix patches using different enhancers. Combination of two hydrophobic polymers, ethyl cellulose and eudragit RL 100 (8 : 2) were used for preparation of unilaminated matrix patch. 10% w/w of isopropyl myristate (IPM), dimethyl sulfoxide (DMSO), span (20 (S20), Tween 20 (T20) and eucalyptus oil as enhancers and 40% of dibutyl phthalate as plasticizer were used. Prepared patches were evaluated for physical appearance, weight uniformity and thickness. FTIR studies were performed to assess compatibility among ingredients and developed formulation. Dissolution and permeation studies were performed to compare effects of enhancers. Surface morphology after release was examined by scanning electron microscopy. Selected formulation was subjected to in vivo studies by randomized crossover design in rabbits (n = 6) for pharmacokinetic comparison with oral solution administration. Physical evaluation revealed that translucent, flexible, non brittle patches of uniform weight and thickness were prepared. Release from patches followed Higuchi model. Mechanism of release was Fickian. Formulation containing IPM showed that release was by anomalous transport. Highest permeation flux was observed for formulation containing IPM with 2-fold enhancement in permeation. Permeation flux for patches was in order of formulation with no enhancer > IPM > T20 > S20 > DMSO = eucalyptus oil. Plasma concentration from in vivo studies exhibited sustained plasma levels of metoprolol after transdermal patch application in comparison to oral solution administration. Pharmacokinetic analysis of in vivo data elucidated that half life was increased 8 times when compared to oral administration, due to controlled release of drug for longer period of time. These findings suggested that hydrophobic transdermal patches of highly water soluble drug metoprolol were successfully prepared with 10% of IPM for sustained systemic delivery for prolonged half life.
Apelin targets gut contraction to control glucose metabolism via the brain.
Fournel, Audren; Drougard, Anne; Duparc, Thibaut; Marlin, Alysson; Brierley, Stuart M; Castro, Joel; Le-Gonidec, Sophie; Masri, Bernard; Colom, André; Lucas, Alexandre; Rousset, Perrine; Cenac, Nicolas; Vergnolle, Nathalie; Valet, Philippe; Cani, Patrice D; Knauf, Claude
2017-02-01
The gut-brain axis is considered as a major regulatory checkpoint in the control of glucose homeostasis. The detection of nutrients and/or hormones in the duodenum informs the hypothalamus of the host's nutritional state. This process may occur via hypothalamic neurons modulating central release of nitric oxide (NO), which in turn controls glucose entry into tissues. The enteric nervous system (ENS) modulates intestinal contractions in response to various stimuli, but the importance of this interaction in the control of glucose homeostasis via the brain is unknown. We studied whether apelin, a bioactive peptide present in the gut, regulates ENS-evoked contractions, thereby identifying a new physiological partner in the control of glucose utilisation via the hypothalamus. We measured the effect of apelin on electrical and mechanical duodenal responses via telemetry probes and isotonic sensors in normal and obese/diabetic mice. Changes in hypothalamic NO release, in response to duodenal contraction modulated by apelin, were evaluated in real time with specific amperometric probes. Glucose utilisation in tissues was measured with orally administrated radiolabeled glucose. In normal and obese/diabetic mice, glucose utilisation is improved by the decrease of ENS/contraction activities in response to apelin, which generates an increase in hypothalamic NO release. As a consequence, glucose entry is significantly increased in the muscle. Here, we identify a novel mode of communication between the intestine and the hypothalamus that controls glucose utilisation. Moreover, our data identified oral apelin administration as a novel potential target to treat metabolic disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Turton, Samuel; Myers, James Fm; Mick, Inge; Colasanti, Alessandro; Venkataraman, Ashwin; Durant, Claire; Waldman, Adam; Brailsford, Alan; Parkin, Mark C; Dawe, Gemma; Rabiner, Eugenii A; Gunn, Roger N; Lightman, Stafford L; Nutt, David J; Lingford-Hughes, Anne
2018-06-25
Addiction has been proposed as a 'reward deficient' state, which is compensated for with substance use. There is growing evidence of dysregulation in the opioid system, which plays a key role in reward, underpinning addiction. Low levels of endogenous opioids are implicated in vulnerability for developing alcohol dependence (AD) and high mu-opioid receptor (MOR) availability in early abstinence is associated with greater craving. This high MOR availability is proposed to be the target of opioid antagonist medication to prevent relapse. However, changes in endogenous opioid tone in AD are poorly characterised and are important to understand as opioid antagonists do not help everyone with AD. We used [ 11 C]carfentanil, a selective MOR agonist positron emission tomography (PET) radioligand, to investigate endogenous opioid tone in AD for the first time. We recruited 13 abstinent male AD and 15 control participants who underwent two [ 11 C]carfentanil PET scans, one before and one 3 h following a 0.5 mg/kg oral dose of dexamphetamine to measure baseline MOR availability and endogenous opioid release. We found significantly blunted dexamphetamine-induced opioid release in 5 out of 10 regions-of-interest including insula, frontal lobe and putamen in AD compared with controls, but no significantly higher MOR availability AD participants compared with HC in any region. This study is comparable to our previous results of blunted dexamphetamine-induced opioid release in gambling disorder, suggesting that this dysregulation in opioid tone is common to both behavioural and substance addictions.
Schueller, Katharina; Riva, Alessandra; Pfeiffer, Stefanie; Berry, David; Somoza, Veronika
2017-01-01
The triggers for the onset of oral diseases are still poorly understood. The aim of this study was to characterize the oral bacterial community in healthy humans and its association with nutrition, oral hygiene habits, and the release of the inflammatory marker IL-8 from gingival epithelial cells (GECs) with and without stimulation by bacterial endotoxins to identify possible indicator operational taxonomic units (OTUs) associated with inflammatory marker status. GECs from 21 healthy participants (13 females, 8 males) were incubated with or without addition of bacterial lipopolysaccharides (LPSs), and the oral microbiota was profiled using 16S rRNA gene-targeted sequencing. The basal IL-8 release after 6 h was between 9.9 and 98.2 pg/ml, and bacterial communities were characteristic for healthy oral microbiota. The composition of the oral microbiota was associated with basal IL-8 levels, the intake of meat, tea, white wine, sweets and the use of chewing gum, as well as flossing habits, allergies, gender and body mass index. Additionally, eight OTUs were associated with high basal levels of IL-8 and GEC response to LPS, with high basal levels of IL-8, and 1 with low basal levels of IL8. The identification of indicator bacteria in healthy subjects with high levels of IL-8 release is of importance as they may be promising early warning indicators for the possible onset of oral diseases. PMID:28360899
Li, Shujuan; Wang, Xiaoyu; Wang, Yingying; Zhao, Qianqian; Zhang, Lina; Yang, Xinggang; Liu, Dandan; Pan, Weisan
2015-01-01
In this study, a novel controlled release osmotic pump capsule consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen (FP) was developed to improve the solubility and oral bioavailability of FP and to minimize the fluctuation of plasma concentration. The pH-modulated solid dispersion containing FP, Kollidon® 12 PF and Na2CO3 at a weight ratio of 1/4.5/0.02 was prepared using the solvent evaporation method. The osmotic pump capsule was assembled by semi-permeable capsule shell of cellulose acetate (CA) prepared by the perfusion method. Then, the solid dispersion, penetration enhancer, and suspending agents were tableted and filled into the capsule. Central composite design-response surface methodology was used to evaluate the influence of factors on the responses. A second-order polynomial model and a multiple linear model were fitted to correlation coefficient of drug release profile and ultimate cumulative release in 12 h, respectively. The actual response values were in good accordance with the predicted ones. The optimized formulation showed a complete drug delivery and zero-order release rate. Beagle dogs were used to be conducted in the pharmacokinetic study. The in vivo study indicated that the relative bioavailability of the novel osmotic pump system was 133.99% compared with the commercial preparation. The novel controlled delivery system with combination of pH-modulated solid dispersion and osmotic pump system is not only a promising strategy to improve the solubility and oral bioavailability of poorly soluble ionizable drugs but also an effective way to reduce dosing frequency and minimize the plasma fluctuation.
Al-Hanbali, Othman A; Hamed, Rania; Arafat, Mosab; Bakkour, Youssef; Al-Matubsi, Hisham; Mansour, Randa; Al-Bataineh, Yazan; Aldhoun, Mohammad; Sarfraz, Muhammad; Dardas, Abdel Khaleq Yousef
2018-01-01
In this study, hydrophilic hydroxypropyl methylcellulose matrices with various concentrations of Poloxamer 188 were used in the development of oral controlled release tablets containing diclofenac sodium. Four formulations of hydrophilic matrix tablets containing 16.7% w/w HPMC and 0, 6.7, 16.7 and 25.0% w/w Poloxamer 188, respectively, were developed. Tablets were prepared by direct compression and characterized for diameter, hardness, thickness, weight and uniformity of content. The influence of various blends of hydroxypropyl methylcellulose and Poloxamer 188 on the in vitro dissolution profile and mechanism of drug release of was investigated. In the four formulations, the rate of drug release decreased with increasing the concentration of Poloxamer 188 at the initial dissolution stages due to the increase in the apparent viscosity of the gel diffusion layer. However, in the late dissolution stages, the rate of drug release increased with increasing Poloxamer 188 concentration due to the increase in wettability and dissolution of the matrix. The kinetic of drug release from the tablets followed non-Fickian mechanism, as predicted by Korsmeyer-Peppas model, which involves diffusion through the gel layer and erosion of the matrix system.
Farhadnejad, Hassan; Mortazavi, Seyed Alireza; Erfan, Mohammad; Darbasizadeh, Behzad; Motasadizadeh, Hamidreza; Fatahi, Yousef
2018-05-01
The main aim of the present study was to design pH-sensitive nanocomposite hydrogel beads, based on carboxymethyl cellulose (CMC) and montmorillonite (Mt)-propranolol (PPN) nanohybrid, and evaluate whether the prepared nanocomposite beads could potentially be used as oral drug delivery systems. PPN-as a model drug-was intercalated into the interlayer space of Mt clay mineral via the ion exchange procedure. The resultant nanohybrid (Mt-PPN) was applied to fabricate nanocomposite hydrogel beads by association with carboxymethyl cellulose. The characterization of test samples was performed using different techniques: X-Ray Diffraction (XRD), IR spectroscopy (FT-IR), thermal gravity analysis (TGA), and scanning electron microscopy (SEM). The drug encapsulation efficiency was evaluated by UV-vis spectroscopy, and was found to be high for Mt/CMC beads. In vitro drug release test was performed in the simulated gastrointestinal conditions to evaluate the efficiency of Mt-PPN/CMC nanocomposite beads as a controlled-release drug carrier. The drug release profiles indicated that the Mt-PPN/CMC nanocomposite beads had high stability against stomach acid and a sustained- and controlled-release profile for PPN under the simulated intestinal conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Qume, M; Fowler, L J
1997-10-01
1. The effects of 2, 8 and 21 day oral treatment with the specific gamma-aminobutyric acid transaminase (GABA-T) inhibitors gamma-vinyl GABA (GVG) and ethanolamine O-sulphate (EOS) on brain GABA levels, GABA-T activity, and basal and stimulated GABA release from rat cross-chopped brain hippocampal slices was investigated. 2. Treatment with GABA-T inhibitors lead to a reduction in brain GABA-T activity by 65-80% compared with control values, with a concomitant increase in brain GABA content of 40-100%. 3. Basal hippocampal GABA release was increased to 250-450% of control levels following inhibition of GABA-T activity. No Ca2+ dependence was observed in either control or treated tissues. 4. GVG and EOS administration led to a significant elevation in the potassium stimulated release of GABA from cross-chopped hippocampal slices compared with that of controls. Although stimulated GABA release from control tissues was decreased in the presence of a low Ca2+ medium, GVG and EOS treatment abolished this Ca2+ dependency. 5. GABA compartmentalization, Na+ and Cl- coupled GABA uptake carriers and glial release may provide explanations for the loss of the Ca2+ dependency of stimulated GABA release observed following GVG and EOS treatment. 6. Administration of GABA-T inhibitors led to increases in both basal and stimulated hippocampal GABA release. However, it is not clear which is the most important factor in the anticonvulsant activity of these drugs, the increased GABA content 'leaking' out of neurones and glia leading to widespread inhibition, or the increase in stimulated GABA release which may occur following depolarization caused by an epileptic discharge.
Qume, M; Fowler, L J
1997-01-01
The effects of 2, 8 and 21 day oral treatment with the specific γ-aminobutyric acid transaminase (GABA-T) inhibitors γ-vinyl GABA (GVG) and ethanolamine O-sulphate (EOS) on brain GABA levels, GABA-T activity, and basal and stimulated GABA release from rat cross-chopped brain hippocampal slices was investigated. Treatment with GABA-T inhibitors lead to a reduction in brain GABA-T activity by 65–80% compared with control values, with a concomitant increase in brain GABA content of 40–100%. Basal hippocampal GABA release was increased to 250–450% of control levels following inhibition of GABA-T activity. No Ca2+ dependence was observed in either control or treated tissues. GVG and EOS administration led to a significant elevation in the potassium stimulated release of GABA from cross-chopped hippocampal slices compared with that of controls. Although stimulated GABA release from control tissues was decreased in the presence of a low Ca2+ medium, GVG and EOS treatment abolished this Ca2+ dependency. GABA compartmentalization, Na+ and Cl− coupled GABA uptake carriers and glial release may provide explanations for the loss of the Ca2+ dependency of stimulated GABA release observed following GVG and EOS treatment. Administration of GABA-T inhibitors led to increases in both basal and stimulated hippocampal GABA release. However, it is not clear which is the most important factor in the anticonvulsant activity of these drugs, the increased GABA content ‘leaking' out of neurones and glia leading to widespread inhibition, or the increase in stimulated GABA release which may occur following depolarization caused by an epileptic discharge. PMID:9351512
Ngwuluka, Ndidi C; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Khan, Riaz A; Pillay, Viness
2015-03-01
This study was undertaken in order to apply a synthesized interpolyelectrolyte complex (IPEC) of polymethacrylate and carboxymethylcellulose as a controlled release oral tablet matrix for the delivery of the model neuroactive drug levodopa. The IPEC (synthesized in Part I of this work) was characterized by techniques such as Fourier Transform Infra-Red (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC), Advanced DSC (ADSC), and Scanning Electron Microscopy (SEM). The tablet matrices were formulated and characterized for their drug delivery properties and in vitro drug release. FTIR confirmed the interaction between the two polymers. The IPEC composite generated tablet matrices with a hardness ranging from 19.152-27.590 N/mm and a matrix resilience ranging between 42 and 46%. An IPEC of polymethacrylate and carboxymethylcellulose was indeed an improvement on the inherent properties of the native polymers providing a biomaterial with the ability to release poorly soluble drugs such as levodopa at a constant rate over a prolonged period of time. © 2014 Wiley Periodicals, Inc.
Controlled drug delivery systems: past forward and future back.
Park, Kinam
2014-09-28
Controlled drug delivery technology has progressed over the last six decades. This progression began in 1952 with the introduction of the first sustained release formulation. The 1st generation of drug delivery (1950-1980) focused on developing oral and transdermal sustained release systems and establishing controlled drug release mechanisms. The 2nd generation (1980-2010) was dedicated to the development of zero-order release systems, self-regulated drug delivery systems, long-term depot formulations, and nanotechnology-based delivery systems. The latter part of the 2nd generation was largely focused on studying nanoparticle formulations. The Journal of Controlled Release (JCR) has played a pivotal role in the 2nd generation of drug delivery technologies, and it will continue playing a leading role in the next generation. The best path towards a productive 3rd generation of drug delivery technology requires an honest, open dialog without any preconceived ideas of the past. The drug delivery field needs to take a bold approach to designing future drug delivery formulations primarily based on today's necessities, to produce the necessary innovations. The JCR provides a forum for sharing the new ideas that will shape the 3rd generation of drug delivery technology. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cacciotti, Ilaria; Chronopoulou, Laura; Palocci, Cleofe; Amalfitano, Adriana; Cantiani, Monica; Cordaro, Massimo; Lajolo, Carlo; Callà, Cinzia; Boninsegna, Alma; Lucchetti, Donatella; Gallenzi, Patrizia; Sgambato, Alessandro; Nocca, Giuseppina; Arcovito, Alessandro
2018-07-01
The topical treatment for oral mucosal diseases is often based on products optimized for dermatologic applications; consequently, a lower therapeutic effect may be present. 18-β-glycyrrhetic acid (GA) is extracted from Glycirrhiza glabra. The first aim of this study was to test the cytotoxicity of GA on PE/CA-PJ15 cells. The second aim was to propose and test two different delivery systems, i.e. nanoparticles and fibers, to guarantee a controlled release of GA in vitro. We used chitosan and poly(lactic-co-glycolic) acid based nanoparticles and polylactic acid fibers. We tested both delivery systems in vitro on PE/CA-PJ15 cells and on normal human gingival fibroblasts (HGFs). The morphology of GA-loaded nanoparticles (GA-NPs) and fibers (GA-FBs) was investigated by electron microscopy and dynamic light scattering; GA release kinetics was studied spectrophotometrically. MTT test was used to assess GA cytotoxicity on both cancer and normal cells. Cells were exposed to different concentrations of GA (20–500 μmol l‑1) administered as free GA (GA-f), and to GA-NPs or GA-FBs. ROS production was evaluated using dichlorodihydrofluorescein as a fluorescent probe. Regarding the cytotoxic effect of GA on PE/CA-PJ15 cells, the lowest TC50 value was 200 μmol l‑1 when GA was added as GA-NPs. No cytotoxic effects were observed when GA was administered to HGFs. N-acetyl Cysteine reduced mortality induced by GA-f in PE/CA-PJ15 cells. The specific effect of GA on PE/CA-PJ15 cells is mainly due to the different sensitivity of cancer cells to ROS over-production; GA-NPs and GA-FBs formulations increase, in vitro, this toxic effect on oral cancer cells.
Programmed emulsions for sodium reduction in emulsion based foods.
Chiu, Natalie; Hewson, Louise; Fisk, Ian; Wolf, Bettina
2015-05-01
In this research a microstructure approach to reduce sodium levels in emulsion based foods is presented. If successful, this strategy will enable reduction of sodium without affecting consumer satisfaction with regard to salty taste. The microstructure approach comprised of entrapment of sodium in the internal aqueous phase of water-in-oil-in-water emulsions. These were designed to destabilise during oral processing when in contact with the salivary enzyme amylase in combination with the mechanical manipulation of the emulsion between the tongue and palate. Oral destabilisation was achieved through breakdown of the emulsion that was stabilised with a commercially modified octenyl succinic anhydride (OSA)-starch. Microstructure breakdown and salt release was evaluated utilising in vitro, in vivo and sensory methods. For control emulsions, stabilised with orally inert proteins, no loss of structure and no release of sodium from the internal aqueous phase was found. The OSA-starch microstructure breakdown took the initial form of oil droplet coalescence. It is hypothesised that during this coalescence process sodium from the internalised aqueous phase is partially released and is therefore available for perception. Indeed, programmed emulsions showed an enhancement in saltiness perception; a 23.7% reduction in sodium could be achieved without compromise in salty taste (p < 0.05; 120 consumers). This study shows a promising new approach for sodium reduction in liquid and semi-liquid emulsion based foods.
Sacchetin, Priscila Soares Costa; Setti, Rafaela Ferreira; Vieira e Rosa, Paulo de Tarso; Moraes, Ângela Maria
2016-01-01
The aim of this study was to produce PLA (poly(lactic acid)) and PCL (polycaprolactone) oral carriers through the precipitation of the polymer solutions using supercritical CO2 as an antisolvent for the controlled release of the hydrophobic model drug 17α-methyltestosterone (MT). Such drug is a steroidal hormone used orally to develop and sustain primary and secondary male sex characteristics, e.g. for female Nile tilapia sex reversal in aquaculture. The influence of hormone, PLA and PCL concentrations on particle formation was analyzed, showing that high PCL concentrations produced particles with rougher surfaces and greater mean diameters. The incorporation efficiency of MT ranged from 20 to 51%, and its addition resulted in increases in particle mean diameter from 23 to 54 μm. Aggregation was observed for particles incorporating or not MT and high concentrations of MT led to the formation of more amorphous structures, changing the thermal behavior of the particles. The exposure of the PLA/PCL particles to pH conditions simulating gastrointestinal fish conditions showed that hormone release fraction at acidic pH ranged from 8 to 63% (over 2h), while in the basic pH the proportion released varied from 23 to 60% (over 10h), reaching levels adequate for the desired in vivo activity. Copyright © 2015. Published by Elsevier B.V.
Sagnella, Sharon M; Gong, Xiaojuan; Moghaddam, Minoo J; Conn, Charlotte E; Kimpton, Kathleen; Waddington, Lynne J; Krodkiewska, Irena; Drummond, Calum J
2011-03-01
We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.
Scientific and Regulatory Considerations in Solid Oral Modified Release Drug Product Development.
Li, Min; Sander, Sanna; Duan, John; Rosencrance, Susan; Miksinski, Sarah Pope; Yu, Lawrence; Seo, Paul; Rege, Bhagwant
2016-11-01
This review presents scientific and regulatory considerations for the development of solid oral modified release (MR) drug products. It includes a rationale for patient-focused development based on Quality-by-Design (QbD) principles. Product and process understanding of MR products includes identification and risk-based evaluation of critical material attributes (CMAs), critical process parameters (CPPs), and their impact on critical quality attributes (CQAs) that affect the clinical performance. The use of various biopharmaceutics tools that link the CQAs to a predictable and reproducible clinical performance for patient benefit is emphasized. Product and process understanding lead to a more comprehensive control strategy that can maintain product quality through the shelf life and the lifecycle of the drug product. The overall goal is to develop MR products that consistently meet the clinical objectives while mitigating the risks to patients by reducing the probability and increasing the detectability of CQA failures.
Acute oral toxicities of wildland fire control chemicals to birds
Vyas, N.B.; Spann, J.W.; Hill, E.F.
2009-01-01
Wildland fire control chemicals are released into the environment by aerial and ground applications to manage rangeland, grassland, and forest fires. Acute oral 24 h median lethal dosages (LD50) for three fire retardants (Fire-Trol GTS-R?, Phos-Chek D-75F?, and Fire-Trol LCG-R?) and two Class A fire suppressant foams (Silv-Ex? and Phos-Chek WD881?) were estimated for northern bobwhites, Colinus virginianus, American kestrels, Falco sparverius, and red-winged blackbirds, Agelaius phoeniceus. The LD50s of all chemicals for the bobwhites and red-winged blackbirds and for kestrels dosed with Phos-Chek WD881? and Silv-Ex? were above the predetermined 2000 mg chemical/kg body mass regulatory limit criteria for acute oral toxicity. The LD50s were not quantifiable for kestrels dosed with Fire-Trol GTS-R?, Phos-Chek D-75F?, and Fire-Trol LCG-R? because of the number of birds which regurgitated the dosage. These chemicals appear to be of comparatively low order of acute oral toxicity to the avian species tested.
Kim, Wooseong; Yang, Yejin; Kim, Dohoon; Jeong, Seongkeun; Yoo, Jin-Wook; Yoon, Jeong-Hyun; Jung, Yunjin
2017-01-01
Metronidazole (MTDZ), the drug of choice for the treatment of protozoal infections such as luminal amebiasis, is highly susceptible to colonic metabolism, which may hinder its conversion from a colon-specific prodrug to an effective anti-amebic agent targeting the entire large intestine. Thus, in an attempt to control the colonic distribution of the drug, a polymeric colon-specific prodrug, MTDZ conjugated to dextran via a succinate linker (Dex-SA-MTDZ), was designed. Upon treatment with dextranase for 8 h, the degree of Dex-SA-MTDZ depolymerization (%) with a degree of substitution (mg of MTDZ bound in 100 mg of Dex-SA-MTDZ) of 7, 17, and 30 was 72, 38, and 8, respectively, while that of dextran was 85. Depolymerization of Dex-SA-MTDZ was found to be necessary for the release of MTDZ, because dextranase pretreatment ensures that de-esterification occurs between MTDZ and the dextran backbone. In parallel, Dex-SA-MTDZ with a degree of substitution of 17 was found not to release MTDZ upon incubation with the contents of the small intestine and stomach of rats, but it released MTDZ when incubated with rat cecal contents (including microbial dextranases). Moreover, Dex-SA-MTDZ exhibited prolonged release of MTDZ, which contrasts with drug release by small molecular colon-specific prodrugs, MTDZ sulfate and N-nicotinoyl-2-{2-(2-methyl-5-nitroimidazol-1-yl)ethyloxy}-d,l-glycine. These prodrugs were eliminated very rapidly, and no MTDZ was detected in the cecal contents. Consistent with these in vitro results, we found that oral gavage of Dex-SA-MTDZ delivered MTDZ (as MTDZ conjugated to [depolymerized] dextran) to the distal colon. However, upon oral gavage of the small molecular prodrugs, no prodrugs were detected in the distal colon. Collectively, these data suggest that dextran conjugation is a potential pharmaceutical strategy to control the colonic distribution of drugs susceptible to colonic microbial metabolism. PMID:28243064
Kim, Wooseong; Yang, Yejin; Kim, Dohoon; Jeong, Seongkeun; Yoo, Jin-Wook; Yoon, Jeong-Hyun; Jung, Yunjin
2017-01-01
Metronidazole (MTDZ), the drug of choice for the treatment of protozoal infections such as luminal amebiasis, is highly susceptible to colonic metabolism, which may hinder its conversion from a colon-specific prodrug to an effective anti-amebic agent targeting the entire large intestine. Thus, in an attempt to control the colonic distribution of the drug, a polymeric colon-specific prodrug, MTDZ conjugated to dextran via a succinate linker (Dex-SA-MTDZ), was designed. Upon treatment with dextranase for 8 h, the degree of Dex-SA-MTDZ depolymerization (%) with a degree of substitution (mg of MTDZ bound in 100 mg of Dex-SA-MTDZ) of 7, 17, and 30 was 72, 38, and 8, respectively, while that of dextran was 85. Depolymerization of Dex-SA-MTDZ was found to be necessary for the release of MTDZ, because dextranase pretreatment ensures that de-esterification occurs between MTDZ and the dextran backbone. In parallel, Dex-SA-MTDZ with a degree of substitution of 17 was found not to release MTDZ upon incubation with the contents of the small intestine and stomach of rats, but it released MTDZ when incubated with rat cecal contents (including microbial dextranases). Moreover, Dex-SA-MTDZ exhibited prolonged release of MTDZ, which contrasts with drug release by small molecular colon-specific prodrugs, MTDZ sulfate and N -nicotinoyl-2-{2-(2-methyl-5-nitroimidazol-1-yl)ethyloxy}-d,l-glycine. These prodrugs were eliminated very rapidly, and no MTDZ was detected in the cecal contents. Consistent with these in vitro results, we found that oral gavage of Dex-SA-MTDZ delivered MTDZ (as MTDZ conjugated to [depolymerized] dextran) to the distal colon. However, upon oral gavage of the small molecular prodrugs, no prodrugs were detected in the distal colon. Collectively, these data suggest that dextran conjugation is a potential pharmaceutical strategy to control the colonic distribution of drugs susceptible to colonic microbial metabolism.
Bhatt, Bhavik; Kumar, Vijay
2016-08-25
In this article, we describe a method to utilize cellulose dissolved in dimethyl sulfoxide and paraformaldehyde solvent system to fabricate two-piece regenerated cellulose hard shell capsules for their potential use as an oral controlled drug delivery a priori vehicle. A systematic evaluation of solution rheology as well as resulting capsule mechanical, visual and thermal analysis was performed to develop a suitable method to repeatedly fabricate RC hard shell capsule halves. Because of the viscoelastic nature of the cellulose solution, a combination of dip-coating and casting method, herein referred to as dip-casting method, was developed. The dip-casting method was formalized by utilizing two-stage 2(2) full factorial design approach in order to determine a suitable approach to fabricate capsules with minimal variability. Thermal annealing is responsible for imparting shape rigidity of the capsules. Proof-of-concept analysis for the utility of these capsules in controlled drug delivery was performed by evaluating the release of KCl from them as well as from commercially available USP equivalent formulations. Release of KCl from cellulose capsules was comparable to extended release capsule formulation. Copyright © 2016 Elsevier B.V. All rights reserved.
García-Guzmán, Perla; Medina-Torres, Luis; Calderas, Fausto; Bernad-Bernad, María Josefa; Gracia-Mora, Jesús; Mena, Baltasar; Manero, Octavio
2018-07-01
In this work, we prepared a novel composite based on hybrid gelatin carriers and montmorillonite clay (MMT) to analyze its viability as controlled drug delivery system. The objective of this research involves the characterization of composites formed by structured lipid-gelatin micro-particles (MP) and MMT clay. This analysis included the evaluation of the composite according to its rheological properties, morphology (SEM), particle size, XRD, FT-IR, and in vitro drug release. The effect of pH in the properties of the composite is evaluated. A novel raspberry-like or armor MP/MMT clay composite is reported, in which the pH has an important effect on the final structure of the composite for ad-hoc drug delivery systems. For pH values below the isoelectric point, we obtained defined morphologies with entrapment efficiencies up to 67%. The pH level controls the MP/MMT composite release mechanism, restringing drug release in the stomach-like environment. Intended for oral administration, these results evidence that the MP/MMT composite represents an attractive alternative for intestinal-colonic controlled drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Externbrink, Anna; Eggenreich, Karin; Eder, Simone; Mohr, Stefan; Nickisch, Klaus; Klein, Sandra
2017-01-01
Accelerated drug release testing is a valuable quality control tool for long-acting non-oral extended release formulations. Currently, several intravaginal ring candidates designed for the long-term delivery of steroids or anti-infective drugs are being in the developing pipeline. The present article addresses the demand for accelerated drug release methods for these formulations. We describe the development and evaluation of accelerated release methods for a steroid releasing matrix-type intravaginal ring. The drug release properties of the formulation were evaluated under real-time and accelerated test conditions. Under real-time test conditions drug release from the intravaginal ring was strongly affected by the steroid solubility in the release medium. Under sufficient sink conditions that were provided in release media containing surfactants drug release was Fickian diffusion driven. Both temperature and hydro-organic dissolution media were successfully employed to accelerate drug release from the formulation. Drug release could be further increased by combining the temperature effect with the application of a hydro-organic release medium. The formulation continued to exhibit a diffusion controlled release kinetic under the investigated accelerated conditions. Moreover, the accelerated methods were able to differentiate between different prototypes of the intravaginal ring that exhibited different release profiles under real-time test conditions. Overall, the results of the present study indicate that both temperature and hydro-organic release media are valid parameters for accelerating drug release from the intravaginal ring. Variation of either a single or both parameters yielded release profiles that correlated well with real-time release. Copyright © 2016 Elsevier B.V. All rights reserved.
Modeling the modified drug release from curved shape drug delivery systems - Dome Matrix®.
Caccavo, D; Barba, A A; d'Amore, M; De Piano, R; Lamberti, G; Rossi, A; Colombo, P
2017-12-01
The controlled drug release from hydrogel-based drug delivery systems is a topic of large interest for research in pharmacology. The mathematical modeling of the behavior of these systems is a tool of emerging relevance, since the simulations can be of use in the design of novel systems, in particular for complex shaped tablets. In this work a model, previously developed, was applied to complex-shaped oral drug delivery systems based on hydrogels (Dome Matrix®). Furthermore, the model was successfully adopted in the description of drug release from partially accessible Dome Matrix® systems (systems with some surfaces coated). In these simulations, the erosion rate was used asa fitting parameter, and its dependence upon the surface area/volume ratio and upon the local fluid dynamics was discussed. The model parameters were determined by comparison with the drug release profile from a cylindrical tablet, then the model was successfully used for the prediction of the drug release from a Dome Matrix® system, for simple module configuration and for module assembled (void and piled) configurations. It was also demonstrated that, given the same initial S/V ratio, the drug release is independent upon the shape of the tablets but it is only influenced by the S/V evolution. The model reveals itself able to describe the observed phenomena, and thus it can be of use for the design of oral drug delivery systems, even if complex shaped. Copyright © 2017 Elsevier B.V. All rights reserved.
Bhattacharya, Sourav; Chakraborty, Mousumi; Mukhopadhyay, Piyasi; Kundu, P. P.; Mishra, Roshnara
2014-01-01
Background Snake bite causes greater mortality than most of the other neglected tropical diseases. Snake antivenom, although effective in minimizing mortality in developed countries, is not equally so in developing countries due to its poor availability in remote snake infested areas as, and when, required. An alternative approach in this direction could be taken by making orally deliverable polyvalent antivenom formulation, preferably under a globally integrated strategy, for using it as a first aid during transit time from remote trauma sites to hospitals. Methodology/Principal Findings To address this problem, multiple components of polyvalent antivenom were entrapped in alginate. Structural analysis, scanning electron microscopy, entrapment efficiency, loading capacity, swelling study, in vitro pH sensitive release, acid digestion, mucoadhesive property and venom neutralization were studied in in vitro and in vivo models. Results showed that alginate retained its mucoadhesive, acid protective and pH sensitive swelling property after entrapping antivenom. After pH dependent release from alginate beads, antivenom (ASVS) significantly neutralized phospholipaseA2 activity, hemolysis, lactate dehydrogenase activity and lethality of venom. In ex vivo mice intestinal preparation, ASVS was absorbed significantly through the intestine and it inhibited venom lethality which indicated that all the components of antivenom required for neutralization of venom lethality were retained despite absorption across the intestinal layer. Results from in vivo studies indicated that orally delivered ASVS can significantly neutralize venom effects, depicted by protection against lethality, decreased hemotoxicity and renal toxicity caused by russell viper venom. Conclusions/Significance Alginate was effective in entrapping all the structural components of ASVS, which on release and intestinal absorption effectively reconstituted the function of antivenom in neutralizing viper and cobra venom. Further research in this direction can strategize to counter such dilemma in snake bite management by promoting control release and oral antivenom rendered as a first aid. PMID:25102172
Winter, Harland S.; Krzeski, Piotr; Heyman, Melvin B.; Ibarguen-Secchia, Eduardo; Iwanczak, Barbara; Kaczmarski, Maciej; Kierkus, Jaroslaw; Kolaček, Sanja; Osuntokun, Bankole; Quiros, J. Antonio; Shah, Manoj; Yacyshyn, Bruce; Dunnmon, Preston M.
2014-01-01
ABSTRACT Objective: The aim of the study was to assess the safety and efficacy of high- and low-dose oral, delayed-release mesalamine in a randomized, double-blind, active control study of children with mild-to-moderately active ulcerative colitis. Methods: Patients ages 5 to 17 years, with a Pediatric Ulcerative Colitis Activity Index (PUCAI) score of ≥10 to ≤55 and a truncated Mayo Score of ≥1 for both rectal bleeding and stool frequency, were enrolled. They received body weight–dependent doses of oral, delayed-release mesalamine for 6 weeks in a low- (27–71 mg · g−1 · day−1) or high-dose group (53–118 mg · g−1 · day−1). The primary endpoint was treatment success, defined as the proportion of patients who achieved remission (PUCAI score <10) or partial response (PUCAI score ≥10 with a decrease from baseline by ≥20 points). Secondary endpoints included truncated Mayo Score and global assessment of change of disease activity. Results: The modified intent-to-treat population included 81 of 83 patients enrolled. Treatment success by PUCAI was achieved by 23 of 41 (56%) and 22 of 40 (55%) patients in the mesalamine low- and high-dose groups, respectively (P = 0.924). Truncated Mayo Score (low-dose 30 [73%] and high-dose 28 [70%] patients) and other efficacy results did not differ between the groups. The type and severity of adverse events were consistent with those reported in previous studies of adults with ulcerative colitis and did not differ between groups. Conclusions: Both low- and high-dose oral, delayed-release mesalamine doses were equally effective as short-term treatment of mild-to-moderately active ulcerative colitis in children, without a specific benefit or risk to using either dose. PMID:25419597
Construction and characterization of curcumin nanoparticles system
NASA Astrophysics Data System (ADS)
Sun, Weitong; Zou, Yu; Guo, Yaping; Wang, Lu; Xiao, Xue; Sun, Rui; Zhao, Kun
2014-03-01
This study was aimed at developing a nanoparticles system for curcumin, a widely used traditional Chinese medicine, but with the disadvantage of poor aqueous solubility. The objective was intended to improve in vitro release characteristics, enhance blood and gastrointestinal stability, increase bioavailability and pharmacological activities. Curcumin nanoparticles system (Cur-NS) was prepared by ionotropic gelation technique. Cur-NS was characterized by particle size, zeta potential, drug entrapment efficiency, drug loading, and physical stability, respectively. Cur-NS presented controlled release properties, and the release properties of Cur from NS were fit non-Fickian mechanism, controlled by the expected diffusional release and the erosion or solubilization from the crosslink layer of polymer carrier. In addition, the pharmacokinetic study in rats revealed a notable improved oral bioavailability of Cur, and the anti-tumor activity in vivo of Cur-NS on tumor growth was investigated. Cur-NS significantly inhibited tumor effect compared with non-vehicle group, thus making it a potential candidate for cancer therapy.
A novel mechanism for NETosis provides antimicrobial defense at the oral mucosa.
Mohanty, Tirthankar; Sjögren, Jonathan; Kahn, Fredrik; Abu-Humaidan, Anas H A; Fisker, Niels; Assing, Kristian; Mörgelin, Matthias; Bengtsson, Anders A; Borregaard, Niels; Sørensen, Ole E
2015-10-29
Neutrophils are essential for host defense at the oral mucosa and neutropenia or functional neutrophil defects lead to disordered oral homeostasis. We found that neutrophils from the oral mucosa harvested from morning saliva had released neutrophil extracellular traps (undergone NETosis) in vivo. The NETosis was mediated through intracellular signals elicited by binding of sialyl Lewis(X) present on salival mucins to l-selectin on neutrophils. This led to rapid loss of nuclear membrane and intracellular release of granule proteins with subsequent neutrophil extracellular trap (NET) release independent of elastase and reduced NAD phosphate-oxidase activation. The saliva-induced NETs were more DNase-resistant and had higher capacity to bind and kill bacteria than NETs induced by bacteria or by phorbol-myristate acetate. Furthermore, saliva/sialyl Lewis(X) mediated signaling enhanced intracellular killing of bacteria by neutrophils. Saliva from patients with aphthous ulcers and Behçet disease prone to oral ulcers failed to induce NETosis, but for different reasons it demonstrated that disordered homeostasis in the oral cavity may result in deficient saliva-mediated NETosis. © 2015 by The American Society of Hematology.
Undre, Nasrullah; Dickinson, James
2017-04-04
Tacrolimus, an immunosuppressant widely used in solid organ transplantation, is available as a prolonged-release capsule for once-daily oral administration. In the immediate postsurgical period, if patients cannot take intact capsules orally, tacrolimus therapy is often initiated as a suspension of the capsule contents, delivered orally or via a nasogastric tube. This study evaluated the relative bioavailability of prolonged-release tacrolimus suspension versus intact capsules in healthy participants. A phase 1, open-label, single-dose, cross-over study. A single clinical research unit. In total, 20 male participants, 18-55 years old, entered and completed the study. All participants received nasogastric administration of tacrolimus 10 mg suspension in treatment period 1, with randomisation to oral administration of suspension or intact capsules in periods 2 and 3. Blood concentration-time profile over 144 hours was used to estimate pharmacokinetic parameters. Primary end point: relative bioavailability of prolonged-release intact capsule versus oral or nasogastric administration of prolonged-release tacrolimus suspension (area under the concentration-time curve (AUC) from time 0 to infinity post-tacrolimus dose (AUC 0-∞ ); AUC measured until the last quantifiable concentration (AUC 0-tz ); maximum observed concentration (C max ); time to C max (T max )). Tolerability was assessed throughout the study. Relative bioavailability of prolonged-release tacrolimus suspension administered orally was similar to intact capsules, with a ratio of least-square means for AUC 0-tz and AUC 0-∞ of 1.05 (90% CI 0.96 to 1.14). Bioavailability was lower with suspension administered via a nasogastric tube versus intact capsules (17%; ratio 0.83; CI 0.76 to 0.92). C max was higher for oral and nasogastric suspension (30% and 28%, respectively), and median T max was shorter (difference 1.0 and 1.5 hours postdose, respectively) versus intact capsules (2.0 hours). Single 10 mg doses of tacrolimus were well tolerated. Compared with intact capsules, the rate of absorption of prolonged-release tacrolimus from suspension was faster, leading to higher peak blood concentrations and shorter time to peak; relative bioavailability was similar with suspension administered orally. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Bosnjak, Snezana M; Maurer, Martha A; Ryan, Karen M; Popovic, Ivana; Husain, S Asra; Cleary, James F; Scholten, Willem
2016-08-01
Cancer is the second leading cause of death in Serbia, and at least 14,000-16,000 patients experience moderate-to-severe cancer pain every year. Cancer pain relief has been impeded by inadequate availability of opioid analgesics and barriers to their accessibility. In 2006, a Serbian oncologist was selected as an International Pain Policy Fellow. The fellow identified barriers to opioid availability in Serbia and implemented an action plan to address the unavailability of oral morphine, attitudinal and knowledge barriers about opioids, and barriers in the national opioid control policy, in collaboration with the government, local partners, and international experts, including those from the World Health Organization. Collaborative efforts resulted in availability of immediate-release oral morphine, registration of controlled-release hydromorphone, and reimbursement of oral methadone for cancer pain; numerous educational activities aimed at changing inadequate knowledge and negative attitudes toward opioids; recognition of opioids as essential medicines for palliative care in a new National Palliative Care Strategy; and recognition of the medical use of opioids as psychoactive-controlled substances for the relief of pain included in a new national law on psychoactive-controlled substances, and the development of recommendations for updating regulations on prescribing and dispensing opioids. An increase in opioid consumption at the institutional and national levels also was observed. This article outlines a multifaceted approach to improving access to strong opioids for cancer pain management and palliative care in a middle-income country and offers a potential road map to success. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
Dual crosslinked pectin-alginate network as sustained release hydrophilic matrix for repaglinide.
Awasthi, Rajendra; Kulkarni, Giriraj T; Ramana, Malipeddi Venkata; de Jesus Andreoli Pinto, Terezinha; Kikuchi, Irene Satiko; Molim Ghisleni, Daniela Dal; de Souza Braga, Marina; De Bank, Paul; Dua, Kamal
2017-04-01
Repaglinide, an oral antidiabetic agent, has a rapid onset of action and short half-life of approximately 1h. Developing a controlled and prolonged release delivery system is required to maintain its therapeutic plasma concentration and to eliminate its adverse effects particularly hypoglycemia. The present study aimed to develop controlled release repaglinide loaded beads using sodium alginate and pectin with dual cross-linking for effective control of drug release. The prepared beads were characterized for size, percentage drug entrapment efficiency, in vitro drug release and the morphological examination using scanning electron microscope. For the comparative study, the release profile of a marketed conventional tablet of repaglinide (Prandin ® tablets 2mg, Novo Nordisk) was determined by the same procedure as followed for beads. The particle size of beads was in the range of 698±2.34-769±1.43μm. The drug entrapment efficiency varied between 55.24±4.61 to 82.29±3.42%. The FTIR results suggest that there was no interaction between repaglinide and excipients. The XRD and DSC results suggest partial molecular dispersion and amorphization of the drug throughout the system. These results suggest that repaglinide did not dissolve completely in the polymer composition and seems not to be involved in the cross-linking reaction. The percent drug release was decreased with higher polymer concentrations. In conclusion, the developed beads could enhance drug entrapment efficiency, prolong the drug release and enhance bioavailability for better control of diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kou, Jim Hwai-Cher
In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling release systems, can also be predicted by this model. PPA release from initially dry poly(HEMA -co- MA) gels has also been studied. The data show that the release rate is mainly controlled by the PPA loading level and quite insensitive to the methacrylic acid composition of the gels. These phenomena can be adequately explained by analyzing the transport resistances in the gels. The overall time scale of release from these gels were shown to be in the range which was suitable for oral controlled release applications. (Abstract shortened with permission of author.).
Phenazopyridine-phthalimide nano-cocrystal: Release rate and oral bioavailability enhancement.
Huang, Yu; Li, Jin-Mei; Lai, Zhi-Hui; Wu, Jun; Lu, Tong-Bu; Chen, Jia-Mei
2017-11-15
Both cocrystal and nanocrystal technologies have been widely used in the pharmaceutical development for poorly soluble drugs. However, the synergistic effects due to the integration of these two technologies have not been well investigated. The aim of this study is to develop a nano-sized cocrystal of phenazopyridine (PAP) with phthalimide (PI) to enhance the release rate and oral bioavailability of PAP. A PAP-PI nano-cocrystal with particle diameter of 21.4±0.1nm was successfully prepared via a sonochemical approach and characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic light scattering (DLS) analysis. An in vitro release study revealed a significant release rate enhancement for PAP-PI nano-cocrystal as compared to PAP-PI cocrystal and PAP hydrochloride salt. Further, a comparative oral bioavailability study in rats indicated significant improvement in C max and oral bioavailability (AUC 0-∞ ) by 1.39- and 2.44-fold, respectively. This study demonstrated that this novel nano-cocrystal technology can be a new promising option to improve release rate and absorption of poorly soluble compounds in the pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery
Bhandari, Jyoti; Mishra, Harshita; Mishra, Pawan Kumar; Wimmer, Rupert; Ahmad, Farhan J; Talegaonkar, Sushama
2017-01-01
Cellulose nanofiber (CNF) aerogels with favorable floatability and mucoadhesive properties prepared by the freeze-drying method have been introduced as new possible carriers for oral controlled drug delivery system. Bendamustine hydrochloride is considered as the model drug. Drug loading was carried out by the physical adsorption method, and optimization of drug-loaded formulation was done using central composite design. A very lightweight-aerogel-with-matrix system was produced with drug loading of 18.98%±1.57%. The produced aerogel was characterized for morphology, tensile strength, swelling tendency in media with different pH values, floating behavior, mucoadhesive detachment force and drug release profiles under different pH conditions. The results showed that the type of matrix was porous and woven with excellent mechanical properties. The drug release was assessed by dialysis, which was fitted with suitable mathematical models. Approximately 69.205%±2.5% of the drug was released in 24 hours in medium of pH 1.2, whereas ~78%±2.28% of drug was released in medium of pH 7.4, with floating behavior for ~7.5 hours. The results of in vivo study showed a 3.25-fold increase in bioavailability. Thus, we concluded that CNF aerogels offer a great possibility for a gastroretentive drug delivery system with improved bioavailability. PMID:28352172
Situ, Wenbei; Li, Xiaoxi; Liu, Jia; Chen, Ling
2015-04-29
For effective oral delivery of polypeptide or protein and enhancement their oral bioavailability, a new resistant starch-glycoprotein complex bioadhesive carrier and an oral colon-targeted bioadhesive delivery microparticle system were developed. A glycoprotein, concanavalin A (Con A), was successfully conjugated to the molecules of resistant starch acetate (RSA), leading to the formation of resistant starch-glycoprotein complex. This Con A-conjugated RSA film as a coating material showed an excellent controlled-release property. In streptozotocin (STZ)-induced type II diabetic rats, the insulin-loaded microparticles coated with this Con A-conjugated RSA film exhibited good hypoglycemic response for keeping the plasma glucose level within the normal range for totally 44-52 h after oral administration with different insulin dosages. Oral glucose tolerance tests indicated that successive oral administration of these colon-targeted bioadhesive microparticles with insulin at a level of 50 IU/kg could achieve a hypoglycemic effect similar to that by injection of insulin at 35 IU/kg. Therefore, the potential of this new Con A-conjugated RSA film-coated microparticle system has been demonstrated to be capable of improving the oral bioavailability of bioactive proteins and peptides.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... INFORMATION CONTACT: Astrid Lopez-Goldberg, Center for Drug Evaluation and Research, Food and Drug... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0563] Single-Ingredient, Immediate-Release Drug Products Containing Oxycodone for Oral Administration and...
Time Course of Treatment Effect of OROS[R] Methylphenidate in Children with ADHD
ERIC Educational Resources Information Center
Armstrong, Robert B.; Damaraju, C. V.; Ascher, Steve; Schwarzman, Lesley; O'Neill, James; Starr, H. Lynn
2012-01-01
Objective: The authors evaluated the time course of the treatment effect of Osmotic-Release Oral System methylphenidate (OROS[R] MPH) HCl (Concerta[R], Raritan, NJ) CII in children with ADHD. Method: Data were combined from two double-blind, randomized, placebo-controlled, cross-over, analog classroom studies in children (9-12 years) with ADHD.…
ERIC Educational Resources Information Center
Abikoff, Howard; Nissley-Tsiopinis, Jenelle; Gallagher, Richard; Zambenedetti, Maurizio; Seyffert, Michael; Boorady, Roy; McCarthy, John
2009-01-01
A double-blind, placebo-controlled, crossover design study was done to evaluate the effects of methylphenidate-osmotic-release oral systems (MPH-OROS) on the organization, time management, and planning (OTMP) of children with attention deficit hyperactivity disorder (ADHD). Results show significant improvements on the OTMP of children with ADHD in…
2012-12-01
evaluate predictive performance following methods described in Malinowski et al. (1997). Acceptance criteria and control limits will be based on...69: 69–78. Malinowski , H., P. Marroum, V.R. Uppoor, et al. 1997. Draft guidance for industry extended release solid oral dosage forms. In: Young D
McClements, David Julian
2013-12-01
The oral bioavailability of many lipophilic bioactives, such as pharmaceuticals and nutraceuticals, is relatively low due to their poor solubility, permeability and/or chemical stability within the human gastrointestinal tract (GIT). The oral bioavailability of lipophilic bioactives can be improved by designing food matrices that control their release, solubilization, transport and absorption within the GIT. This article discusses the challenges associated with delivering lipophilic bioactive components, the impact of food composition and structure on oral bioavailability and the design of functional and medical foods for improving the oral bioavailability of lipophilic bioactives. Food-based delivery systems can be used to improve the oral bioavailability of lipophilic bioactives. There are a number of potential advantages to delivering lipophilic bioactives using functional or medical foods: greater compliance than conventional delivery forms; increased bioavailability and efficacy; and reduced variability in biological effects. However, food matrices are structurally complex multicomponent materials and research is still needed to identify optimum structures and compositions for particular bioactives.
Colley, H E; Said, Z; Santocildes-Romero, M E; Baker, S R; D'Apice, K; Hansen, J; Madsen, L Siim; Thornhill, M H; Hatton, P V; Murdoch, C
2018-06-14
Oral lichen planus (OLP) and recurrent aphthous stomatitis (RAS) are chronic inflammatory conditions often characterised by erosive and/or painful oral lesions that have a considerable impact on quality of life. Current treatment often necessitates the use of steroids in the form of mouthwashes, creams or ointments, but these are often ineffective due to inadequate drug contact times with the lesion. Here we evaluate the performance of novel mucoadhesive patches for targeted drug delivery. Electrospun polymeric mucoadhesive patches were produced and characterised for their physical properties and cytotoxicity before evaluation of residence time and acceptability in a human feasibility study. Clobetasol-17-propionate incorporated into the patches was released in a sustained manner in both tissue-engineered oral mucosa and ex vivo porcine mucosa. Clobetasol-17 propionate-loaded patches were further evaluated for residence time and drug release in an in vivo animal model and demonstrated prolonged adhesion and drug release at therapeutic-relevant doses and time points. These data show that electrospun patches are adherent to mucosal tissue without causing tissue damage, and can be successfully loaded with and release clinically active drugs. These patches hold great promise for the treatment of oral conditions such as OLP and RAS, and potentially many other oral lesions. Copyright © 2018. Published by Elsevier Ltd.
A promising oral fucoidan-based antithrombotic nanosystem: development, activity and safety
NASA Astrophysics Data System (ADS)
da Silva, L. C. R. P.; Todaro, V.; do Carmo, F. A.; Frattani, F. S.; de Sousa, V. P.; Rodrigues, C. R.; Sathler, P. C.; Cabral, L. M.
2018-04-01
Fucoidan-loaded nanoparticles emerge as great candidates for oral anticoagulant therapy, due to increases in the bioavailability and circulation time of this natural anticoagulant. Crosslinks between chitosan chains are performed using glutaraldehyde to confer higher gastric pH resistance to nanoparticle matrices. In this work, chitosan-fucoidan nanoparticles, without (NpCF) and with glutaraldehyde crosslink (NpCF 1% and NpCF 2%), were prepared to evaluate their anticoagulant, antithrombotic and hemorrhagic profiles. Nanoparticles were characterized by average diameter (AD), polydispersity index, zeta potential, Fourier transform infrared spectroscopy and fucoidan in vitro release. Anticoagulant and antithrombotic activities were determined by in vitro and in vivo models, respectively. Hemorrhagic profile was in vivo evaluated by tail bleeding assay. Preparations showed nanometric and homogeneous ADs. Zeta potentials of NpCF and NpCF 1% were stable over the gastrointestinal pH range, which was confirmed by low fucoidan release in gastric and enteric media. In pH 7.4, NpCF and NpCF 1% demonstrated fucoidan release of 65.5% and 60.6%, respectively, within the first 24 h. In comparison to fucoidan, NpCF and NpCF 1% showed increased in vitro anticoagulant activity. A significant difference in the oral antithrombotic profile of NpCF 1% was found in comparison to fucoidan. Bleeding profile of NpCF and NpCF 1% showed no differences to the control group, indicating the safety of these systems. Surprisingly, the oral antithrombotic profile of commercially available fucoidan, from Fucus vesiculosus, has not been previously determined, which reveals new possibilities. In this work, significant advances were observed in the anticoagulant and antithrombotic profiles of fucoidan through the preparation of NpCF 1%.
Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-deficient Breast Cancer
Belz, Jodi E.; Kumar, Rajiv; Baldwin, Paige; Ojo, Noelle Castilla; Leal, Ana S.; Royce, Darlene B.; Zhang, Di; van de Ven, Anne L.; Liby, Karen T.; Sridhar, Srinivas
2017-01-01
Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline Brca1/2 mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in Brca1-deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.8 mm diameter) loaded with subclinical dose (25 or 50 µg) Talazoparib were fabricated and characterized. In vitro studies with Brca1-deficient W780 and W0069 breast cancer cells were conducted to test sensitivity to PARP inhibition. The in vivo therapeutic efficacy of Talazoparib implants was assessed following a one-time intratumoral injection in Brca1Co/Co;MMTV-Cre;p53+/- mice and compared to drug-free implants and oral gavage. Immunohistochemistry studies were performed on tumor sections using PCNA and γ-H2AX staining. Sustained release of Talazoparib was observed over 28 days in vitro. Mice treated with Talazoparib implants showed statistically significant tumor growth inhibition compared to those receiving drug-free implants or free Talazoparib orally. Talazoparib implants were well-tolerated at both drug doses and resulted in less weight loss than oral gavage. PARP inhibition in mice treated with Talazoparib implants significantly increased double-stranded DNA damage and decreased tumor cell proliferation as shown by PCNA and γ-H2AX staining as compared to controls. These results demonstrate that localized and sustained delivery of Talazoparib via implants has potential to provide superior treatment outcomes at sub-clinical doses with minimal toxicity in patients with BRCA1 deficient tumors. PMID:29158830
Sustained Release Talazoparib Implants for Localized Treatment of BRCA1-deficient Breast Cancer.
Belz, Jodi E; Kumar, Rajiv; Baldwin, Paige; Ojo, Noelle Castilla; Leal, Ana S; Royce, Darlene B; Zhang, Di; van de Ven, Anne L; Liby, Karen T; Sridhar, Srinivas
2017-01-01
Talazoparib, a potent PARP inhibitor, has shown promising clinical and pre-clinical activity by inducing synthetic lethality in cancers with germline Brca1/2 mutations. Conventional oral delivery of Talazoparib is associated with significant off-target effects, therefore we sought to develop new delivery systems in the form of an implant loaded with Talazoparib for localized, slow and sustained release of the drug at the tumor site in Brca1 -deficient breast cancer. Poly(lactic-co-glycolic acid) (PLGA) implants (0.8 mm diameter) loaded with subclinical dose (25 or 50 µg) Talazoparib were fabricated and characterized. In vitro studies with Brca1 -deficient W780 and W0069 breast cancer cells were conducted to test sensitivity to PARP inhibition. The in vivo therapeutic efficacy of Talazoparib implants was assessed following a one-time intratumoral injection in Brca1 Co/Co ;MMTV-Cre;p53 +/- mice and compared to drug-free implants and oral gavage. Immunohistochemistry studies were performed on tumor sections using PCNA and γ-H2AX staining. Sustained release of Talazoparib was observed over 28 days in vitro . Mice treated with Talazoparib implants showed statistically significant tumor growth inhibition compared to those receiving drug-free implants or free Talazoparib orally. Talazoparib implants were well-tolerated at both drug doses and resulted in less weight loss than oral gavage. PARP inhibition in mice treated with Talazoparib implants significantly increased double-stranded DNA damage and decreased tumor cell proliferation as shown by PCNA and γ-H2AX staining as compared to controls. These results demonstrate that localized and sustained delivery of Talazoparib via implants has potential to provide superior treatment outcomes at sub-clinical doses with minimal toxicity in patients with BRCA1 deficient tumors.
Arnold, L. E.; Hodgkins, P.; McKay, M.; Beckett-Thurman, L.; Greenbaum, M.; Bukstein, O.; Patel, A.; Bozzolo, D. R.
2013-01-01
Objective To evaluate symptom control and tolerability after abrupt conversion from oral extended-release methylphenidate (ER-MPH) to methylphenidate transdermal system (MTS) via a dose-transition schedule in children with attention-deficit/hyperactivity disorder (ADHD). Methods In a 4-week, prospective, multisite, open-label study, 171 children (164 intent-to-treat) with diagnosed ADHD aged 6–12 years abruptly switched from a stable dose of oral ER-MPH to MTS in nominal dosages of 10, 15, 20, and 30 mg using a predefined dose-transition schedule. After the first week on the scheduled dose, the dose was titrated to optimal effect. The primary effectiveness outcome was the change from baseline (while taking ER-MPH) to week 4 in ADHD-Rating Scale-IV (ADHD-RS-IV) total scores. Adverse events (AEs) were assessed throughout the study. Results Most subjects (58%) remained on the initial MTS dose defined by the dose-transition schedule; 38% increased and 4% decreased their MTS dose for optimization. MTS dose optimization resulted in significantly better ADHD-RS-IV total (mean ± SD) scores at week 4 than at baseline (9.9±7.47 vs 14.1±7.48; p<0.0001). The most commonly reported AEs included headache, decreased appetite, insomnia, and upper abdominal pain. Four subjects (2.3%) discontinued because of application site reactions and 3 discontinued because of other AEs. Conclusions Abrupt conversion from a stable dose of oral ER-MPH to MTS was accomplished using a predefined dose-transition schedule without loss of symptom control; however, careful titration to optimal dose is recommended. Most AEs were mild to moderate and, with the exception of application site reactions, were similar to AEs typically observed with oral MPH. Limitations of this study included its open-label sequential design without placebo, which could result in spurious attribution of improvement to the study treatment and precluded superiority determinations of MTS over baseline ER-MPH treatment. The apparent superiority of MTS was likely due to more careful titration and clinical monitoring rather than the product itself. NCT NCT00151983 PMID:19916704
Thermally reversible in situ gelling carbamazepine liquid suppository.
El-Kamel, Amal; El-Khatib, Mona
2006-01-01
Carbamazepine (CBZ), indicated for the control of epilepsy, undergoes extensive hepatic first-pass elimination after oral administration. A rectal dosage form of CBZ is not commercially available, although it is of particular interest when oral administration is impossible. Conventional suppositories can cause patient discomfort and may reach the end of the colon; consequently, the drug can undergo the first-pass effect. Mucoadhesive liquid suppositories of CBZ were prepared by adding carbopol to formulation of thermally gelling suppositories that contain 20% poloxamer 407 and either 15% poloxamer 188 or 1% methylcellulose. Gellan gum was also tried instead of 20% poloxamer. All formulations contained 10% CBZ. The characteristics of the suppositories differed depending on the formulation. The formula containing 20% poloxamer 407, 1% methylcellulose, and 0.5% carbopol showed reasonable gelation temperature, gel strength and bioadhesive force. The analysis of release mechanism showed that CBZ released from the suppositories by Fickian diffusion. In vivo evaluation of the same formulation showed higher peak plasma concentration of CBZ compared with the orally administered suspension containing the equivalent amount of drug. However, there was no statistical significant difference (p > 0.05) in extent of bioavailability between the liquid suppository and oral suspension as indicated by the values of AUC(0 - infinity), 17.9 and 18.8 micro g x h/ml, respectively. These results suggested that mucoadhesive in situ gelling liquid suppository could be an effective and convenient delivery system of carbamazepine.
Jamilian, Abdolreza; Moghaddas, Omid; Toopchi, Shabnam; Perillo, Letizia
2014-07-01
Oral environment of the mouth is a suitable place for biodegradation of alloys used in orthodontic wires. The toxicity of these alloys namely nickel and chromium has concerned the researchers about the release of these ions from orthodontic wires and brackets. The aim of this study was to measure the levels of nickel and chromium ions released from 0.018" stainless steel (SS) and NiTi wires after immersion in three solutions. One hundred and forty-four round NiTi and 144 round SS archwires with the diameters of 0.018" were immersed in Oral B®, Orthokin® and artificial saliva. The amounts of nickel and chromium ions released were measured after 1, 6, 24 hours and 7 days. Two way repeated ANOVA showed that the amount of chromium and nickel significantly increased in all solutions during all time intervals (p < 0.002). Chromium and nickel ions were released more in NiTi wire in all solutions compared with SS wire. The lowest increase rate was also seen in artificial saliva. There is general consensus in literature that even very little amounts of nickel and chromium are dangerous for human body specially when absorbed orally; therefore, knowing the precise amount of these ions released from different wires when immersed in different mouthwashes is of high priority.
Ghazal, Abdul Razzak A; Hajeer, Mohammad Y; Al-Sabbagh, Rabab; Alghoraibi, Ibrahim; Aldiry, Ahmad
2015-01-01
This study aimed to compare superelastic and heat-activated nickel-titanium orthodontic wires' surface morphology and potential release of nickel ions following exposure to oral environment conditions. Twenty-four 20-mm-length distal cuts of superelastic (NiTi Force I®) and 24 20-mm-length distal cuts of heat-activated (Therma-Ti Lite®) nickel-titanium wires (American Orthodontics, Sheboygan, WI, USA) were divided into two equal groups: 12 wire segments left unused and 12 segments passively exposed to oral environment for 1 month. Scanning electron microscopy and atomic force microscopy were used to analyze surface morphology of the wires which were then immersed in artificial saliva for 1 month to determine potential nickel ions' release by means of atomic absorption spectrophotometer. Heat-activated nickel-titanium (NiTi) wires were rougher than superelastic wires, and both types of wires released almost the same amount of Ni ions. After clinical exposure, more surface roughness was recorded for superelastic NiTi wires and heat-activated NiTi wires. However, retrieved superelastic NiTi wires released less Ni ions in artificial saliva after clinical exposure, and the same result was recorded regarding heat-activated wires. Both types of NiTi wires were obviously affected by oral environment conditions; their surface roughness significantly increased while the amount of the released Ni ions significantly declined.
The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation.
Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R
2017-12-01
Therapeutic peptides are conventionally administered via subcutaneous injection. Chitosan-based nanoparticles are gaining increased attention for their ability to serve as a carrier for oral delivery of peptides and vaccination. They offered superior biocompatibiltiy, controlled drug release profile and facilitated gastrointestinal (GI) absorption. The encapsulated peptides can withstand enzymatic degradation and various pH. Chitosan-based nanoparticles can also be modified by ligand conjugation to the surface of nanoparticle for transcellular absorption and specific-targeted delivery of macromolecules to the tissue of interest. Current research suggests that chitosan-based nanoparticles can deliver therapeutic peptide for the treatment of several medical conditions such as diabetes, bacterial infection and cancer. This review summarises the role of chitosan in oral nanoparticle delivery and identifies the clinical application of peptide-loaded chitosan-based nanoparticles.
Baek, Jong-Suep; Cho, Cheong-Weon
2017-08-01
Curcumin has been reported to exhibit potent anticancer effects. However, poor solubility, bioavailability and stability of curcumin limit its in vivo efficacy for the cancer treatment. Solid lipid nanoparticles (SLN) are a promising delivery system for the enhancement of bioavailability of hydrophobic drugs. However, burst release of drug from SLN in acidic environment limits its usage as oral delivery system. Hence, we prepared N-carboxymethyl chitosan (NCC) coated curcumin-loaded SLN (NCC-SLN) to inhibit the rapid release of curcumin in acidic environment and enhance the bioavailability. The NCC-SLN exhibited suppressed burst release in simulated gastric fluid while sustained release was observed in simulated intestinal fluid. Furthermore, NCC-SLN exhibited increased cytotoxicity and cellular uptake on MCF-7 cells. The lymphatic uptake and oral bioavailability of NCC-SLN were found to be 6.3-fold and 9.5-fold higher than that of curcumin solution, respectively. These results suggest that NCC-SLN could be an efficient oral delivery system for curcumin. Copyright © 2017 Elsevier B.V. All rights reserved.
Carrier Mediated Systemic Delivery of Protein and Peptide Therapeutics.
Zaman, Rahela; Othman, Iekhan; Chowdhury, Ezharul Hoque
2016-01-01
Over the last few decades proteins and peptide therapeutics have occupied an enormous fraction of pharmaceutical industry. Despite their high potential as therapeutics, the big challenge often encountered is the effective administration and bioavailability of protein therapeutics in vivo system. Peptide molecules are well known for their in vivo short half-lives. In addition, due to high molecular weight and susceptibility to enzymatic degradation, often it is not easy to administer peptides and proteins orally or through any other noninvasive routes. Conventional drug management system often demands for frequent and regular interval intravenous/subcutaneous administration, which decreases overall patient compliance and increases chances of side-effects related to dose-fluctuation in systemic circulation. A controlled mode of delivery system could address all these short-comings at a time. Therefore, long-acting sustained release formulations for both invasive and noninvasive routes are under rigorous study currently. Long-acting formulations through invasive routes can address patient compliance and dose-fluctuation issues by less frequent administration. Also, any new route of administration other than invasive routes will address cost-effectiveness of the therapeutic by lessening the need to deal with health professional and health care facility. Although a vast number of studies are dealing with novel drug delivery systems, till now only a handful of controlled release formulations for proteins and peptides have been approved by FDA. This study therefore focuses on current and perspective controlled release formulations of existing and novel protein/peptide therapeutics via conventional invasive routes as well as potential novel non-invasive routes of administration, e.g., oral, buccal, sublingual, nasal, ocular, rectal, vaginal and pulmonary.
Controlled release of alendronate from nitrogen-doped mesoporous carbon
Saha, Dipendu; Spurri, Amanda; Chen, Jihua; ...
2016-04-13
With this study, we have synthesized a nitrogen doped mesoporous carbon with the BET surface area of 1066 m 2/g, total pore volume 0.6 cm 3/g and nitrogen content of 0.5%. Total alendronate adsorption in this carbon was ~5%. The release experiments were designed in four different media with sequential pH values of 1.2, 4.5, 6.8 and 7.4 for 3, 1, 3 and 5 h, respectively and at 37 °C to imitate the physiological conditions of stomach, duodenum, small intestine and colon, respectively. Release of the drug demonstrated a controlled fashion; only 20% of the drug was released in themore » media with pH = 1.2, whereas 64% of the drug was released in pH = 7.4. This is in contrary to pure alendronate that was completely dissolved within 30 min in the first release media (pH = 1.2) only. The relatively larger uptake of alendronate in this carbon and its sustained fashion of release can be attributed to the hydrogen bonding between the drug and the nitrogen functionalities on carbon surface. Based on this result, it can be inferred that this formulation may lower the side effects of oral delivery of alendronate.« less
The technology behind Colgate Total Advanced Fresh.
Williams, Malcolm I; Cummins, Diane
2003-09-01
In the early 1990s, a breakthrough toothpaste, Colgate Total, was launched with documented long-lasting activity against plaque, gingivitis, calculus, tooth decay, and bad breath. The technology behind this toothpaste is the combination of triclosan, a polyvinylmethylether/maleic acid copolymer, and sodium fluoride. The copolymer ensures maximal oral retention and subsequent release of the antibacterial triclosan. Effective levels of triclosan have been observed in the oral cavity 12 hours after brushing the teeth, allowing prolonged control of oral bacteria that may cause the most common dental problems, including bad breath. Similarly, the enhanced retention of triclosan to oral surfaces after using this revolutionary toothpaste for up to 2 years has led to significantly reduced incremental coronal caries compared to an American Dental Association-Approved anticavity fluoride toothpaste. Furthermore, significantly less calcium remained in dental plaque after brushing the teeth with the triclosan/copolymer toothpaste, resulting in the formation of less tartar. In keeping with the multiple oral health benefits provided by Colgate Total, consumers are now offered a new dentifrice, Colgate Total Advanced Fresh, which provides the numerous therapeutic and esthetic benefits that are the hallmark of Colgate Total. The new dentifrice, which contains an impactful breath-freshening flavor, has been documented to provide sustained control of bad breath over 12 hours.
Patil, Sharvil; Choudhary, Bhavana; Rathore, Atul; Roy, Krishtey; Mahadik, Kakasaheb
2015-11-15
Curcumin has a wide range of pharmacological activities including antioxidant, anti-inflammatory, antidiabetic, antibacterial, wound healing, antiatherosclerotic, hepatoprotective and anti-carcinogenic. However, its clinical applications are limited owing to its poor aqueous solubility, multidrug pump P-gp efflux, extensive in vivo metabolism and rapid elimination due to glucuronidation/sulfation. The objective of the current work was to prepare novel curcumin loaded mixed micelles (CUR-MM) of Pluronic F-127 (PF127) and Gelucire® 44/14 (GL44) in order to enhance its oral bioavailability and cytotoxicity in human lung cancer cell line A549. 3(2) Factorial design was used to assess the effect of formulation variables for optimization of mixed micelle batch. CUR-MM was prepared by a solvent evaporation method. The optimized CUR-MM was evaluated for size, entrapment efficiency (EE), in vitro curcumin release, cytotoxicity and oral bioavailability in rats. The average size of CUR-MM was found to be around 188 ± 3 nm with an EE of about 76.45 ± 1.18% w/w. In vitro dissolution profile of CUR-MM revealed controlled release of curcumin. Additionally, CUR-MM showed significant improvement in cytotoxic activity (3-folds) and oral bioavailability (around 55-folds) of curcumin as compared to curcumin alone. Such significant improvement in cytotoxic activity and oral bioavailability of curcumin when formulated into mixed micelles could be attributed to solubilization of hydrophobic curcumin into micelle core along with P-gp inhibition effect of both, PF127 and GL44. Thus the present work propose the formulation of mixed micelles of PF127 and GL44 which can act as promising carrier systems for hydrophobic drugs such as curcumin with significant improvement in their oral bioavailability. Copyright © 2015 Elsevier GmbH. All rights reserved.
Perger, Ludwig; Rentsch, Katharina M.; Kullak-Ublick, Gerd A.; Verotta, Davide; Fattinger, Karin
2009-01-01
In diacetylmorphine prescription programs for heavily dependent addicts, diacetylmorphine is usually administered intravenously, but this may not be possible due to venosclerosis or when heroin abuse had occurred via non-intravenous routes. Since up to 25% of patients administer diacetylmorphine orally, we characterised morphine absorption after single oral doses of immediate and extended release diacetylmorphine in 8 opioid addicts. Plasma concentrations were determined by liquid chromatography-mass spectrometry. Non-compartmental methods and deconvolution were applied for data analysis. Mean (±SD) immediate and extended release doses were 719 ± 297 mg and 956 ± 404 mg, with high absolute morphine bioavailabilities of 56% to 61%, respectively. Immediate release diacetylmorphine caused rapid morphine absorption, peaking at 10 to 15 min. Morphine absorption was considerably slower and more sustained for extended release diacetylmorphine, with only ~30% of maximal immediate release absorption being reached after 10 min and maintained for 3 to 4 h, with no relevant food interaction. The relative extended to immediate release bioavailability was calculated to be 86% by non-compartmental analysis and 93% by deconvolution analysis. Thus, immediate and extended release diacetylmorphine produce the intended morphine exposures. Both are suitable for substitution treatments. Similar doses can be applied if used in combination or sequentially. PMID:19084595
Preabsorptive insulin release and hypoglycemia in rats.
Louis-Sylvestre, J
1976-01-01
Peripheral blood glucose and immunologically reactive insulin levels were determined in freely moving normal rats which were submitted either to a free oral glucose load or to a gastric administration of the glucose load. Identical determinations were performed in ventromedial hypothalamic nucleus-(VMH) lesioned and vagotomized rats after the same oral intake. It was demonstrated that: 1) a free oral glucose intake was immediately followed by two peaks of insulun release and a resultant decrease in blood glucose; 2) a gastric glucose load resulted in a single peak of insulin release and the concomitant decline in blood glucose; 3) the recorded blood glucose level was the resultant of the insulin-induced hypoglycemia and the postabsorptive hyperglycemia; and 4) the responses were largely exaggerated in VMH-lesioned rats and abolished by vagotomy. It is concluded that the early prandial insulin release reflexly induced by food-related stimuli temporarily enhances the metabolic conditions which provoke feeding.
Bonnecaze, Alex K; Wilson, Matthew Whitaker; Dharod, Ajay; Fletcher, Alison; Miller, P J
2017-08-12
Prescription opioid abuse poses a serious problem in the United States, representing 615 per 100,000 deaths annually. Extended-release oxymorphone (Opana-ER) is an oral opioid pain medication that has recently been found to cause thrombotic microangiopathy when intravenously abused. In this retrospective study, prevalence and outcomes of AKI among patients intravenously abusing extended-release oral oxymorphone were analyzed. A query of electronic medical records for "drug abuse" at an academic medical center during January 2012 to December 2015 was performed and yielded 2350 patients. Patients were further identified by documented intravenous abuse of extended-release oxymorphone. Patients were stratified based on multiple renal indices and outcomes. Potential confounders were also identified. 165 patients were found to have a documented history of intravenous abuse of extended-release oral oxymorphone. Prevalence of AKI in this population was a 47.8%. KDIGO stage-I patients consisted of 17.8% of patients with AKI, 40.5% were classified as KDIGO stage-II AKI, and 41.8% were classified as KDIGO stage-III AKI. Among patients with AKI, average age was found to be 37.5 years, 59.4% experienced renal recovery, 56.9% required intensive care unit admission, 13.9% progressed to end-stage renal disease (ESRD), and 7.6% expired during admission. Clinicians should be educated to help recognize intravenous abuse of extended-release oral oxymorphone and its associated effects. Our data suggests AKI is common in these patients; higher KDIGO staging appears to be associated with slower rates of renal recovery, increased comorbidities and progression to both CKD and ESRD. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Nho, Young Chang; Mook Lim, Youn; Moo Lee, Young
2004-09-01
pH-sensitive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing it in the small intestine. In this study, hydrogels based on poly(ethylene oxide) (PEO) networks grafted with acrylic acid (AAc) were prepared via a two-step process. PEO hydrogels were prepared by γ-ray irradiation, and then grafting by AAc monomer onto the PEO hydrogels with the subsequent irradiation (radiation dose: 5-20 kGy, dose rate: 2.15 kGy/h). These grafted hydrogels showed a pH-sensitive swelling behavior. The grafted hydrogels were used as a carrier for the drug delivery systems for the controlled release of insulin. The in vitro drug release behaviors of these hydrogels were examined by quantification analysis with a UV/VIS spectrophotometer. Insulin was loaded into freeze-dried hydrogels (7 mm×3 mm×2.5 mm) and administrated orally to healthy and diabetic Wistar rats. The oral administration of insulin-loaded hydrogels to Wistar rats decreased the blood glucose levels obviously for at least 4 h due to the absorption of insulin in the gastrointestinal tract.
El Maghraby, Gamal M; Elzayat, Ehab M; Alanazi, Fars K
2012-08-01
Alternative strategies are being employed to develop liquid oral sustained release formulation. These included ion exchange resin, sustained release suspensions and in situ gelling systems. The later mainly utilizes alginate solutions that form gels upon contact with calcium which may be administered separately or included in the alginate solution as citrate complex. This complex liberates calcium in the stomach with subsequent gellation. The formed gel can break after gastric emptying leading to dose dumping. Development of modified in situ gelling system which sustain dextromethorphan release in the stomach and intestine. Solutions containing alginate with calcium chloride and sodium citrate were initially prepared to select the formulation sustaining the release in the stomach. The best formulation was combined with chitosan. All formulations were characterized with respect to flow, gelling capacity, gelling strength and drug release. Increasing the concentration of alginate increased the gelling capacity and strength and reduced the rate of drug release in gastric conditions with 2% w/v alginate being the best formulation. However, these formulations failed to sustain the release in the intestinal conditions. Incorporation of chitosan with alginate increased the gelling capacity and strength and reduced the rate of drug release compared to alginate only system. The effect was optimum in formulation containing 1.5% w/v chitosan. The sustained release pattern was maintained both in the gastric and intestinal conditions and was comparable to that obtained from the marketed product. Alginate-chitosan based in situ gelling system is promising for developing liquid oral sustained release.
Micro-/mesoporous carbons for controlled release of antipyrine and indomethacin
Saha, Dipendu; Moken, Tara; Chen, Jihua; ...
2015-02-24
Here, we have demonstrated the potential of meso- and microporous carbons in controlled release applications and targeted oral drug delivery. We have employed two mesoporous and two microporous carbons for the sustained release of one water-soluble drug (antipyrine) and one water-insoluble drug (indomethacin), using these as models to examine the controlled release characteristics. The micro-/mesoporous carbons were characterized as having a BET surface area of 372–2251 m 2 g –1 and pore volume 0.63–1.03 cm 3 g –1. The toxicity studies with E. coli bacterial cells did not reveal significant toxicity, which is in accordance with our previous studies onmore » human cells with similar materials. Mucin adsorption tests with type III pork mucin demonstrated 20–30% mucin adsorption by the carbon samples and higher mucin adsorption could be attributed to higher surface area and more oxygen functionalities. Antipyrine and indomethacin loading was 6–78% in these micro-/mesoporous carbons. The signatures in thermogravimetric studies revealed the presence of drug molecules within the porous moieties of the carbon. The partial shifting of the decomposition peak of the drug adsorbed within the carbon pores was caused by the confinement of drug molecules within the narrow pore space of the carbon. The release profiles of both drugs were examined in simulated gastric fluid (pH = 1.2) and in three other release media with respective pH values of 4.5, 6.8 and 7.4, along with varying residence times to simulate the physiological conditions of the stomach, duodenum, small intestine and colon, respectively. All the release profiles manifested diffusion controlled sustained release that corroborates the effective role of micro-/mesoporous carbons as potential drug carriers.« less
Micro-/mesoporous carbons for controlled release of antipyrine and indomethacin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Dipendu; Moken, Tara; Chen, Jihua
Here, we have demonstrated the potential of meso- and microporous carbons in controlled release applications and targeted oral drug delivery. We have employed two mesoporous and two microporous carbons for the sustained release of one water-soluble drug (antipyrine) and one water-insoluble drug (indomethacin), using these as models to examine the controlled release characteristics. The micro-/mesoporous carbons were characterized as having a BET surface area of 372–2251 m 2 g –1 and pore volume 0.63–1.03 cm 3 g –1. The toxicity studies with E. coli bacterial cells did not reveal significant toxicity, which is in accordance with our previous studies onmore » human cells with similar materials. Mucin adsorption tests with type III pork mucin demonstrated 20–30% mucin adsorption by the carbon samples and higher mucin adsorption could be attributed to higher surface area and more oxygen functionalities. Antipyrine and indomethacin loading was 6–78% in these micro-/mesoporous carbons. The signatures in thermogravimetric studies revealed the presence of drug molecules within the porous moieties of the carbon. The partial shifting of the decomposition peak of the drug adsorbed within the carbon pores was caused by the confinement of drug molecules within the narrow pore space of the carbon. The release profiles of both drugs were examined in simulated gastric fluid (pH = 1.2) and in three other release media with respective pH values of 4.5, 6.8 and 7.4, along with varying residence times to simulate the physiological conditions of the stomach, duodenum, small intestine and colon, respectively. All the release profiles manifested diffusion controlled sustained release that corroborates the effective role of micro-/mesoporous carbons as potential drug carriers.« less
Sol-gel Derived Warfarin - Silica Composites for Controlled Drug Release.
Dolinina, Ekaterina S; Parfenyuk, Elena V
2017-01-01
Warfarin, commonly used anticoagulant in clinic, has serious shortcomings due to its unsatisfactory pharmacodynamics. One of the efficient ways for the improvement of pharmacological and consumer properties of drugs is the development of optimal drug delivery systems. The aim of this work is to synthesize novel warfarin - silica composites and to study in vitro the drug release kinetics to obtain the composites with controlled release. The composites of warfarin with unmodified (UMS) and mercaptopropyl modified silica (MPMS) were synthesized by sol-gel method. The composite formation was confirmed by FTIR spectra. The concentrations of warfarin released to media with pH 1.6, 6.8 and 7.4 were measured using UV spectroscopy. The drug release profiles from the solid composites were described by a series of kinetic models which includes zero order kinetics, first order kinetics, the modified Korsmeyer-Peppas model and Hixson-Crowell model. The synthesized sol-gel composites have different kinetic behavior in the studied media. In contrast to the warfarin composite with unmodified silica, the drug release from the composite with mercaptopropyl modified silica follows zero order kinetics for 24 h irrespective to the release medium pH due to mixed mechanism (duffusion + degradation and/or disintegration of silica matrix). The obtained results showed that warfarin - silica sol-gel composites have a potential application for the development of novel oral formulation of the drug with controlled delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Setia, Anupama; Kansal, Sahil; Goyal, Naveen
2013-07-01
Microspheres constitute an important part of oral drug delivery system by virtue of their small size and efficient carrier capacity. However, the success of these microspheres is limited due to their short residence time at the site of absorption. The objective of the present study was to formulate and systematically evaluate in vitro performance of enteric coated mucoadhesive microspheres of duloxetine hydrochloride (DLX), an acid labile drug. DLX microspheres were prepared by simple emulsification phase separation technique using chitosan as carrier and glutaraldehyde as a cross-linking agent. Microspheres prepared were coated with eudragit L-100 using an oil-in-oil solvent evaporation method. Eudragit L-100was used as enteric coating polymer with the aim to release the drug in small intestine The microspheres prepared were characterized by particle size, entrapment efficiency, swelling index (SI), mucoadhesion time, in vitro drug release and surface morphology. A 3(2) full factorial design was employed to study the effect of independent variables polymer-to-drug ratio (X1) and stirring speed (X2) on dependent variables, particle size, entrapment efficiency, SI, in vitro mucoadhesion and drug release up to 24 h (t24). Microspheres formed were discrete, spherical and free flowing. The microspheres exhibited good mucoadhesive property and also showed high percentage entrapment efficiency. The microspheres were able to sustain the drug release up to 24 h. Thus, the prepared enteric coated mucoadhesive microspheres may prove to be a potential controlled release formulation of DLX for oral administration.
Choi, Jonghoon; Park, Hoyoung; Kim, Taeho; Jeong, Yoon; Oh, Myoung Hwan; Hyeon, Taeghwan; Gilad, Assaf A; Lee, Kwan Hyi
2014-01-01
We present here the in vitro release profiles of either fluorescently labeled biomolecules or computed tomography contrast nanoagents from engineered collagen hydrogels under physiological conditions. The collagen constructs were designed as potential biocompatible inserts into wounded human gingiva. The collagen hydrogels were fabricated under a variety of conditions in order to optimize the release profile of biomolecules and nanoparticles for the desired duration and amount. The collagen constructs containing biomolecules/nanoconstructs were incubated under physiological conditions (ie, 37°C and 5% CO2) for 24 hours, and the release profile was tuned from 20% to 70% of initially loaded materials by varying the gelation conditions of the collagen constructs. The amounts of released biomolecules and nanoparticles were quantified respectively by measuring the intensity of fluorescence and X-ray scattering. The collagen hydrogel we fabricated may serve as an efficient platform for the controlled release of biomolecules and imaging agents in human gingiva to facilitate the regeneration of oral tissues.
Choi, Jonghoon; Park, Hoyoung; Kim, Taeho; Jeong, Yoon; Oh, Myoung Hwan; Hyeon, Taeghwan; Gilad, Assaf A; Lee, Kwan Hyi
2014-01-01
We present here the in vitro release profiles of either fluorescently labeled biomolecules or computed tomography contrast nanoagents from engineered collagen hydrogels under physiological conditions. The collagen constructs were designed as potential biocompatible inserts into wounded human gingiva. The collagen hydrogels were fabricated under a variety of conditions in order to optimize the release profile of biomolecules and nanoparticles for the desired duration and amount. The collagen constructs containing biomolecules/nanoconstructs were incubated under physiological conditions (ie, 37°C and 5% CO2) for 24 hours, and the release profile was tuned from 20% to 70% of initially loaded materials by varying the gelation conditions of the collagen constructs. The amounts of released biomolecules and nanoparticles were quantified respectively by measuring the intensity of fluorescence and X-ray scattering. The collagen hydrogel we fabricated may serve as an efficient platform for the controlled release of biomolecules and imaging agents in human gingiva to facilitate the regeneration of oral tissues. PMID:25429215
Slow Sodium: An Oral Slowly Released Sodium Chloride Preparation
Clarkson, E. M.; Curtis, J. R.; Jewkes, R. J.; Jones, B. E.; Luck, V. A.; de Wardener, H. E.; Phillips, N.
1971-01-01
The use of a slowly released oral preparation of sodium chloride is described. It was given to patients and athletes to treat or prevent acute and chronic sodium chloride deficiency. Gastrointestinal side effects were not encountered after the ingestion of up to 500 mEq in one day or 200 mEq in 10 minutes. PMID:5569979
Oral, Slow-Release Ivermectin: Biting Back at Malaria Vectors.
Chaccour, Carlos J; Rabinovich, N Regina
2017-03-01
Bellinger and colleagues offer an elegant twist for a promising new tool against malaria. This formulation is designed to release ivermectin, a mosquito-killing drug for 10 days after a single oral dose. This could reduce the vector population and serve as a complementary tool for malaria elimination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Preparation of mesoporous silica microparticles by sol-gel/emulsion route for protein release.
Vlasenkova, Mariya I; Dolinina, Ekaterina S; Parfenyuk, Elena V
2018-04-06
Encapsulation of therapeutic proteins into particles from appropriate material can improve both stability and delivery of the drugs, and the obtained particles can serve as a platform for development of their new oral formulations. The main goal of this work was development of sol-gel/emulsion method for preparation of silica microcapsules capable of controlled release of encapsulated protein without loss of its native structure. For this purpose, the reported in literature direct sol-gel/W/O/W emulsion method of protein encapsulation was used with some modifications, because the original method did not allow to prepare silica microcapsules capable for protein release. The particles were synthesized using sodium silicate and tetraethoxysilane as silica precursors and different compositions of oil phase. In vitro kinetics of bovine serum albumin (BSA) release in buffer (pH 7.4) was studied by Fourier transform infrared (FTIR) and fluorescence spectrometry, respectively. Structural state of encapsulated BSA and after release was evaluated. It was found that the synthesis conditions influenced substantially the porous structure of the unloaded silica particles, release properties of the BSA-loaded silica particles and structural state of the encapsulated and released protein. The modified synthesis conditions made it possible to obtain the silica particles capable of controlled release of the protein during a week without loss of the protein native structure.
Haseeb, Muhammad Tahir; Hussain, Muhammad Ajaz; Bashir, Sajid; Ashraf, Muhammad Umer; Ahmad, Naveed
2017-03-01
Advancement in technology has transformed the conventional dosage forms to intelligent drug delivery systems. Such systems are helpful for targeted and efficient drug delivery with minimum side effects. Drug release from these systems is governed and controlled by external stimuli (pH, enzymes, ions, glucose, etc.). Polymeric biomaterial having stimuli-responsive properties has opened a new area in drug delivery approach. Potential of a polysaccharide (rhamnogalacturonan)-based hydrogel from Linseeds (Linum usitatissimum L.) was investigated as an intelligent drug delivery material. Different concentrations of Linseed hydrogel (LSH) were used to prepare caffeine and diacerein tablets and further investigated for pH and salt solution-responsive swelling, pH-dependent drug release, and release kinetics. Morphology of tablets was observed using SEM. LSH tablets exhibited dynamic swelling-deswelling behavior with tendency to swell at pH 7.4 and in deionized water while deswell at pH 1.2, in normal saline and ethanol. Consequently, pH controlled release of the drugs was observed from tablets with lower release (<10%) at pH 1.2 and higher release at pH 6.8 and 7.4. SEM showed elongated channels in swollen then freeze-dried tablets. The drug release was greatly influenced by the amount of LSH in the tablets. Drug release from LSH tablets was governed by the non-Fickian diffusion. These finding indicates that LSH holds potential to be developed as sustained release material for tablet.
Role of Mast Cells in Oral Lichen Planus and Oral Lichenoid Reactions.
Ramalingam, Suganya; Malathi, Narasimhan; Thamizhchelvan, Harikrishnan; Sangeetha, Narasimhan; Rajan, Sharada T
2018-01-01
Oral lichen planus (OLP) is a chronic T cell mediated disease of oral mucosa, skin, and its appendages with a prevalence of 0.5 to 2.6% worldwide. Oral lichenoid reactions (OLR) are a group of lesions with diverse aetiologies but have clinical and histological features similar to OLP, thereby posing a great challenge in differentiating both lesions. Mast cells are multifunctional immune cells that play a major role in the pathogenesis of lichen planus by release of certain chemical mediators. Increased mast cell densities with significant percentage of degranulation have been observed as a consistent finding in pathogenesis of oral lichen planus. The current study was aimed at quantifying the mast cells in histopathological sections of OLP and OLR thereby aiding a means of distinguishing these lesions. The study group involved 21 cases of oral lichen planus, 21 cases of oral lichenoid reactions, and 10 control specimens of normal buccal mucosa. All the cases were stained with Toluidine Blue and routine haematoxylin and eosin and the mast cells were quantified. The results were analyzed using the Kruskal-Wallis test and an intergroup analysis was performed using Mann-Whitney U test. The number of mast cells showed an increased value in oral lichen planus when compared to oral lichenoid reaction and thus an estimation of mast cells count could aid in distinguishing OLP from OLR histopathologically.
[Modern polymers in matrix tablets technology].
Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa
2014-01-01
Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagnella, Sharon M.; Gong, Xiaojuan; Moghaddam, Minoo J.
2014-09-24
We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipidmore » prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.« less
The application of halloysite tubule nanoclay in drug delivery.
Lvov, Yuri M; DeVilliers, Melgardt M; Fakhrullin, Rawil F
2016-07-01
Natural and biocompatible clay nanotubes are among the best inorganic materials for drug nanoformulations. These halloysite tubes with SiO2 on the outermost surface have diameter of ca. 50 nm, length around 1 micrometer and may be loaded with drugs at 10-30 wt. %. Narrow tube openings allow for controllable sustained drug release for hours, days or even weeks. Physical-chemical properties of these nanotubes are described followed by examples of drug-loading capabilities, release characteristics, and control of duration of release through the end tube capping with polymers. Development of halloysite-polymer composites such as tissue scaffolds and bone cement/dentist resin formulations with enhanced mechanical properties and extension of the drug release to 2-3 weeks are described. Examples of the compression properties of halloysite in tablets and capsules are also shown. We expect that clay nanotubes will be used primarily for non-injectable drug formulations, such as topical and oral dosage forms, cosmetics, as well as for composite materials with enhanced therapeutic effects. These include tissue scaffolds, bone cement and dentist resins with sustained release of antimicrobial and cell growth-promoting medicines (including proteins and DNA) as well as other formulations such as compounds for antiseptic treatment of hospitals.
Preparation and evaluation of Vinpocetine self-emulsifying pH gradient release pellets.
Liu, Mengqi; Zhang, Shiming; Cui, Shuxia; Chen, Fen; Jia, Lianqun; Wang, Shu; Gai, Xiumei; Li, Pingfei; Yang, Feifei; Pan, Weisan; Yang, Xinggang
2017-11-01
The main objective of this study was to develop a pH gradient release pellet with self-emulsifying drug delivery system (SEDDS), which could not only improve the oral bioavailability of Vinpocetine (VIN), a poor soluble drug, but reduce the fluctuation of plasma concentration. First, the liquid VIN SEDDS formulation was prepared. Then the self-emulsifying pH gradient release pellets were prepared by extrusion spheronization technique, and formulation consisted by the liquid SEDDS, absorbent (colloidal silicon dioxide), penetration enhancer (sodium chloride), microcrystalline cellulose, ethyl alcohol, and three coating materials (HPMC, Eudragit L30D55, Eudragit FS30D) were eventually selected. Three kinds of coated pellets were mixed in capsules with the mass ratio of 1:1:1. The release curves of capsules were investigated in vitro under the simulated gastrointestinal conditions. In addition, the oral bioavailability and pharmacokinetics of VIN self-emulsifying pH gradient release pellets, commercial tablets and liquid VIN SEDDS were evaluated in Beagle dogs. The oral bioavailability of self-emulsifying pH gradient release pellets was about 149.8% of commercial VIN tablets, and it was about 86% of liquid VIN SEDDS, but there were no significant difference between liquid SEDDS and self-emulsifying pH gradient release pellets. In conclusion, the self-emulsifying pH gradient release pellets could significantly enhance the absorption of VIN and effectively achieve a pH gradient release. And the self-emulsifying pH gradient release pellet was a promising method to improve bioavailability of insoluble drugs.
Undigested Pills in Stool Mimicking Parasitic Infection.
Mir, Fazia; Achakzai, Ilyas; Ibdah, Jamal A; Tahan, Veysel
2017-01-01
Background . Orally ingested medications now come in both immediate release and controlled release preparations. Controlled release preparations were developed by pharmaceutical companies to improve compliance and decrease frequency of pill ingestion. Case Report . A 67-year-old obese male patient presented to our clinic with focal abdominal pain that had been present 3 inches below umbilicus for the last three years. This pain was not associated with any trauma or recent heavy lifting. Upon presentation, the patient reported that for the last two months he started to notice pearly oval structures in his stool accompanying his chronic abdominal pain. This had coincided with initiation of his nifedipine pills for his hypertension. He reported seeing these undigested pills daily in his stool. Conclusion . The undigested pills may pose a cause of concern for both patients and physicians alike, as demonstrated in this case report, because they can mimic a parasitic infection. This can result in unnecessary extensive work-up. It is important to review the medication list for extended release formulations and note that the outer shell can be excreted whole in the stool.
Tsai, Wanchi; Tsai, Huifang; Wong, Yinuan; Hong, Juiyen; Chang, Shwujen; Lee, Mingwei
2018-01-01
To administer cancer drugs with improved convenience to patients and to enhance the bioavailability of cancer drugs for oral cancer therapy, this study prepared gellan gum/glucosamine/clioquinol (GG/GS/CQ) film as the oral cancer treatment patch. GG/GS/CQ film fabricated through the EDC-mediated coupling reactions (GG/GS/CQ/EDC film). The film of the physicochemical properties and drug release kinetics were studied. The effectiveness of GG/GS/CQ/EDC film as oral cancer treatment patch were evaluated with the animal model. The results confirmed that CQ can be incorporated via EDC-mediated covalent conjugation to gellan gum/glucosamine. Mechanical testing revealed that the maximum tensile strength and elongation percentage at break were 1.91kgf/mm 2 and 5.01% for GG/GS/CQ/EDC film. After a drug release experiment lasting 45days, 86.8% of CQ was released from GG/GS/CQ/EDC film. The Huguchi model fit the GG/GS/CQ/EDC drug release data with high correlation coefficients (R 2 =0.9994, respectively). The effect of the CQ dose on oral cancer cells (OC-2) was tested, and the IC 50 of CQ alone and CQ with 10μM CuCl 2 were 9.59 and 2.22μM, respectively. The animal testing indicated that GG/GS/CQ/EDC film was decreased epidermal growth factor receptor (EGFR) expression and suppress tumor progression. These findings provide insights into a possible use for GG/GS/CQ/EDC film for oral ca in clinical practice. The GG/GS/CQ/EDC film is suitable as the dressing for use in the treatment of early-stage cancer or as wound care after surgery in late-stage of oral cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Bjarnadottir, G D; Johannsson, M; Magnusson, A; Rafnar, B O; Sigurdsson, E; Steingrimsson, S; Asgrimsson, V; Snorradottir, I; Bragadottir, H; Haraldsson, H M
2017-09-01
Methylphenidate (MPH) is a prescription stimulant used to treat attention-deficit hyperactivity disorder. MPH is currently the preferred substance among most intravenous (i.v.) substance users in Iceland. Four types of MPH preparations were available in Iceland at the time of study: Immediate-release (IR), sustained-release (SR), osmotic controlled-release oral delivery (OROS) tablet and osmotic-controlled release (OCR). MPH OROS has previously been rated the least desirable by i.v. users and we hypothesized that this was associated with difficulty of disintegrating MPH from OROS formulation. The aim of the study was to measure the amount of MPH and the viscosity of the disintegrated solutions that were made from the four MPH formulations by four i.v.-users and non-users. A convenience sample of four i.v. substance users and 12 non-users. Non-users imitated the methods applied by experienced i.v. substance users for disintegrated MPH formulations. Both groups managed to disintegrate over 50% of MPH from IR and SR formulations but only 20% from OROS (p<0.0001). The viscosity of the disintegrated MPH was significantly higher for MPH OROS and MPH OCR and the preparation was significantly more time-consuming than for the other MPH samples. No differences were observed between users and non-users. To our knowledge, this is the first investigation of viscosity and the amount of disintegrated MPH from prescription drugs for i.v. use. The results indicate that the ease of disintegration, amount of MPH and viscosity may explain the difference in popularity for i.v. use between different MPH formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Harder, S; Baas, H; Bergemann, N; Demisch, L; Rietbrock, S
1995-01-01
1. The relationship between plasma concentration of levodopa and motor-response was investigated in 12 patients with Parkinson's disease who showed marked response fluctuations, after a single oral dose of an immediate release (IR) formulation (100 mg levodopa/25 mg genserazide) and a controlled release (CR) formulation (300 mg levodopa/75 mg benserazide), using a double-blind, randomized, cross-over design. 2. The sum score of the Columbia University Rating Scale (CURS sigma) was used for pharmacodynamic assessment. A sigmoidal Emax-model was fitted to the data using a semiparametric pharmacokinetic/dynamic approach. 3. The dose-corrected AUC of levodopa after the IR-formulation was 27.5 (+/- 9.1 s.d.) ng ml-1 h per mg and 23.2 (+/- 4.6 s.d.) ng ml-1 h per mg after the CR-formulation. Cmax was 1714 (+/- 1027 s.d.) ng ml-1 after the IR-formulation and 1494 (+/- 383 s.d.) ng ml-1 after the CR-formulation. 4. With both preparations, the maximal response to levodopa (Emax) was a decrease in the CURS sigma rating of about 27 scores. Estimates of the EC50 of levodopa were 495 (+/- 144 s.d.) ng ml-1 (IR) and 1024 (+/- 502 s.d.) ng ml-1 (CR), respectively (95%-CI: 1.51-2.66, point estimator 1.95). The mean duration of the motor response was 1.9 (+/- 0.5 s.d.) h (IR) and 2.8 (+/- 0.7 s.d.) h (CR), respectively (95%-CI: 1.12-2.04, point estimator 1.53).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7756097
Gazzaniga, Andrea; Cerea, Matteo; Cozzi, Alberto; Foppoli, Anastasia; Maroni, Alessandra; Zema, Lucia
2011-03-01
The feasibility of injection molding was explored in the preparation of a novel capsular device for oral pulsatile/delayed delivery based on swellable/erodible polymers. For this purpose, a mold intended to be coupled with a bench-top injection-molding press was designed. This was expected to enable the preparation of matching capsule cap and body items within a single manufacturing cycle and the selection of differing shell thicknesses (300, 600, and 900 μm). Hydroxypropylcellulose (Klucel(®) EF, LF, and GF) was employed as the release-controlling polymer in admixture with polyethylene glycol 1500 (10%, w/w) as the plasticizer. After preliminary trials aimed at the setup of operating conditions, Klucel(®) EF and LF capsule shells with satisfactory technological properties were manufactured. The performance of capsular devices filled with a tracer drug powder was studied by means of a modified USP31 disintegration apparatus. Typical in vitro delayed release patterns were thereby obtained, with lag time increasing as a function of the wall thickness. A good correlation was found between the latter parameter and t (10%), i.e., the time to 10% release, for both polymer grades employed. On the basis of the overall results, the investigated technique was proven suitable for the manufacturing of an innovative pulsatile release platform. © 2011 American Association of Pharmaceutical Scientists
Dietzel, Christian T; Richert, Hendryk; Abert, Sandra; Merkel, Ute; Hippius, Marion; Stallmach, Andreas
2012-08-10
Human absorption studies are used to test new drug candidates for their bioavailability in different regions of the gastrointestinal tract. In order to replace invasive techniques (e.g. oral or rectal intubation) a variety of externally controlled capsule-based drug release systems has been developed. Most of these use ionizing radiation, internal batteries, heating elements or even chemicals for the localization and disintegration process of the capsule. This embodies potential harms for volunteers and patients. We report about a novel technique called "Magnetic Active Agent Release System" (MAARS), which uses purely magnetic effects for this purpose. In our trial thirteen healthy volunteers underwent a complete monitoring and release procedure of 250 mg acetylsalicylic acid (ASA) targeting the flexura duodenojejunalis and the mid-part of the jejunum. During all experiments MAARS initiated a sufficient drug release and was well tolerated. Beside this we also could show that the absorption of ASA is about two times faster in the more proximal region of the flexura duodenojejunalis with a tmax of 47±13 min compared to the more distal jejunum with tmax values of 100±10 min (p=0.031). Copyright © 2012 Elsevier B.V. All rights reserved.
Sulindac loaded alginate beads for a mucoprotective and controlled drug release.
Yegin, Betül Arica; Moulari, Brice; Durlu-Kandilci, N Tugba; Korkusuz, Petek; Pellequer, Yann; Lamprecht, Alf
2007-06-01
Ionotropic gelation was used to entrap sulindac into calcium alginate beads as a potential drug carrier for the oral delivery of this anti-inflammatory drug. Beads were investigated in vitro for a possible sustained drug release and their use in vivo as a gastroprotective system for sulindac. Process parameters such as the polymer concentration, polymer/drug ratio, and different needle diameter were analysed for their influences on the bead properties. Size augmented with increasing needle diameter (0.9 mm needle: 1.28 to 1.44 mm; 0.45 mm needle: 1.04 to 1.07 mm) due to changes in droplet size as well as droplet viscosity. Yields varied between 87% and 98% while sulindac encapsulation efficiencies of about 88% and 94% were slightly increasing with higher alginate concentrations. Drug release profiles exhibited a complete release for all formulations within 4 hours with a faster release for smaller beads. Sulindac loaded alginate beads led to a significant reduction of macroscopic histological damage in the stomach and duodenum in mice. Similarly, microscopic analyses of the mucosal damage demonstrated a significant mucoprotective effect of all bead formulation compared to the free drug. The present alginate formulations exhibit promising properties of a controlled release form for sulindac; meanwhile they provide a distinct tissue protection in the stomach and duodenum.
Horev, Benjamin; Klein, Marlise I.; Hwang, Geelsu; Li, Yong; Kim, Dongyeop; Koo, Hyun; Benoit, Danielle S.W.
2015-01-01
Development of effective therapies to control oral biofilms is challenging, as topically introduced agents must avoid rapid clearance from biofilm-tooth interfaces while targeting biofilm microenvironments. Additionally, exopolysaccharide matrix and acidification of biofilm microenvironments are associated with cariogenic (caries-producing) biofilm virulence. Thus, nanoparticle carriers capable of binding to hydroxyapatite (HA), saliva-coated HA (sHA), and exopolysaccharides with enhanced drug-release at acidic pH were developed. Nanoparticles are formed from diblock copolymers composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA), butyl methacrylate (BMA), and 2-propylacrylic acid (PAA) (p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA)) that self-assemble into ~21 nm cationic nanoparticles. Nanoparticles exhibit outstanding adsorption affinities (~244 L-mmol−1) to negatively-charged HA, sHA, and exopolysaccharide-coated sHA due to strong electrostatic interactions via multivalent tertiary amines of p(DMAEMA). Owing to hydrophobic cores, Nanoparticles load farnesol, a hydrophobic antibacterial drug, at ~22 wt%. Farnesol release is pH-dependent with t1/2=7 and 15 h for release at pH 4.5 and 7.2, as Nanoparticles undergo core destabilization at acidic pH, characteristic of cariogenic biofilm microenvironments. Importantly, topical applications of farnesol-loaded nanoparticles disrupted Streptococcus mutans biofilms 4-fold more effectively than free farnesol. Mechanical stability of biofilms treated with drug-loaded nanoparticles was compromised, resulting in >2-fold enhancement in biofilm removal under shear stress compared to free farnesol and controls. Farnesol-loaded nanoparticles effectively attenuated biofilm virulence in vivo using a clinically-relevant topical treatment regimen (2×/day) in a rodent dental caries disease model. Treatment with farnesol-loaded nanoparticles reduced both the number and severity of carious lesions, while free-farnesol had no effect. Nanoparticles have great potential to enhance the efficacy of antibiofilm agents through multi-targeted binding and pH-responsive drug release due to microenvironmental triggers. PMID:25661192
Hiremath, Praveen S; Saha, Ranendra N
2008-10-01
The aim of the present investigation was to develop controlled release (C.R.) matrix tablet formulations of rifampicin and isoniazid combination, to study the design parameters and to evaluate in vitro release characteristics. In the present study, a series of formulations were developed with different release rates and duration using hydrophilic polymers hydroxypropyl methylcellulose (HPMC) and hydroxypropyl cellulose (HPC). The duration of rifampicin and isoniazid release could be tailored by varying the polymer type, polymer ratio and processing techniques. Further, Eudragit L100-55 was incorporated in the matrix tablets to compensate for the pH-dependent release of rifampicin. Rifampicin was found to follow linear release profile with time from HPMC formulations. In case of formulations with HPC, there was an initial higher release in simulated gastric fluid (SGF) followed by zero order release profiles in simulated intestinal fluid (SIFsp) for rifampicin. The release of isoniazid was found to be predominantly by diffusion mechanism in case of HPMC formulations, and with HPC formulations release was due to combination of diffusion and erosion. The initial release was sufficiently higher for rifampicin from HPC thus ruling out the need to incorporate a separate loading dose. The initial release was sufficiently higher for isoniazid in all formulations. Thus, with the use of suitable polymer or polymer combinations and with the proper optimization of the processing techniques it was possible to design the C.R. formulations of rifampicin and isoniazid combination that could provide the sufficient initial release and release extension up to 24h for both the drugs despite of the wide variations in their physicochemical properties.
Kim, Dong Shik; Kim, Dong Wuk; Kim, Kyeong Soo; Choi, Jong Seo; Seo, Youn Gee; Youn, Yu Seok; Oh, Kyung Taek; Yong, Chul Soon; Kim, Jong Oh; Jin, Sung Giu; Choi, Han-Gon
2016-11-01
The aim of this study was to assess the effect of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on the physicochemical characterization and oral bioavailability of a novel l-sulpiride-loaded quaternary microcapsule (QMC). The effect of carriers on drug solubility was investigated. Among the carriers tested, polyvinyl pyrrolidone (PVP), sodium lauryl sulphate (SLS) and TPGS were selected as polymer, surfactant and absorption enhancer, respectively, due to their high drug solubility. Using the solvent evaporation method, numerous QMCs with different ratios of l-sulpiride, PVP, SLS and TPGS were prepared, and their physicochemical properties, solubility and release were evaluated. In addition, the influence of TPGS concentration on the oral bioavailability of various drug doses was evaluated. All QMCs converted the crystalline drug to the amorphous form and remarkably improved the solubility, release and oral bioavailability of the drug. Furthermore, the TPGS concentration in the QMCs hardly affected the crystallinity, particle size and release, but considerably increased the solubility and oral bioavailability of the drug. In particular, as the dose of administered drug was increased, TPGS provided a greater improvement in oral drug bioavailability. Thus, TPGS played an important role in improving the oral bioavailability of l-sulpiride. Moreover, the QMC with a drug/PVP/SLS/TPGS weight ratio of 5:12:1 :20 with approximately 3.3-fold improved oral bioavailability would be recommended as a commercial pharmaceutical product for oral administration of l-sulpiride. Copyright © 2016 Elsevier B.V. All rights reserved.
Marwali, Eva M; Boom, Cindy E; Sakidjan, Indriwanto; Santoso, Anwar; Fakhri, Dicky; Kartini, Ay; Kekalih, Aria; Schwartz, Steven M; Haas, Nikolaus A
2013-09-01
This study was conducted to determine if oral triiodothyronine supplementation could prevent the decrease of serum triiodothyronine levels that commonly occurs after cardiopulmonary bypass for pediatric congenital heart surgery. Secondary objectives included identifying any significant adverse effects of oral triiodothyronine supplementation, including any effects on the thyroid/pituitary axis. Randomized, placebo-controlled, doubleblind clinical trial Operating room and ICU. Infants and children younger than 2 years of age undergoing congenital heart surgery using cardiopulmonary bypass (n = 43). Subjects were assigned to placebo (n = 15, group A) or one of two treatment groups: a low-dose group (group B, n = 14, 0.5 mcg/kg triiodothyronine orally every 24 hr for 3 d) or a high-dose group (group C, n = 14, 0.5 mcg/kg triiodothyronine orally every 12 hr for 3 d). Thyroid hormone, including total and free triiodothyronine levels at predetermined time points, potential side effects indicating hyperthyroidism, indicators of the thyroid-pituitary axis, and clinical endpoints. Oral triiodothyronine supplementation twice-daily maintained serum triiodothyronine levels within normal limits in group C, whereas serum levels progressively declined in groups A and B. A statistically significant difference in triiodothyronine levels between the treatment groups occurred between 18 and 36 hours post cross-clamp release, with the largest difference in serum levels between group C and group A noted at 36 hours post cross-clamp release (total triiodothyronine, 0.71 ± 0.15 [0.34-1.08] ng/mL [p < 0.01]; free triiodothyronine, 2.56 ± 0.49 [1.33-3.79] pg/mL [p < 0.01]). There was no evidence of hyperthyroidism or suppression of the pituitary-thyroid axis in either treatment group Oral triiodothyronine supplementation at a dose of 0.5 mcg/kg every 12 hours for 3 days can maintain total and free triiodothyronine levels within normal limits after open-heart surgery using cardiopulmonary bypass for congenital heart disease.
Li, Wei; Liu, Dongfei; Zhang, Hongbo; Correia, Alexandra; Mäkilä, Ermei; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A
2017-01-15
Harsh conditions of the gastrointestinal tract hinder the oral delivery of many drugs. Developing oral drug delivery systems based on commercially available materials is becoming more challenging due to the demand for simultaneously delivering physicochemically different drugs for treating complex diseases. A novel architecture, namely nanotube-in-microsphere, was developed as a drug delivery platform by encapsulating halloysite nanotubes (HNTs) in a pH-responsive hydroxypropyl methylcellulose acetate succinate polymer using microfluidics. HNTs were selected as orally acceptable clay mineral and their lumen was enlarged by selective acid etching. Model drugs (atorvastatin and celecoxib) with different physicochemical properties and synergistic effect on colon cancer prevention and inhibition were simultaneously incorporated into the microspheres at a precise ratio, with atorvastatin and celecoxib being loaded in the HNTs and polymer matrix, respectively. The microspheres showed spherical shape, narrow particle size distribution and pH-responsive dissolution behavior. This nanotube/pH-responsive polymer composite protected the loaded drugs from premature release at pH⩽6.5, but allowed their fast release and enhanced the drug permeability, and the inhibition of colon cancer cell proliferation at pH 7.4. Overall, the nano-in-micro drug delivery composite fabricated by microfluidics is a promising and flexible platform for the delivery of multiple drugs for combination therapy. Halloysite nanotubes (HNTs) are attracting increasing attention for drug delivery applications. However, conventional HNTs-based oral drug delivery systems are lack of the capability to precisely control the drug release at a desired site in the gastrointestinal tract. In this study, a nanotube-in-microsphere drug delivery platform is developed by encapsulating HNTs in a pH-responsive polymer using microfluidics. Drugs with different physicochemical properties and synergistic effect on colon cancer therapy were simultaneously incorporated in the microspheres. The prepared microspheres prevented the premature release of the loaded drugs after exposure to the harsh conditions of the gastrointestinal tract, but allowed their simultaneously fast release, and enhanced the drug permeability and the inhibition of colon cancer cell proliferation in response to the colon pH. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Delben, Juliana Aparecida; Zago, Chaiene Evelin; Tyhovych, Natalia; Duarte, Simone; Vergani, Carlos Eduardo
2016-01-01
Considering the ability of atmospheric-pressure cold plasma (ACP) to disrupt the biofilm matrix and rupture cell structure, it can be an efficient tool against virulent oral biofilms. However, it is fundamental that ACP does not cause damage to oral tissue. So, this study evaluated (1) the antimicrobial effect of ACP on single- and dual-species biofilms of Candida albicans and Staphylococcus aureus as well as (2) the biological safety of ACP on in vitro reconstituted oral epithelium. Standardized cell suspensions of each microorganism were prepared for biofilm culture on acrylic resin discs at 37°C for 48 hours. The biofilms were submitted to ACP treatment at 10 mm of plasma tip-to-sample distance during 60 seconds. Positive controls were penicillin G and fluconazole for S. aureus and C. albicans, respectively. The biofilms were analyzed through counting of viable colonies, confocal laser scanning microscopy, scanning electron microscopy and fluorescence microscopy for detection of reactive oxygen species. The in vitro reconstituted oral epithelium was submitted to similar ACP treatment and analyzed through histology, cytotoxocity test (LDH release), viability test (MTT assay) and imunnohistochemistry (Ki67 expression). All plasma-treated biofilms presented significant log10 CFU/mL reduction, alteration in microorganism/biofilm morphology, and reduced viability in comparison to negative and positive controls. In addition, fluorescence microscopy revealed presence of reactive oxygen species in all plasma-treated biofilms. Low cytotoxicity and high viability were observed in oral epithelium of negative control and plasma group. Histology showed neither sign of necrosis nor significant alteration in plasma-treated epithelium. Ki67-positive cells revealed maintenance of cell proliferation in plasma-treated epithelium. Atmospheric-pressure cold plasma is a promissing approach to eliminate single- and dual-species biofilms of C. albicans and S. aureus without having toxic effects in oral epithelium.
Enhanced oral bioavailability and controlled release of dutasteride by a novel dry elixir.
Jang, Dong-Jin; Kim, Sung Tae; Oh, Euichaul; Ban, Eunmi
2014-01-01
To develop a solid dosage form of dutasteride for improving its oral bioavailability, a novel dry elixir (DE) system was fabricated. DEs incorporating dextrin and/or xanthan gum were prepared using spray-drying and evaluated by morphology, ethanol content, crystallinity, dissolution and oral bioavailability. DEs were spherical with a smooth surface and had an average particle size of 20-25 μm. The ethanol content could be easily varied by controlling the spray-drying temperature. The dissolution profiles of dutasteride from each DE proved to be much faster than that of dutasteride powder due to the amorphous state and a high amount of incorporated ethanol. In particular, the pharmacokinetic profiles of dutasteride were significantly altered depending on the proportions of dextrin and xanthan gum. Blood concentrations of dutasteride from DE formulations were similar to those of market products and much greater than those of native dutasteride. Interestingly, the dissolution and pharmacokinetic profiles were easily controlled by changing the ratio of dextrin to xanthan gum. The data suggests that a DE using dextrin and/or xanthan gum could provide an applicable solid dosage form to improve the dissolution and bio-availability of dutasteride as well as to modulate its pharmacokinetics.
Lead induced oxidative stress: beneficial effects of Kombucha tea.
Dipti, P; Yogesh, B; Kain, A K; Pauline, T; Anju, B; Sairam, M; Singh, B; Mongia, S S; Kumar, G Ilavazhagan Devendra; Selvamurthy, W
2003-09-01
To evaluate the effect of oral administration of Kombucha tea (K-tea) on lead induced oxidative stress. Sprague Dawley rats were administered 1 mL of 3.8% lead acetate solution daily alone or in combination with K-tea orally for 45 d, and the antioxidant status and lipid peroxidation were evaluated. Oral administration of lead acetate to rats enhanced lipid peroxidation and release of creatine phosphokinase and decreased levels of reduced glutathione (GSH) and antioxidant enzymes (superoxide dismutase, SOD and glutathione peroxidase, GPx). Lead treatment did not alter humoral immunity, but inhibited DTH response when compared to the control. Lead administration also increased DNA fragmentation in liver. Oral administration of Kombucha tea to rats exposed to lead decreased lipid peroxidation and DNA damage with a concomitant increase in the reduced glutathione level and GPx activity. Kombucha tea supplementation relieved the lead induced immunosuppression to appreciable levels. The results suggest that K-tea has potent antioxidant and immunomodulating properties.
Xie, Xiaoxia; Tao, Qing; Zou, Yina; Zhang, Fengyi; Guo, Miao; Wang, Ying; Wang, Hui; Zhou, Qian; Yu, Shuqin
2011-09-14
The overall goal of this paper was to develop poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) of curcumin (CUR), named CUR-PLGA-NPs, and to study the effect and mechanisms enhancing the oral bioavailability of CUR. CUR-PLGA-NPs were prepared according to a solid-in-oil-in-water (s/o/w) solvent evaporation method and exhibited a smooth and spherical shape with diameters of about 200 nm. Characterization of CUR-PLGA-NPs showed CUR was successfully encapsulated on the PLGA polymer. The entrapment efficiency and loading rate of CUR were 91.96 and 5.75%, respectively. CUR-PLGA-NPs showed about 640-fold in water solubility relative to that of n-CUR. A sustained CUR release to a total of approximately 77% was discovered from CUR-PLGA-NPs in artificial intestinal juice, but only about 48% in artificial gastric juice. After oral administration of CUR-PLGA-NPs, the relative bioavailability was 5.6-fold and had a longer half-life compared with that of native curcumin. The results showed that the effect in improving oral bioavailability of CUR may be associated with improved water solubility, higher release rate in the intestinal juice, enhanced absorption by improved permeability, inhibition of P-glycoprotein (P-gp)-mediated efflux, and increased residence time in the intestinal cavity. Thus, encapsulating hydrophobic drugs on PLGA polymer is a promising method for sustained and controlled drug delivery with improved bioavailability of Biopharmaceutics Classification System (BCS) class IV, such as CUR.
Javed, Ibrahim; Hussain, Syed Zajif; Shahzad, Atif; Khan, Jahanzeb Muhammad; Ur-Rehman, Habib; Rehman, Mubashar; Usman, Faisal; Razi, Muhammad Tahir; Shah, Muhammad Raza; Hussain, Irshad
2016-05-01
We report the synthesis and evaluation of lecithin-gold hybrid nanocarriers for the oral delivery of drugs with improved pharmacokinetics, Au-drug interactive bioactivity and controlled drug releasing behavior at physiological pH inside human body. For this purpose, diacerein, a hydrophobic anti-arthritic drug, was loaded in lecithin NPs (LD NPs), which were further coated by Au NPs either by in-situ production of Au NPs on LD NPs or by employing pre-synthesized Au NPs. All LDAu NPs were found to release drug selectively at the physiological pH of 7.4 and showed 2.5 times increase in the oral bioavailability of diacerein. Pharmacological efficacy was significantly improved i.e., greater than the additive effect of diacerein and Au NPs alone. LDAu NPs started suppressing inflammation at first phase, whereas LD NPs showed activity in the second phase of inflammation. These results indicate the interaction of Au NPs with prostaglandins and histaminic mediators of first phase of carrageenan induced inflammation. Acute toxicity study showed no hepatic damage but the renal toxicity parameters were close to the upper safety limits. Toxicity parameters were dependent on surface engineering of LDAu NPs. Apart from enhancing the oral bioavailability of hydrophobic drugs and improving their anti-inflammatory activity, these hybrid nanocarriers may have potential applications in gold-based photothermal therapy and the tracing of inflammation at atherosclerotic and arthritic site. Copyright © 2016 Elsevier B.V. All rights reserved.
Celasco, G; Papa, A; Jones, R; Moro, L; Bozzella, R; Surace, M M; Naccari, G C; Gasbarrini, G
2010-02-01
The administration of parnaparin sodium as oral colon-release tablets (CB-01-05 MMX) has been proposed as a novel approach for the treatment of ulcerative colitis (UC). To assess the efficacy and the tolerability of 8 weeks' oral daily administration of 210 mg of parnaparin sodium compared with placebo in subjects treated with stable-doses of oral aminosalicylates. This multicenter, randomized, double-blind proof of concept trial compared the efficacy of CB-01-05 MMX 210 mg tablets to placebo in 141 subjects with mild to moderately active left-sided UC treated with stable-doses of aminosalicylates. The efficacy was assessed by clinical activity index (CAI), endoscopic index (EI) and histological score (HS). A total of 121 subjects (61 in test group and 60 in control group) formed the per protocol (PP) population. After 8 weeks of treatment, clinical remission was achieved in 83.6% of the CB-01-05 MMX group, and in 63.3% in the comparator group (P = 0.011). This effect was also significantly evident in the test group at week 4 (P = 0.028). A significant difference was also detected in rectal bleeding, (disappeared respectively in 75.4% and 55.0%; P = 0.018), and in mucosal friability (recovered respectively in 80.3% and in 56.7%; P = 0.005). CB-01-05 MMX was safe and significantly effective in treating subjects with mild-to-moderate left-sided UC treated with stable-doses of aminosalicylates.
Haring, Alexander P; Tong, Yuxin; Halper, Justin; Johnson, Blake N
2018-06-10
Additive manufacturing (AM) appears poised to provide novel pharmaceutical technology and controlled release systems, yet understanding the effects of processing and post-processing operations on pill design, quality, and performance remains a significant barrier. This paper reports a study of the relationship between programmed concentration profile and resultant temporal release profile using a 3D printed polypill system consisting of a Food and Drug Administration (FDA) approved excipient (Pluronic F-127) and therapeutically relevant dosages of three commonly used oral agents for treatment of type 2 diabetes (300-500 mg per pill). A dual-extrusion hydrogel microextrusion process enables the programming of three unique concentration profiles, including core-shell, multilayer, and gradient structures. Experimental and computational studies of diffusive mass transfer processes reveal that programmed concentration profiles are dynamic throughout both pill 3D printing and solidification. Spectrophotometric assays show that the temporal release profiles could be selectively programmed to exhibit delayed, pulsed, or constant profiles over a 5 h release period by utilizing the core-shell, multilayer, and gradient distributions, respectively. Ultimately, this work provides new insights into the mass transfer processes that affect design, quality, and performance of spatially graded controlled release systems, as well as demonstrating the potential to create disease-specific polypill technology with programmable temporal release profiles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Intra-oral adsorption and release of aroma compounds following in-mouth wine exposure.
Esteban-Fernández, Adelaida; Rocha-Alcubilla, Nuria; Muñoz-González, Carolina; Moreno-Arribas, María Victoria; Pozo-Bayón, María Ángeles
2016-08-15
Wine "after-odour" defined as the long lasting aroma perception that remains after wine swallowing is an outstanding characteristic in terms of wine quality but a relatively unstudied phenomenon. Among the different parameters that might affect wine after-odour, the adsorption of odorants by the oral mucosa could be important but has been little explored. In this work, the impact of the chemical characteristics of aroma compounds on intra-oral adsorption was assessed by an in vivo approach that determined the amounts of odorants remaining in expectorated wine samples. In addition, the subsequent aroma release after in-mouth wine exposure was studied by means of intra-oral SPME/GC-MS using three different panellists. Oral adsorption of the aroma compounds added to the wines ranged from 6% to 43%, depending on their physicochemical characteristics. A progressive intra-oral aroma decrease at different decay rates depending on compound type and panellist was also found. The strength of the aroma-oral mucosa interactions seems to explain these results more than the amount of compound adsorbed by the oral mucosa. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nanosized Building Blocks for Customizing Novel Antibiofilm Approaches.
Paula, A J; Koo, H
2017-02-01
Recent advances in nanotechnology provide unparalleled flexibility to control the composition, size, shape, surface chemistry, and functionality of materials. Currently available engineering approaches allow precise synthesis of nanocompounds (e.g., nanoparticles, nanostructures, nanocrystals) with both top-down and bottom-up design principles at the submicron level. In this context, these "nanoelements" (NEs) or "nanosized building blocks" can 1) generate new nanocomposites with antibiofilm properties or 2) be used to coat existing surfaces (e.g., teeth) and exogenously introduced surfaces (e.g., restorative or implant materials) for prevention of bacterial adhesion and biofilm formation. Furthermore, functionalized NEs 3) can be conceived as nanoparticles to carry and selectively release antimicrobial agents after attachment or within oral biofilms, resulting in their disruption. The latter mechanism includes "smart release" of agents when triggered by pathogenic microenvironments (e.g., acidic pH or low oxygen levels) for localized and controlled drug delivery to simultaneously kill bacteria and dismantle the biofilm matrix. Here we discuss inorganic, metallic, polymeric, and carbon-based NEs for their outstanding chemical flexibility, stability, and antibiofilm properties manifested when converted into bioactive materials, assembled on-site or delivered at biofilm-surface interfaces. Details are provided on the emerging concept of the rational design of NEs and recent technological breakthroughs for the development of a new generation of nanocoatings or functional nanoparticles for biofilm control in the oral cavity.
Electrospinning nanofibers for controlled drug release
NASA Astrophysics Data System (ADS)
Banik, Indrani
Electrospinning is the most widely studied technique for the synthesis of nanofibers. Electrospinning is considered as one of the technologies that can produce nanosized drugs incorporated in polymeric nanofibers. In vitro and in vivo studies have demonstrated that the release rates of drugs from these nanofiber formulations are enhanced compared to those from original drug substance. This technology has the potential for enhancing the oral delivery of poorly soluble drugs. The electrospun mats were made using Polycaprolactone/PCL, Poly(DL-lactide)/PDL 05 and Poly(DL-lactide-co-glycolide)/PLGA. The drugs incorporated in the electrospun fibers were 5-Fluorouracil and Rapamycin. The evidence of the drugs being embedded in the polymers was obtained by scanning electron microscopy (SEM), Raman and infrared spectroscopy. The release of 5-Fluorouracil and Rapamycin were followed by UV-VIS spectroscopy.
Shergill, Mandip; Patel, Mina; Khan, Siraj; Bashir, Ayesha; McConville, Christopher
2016-01-30
Administration of drugs via the oral route is the most common and preferred route due to its ease of administration, cost-effectiveness and flexibility in design. However, if the drug being administered has limited aqueous solubility it can result in poor bioavailability. Furthermore, the low pH of the stomach as well as enzymatic activity can result in drugs delivered via the oral route being rapidly metabolised and degraded. Here we demonstrate the development and characterisation of sustained release solid dispersion oral tablets, containing the poorly water-soluble drug disulfiram (DSF). The tablets, which are manufactured from two different polymers (Kolliphor(®) P 188 and P 237) specifically designed for the manufacture of solid dispersions and two different polymers (Kollidon(®) SR and HPMC) specifically designed to provide sustained release, can enhance the solubility of DSF, sustain its release, while protecting it from degradation in simulated gastric fluid (SGF). The paper demonstrates that when using the hot melt method at 80°C the DSF loading capacity of the Kolliphor(®) P 188 and P 237 polymers is approximately 43 and 46% respectively, with the DSF completely in an amorphous state. The addition of 80% Kollidon(®) SR to the formulation completely protected the DSF in SGF for up to 70 min with 16% degradation after 120 min, while 75% degradation occurred after 120 min with the addition of 80% HPMC. The release rate of DSF can be manipulated by both the loading and type of sustained release polymer used, with HPMC providing for a much faster release rate compared to Kollidon(®) SR. Copyright © 2015 Elsevier B.V. All rights reserved.
Dubey, Rupal; Dubey, Rounak; Omrey, Pratibha; Vyas, S P; Jain, S K
2010-09-01
The treatment of ulcerative colitis (inflammatory bowel disease, IBD) has been achieved by using colon specific drug delivery system bearing 5-ASA and Camylofine dihydrochloride. Chitosan microspheres were prepared separately for both the drugs using emulsion method followed by enteric coating with EudragitS-100. The in vitro drug release was investigated in different simulated GIT medium. The drug release in PBS (pH7.4) and simulated gastric fluid has shown almost similar pattern and rate, whereas a significant increase in drug release (70.3 +/- 1.36 and 72.5 +/- 1.33% of 5-ASA and Camylofine, respectively) was observed in medium containing 3% rat caecal matter, after 24 h. In control study, 57.1 +/- 1.13% of 5-ASA and 59.2 +/- 1.2% of Camylofine release was observed in 24 h. For enzyme induction, rats were orally administered with 1 mL of 1% w/v dispersion of chitosan for 5 days and release rate studies were conducted in SCF with 3% w/v of caecal matter. An enhanced drug release (i.e., 92.3 +/- 3.81 and 95.5 +/- 3.52% 5-ASA and Camylofine, respectively) was observed after 24 h in dissolution medium containing 3% caecal content obtained from enzyme induced animals. In vivo data showed that microspheres delivered most of its drug load (76.55 +/- 2.13%) to the colon after 9 h, which reflects its targeting potential to the colon. It is concluded that orally administered microspheres of both drugs can be used together for the specific delivery of drug to the colon and reduce symptoms of ulcerative colitis.
Rothwell, M P; Pearson, D; Hunter, J D; Mitchell, P A; Graham-Woollard, T; Goodwin, L; Dunn, G
2011-06-01
To determine if oral oxycodone (OOXY) could provide equivalent postoperative analgesia and a similar side-effect profile to i.v. patient-controlled morphine in patients undergoing elective primary total hip replacement (THR) under spinal anaesthesia. We studied 110 consecutive patients aged 60-85 yr. After operation, patients were randomly allocated to receive either oral controlled- and immediate-release OOXY or i.v. patient-controlled analgesia (IVPCA) with morphine. Both groups received regular co-analgesia and antiemetics. The primary outcome measures were: (i) postoperative pain at rest and movement and (ii) nausea score recorded 12 hourly. The secondary outcome measures were: (i) time to first mobilization, (ii) total amount of opioid consumed, (iii) number of additional antiemetic doses, and (iv) time to analgesic discontinuation. There were no statistically significant differences in the primary outcome measures of pain at rest and movement (P>0.05, 95% confidence intervals -0.41, +0.96) or nausea score (P>0.5). The secondary outcome measures showed no significant difference in the total amount of opioid consumed (102 vs 63 mg; P>0.05) or time to mobilization (24.45 vs 26.6 h, P=0.2). The number of antiemetic doses required in the first 24 h was significantly lower in the OOXY group (1.1 vs 1.4, P<0.05). The time to analgesic discontinuation was significantly shorter in the OOXY group (50.5 vs 56.6 h, P<0.05). Oral analgesia with OOXY was approximately GBP 10 less expensive per patient than IVPCA. Oral analgesia with OOXY after THR offers non-inferior analgesia to IVPCA and may offer some logistical and cost advantages.
Nazir, Jameel; Posnett, John; Walker, Anna; Odeyemi, Isaac A; Hakimi, Zalmai; Garnham, Andrew
2015-05-01
To evaluate the costs and outcomes associated with different sequences of oral anti-muscarinic agents and the selective β(3)-adrenoceptor agonist, mirabegron, for the treatment of overactive bladder (OAB). A Markov model with monthly cycle length and time horizon up to 3 years was designed to compare two different sequences of up to three lines of oral therapy for OAB. Patients who discontinued one oral medication could switch to another oral medication or could discontinue treatment. Patients whose symptoms were not controlled were considered for botulinum toxin or sacral nerve stimulation. Outcomes were measured by (a) number of patients with controlled symptoms (no incontinence episodes and <8 micturitions per 24 h); (b) patients with no incontinence episodes per 24 hours; and (c) patients with <8 micturitions per 24 h. Including a third-line oral medication before considering other treatment options improved all patient outcomes, irrespective of the specific drugs used. A three-line sequence including two generic (oxybutynin first line and tolterodine extended-release second line) and one branded drug (solifenacin 5 mg third line) resulted in inferior patient outcomes at costs similar to a sequence of branded drugs (mirabegron first line, solifenacin 5 mg second line, solifenacin 10 mg third line): controlled patients (generic 29.6/1000 vs branded 38.7/1000); patients with no incontinence episodes (103.6/1000 vs 123.7/1000); patients with <8 micturitions (228.7/1000 vs 262.1/1000). Annual treatment costs per patient were similar (generic £1299 vs branded £1385). In the treatment of OAB, low-cost generic treatments are not necessarily more cost-effective than branded drugs, primarily because a better efficacy and tolerability balance improves both symptom control and persistence.
Exhaled nitric oxide in paediatric asthma and cystic fibrosis.
Lundberg, J O; Nordvall, S L; Weitzberg, E; Kollberg, H; Alving, K
1996-01-01
Nitric oxide (NO) is present in exhaled air of humans. This NO is mostly produced in the upper airways, whereas basal NO excretion in the lower airways is low. Children with Kartagener's syndrome have an almost total lack of NO in nasally derived air, whereas adult asthmatics have increased NO in orally exhaled air. NO excretion was measured in the nasal cavity and in orally exhaled air in 19 healthy children, in 36 age matched subjects with asthma, and in eight children with cystic fibrosis. NO levels in orally exhaled air were similar in controls and in children with cystic fibrosis, at 4.8 (SD 1.2) v 5.8 (0.8) parts per billion (ppb), but were increased in asthmatic children who were untreated or were being treated only with low doses of inhaled steroids (13.8 (2.5) ppb). Nasal NO levels were reduced by about 70% in children with cystic fibrosis compared to controls and asthmatics. Measurements of airway NO release in different parts of the airways may be useful in non-invasive diagnosis and monitoring of inflammatory airway diseases. PMID:8984919
Terminology challenges: defining modified release dosage forms in veterinary medicine.
Martinez, Marilyn N; Lindquist, Danielle; Modric, Sanja
2010-08-01
Terminologies for describing dosage form release characteristics for human pharmaceuticals have been addressed by bodies such as the US Food and Drug Administration (FDA), the International Conference on Harmonization (ICH), and the US Pharmacopeia (USP). While the definition for terms such as "immediate release," "modified release," "extended release," and "delayed release" are now well accepted for human pharmaceuticals, confusion still exists within the veterinary community. In part, this confusion is attributable to differences between human and veterinary dosage forms (such as the preponderance of parenteral vs. oral extended release products for use in animals vs. the focus on oral extended release formulations for human use) which reflect interspecies differences in physiology and conditions of use. It also simply reflects a lack of attention to existing definitions. In an effort to remedy this problem, this manuscript reflects an initial effort to suggest definitions that may be appropriate for describing formulation effects in veterinary medicine. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
A Microparticle/Hydrogel Combination Drug-Delivery System for Sustained Release of Retinoids
Gao, Song-Qi; Maeda, Tadao; Okano, Kiichiro; Palczewski, Krzysztof
2012-01-01
Purpose. To design and develop a drug-delivery system containing a combination of poly(d,l-lactide-co-glycolide) (PLGA) microparticles and alginate hydrogel for sustained release of retinoids to treat retinal blinding diseases that result from an inadequate supply of retinol and generation of 11-cis-retinal. Methods. To study drug release in vivo, either the drug-loaded microparticle–hydrogel combination was injected subcutaneously or drug-loaded microparticles were injected intravitreally into Lrat−/− mice. Orally administered 9-cis-retinoids were used for comparison and drug concentrations in plasma were determined by HPLC. Electroretinography (ERG) and both chemical and histologic analyses were used to evaluate drug effects on visual function and morphology. Results. Lrat−/− mice demonstrated sustained drug release from the microparticle/hydrogel combination that lasted 4 weeks after subcutaneous injection. Drug concentrations in plasma of the control group treated with the same oral dose rose to higher levels for 6−7 hours but then dropped markedly by 24 hours. Significantly increased ERG responses and a markedly improved retinal pigmented epithelium (RPE)–rod outer segment (ROS) interface were observed after subcutaneous injection of the drug-loaded delivery combination. Intravitreal injection of just 2% of the systemic dose of drug-loaded microparticles provided comparable therapeutic efficacy. Conclusions. Sustained release of therapeutic levels of 9-cis-retinoids was achieved in Lrat−/− mice by subcutaneous injection in a microparticle/hydrogel drug-delivery system. Both subcutaneous and intravitreal injections of drug-loaded microparticles into Lrat−/− mice improved visual function and retinal structure. PMID:22918645
Setia, Anupama; Kansal, Sahil; Goyal, Naveen
2013-01-01
Background: Microspheres constitute an important part of oral drug delivery system by virtue of their small size and efficient carrier capacity. However, the success of these microspheres is limited due to their short residence time at the site of absorption. Objective: The objective of the present study was to formulate and systematically evaluate in vitro performance of enteric coated mucoadhesive microspheres of duloxetine hydrochloride (DLX), an acid labile drug. Materials and Methods: DLX microspheres were prepared by simple emulsification phase separation technique using chitosan as carrier and glutaraldehyde as a cross-linking agent. Microspheres prepared were coated with eudragit L-100 using an oil-in-oil solvent evaporation method. Eudragit L-100was used as enteric coating polymer with the aim to release the drug in small intestine The microspheres prepared were characterized by particle size, entrapment efficiency, swelling index (SI), mucoadhesion time, in vitro drug release and surface morphology. A 32 full factorial design was employed to study the effect of independent variables polymer-to-drug ratio (X1) and stirring speed (X2) on dependent variables, particle size, entrapment efficiency, SI, in vitro mucoadhesion and drug release up to 24 h (t24). Results: Microspheres formed were discrete, spherical and free flowing. The microspheres exhibited good mucoadhesive property and also showed high percentage entrapment efficiency. The microspheres were able to sustain the drug release up to 24 h. Conclusion: Thus, the prepared enteric coated mucoadhesive microspheres may prove to be a potential controlled release formulation of DLX for oral administration. PMID:24167786
Keohane, Kieran; Rosa, Mónica; Coulter, Ivan S; Griffin, Brendan T
2016-01-01
Investigate the potential of coated minispheres (SmPill®) to enhance localized Ciclosporin A (CsA) delivery to the colon. CsA self-emulsifying drug delivery systems (SEDDS) were encapsulated into SmPill® minispheres. Varying degrees of coating thickness (low, medium and high) were applied using ethylcellulose and pectin (E:P) polymers. In vitro CsA release was evaluated in simulated gastric and intestinal media. Bioavailability of CsA in vivo following oral administration to pigs of SmPill® minispheres was compared to Neoral® po and Sandimmun® iv in a pig model. CsA concentrations in blood and intestinal tissue were determined by HPLC-UV. In vitro CsA release from coated minispheres decreased with increasing coating thickness. A linear relationship was observed between in vitro CsA release and in vivo bioavailability (r(2) = 0.98). CsA concentrations in the proximal, transverse and distal colon were significantly higher following administration of SmPill®, compared to Neoral® po and Sandimmun® iv (p < 0.05). Analysis of transverse colon tissue subsections also revealed significantly higher CsA concentrations in the mucosa and submucosa using SmPill® minispheres (p < 0.05). Modulating E:P coating thickness controls release of CsA from SmPill® minispheres. Coated minispheres limited CsA release in the small intestine and enhanced delivery and uptake in the colon. These findings demonstrate clinical advantages of an oral coated minisphere-enabled CsA formulation in the treatment of inflammatory conditions of the large intestine.
Muñoz-González, Carolina; Feron, Gilles; Guichard, Elisabeth; Rodríguez-Bencomo, J José; Martín-Álvarez, Pedro J; Moreno-Arribas, M Victoria; Pozo-Bayón, M Ángeles
2014-08-20
The aim of this work was to determine the role of saliva in wine aroma release by using static and dynamic headspace conditions. In the latter conditions, two different sampling points (t = 0 and t = 10 min) corresponding with oral (25.5 °C) and postoral phases (36 °C) were monitored. Both methodologies were applied to reconstituted dearomatized white and red wines with different nonvolatile wine matrix compositions and a synthetic wine (without matrix effect). All of the wines had the same ethanol concentration and were spiked with a mixture of 45 aroma compounds covering a wide range of physicochemical characteristics at typical wine concentrations. Two types of saliva (human and artificial) or control samples (water) were added to the wines. The adequacy of the two headspace methodologies for the purposes of the study (repeatability, linear ranges, determination coefficients, etc.) was previously determined. After application of different chemometric analysis (ANOVA, LSD, PCA), results showed a significant effect of saliva on aroma release dependent on saliva type (differences between artificial and human) and on wine matrix using static headspace conditions. Red wines were more affected than white and synthetic wines by saliva, specifically human saliva, which provoked a reduction in aroma release for most of the assayed aroma compounds independent of their chemical structure. The application of dynamic headspace conditions using a saliva bioreactor at the two different sampling points (t = 0 and t = 10 min) showed a lesser but significant effect of saliva than matrix composition and a high influence of temperature (oral and postoral phases) on aroma release.
Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Makuch, Krzysztof; Barałkiewicz, Danuta
2018-03-01
Despite the fact that titanium is considered highly biocompatible, its presence in the oral cavity (an environment of frequently changing pH and temperature) may result in the release of titanium from intraosseous implants into the oral mucosa, causing a range of reactions from the human body. Fragments of oral mucosa collected from patients after dental implant insertion were analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The study revealed an elevated content of elements (Ti, Al, V) which are components of the metal implants and temporary cover screws. Dynamic ablation of the tissue surface was used in order to obtain maps of the content and distribution of analyzed elements. The material consisted of 30 oral mucosa tissue fragments collected 3-5 months after implantation and 10 samples collected before implantation (control group). The application of optical microscope allowed for indication and confirmation of the location of metal particles prior to LA-ICP-MS analysis. The so-obtained map permitted location of regions containing metal particles. LA-ICP-MS analysis revealed groups of samples with similar properties of metal particles, thus confirming that those metal particles were the main source of the elevated content of metals (Ti, Al, V) in the tissue after implantation. A calibration strategy based on matrix matched solid standards with powdered egg white proteins as matrix material was applied with 34 S as an internal standard. The accuracy of the analytical method was verified by ablating pellets of certified reference material ERM-BB422 Fish muscle. Copyright © 2017 Elsevier GmbH. All rights reserved.
Schlesinger, Erica; Johengen, Daniel; Luecke, Ellen; Rothrock, Ginger; McGowan, Ian; van der Straten, Ariane; Desai, Tejal
2016-01-01
Purpose The effectiveness of Tenofovir based HIV pre-exposure prophylaxis (PrEP) is proven, but hinges on correct and consistent use. User compliance and therapeutic effectiveness can be improved by long acting drug delivery systems. Here we describe a thin-film polymer device (TFPD) as a biodegradable subcutaneous implant for PrEP. Methods A thin-film polycaprolactone (PCL) membrane controls drug release from a reservoir. To achieve membrane controlled release, TAF requires a formulation excipient such as PEG300 to increase the dissolution rate and reservoir solubility. Short-term In vitro release studies are used to develop an empirical design model, which is applied to the production of in vitro prototype devices demonstrating up to 90-days of linear release and TAF chemical stability. Results The size and shape of the TFPD are tunable, achieving release rates ranging from 0.5–4.4 mg/day in devices no larger than a contraceptive implant. Based on published data for oral TAF, subcutaneous constant-rate release for HIV PrEP is estimated at < 2.8mg/day. Prototype devices demonstrated linear release at 1.2mg/day for up to 90 days and at 2.2mg/day for up to 60 days. Conclusions We present a biodegradable TFPD for subcutaneous delivery of TAF for HIV PrEP. The size, shape and release rate of the device are tunable over a > 8-fold range. PMID:26975357
Zur, Moran; Cohen, Noa; Agbaria, Riad; Dahan, Arik
2015-07-15
The purpose of this work was to study the challenges and prospects of regional-dependent absorption in a controlled-release scenario, through the oral biopharmaceutics of the sulfonylurea antidiabetic drug glipizide. The BCS solubility class of glipizide was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in-vitro (PAMPA and Caco-2) and in-vivo in rats. Metoprolol was used as the low/high permeability class boundary marker. Glipizide was found to be a low-solubility compound. All intestinal permeability experimental methods revealed similar trend; a mirror image small intestinal permeability with opposite regional/pH-dependency was obtained, a downward trend for glipizide, and an upward trend for metoprolol. Yet the lowest permeability of glipizide (terminal Ileum) was comparable to the lowest permeability of metoprolol (proximal jejunum). At the colon, similar permeability was evident for glipizide and metoprolol, that was higher than metoprolol's jejunal permeability. We present an analysis that identifies metoprolol's jejunal permeability as the low/high permeability class benchmark anywhere throughout the intestinal tract; we show that the permeability of both glipizide and metoprolol matches/exceeds this threshold throughout the entire intestinal tract, accounting for their success as controlled-release dosage form. This represents a key biopharmaceutical characteristic for a successful controlled-release dosage form. Copyright © 2015 Elsevier B.V. All rights reserved.
Yin, Juntao; Hou, Yantao; Yin, Yuyun; Song, Xiaoyong
2017-01-01
Diabetes mellitus is an incurable metabolic disorder that seriously threatens human health. At present, there is no effective medication available to defeat it. This work intended to develop selenium-coated nanostructured lipid carriers (SeNLCs) for enhancing the oral bioavailability and the curative effect of berberine, an antidiabetic phytomedicine. Berberine-loaded SeNLCs (BB-SeNLCs) were prepared by hot-melt dispersion/homogenization procedure followed by in situ reduction. BB-SeNLCs were characterized by particle size, morphology, entrapment efficiency (EE) and in vitro release. Pharmacokinetics of berberine solution, berberine-loaded NLCs (BB-NLCs) and BB-SeNLCs were studied in Sprague Dawley rats administered by oral gavage. The prepared BB-SeNLCs were around 160 nm in particle size with an EE of 90%. In addition, BB-SeNLCs exhibited a better sustained release of berberine compared to the plain NLCs. After oral administration, BB-SeNLCs greatly enhanced the oral bioavailability of berberine, which was approximately 6.63 times as much as that of berberine solution. The hypoglycemic effect of BB-SeNLCs was also significantly superior to that of BB-NLCs and berberine solution. It turned out that sustained drug release and good intestinal absorption, plus the synergy of selenium, were basically responsible for enhanced oral bioavailability and hypoglycemic effect. Our findings show that SeNLCs are promising nanocarriers for oral delivery of berberine to strengthen the antidiabetic action.
Yin, Juntao; Hou, Yantao; Yin, Yuyun; Song, Xiaoyong
2017-01-01
Diabetes mellitus is an incurable metabolic disorder that seriously threatens human health. At present, there is no effective medication available to defeat it. This work intended to develop selenium-coated nanostructured lipid carriers (SeNLCs) for enhancing the oral bioavailability and the curative effect of berberine, an antidiabetic phytomedicine. Berberine-loaded SeNLCs (BB-SeNLCs) were prepared by hot-melt dispersion/homogenization procedure followed by in situ reduction. BB-SeNLCs were characterized by particle size, morphology, entrapment efficiency (EE) and in vitro release. Pharmacokinetics of berberine solution, berberine-loaded NLCs (BB-NLCs) and BB-SeNLCs were studied in Sprague Dawley rats administered by oral gavage. The prepared BB-SeNLCs were around 160 nm in particle size with an EE of 90%. In addition, BB-SeNLCs exhibited a better sustained release of berberine compared to the plain NLCs. After oral administration, BB-SeNLCs greatly enhanced the oral bioavailability of berberine, which was approximately 6.63 times as much as that of berberine solution. The hypoglycemic effect of BB-SeNLCs was also significantly superior to that of BB-NLCs and berberine solution. It turned out that sustained drug release and good intestinal absorption, plus the synergy of selenium, were basically responsible for enhanced oral bioavailability and hypoglycemic effect. Our findings show that SeNLCs are promising nanocarriers for oral delivery of berberine to strengthen the antidiabetic action. PMID:29263662
Ling, Guixia; Zhang, Peng; Zhang, Wenping; Sun, Jin; Meng, Xiaoxue; Qin, Yimeng; Deng, Yihui; He, Zhonggui
2010-12-01
To improve the encapsulation efficiency and oral bioavailability of vincristine sulfate (VCR), novel self-assembled dextran sulphate-PLGA hybrid nanoparticles (DPNs) were successfully developed using self-assembly and nanoprecipitation method. By introducing the negative polymer of dextran sulphate sodium (DS), VCR was highly encapsulated (encapsulation efficiency up to 93.6%) into DPNs by forming electrostatic complex. In vitro release of VCR solution (VCR-Sol) and VCR-loaded DPNs (VCR-DPNs) in pH 7.4 PBS showed that about 80.4% of VCR released from VCR-DPNs after 96h and burst release was effectively reduced, indicating pronounced sustained-release characteristics. In vivo pharmacokinetics in rats after oral administration of VCR-Sol and VCR-DPNs indicated that the apparent bioavailability of VCR-DPNs was increased to approximate 3.3-fold compared to that of VCR-Sol. The cellular uptake experiments were conducted by quantitative assay of VCR cellular accumulation and fluorescence microscopy imaging of fluorescent labeled DPNs in two human breast cancer cells including MCF-7 and P-glycoprotein over-expressing MCF-7/Adr cells. The relative cellular uptake of VCR-DPNs was 12.4-fold higher than that of VCR-Sol in MCF-7/Adr cells implying that P-glycoprotein-mediated drug efflux was diminished by the introduction of DPNs. The new DPNs might provide an effective strategy for oral delivery of VCR with improved encapsulation efficiency and oral bioavailability. Copyright © 2010 Elsevier B.V. All rights reserved.
Chen, Zhi-Qiang; Liu, Ying; Zhao, Ji-Hui; Wang, Lan; Feng, Nian-Ping
2012-01-01
Indirubin, isolated from the leaves of the Chinese herb Isatis tinctoria L, is a protein kinase inhibitor and promising antitumor agent. However, the poor water solubility of indirubin has limited its application. In this study, a supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) was developed to improve the oral bioavailability of indirubin. A prototype S-SMEDDS was designed using solubility studies and phase diagram construction. Precipitation inhibitors were selected from hydrophilic polymers according to their crystallization-inhibiting capacity through in vitro precipitation tests. In vitro release of indirubin from S-SMEDDS was examined to investigate its likely release behavior in vivo. The in vivo bioavailability of indirubin from S-SMEDDS and from SMEDDS was compared in rats. The prototype formulation of S-SMEDDS comprised Maisine™ 35-1:Cremophor(®) EL:Transcutol(®) P (15:40:45, w/w/w). Polyvinylpyrrolidone K17, a hydrophilic polymer, was used as a precipitation inhibitor based on its better crystallization-inhibiting capacity compared with polyethylene glycol 4000 and hydroxypropyl methylcellulose. In vitro release analysis showed more rapid drug release from S-SMEDDS than from SMEDDS. In vivo bioavailability analysis in rats indicated that improved oral absorption was achieved and that the relative bioavailability of S-SMEDDS was 129.5% compared with SMEDDS. The novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of indirubin in rats. The results suggest that S-SMEDDS is a superior means of oral delivery of indirubin.
Hamed, Rania; Basil, Marwa; AlBaraghthi, Tamadur; Sunoqrot, Suhair; Tarawneh, Ola
2016-12-01
Chronic oral administration of the non-steroidal anti-inflammatory drug, diclofenac diethylamine (DDEA), is often associated with gastrointestinal ulcers and bleeding. As an alternative to oral administration, a nanoemulsion-based gel (NE gel) formulation of DDEA was developed for topical administration. An optimized formulation for the o/w nanoemulsion of oil, surfactant and cosurfactant was selected based on nanoemulsion mean droplet size, clarity, stability, and flowability, and incorporated into the gelling agent Carbopol® 971P. Rheological studies of the DDEA NE gel were conducted and compared to those of conventional DDEA gel and emulgel. The three gels exhibited an elastic behavior, where G' dominated G″ at all frequencies, indicating the formation of strong gels. NE gel exhibited higher G' values than conventional gel and emulgel, which indicated the formation of a stronger gel network. Strat-M® membrane, a synthetic membrane with diffusion characteristics that are well correlated to human skin, was used for the in vitro diffusion studies. The release of DDEA from conventional gel, emulgel and NE gel showed a controlled release pattern over 12 h, which was consistent with the rheological properties of the gels. DDEA release kinetics from the three gels followed super case II transport as fitted by Korsmeyer-Peppas model.
Wu, H; Zhang, Z X; Zhao, H P; Wu, D C; Wu, B L; Cong, R
2004-12-01
Sodium fluoride-loaded gelatin microspheres (NaF-GMS) were prepared using double-phase emulsified condensation polymerization. The average diameter of microspheres was (11.33+/-5.56) microm. The drug content and encapsulation efficiency were 8.80% and 76.73%, respectively. The fluoride releasing profiles of NaF-GMS in physiological saline and artificial saliva (pH 4.5, pH 6.8) showed that NaF-GMS had a sustained-release property and fluoride release rate was increased in pH 4.5 artificial saliva. Experiments conducted in rabbits' oral cavity using NaF-GMS and NaF solution as control revealed NaF-GMS could maintain oral fluoride retention longer than NaF solution. Cariostatic abilities of NaF-GMS including demineralization prohibition in vitro, fluoride deposition in artificial dental plaque and the ability of targeting to cariogenic bacteria were investigated in artificial dental plaque. The results indicated NaF-GMS with lower fluoride concentrations could achieve equivalent cariostatic effect to the concentrated NaF solution, at the same time, could prolong fluoride retention in dental plaque. Microscopic observation showed that NaF-GMS carrying fusion protein of glucan-binding domain could adhere more bacteria than NaF-GMS and this might indicate the possibility of targeting to cariogenic bacteria when NaF-GMS were properly modified.
Hosny, Khaled M; Aljaeid, Bader M
2014-07-01
The aim of this study was to prepare sildenafil citrate as solid lipid nanoparticles (SLNs), in order to find an innovative way for alleviating the disadvantages associated with commercially available sildenafil citrate tablets. These limitations include poor solubility and extensive first-pass metabolism, resulting in low (40%) bioavailability and short elimination half-life (4 h). SLNs were prepared by hot homogenization followed by ultrasonication. Solubility of sildenafil citrate in different solid lipids was measured, effect of process variables as surfactant type and concentration, homogenization time, ultrasonication time and charge-inducing agent on the particle size, zeta potential and encapsulation efficiency were also determined. Furthermore, in vitro drug release, stability and in vivo pharmacokinetics were studied in rabbits Results: The best SLN formula consisted of 2% precirol ATO5, 0.5% phosphatidylcholine, 2.5% gelucire 44/14, 0.125% stearylamine, had an average particle size of 28.5 nm with 95.34% entrapment efficiency and demonstrated a controlled drug release over 24 h. An in vivo pharmacokinetic study revealed enhanced bioavailability by > 1.87 fold, and the mean residence time was longer than that for the commercially available tablet. SLN could be a promising carrier for sustained/prolonged sildenafil citrate release with enhanced oral bioavailability.
Webster, Lynn R.; Lawler, John; Lindhardt, Karsten; Dayno, Jeffrey M.
2017-01-01
Objective. To compare the relative human abuse potential of intact and manipulated morphine abuse-deterrent, extended-release injection-molded tablets (morphine-ADER-IMT) with that of marketed morphine sulfate ER tablets Methods. This randomized, double-blind, triple-dummy, active- and placebo-controlled, 4-way crossover, single-center study included adult volunteers who were experienced, nondependent, recreational opioid users. Participants were randomized 1:1:1:1 to placebo, morphine-ADER-IMT (60 mg, intact), morphine-ADER-IMT (60 mg, manipulated), and morphine ER (60 mg, manipulated) and received 1 dose of each oral agent in crossover fashion, separated by ≥5 days. Pharmacodynamic and pharmacokinetic endpoints were assessed, including the primary endpoint of peak effect of Drug Liking (Emax) via Drug Liking Visual Analog Scale (VAS) score and the secondary endpoints of time to Emax (TEmax) and mean abuse quotient (AQ; a pharmacokinetic parameter associated with drug liking). Results. Thirty-eight participants completed the study. Median Drug Liking VAS Emax was significantly lower after treatment with manipulated morphine-ADER-IMT (67) compared with manipulated morphine ER (74; P = 0.007). TEmax was significantly shorter after treatment with manipulated morphine ER compared with intact (P < 0.0001) or manipulated (P = 0.004) morphine-ADER-IMT. Mean AQ was lower after treatment with intact (5.7) or manipulated (16.4) morphine-ADER-IMT compared with manipulated morphine ER (45.9). Conclusions. Manipulated morphine-ADER-IMT demonstrated significantly lower Drug Liking Emax compared with manipulated morphine ER when administered orally. Morphine-ADER-IMT would be an important new AD, ER morphine product with lower potential for unintentional misuse by chewing or intentional manipulation for oral abuse than currently available non-AD morphine ER products. PMID:27633773
Stroh, Mark; Addy, Carol; Wu, Yunhui; Stoch, S Aubrey; Pourkavoos, Nazaneen; Groff, Michelle; Xu, Yang; Wagner, John; Gottesdiener, Keith; Shadle, Craig; Wang, Hong; Manser, Kimberly; Winchell, Gregory A; Stone, Julie A
2009-03-01
We describe how modeling and simulation guided program decisions following a randomized placebo-controlled single-rising oral dose first-in-man trial of compound A where an undesired transient blood pressure (BP) elevation occurred in fasted healthy young adult males. We proposed a lumped-parameter pharmacokinetic-pharmacodynamic (PK/PD) model that captured important aspects of the BP homeostasis mechanism. Four conceptual units characterized the feedback PD model: a sinusoidal BP set point, an effect compartment, a linear effect model, and a system response. To explore approaches for minimizing the BP increase, we coupled the PD model to a modified PK model to guide oral controlled-release (CR) development. The proposed PK/PD model captured the central tendency of the observed data. The simulated BP response obtained with theoretical release rate profiles suggested some amelioration of the peak BP response with CR. This triggered subsequent CR formulation development; we used actual dissolution data from these candidate CR formulations in the PK/PD model to confirm a potential benefit in the peak BP response. Though this paradigm has yet to be tested in the clinic, our model-based approach provided a common rational framework to more fully utilize the limited available information for advancing the program.
Successful treatment of mixed (mainly cancer) pain by tramadol preparations.
Kawahito, Shinji; Soga, Tomohiro; Mita, Naoji; Satomi, Shiho; Kinoshita, Hiroyuki; Arase, Tomoko; Kondo, Akira; Miki, Hitoshi; Takaishi, Kazumi; Kitahata, Hiroshi
2017-01-01
The patient, a 70-year-old Japanese woman diagnosed with parotid gland cancer, underwent wide excision and reconstruction (facial nerve ablation, nerve transposition). At 1 month after the surgery, she was brought to our hospital's pain medicine department because her postoperative pain and cancer-related pain were poorly controlled. She had already been prescribed a tramadol (37.5 mg)/acetaminophen (325 mg) combination tablet (5 tablets/day). However, in addition to the continuous pain in her face and lower limbs, she was troubled by a trigeminal neuralgia-like prominence ache. Because this pain could not be controlled by an increase to eight combination tablets per day, we switched her medication to a tramadol capsule. At 11 months post-surgery, we then switched her medication to an orally disintegrating tramadol tablet to improve medication adherence of the drug. From 14 months post-surgery, the patient also used a sustained-release tramadol preparation, and she was then able to sleep well. Her current regimen is an orally disintegrating sustained-release tablet combination (total 300 mg tramadol) per day, and she achieved sufficient pain relief. Because tramadol is not classified as a medical narcotic drug, it widely available and was shown here to be extremely useful for the treatment of our patient's mixed (mainly cancer) pain. J. Med. Invest. 64: 311-312, August, 2017.
Gastric emptying of multi-particulate dosage forms.
Newton, J Michael
2010-08-16
The evidence in the literature for the concept that multi-particulate dosage forms below a specific size empty from the stomach as if they were liquids and hence have the potential to provide the best solution to the formulation of controlled release oral dosage forms, has been considered. There is some evidence that particles less than 1.0mm provide a more rapid response than larger size particles but there is also evidence that this is not always the case and that rapid and reproducible gastric emptying of small particles does not always occur when they are administered. There is strong evidence that food can delay the gastric emptying of multi-particulate systems. Some of the misconception for gastric emptying performance of multi-particulate system is shown to be related to the limitation of the study design and limitation of the way the data is processed. Nevertheless, there is clear evidence that multi-particulate systems can provide effective oral controlled release dosage forms. There is still some way to go with experimental techniques which would allow a definitive answer to the issue of how the variability of the gastric emptying of multi-particulate systems of less than 2.0mm arises. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering☆
Moioli, Eduardo K.; Clark, Paul A.; Xin, Xuejun; Lal, Shan; Mao, Jeremy J.
2010-01-01
Current treatments for diseases and trauma of dental, oral and craniofacial (DOC) structures rely on durable materials such as amalgam and synthetic materials, or autologous tissue grafts. A paradigm shift has taken place to utilize tissue engineering and drug delivery approaches towards the regeneration of these structures. Several prototypes of DOC structures have been regenerated such as temporomandibular joint (TMJ) condyle, cranial sutures, tooth structures and periodontium components. However, many challenges remain when taking in consideration the high demand for esthetics of DOC structures, the complex environment and yet minimal scar formation in the oral cavity, and the need for accommodating multiple tissue phenotypes. This review highlights recent advances in the regeneration of DOC structures, including the tooth, periodontium, TMJ, cranial sutures and implant dentistry, with specific emphasis on controlled release of signaling cues for stem cells, biomaterial matrices and scaffolds, and integrated tissue engineering approaches. PMID:17499385
Muñoz-González, Carolina; Cueva, Carolina; Ángeles Pozo-Bayón, M; Victoria Moreno-Arribas, M
2015-11-15
Grape aroma precursors are odourless glycosides that represent a natural reservoir of potential active odorant molecules in wines. Since the first step of wine consumption starts in the oral cavity, the processing of these compounds in the mouth could be an important factor in influencing aroma perception. Therefore, the objective of this work has been to evaluate the ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors previously isolated from white grapes. To do so, two methodological approaches involving the use of typical oral bacteria or the whole oral microbiota isolated from human saliva were followed. Odorant aglycones released in the culture mediums were isolated and analysed by HS-SPME-GC/MS. Results showed the ability of oral bacteria to hydrolyse grape aroma precursors, releasing different types of odorant molecules (terpenes, benzenic compounds and lipid derivatives). The hydrolytic activity seemed to be bacteria-dependent and was subject to large inter-individual variability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Verstraete, G; Mertens, P; Grymonpré, W; Van Bockstal, P J; De Beer, T; Boone, M N; Van Hoorebeke, L; Remon, J P; Vervaet, C
2016-11-20
During this project 3 techniques (twin screw melt granulation/compression (TSMG), hot melt extrusion (HME) and injection molding (IM)) were evaluated for the manufacturing of thermoplastic polyurethane (TPU)-based oral sustained release matrices, containing a high dose of the highly soluble metformin hydrochloride. Whereas formulations with a drug load between 0 and 70% (w/w) could be processed via HME/(IM), the drug content of granules prepared via melt granulation could only be varied between 85 and 90% (w/w) as these formulations contained the proper concentration of binder (i.e. TPU) to obtain a good size distribution of the granules. While release from HME matrices and IM tablets could be sustained over 24h, release from the TPU-based TSMG tablets was too fast (complete release within about 6h) linked to their higher drug load and porosity. By mixing hydrophilic and hydrophobic TPUs the in vitro release kinetics of both formulations could be adjusted: a higher content of hydrophobic TPU was correlated with a slower release rate. Although mini-matrices showed faster release kinetics than IM tablets, this observation was successfully countered by changing the hydrophobic/hydrophilic TPU ratio. In vivo experiments via oral administration to dogs confirmed the versatile potential of the TPU platform as intermediate-strong and low-intermediate sustained characteristics were obtained for the IM tablets and HME mini-matrices, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Cancer inpatients morphine usage: a new England area survey.
Trollor, John
2003-08-01
This is a one year study of the use of morphine in cancer patients in 10 inpatient facilities in the New England Area Health Service in the north-west of New South Wales. The study explored 170 admissions relating to 122 patients, most of whom were cared for by their general practitioners. The use of morphine in these cancer patients was compared with the recommendations made by the expert working group of the European Association of Palliative Care.1 Those items which matched the recommendations included the initial doses for new users of morphine and the subcutaneous route being the preferred parenteral route. The data in this study differed from the recommendations in that only half of the patients received the immediate release morphine when first given oral morphine, only 43% had orders for immediate release oral morphine for breakthrough pain (with a variable frequency) and a significant number of orders for parenteral and immediate release oral morphine for breakthrough pain were outside the recommended doses (100% and 86.2%, respectively). Written orders for immediate release oral and parenteral morphine involved a dose range in significant numbers while only 30% of patients had orders for parenteral morphine for breakthrough pain. There was a low use of fixed interval variable dose (FIVD) morphine charts despite these being available in most facilities.
Contraceptive use in the Nordic countries.
Lindh, Ingela; Skjeldestad, Finn E; Gemzell-Danielsson, Kristina; Heikinheimo, Oskari; Hognert, Helena; Milsom, Ian; Lidegaard, Øjvind
2017-01-01
The aim was to compare contraceptive use in the Nordic countries and to assess compliance with recommendations from the European Medicines Agency regarding the use of combined oral contraception containing low-dose estrogen and levonorgestrel, norethisterone or norgestimate. Data on hormonal contraceptive prescriptions and sales figures for copper intrauterine devices were obtained from national databases and manufacturers in Denmark, Finland, Iceland, Norway and Sweden in 2010-2013. Contraceptive use was highest in Denmark (42%) and Sweden (41%), followed by Finland (40%). Combined oral contraception was the most used method in all countries, with the highest use in Denmark (26%). The second most used method was the levonorgestrel-releasing intrauterine system, with the highest use in Finland (15%) and ≈10% in the other countries. Copper intrauterine devices (7%) and the progestin-only pill (7%) were most often used in Sweden. Combined oral contraception use decreased with increasing age and levonorgestrel-releasing intrauterine system and progestin-only pills use increased. The use of long-acting reversible methods of contraception (=levonorgestrel-releasing intrauterine system, copper intrauterine devices, and implants) increased with time and was highest in Sweden (20%) and Finland (18%). The highest use of European Medicines Agency recommended combined oral contraception was in Denmark, increasing from 13 to 50% between 2010 and 2013. In Finland, recommended combined oral contraception remained below 1%. Contraceptive use was highest in Denmark and Sweden, levonorgestrel-releasing intrauterine system use was highest in Finland and all long-acting methods were most common in Sweden. The use of combined oral contraception recommended by the European Medicines Agency was highest in Denmark. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.
Tactics and Economics of Wildlife Oral Rabies Vaccination, Canada and the United States
Meltzer, Martin I.; Shwiff, Stephanie A.; Slate, Dennis
2009-01-01
Progressive elimination of rabies in wildlife has been a general strategy in Canada and the United States; common campaign tactics are trap–vaccinate–release (TVR), point infection control (PIC), and oral rabies vaccination (ORV). TVR and PIC are labor intensive and the most expensive tactics per unit area (≈$616/km2 [in 2008 Can$, converted from the reported $450/km2 in 1991 Can$] and ≈$612/km2 [$500/km2 in 1999 Can$], respectively), but these tactics have proven crucial to elimination of raccoon rabies in Canada and to maintenance of ORV zones for preventing the spread of raccoon rabies in the United States. Economic assessments have shown that during rabies epizootics, costs of human postexposure prophylaxis, pet vaccination, public health, and animal control spike. Modeling studies, involving diverse assumptions, have shown that ORV programs can be cost-efficient and yield benefit:cost ratios >1.0. PMID:19757549
Neutrophil extracellular trap formation in supragingival biofilms.
Hirschfeld, Josefine; Dommisch, Henrik; Skora, Philipp; Horvath, Gabor; Latz, Eicke; Hoerauf, Achim; Waller, Tobias; Kawai, Toshihisa; Jepsen, Søren; Deschner, James; Bekeredjian-Ding, Isabelle
2015-01-01
Oral biofilms are the causative agents of the highly prevalent oral diseases periodontitis and caries. Additionally, the host immune response is thought to play a critical role in disease onset. Neutrophils are known to be a key host response factor to bacterial challenge on host surfaces. Release of neutrophil extracellular traps (NETs) as a novel antimicrobial defense strategy has gained increasing attention in the past years. Here, we investigated the influx of neutrophils into the dental plaque and the ability of oral bacteria to trigger intra-biofilm release of NETs and intracellular proteins. Supragingival biofilms and whole saliva were sampled from systemically healthy subjects participating in an experimental gingivitis study. Biofilms were analysed by immunofluorescence followed by confocal and fluorescence microscopy. Moreover, concentrations of cytokines and immune-associated proteins in biofilm suspensions and saliva were assessed by ELISA. Neutrophils obtained from blood were stimulated with twelve bacterial species isolated from cultured biofilms or with lipopolysaccharide to monitor NET formation. Neutrophils, NETs, neutrophil-associated proteins (myeloperoxidase, elastase-2, cathepsin G, cathelicidin LL-37), interleukin-8, interleukin-1β and tumor necrosis factor were detected within plaque samples and saliva. All tested bacterial species as well as the polymicrobial samples isolated from the plaque of each donor induced release of NETs and interleukin-8. The degree of NET formation varied among different subjects and did not correlate with plaque scores or clinical signs of local inflammation. Our findings indicate that neutrophils are attracted towards dental biofilms, in which they become incorporated and where they are stimulated by microbes to release NETs and immunostimulatory proteins. Thus, neutrophils and NETs may be involved in host biofilm control, although their specific role needs to be further elucidated. Moreover, inter-patient variability suggests NET formation as a potential factor influencing the individual course of disease. Copyright © 2015 Elsevier GmbH. All rights reserved.
Sabale, Vidya; Paranjape, Archana; Patel, Vandana; Sabale, Prafulla
2017-02-01
Identification and physiochemical parameters such as solubility, loss on drying, viscosity, pH, swelling index, starch and gum constituents were determined in natural polymers and showed satisfactory results. Spectral studies established the compatibility of natural polymers. The drug release kinetics in preliminary trial batches showed that tablets containing natural mucilages and gum showed a prolonged drug release comparable to Carbopol 974P and Methocel K4M. Also, all tablets showed a satisfactory drug permeability flux. Acute toxicity studies confirmed the safety of natural polymers. Using response surface method supported by 2 3 factorial design, the optimized buccoadhesive tablets (C1) with drug release at 8h (R8h, %) of 53.48±0.048% showed controlled release over ≥8h and followed the Korsmeyer-Peppas model with anomalous (non-Fickian) diffusion mechanism. Mucoadhesive strength was found to be 42.71±0.49g. Comparative dissolution study between prepared and marketed formulation showed that there was no significant difference in drug release profile having similarity factor 82.97. In vivo study for optimized formulation of the buccoadhesive tablets showed the better absolute bioavailability (71.26%) against the oral solution (51.22%). Histological study confirmed non-irritant nature and stability study indicated stability of the formulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Approaches for Enhancing Oral Bioavailability of Peptides and Proteins
Renukuntla, Jwala; Vadlapudi, Aswani Dutt; Patel, Ashaben; Boddu, Sai HS.; Mitra, Ashim K
2013-01-01
Oral delivery of peptide and protein drugs faces immense challenge partially due to the gastrointestinal (GI) environment. In spite of considerable efforts by industrial and academic laboratories, no major breakthrough in the effective oral delivery of polypeptides and proteins has been accomplished. Upon oral administration, gastrointestinal epithelium acts as a physical and biochemical barrier for absorption of proteins resulting in low bioavailability (typically less than 1–2%). An ideal oral drug delivery system should be capable of a) maintaining the integrity of protein molecules until it reaches the site of absorption, b) releasing the drug at the target absorption site, where the delivery system appends to that site by virtue of specific interaction, and c) retaining inside the gastrointestinal tract irrespective of its transitory constraints. Various technologies have been explored to overcome the problems associated with the oral delivery of macromolecules such as insulin, gonadotropin-releasing hormones, calcitonin, human growth factor, vaccines, enkephalins, and interferons, all of which met with limited success. This review article intends to summarize the physiological barriers to oral delivery of peptides and proteins and novel pharmaceutical approaches to circumvent these barriers and enhance oral bioavailability of these macromolecules. PMID:23428883
Li, KeXin; Chen, DaWei; Zhao, XiuLi; Hu, HaiYang; Yang, ChunRong; Pang, DaHai
2011-11-01
We prepared and optimized Ulex europaeus agglutinin I (UEAI)-modified Bovine serum albumin (BSA)-encapsulating liposomes (UEAI-LIP) as oral vaccine carriers and examined the feasibility of inducing systemic and mucosal immune responses by oral administration of UEAILIP. The prepared systems were characterized in vitro for their average size, zeta potential, encapsulation efficiency (EE%) and conjugation efficiency (CE%). In vitro release studies indicated that the presence of UEAI around the optimized liposomes was able to prevent a burst release of loaded BSA and provide sustained release of the encapsulated protein. In vivo immune-stimulating results in KM mice showed that BSA given intramuscularly generated systemic response only but both systemic and mucosal immune responses could be induced simultaneously in the groups in which BSA-loaded liposomes (LIP) and UEAI-LIP were administered intragastrically. Furthermore, the modification of UEAI on the surface of liposomes could further enhance the IgA and IgG levels obviously. In conclusion, this study demonstrated the high potential of lectin-modified liposomes containing the antigen as carriers for oral vaccine.
Novel preparation of PLGA/HP55 nanoparticles for oral insulin delivery
NASA Astrophysics Data System (ADS)
Wu, Zhi Min; Ling, Li; Zhou, Li Ying; Guo, Xin Dong; Jiang, Wei; Qian, Yu; Luo, Kathy Qian; Zhang, Li Juan
2012-06-01
The aim of the present study was to develop the PLGA/HP55 nanoparticles with improved hypoglycemic effect for oral insulin delivery. The insulin-loaded PLGA/HP55 nanoparticles were produced by a modified multiple emulsion solvent evaporation method. The physicochemical characteristics, in vitro release of insulin, and in vivo efficacy in diabetic rats of the nanoparticles were evaluated. The insulin encapsulation efficiency was up to 94%, and insulin was released in a pH-dependent manner under simulated gastrointestinal conditions. When administered orally (50 IU/kg) to diabetic rats, the nanoparticles can decrease rapidly the blood glucose level with a maximal effect between 1 and 8 h. The relative bioavailability compared with subcutaneous injection (5 IU/kg) in diabetic rats was 11.3% ± 1.05%. This effect may be explained by the fast release of insulin in the upper intestine, where it is better absorbed by the high gradient concentration of insulin than other regions. These results show that the PLGA/HP55 nanoparticles developed in the study might be employed as a potential method for oral insulin delivery.
Tsunashima, Daisuke; Yamashita, Kazunari; Ogawara, Ken-Ichi; Sako, Kazuhiro; Hakomori, Tadashi; Higaki, Kazutaka
2017-12-01
We aimed to prepare a once-daily modified-release oral formulation of tacrolimus by utilizing an extended-release granules (ERG). Extended-release granules were prepared using ethylcellulose (EC), hydroxypropylmethylcellulose (HPMC) and lactose via a solvent evaporation method with ethanol. Physicochemical and biopharmaceutical studies were performed to determine the formulation with optimum release profile of tacrolimus from ERG. Tacrolimus existed in an amorphous state in ERG. Tacrolimus release from ERG was attenuated by EC and facilitated by lactose, suggesting that drug release kinetics could adequately be regulated by these components. Those release profiles were consistent with Higuchi's equation, suggesting a diffusion-type release mechanism. Smooth surface of ERG changed to the structure with pores after the release test, likely derived from the dissolution of HPMC and lactose. But ERG structure formed by EC was still maintained after the release test, leading to the longer maintenance of diffusion-type release. Two ERG formulations selected by blood concentration simulation successfully provided long-term retention of tacrolimus in blood in a human absorption study. We successfully developed the formulation exhibiting a significant reduction in C max , the longer mean residence time and AUC close to that of an immediate-release tacrolimus formulation, being preferred from the viewpoint of safe and effective immunosuppressant pharmacotherapy. © 2017 Royal Pharmaceutical Society.
Ion release from orthodontic brackets in 3 mouthwashes: an in-vitro study.
Danaei, Shahla Momeni; Safavi, Afsaneh; Roeinpeikar, S M Mehdi; Oshagh, Morteza; Iranpour, Shiva; Omidkhoda, Maryam; Omidekhoda, Maryam
2011-06-01
Stainless steel orthodontic brackets can release metal ions into the saliva. Fluoridated mouthwashes are often recommended to orthodontic patients to reduce the risk of white-spot lesions around their brackets. However, little information is available regarding the effect of different mouthwashes in ion release of orthodontic brackets. The purpose of this study was to measure the amount of metal ion release from orthodontic brackets when kept in different mouthwashes. One hundred sixty stainless steel brackets (0.022-in, 3M Unitek, Monrovia, Calif) were divided randomly into 4 equal groups and immersed in Oral B (Procter & Gamble, Weybridge, United Kingdom), chlorhexidine (Shahdaru Labratories, Tehran, Iran), and Persica (Poursina Pharmaceutical Laboratories, Tehran, Iran) mouthwashes and distilled deionized water and incubated at 37°C for 45 days. Nickel, chromium, iron, copper, and manganese released from the orthodontic brackets were measured with an inductively coupled plasma spectrometer. For statistical analysis, 1-way analysis of variance (ANOVA) and the Duncan multiple-range tests were used. The results showed that ion release in deionized water was significantly (P <0.05) higher than in the 3 mouthwashes. Higher ion release was found with chlorhexidine compared with the other 2 mouthwashes. There was no significant difference (P >0.05) in nickel, chromium, iron, and copper ion release in the Oral B and Persica mouthwashes. The level of manganese release was significantly different in all 4 groups. If ion release is a concern, Oral B and Persica mouthwashes might be better options than chlorhexidine for orthodontic patients with stainless steel brackets. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Release phenomena and iterative activities in psychiatric geriatric patients
Villeneuve, A.; Turcotte, J.; Bouchard, M.; Côté, J. M.; Jus, A.
1974-01-01
This survey was undertaken to assess the frequency of some of the so-called release phenomena and iterative activities in an aged psychiatric population. Three groups of geriatric psychiatric patients with diagnoses of (I) organic brain syndrome, including senile dementia (56), (II) functional psychoses, predominantly schizophrenia (51) and (III) chronic schizophrenia never treated by neuroleptics or other biologic agents (16), were compared with (IV) a control group of 32 elderly people in good physical and mental health. In general, for the manifestations studied, the geriatric psychiatric patients suffering from an organic brain syndrome and treated with neuroleptics differed notably from the control group. This latter group, although older, had few neurological signs of senescence and the spontaneous oral movements usually associated with the use of neuroleptics were absent. Release phenomena such as the grasp and pouting reflexes, as well as the stereotyped activities, were encountered significantly more frequently in patients with an organic brain syndrome than in the two other groups of patients. Our survey has yielded limited results with regard to the possible influence of type of illness and neuroleptic treatment on the incidence of release phenomena and iterative activities. PMID:4810188
ERIC Educational Resources Information Center
Blum, Nathan J.; Jawad, Abbas F.; Clarke, Angela T.; Power, Thomas J.
2011-01-01
Aim: This study investigated whether components of attention and executive functioning improve when children with attention-deficit-hyperactivity disorder (ADHD) are treated with osmotic-release oral system (OROS) methylphenidate. Method: Thirty children (24 males, six females; mean age 8y 6mo, SD 1y 11mo; range 6y 5mo-12y 6mo) with ADHD combined…
Sun, Shaoping; Liang, Na; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei
2015-01-01
This study proposes a new concept of pH-sensitive poly(lactide-co-glycolide) (PLGA) nanoparticle composite microcapsules for oral delivery of insulin. Firstly, insulin–sodium oleate complex was prepared by the hydrophobic ion pairing method and then encapsulated into PLGA nanoparticles by the emulsion solvent diffusion method. In order to reduce the burst release of insulin from PLGA nanoparticles and deliver insulin to specific gastrointestinal regions, hence to enhance bioavailability of insulin, the PLGA nanoparticles were further encapsulated into Eudragit® FS 30D to prepare PLGA nanoparticle composite microcapsules by organic spray-drying method. The preparation was evaluated in vitro and in vivo, and the absorption mechanism was discussed. The in vitro drug release studies revealed that the drug release was pH dependent, and the in vivo results demonstrated that the formulation of PLGA nanoparticle composite microcapsules was an effective candidate for oral insulin delivery. PMID:25999713
Sun, Shaoping; Liang, Na; Yamamoto, Hiromitsu; Kawashima, Yoshiaki; Cui, Fude; Yan, Pengfei
2015-01-01
This study proposes a new concept of pH-sensitive poly(lactide-co-glycolide) (PLGA) nanoparticle composite microcapsules for oral delivery of insulin. Firstly, insulin-sodium oleate complex was prepared by the hydrophobic ion pairing method and then encapsulated into PLGA nanoparticles by the emulsion solvent diffusion method. In order to reduce the burst release of insulin from PLGA nanoparticles and deliver insulin to specific gastrointestinal regions, hence to enhance bioavailability of insulin, the PLGA nanoparticles were further encapsulated into Eudragit(®) FS 30D to prepare PLGA nanoparticle composite microcapsules by organic spray-drying method. The preparation was evaluated in vitro and in vivo, and the absorption mechanism was discussed. The in vitro drug release studies revealed that the drug release was pH dependent, and the in vivo results demonstrated that the formulation of PLGA nanoparticle composite microcapsules was an effective candidate for oral insulin delivery.
Pharmacological characterisation of a new oral GH secretagogue, NN703.
Hansen, B S; Raun, K; Nielsen, K K; Johansen, P B; Hansen, T K; Peschke, B; Lau, J; Andersen, P H; Ankersen, M
1999-08-01
NN703 is a novel orally active GH secretagogue (GHS) derived from ipamorelin. NN703 stimulates GH release from rat pituitary cells in a dose-dependent manner with a potency and efficacy similar to that of GHRP-6. The effect is inhibited by known GHS antagonists, but not by a GH-releasing hormone antagonist. Binding of (35)S-MK677 to the human type 1A GHS receptor (GHS-R 1A) stably expressed on BHK cells was inhibited by GHRP-6 and MK677 as expected. NN703 was also able to inhibit the binding of (35)S-MK677. However, the observed K(i) value was lower than expected, as based on the observed potencies regarding GH release from rat pituitary cells. Similarly, the effect of NN703 on the GHS-R 1A-induced inositol phosphate turnover in these cells showed a lower potency, when compared with GHRP-6 and MK677, than that observed in rat pituitary cells. The effect of i.v. administration of NN703 on GH and cortisol release was studied in swine. The potency and efficacy of NN703 on GH release were determined to be 155+/-23 nmol/kg and 91+/-7 ng GH/ml plasma respectively. A 50% increase of cortisol, compared with basal levels, was observed for all the tested doses of NN703, but no dose-dependency was shown. The effect of NN703 on GH release after i. v. and oral dosing in beagle dogs was studied. NN703 dose-dependently increased the GH release after oral administration. At the highest dose (20 micromol/kg), a 35-fold increase in peak GH concentration was observed (49.5+/-17.8 ng/ml, mean+/-s.e.m.). After a single i.v. dose of 1 micromol/kg the peak GH plasma concentration was elevated to 38.5+/-19.6 ng/ml (mean+/-s.e.m.) approximately 30 min after dosing and returned to basal level after 360 min. The oral bioavailability was 30%. The plasma half-life of NN703 was 4.1+/-0.4 h. A long-term biological effect of NN703 was demonstrated in a rat study, where the body weight gain was measured during a 14-day once daily oral challenge with 100 micromol/kg. The body weight gain was significantly increased after 14 days as compared with a vehicle-treated group. In summary, we here describe an orally active and GH specific secretagogue, NN703. This compound acts through a similar mechanism as GHRP-6, but has a different receptor pharmacology. NN703 induced GH release in both swine and dogs after i.v. and/or p.o. administration, had a high degree of GH specificity in swine and significantly increased the body weight gain in rats.
Nanolayer encapsulation of insulin-chitosan complexes improves efficiency of oral insulin delivery
Song, Lei; Zhi, Zheng-liang; Pickup, John C
2014-01-01
Current oral insulin formulations reported in the literature are often associated with an unpredictable burst release of insulin in the intestine, which may increase the risk for problematic hypoglycemia. The aim of the study was to develop a solution based on a nanolayer encapsulation of insulin-chitosan complexes to afford sustained release after oral administration. Chitosan/heparin multilayer coatings were deposited onto insulin-chitosan microparticulate cores in the presence of poly(ethylene) glycol (PEG) in the precipitating and coating solutions. The addition of PEG improved insulin loading and minimized an undesirable loss of the protein resulting from redissolution. Nanolayer encapsulation and the formation of complexes enabled a superior loading capacity of insulin (>90%), as well as enhanced stability and 74% decreased solubility at acid pH in vitro, compared with nonencapsulated insulin. The capsulated insulin administered by oral gavage lowered fasting blood glucose levels by up to 50% in a sustained and dose-dependent manner and reduced postprandial glycemia in streptozotocin-induced diabetic mice without causing hypoglycemia. Nanolayer encapsulation reduced the possibility of rapid and erratic falls of blood glucose levels in animals. This technique represents a promising strategy to promote the intestinal absorption efficiency and release behavior of the hormone, potentially enabling an efficient and safe route for oral insulin delivery of insulin in diabetes management. PMID:24833901
Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing.
Goyanes, Alvaro; Chang, Hanah; Sedough, Daniel; Hatton, Grace B; Wang, Jie; Buanz, Asma; Gaisford, Simon; Basit, Abdul W
2015-12-30
The aim of this work was to explore the feasibility of using fused deposition modelling (FDM) 3D printing (3DP) technology with hot melt extrusion (HME) and fluid bed coating to fabricate modified-release budesonide dosage forms. Budesonide was sucessfully loaded into polyvinyl alcohol filaments using HME. The filaments were engineered into capsule-shaped tablets (caplets) containing 9mg budesonide using a FDM 3D printer; the caplets were then overcoated with a layer of enteric polymer. The final printed formulation was tested in a dynamic dissolution bicarbonate buffer system, and two commercial budesonide products, Cortiment® (Uceris®) and Entocort®, were also investigated for comparison. Budesonide release from the Entocort® formulation was rapid in conditions of the upper small intestine while release from the Cortiment® product was more delayed and very slow. In contrast, the new 3D printed caplet formulation started to release in the mid-small intestine but release then continued in a sustained manner throughout the distal intestine and colon. This work has demonstrated the potential of combining FDM 3DP with established pharmaceutical processes, including HME and film coating, to fabricate modified release oral dosage forms. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Mulia, Kamarza; Andrie; Krisanti, Elsa A.
2018-03-01
The problem to overcome in oral drug administration is the significant pH changes present in the human digestive system. In this study, ionotropic gelation method employing 2-8% (w/v) tripolyphosphate solutions were used to crosslink chitosan microspheres for a controlled release of paracetamol as a model drug. The release profiles of paracetamol from chitosan microspheres were determined using simulated gastrointestinal fluids having pH values of 1.2, 6.8, and 7.4. The results showed that the paracetamol loading and the encapsulation efficiency values increased with increasing concentration of tripolyphosphate solutions used in the preparation step. Paracetamol released at pH 1.2 and 6.8 buffer solutions was significantly higher than that at pH 7.4; also, more paracetamol was released in the presence of α-amylase and β-glucosidase enzymes. The release profiles showed zero-order release behaviour up to 8 hours where the highest drug release was 39% of the paracetamol loaded in the chitosan microspheres, indicating a strong crosslinking between chitosan and TPP anions. The relatively low accumulated drug release could be compensated by employing suitable enzymes, lower TPP solution concentration, and addition of other biodegradable polymer to reduce the TPP crosslink.
Advances and challenges in oral health after a decade of the "Smiling Brazil" Program.
Scherer, Charleni Inês; Scherer, Magda Duarte dos Anjos
2015-01-01
To analyze oral health work changes in primary health care after Brazil's National Oral Health Policy Guidelines were released. A literature review was conducted on Medline, LILACS, Embase, SciELO, Biblioteca Virtual em Saúde, and The Cochrane Library databases, from 2000 to 2013, on elements to analyze work changes. The descriptors used included: primary health care, family health care, work, health care policy, oral health care services, dentistry, oral health, and Brazil. Thirty-two studies were selected and analyzed, with a predominance of qualitative studies from the Northeast region with workers, especially dentists, focusing on completeness and quality of care. Observed advances focused on educational and permanent education actions; on welcoming, bonding, and accountability. The main challenges were related to completeness; extension and improvement of care; integrated teamwork; working conditions; planning, monitoring, and evaluation of actions; stimulating people's participation and social control; and intersectorial actions. Despite the new regulatory environment, there are very few changes in oral health work. Professionals tend to reproduce the dominant biomedical model. Continuing efforts will be required in work management, training, and permanent education fields. Among the possibilities are the increased engagement of managers and professionals in a process to understand work dynamics and training in the perspective of building significant changes for local realities.
Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin.
Morçöl, T; Nagappan, P; Nerenbaum, L; Mitchell, A; Bell, S J D
2004-06-11
An oral delivery system for insulin was developed and functional activity was tested in a non-obese diabetic (NOD) mice model. Calcium phosphate particles containing insulin was synthesized in the presence of PEG-3350 and modified by aggregating the particles with caseins to obtain the calcium phosphate-PEG-insulin-casein (CAPIC) oral insulin delivery system. Single doses of CAPIC formulation were tested in NOD mice under fasting or fed conditions to evaluate the glycemic activity. The blood glucose levels were monitored every 1-2h for 12h following the treatments using an ACCU CHECK blood glucose monitoring system. Orally administered and subcutaneously injected free insulin solution served as controls in the study. Based on the results obtained we propose that: (1). the biological activity of insulin is preserved in CAPIC formulation; (2). insulin in CAPIC formulations, but not the free insulin, displays a prolonged hypoglycemic effect after oral administration to diabetic mice; (3). CAPIC formulation protects insulin from degradation while passing through the acidic environment of the GI track until it is released in the less acidic environment of the intestines where it can be absorbed in its biologically active form; (4). CAPIC formulation represents a new and unique oral delivery system for insulin and other macromolecules.
Sustained Release Oral Nanoformulated Green Tea for Prostate Cancer Prevention
2012-05-01
31.25 ng/ml. The calibration samples were measured twice. The HPLC was a Shimadzu Prominence LC system containing a CBM-20A system controller...MDS SCIEX Ontario, Canada) equipped with a Turbo V Source and Turbo Ion Spray was coupled to the HPLC . The mass spectrometer was operated in...treated mice were subjected to HPLC and GC mass spectrometry for analysis of pharmacokinetic distribution of EGCG and bioavailability. Though we have
Fan, Bo; Xing, Yang; Zheng, Ying; Sun, Chuan; Liang, Guixian
2016-01-01
The aim of present study was to investigate a pH-responsive and mucoadhesive nanoparticle system for oral bioavailability enhancement of low-molecular weight heparin (LMWH). The thioglycolic acid (TGA) was first covalently attached to chitosan (CS) with 396.97 ± 54.54 μmol thiol groups per gram of polymer and then the nanoparticles were prepared with thiolated chitosan (TCS) and pH-sensitive polymer hydroxypropyl methylcellulose phthalate (HPMCP) by ionic cross-linking method. The obtained nanoparticles were characterized for the shape, particle size, zeta potential, drug entrapment efficiency and loading capacity. In vitro results revealed the acid stability of pH-responsive nanoparticles, which had a significant control over LMWH release and could effectively protect entrapped drugs in simulated gastric conditions. By the attachment of the thiol ligand, an improvement of permeation-enhancing effect on freshly excised carp intestine (1.86-fold improvement) could be found. The mucoadhesive properties were evaluated using fluorescently labeled TCS or CS nanoparticles. As compared with the controls, a significant improvement of mucoadhesion on rat intestinal mucosa was observed in TCS/HPMCP nanoparticles via confocal laser scanning microscopy. The activated partial thromboplastin time (APTT) was significantly prolonged and an increase in the oral bioavailability of LMWH was turned out to be pronounced after oral delivered LMWH-loaded TCS/HPMCP nanoparticles in rats, which suggested enhanced anticoagulant effects and improved absorption of LMWH. In conclusion, pH-responsive TCS/HPMCP nanoparticles hold promise for oral delivery of LMWH.
Chen, Zhi-Qiang; Liu, Ying; Zhao, Ji-Hui; Wang, Lan; Feng, Nian-Ping
2012-01-01
Background Indirubin, isolated from the leaves of the Chinese herb Isatis tinctoria L, is a protein kinase inhibitor and promising antitumor agent. However, the poor water solubility of indirubin has limited its application. In this study, a supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) was developed to improve the oral bioavailability of indirubin. Methods A prototype S-SMEDDS was designed using solubility studies and phase diagram construction. Precipitation inhibitors were selected from hydrophilic polymers according to their crystallization-inhibiting capacity through in vitro precipitation tests. In vitro release of indirubin from S-SMEDDS was examined to investigate its likely release behavior in vivo. The in vivo bioavailability of indirubin from S-SMEDDS and from SMEDDS was compared in rats. Results The prototype formulation of S-SMEDDS comprised Maisine™ 35-1:Cremophor® EL:Transcutol® P (15:40:45, w/w/w). Polyvinylpyrrolidone K17, a hydrophilic polymer, was used as a precipitation inhibitor based on its better crystallization-inhibiting capacity compared with polyethylene glycol 4000 and hydroxypropyl methylcellulose. In vitro release analysis showed more rapid drug release from S-SMEDDS than from SMEDDS. In vivo bioavailability analysis in rats indicated that improved oral absorption was achieved and that the relative bioavailability of S-SMEDDS was 129.5% compared with SMEDDS. Conclusion The novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of indirubin in rats. The results suggest that S-SMEDDS is a superior means of oral delivery of indirubin. PMID:22403491
Oral chemotherapy medications: the need for a nurse's touch.
Winkeljohn, Debra L
2007-12-01
Since 2005, many oral chemotherapy agents have been released. Nurses often are not directly involved with patients who receive oral agents. Difficulties with adherence, safety, patient teaching, and access to oral agents can hinder treatment. Nurses can increase adherence and keep patients safe by developing standardized written prescriptions, encouraging the use of patient diaries, offering dosage calendars, and supplying contact information for an office pharmacist.
Makino, Chisato; Ninomiya, Nobutaka; Sakai, Hidetoshi; Orita, Haruo; Okano, Akira; Yabuki, Akira
2006-04-01
Nateglinide is a new quick action/short duration (QRSD) type of oral blood glucose regulator, and nateglinide immediate release tablets are used for patients with mild diabetes under the trade name of Fastic((R)) tablets. In this study, we attempted to determine if it was possible to control both post-prandial blood glucose level (PBG) and fasting blood glucose level (FBG) for moderate or severe diabetes through controlled release of nateglinide. Enteric coated granules were selected for the administration form for controlled release of nateglinide, and three types of enteric coated granules were prepared having dissolution pH values of 5.5, 6.5 and 7.2. The three types of enteric coated granules were each administered separately or the enteric coated granules having an dissolution pH of 6.5 were administered simultaneous to administration of nateglinide immediate release tablets to normal beagle dogs just before feeding followed by measurement of plasma nateglinide concentration, plasma insulin concentration and blood glucose level. In the case of administering enteric coated granules alone (nateglinide: 9 mg/kg), the absorption of nateglinide was confirmed to tend to be delayed as the dissolution pH increased. In the case of an dissolution pH of 5.5, decreases in both PBG and FBG were observed. In the case of dissolution pH values of 6.5 and 7.2, only decrease in FBG was observed. In case of nateglinide immediate release tablets (nateglinide: 9 mg/kg), only decrease in PBG was observed. Decreases in both PBG and FBG were observed in the case of simultaneous administration of dissolution pH 6.5 enteric coated granules and nateglinide immediate release tablets just before feeding (nateglinide: 90 mg/head+60 mg/head). A correlation was observed between plasma nateglinide concentrations and blood glucose levels. On the other hand, there were no correlations observed between changes in plasma insulin concentrations and blood glucose levels. In case of nateglinide immediate release tablets (nateglinide: 150 mg/head), Decreases in both PBG and FBG were observed. However, the nateglinide controlled release formulation is more useful than the nateglinide immediate release tablets from the view point of avoidance of side effect, or of easy control of both PBG and FBG. On the basis of these results, the design of a controlled release formulation that contains nateglinide was suggested to enable control of both PBG and FBG for moderate and severe diabetes patients.
Release of gastrointestinal hormones following an oral water load.
Christofides, N D; Sarson, D L; Albuquerque, R H; Adrian, T E; Ghatei, M A; Modlin, I M; Bloom, S R
1979-11-15
The ingestion of 2 different water loads (7.5 and 15 ml/kg) by healthy subjects stimulated the release of plasma motilin, gastrin, pancreatic polypeptide and VIP. Atropine was found to block the release of PP but not the other hormones.
Wang, Yan-ping; Gan, Yong; Zhang, Xin-xin
2011-10-01
To develop a novel gastroretentive drug delivery system based on a self-microemulsifying (SME) lipid mixture for improving the oral absorption of the immunosuppressant tacrolimus. Liquid SME mixture, composed of Cremophor RH40 and monocaprylin glycerate, was blended with polyethylene oxide, chitosan, polyvinylpyrrolidone and mannitol, and then transformed into tablets via granulation, with ethanol as the wetting agent. The tablets were characterized in respect of swelling, bioadhesive and SME properties. In vitro dissolution was conducted using an HCl buffer at pH 1.2. Oral bioavailability of the tablets was examined in fasted beagle dogs. The tablet could expand to 13.5 mm in diameter and 15 mm in thickness during the initial 20 min of contact with the HCl buffer at pH 1.2. The bioadhesive strength was as high as 0.98±0.06 N/cm(2). The SME gastroretentive sustained-release tablets preserved the SME capability of the liquid SME formations under transmission electron microscope. The drug-release curve was fit to the zero-order release model, which was helpful in reducing fluctuations in blood concentration. Compared with the commercially available capsules of tacrolimus, the relative bioavailability of the SME gastroretentive sustained-release tablets was 553.4%±353.8%. SME gastroretentive sustained-release tablets can enhance the oral bioavailability of tacrolimus with poor solubility and a narrow absorption window.
Salivary proteomics in lichen planus: A relationship with pathogenesis?
Souza, M M; Florezi, G P; Nico, Mms; de Paula, F; Paula, F M; Lourenço, S V
2018-01-30
Oral lichen planus is a chronic, T-cell-mediated, inflammatory disease that affects the oral cavity. The oral lichen planus pathogenesis is still unclear, however, the main evidence is that the mechanisms of activation of different T lymphocyte pathway induce apoptosis with an increase in Th1 and Th17 subtypes cells, triggered by the release of cytokines. This study analysed saliva proteomics to identify protein markers that might be involved in the pathogenesis and development of the disease. Proteins differentially expressed by oral lichen planus and healthy controls were screened using mass spectrometry; the proteins found in oral lichen planus were subjected to bioinformatics analysis, including gene ontology and string networks analysis. The multiplex analysis validation allowed the correlation between the proteins identified and the involved cytokines in Th17 response. One hundred and eight proteins were identified in oral lichen planus, of which 17 proteins showed a high interaction between them and indicated an association with the disease. Expression of these proteins was correlated with the triggering of cytokines, more specifically the Th17 cells. Proteins, such as S100A8, S100A9, haptoglobin, can trigger cytokines and might be associated with a pathological function and antioxidant activities in oral lichen planus. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.
de Sousa, Francisco Fabio Oliveira; Ferraz, Camila; Rodrigues, Lidiany K Arla de Azevedo; Nojosa, Jacqueline de Santiago; Yamauti, Monica
2014-01-01
Dental disorders, such as caries, periodontal and endodontic diseases are major public health issues worldwide. In common, they are biofilm-dependent oral diseases, and the specific conditions of oral cavity may develop infectious foci that could affect other physiological systems. Efforts have been made to develop new treatment routes for the treatment of oral diseases, and therefore, for the prevention of some systemic illnesses. New drugs and materials have been challenged to prevent and treat these conditions, especially by means of bacteria elimination. "Recent progresses in understanding the etiology, epidemiology and microbiology of the microbial flora in those circumstances have given insight and motivated the innovation on new therapeutic approaches for the management of the oral diseases progression". Some of the greatest advances in the medical field have been based in nanosized systems, ranging from the drug release with designed nanoparticles to tissue scaffolds based on nanotechnology. These systems offer new possibilities for specific and efficient therapies, been assayed successfully in preventive/curative therapies to the oral cavity, opening new challenges and opportunities to overcome common diseases based on bacterial biofilm development. The aim of this review is to summarize the recent nanotechnological developments in the drug delivery field related to the prevention and treatment of the major biofilm-dependent oral diseases and to identify those systems, which may have higher potential for clinical use.
Hu, Liang; Sun, Hongrui; Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying; Wang, Siling
2015-02-01
We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. Copyright © 2014 Elsevier B.V. All rights reserved.
Zolpidem comes as a tablet (Ambien) and an extended-release (long-acting) tablet (Ambien CR) to take ... the tongue. If you are taking the tablets, extended-release tablets, sublingual tablets (Edluar), or oral spray, ...
Li, Shun-Xing; Mu, Yang; Zheng, Feng-Ying
2013-11-06
Saponins have many biological activities, but their overload could cause toxicity to the human body. Bionic gastrointestinal digestion and monolayer liposome extraction were used for oral bioavailability assessment of triterpene saponins (notoginsenoside R1, ginsenosides Rb1 and Rd1) in an edible herb (San-Chi) and its compound herbal medicine (Pien Tze Huang, PZH). The concentrations of affinity-monolayer liposome saponins in the chyme were determined by HPLC and used for oral bioavailability assessment. With the digestion of San-Chi and PZH from the stomach to the intestine, the release of saponins in their chyme was increased. The intestinal absorption ratios of N-R1, G-Rb1, G-Rd1, and total saponins from San-Chi were 86.57, 18.56, 73.30, and 40.20%, respectively, which were more than those from PZH (i.e., 19.56, 10.11, 30.11, and 16.08%). The oral bioavailability of saponins was controlled by saponin species, gastrointestinal digestion, and edible plants combination.
Berardi, Alberto; Bisharat, Lorina; AlKhatib, Hatim S; Cespi, Marco
2018-05-07
Zein is the main storage protein of corn and it has several industrial applications. Mainly in the last 10-15 years, zein has emerged as a potential pharmaceutical excipient with unique features. Zein is a natural, biocompatible and biodegradable material produced from renewable sources. It is insoluble, yet due to its amphiphilic nature, it has self-assembling properties, which have been exploited for the formation of micromicroparticle and nanoparticle and films. Moreover, zein can hydrate so it has been used in swellable matrices for controlled drug release. Other pharmaceutical applications of zein in oral drug delivery include its incorporation in solid dispersions of poorly soluble drugs and in colonic drug delivery systems. This review describes the features of zein significant for its use as a pharmaceutical excipient for oral drug delivery, and it summaries the literature relevant to macroscopic zein-based oral dosage forms, i.e. tablets, capsules, beads and powders. Particular attention is paid to the most novel formulations and applications of zein. Moreover, gaps of knowledge as well as possible venues for future investigations on zein are highlighted.
NASA Astrophysics Data System (ADS)
Budi Hartono, Sandy; Hadisoewignyo, Lannie; Yang, Yanan; Meka, Anand Kumar; Antaresti; Yu, Chengzhong
2016-12-01
In the present work, a simple method was used to develop composite curcumin-amine functionalized mesoporous silica nanoparticles (MSN). The nanoparticles were used to improve the bioavailability of curcumin in mice through oral administration. We investigated the effect of particle size on the release profile, solubility and oral bioavailability of curcumin in mice, including amine functionalized mesoporous silica micron-sized-particles (MSM) and MSN (100-200 nm). Curcumin loaded within amine functionalized MSN (MSN-A-Cur) had a better release profile and a higher solubility compared to amine MSM (MSM-A-Cur). The bioavailability of MSN-A-Cur and MSM-A-Cur was considerably higher than that of ‘free curcumin’. These results indicate promising features of amine functionalized MSN as a carrier to deliver low solubility drugs with improved bioavailability via the oral route.
Di Stefano, A. F. D.; Rusca, A.; Loprete, L.; Dröge, M. J.; Moro, L.; Assandri, A.
2011-01-01
The new oral 200-mg rifamycin SV MMX modified-release tablets, designed to deliver rifamycin SV directly into the colonic lumen, offer considerable advantages over the existing immediate-release antidiarrheic formulations. In two pharmacokinetics studies of healthy volunteers, the absorption, urinary excretion, and fecal elimination of rifamycin SV after single- and multiple-dose regimens of the new formulation were investigated. Concentrations in plasma of >2 ng/ml were infrequently and randomly quantifiable after single and multiple oral doses. The systemic exposure to rifamycin SV after single and multiple oral doses of MMX tablets under fasting and fed conditions or following a four-times-a-day (q.i.d.) or a twice-a-day (b.i.d.) regimen could be considered negligible. With both oral regimens, the drug was confirmed to be very poorly absorbable systemically. The amount of systemically absorbed antibiotic excreted by the renal route is far lower than 0.01% of the administered dose after both the single- and multiple-dose regimens. The absolute bioavailability, calculated as the mean percent ratio between total urinary excretion amounts (ΣXu) after a single intravenous injection and after a single oral dose under fasting conditions, was 0.0410 ± 0.0617. The total elimination of the unchanged rifamycin SV with feces was 87% of the administered oral dose. No significant effect of rifamycin SV on vital signs, electrocardiograms, or laboratory parameters was observed. PMID:21402860
Zein-alginate based oral drug delivery systems: Protection and release of therapeutic proteins.
Lee, Sungmun; Kim, Yeu-Chun; Park, Ji-Ho
2016-12-30
Reactive oxygen species (ROS) play an important role in the development of inflammatory bowel diseases. Superoxide dismutase (SOD) has a great therapeutic potential by scavenging superoxide that is one of ROS; however, in vivo application is limited especially when it is orally administered. SOD is easily degraded in vivo by the harsh conditions of gastrointestinal tract. Here, we design a zein-alginate based oral drug delivery system that protects SOD from the harsh conditions of gastrointestinal tract and releases it in the environment of the small intestine. SOD is encapsulated in zein-alginate nanoparticles (ZAN) via a phase separation method. We demonstrate that ZAN protect SOD from the harsh conditions of the stomach or small intestine condition. ZAN (200:40) at the weight ratio of 200mg zein to 40mg of alginate releases SOD in a pH dependent manner, and it releases 90.8±1.2% of encapsulated SOD at pH 7.4 in 2h, while only 11.4±0.4% of SOD was released at pH 1.3. The encapsulation efficiency of SOD in ZAN (200:40) was 62.1±2.0%. SOD in ZAN (200:40) reduced the intracellular ROS level and it saved 88.9±7.5% of Caco-2 cells from the toxic superoxide in 4 hours. Based on the results, zein-alginate based oral drug delivery systems will have numerous applications to drugs that are easily degradable in the harsh conditions of gastrointestinal tract. Copyright © 2016 Elsevier B.V. All rights reserved.
Jones, Terry M; Ellman, Herman; deVries, Tina
2017-10-01
To characterize minocycline pharmacokinetics and relative bioavailability following multiple-dose topical administration of minocycline hydrochloride (HCl) foam 4% (FMX101 4%) as compared with single-dose oral administration of minocycline HCl extended-release tablets (Solodyn®) in subjects with moderate-to-severe acne. A Phase 1, single-center, nonrandomized, open-label, active-controlled, 2-period, 2-treatment crossover clinical study. The study included 30 healthy adults (mean age, 22.6 years; 90% white, and 60% females) who had moderate-to-severe acne. Subjects were assigned to first receive a single oral dose of a minocycline HCl extended-release tablet (approximately 1 mg/kg). At 10 days after the oral minocycline dose, topical minocycline foam 4% was applied, once daily for 21 days. Serial blood samples were obtained before and after administration of oral minocycline and each topical application of minocycline foam 4% on days 1, 12, and 21. Following oral administration of minocycline (approximately 1 mg/kg), plasma minocycline concentration increased until 3 hours, followed by a log-linear decrease over the remainder of the 96-hour sampling period. Following topical application of a 4-g maximal-use dose of minocycline foam 4% for 21 days, plasma minocycline concentration was very low, with geometric mean Cmax values ranging from 1.1 ng/mL to 1.5 ng/mL. Steady state was achieved by day 6. Overall, minocycline exposure with topical minocycline foam 4% was 730 to 765 times lower than that with oral minocycline. There was no evidence of minocycline accumulation over the 21 days of topical application of minocycline foam 4%. Topical minocycline foam 4% appeared to be safe and well tolerated, with no serious treatment-emergent adverse events (TEAEs), treatment-related TEAEs, or TEAEs that led to treatment discontinuation. Once-daily topical application of minocycline foam 4% did not lead to significant systemic exposure to minocycline. It appears to be a well-tolerated treatment option for individuals with moderate-to-severe acne.
J Drugs Dermatol. 2017;16(10):1022-1028.
.Crystalline structure of pulverized dental calculus induces cell death in oral epithelial cells.
Ziauddin, S M; Yoshimura, A; Montenegro Raudales, J L; Ozaki, Y; Higuchi, K; Ukai, T; Kaneko, T; Miyazaki, T; Latz, E; Hara, Y
2018-06-01
Dental calculus is a mineralized deposit attached to the tooth surface. We have shown that cellular uptake of dental calculus triggers nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, leading to the processing of the interleukin-1β precursor into its mature form in mouse and human phagocytes. The activation of the NLRP3 inflammasome also induced a lytic form of programmed cell death, pyroptosis, in these cells. However, the effects of dental calculus on other cell types in periodontal tissue have not been investigated. The aim of this study was to determine whether dental calculus can induce cell death in oral epithelial cells. HSC-2 human oral squamous carcinoma cells, HOMK107 human primary oral epithelial cells and immortalized mouse macrophages were exposed to dental calculus or 1 of its components, hydroxyapatite crystals. For inhibition assays, the cells were exposed to dental calculus in the presence or absence of cytochalasin D (endocytosis inhibitor), z-YVAD-fmk (caspase-1 inhibitor) or glyburide (NLRP3 inflammasome inhibitor). Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) release and staining with propidium iodide. Tumor necrosis factor-α production was quantified by enzyme-linked immunosorbent assay. Oral epithelial barrier function was examined by permeability assay. Dental calculus induced cell death in HSC-2 cells, as judged by LDH release and propidium iodide staining. Dental calculus also induced LDH release from HOMK107 cells. Following heat treatment, dental calculus lost its capacity to induce tumor necrosis factor-α in mouse macrophages, but could induce LDH release in HSC-2 cells, indicating a major role of inorganic components in cell death. Hydroxyapatite crystals also induced cell death in both HSC-2 and HOMK107 cells, as judged by LDH release, indicating the capacity of crystal particles to induce cell death. Cell death induced by dental calculus was significantly inhibited by cytochalasin D, z-YVAD-fmk and glyburide, indicating NLRP3 inflammasome involvement. In permeability assays, dental calculus attenuated the barrier function of HSC-2 cell monolayers. Dental calculus induces pyroptotic cell death in human oral epithelial cells and the crystalline structure plays a major role in this process. Oral epithelial cell death induced by dental calculus might be important for the etiology of periodontitis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Severino, Patrícia; de Oliveira, George G.G.; Ferraz, Humberto G.; Souto, Eliana B.; Santana, Maria H.A.
2012-01-01
The purpose of this work was to introduce a new concept of coated pellets containing chitosan microspheres loaded with didadosine for oral administration, aiming at reducing the frequency of administration and improving the bioavailability by a suitable release profile. Chitosan microspheres were produced under fluidized bed, followed by extrusion and spheronization to obtain pellets with a mean diameter of about 1 mm. The pellets were then coated with Kollidon® VA64 and Kollicoat® MAE100P in water dispersion to depict a sustained release profile. Conventional hard gelatine capsules were loaded with these pellets and tested in vitro for their release profile of didadosine. Dissolution testing confirmed that chitosan microsphere pellets provides appropriate sustained release up to 2 h behavior for didanosine. PMID:29403741
Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Mimura, Hisahi; Ozaki, Yukihiro; Reppas, Christos; Kitamura, Satoshi
2015-07-25
The objective of this study was to develop an in vitro dissolution test method with discrimination ability for an extended-release solid dispersion matrix of a lipophilic drug using the United States Pharmacopeia (USP) Apparatus 4, flow-through cell apparatus. In the open-loop configuration, the sink condition was maintained by manipulating the flow rate of the dissolution medium. To evaluate the testing conditions, the drug release mechanism from an extended-release solid dispersion matrix containing hydrophobic and hydrophilic polymers was investigated. As the hydroxypropyl methylcellulose (HPMC) maintained concentrations of indomethacin higher than the solubility in a dissolution medium, the release of HPMC into the dissolution medium was also quantified using size-exclusion chromatography. We concluded that the USP Apparatus 4 is suitable for application to an in vitro dissolution method for orally administered extended-release solid dispersion matrix formulations containing poorly water-soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.
Anti-inflammatory effects of zinc in PMA-treated human gingival fibroblast cells
Kim, Sangwoo; Jeon, Sangmi; Hui, Zheng; Kim, Young; Im, Yeonggwan; Lim, Wonbong; Kim, Changsu; Choi, Hongran; Kim, Okjoon
2015-01-01
Objectives: Abnormal cellular immune response has been considered to be responsible for oral lesions in recurrent aphthous stomatitis. Zinc has been known to be an essential nutrient metal that is necessary for a broad range of biological activities including antioxidant, immune mediator, and anti-inflammatory drugs in oral mucosal disease. The objective of this study was to investigate the effects of zinc in a phorbol-12-myristate-13-acetate (PMA)-treated inflammatory model on human gingival fibroblast cells (hGFs). Study Design: Cells were pre-treated with zinc chloride, followed by PMA in hGFs. The effects were assessed on cell viability, cyclooxygenease-1,2(COX-1/2) protein expression, PGE2 release, ROS production and cytokine release, Results: The effects were assessed on cell viability, COX1/2 protein expression, PGE2 release, ROS production, cytokine release. The results showed that, in the presence of PMA, zinc treatment leads to reduce the production of ROS, which results in decrease of COX-2 expression and PGE2 release. Conclusions: Thus, we suggest that zinc treatment leads to the mitigation of oral inflammation and may prove to be an alternative treatment for recurrent aphthous stomatitis. Key words:Zinc, inflammatory response, cytokines, phorbol-12-myristate-13-acetate, gingival fibroblasts cells. PMID:25662537
El-Say, Khalid M; El-Helw, Abdel-Rahim M; Ahmed, Osama A A; Hosny, Khaled M; Ahmed, Tarek A; Kharshoum, Rasha M; Fahmy, Usama A; Alsawahli, Majed
2015-01-01
The purpose was to improve the encapsulation efficiency of cetirizine hydrochloride (CTZ) microspheres as a model for water soluble drugs and control its release by applying response surface methodology. A 3(3) Box-Behnken design was used to determine the effect of drug/polymer ratio (X1), surfactant concentration (X2) and stirring speed (X3), on the mean particle size (Y1), percentage encapsulation efficiency (Y2) and cumulative percent drug released for 12 h (Y3). Emulsion solvent evaporation (ESE) technique was applied utilizing Eudragit RS100 as coating polymer and span 80 as surfactant. All formulations were evaluated for micromeritic properties and morphologically characterized by scanning electron microscopy (SEM). The relative bioavailability of the optimized microspheres was compared with CTZ marketed product after oral administration on healthy human volunteers using a double blind, randomized, cross-over design. The results revealed that the mean particle sizes of the microspheres ranged from 62 to 348 µm and the efficiency of entrapment ranged from 36.3% to 70.1%. The optimized CTZ microspheres exhibited a slow and controlled release over 12 h. The pharmacokinetic data of optimized CTZ microspheres showed prolonged tmax, decreased Cmax and AUC0-∞ value of 3309 ± 211 ng h/ml indicating improved relative bioavailability by 169.4% compared with marketed tablets.
Building a polysaccharide hydrogel capsule delivery system for control release of ibuprofen.
Chen, Zhi; Wang, Ting; Yan, Qing
2018-02-01
Development of a delivery system which can effectively carry hydrophobic drugs and have pH response is becoming necessary. Here we demonstrate that through preparation of β-cyclodextrin polymer (β-CDP), a hydrophobic drug molecule of ibuprofen (IBU) was incorporated into our prepared β-CDP inner cavities, aiming to improve the poor water solubility of IBU. A core-shell capsule structure has been designed for achieving the drug pH targeted and sustained release. This delivery system was built with polysaccharide polymer of Sodium alginate (SA), sodium carboxymethylcellulose (CMC) and hydroxyethyl cellulose (HEC) by physical cross-linking. The drug pH-response control release is this hydrogel system's chief merit, which has potential value for synthesizing enteric capsule. Besides, due to our simple preparing strategy, optimal conditions can be readily determined and the synthesis process can be accurately controlled, leading to consistent and reproducible hydrogel capsules. In addition, phase-solubility method was used to investigate the solubilization effect of IBU by β-CDP. SEM was used to prove the forming of core and shell structure. FT-IR and 1 H-NMR were also used to perform structural characteristics. By the technique of UV determination, the pH targeted and sustained release study were also performed. The results have proved that our prepared polysaccharide hydrogel capsule delivery system has potential applications as oral drugs delivery in the field of biomedical materials.
Iqbal, Ahmed; Heller, Simon
2016-06-01
Intensive glycaemic control reduces the diabetic microvascular disease burden but iatrogenic hypoglycaemia is a major barrier preventing tight glycaemic control because of the limitations of subcutaneous insulin preparations and insulin secretagogues. Severe hypoglycaemia is uncommon early in the disease as robust physiological defences, particularly glucagon and adrenaline release, limit falls in blood glucose whilst associated autonomic symptoms drive patients to take action by ingesting oral carbohydrate. With increasing diabetes duration, glucagon release is progressively impaired and sympatho-adrenal responses are activated at lower glucose levels. Repeated hypoglycaemic episodes contribute to impaired defences, increasing the risk of severe hypoglycaemia in a vicious downward spiral. Managing hypoglycaemia requires a systematic clinical approach with structured insulin self-management training and support of experienced diabetes educators. Judicious use of technologies includes insulin analogues, insulin pump therapy, continuous glucose monitoring, and in a few cases islet cell transplantation. Some individuals require specialist psychological support. Copyright © 2016. Published by Elsevier Ltd.
Brouillet, F; Bataille, B; Cartilier, L
2008-05-22
High-amylose sodium carboxymethyl starch (HASCA), produced by spray-drying (SD), was previously shown to have interesting properties as a promising pharmaceutical sustained drug-release tablet excipient for direct compression, including ease of manufacture and high crushing strength. This study describes the effects of some important formulation parameters, such as compression force (CF), tablet weight (TW), drug-loading and electrolyte particle size, on acetaminophen-release performances from sustained drug-release matrix tablets based on HASCA. An interesting linear relationship between TW and release time was observed for a typical formulation of the system consisting of 40% (w/w) acetaminophen as model drug and 27.5% NaCl as model electrolyte dry-mixed with HASCA. Application of the Peppas and Sahlin model gave a better understanding of the mechanisms involved in drug-release from the HASCA matrix system, which is mainly controlled by surface gel layer formation. Indeed, augmenting TW increased the contribution of the diffusion mechanism. CFs ranging from 1 to 2.5 tonnes/cm(2) had no significant influence on the release properties of tablets weighing 400 or 600 mg. NaCl particle size did not affect the acetaminophen-release profile. Finally, these results prove that the new SD process developed for HASCA manufacture is suitable for obtaining similar-quality HASCA in terms of release and compression performances.
Sakar, Yassine; Nazaret, Corinne; Lettéron, Philippe; Ait Omar, Amal; Avenati, Mathilde; Viollet, Benoît; Ducroc, Robert; Bado, André
2009-01-01
Background and Aims The small intestine is the major site of absorption of dietary sugars. The rate at which they enter and exit the intestine has a major effect on blood glucose homeostasis. In this study, we determine the effects of luminal leptin on activity/expression of GLUT2 and GLUT5 transporters in response to sugars intake and analyse their physiological consequences. Methodology Wistar rats, wild type and AMPKα2 −/− mice were used. In vitro and in vivo isolated jejunal loops were used to quantify transport of fructose and galactose in the absence and the presence of leptin. The effects of fructose and galactose on gastric leptin release were determined. The effects of leptin given orally without or with fructose were determined on the expression of GLUT2/5, on some gluconeogenesis and lipogenic enzymes in the intestine and the liver. Principal Findings First, in vitro luminal leptin activating its receptors coupled to PKCβII and AMPKα, increased insertion of GLUT2/5 into the brush-border membrane leading to enhanced galactose and fructose transport. Second in vivo, oral fructose but not galactose induced in mice a rapid and potent release of gastric leptin in gastric juice without significant changes in plasma leptin levels. Moreover, leptin given orally at a dose reproducing comparable levels to those induced by fructose, stimulated GLUT5-fructose transport, and potentiated fructose-induced: i) increase in blood glucose and mRNA levels of key gluconeogenesis enzymes; ii) increase in blood triglycerides and reduction of mRNA levels of intestinal and hepatic Fasting-induced adipocyte factor (Fiaf) and iii) increase in SREBP-1c, ACC-1, FAS mRNA levels and dephosphorylation/activation of ACC-1 in liver. Conclusion/Significance These data identify for the first time a positive regulatory control loop between gut leptin and fructose in which fructose triggers release of gastric leptin which, in turn, up-regulates GLUT5 and concurrently modulates metabolic functions in the liver. This loop appears to be a new mechanism (possibly pathogenic) by which fructose consumption rapidly becomes highly lipogenic and deleterious. PMID:19956534
Morgen, Michael; Bloom, Corey; Beyerinck, Ron; Bello, Akintunde; Song, Wei; Wilkinson, Karen; Steenwyk, Rick; Shamblin, Sheri
2012-02-01
To demonstrate drug/polymer nanoparticles can increase the rate and extent of oral absorption of a low-solubility, high-permeability drug. Amorphous drug/polymer nanoparticles containing celecoxib were prepared using ethyl cellulose and either sodium caseinate or bile salt. Nanoparticles were characterized using dynamic light scattering, transmission and scanning electron microscopy, and differential scanning calorimetry. Drug release and resuspension studies were performed using high-performance liquid chromatography. Pharmacokinetic studies were performed in dogs and humans. A physical model is presented describing the nanoparticle state of matter and release performance. Nanoparticles dosed orally in aqueous suspensions provided higher systemic exposure and faster attainment of peak plasma concentrations than commercial capsules, with median time to maximum drug concentration (Tmax) of 0.75 h in humans for nanoparticles vs. 3 h for commercial capsules. Nanoparticles released celecoxib rapidly and provided higher dissolved-drug concentrations than micronized crystalline drug. Nanoparticle suspensions are stable for several days and can be spray-dried to form dry powders that resuspend in water. Drug/polymer nanoparticles are well suited for providing rapid oral absorption and increased bioavailability of BCS Class II drugs.
Dey, Sanjay; Chattopadhyay, Sankha; Mazumder, Bhaskar
2014-01-01
The objective of the present study was to develop bilayer tablets of atorvastatin and atenolol that are characterized by initial fast-release of atorvastatin in the stomach and comply with the release requirements of sustained-release of atenolol. An amorphous, solvent evaporation inclusion complex of atorvastatin with β-cyclodextrin, present in 1 : 3 (drug/cyclodextrin) molar ratio, was employed in the fast-release layer to enhance the dissolution of atorvastatin. Xanthan gum and guar gum were integrated in the sustained-release layer. Bilayer tablets composed of sustained-release layer (10% w/w of xanthan gum and guar gum) and fast-release layer [1 : 3 (drug/cyclodextrin)] showed the desired release profile. The atorvastatin contained in the fast-release layer showed an initial fast-release of more than 60% of its drug content within 2 h, followed by sustained release of the atenolol for a period of 12 h. The pharmacokinetic study illustrated that the fast absorption and increased oral bioavailability of atorvastatin as well as therapeutic concentration of atenolol in blood were made available through adoption of formulation strategy of bilayer tablets. It can be concluded that the bilayer tablets of atorvastatin and atenolol can be successfully employed for the treatment of hypertension and hypercholesterolemia together through oral administration of single tablet. PMID:24527446
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Dipendu; Spurri, Amanda; Chen, Jihua
With this study, we have synthesized a nitrogen doped mesoporous carbon with the BET surface area of 1066 m 2/g, total pore volume 0.6 cm 3/g and nitrogen content of 0.5%. Total alendronate adsorption in this carbon was ~5%. The release experiments were designed in four different media with sequential pH values of 1.2, 4.5, 6.8 and 7.4 for 3, 1, 3 and 5 h, respectively and at 37 °C to imitate the physiological conditions of stomach, duodenum, small intestine and colon, respectively. Release of the drug demonstrated a controlled fashion; only 20% of the drug was released in themore » media with pH = 1.2, whereas 64% of the drug was released in pH = 7.4. This is in contrary to pure alendronate that was completely dissolved within 30 min in the first release media (pH = 1.2) only. The relatively larger uptake of alendronate in this carbon and its sustained fashion of release can be attributed to the hydrogen bonding between the drug and the nitrogen functionalities on carbon surface. Based on this result, it can be inferred that this formulation may lower the side effects of oral delivery of alendronate.« less
Preparation, characterization and in vitro evaluation of microemulsion of raloxifene hydrochloride.
Golmohammadzadeh, Shiva; Farhadian, Nafiseh; Biriaee, Amir; Dehghani, Faranak; Khameneh, Bahman
2017-10-01
Raloxifene hydrochloride (RLX) is a selective estrogen receptor modulator which is orally used for treatment of osteoporosis and prevention of breast cancer. The drug has low aqueous solubility and bioavailability. The aim of the present study is to formulate and characterize oil-in-water microemulsion systems for oral delivery of RLX. To enhance the drug aqueous solubility, microemulsion based on sesame oil was prepared. Sesame oil and Tween 80 were selected as the drug solvent oil and surfactant, respectively. In the first and second formulations, Edible glycerin and Span 80 were applied as co-surfactant, respectively. Pseudo-ternary phase diagrams showed that the best surfactant/co-surfactant ratios in the first and second formulations were 4:1 and 9:1, respectively. The particle size of all free drug-loaded and drug loaded samples were in the range of 31.25 ± 0.3 nm and 60.9 ± 0.1 nm, respectively. Electrical conductivity coefficient and refractive index of all microemulsion samples confirmed the formation of oil-in-water type of microemulsion. In vitro drug release profile showed that after 24 hours, 46% and 63% of the drug released through the first formulation in 0.1% (w/v) Tween 80 in distilled water as a release medium and phosphate buffer solution (PBS) at pH = 5.5, respectively. These values were changed to 57% and 98% for the second formulation. Results confirmed that the proposed microemulsion system containing RLX could improve and control the drug release profile in comparison to conventional dosage form.
Pharmacokinetics and anti-hypertensive effect of metoprolol tartrate rectal delivery system.
Abou el Ela, Amal El Sayeh F; Allam, Ayat A; Ibrahim, Ehsan H
2016-01-01
The main aim of this work was to develop rectal suppositories for better delivery of metoprolol tartrate (MT). The various bases used were fatty, water soluble and emulsion bases. The physical properties of the prepared suppositories were characterized such as weight variation, hardness, disintegration time, melting range and the drug content uniformity. The in vitro release of MT from the prepared suppositories was carried out. The evaluation of the pharmacological effects of MT on the blood pressure and heart rate of the healthy rabbits after the rectal administration compared to the oral tablets was studied. Moreover, the formulation with the highest in vitro release and the highest pharmacological effects would be selected for a further pharmacokinetics study compared to the oral tablets. The results revealed that the emulsion bases gave the highest rate of the drug release than the other bases used. The reduction effect of the emulsion MT suppository base on the blood pressure and heart rate was found to be faster and greater than that administered orally. The selected emulsion suppository base (F11) showed a significant increase in the AUC (1.88-fold) in rabbits as compared to the oral tablets. From the above results we can conclude that rectal route can serve as an efficient alternative route to the oral one for systemic delivery of MT which may be due to the avoidance of first-pass effect in the liver.
Higuchi equation: derivation, applications, use and misuse.
Siepmann, Juergen; Peppas, Nicholas A
2011-10-10
Fifty years ago, the legendary Professor Takeru Higuchi published the derivation of an equation that allowed for the quantification of drug release from thin ointment films, containing finely dispersed drug into a perfect sink. This became the famous Higuchi equation whose fiftieth anniversary we celebrate this year. Despite the complexity of the involved mass transport processes, Higuchi derived a very simple equation, which is easy to use. Based on a pseudo-steady-state approach, a direct proportionality between the cumulative amount of drug released and the square root of time can be demonstrated. In contrast to various other "square root of time" release kinetics, the constant of proportionality in the classical Higuchi equation has a specific, physically realistic meaning. The major benefits of this equation include the possibility to: (i) facilitate device optimization, and (ii) to better understand the underlying drug release mechanisms. The equation can also be applied to other types of drug delivery systems than thin ointment films, e.g., controlled release transdermal patches or films for oral controlled drug delivery. Later, the equation was extended to other geometries and related theories have been proposed. The aim of this review is to highlight the assumptions the derivation of the classical Higuchi equation is based on and to give an overview on the use and potential misuse of this equation as well as of related theories. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhang, Lei; Zeng, Zhanzhuang; Hu, Chaohua; Bellis, Susan L; Yang, Wendi; Su, Yintao; Zhang, Xinyan; Wu, Yunkun
2016-01-01
Conventional oral vaccines with simple architecture face barriers with regard to stimulating effective immunity. Here we describe oral vaccines with an intelligent phase-transitional shielding layer, poly[(methyl methacrylate)-co-(methyl acrylate)-co-(methacrylic acid)]-poly(D,L-lactide-co-glycolide) (PMMMA-PLGA), which can protect antigens in the gastro-intestinal tract and achieve targeted vaccination in the large intestine. With the surface immunogenic protein (SIP) from group B Streptococcus (GBS) entrapped as the antigen, oral administration with PMMMA-PLGA (PTRBL)/Trx-SIP nanoparticles stimulated robust immunity in tilapia, an animal with a relatively simple immune system. The vaccine succeeded in protecting against Streptococcus agalactiae, a pathogen of worldwide importance that threatens human health and is transmitted in water with infected fish. After oral vaccination with PTRBL/Trx-SIP, tilapia produced enhanced levels of SIP specific antibodies and displayed durability of immune protection. 100% of the vaccinated tilapia were protected from GBS infection, whereas the control groups without vaccines or vaccinated with Trx-SIP only exhibited respective infection rates of 100% or >60% within the initial 5 months after primary vaccination. Experiments in vivo demonstrated that the recombinant antigen Trx-SIP labeled with FITC was localized in colon, spleen and kidney, which are critical sites for mounting an immune response. Our results revealed that, rather than the size of the nanoparticles, it is more likely that the negative charge repulsion produced by ionization of the carboxyl groups in PMMMA shielded the nanoparticles from uptake by small intestinal epithelial cells. This system resolves challenges arising from gastrointestinal damage to antigens, and more importantly, offers a new approach applicable for oral vaccination. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jackson, J Mark; Kircik, Leon H; Lorenz, Douglas J
2013-03-01
Rosacea is one of the most commonly occurring dermatoses treated by dermatologists. There are multiple therapeutic options available for the treatment of papulopustular rosacea. Rosacea is an inflammatory condition, classically presenting with flushing and/or blushing along with erythema, edema, telangiectasia, papules, pustules, and nodules of the face. Minocycline, a member of the tetracycline family, has demonstrated benefit in the treatment of inflammatory lesions in patients with rosacea. This manuscript highlights the use of a new sustained-release low-dose minocycline 45 mg tablet, with or without azelaic acid, for the treatment of papulopustular rosacea.
Sankalia, Jolly M; Sankalia, Mayur G; Mashru, Rajashree C
2008-07-02
The purpose of this study was to examine a level A in vitro-in vivo correlation (IVIVC) for glipizide hydrophilic sustained-release matrices, with an acceptable internal predictability, in the presence of a range of formulation/manufacturing changes. The effect of polymeric blends of ethylcellulose, microcrystalline cellulose, hydroxypropylmethylcellulose, xanthan gum, guar gum, Starch 1500, and lactose on in vitro release profiles was studied and fitted to various release kinetics models. Water uptake kinetics with scanning electron microscopy (SEM) was carried out to support the drug release mechanism. An IVIVC was established by comparing the pharmacokinetic parameters of optimized (M-24) and marketed (Glytop-2.5 SR) formulations after single oral dose studies on white albino rabbits. The matrix M-19 (xanthan:MCC PH301 at 70:40) and M-24 (xanthan:HPMC K4M:Starch 1500 at 70:25:15) showed the glipizide release within the predetermined constraints at all time points with Korsmeyer-Peppas' and zero-order release mechanism, respectively. Kopcha model revealed that the xanthan gum is the major excipient responsible for the diffusional release profile and was further supported by SEM and swelling studies. A significant level A IVIVC with acceptable limits of prediction errors (below 15%) enables the prediction of in vivo performance from their in vitro release profile. It was concluded that proper selection of rate-controlling polymers with release rate modifier excipients will determine overall release profile, duration and mechanism from directly compressed matrices.
Posaconazole delayed-release tablets and oral suspension are used to prevent serious fungal infections in adults and teenagers 13 years of age and ... break-down of the medication by stomach acids) tablet to take by mouth. The delayed-release tablets ...
Jämstorp, Erik; Yarra, Tejaswi; Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne; Strømme, Maria
2012-01-01
Improving acid resistance, while maintaining the excellent mechanical stability is crucial in the development of a sustained and safe oral geopolymer dosage form for highly potent opioids. In the present work, commercially available Methacrylic acid-ethyl acrylate copolymer, Polyethylene-glycol (PEG) and Alginate polymer excipients were included in dissolved or powder form in geopolymer pellets to improve the release properties of Zolpidem, herein acting as a model drug for the highly potent opioid Fentanyl. Scanning electron microscopy, compression strength tests and drug release experiments, in gastric pH 1 and intestinal pH 6.8 conditions, were performed. The polymer excipients, with an exception for PEG, reduced the drug release rate in pH 1 due to their ability to keep the pellets in shape, in combination with the introduction of an insoluble excipient, and thereby maintain a barrier towards drug diffusion and release. Neither geopolymer compression strength nor the release in pH 6.8 was considerably impaired by the incorporation of the polymer excipients. The geopolymer/polymer composites combine high mechanical strength and good release properties under both gastric and intestinal pH conditions, and are therefore promising oral dosage forms for sustained release of highly potent opioids.
Piccirilli, Gisela N; García, Agustina; Leonardi, Darío; Mamprin, María E; Bolmaro, Raúl E; Salomón, Claudio J; Lamas, María C
2014-11-01
Encapsulation of albendazole, a class II compound, into polymeric microparticles based on chitosan-sodium lauryl sulfate was investigated as a strategy to improve drug dissolution and oral bioavailability. The microparticles were prepared by spray drying technique and further characterized by means of X-ray powder diffractometry, infrared spectroscopy and scanning electron microscopy. The formation of a novel polymeric structure between chitosan and sodium lauryl sulfate, after the internal or external gelation process, was observed by infrared spectroscopy. The efficiency of encapsulation was found to be between 60 and 85% depending on the internal or external gelation process. Almost spherically spray dried microparticles were observed using scanning electron microscopy. In vitro dissolution results indicated that the microparticles prepared by internal gelation released 8% of the drug within 30 min, while the microparticles prepared by external gelation released 67% within 30 min. It was observed that the AUC and Cmax values of ABZ from microparticles were greatly improved, in comparison with the non-encapsulated drug. In conclusion, the release properties and oral bioavailability of albendazole were greatly improved by using spraydried chitosan-sodium lauryl sulphate microparticles.
Wang, Yan-ping; Gan, Yong; Zhang, Xin-xin
2011-01-01
Aim: To develop a novel gastroretentive drug delivery system based on a self-microemulsifying (SME) lipid mixture for improving the oral absorption of the immunosuppressant tacrolimus. Methods: Liquid SME mixture, composed of Cremophor RH40 and monocaprylin glycerate, was blended with polyethylene oxide, chitosan, polyvinylpyrrolidone and mannitol, and then transformed into tablets via granulation, with ethanol as the wetting agent. The tablets were characterized in respect of swelling, bioadhesive and SME properties. In vitro dissolution was conducted using an HCl buffer at pH 1.2. Oral bioavailability of the tablets was examined in fasted beagle dogs. Results: The tablet could expand to 13.5 mm in diameter and 15 mm in thickness during the initial 20 min of contact with the HCl buffer at pH 1.2. The bioadhesive strength was as high as 0.98±0.06 N/cm2. The SME gastroretentive sustained-release tablets preserved the SME capability of the liquid SME formations under transmission electron microscope. The drug-release curve was fit to the zero-order release model, which was helpful in reducing fluctuations in blood concentration. Compared with the commercially available capsules of tacrolimus, the relative bioavailability of the SME gastroretentive sustained-release tablets was 553.4%±353.8%. Conclusion: SME gastroretentive sustained-release tablets can enhance the oral bioavailability of tacrolimus with poor solubility and a narrow absorption window. PMID:21927013
Harris, R.K.; Moeller, R.B.; Lipscomb, T.P.; Pletcher, J.M.; Haebler, R.J.; Tuomi, P.A.; McCormick, C.R.; DeGange, Anthony R.; Mulcahy, Daniel M.; Williams, T.D.; Bayha, Keith; Kormendy, Jennifer
1990-01-01
During implantation of radiotelemetry devices in sea otters (Enhydra lutris) at the Seward Otter Rehabilitation Center, surgical team members noted ulcers in the oral cavity of each of five animals examined. Oral lesions were identified in 25 of 27 otters examined at the center. Histological evaluation of the lesions revealed focal areas of mucosal epithelial necrosis with associated intranuclear viral inclusion bodies. A herpes-like virus was subsequently identified ultrastructurally. The concern of releasing a virus of unknown origin and virulence into a naive wild otter population prompted management decisions restricting the movement of otters and jeopardizing the scheduled release of the otters on 27 July 1989. A team of veterinarians and otter capture personnel captured and examined 12 free-living adult otters off the coast of the southern Kenai Peninsula. Viral-induced oral lesions were identified in many of these animals establishing that the virus was indigenous to sea otters living in Alaskan waters; rehabilitated otters were released back into the wild.
Encapsulation Strategies of Bacteriophage (Felix O1) for Oral Therapeutic Application.
Islam, Golam S; Wang, Qi; Sabour, Parviz M
2018-01-01
Due to emerging antibiotic-resistant strains among the pathogens, a variety of strategies, including therapeutic application of bacteriophages, have been suggested as a possible alternative to antibiotics in food animal production. As pathogen-specific biocontrol agents, bacteriophages are being studied intensively. Primarily their applications in the food industry and animal production have been recognized in the USA and Europe, for pathogens including Salmonella, Campylobacter, Escherichia coli, and Listeria. However, the viability of orally administered phage may rapidly reduce under the harsh acidic conditions of the stomach, presence of enzymes and bile. It is evident that bacteriophages, intended for phage therapy by oral administration, require efficient protection from the acidic environment of the stomach and should remain active in the animal's gastrointestinal tract where pathogen colonizes. Encapsulation of phages by spray drying or extrusion methods can protect phages from the simulated hostile gut conditions and help controlled release of phages to the digestive system when appropriate formulation strategy is implemented.
Oral administration of quercetin is unable to protect against isoproterenol cardiotoxicity.
Ríha, Michal; Vopršalová, Marie; Pilařová, Veronika; Semecký, Vladimír; Holečková, Magdalena; Vávrová, Jaroslava; Palicka, Vladimir; Filipský, Tomáš; Hrdina, Radomír; Nováková, Lucie; Mladěnka, Přemysl
2014-09-01
Catecholamines are endogenous amines that participate in the maintenance of cardiovascular system homeostasis. However, excessive release or exogenous administration of catecholamines is cardiotoxic. The synthetic catecholamine, isoprenaline (isoproterenol, ISO), with non-selective β-agonistic activity has been used as a viable model of acute myocardial toxicity for many years. Since the pathophysiology of ISO-cardiotoxicity is complex, the aim of this study was to elucidate the effect of oral quercetin pretreatment on myocardial ISO toxicity. Wistar-Han rats were randomly divided into four groups: solvent or quercetin administered orally by gavage in a dose of 10 mg kg(-1) daily for 7 days were followed by s.c. water for injection or ISO in a dose of 100 mg kg(-1). Haemodynamic, ECG and biochemical parameters were measured; effects on blood vessels and myocardial histology were assessed, and accompanying pharmacokinetic analysis was performed. Quercetin was unable to protect the cardiovascular system against acute ISO cardiotoxicity (stroke volume decrease, cardiac troponin T release, QRS-T junction elevation and histological impairment). The sole positive effect of quercetin on catecholamine-induced cardiotoxicity was the normalization of increased left ventricular end-diastolic pressure caused by ISO. Quercetin did not reverse the increased responsiveness of rat aorta to vasoconstriction in ISO-treated animals, but it decreased the same parameter in the control animals. Accompanying pharmacokinetic analysis showed absorption of quercetin and its metabolite 3-hydroxyphenylacetic acid formed by bacterial microflora. In conclusion, a daily oral dose of 10 mg kg(-1) of quercetin for 7 days did not ameliorate acute ISO-cardiovascular toxicity in rats despite minor positive cardiovascular effects.
Yedurkar, Pramod; Dhiman, Munish Kumar; Petkar, Kailash; Sawant, Krutika
2013-05-01
Mucoadhesive bilayer buccal patch has been developed to improve the bioavailability and therapeutic efficacy along with providing sustained release of pravastatin sodium. Buccal patches comprising of varying composition of Carbopol 934P and HPMC K4M were designed and characterized for surface pH, swelling index, in vitro bioadhesion, mechanical properties, in vitro drug release and in vivo pharmacokinetic and pharmacodynamics performance. All formulations exhibited satisfactory technological parameters and followed non-fickian drug release mechanism. Bilayer buccal patch containing Carbopol 934P and HPMC K4M in 4:6 ratio (PBP5) was considered optimum in terms of swelling, mucoadhesion, mechanical properties and in vitro release profile. Pharmacokinetic studies in rabbits showed significantly higher (p < 0.05) Cmax (75.63 ± 6.98 ng/mL), AUC(0-8) (311.10 ± 5.89 ng/mL/h) and AUC(0-∞) (909.42 ± 5.89 ng/mL/h) than pravastatin oral tablet (Cmax - 67.40 ± 9.23 ng/mL, AUC(0-8)-130.33 ± 10.25 ng/mL/h and AUC(0-∞)-417.17 ± 5.89 ng/mL/h)). While, increased tmax of buccal patch indicated its sustained release property in comparison to oral tablet. Pharmacodynamic studies in rabbits showed statistically significant difference (p < 0.005) in the reduction of TG (131.10 ± 10.23 mg/dL), VLDL (26.00 ± 2.56 mg/dL) and LDL level (8.99 ± 3.01 mg/dL) as compared to oral conventional tablet. In conclusion, bioavailability from the developed buccal patch of pravastatin was 2.38 times higher than the oral dosage form, indicating its therapeutic potential in the treatment of atherosclerosis.
Mohana Raghava Srivalli, K.; Lakshmi, P.K.; Balasubramaniam, J.
2012-01-01
Lamotrigine is a BCS class II drug with pH dependent solubility. The bilayered gastric mucoadhesive tablets of lamotrigine were designed such that the drug and controlled release polymers were incorporated in the upper layer and the lower layer had the mucoadhesive polymers. The major ingredients selected for the upper layer were the drug and control release polymer (either HPMC K15M or polyox) while the lower MA layer predominantly comprised of Carbopol 974P. A 23 full factorial design was constructed for this study and the tablets were optimized for parameters like tablet size, shape, ex vivo mucoadhesive properties and unidirectional drug release. Oval tablets with an average size of 14 mm diameter were set optimum. Maximum mucoadhesive bond strength of 79.3 ± 0.91 * 103 dyn/cm2 was achieved with carbopol when used in combination with a synergistic resin polymer. All the tested formulations presented a mucoadhesion time of greater than 12 h. The incorporation of methacrylic polymers in the lower layer ensured unidirectional drug release from the bilayered tablets. The unidirectional drug release was confirmed after comparing the dissolution results of paddle method with those of a modified basket method. Model independent similarity and dissimilarity factor methods were used for the comparison of dissolution results. Controlled drug release profiles with zero order kinetics were obtained with polyox and HPMC K15M which reported t90% at 6th and 12th hours, respectively. The “n” value with polyox was 0.992 and that with HPMC K15M was 0.946 indicating an approximate case II transport. These two formulations showed the potential for oral administration of lamotrigine as bilayered gastric mucoadhesive tablets by yielding highest similarity factor values, 96.06 and 92.47, respectively, between the paddle and modified basket method dissolution release profiles apart from reporting the best tablet physical properties and maximum mucoadhesive strength. PMID:24109205
Ikawa, K; Shimatani, T; Azuma, Y; Inoue, M; Morikawa, N
2006-08-01
To examine the effects of the histamine H(2)-receptor antagonist, lafutidine, at clinical dosage (10 mg tablet after a standardized meal) on plasma levels of the gastrointestinal peptides, calcitonin gene-related peptide (CGRP), somatostatin and gastrin. Six healthy male volunteers ate a standardized meal, and received either lafutidine orally at a dose of 10 mg or water only (control). Blood samples were taken before and up to 4 h after the drug administration. Plasma lafutidine concentrations were determined by high pressure liquid chromatography. Pharmacokinetic analysis of lafutidine was performed using one-compartmental model. The levels of immunoreactive substances of plasma CGRP, somatostatin and gastrin were measured by enzyme immunoassay, and the amount of peptide release was calculated by the trapezoidal method. Lafutidine significantly increased plasma CGRP levels at 1, 1.5, 2.5 and 4 h and the total amount of CGRP release (192 +/- 14.0 pg.h/mL) compared with the control group (128 +/- 21.5 pg.h/mL). Lafutidine significantly increased the plasma somatostatin levels at 1 and 1.5 h, and the total amount of somatostatin released (107 +/- 18.2 pg.h/mL) compared with the control (78.4 +/- 7.70 pg.h/mL). The area under the drug concentration-time curve (AUC) from 0 to 4 h after administration correlated well with the Delta-CGRP and Delta-somatostatin release but not with total amount of gastrin released. However, plasma gastrin levels were significantly elevated at 1.5 h after drug administration. Lafutidine at clinical dosage increases plasma CGRP and the somatostatin. The amounts released correlated with the AUC of lafutidine in humans. These results suggest that the increased release of CGRP and somatostatin may contribute to its gastroprotective and anti-acid secretory effect.
Cavallari, Cristina; Brigidi, Patrizia; Fini, Adamo
2015-12-30
The aim of the present study was to evaluate the gel-forming polysaccharide psyllium in the preparation of mucoadhesive patches for the controlled release of chlorhexidine (CHX) to treat pathologies in the oral cavity, using the casting-solvent evaporation technique. A number of different film-forming semi-synthetic polymers, such as sodium carboxymethyl cellulose (SCMC) and hydroxypropylmethyl cellulose (HPMC) were evaluated for comparison. The patch formulations were characterized in terms of drug content, morphology surface, swelling and mucoadhesive properties, microbiology inhibition assay and in vitro release tests. Three ex-vivo testswere carried out using porcine mucosa: an alternative dissolution test using artificial saliva that allows contemporary measurement of dissolution and mucoadhesion, a permeation test through the mucosa and the measurement of mucoadhesion using a Nouy tensile tester, as the maximum force required for the separation of the patch from the mucosa surface. The patches were also examined for determination of the minimum inhibitory concentration in cultures of Escherichia coli and Staphylococcus aureus. All the patches incorporating psyllium were found suitable in terms of external morphology, mucoadhesion and controlled release of the drug: in the presence of psyllium the drug displays prolonged zero-order release related to slower swelling rate of the system. Copyright © 2015. Published by Elsevier B.V.
Tawfik, Mai Ahmed; Tadros, Mina Ibrahim; Mohamed, Magdy Ibrahim
2018-05-21
Vardenafil hydrochloride (VAR) is an erectile dysfunction treating drug. VAR has a short elimination half-life (4-5 h) and suffers low oral bioavailability (15%). This work aimed to explore the dual potential of VAR-dendrimer complexes as drug release modulators and oral bioavailability enhancers. VAR-dendrimer complexes were prepared by solvent evaporation technique using four dendrimer generations (G4.5, G5, G5.5 and G6) at three concentrations (190 nM, 380 nM and 950 nM). The systems were evaluated for intermolecular interactions, particle size, zeta potential, drug entrapment efficiency percentages (EE%) and drug released percentages after 2 h (Q 2h ) and 24 h (Q 24h ). The results were statistically analyzed, and the system showing the highest desirability was selected for further pharmacokinetic studies in rabbits, in comparison to Levitra ® tablets. The highest desirability (0.82) was achieved with D10 system comprising VAR (10 mg) and G6 (190 nM). It possessed small particle size (113.85 nm), low PDI (0.19), positive zeta potential (+21.53), high EE% (75.24%), promising Q 2 h (41.45%) and Q 24 h (74.05%). Compared to Levitra ® tablets, the significantly (p < 0.01) delayed T max , prolonged MRT (0-∞) and higher relative bioavailability (3.7-fold) could clarify the dual potential of D10 as a sustained release system capable of enhancing VAR oral bioavailability.
Fabricating 3D printed orally disintegrating printlets using selective laser sintering.
Fina, Fabrizio; Madla, Christine M; Goyanes, Alvaro; Zhang, Jiaxin; Gaisford, Simon; Basit, Abdul W
2018-04-25
Selective laser sintering (SLS) is a three-dimensional printing (3DP) technology employed to manufacture plastic, metallic or ceramic objects. The aim of this study was to demonstrate the feasibility of using SLS to fabricate novel solid dosage forms with accelerated drug release properties, and with a view to create orally disintegrating formulations. Two polymers (hydroxypropyl methylcellulose (HPMC E5) and vinylpyrrolidone-vinyl acetate copolymer (Kollidon ® VA 64)) were separately mixed with 5% paracetamol (used as a model drug) and 3% Candurin ® Gold Sheen colorant; the powder mixes were subjected to SLS printing, resulting in the manufacture of printlets (3DP tablets). Modulating the SLS printing parameters altered the release characteristics of the printlets, with faster laser scanning speeds accelerating drug release from the HPMC formulations. The same trend was observed for the Kollidon ® based printlets. At a laser scanning speed of 300 mm/s, the Kollidon ® printlets exhibited orally disintegrating characteristics by completely dispersing in <4 s in a small volume of water. X-ray micro-CT analysis of these printlets indicated a reduction in their density and an increase in open porosity, therefore, confirming the unique disintegration behaviour of these formulations. The work reported here is the first to demonstrate the feasibility of SLS 3DP to fabricate printlets with accelerated drug release and orally disintegrating properties. This investigation has confirmed that SLS is amenable to the pharmaceutical research of modern medicine manufacture. Copyright © 2018 Elsevier B.V. All rights reserved.
Advances and challenges in oral health after a decade of the “Smiling Brazil” Program
Scherer, Charleni Inês; Scherer, Magda Duarte dos Anjos
2016-01-01
ABSTRACT OBJECTIVE To analyze oral health work changes in primary health care after Brazil’s National Oral Health Policy Guidelines were released. METHODS A literature review was conducted on Medline, LILACS, Embase, SciELO, Biblioteca Virtual em Saúde, and The Cochrane Library databases, from 2000 to 2013, on elements to analyze work changes. The descriptors used included: primary health care, family health care, work, health care policy, oral health care services, dentistry, oral health, and Brazil. Thirty-two studies were selected and analyzed, with a predominance of qualitative studies from the Northeast region with workers, especially dentists, focusing on completeness and quality of care. RESULTS Observed advances focused on educational and permanent education actions; on welcoming, bonding, and accountability. The main challenges were related to completeness; extension and improvement of care; integrated teamwork; working conditions; planning, monitoring, and evaluation of actions; stimulating people’s participation and social control; and intersectorial actions. CONCLUSIONS Despite the new regulatory environment, there are very few changes in oral health work. Professionals tend to reproduce the dominant biomedical model. Continuing efforts will be required in work management, training, and permanent education fields. Among the possibilities are the increased engagement of managers and professionals in a process to understand work dynamics and training in the perspective of building significant changes for local realities. PMID:26815162
Self-assembly of green tea catechin derivatives in nanoparticles for oral lycopene delivery.
Li, Weikun; Yalcin, Murat; Lin, Qishan; Ardawi, Mohammed-Salleh M; Mousa, Shaker A
2017-02-28
Lycopene is a natural anti-oxidant that has attracted much attention due to its varied applications such as protection against loss of bone mass, chronic diseases, skin cancer, prostate cancer, and cardiovascular disease. However, high instability and extremely low oral bioavailability limit its further clinical development. We selected a green tea catechin derivative, oligomerized (-)-epigallocatechin-3-O-gallate (OEGCG) as a carrier for oral lycopene delivery. Lycopene-loaded OEGCG nanoparticles (NPs) were prepared by a nano-precipitation method, followed by coating with chitosan to form a shell. This method not only can easily control the size of the NP to be around 200nm to improve its bioavailability, but also can effectively protect the lycopene against degradation due to EGCG's anti-oxidant property. OEGCG was carefully characterized with nuclear magnetic resonance spectroscopy and mass spectrometry. Lycopene-loaded polylactic-co-glycolic acid (PLGA) NPs were prepared by the same method. Chitosan-coated OEGCG/lycopene NPs had a diameter of 152±32nm and a ζ-potential of 58.3±4.2mv as characterized with transmission electron microscopy and dynamic light scattering. The loading capacity of lycopene was 9% and encapsulation efficiency was 89%. FT-IR spectral analysis revealed electrostatic interaction between OEGCG and chitosan. Freeze drying of the NPs was also evaluated as a means to improve shelf life. Dynamic light scattering data showed that no aggregation occurred, and the size of the NP increased 1.2 times (S f /S i ratio) in the presence of 10% sucrose after freeze drying. The in vitro release study showed slow release of lycopene in simulated gastric fluid at acidic pH and faster release in simulated intestinal fluid. In an in vivo study in mice, lycopene pharmacokinetic parameters were improved by lycopene/OEGCG/chitosan NPs, but not improved by lycopene/PLGA/chitosan NPs. The self-assembled nanostructure of OEGCG combined with lycopene may be a promising application in oral drug delivery in various indications. Copyright © 2017 Elsevier B.V. All rights reserved.
Thiomers for oral delivery of hydrophilic macromolecular drugs.
Bernkop-Schnürch, Andreas; Hoffer, Martin H; Kafedjiiski, Krum
2004-11-01
In recent years thiolated polymers (thiomers) have appeared as a promising new tool in oral drug delivery. Thiomers are obtained by the immobilisation of thio-bearing ligands to mucoadhesive polymeric excipients. By the formation of disulfide bonds with mucus glycoproteins, the mucoadhesive properties of thiomers are up to 130-fold improved compared with the corresponding unmodified polymers. Owing to the formation of inter- and intramolecular disulfide bonds within the thiomer itself, matrix tablets and particulate delivery systems show strong cohesive properties, resulting in comparatively higher stability, prolonged disintegration times and a more controlled drug release. The permeation of hydrophilic macromolecular drugs through the gastrointestinal (GI) mucosa can be improved by the use of thiomers. Furthermore, some thiomers exhibit improved inhibitory properties towards GI peptidases. The efficacy of thiomers in oral drug delivery has been demonstrated by various in vivo studies. A pharmacological efficacy of 1%, for example, was achieved in rats by oral administration of calcitonin tablets comprising a thiomer. Furthermore, tablets comprising a thiomer and pegylated insulin resulted in a pharmacological efficacy of 7% after oral application to diabetic mice. Low-molecular-weight heparin embedded in thiolated polycarbophil led to an absolute bioavailability of > or = 20% after oral administration to rats. In these studies, formulations comprising the corresponding unmodified polymer had only a marginal or no effect. These results indicate drug carrier systems based on thiomers appear to be a promising tool for oral delivery of hydrophilic macromolecular drugs.
Valappil, Sabeel P; Coombes, Marc; Wright, Lucy; Owens, Gareth J; Lynch, Richard J M; Hope, Christopher K; Higham, Susan M
2012-05-01
Phosphate-based glasses (PBGs) are excellent controlled delivery agents for antibacterial ions such as silver and gallium. The aim of this study was to assess the potential utility of novel PBGs combining both gallium and silver for use in periodontal therapy. To this end, an in vitro biofilm model with the putative periodontal pathogen, Porphyromonas gingivalis, and an initial colonizer, Streptococcus gordonii, was established. The effect of increasing calcium content in gallium-silver-doped PBG on the susceptibility of P. gingivalis was examined. A decrease in degradation rates (30.34, 25.19, 21.40 μg mm(-2) h(-1)) with increasing PBG calciumcontent (10, 11, 12 mol.% respectively) was observed, correlating well with gallium and silver ion release and antimicrobial activity against planktonic P. gingivalis (approximately 5.4log(10) colony-forming units (CFU) reduction after 24h by the C10 glass compared with controls) and S. gordonii (total growth inhibition after 32h by C10, C11 and C12 glasses compared with controls). The most potent PBG (C10) was evaluated for its ability to inhibit the biofilm growth of P. gingivalis in a newly established constant-depth film fermentor model. The simultaneous release of silver and gallium from the glass reduced P. gingivalis biofilm growth with a maximum effect (1.92log(10) CFU reduction) after 168 h. Given the emergence of antibiotic-resistant bacteria and dearth of new antibiotics in development, the glasses, especially C10, would offer effective alternatives to antibiotics or may complement current therapies through controlled, localized delivery of gallium and silver ions at infected sites in the oral cavity. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Tolia, Vasundhara; Johnston, Gary; Stolle, Julie; Lee, Chang
2004-01-01
To compare the flavor and taste preference of two acid-inhibitory therapies in healthy children aged between 5-11 years. A single-site, single-blind, taste test trial was conducted in which 111 children participated after parental consent. One teaspoonful (5 mL) of lansoprazole delayed-release oral suspension (strawberry-flavored) and ranitidine oral syrup (peppermint-flavored) were provided to each child with a 10-minute break between samples. Children tasted the sample, swished it in their mouth for 10 seconds, and then expectorated the sample. Spring water and crackers were used to clear the palate between samples. After each sampling, children were observed for facial expressions and asked to rate their degree of liking of each sample based on a 5-point facial hedonic scale (5=like it very much, 1=dislike it very much). Likes, dislikes, and product preference were recorded. Of the 56 female and 54 male children who tasted both samples, 95% (105/110) preferred lansoprazole. Taste and flavor were the most often cited reasons for preferring lansoprazole (61 and 17 children, respectively) while three children preferred the flavor of ranitidine oral syrup. Lansoprazole received a higher mean liking rating compared with ranitidine (mean liking scores of 4.1 and 2.2, respectively). There was no significant difference in the preference for lansoprazole between age groups and gender with the degree of liking scores ranging between 3.5-4.4. Forty-two children disliked the texture of the lansoprazole oral suspension, citing the granules (31/110), thickness (7/110), or consistency/texture (4/110), specifically. After sampling both products, 95% of children preferred the flavor and taste of the strawberry-flavored lansoprazole delayed-release oral suspension compared with the peppermint-flavored ranitidine oral syrup.
Congenital isolated thyrotrophin releasing hormone deficiency
Niimi, H; Inomata, H; Sasaki, N; Nakajima, H
1982-01-01
A 4⅓-year-old girl with congenital thyrotrophin-releasing hormone (TRH) deficiency is described. Oral TRH administration led to normal thyroid hormone and TRH levels in the blood; favourable growth and development was achieved. PMID:6816148
Cho, Hyun-Jong; Park, Jin Woo; Yoon, In-Soo; Kim, Dae-Duk
2014-01-01
Docetaxel is a potent anticancer drug, but development of an oral formulation has been hindered mainly due to its poor oral bioavailability. In this study, solid lipid nanoparticles (SLNs) surface-modified by Tween 80 or D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) were prepared and evaluated in terms of their feasibility as oral delivery systems for docetaxel. Tween 80-emulsified and TPGS 1000-emulsified tristearin-based lipidic nanoparticles were prepared by a solvent-diffusion method, and their particle size distribution, zeta potential, drug loading, and particle morphology were characterized. An in vitro release study showed a sustained-release profile of docetaxel from the SLNs compared with an intravenous docetaxel formulation (Taxotere®). Tween 80-emulsified SLNs showed enhanced intestinal absorption, lymphatic uptake, and relative oral bioavailability of docetaxel compared with Taxotere in rats. These results may be attributable to the absorption-enhancing effects of the tristearin nanoparticle. Moreover, compared with Tween 80-emulsified SLNs, the intestinal absorption and relative oral bioavailability of docetaxel in rats were further improved in TPGS 1000-emulsified SLNs, probably due to better inhibition of drug efflux by TPGS 1000, along with intestinal lymphatic uptake. Taken together, it is worth noting that these surface-modified SLNs may serve as efficient oral delivery systems for docetaxel. PMID:24531717
Rao, Venkatramana M; Zannou, Erika A; Stella, Valentino J
2011-04-01
The challenge of designing a delayed-release oral dosage form is significantly increased when the drug substance is poorly water soluble. This manuscript describes the design and characterization of a novel controlled-release film-coated tablet for the pH-triggered delayed and complete release of poorly water-soluble weak base drugs. Delivery of weak bases is specifically highlighted with the use of dipyridamole and prazosin as model compounds. Tailored delayed release is achieved with a combination of an insoluble but semipermeable polymer and an enteric polymer, such as cellulose acetate and hydroxypropyl cellulose phthalate, respectively, as coatings. The extent of the time lag prior to complete release depends on the film-coating composition and thickness. Complete release is achieved by the addition of a cyclodextrin, namely SBE7M-β-CD with or without a pH modifier added to the tablet core to ensure complete solubilization and release of the drug substance. The film-coating properties allow the complex formation/solubilization to occur in situ. Additionally, the drug release rate can be modulated on the basis of the cyclodextrin to drug molar ratio. This approach offers a platform technology for delayed release of potent but poorly soluble drugs and the release can be modulated by adjusting the film-coating composition and thickness and/or the cyclodextrin and pH modifier, if necessary. Copyright © 2010 Wiley-Liss, Inc.
Anaya Castro, Maria Antonieta; Alric, Isabelle; Brouillet, Fabien; Peydecastaing, Jérôme; Fullana, Sophie Girod; Durrieu, Vanessa
2018-04-01
The objective of this work was to evaluate soy protein isolate (SPI) and acylated soy protein (SPA) as spray-drying encapsulation carriers for oral pharmaceutical applications. SPI acylation was performed by the Schotten-Baumann reaction. SPA, with an acylation rate of 41%, displayed a decrease in solubility in acidic conditions, whereas its solubility was unaffected by basic conditions. The drug encapsulation capacities of both SPI and SPA were tested with ibuprofen (IBU) as a model poorly soluble drug. IBU-SPI and IBU-SPA particles were obtained by spray-drying under eco-friendly conditions. Yields of 70 to 87% and microencapsulation efficiencies exceeding 80% were attained for an IBU content of 20 to 40% w/w, confirming the excellent microencapsulation properties of SPI and the suitability of the chemical modification. The in vitro release kinetics of IBU were studied in simulated gastrointestinal conditions (pH 1.2 and pH 6.8, 37°C). pH-sensitive release patterns were observed, with an optimized low rate of release in simulated gastric fluid for SPA formulations, and a rapid and complete release in simulated intestinal fluid for both formulations, due to the optimal pattern of pH-dependent solubility for SPA and the molecular dispersion of IBU in soy protein. These results demonstrate that SPI and SPA are relevant for the development of pH-sensitive drug delivery systems for the oral route.
Preoperative oral carbohydrate treatment attenuates endogenous glucose release 3 days after surgery.
Soop, Mattias; Nygren, Jonas; Thorell, Anders; Weidenhielm, Lars; Lundberg, Mari; Hammarqvist, Folke; Ljungqvist, Olle
2004-08-01
Postoperative metabolism is characterised by insulin resistance and a negative whole-body nitrogen balance. Preoperative carbohydrate treatment reduces insulin resistance in the first day after surgery. We hypothesised that preoperative oral carbohydrate treatment attenuates insulin resistance and improves whole-body nitrogen balance 3 days after surgery. Fourteen patients undergoing total hip replacement were double-blindly randomised to preoperative oral carbohydrate treatment (12.5%, 800 + 400 ml, n = 8) or placebo (n = 6). Glucose kinetics (6,6-D2-glucose), substrate utilisation (indirect calorimetry) and insulin sensitivity (hyperinsulinaemic-euglycaemic clamp) were measured preoperatively and on the third day after surgery. Nitrogen losses were monitored for 3 days after surgery. Values are mean (SEM). Analysis of variance (ANOVA) statistics were used. Endogenous glucose release during insulin infusion increased after surgery in the placebo group. Preoperative carbohydrate treatment, as compared to placebo, significantly attenuated postoperative endogenous glucose release (0.69 (0.07) vs. 1.21 (0.13)mg kg(-1) x min(-1), P < 0.01), while whole-body glucose disposal and nitrogen balance were similar between groups. While insulin resistance in the first day after surgery has previously been characterised by reduced glucose disposal, enhanced endogenous glucose release was the main component of postoperative insulin resistance on the third postoperative day. Preoperative carbohydrate treatment attenuated endogenous glucose release on the third postoperative day. Copyright 2004 Elsevier Ltd.
Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer.
Yin, Liang; Meng, Zhan; Zhang, Yuxiao; Hu, Kaikai; Chen, Wuya; Han, Kaibin; Wu, Bao-Yan; You, Rong; Li, Chu-Hua; Jin, Ying; Guan, Yan-Qing
2018-02-10
Oral drug delivery has attracted substantial attention due to its advantages over other administration routes. Bacillus spores, as oral probiotic agents, are applied widely. In this paper, a novel Bacillus spore-based oral colon targeted carrier loading curcumin was developed for colon cancer treatment. Curcumin was linked covalently with the outer coat of Bacillus spore and folate, respectively (SPORE-CUR-FA). Bacillus spores are capable of delivering drugs to the colon area through gastric barrier, taking the advantage of its tolerance to the harsh conditions and disintegration of the outer coat of spores after germination in the colon. The drug release in vitro and in vivo of SPORE-CUR-FA was investigated. Results showed that SPORE-CUR-FA had the characteristics of colon-targeted drug release. Pharmacokinetic studies confirmed that Bacillus spore-based carriers could efficiently improve the oral bioavailability of curcumin. In vitro and in vivo anti-tumor studies showed that SPORE-CUR-FA had substantial ability for inhibiting colon cancer cells. These findings suggest that this Bacillus spore-based oral drug delivery system has a great potential for the treatment of colon cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Jesus, Douglas Rossi; Barbosa, Lorena Neris; Prando, Thiago Bruno Lima; Martins, Leonardo Franco; Gasparotto, Francielli; Guedes, Karla Moraes Rocha; Dragunski, Douglas Cardoso; Lourenço, Emerson Luiz Botelho; Dalsenter, Paulo Roberto; Gasparotto Junior, Arquimedes
2015-01-01
The large consumption of biodegradable films from cassava starch acetate (FCSA) as ingredients in food and pharmaceutical products requires the assessment of the possible toxicity of these products. The aim of this study was to investigate the toxicity of biodegradable film from cassava starch acetate after oral exposure of Wistar rats for 90 days. The amount of food consumed and the body weight were weekly monitored. Blood and urine samples were obtained for the assessment of serum parameters and renal function. Histopathological analyses in target organs were also performed. No evidence of clinical toxicity in hematological, biochemical, or renal parameters in the FCSA-treated animals was found. In addition, relative organ weight and histopathological evaluations did not differ between groups treated with FCSA and control. Data obtained suggest that the subchronic exposure to FCSA does not cause obvious signs of toxicity in Wistar rats, indicating possible safety of this biofilm.
Sylvatic plague vaccine: a new tool for conservation of threatened and endangered species?
Abbott, Rachel C; Osorio, Jorge E; Bunck, Christine M; Rocke, Tonie E
2012-09-01
Plague, a disease caused by Yersinia pestis introduced into North America about 100 years ago, is devastating to prairie dogs and the highly endangered black-footed ferret. Current attempts to control plague in these species have historically relied on insecticidal dusting of prairie dog burrows to kill the fleas that spread the disease. Although successful in curtailing outbreaks in most instances, this method of plague control has significant limitations. Alternative approaches to plague management are being tested, including vaccination. Currently, all black-footed ferret kits released for reintroduction are vaccinated against plague with an injectable protein vaccine, and even wild-born kits are captured and vaccinated at some locations. In addition, a novel, virally vectored, oral vaccine to prevent plague in wild prairie dogs has been developed and will soon be tested as an alternative, preemptive management tool. If demonstrated to be successful, oral vaccination of selected prairie dog populations could decrease the occurrence of plague epizootics in key locations, thereby reducing the source of bacteria while avoiding the indiscriminate environmental effects of dusting. Just as rabies in wild carnivores has largely been controlled through an active surveillance and oral vaccination program, we believe an integrated plague management strategy would be similarly enhanced with the addition of a cost-effective, bait-delivered, sylvatic plague vaccine for prairie dogs. Control of plague in prairie dogs, and potentially other rodents, would significantly advance prairie dog conservation and black-footed ferret recovery.
Sylvatic plague vaccine: A new tool for conservation of threatened and endangered species?
Abbott, Rachel C.; Osorio, Jorge E.; Bunck, Christine M.; Rocke, Tonie E.
2012-01-01
Plague, a disease caused by Yersinia pestis introduced into North America about 100 years ago, is devastating to prairie dogs and the highly endangered black-footed ferret. Current attempts to control plague in these species have historically relied on insecticidal dusting of prairie dog burrows to kill the fleas that spread the disease. Although successful in curtailing outbreaks in most instances, this method of plague control has significant limitations. Alternative approaches to plague management are being tested, including vaccination. Currently, all black-footed ferret kits released for reintroduction are vaccinated against plague with an injectable protein vaccine, and even wild-born kits are captured and vaccinated at some locations. In addition, a novel, virally vectored, oral vaccine to prevent plague in wild prairie dogs has been developed and will soon be tested as an alternative, preemptive management tool. If demonstrated to be successful, oral vaccination of selected prairie dog populations could decrease the occurrence of plague epizootics in key locations, thereby reducing the source of bacteria while avoiding the indiscriminate environmental effects of dusting. Just as rabies in wild carnivores has largely been controlled through an active surveillance and oral vaccination program, we believe an integrated plague management strategy would be similarly enhanced with the addition of a cost-effective, bait-delivered, sylvatic plague vaccine for prairie dogs. Control of plague in prairie dogs, and potentially other rodents, would significantly advance prairie dog conservation and black-footed ferret recovery.
1991-12-06
DSN 343-7322. N fjGARX\\R. GILBERT COL, MS Deputy Chief of Staff for Information Management REPRODUCTION QUALITY NOTICE This document is the best quality...1976. 35. Ogre, P.L.: Karzon, D.T. Distribution of poliovirus antibody in serum, nasopharymrt and alimentary tract folloving segmental limunization...sysemst, In.- Hisholl, DAI. ; Advances in human fertility and reproductive endocrinology. NWe York, Raven Press Books. Ltd; Vol. 2. 1963: 175-199. 52. Tic
Polymers in life sciences: Pharmaceutical and biomedical applications
NASA Astrophysics Data System (ADS)
Barba, Anna Angela; Dalmoro, Annalisa; d'Amore, Matteo; Lamberti, Gaetano; Cascone, Sara; Titomanlio, Giuseppe
2015-12-01
This paper deals with the work done by prof. Titomanlio and his group in the fields of pharmaceutical and biomedical applications of polymers. In particular, the main topics covered are: i) controlled drug release from pharmaceuticals based on hydrogel for oral delivery of drugs; ii) production and characterization of micro and nanoparticles based on stimuli-responsive polymers; iii) use of polymers for coronary stent gel-paving; iv) design and realization of novel methods (in-vitro and in-silico) to test polymer-based pharmaceuticals.
Survival of foul-hooked largemouth bass (Micropterus salmoides)
Pope, K.L.; Wilde, G.R.
2010-01-01
We conducted a field experiment to determine the survival rate of foul-hooked (hooked external to the oral cavity) largemouth bass (Micropterus salmoides) caught and released by recreational anglers. Of 42 largemouth bass caught with hard-plastic baits containing three treble hooks, 15 were hooked only within the mouth and 27 had at least one hook penetrating the external surface of the fish (i.e., foul-hooked). There was no difference in survival of mouth-hooked (100%), foul-hooked (100%), or control (100%) largemouth bass.
SadguruPrasad, Lakshminarayana Turuvekere; Madhusudhan, Basavaraj; Kodihalli B, Prakash; Ghosh, Prahlad Chandra
2017-02-01
Poly-methyl methacrylate (PMMA) polymer with remarkable properties and merits are being preferred in various biomedical applications due to its biocompatibility, non-toxicity and cost effectiveness. In this investigation, oxytetracycline-loaded PMMA nanoparticles were prepared using nano-precipitation method for the treatment of anaplasmosis. The prepared nanoparticles were characterised using dynamic light scattering (DLS), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The mean average diameter of the nanoparticles ranged between 190-240 nm and zeta potential was found to be -19 mV. The drug loading capacity and entrapment efficiency of nanoparticles was found varied between 33.7-62.2% and 40.5-60.0%. The in vitro drug release profile exhibited a biphasic phenomenon indicating controlled drug release. The uptake of coumarin-6(C-6)-loaded PMMA nanoparticles in Plasmodium falciparum ( Pf 3D7) culture model was studied. The preferential uptake of C-6-loaded nanoparticles by the Plasmodium infected erythrocytes in comparison with the uninfected erythrocytes was observed under fluorescence microscopy. These findings suggest that oxytetracycline-loaded PMMA nanoparticles were found to be an effective oral delivery vehicle and an alternative pharmaceutical formulation in anaplasmosis treatment, too.
Prospectives of Antihypertensive Nano-ceuticals as Alternative Therapeutics.
Niaz, Taskeen; Hafeez, Zeeshan; Imran, Muhammad
2017-01-01
Global death rate due to cardiovascular diseases (CVDs) is highest as compared to other ailments. Principal risk factor associated with CVDs is hypertension. Major classes of current antihypertensive (AHT) therapies include angiotensin converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARBs) and calcium channel blockers (CCBs). All these antihypertensive therapeutic drugs have low oral bioavailability and can induce upper respiratory tract abstraction, angioedema, reflex tachycardia and extreme hypotensive effect after oral administration which can cause lethal effects in patients with heart diseases. Controlled and targeted release by using antihypertensive nano-medicines can provide better solution to overcome above-mentioned side effects. Scientific evolution towards the development of biopolymer based nano-carrier systems has unlocked new horizons for safe and/or edible nano drug delivery systems. In this article, we have reviewed in detail various mechanisms of AHT drugs, major draw backs associated with current therapeutic strategies, and the advantages of AHT nano-medicines over conventional drugs. Furthermore, recent reports of bio-based nano/micro -carrier systems with different AHT drugs have been analyzed with their key features. In depth review has been presented for chitosan as a potential carrier of AHT drugs due to its distinctive properties comprising muco-adhesive attribute, permeation enhancement as well as its biocompatible and biodegradable nature. Chitosan based novel AHT nano-ceuticals can improve oral bioavailability, reduce hydrophobicity and increase the plasma half-life of AHT drugs by their sustained release in lower part of the GIT. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Fleming, Alison B; Carlson, Douglas R; Varanasi, Ravi K; Grima, Michael; Mayock, Stephen P; Saim, Said; Kopecky, Ernest A
2016-03-01
Patients who have chronic pain with dysphagia (difficulty swallowing) (CPD) often have difficulty taking oral medication and, as such, alter their medications by crushing or chewing in an attempt to make it easier to swallow. Such manipulation of currently marketed, extended-release (ER) opioid analgesics can significantly alter the pharmacokinetic (PK) properties of the formulations, resulting in poor treatment outcome or serious adverse events. There is an unmet medical need for oral ER opioid formulations suitable for patients with CPD. The primary objectives of this study were to conduct in vitro studies to evaluate alternate means of administration of a new, extended-release (ER), abuse-deterrent, microsphere-in-capsule formulation of oxycodone for patients with CPD. Specifically, these studies investigated the in vitro equivalence of drug release rates from Oxycodone DETERx® ER intact capsules (control condition) and administration via alternate modes-opening the capsule and sprinkling the microspheres onto soft foods or administration through enteral tubes. Secondary objectives were to compare alternate modes of administration of Oxycodone DETERx® to a commercially available ER-morphine product. Soft food study: Oxycodone DETERx® microspheres were sprinkled onto and mixed with several soft foods (ie, applesauce, vanilla pudding, strawberry jam, yogurt, and vanilla ice cream); the effect of drug contact time (0, 30, and 60 minutes) on drug release was studied. Enteral tube study: Oxycodone DETERx® microspheres were administered through varying sizes of nasogastric (10 and 12 Fr.) tubes and a 16 Fr. gastrostomy tube using 5 different delivery vehicles (ie, water, liquid nutritional feeds [Jevity®, Ensure®], and milk [whole milk and 2% milk]). Drug release rate was characterized using a standard in vitro dissolution methodology; dissolution of intact Oxycodone DETERx® capsules served as the control for both the soft food and enteral tube studies. Oxycodone concentration was measured using a standardized high-performance liquid chromatography (HPLC) assay. Similarity factor (f2) analysis was used to compare similarity of the dissolution profiles of test and control conditions. The mean dissolution profile of Oxycodone DETERx® microspheres sprinkled onto and mixed with each of the soft foods were similar (f2 > 50) to that of the control. Study drug-food contact time did not impact dissolution profiles. The dissolution data obtained from Oxycodone DETERx® microspheres passed through enteral feeding tubes of varying sizes were similar (f2 > 50) to that of the control. Unlike a marketed morphine sulfate ER pellet formulation, Oxycodone DETERx® did not clog any of the studied enteral tubes. A new ER, abuse-deterrent, microsphere-in-capsule formulation of oxycodone can be administered by sprinkling onto soft food without affecting the drug release profile of the formulation. The formulation can also be administered directly via enteral tubes without affecting drug release and without clogging enteral tubes. Oxycodone DETERx® may offer physicians and patients with CPD an alternate treatment option, especially in those patients who have dysphagia or an aversion to swallowing monolithic tablet/capsule formulations and for whom analgesic patches or other opioid formulations are not a viable therapeutic option. © 2015 World Institute of Pain.
Tapson, Victor F; Torres, Fernando; Kermeen, Fiona; Keogh, Anne M; Allen, Roblee P; Frantz, Robert P; Badesch, David B; Frost, Adaani E; Shapiro, Shelley M; Laliberte, Kevin; Sigman, Jeffrey; Arneson, Carl; Galiè, Nazzareno
2012-12-01
Infused and inhaled treprostinil are effective for treatment of pulmonary arterial hypertension (PAH), although their administration routes have limitations. This study assessed the efficacy and safety of bid oral sustained-release treprostinil in the treatment of PAH with a concomitant endothelin receptor antagonist (ERA) and/or phosphodiesterase type 5 inhibitor. A 16-week, multicenter, double-blind, placebo-controlled study was conducted in 350 patients with PAH randomized to placebo or oral treprostinil. All patients were stable on background ERA, PDE-5 inhibitor, or both. Primary end point was Hodges-Lehmann placebo-corrected median difference in change from baseline 6-min walk distance (6MWD) at week 16. Secondary end points included time to clinical worsening, change in World Health Organization functional class, Borg dyspnea score, and dyspnea fatigue index score. Thirty-nine patients (22%) receiving oral treprostinil and 24 patients (14%) receiving placebo discontinued the study. Placebo-corrected median difference in change from baseline 6MWD at week 16 was 11 m (P = .07). Improvements in dyspnea fatigue index score (P = .01) and combined 6MWD and Borg dyspnea score (P = .01) were observed with oral treprostinil vs placebo treatment. Patients who achieved a week-16 bid oral treprostinil dose of 1.25 to 3.25 mg and 3.5 to 16 mg experienced a greater change in 6MWD (18 m and 34 m, respectively) than patients who achieved a bid dose of < 1 mg or discontinued because of adverse events (4 m). The primary end point of improvement in 6MWD at week 16 did not achieve significance. This study enhanced understanding of oral treprostinil titration and dosing, which has set the stage for additional studies. ClinicalTrials.gov; No.: NCT00325442; URL: www.clinicaltrials.gov.
Hu, Kaili; Cao, Shan; Hu, Fuqiang; Feng, Jianfang
2012-01-01
The aim of this research work was to investigate the potential of lecithin nanoparticles (LNs) in improving the oral bioavailability of docetaxel. Docetaxel-loaded LNs (DTX-LNs) were prepared from oil-in-water emulsions and characterized in terms of morphology, size, zeta potential, and encapsulation efficiency. The in vitro release of docetaxel from the nanoparticles was studied by using dialysis bag method. Caco-2 cell monolayer was used for the in vitro permeation study of DTX-LNs. Bioavailability studies were conducted in rats and different pharmacokinetic parameters were evaluated after oral administration of DTX-LNs. The results showed that DTX-LNs had a mean diameter of 360 ± 8 nm and exhibited spherical shape with smooth surface under transmission electron microscopy. The DTX-LNs showed a sustained-release profile, with about 80% of docetaxel released within 72 hours. The apical to basolateral transport of docetaxel across the Caco-2 cell monolayer from the DTX-LNs was 2.14 times compared to that of the docetaxel solution (0.15 × 10−5 ± 0.016 × 10−5 cm/second versus 0.07 × 10−5 ± 0.003 × 10−5 cm/second). The oral bioavailability of the DTX-LNs was 3.65 times that of docetaxel solution (8.75% versus 2.40%). These results indicate that DTX-LNs were valuable as an oral drug delivery system to enhance the absorption of docetaxel. PMID:22848177
Chen, Li; Liu, Chang-Shun; Chen, Qing-Zhen; Wang, Sen; Xiong, Yong-Ai; Jing, Jing; Lv, Jia-Jia
2017-03-30
The purpose of this study was to develop a self-microemulsifying drug delivery system (SMEDDS) to improve the oral bioavailability of Chlorogenic acid (CA), an important bioactive compound from Lonicerae Japonicae Flos with poor permeability. SMEDDS was prepared and characterized by self-emulsifying rate, morphological observation, droplet size determination, stability, in vitro release, in vivo bioavailability and tissue distribution experiments. Results shown that the SMEDDS of CA has a high self-emulsifying rate (>98%) in the dissolution media, and its microemulsion exhibits small droplet size (16.37nm) and good stability. In vitro release test showed a complete release of CA from SMEDDS in 480min. After oral administration in mice, significantly enhanced bioavailability of CA was achieved through SMEDDS (249.4% relative to the CA suspension). Interestingly, SMEDDS significantly changed the tissue distribution of CA and showed a better targeting property to the kidney (2.79 of the relative intake efficiency). It is suggested that SMEDDS improves the oral bioavailability of CA may mainly through increasing its absorption and slowing the metabolism of absorbed CA via changing its distribution from the liver to the kidney. In conclusion, it is indicated that SMEDDS is a promising carrier for the oral delivery of CA. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhu, Yuan; Wang, Miaomiao; Zhang, Ya; Zeng, Jin; Omari-Siaw, E; Yu, Jiangnan; Xu, Ximing
2016-10-01
Developing a promising carrier for the delivery of poorly water-soluble drugs, such as silybin, to improve oral absorption has become a very worthy of consideration. The goal of this study was to prepare a novel porous calcium phosphate microparticle using povidone-mixed micelles as template while evaluating its in vitro and in vivo properties with silybin as a model drug. The particle characterization, in vitro drug release behavior, and pharmacokinetic parameters of the prepared silybin-loaded calcium phosphate microparticle were investigated. The mean particle size was found to be 3.54 ± 0.32 μm with a rough surface porous structure. Additionally, the silybin-loaded calcium phosphate microparticle compared with the free silybin showed a prolonged 72-h release in vitro and a higher C max (418.5 ± 23.7 ng mL(-1)) with 167.5% oral relative bioavailability. A level A in vitro-in vivo correlation (IVIVC), established for the first time, demonstrated an excellent IVIVC of the formulated silybin in oral administration. In conclusion, this povidone-mixed micelle-based microparticle was successfully prepared to enhance the oral bioavailability of silybin. Therefore, application of this novel porous calcium phosphate microparticle holds a significant potential for the development of poorly water-soluble drugs.
Powell, David R; Smith, Melinda; Greer, Jennifer; Harris, Angela; Zhao, Sharon; DaCosta, Christopher; Mseeh, Faika; Shadoan, Melanie K; Sands, Arthur; Zambrowicz, Brian; Ding, Zhi-Ming
2013-05-01
LX4211 [(2S,3R,4R,5S,6R)-2-(4-chloro-3-(4-ethoxybenzyl)phenyl)-6-(methylthio)tetrahydro-2H-pyran-3,4,5-triol], a dual sodium/glucose cotransporter 1 (SGLT1) and SGLT2 inhibitor, is thought to decrease both renal glucose reabsorption by inhibiting SGLT2 and intestinal glucose absorption by inhibiting SGLT1. In clinical trials in patients with type 2 diabetes mellitus (T2DM), LX4211 treatment improved glycemic control while increasing circulating levels of glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). To better understand how LX4211 increases GLP-1 and PYY levels, we challenged SGLT1 knockout (-/-) mice, SGLT2-/- mice, and LX4211-treated mice with oral glucose. LX4211-treated mice and SGLT1-/- mice had increased levels of plasma GLP-1, plasma PYY, and intestinal glucose during the 6 hours after a glucose-containing meal, as reflected by area under the curve (AUC) values, whereas SGLT2-/- mice showed no response. LX4211-treated mice and SGLT1-/- mice also had increased GLP-1 AUC values, decreased glucose-dependent insulinotropic polypeptide (GIP) AUC values, and decreased blood glucose excursions during the 6 hours after a challenge with oral glucose alone. However, GLP-1 and GIP levels were not increased in LX4211-treated mice and were decreased in SGLT1-/- mice, 5 minutes after oral glucose, consistent with studies linking decreased intestinal SGLT1 activity with reduced GLP-1 and GIP levels 5 minutes after oral glucose. These data suggest that LX4211 reduces intestinal glucose absorption by inhibiting SGLT1, resulting in net increases in GLP-1 and PYY release and decreases in GIP release and blood glucose excursions. The ability to inhibit both intestinal SGLT1 and renal SGLT2 provides LX4211 with a novel dual mechanism of action for improving glycemic control in patients with T2DM.
Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma.
Mastiholimath, V S; Dandagi, P M; Jain, S Samata; Gadad, A P; Kulkarni, A R
2007-01-02
In this study, investigation of an oral colon specific, pulsatile device to achieve time and/or site specific release of theophylline, based on chronopharmaceutical consideration. The basic design consists of an insoluble hard gelatin capsule body, filled with eudragit microcapsules of theophylline and sealed with a hydrogel plug. The entire device was enteric coated, so that the variability in gastric emptying time can be overcome and a colon-specific release can be achieved. The theophylline microcapsules were prepared in four batches, with Eudragit L-100 and S-100 (1:2) by varying drug to polymer ratio and evaluated for the particle size, drug content and in vitro release profile and from the obtained results; one better formulation was selected for further fabrication of pulsatile capsule. Different hydrogel polymers were used as plugs, to maintain a suitable lag period and it was found that the drug release was controlled by the proportion of polymers used. In vitro release studies of pulsatile device revealed that, increasing the hydrophilic polymer content resulted in delayed release of theophylline from microcapsules. The gamma scintigraphic study pointed out the capability of the system to release drug in lower parts of GIT after a programmed lag time for nocturnal asthma. Programmable pulsatile, colon-specific release has been achieved from a capsule device over a 2-24h period, consistent with the demands of chronotherapeutic drug delivery.
Miao, Yanfei; Chen, Guoguang; Ren, Lili; Pingkai, Ouyang
2016-09-01
The purpose of this work was to develop self-nanomulsifying drug delivery systems (SNEDDS) in sustained-release pellets of ziprasidone to enhance the oral bioavailability and overcome the food effect of ziprasidone. Preformulation studies including screening of excipients for solubility and pseudo-ternary phase diagrams suggested the suitability of Capmul MCM as oil phase, Labrasol as surfactant, and PEG 400 as co-surfactant for preparation of self-nanoemulsifying formulations. Preliminary composition of the SNEDDS formulations were selected from the pseudo-ternary phase diagrams. The prepared ziprasidone-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized ziprasidone-SNEDDS were used to prepare ziprasidone-SNEDDS sustained-release pellets via extrusion-spheronization method. The pellets were characterized for SEM, particle size, droplet size distribution and zeta potential. In vitro drug release studies indicated the ziprsidone-SNEDDS sustained-release pellets showed sustained release profiles with 90% released within 10 h. The ziprsidone-SNEDDS sustained-release pellets were administered to fasted and fed beagle dogs and their pharmacokinetics were compared to commercial formulation of Zeldox as a control. Pharmacokinetic studies in beagle dogs showed ziprasidone with prolonged actions and enhanced bioavailability with no food effect was achieved simultaneously in ziprsidone-SNEDDS sustained-release pellets compared with Zeldox in fed state. The results indicated a sustained release with prolonged actions of schizophrenia and bipolar disorder treatment.
Development of near zero-order release PLGA-based microspheres of a novel antipsychotic.
Zhao, Jinlong; Wang, Lexi; Fan, Chunyu; Yu, Kongtong; Liu, Ximing; Zhao, Xiaolei; Wang, Dan; Liu, Wenhua; Su, Zhengxing; Sun, Fengying; Li, Youxin
2017-01-10
The novel antipsychotic isoperidone, a prodrug of paliperidone, was designed to improve liposolubility for the development of poly(D,L-lactide-co-glycolide) (PLGA)-based microspheres to achieve near zero-order release behaviour in vivo. Microspheres with a smooth surface were obtained using the oil-in-water emulsion solvent evaporation method and yielded a high encapsulation efficiency of 92%. Pharmacokinetic studies in beagle dogs showed a one-week plateau phase followed by a two-week quasi-zero-order release with no burst release. The in vitro release method with a good in vitro-in vivo correlation was also established. Pharmacodynamic evaluation was performed using the MK-801-induced schizophrenic behavioural mouse model, and the sustained suppressive effect lasted two weeks. The pharmacokinetic-pharmacodynamic (PK-PD) relationship of isoperidone microspheres was compared to that of oral administration of free drug. The results revealed a strong correlation between the plasma drug level and the antipsychotic effect. A stable drug plasma concentration was detected in mice both intraday and interday from 8 to 22 d after a single injection of isoperidone microspheres, and a sustained suppressive effect on the schizophrenic model was also observed. In comparison, the mouse group receiving oral daily administration exhibited more dose-dependent effects, and the pharmacological effect diminished rapidly in conjunction with a reduction of the plasma drug levels 8h after the last administration of isoperidone on day 3. The above results confirm the superiority of long-acting release over oral administration and indicate a valuable alternative for the clinical treatment of schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.
Swithers, Susan E.; Laboy, Alycia F.; Clark, Kiely; Cooper, Stephanie; Davidson, T.L.
2012-01-01
Previous work from our lab has demonstrated that experience with high-intensity sweeteners in rats leads to increased food intake, body weight gain and adiposity, along with diminished caloric compensation and decreased thermic effect of food. These changes may occur as a result of interfering with learned relations between the sweet taste of food and the caloric or nutritive consequences of consuming those foods. The present experiments determined whether experience with the high-intensity sweetener saccharin versus the caloric sweetener glucose affected blood glucose homeostasis. The results demonstrated that during oral glucose tolerance tests, blood glucose levels were more elevated in animals that had previously consumed the saccharin-sweetened supplements. In contrast, during glucose tolerance tests when a glucose solution was delivered directly into the stomach, no differences in blood glucose levels between the groups were observed. Differences in oral glucose tolerance responses were not accompanied by differences in insulin release; insulin release was similar in animals previously exposed to saccharin and those previously exposed to glucose. However, release of GLP-1 in response to an oral glucose tolerance test, but not to glucose tolerance tests delivered by gavage, was significantly lower in saccharin-exposed animals compared to glucose-exposed animals. Differences in both blood glucose and GLP-1 release in saccharin animals were rapid and transient, and suggest that one mechanism by which exposure to high-intensity sweeteners that interfere with a predictive relation between sweet tastes and calories may impair energy balance is by suppressing GLP-1 release, which could alter glucose homeostasis and reduce satiety. PMID:22561130
Kumar, Krishan; Dhawan, Neha; Sharma, Harshita; Patwal, Pramod S; Vaidya, Shubha; Vaidya, Bhuvaneshwar
2015-01-01
Metoprolol succinate is a very potent drug for the treatment of hypertension but suffers from poor bioavailability due to its erratic absorption in lower GI tract. Therefore, in the present study, it was hypothesized that by formulating mucoadhesive particles, the residence time in the GIT and release of drug may be prolonged that will enhance the bioavailability of metoprolol succinate. Metoprolol succinate loaded chitosan microparticles were prepared by ionic gelation method. The optimized microparticles were coated with sodium alginate to form a layer over chitosan microparticles to increase the mucoadhesive strength and to release the drug in controlled manner. Coated and uncoated microparticles were evaluated for particle size, zeta potential, morphology, entrapment efficiency, drug loading and in vitro drug release. The coated microparticles showed comparatively less drug release in the 0.1 N HCl while sustained release in PBS (pH 6.8) as compared to uncoated microparticles. The in vivo study on albino rats demonstrated an increase in bioavailability of the coated microparticles as compared to marketed formulation. From the study it can be concluded that alginate coated chitosan microparticles could be a useful carrier for the oral delivery of metoprolol succinate.
Mathematical Models for Controlled Drug Release Through pH-Responsive Polymeric Hydrogels.
Manga, Ramya D; Jha, Prateek K
2017-02-01
Hydrogels consisting of weakly charged acidic/basic groups are ideal candidates for carriers in oral delivery, as they swell in response to pH changes in the gastrointestinal tract, resulting in drug entrapment at low pH conditions of the stomach and drug release at high pH conditions of the intestine. We have developed 1-dimensional mathematical models to study the drug release behavior through pH-responsive hydrogels. Models are developed for 3 different cases that vary in the level of rigor, which together can be applied to predict both in vitro (drug release from carrier) and in vivo (drug concentration in the plasma) behavior of hydrogel-drug formulations. A detailed study of the effect of hydrogel and drug characteristics and physiological conditions is performed to gain a fundamental insight into the drug release behavior, which may be useful in the design of pH-responsive drug carriers. Finally, we describe a successful application of these models to predict both in vitro and in vivo behavior of docetaxel-loaded micelle in a pH-responsive hydrogel, as reported in a recent experimental study. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Ninh, Allen; Kim, Sang; Goldberg, Andrew
2017-10-15
A 42-year-old obese woman (body mass index = 30.2 kg/m) presented for urgent anterior cervical diskectomy and fusion. She had been taking oral naltrexone-bupropion extended-release (Contrave, Orexigen Therapeutics Inc, La Jolla, CA) for the past 6 months and continued using it until 12 hours preoperatively. Despite discontinuation of this medication, and employing an intraoperative and postoperative multimodal analgesia strategy, immediate pain control was inadequately achieved. Patients taking opioid antagonists who present for surgery pose unique challenges to the anesthesiologist and require extensive preoperative interdisciplinary discussions and planning for pain control throughout the perioperative period.
NASA Astrophysics Data System (ADS)
Barreto, A. C. H.; Santiago, V. R.; Mazzetto, S. E.; Denardin, J. C.; Lavín, R.; Mele, Giuseppe; Ribeiro, M. E. N. P.; Vieira, Icaro G. P.; Gonçalves, Tamara; Ricardo, N. M. P. S.; Fechine, P. B. A.
2011-12-01
Quercetin belongs to the chemical class of flavonoids and can be found in many common foods, such as apples, nuts, berries, etc. It has been demonstrated that quercetin has a wide array of biological effects that are considered beneficial to health treatment, mainly as anticancer. However, therapeutic applications of quercetin have been restricted to oral administration due to its sparing solubility in water and instability in physiological medium. A drug delivery methodology was proposed in this work to study a new quercetin release system in the form of magnetite-quercetin-copolymer (MQC). These materials were characterized through XRD, TEM, IR, and Thermal analysis. In addition, the magnetization curves and quercetin releasing experiments were performed. It was observed a nanoparticle average diameter of 11.5 and 32.5 nm at Fe3O4 and MQC, respectively. The presence of magnetic nanoparticles in this system offers the promise of targeting specific organs within the body. These results indicate the great potential for future applications of the MQC to be used as a new quercetin release system.
Jämstorp, Erik; Yarra, Tejaswi; Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne; Strømme, Maria
2012-01-01
Improving acid resistance, while maintaining the excellent mechanical stability is crucial in the development of a sustained and safe oral geopolymer dosage form for highly potent opioids. In the present work, commercially available Methacrylic acid–ethyl acrylate copolymer, Polyethylene-glycol (PEG) and Alginate polymer excipients were included in dissolved or powder form in geopolymer pellets to improve the release properties of Zolpidem, herein acting as a model drug for the highly potent opioid Fentanyl. Scanning electron microscopy, compression strength tests and drug release experiments, in gastric pH 1 and intestinal pH 6.8 conditions, were performed. The polymer excipients, with an exception for PEG, reduced the drug release rate in pH 1 due to their ability to keep the pellets in shape, in combination with the introduction of an insoluble excipient, and thereby maintain a barrier towards drug diffusion and release. Neither geopolymer compression strength nor the release in pH 6.8 was considerably impaired by the incorporation of the polymer excipients. The geopolymer/polymer composites combine high mechanical strength and good release properties under both gastric and intestinal pH conditions, and are therefore promising oral dosage forms for sustained release of highly potent opioids. PMID:25755991
Sengupta, Mahuya; Sharma, Gauri Dutta; Chakraborty, Biswajit
2011-06-01
To evaluate the hepatoprotective and immunotherapeutic effects of aqueous extract of turmeric rhizome in CCl4 intoxicated Swiss albino mice. First group of mice (n=5) received CCl4 treatment at a dose of 0.5 mL/kg bw (i.p.) for 7 days. Second group was fed orally the aqueous extract of turmeric at a dose of 50 mg/kg bw for 15 days. The third group was given both the turmeric extract (for 15 days, orally) and CCl4 (for last 7 days, i.p.). The fourth group was kept as a control. To study the liver function, the transaminase enzymes (SGOT and SGPT) and bilirubin level were measured in the serum of respective groups. For assaying the immunotherapeutic action of Curcuma longa (C. longa), non specific host response parameters like morphological alteration, phagocytosis, nitric oxide release, myeloperoxidase release and intracellular killing capacity of peritoneal macrophages were studied from the respective groups. The result of present study suggested that CCl4 administration increased the level of SGOT and SGPT and bilirubin level in serum. However, the aqueous extract of turmeric reduced the level of SGOT, SGPT and bilirubin in CCl4 intoxicated mice. Apart from damaging the liver system, CCl4 also reduced non specific host response parameters like morphological alteration, phagocytosis, nitric oxide release, myeloperoxidase release and intracellular killing capacity of peritoneal macrophages. Administration of aqueous extract of C. longa offered significant protection from these damaging actions of CCl4 on the non specific host response in the peritoneal macrophages of CCl4 intoxicated mice. In conclusion, the present study suggests that C. longa has immunotherapeutic properties along with its ability to ameliorate hepatotoxicity.
Sengupta, Mahuya; Sharma, Gauri Dutta; Chakraborty, Biswajit
2011-01-01
Objective To evaluate the hepatoprotective and immunotherapeutic effects of aqueous extract of turmeric rhizome in CCl4 intoxicated Swiss albino mice. Methods First group of mice (n=5) received CCl4 treatment at a dose of 0.5 mL/kg bw (i.p.) for 7 days. Second group was fed orally the aqueous extract of turmeric at a dose of 50 mg/kg bw for 15 days. The third group was given both the turmeric extract (for 15 days, orally) and CCl4 (for last 7 days, i.p.). The fourth group was kept as a control. To study the liver function, the transaminase enzymes (SGOT and SGPT) and bilirubin level were measured in the serum of respective groups. For assaying the immunotherapeutic action of Curcuma longa (C. longa), non specific host response parameters like morphological alteration, phagocytosis, nitric oxide release, myeloperoxidase release and intracellular killing capacity of peritoneal macrophages were studied from the respective groups. Results The result of present study suggested that CCl4 administration increased the level of SGOT and SGPT and bilirubin level in serum. However, the aqueous extract of turmeric reduced the level of SGOT, SGPT and bilirubin in CCl4 intoxicated mice. Apart from damaging the liver system, CCl4 also reduced non specific host response parameters like morphological alteration, phagocytosis, nitric oxide release, myeloperoxidase release and intracellular killing capacity of peritoneal macrophages. Administration of aqueous extract of C. longa offered significant protection from these damaging actions of CCl4 on the non specific host response in the peritoneal macrophages of CCl4 intoxicated mice. Conclusions In conclusion, the present study suggests that C. longa has immunotherapeutic properties along with its ability to ameliorate hepatotoxicity. PMID:23569758
A novel hydrogel plug of Sterculia urens for pulsatile delivery: in vitro and in vivo evaluation.
Amrutkar, Jitendra R; Gattani, Surendra G
2012-01-01
The objective of this study was to investigate a novel hydrogel plug using isolated root mucilage of Sterculia urens to obtain a desired lag time for an oral chronotherapeutic colon-specific pulsatile drug delivery of indomethacin. Pulsatile drug delivery was developed using chemically treated hard gelatin capsule bodies filled with eudragit multiparticulates of indomethacin, and sealed with different hydrogel plugs (root mucilage of S. urens, xanthan gum, guar gum, HPMC K4M and combination of maltodextrin with guar gum). Indomethacin multiparticulates were prepared using extrusion spheronization, spray drying and solvent evaporation techniques with Eudragit® L-100 and S-100 (1:2) by varying drug-to-polymer ratio. After oral administration, the water-soluble cap of capsule dissolved in the intestinal fluid and the hydrogel plug swells. After a controlled time, the swollen plug subsequently ejected from the dosage form, releases the contents of the capsule. The formulation factors affecting the drug release were concentration and types of hydrogel plug used. In vivo gamma scintigraphy study in healthy rabbits proved the capability of the system to release drug in lower parts of the gastrointestinal tract after a programmed lag time. This study demonstrates that the indomethacin multiparticulates could be successfully colon-targeted by the design of time and pH-dependent modified chronopharmaceutical formulation. In conclusion, the investigated novel hydrogel plug could be a valuable tool for achieving desired lag time.
Oral, ultra–long-lasting drug delivery: Application toward malaria elimination goals
Bellinger, Andrew M.; Jafari, Mousa; Grant, Tyler M.; Zhang, Shiyi; Slater, Hannah C.; Wenger, Edward A.; Mo, Stacy; Lee, Young-Ah Lucy; Mazdiyasni, Hormoz; Kogan, Lawrence; Barman, Ross; Cleveland, Cody; Booth, Lucas; Bensel, Taylor; Minahan, Daniel; Hurowitz, Haley M.; Tai, Tammy; Daily, Johanna; Nikolic, Boris; Wood, Lowell; Eckhoff, Philip A.; Langer, Robert; Traverso, Giovanni
2017-01-01
Efforts at elimination of scourges, such as malaria, are limited by the logistic challenges of reaching large rural populations and ensuring patient adherence to adequate pharmacologic treatment. We have developed an oral, ultra–long-acting capsule that dissolves in the stomach and deploys a star-shaped dosage form that releases drug while assuming a geometry that prevents passage through the pylorus yet allows passage of food, enabling prolonged gastric residence. This gastric-resident, drug delivery dosage form releases small-molecule drugs for days to weeks and potentially longer. Upon dissolution of the macrostructure, the components can safely pass through the gastrointestinal tract. Clinical, radiographic, and endoscopic evaluation of a swine large-animal model that received these dosage forms showed no evidence of gastrointestinal obstruction or mucosal injury. We generated long-acting formulations for controlled release of ivermectin, a drug that targets malaria-transmitting mosquitoes, in the gastric environment and incorporated these into our dosage form, which then delivered a sustained therapeutic dose of ivermectin for up to 14 days in our swine model. Further, by using mathematical models of malaria transmission that incorporate the lethal effect of ivermectin against malaria-transmitting mosquitoes, we demonstrated that this system will boost the efficacy of mass drug administration toward malaria elimination goals. Encapsulated, gastric-resident dosage forms for ultra–long-acting drug delivery have the potential to revolutionize treatment options for malaria and other diseases that affect large populations around the globe for which treatment adherence is essential for efficacy. PMID:27856796
Kim, Chul-Hee; Han, Kyung-Ah; Oh, Han-Jin; Tan, Kevin Eng-Kiat; Sothiratnam, Radhakrishna; Tjokroprawiro, Askandar; Klein, Marcus
2012-01-01
Background The aim of the present prospective observational study was to assess the tolerability and antihyperglycemic efficacy of metformin extended-release (MXR) in the routine treatment of patients with type 2 diabetes mellitus (T2DM) from six Asian countries. Methods Data from 3556 patients treated with once-daily MXR for 12 weeks, or until discontinuation, were analyzed. Results Treatment with MXR was well tolerated, with 97.4% of patients completing 12 weeks of treatment. Only 3.3% of patients experienced one or more gastrointestinal (GI) side-effects and only 0.7% of patients discontinued for this reason (primary endpoint). The incidence of GI side-effects and related discontinuations appeared to be considerably lower during short-term MXR therapy than during previous treatment (mean 2.71 years’ duration), most commonly with immediate-release metformin. A 12-week course of MXR therapy also reduced HbA1c and fasting glucose levels from baseline. Conclusions The present study provides new insights into the incidence of GI side-effects with MXR in Asian patients with T2DM and on the tolerability of MXR in non-Caucasian populations. Specifically, these data indicate that once-daily MXR not only improves measures of glycemic control in Asian patients with T2DM, but also has a favorable GI tolerability profile that may help promote enhanced adherence to oral antidiabetic therapy. PMID:22742083
Glucocorticoids reduce phobic fear in humans
Soravia, Leila M.; Heinrichs, Markus; Aerni, Amanda; Maroni, Caroline; Schelling, Gustav; Ehlert, Ulrike; Roozendaal, Benno; de Quervain, Dominique J.-F.
2006-01-01
Phobias are characterized by excessive fear, cued by the presence or anticipation of a fearful situation. Whereas it is well established that glucocorticoids are released in fearful situations, it is not known whether these hormones, in turn, modulate perceived fear. As extensive evidence indicates that elevated glucocorticoid levels impair the retrieval of emotionally arousing information, they might also inhibit retrieval of fear memory associated with phobia and, thereby, reduce phobic fear. Here, we investigated whether acutely administrated glucocorticoids reduced phobic fear in two double-blind, placebo-controlled studies in 40 subjects with social phobia and 20 subjects with spider phobia. In the social phobia study, cortisone (25 mg) administered orally 1 h before a socio-evaluative stressor significantly reduced self-reported fear during the anticipation, exposure, and recovery phase of the stressor. Moreover, the stress-induced release of cortisol in placebo-treated subjects correlated negatively with fear ratings, suggesting that endogenously released cortisol in the context of a phobic situation buffers fear symptoms. In the spider phobia study, repeated oral administration of cortisol (10 mg), but not placebo, 1 h before exposure to a spider photograph induced a progressive reduction of stimulus-induced fear. This effect was maintained when subjects were exposed to the stimulus again 2 days after the last cortisol administration, suggesting that cortisol may also have facilitated the extinction of phobic fear. Cortisol treatment did not reduce general, phobia-unrelated anxiety. In conclusion, the present findings in two distinct types of phobias indicate that glucocorticoid administration reduces phobic fear. PMID:16567641
Blunted Endogenous Opioid Release Following an Oral Amphetamine Challenge in Pathological Gamblers
Mick, Inge; Myers, Jim; Ramos, Anna C; Stokes, Paul R A; Erritzoe, David; Colasanti, Alessandro; Gunn, Roger N; Rabiner, Eugenii A; Searle, Graham E; Waldman, Adam D; Parkin, Mark C; Brailsford, Alan D; Galduróz, José C F; Bowden-Jones, Henrietta; Clark, Luke; Nutt, David J; Lingford-Hughes, Anne R
2016-01-01
Pathological gambling is a psychiatric disorder and the first recognized behavioral addiction, with similarities to substance use disorders but without the confounding effects of drug-related brain changes. Pathophysiology within the opioid receptor system is increasingly recognized in substance dependence, with higher mu-opioid receptor (MOR) availability reported in alcohol, cocaine and opiate addiction. Impulsivity, a risk factor across the addictions, has also been found to be associated with higher MOR availability. The aim of this study was to characterize baseline MOR availability and endogenous opioid release in pathological gamblers (PG) using [11C]carfentanil PET with an oral amphetamine challenge. Fourteen PG and 15 healthy volunteers (HV) underwent two [11C]carfentanil PET scans, before and after an oral administration of 0.5 mg/kg of d-amphetamine. The change in [11C]carfentanil binding between baseline and post-amphetamine scans (ΔBPND) was assessed in 10 regions of interest (ROI). MOR availability did not differ between PG and HV groups. As seen previously, oral amphetamine challenge led to significant reductions in [11C]carfentanil BPND in 8/10 ROI in HV. PG demonstrated significant blunting of opioid release compared with HV. PG also showed blunted amphetamine-induced euphoria and alertness compared with HV. Exploratory analysis revealed that impulsivity positively correlated with caudate baseline BPND in PG only. This study provides the first evidence of blunted endogenous opioid release in PG. Our findings are consistent with growing evidence that dysregulation of endogenous opioids may have an important role in the pathophysiology of addictions. PMID:26552847
Tansey, E A; Roe, S M; Johnson, C J
2014-03-01
When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the subject is gently heated by placing the feet and calves in a commercially available foot warming pouch or immersing the feet and calves in warm water and wrapping the subject in blankets. Skin blood flow is estimated from measurements of skin temperature in the fingers. Normally skin temperature of the fingers is 65-75°F in cool conditions (environmental temperature: 59-68°F) and rises to 85-95°F during body heating. Deviations in this pattern may mean that there is abnormal sympathetic vasoconstrictor control of skin blood flow. Abnormal skin blood flow can substantially impair an individual's ability to thermoregulate and has important clinical implications. During whole body heating, the skin temperature from three different skin sites is monitored and oral temperature is monitored as an index of core temperature. Students determine the fingertip temperature at which the reflex release of sympathetic activity occurs and its maximal attainment, which reflects the vasodilating capacity of this cutaneous vascular bed. Students should interpret typical sample data for certain clinical conditions (Raynaud's disease, peripheral vascular disease, and postsympathectomy) and explain why there may be altered skin blood flow in these disorders.
Antibiotic-containing polymers for localized, sustained drug delivery
Stebbins, Nicholas D.; Ouimet, Michelle A.; Uhrich, Kathryn E.
2014-01-01
Many currently used antibiotics suffer from issues such as systemic toxicity, short half-life, and increased susceptibility to bacterial resistance. Although most antibiotic classes are administered systemically through oral or intravenous routes, a more efficient delivery system is needed. This review discusses the chemical conjugation of antibiotics to polymers, achieved by forming covalent bonds between antibiotics and a pre-existing polymer or by developing novel antibiotic-containing polymers. Through conjugating antibiotics to polymers, unique polymer properties can be taken advantage of. These polymeric antibiotics display controlled, sustained drug release and vary in antibiotic class type, synthetic method, polymer composition, bond lability, and antibacterial activity. The polymer synthesis, characterization, drug release, and antibacterial activities, if applicable, will be presented to offer a detailed overview of each system. PMID:24751888
Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin.
Yao, Yashu; Xia, Mengxin; Wang, Huizhen; Li, Guowen; Shen, Hongyi; Ji, Guang; Meng, Qianchao; Xie, Yan
2016-08-25
A novel nanogel/gel based on chitosan (CS) for the oral delivery of myricetin (Myr) was developed and evaluated comprehensively. The particle size of the obtained Myr-loaded CS/β-glycerol phosphate (β-GP) nanogels was in the range of 100-300nm. The rheological tests showed that the sol-gel transition happened when the nanogels were exposed to physiological temperatures, and 3D network structures of the gelatinized nanogels (gels) were confirmed by Scanning Electron Microscopy. Myr was released from CS/β-GP nanogel/gel in acidic buffers via a Fickian mechanism, and this release was simultaneously accompanied by swelling and erosion. Moreover, the nanogel/gel exhibited no cytotoxicity by MTT assay, and the oral bioavailability of Myr in rats was improved with an accelerated absorption rate after Myr was loaded into CS/β-GP nanogel/gel. In summary, all of the above showed that CS/β-GP nanogel/gel was an excellent system for orally delivering Myr. Copyright © 2016 Elsevier B.V. All rights reserved.
Jang, Dong-Jin; Kim, Sung Tae; Oh, Euichaul; Lee, Kooyeon
2014-01-01
Dry emulsion containing curcumin (DE-CUR) was prepared for oral delivery of poorly water-soluble curcumin, and its oral bioavailability and antiasthmatic efficacy was evaluated. After comparison of the solubility of curcumin in various oils, Plurol® Oleique CC497 was selected to be the oil phase due to its higher solubility of CUR than other oils. A dry emulsion prepared by spray-drying of a homogenized oil-in-water emulsion was well-reconstituted in water, fabricating similar particle distribution and in vitro release to that of a dispersed homogeneous emulsion before spraying. The release of DE-CUR was much higher than that of curcumin (85.3 vs. 1.7% release at 60 min). Consequently, DE-CUR resulted in 12.0- and 7.1-fold higher Cmax and AUC0-24h than curcumin. In a murine asthma model, DE-CUR effectively suppressed airway hyperresponsiveness and levels of T-helper cytokines such as interleukin-4, inteleukin-5, and interleukin-13. These findings demonstrate that the DE-CUR shows a potential for the development of functional foods or medicines including CUR.
Svanfeldt, M; Thorell, A; Hausel, J; Soop, M; Rooyackers, O; Nygren, J; Ljungqvist, O
2007-11-01
Preoperative oral carbohydrate (CHO) reduces postoperative insulin resistance. In this randomized trial, the effect of CHO on postoperative whole-body protein turnover was studied. Glucose and protein kinetics ([6,6(2)H(2)]D-glucose, [(2)H(5)]phenylalanine, [(2)H(2)]tyrosine and [(2)H(4)]tyrosine) and substrate oxidation (indirect calorimetry) were studied at baseline and during hyperinsulinaemic normoglycaemic clamping before and on the first day after colorectal resection. Fifteen patients were randomized to receive a preoperative beverage with high (125 mg/ml) or low (25 mg/ml) CHO content. Three patients were excluded after the intervention, leaving six patients in each group. After surgery whole-body protein balance did not change in the high oral CHO group, whereas it was more negative in the low oral CHO group after surgery at baseline (P = 0.003) and during insulin stimulation (P = 0.005). Insulin-stimulated endogenous glucose release was similar before and after surgery in the high oral CHO group, but was higher after surgery in the low oral CHO group (P = 0.013) and compared with the high oral CHO group (P = 0.044). Whole-body protein balance and the suppressive effect of insulin on endogenous glucose release are better maintained when patients receive a CHO-rich beverage before surgery. Copyright (c) 2007 British Journal of Surgery Society Ltd.
Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis
Reda, Rana Ihab; Wen, Ming Ming; El-Kamel, Amal Hassan
2017-01-01
Purpose The purpose of this study was to formulate ketoprofen (KET)-loaded Eudragit L and Eudragit S nanofibers (NFs) by the electrospinning technique for buccal administration to treat oral mucositis as a safe alternative to orally administered KET, which causes gastrointestinal tract (GIT) side effects. Materials and methods NFs were prepared by electrospinning using Eudragit L and Eudragit S. Several variables were evaluated to optimize NF formulation, such as polymer types and concentrations, applied voltage, flow rate and drug concentrations. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) and analyses of drug contents, hydration capacity, surface pH, drug release and ex vivo permeation were performed to evaluate the NFs. The selected formulation (F1) was evaluated in vivo on induced oral mucositis in rabbits. Results SEM revealed that 20% polymer formed smooth and bead-free NFs. DSC results confirmed the amorphous nature of KET in the NFs. FTIR confirmed hydrogen bond formation between the drug and polymer, which stabilized the NFs. Both formulations (F1 and F2) had an acceptable surface pH. The drug loading was >90%. The amount of KET released from NF formulations was statistically significantly higher (P≤0.001) than that released from the corresponding solvent-casted films. The complete release of KET from F1 occurred within 2 hours. Ex vivo permeation study revealed that only a small fraction of drug permeated from F1, which was a better candidate than F2 for local buccal delivery. In vivo evaluation of F1 on oral mucositis induced in rabbits demonstrated that F1 reduced the clinical severity of mucositis in rabbits under the current experimental conditions. The attenuated clinical severity was accompanied by a marked reduction in inflammatory infiltrate and re-epithelization of the epithelial layer. Conclusion Eudragit L100 nanofibers (EL-NF) loaded with KET (F1) suppressed the inflammatory response associated with mucositis, which confirmed the efficacy of local buccal delivery of KET-loaded EL-NF in treating oral mucositis. PMID:28392691
Stano, Sarah; Holter, Marlena; Azenkot, Tali; Goldman, Olivia; Margolskee, Robert F.; Vasselli, Joseph R.; Sclafani, Anthony
2015-01-01
Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar. PMID:26157055
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pflugh, K.K.
1995-12-01
Communicating health risk information is a complicated task. Citizen reaction to such information is difficult to predict, which makes it hard to plan an appropriate response. Research indicates that the way citizens respond to risk information often depends on whether the risk is familiar or unfamiliar, whether it is seen as imposed on them, whether it is man made or natural, or whether they have control over the risk. Potentially controversial cases that deal with delivering risk information have a special need for a well planned communication effort. Natural resource issues with an impact on public health are no exception.more » In New Jersey, a proposal to release an experimental bioengineered oral rabies vaccine for raccoons to test the effectiveness of the vaccine in halting the spread of rabies into an as yet unaffected area met with widespread public support and approval due in large part to the use of a unique risk communication planning process. This paper will describe the risk communication planning process used to gain public support and approval for release of oral rabies raccoon vaccine while focusing on the evaluation component of the process. The seven step process includes setting goals, profiling the issue or information gathering, audience identification and assessment, message development, method selection, implementation of the strategy and evaluation and follow-up. The goal of the evaluation component was to determine the effectiveness of the public information campaign on citizen`s knowledge of the field trial nearly three years after the initial announcement. In addition, it sought to learn citizen interest in maintaining the rabies free barrier that was created by the field trial using funds from local taxes. This evaluation includes the results of a mailed survey to 280 citizens, local officials and professional organizations. Finally, this paper will discuss the implications for future outreach efforts dealing complicated technical issues.« less
Hydroxychloroquine niosomes: a new trend in topical management of oral lichen planus.
Bendas, Ehab R; Abdullah, Hamoud; El-Komy, Mohamed H M; Kassem, Mohamed A A
2013-12-31
The work aimed at studying a novel topical niosomal gel formulation of hydroxychloroquine for the management of oral lichen planus. Niosomes have been reported as conceivable vesicles to deliver drug molecules to the desired mucous membrane or skin layers. Hydroxychloroquine niosomes were designed using different methods of preparation. Tween 20 and cholesterol in molar ratio (1:0.5) were used. The prepared systems were characterized for entrapment efficiency, particle size and in vitro drug release. Different factors affecting the encapsulation of hydroxychloroquine in niosomes were studied vs. varying the type of surfactant, the cholesterol:surfactant molar ratio and the amount of the drug. The selected noisome formulation was dispersed in different gel formulations and evaluated according to the in vitro drug release and the physical stability. The results showed that the type of surfactant, cholesterol ratio and incorporated amount of drug altered the entrapment efficiency and the in vitro release of hydroxychloroquine from niosomes. The optimum formulation was prepared by reverse phase evaporation technique using Brij 98:cholesterol molar ratio (1:1.5) and containing 20mg of hydroxychloroquine and incorporated in 20% w/v Pluronic F-127 gel. A double-blind, controlled clinical study was performed using two groups of patients. Group A (n=11) who received hydroxychloroquine niosomal gel formulation, one application-a-day over 4 months showed 64.28% reduction in the size of lesions and the average score of pain was reduced from "4" to "1". Compared to placebo group B (n=5), who showed only 3.94% reduction in the lesion size and the average score of pain was remained "3". Our results suggest that these niosomal formulations could constitute a promising approach for the topical treatment of oral lichen planus in short time with less side effects and no recurrence after stopping the treatment. Copyright © 2013 Elsevier B.V. All rights reserved.
Glendinning, John I; Stano, Sarah; Holter, Marlena; Azenkot, Tali; Goldman, Olivia; Margolskee, Robert F; Vasselli, Joseph R; Sclafani, Anthony
2015-09-01
Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar. Copyright © 2015 the American Physiological Society.
Yang, Xiaoxia; Duan, John; Fisher, Jeffrey
2016-01-01
A previously presented physiologically-based pharmacokinetic model for immediate release (IR) methylphenidate (MPH) was extended to characterize the pharmacokinetic behaviors of oral extended release (ER) MPH formulations in adults for the first time. Information on the anatomy and physiology of the gastrointestinal (GI) tract, together with the biopharmaceutical properties of MPH, was integrated into the original model, with model parameters representing hepatic metabolism and intestinal non-specific loss recalibrated against in vitro and in vivo kinetic data sets with IR MPH. A Weibull function was implemented to describe the dissolution of different ER formulations. A variety of mathematical functions can be utilized to account for the engineered release/dissolution technologies to achieve better model performance. The physiological absorption model tracked well the plasma concentration profiles in adults receiving a multilayer-release MPH formulation or Metadate CD, while some degree of discrepancy was observed between predicted and observed plasma concentration profiles for Ritalin LA and Medikinet Retard. A local sensitivity analysis demonstrated that model parameters associated with the GI tract significantly influenced model predicted plasma MPH concentrations, albeit to varying degrees, suggesting the importance of better understanding the GI tract physiology, along with the intestinal non-specific loss of MPH. The model provides a quantitative tool to predict the biphasic plasma time course data for ER MPH, helping elucidate factors responsible for the diverse plasma MPH concentration profiles following oral dosing of different ER formulations. PMID:27723791
Abou el Ela, Amal El Sayeh F.; Hassan, Maha A.; El- Maraghy, Dalia A.
2013-01-01
The floating beads have been employed to make a sustained release of the drug in the stomach and to decrease the dose of the drug and hence overcome its side effects. The common benefits of the floating beads were it is easy preparation, without the need of a high temperature, and high percentage of the drug entrapment. In the present work, the Ketorolac tromethamine (KT) floating beads were prepared by extrusion congealing method utilizing calcium carbonate as a gas forming agent. The physical characters of the produced beads were investigated such as KT yield, KT loading, and entrapment efficiency of the drug. In addition, floating behavior, swelling, particle size, morphology and KT stability were also evaluated. In vitro drug release study was carried out, and the kinetics of the release was evaluated using the linear regression method. Furthermore, the in vivo analgesic effect of KT after oral administration of the selected formula of floating beads (F10) was carried out using hot plate and tail flick methods. Oral commercial KT tablets and KT solution were used for the comparison. The prepared beads remained floated for more than 8 h. The optimized formulation (F10) exhibited prolonged drug release (more than 8 h) and the drug release follows the Higuchi kinetic model, with a Fickian diffusion mechanism according to Korsmeyer-Peppas (n = 0.466). Moreover, F10 showed a sustained analgesic effect as compared to the commercial tablet. PMID:25161380
Preparation and pharmacokinetics in beagle dogs of ganershu sustained-release pellets
Pan, Jin-huo; Wang, Jian-chun; Jiang, Zhi-tao; Zhang, Ting; Ge, Shao-bo; Zhang, Ye-xia; Jin, Xin; Yan, Guo-jun
2014-01-01
Background: The active ingredients of Ganershu compound recipe, which are effective for hepatitis treatment in liver protection and transaminase reduction. However, the active ingredients of Ganershu compound recipe are poor absorption, which conduct it has a low oral bioavailability. Objective: We prepared Ganershu sustained-release pellets (GSPs) by fluidized-bed on central composite design-response surface methodology and increase its bioavailability in beagle dogs. Materials and Methods: In this study, GSPs were successfully prepared. The Drug-loaded pellets and sustained-release coated were carried out in fluidized-bed machine. GSP was optimized for fitting release, roundness, and the overall desirability by central composite design-response surface methodology. Results: To optimize cumulative release profile, the outermost ethyl cellulose coating layer and the hydroxypropyl methyl cellulose (HPMC) swelling layer were employed, which were respectively given coating levels in terms of weight gain of 22% and 6%, the concentration of HPMC is 4.5% (g/ml). The pharmacokinetics of Ganershu normal pellets (GNPs) and GSP was studied in beagle dogs after oral administration. The naringenin as an index, the area under the curve0-∞ of naringenin in GSP was 1.38 times greater than that of GNP. Meanwhile, Tmax of GSP was prolonged for about 74%. Conclusion: This study can clearly indicate that we enhanced the oral bioavailability of Ganershu by preparing the GSP, which had the sustained dissolution and improved the potential of it for clinical application. PMID:25210307
Polymeric Micro- and Nanofabricatced Devices for Oral Drug Delivery
NASA Astrophysics Data System (ADS)
Fox, Cade Brylee
While oral drug administration is by far the most preferred route, it is accompanied by many barriers that limit drug uptake such as the low pH of the stomach, metabolic and proteolytic enzymes, and limited permeability of the intestinal epithelium. As a result, many drugs ranging from small molecules to biological therapeutics have limited oral bioavailability, precluding them from oral administration. To address this issue, microfabrication has been applied to create planar, asymmetric devices capable of binding to the lining of the gastrointestinal tract and releasing drug at high concentrations, thereby increasing oral drug uptake. While the efficacy of these devices has been validated in vitro and in vivo, modifying their surfaces with nanoscale features has potential to refine their properties for enhanced drug delivery. This dissertation first presents an approach to fabricate polymeric microdevices coated with nanowires in a rapid, high throughput manner. The nanowires demonstrate rapid drug localization onto the surface of these devices via capillary action and increased adhesion to epithelial tissue, suggesting that this fabrication technique can be used to create devices with enhanced properties for oral drug delivery. Also presented are microdevices sealed with nanostraw membranes. The nanostraw membranes provide sustained drug release by limiting drug efflux from the devices, prevent drug degradation by limiting influx of outside biomolecules, and enhance device bioadhesion by penetrating into the mucus layer of the intestinal lining. Finally, an approach that dramatically increases the capacity and efficiency of drug loading into microdevices over previous methods is presented. A picoliter-volume printer is used to print drug directly into device reservoirs in an automated fashion. The technologies presented here expand the capabilities of microdevices for oral drug delivery by incorporating nanoscale structures that enhance device bioadhesion, tunability of drug release, and drug protection and also provide a more cost-effective and scalable approach to drug loading.
Polymer based drug delivery systems for mycobacterial infections.
Pandey, Rajesh; Khuller, G K
2004-07-01
In the last decade, polymer based technologies have found wide biomedical applications. Polymers, whether synthetic (e.g. polylactide-co-glycolide or PLG) or natural (e.g. alginate, chitosan etc.), have the property of encapsulating a diverse range of molecules of biological interest and bear distinct therapeutic advantages such as controlled release of drugs, protection against the premature degradation of drugs and reduction in drug toxicity. These are important considerations in the long-duration treatment of chronic infectious diseases such as tuberculosis in which patient non-compliance is the major obstacle to successful chemotherapy. Antitubercular drugs, singly or in combination, have been encapsulated in polymers to provide controlled drug release and the system also offers the flexibility of selecting various routes of administration such as oral, subcutaneous and aerosol. The present review highlights the approaches towards the preparation of polymeric antitubercular drug delivery systems, emphasizing how the route of administration may influence drug bioavailability as well as the chemotherapeutic efficacy. In addition, the pros and cons of the various delivery systems are also discussed.
Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery
NASA Astrophysics Data System (ADS)
Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K.
2012-11-01
Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.
Innovation of natural essential oil-loaded Orabase for local treatment of oral candidiasis
Labib, Gihan S; Aldawsari, Hibah
2015-01-01
Purpose Oral candidiasis may be manifested in the oral cavity as either mild or severe oral fungal infection. This infection results from the overgrowth of Candida species normally existing in the oral cavity in minute amounts based on many predisposing factors. Several aspects have spurred the search for new strategies in the treatment of oral candidiasis, among which are the limited numbers of new antifungal drugs developed in recent years. Previous studies have shown that thyme and clove oils have antimycotic activities and have suggested their incorporation into pharmaceutical preparations. This study aimed to investigate the possibility of the incorporation and characterization of essential oils or their extracted active ingredients in Orabase formulations. Methods Orabase loaded with clove oil, thyme oil, eugenol, and thymol were prepared and evaluated for their antifungal activities, pH, viscosity, erosion and water uptake characteristics, mechanical properties, in vitro release behavior, and ex vivo mucoadhesion properties. Results All prepared bases showed considerable antifungal activity and acceptable physical characteristics. The release pattern from loaded bases was considerably slow for all oils and active ingredients. All bases showed appreciable adhesion in the in vitro and ex vivo studies. Conclusion The incorporation of essential oils in Orabase could help in future drug delivery design, with promising outcomes on patients’ well-being. PMID:26170621
Innovation of natural essential oil-loaded Orabase for local treatment of oral candidiasis.
Labib, Gihan S; Aldawsari, Hibah
2015-01-01
Oral candidiasis may be manifested in the oral cavity as either mild or severe oral fungal infection. This infection results from the overgrowth of Candida species normally existing in the oral cavity in minute amounts based on many predisposing factors. Several aspects have spurred the search for new strategies in the treatment of oral candidiasis, among which are the limited numbers of new antifungal drugs developed in recent years. Previous studies have shown that thyme and clove oils have antimycotic activities and have suggested their incorporation into pharmaceutical preparations. This study aimed to investigate the possibility of the incorporation and characterization of essential oils or their extracted active ingredients in Orabase formulations. Orabase loaded with clove oil, thyme oil, eugenol, and thymol were prepared and evaluated for their antifungal activities, pH, viscosity, erosion and water uptake characteristics, mechanical properties, in vitro release behavior, and ex vivo mucoadhesion properties. All prepared bases showed considerable antifungal activity and acceptable physical characteristics. The release pattern from loaded bases was considerably slow for all oils and active ingredients. All bases showed appreciable adhesion in the in vitro and ex vivo studies. The incorporation of essential oils in Orabase could help in future drug delivery design, with promising outcomes on patients' well-being.
Yasui-Furukori, Norio; Hashimoto, Kojiro; Kubo, Kazutoshi; Tomita, Tetsu
2013-01-01
Until now there has been no information available on drug interaction between paliperidone and TS-1(®), an oral anticancer drug containing a 5-fluorouracil derivative. The patient in the case presented here was a 39-year-old man with a 15-year history of schizophrenia. The patient's usual treatment of 2 mg/day of risperidone was changed to 3 mg/day of paliperidone extended release. He experienced worsening psychotic symptoms after switching from risperidone to paliperidone while he was also receiving TS-1. Retrospective analyses showed plasma concentration of paliperidone was consistently lower during the treatment with TS-1 than without TS-1. This case suggests there is drug interaction between paliperidone extended-release tablets and TS-1.
Hydrotropic polymer micelles containing acrylic acid moieties for oral delivery of paclitaxel
Kim, Sungwon; Kim, Ji Young; Huh, Kang Moo; Acharya, Ghanshyam; Park, Kinam
2008-01-01
Hydrotropic polymers (HPs) and their micelles have been recently developed as vehicles for delivery of poorly water-soluble drugs, such as paclitaxel (PTX), by oral administration. The release of PTX from HP micelles, however, was slow and it took more than a day for complete release of the loaded PTX. Since the gastrointestinal (GI) transit time is known to be only several hours, pH-sensitive HP micelles were prepared for fast release of the loaded PTX responding to pH changes along the GI tract. Acrylic acid (AA) was introduced, as a release modulator, into HPs by copolymerization with 4-(2-vinylbenzyloxy)-N,N-(diethylnicotinamide) (VBODENA). The AA content was varied from 0% to 50 % (in the molar ratio to VBODENA). HPs spontaneously produced micelles in water, and their critical micelle concentrations (CMCs) ranged from 31 μg/mL to 86 μg/mL. Fluorescence probe study using pyrene showed that blank HP micelles possessed a good pH-sensitivity, which was clearly observed at relatively high AA contents and pH > 6. The pH sensitivity also affected the PTX loading property. Above pH 5, the PTX loading content and loading efficiency in HP micelles were significantly reduced. Although this may be primarily due to the AA moieties, other factors may include PTX degradation and polymer aggregation. The PTX release from HP micelles with more than 20% (mol) AA contents was completed within 12 h in a simulated intestinal fluid (SIF, pH=6.5). The HP micelles without any AA moiety showed very slow release profiles. In the simulated gastric fluid (SGF, pH=1.6), severe degradation of the released PTX was observed. The pH-dependent release of PTX from HP micelles can be used to increase the bioavailability of PTX upon oral delivery. PMID:18672013
Oral History: Playing by the Rules.
ERIC Educational Resources Information Center
Oshinsky, David M.
1990-01-01
Describes oral history interviewing techniques that the author used to research his biography of Joseph McCarthy before the American Historical Association (AHA) issued its seven guidelines on interview use. These guidelines focus on taping sessions, signed releases, written transcripts, respecting human dignity, and placing materials in archive…
Model‐Informed Development and Registration of a Once‐Daily Regimen of Extended‐Release Tofacitinib
Lamba, M; Hutmacher, MM; Furst, DE; Dikranian, A; Dowty, ME; Conrado, D; Stock, T; Nduaka, C; Cook, J
2017-01-01
Extended‐release (XR) formulations enable less frequent dosing vs. conventional (e.g., immediate release (IR)) formulations. Regulatory registration of such formulations typically requires pharmacokinetic (PK) and clinical efficacy data. Here we illustrate a model‐informed, exposure–response (E‐R) approach to translate controlled trial data from one formulation to another without a phase III trial, using a tofacitinib case study. Tofacitinib is an oral Janus kinase (JAK) inhibitor for the treatment of rheumatoid arthritis (RA). E‐R analyses were conducted using validated clinical endpoints from phase II dose–response and nonclinical dose fractionation studies of the IR formulation. Consistent with the delay in clinical response dynamics relative to PK, average concentration was established as the relevant PK parameter for tofacitinib efficacy and supported pharmacodynamic similarity. These evaluations, alongside demonstrated equivalence in total systemic exposure between IR and XR formulations, provided the basis for the regulatory approval of tofacitinib XR once daily by the US Food and Drug Administration. PMID:27859030
Nayak, Amit Kumar; Pal, Dilipkumar
2013-11-01
In this work, calcium pectinate-jackfruit (Artocarpus heterophyllus Lam.) seed starch (JFSS) mucoadhesive beads containing metformin HCl were developed through ionotropic-gelation. Effects of pectin and JFSS amounts on drug encapsulation efficiency (DEE), and cumulative drug release after 10 h (R10 h) were optimized using 3(2) factorial design. The optimized calcium pectinate-JFSS beads containing metformin HCl showed DEE of 94.11 ± 3.92%, R10 h of 48.88 ± 2.02%, and mean diameter of 2.06 ± 0.20 mm. The in vitro drug release from these beads was followed controlled-release (zero-order) pattern with super case-II transport mechanism. The beads were also characterized by SEM and FTIR. The pH of test mediums was found critical for swelling and mucoadhesion of these beads. The optimized calcium pectinate-JFSS beads also exhibited good mucoadhesivity and significant hypoglycemic effect in alloxan-induced diabetic rats over prolonged period after oral administration. Copyright © 2013 Elsevier B.V. All rights reserved.
Kamalakkannan, V; Puratchikody, A; Ramanathan, L
2013-01-01
Candesartan cilexetil (CC) is a newer class of angiotensin II receptor antagonist used for the treatment of hypertension. The solubility of the CC is very poor and its oral bioavailability is only 15%. The controlledrelease polar lipid microparticles of CC (formulations F1, F2, F3 and F4) were prepared using variable erodible lipophilic excipients like hydrogenated castor oil, stearic acid, cetostearyl alcohol and carnauba wax by fusion method. The particle sizes of polar lipid microparticles were less than 50 microns and they were irregular in shape. Drug content ranged between 98.96 ± 2.1 and 101.9 ± 1.6% were present in all the formulations. The formulation F3 showed better drug release throughout the study period in a controlled release manner. Moreover, the in vitro release showed that all the formulations were best fitted to Higuchi model. Accelerated stability studies indicated that there was no significant changes in the chemical and physical characteristics of the formulated drug product during initial and at the end of the study period. The FTIR and DSC studies showed that there was no interaction between the drug and lipophilic excipients and no polymorphic transitions in all formulations. The X-ray diffraction peak of solid dispersion indicated that the crystalline nature of CC disappeared and no new peaks could be observed, suggesting the absence of interaction between drug and excipients. PMID:24019822
Frank, Damian; Kaczmarska, Kornelia; Paterson, Janet; Piyasiri, Udayasika; Warner, Robyn
2017-11-01
While the positive effect of intramuscular fat (IMF) on beef tenderness is well-established, its role in flavor generation and flavor release is less defined. To increase understanding, real-time volatile generation was monitored during grilling of beefsteaks (grass and grain-fed Angus and grass-fed Wagyu) with different amounts of IMF by proton transfer reaction mass spectrometry. Volatile concentration increased significantly (p<0.001) when the IMF was >~10%, but did not differ (p>0.05) at lower IMF levels (5.2-10.2%). In vivo release of volatiles during consumption of grilled steaks was also measured using human subjects. Pre- and postswallow volatile release profiles varied according to marbling level and volatile fat solubility. In-mouth release of key hydrophilic volatiles was significantly greater (p<0.05) in high IMF grilled beef, consistent with more intense sensory flavor. Faster oral breakdown and higher peak saliva concentrations of non-volatile flavor compounds in high IMF grilled beef were consistent with higher tenderness and more intense flavor perception. Copyright © 2017. Published by Elsevier Ltd.
Kaneuchi, Miki; Kohri, Naonori; Senbongi, Kaname; Sakai, Hideo; Iseki, Ken
2005-02-01
Ketamine has been widely used in the operation as intravenous and intramuscular injections, since ketamine has dissociative anesthetic properties. When it is given in sub-anesthetic dose, ketamine is known to have an analgesic effect. The analgesic effect is observed for patients with neuropathic pain when administrated not only by injection but also orally. In Japan, since ketamine is not commercially available except injection forms, patients have to take it as solution of injections for the oral medication. Since the solution of injections has extremely bitter taste, patients intensely desire the development of preparations without the bitterness. In the present study, we prepared oral gel dosage forms of ketamine using agar. It is simple to prepare this dosage form, and most pharmacists can prepare it easily in many hospitals. This gel dosage form met content uniformity requirements and the shape of that was maintained intact during the dissolution test (for 10 hours). The release rate was reduced by additions of additives such as sugar and a flavor in the gel. The reason for the reduction in release could be the suppression of ketamine diffusion depended on the micro-viscosity of solution in the gel. The ketamine contents and the release profile of the gel preparations were unchanged at the room temperature for 12-week storage. The gel preparations in this study would be useful for the oral medication of ketamine, since it is easy for patients to carry them when they go out and the intensely bitter taste could be improved by the addition of a flavor.
Gomaa, Eman; Abu Lila, Amr S; Hasan, Azza A; Ghazy, Fakhr-Eldin S
2018-01-01
Vaginal route has been recently considered as a potential route for systemic delivery of drugs with poor oral bioavailability. Vardenafil (VDF) is a relatively new phosphodiesterase-5 inhibitor that exhibits a limited oral bioavailability (≈15%) due to extensive first-pass metabolism. In this study, we attempted to enhance the systemic bioavailability of VDF via its formulation within vaginal suppositories. Witepsol H15 and Suppocire NA50 were adopted as lipophilic suppository bases while polyethylene glycol 4000/400 and glycerogelatin were used as hydrophilic suppository bases. The effect of different base types and/or the incorporation of bioadhesive polymer on in vitro release of VDF were evaluated. The in vivo fate and organ biodistribution of VDF following intravaginal (IVG) administration were also investigated. VDF release from water-soluble bases was higher than that from lipophilic bases. The incorporation of bioadhesive polymers, such as Na alginate, remarkably sustained drug release from suppository base. The organ biodistribution study showed a higher C max (32 times) and AUC 0-4h (20 times) of VDF in uterus following IVG administration of conventional suppositories, compared to oral administration of VDF suspension. In addition, cyclic guanosine monophosphate (cGMP) serum levels, used as an indicator of the in vivo activity of VDF, in animals were higher following IVG administration rather than oral administration. This study suggests that IVG administration of VDF might represent a potential alternative to oral route with superior therapeutic benefits especially when targeting the uterus. Copyright © 2017 Elsevier B.V. All rights reserved.
Rashid, Jahidur; Patel, Brijeshkumar; Nozik-Grayck, Eva; McMurtry, Ivan F; Stenmark, Kurt R; Ahsan, Fakhrul
2017-03-28
The practice of treating PAH patients with oral or intravenous sildenafil suffers from the limitations of short dosing intervals, peripheral vasodilation, unwanted side effects, and restricted use in pediatric patients. In this study, we sought to test the hypothesis that inhalable poly(lactic-co-glycolic acid) (PLGA) particles of sildenafil prolong the release of the drug, produce pulmonary specific vasodilation, reduce the systemic exposure of the drug, and may be used as an alternative to oral sildenafil in the treatment of PAH. Thus, we prepared porous PLGA particles of sildenafil using a water-in-oil-in-water double emulsion solvent evaporation method with polyethyleneimine (PEI) as a porosigen and characterized the formulations for surface morphology, respirability, in-vitro drug release, and evaluated for in vivo absorption, alveolar macrophage uptake, and safety. PEI increased the particle porosity, drug entrapment, and produced drug release for 36h. Fluorescent particles showed reduced uptake by alveolar macrophages. The polymeric particles were safe to rat pulmonary arterial smooth muscle cell and to the lungs, as evidenced by the cytotoxicity assay and analyses of the injury markers in the bronchoalveolar lavage fluid, respectively. Intratracheally administered sildenafil particles elicited more pulmonary specific and sustained vasodilation in SUGEN-5416/hypoxia-induced PAH rats than oral, intravenous, or intratracheal plain sildenafil did, when administered at the same dose. Overall, true to the hypothesis, this study shows that inhaled PLGA particles of sildenafil can be administered, as a substitute for oral form of sildenafil, at a reduced dose and longer dosing interval. Copyright © 2017 Elsevier B.V. All rights reserved.
Discovery of an Orally Bioavailable Gonadotropin-Releasing Hormone Receptor Antagonist.
Kim, Seon-Mi; Lee, Minhee; Lee, So Young; Park, Euisun; Lee, Soo-Min; Kim, Eun Jeong; Han, Min Young; Yoo, Taekyung; Ann, Jihyae; Yoon, Suyoung; Lee, Jiyoun; Lee, Jeewoo
2016-10-13
We developed a compound library for orally available gonadotropin-releasing hormone (GnRH) receptor antagonists that were based on a uracil scaffold. On the basis of in vitro activity and CYP inhibition profile, we selected 18a (SKI2496) for further in vivo studies. Compound 18a exhibited more selective antagonistic activity toward the human GnRH receptors over the GnRHRs in monkeys and rats, and this compound also showed inhibitory effects on GnRH-mediated signaling pathways. Pharmacokinetic and pharmacodynamic evaluations of 18a revealed improved bioavailability and superior gonadotropic suppression activity compared with Elagolix, the most clinically advanced compound. Considering that 18a exhibited highly potent and selective antagonistic activity toward the hGnRHRs along with favorable pharmacokinetic profiles, we believe that 18a may represent a promising candidate for an orally available hormonal therapy.
Eisele, Johanna; Haynes, Geoff; Kreuzer, Knut; Hall, Caroline
2016-12-01
Anionic Methacrylate Copolymer (AMC) is a fully polymerized copolymer used in the pharmaceutical industry as an enteric/delayed-release coating to permit the pH-dependent release of active ingredients in the gastrointestinal tract from oral dosage forms. This function is of potential use for food supplements. Oral administration of radiolabeled copolymer to rats resulted in the detection of chemically unchanged copolymer in the feces, with negligible absorption (<0.1%). AMC is therefore determined not to be bioavailable. Within a genotoxicity test battery AMC did not show any evidence of genotoxicity in bacteria and mammalian cells. Furthermore, no genotoxic effects occurred in vivo within a micronucleus test. There would therefore appear to be no safety concerns under intended conditions of oral use for the discussed toxicological endpoints. Copyright © 2016 Elsevier Inc. All rights reserved.
Combined oncolytic virotherapy with herpes simplex virus for oral squamous cell carcinoma.
Ogawa, Fumi; Takaoka, Hiroo; Iwai, Soichi; Aota, Keiko; Yura, Yoshiaki
2008-01-01
The effect of dual infection with herpes simplex virus type 1 (HSV-1) mutants on human oral squamous cell carcinoma (SCC) cells was examined. Human oral SCC cells were infected with gamma1(34.5) gene-deficient HSV-1 R849 and HSV-1 HF that has multiple mutations and induces cell fusion. Cell viability was measured by LDH release assay. Athymic mice were injected with oral SCC cells into the buccal region to induce subcutaneous tumors. Oral SCC cells were infected with R849, followed by infection with R849 or HF. Virus production was elevated by both strains of HSV-1. Although the release of LDH from R849-infected cells was increased by secondary infection with R849 or HF, the effect of HF was more remarkable. When nude mouse tumors were treated with R849, HF, R849+R849, or R849+HF, treatment with R849+HF was the most effective. These results suggest that fusion-inducing virus HF enhances the oncolytic ability of gamma1(34.5) gene-deficient HSV-1 and provides a rationale for using fusogenic viruses as enhancing agents
A long-lasting oral preformulation of the angiotensin II AT1 receptor antagonist losartan.
De Paula, Washington X; Denadai, Ângelo M L; Braga, Aline N G; Shastri, V Prasad; Pinheiro, Sérgio V B; Frezard, Frederic; Santos, Robson A S; Sinisterra, Ruben D
2018-05-10
Losartan (Los), a non-peptidic orally active agent, reduces arterial pressure through specific and selective blockade of angiotensin II receptor AT1. However, this widely used AT1 antagonist presents low bioavailability and needs once or twice a day dosage. In order to improve its bioavailability, we used the host: guest strategy based on β-cyclodextrin (βCD). The results suggest that Los included in βCD showed a typical pulsatile release pattern after oral administration to rats, with increasing the levels of plasma of Los. In addition, the inclusion compound presented oral efficacy for 72 h, in contrast to Los alone, which shows antagonist effect for only 6 h. In transgenic (mREN2)L27 rats, the Los/βCD complex reduced blood pressure for about 6 d, whereas Los alone reduced blood pressure for only 2 d. More importantly, using this host: guest strategy, sustained release of Los for over a week via the oral route can be achieved without the need for encapsulation in a polymeric carrier. The proposed preformulation increased the efficacy reducing the dose or spacing between each dose intake.
NASA Astrophysics Data System (ADS)
Mihardjanti, M.; Ismah, N.; Purwanegara, M. K.
2017-08-01
The stainless steel bracket is widely used in orthodontics because of its mechanical properties, strength, and good biocompatibility. However, under certain conditions, it can be susceptible to corrosion. Studies have reported that the release of nickel and chromium ions because of corrosion can cause allergic reactions in some individuals and are mutagenic. The condition of the oral environment can lead to corrosion, and one factor that can alter the oral environment is mouthwash. The aim of this study was to measure the nickel and chromium ions released from stainless steel brackets when immersed in mouthwash and aquadest. The objects consisted of four groups of 17 maxillary premolar brackets with .022 slots. Each group was immersed in a different mouthwash and aquadest and incubated at 37 °C for 30 days. After 30 days of immersion, the released ions were measured using the ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). For statistical analysis, both the Kruskal-Wallis and Mann-Whitney tests were used. The results showed differences among the four groups in the nickel ions released (p < 0.05) and the chromium ions released (p < 0.5). In conclusion, the ions released as a result of mouthwash immersion have a small value that is below the limit of daily intake recommended by the World Health Organization.
Wang, Yun-Hui; Wu, Hui-Hua; Ding, Hong; Li, Yan; Wang, Zhen-Hua; Li, Feng; Zhang, Jian-Ping
2013-03-01
The aim of this study was to observe insulin resistance and β-cell function changes among women diagnosed with gestational impaired glucose tolerance or gestational diabetes mellitus (GDM) in mid-pregnancy. Sixty-four pregnant women receiving prenatal care underwent an oral glucose tolerance test at 20-24 weeks of gestation and an insulin release test. The GDM group included 34 pregnant women diagnosed with gestational impaired glucose tolerance or GDM, and the subjects with normal blood glucose were the control group. Insulin resistance and islet β-cell function changes were observed with the oral glucose tolerance test and insulin release test. The homeostatic model assessment-β levels in late pregnancy were higher than those in mid-pregnancy for both groups, and the primary time effect was statistically significant. The early insulin secretion index (ΔI(30)/ΔG(30)) values in mid- and late pregnancy were lower in the GDM group. The values of the area under the curve of blood glucose in mid- and late pregnancy were higher in the GDM group than those in the control group. Insulin resistance was higher in GDM patients than in normal pregnant women. Insulin resistance was aggravated, and β-cell's ability to compensate for the increased insulin resistance by modulating insulin secretion was aggravated, as gestational week increased in women with gestational diabetes and normal pregnant women. Insulin resistance in women with GDM is higher than in pregnant women with normal metabolism of glucose. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.
Meneguin, Andréia B; Beyssac, Eric; Garrait, Ghislain; Hsein, Hassana; Cury, Beatriz S F
2018-02-01
Gellan gum microparticles coated with colon-specific films based on retrograded starch and pectin was developed for enhancing the oral release of insulin (INS). The system developed promoted an impressive protection of INS (80%) after 120 min of incubation with trypsin and alpha-chymotrypsin, while only 3% of free INS remained intact after the same time, possibility due to the calcium chelating activity of the polymers in inhibiting the proteolytic activity. In vitro INS release in media simulating the gastrointestinal portions revealed a pH-dependent behavior, as well as the significance of the coating in lowering the release rates in relation to their counterparts. The permeability of INS on Caco-2 cells monolayers and excised rat intestine were significantly improved, mainly due to the influence of the anionic polymers on tight junctions opening, along with the excellent mucoadhesive properties of the gellan gum. All these features together contributed greatly to the hypoglycemic effect observed after the oral administration of the INS-loaded MP in diabetic rats, with reduction of up to 51% of blood glucose levels. The important findings of this work should contribute to the advances about the search of alternatives for oral administration of INS. Copyright © 2017. Published by Elsevier B.V.
Tottori, Katsura; Nakai, Masami; Uwahodo, Yasufumi; Miwa, Takashi; Yamada, Sakiko; Oshiro, Yasuo; Kikuchi, Tetsuro; Altar, C Anthony
2002-04-01
Sigma and 5-HT(1A) receptor stimulation can increase acetylcholine (ACh) release in the brain. Because ACh release facilitates learning and memory, we evaluated the degree to which OPC-14523 (1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-5-methoxy-3,4-dihydro-2[1H]-quinolinone monomethane sulfonate), a novel sigma and 5-HT(1A) receptor agonist, can augment ACh release and improve learning impairments in rats due to cholinergic- or age-related deficits. Single oral administration of OPC-14523 improved scopolamine-induced learning impairments in the passive-avoidance task and memory impairment in the Morris water maze. The chronic oral administration of OPC-14523 attenuated age-associated impairments of learning acquisition in the water maze and in the conditioned active-avoidance response test. OPC-14523 did not alter basal locomotion or inhibit acetylcholinesterase (AChE) activity at concentrations up to 100 microM and, unlike AChE inhibitors, did not cause peripheral cholinomimetic responses. ACh release in the dorsal hippocampus of freely moving rats increased after oral delivery of OPC-14523 and after local delivery of OPC-14523 into the hippocampus. The increases in hippocampal ACh release were blocked by the sigma receptor antagonist NE-100 (N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)-phenyl]-ethylamine). Thus, OPC-14523 improves scopolamine-induced and age-associated learning and memory impairments by enhancing ACh release, due to a stimulation of sigma and probably 5-HT(1A) receptors. Combined sigma/5-HT(1A) receptor agonism may be a novel approach to ameliorate cognitive disorders associated with age-associated cholinergic deficits.
Koetting, Michael Clinton; Guido, Joseph Frank; Gupta, Malvika; Zhang, Annie; Peppas, Nicholas A
2016-01-10
Two potential platform technologies for the oral delivery of protein therapeutics were synthesized and tested. pH-responsive poly(itaconic acid-co-N-vinyl-2-pyrrolidone) (P(IA-co-NVP)) hydrogel microparticles were tested in vitro with model proteins salmon calcitonin, urokinase, and rituximab to determine the effects of particle size, protein size, and crosslinking density on oral delivery capability. Particle size showed no significant effect on overall delivery potential but did improve percent release of encapsulated protein over the micro-scale particle size range studied. Protein size was shown to have a significant impact on the delivery capability of the P(IA-co-NVP) hydrogel. We show that when using P(IA-co-NVP) hydrogel microparticles with 3 mol% tetra(ethylene glycol) dimethacrylate crosslinker, a small polypeptide (salmon calcitonin) loads and releases up to 45 μg/mg hydrogel while the mid-sized protein urokinase and large monoclonal antibody rituximab load and release only 19 and 24 μg/mg hydrogel, respectively. We further demonstrate that crosslinking density offers a simple method for tuning hydrogel properties to variously sized proteins. Using 5 mol% TEGDMA crosslinker offers optimal performance for the small peptide, salmon calcitonin, whereas lower crosslinking density of 1 mol% offers optimal performance for the much larger protein rituximab. Finally, an enzymatically-degradable hydrogels of P(MAA-co-NVP) crosslinked with the peptide sequence MMRRRKK were synthesized and tested in simulated gastric and intestinal conditions. These hydrogels offer ideal loading and release behavior, showing no degradative release of encapsulated salmon calcitonin in gastric conditions while yielding rapid and complete release of encapsulated protein within 1h in intestinal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Orally active growth hormone secretagogues: state of the art and clinical perspectives.
Ghigo, E; Arvat, E; Camanni, F
1998-04-01
Growth hormone secretagogues (GHS) are synthetic, non-natural peptidyl and nonpeptidyl molecules with potent stimulatory effect on somatotrope secretion. They have no structural homology with growth hormone-releasing hormone (GHRH) and act via a specific receptor, which has now been cloned and is present at both the pituitary and hypothalamic level. This evidence strongly suggests the existence of a still unknown natural GHS-like ligand. Several data favour the hypothesis that GHS could counteract somatostatinergic activity at both the pituitary and hypothalamic level and/or, at least partially, via a GHRH-mediated mechanism. However, the possibility that they act via an unknown hypothalamic factor remains open. GH-releasing peptide-6 (GHRP-6) is the first hexapeptide studied extensively in humans. More recently, peptidyl superanalogues GHRP-1, GHRP-2 and hexarelin, and nonpeptidyl mimetics, such as the spiroindoline derivative MK-677, have been synthesized and their effects have been studied in humans. The GH-releasing activity of GHS is marked, dose related and reproducible after intravenous, subcutaneous, intranasal and even oral administration. The effect of GHS is partially desensitized but prolonged, intermittent oral administration increases insulin-like growth factor I (IGF-I) levels. The GH-releasing effect of GHS undergoes age-related variations; it increases from birth to puberty, remains similar in adulthood and decreases with ageing. The effect of GHS on GH release is synergistic with that of GHRH, while it is only partially refractory to inhibitory influences, which nearly abolish the effect of GHRH. GHS maintain their GH-releasing activity in some somatotrope hypersecretory states such as acromegaly, anorexia nervosa, hyperthyroidism and critical illness. The GH response to GHS has been reported clear although reduced in GH deficiency, obesity and hypothyroidism, while it is strongly reduced in patients with pituitary stalk disconnection or Cushing's syndrome. In short children, elderly subjects, critically ill patients and even in adult patients with GH deficiency an increase of IGF-I has been shown after GHS treatment. These data indicate that treatment with orally active GHS in humans enhances the activity of the GH-IGF-I axis and could be clinically useful.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-17
... determined that Halflytely and Bisacodyl Tablets Bowel Prep Kit (polyethylene glycol (PEG) 3350, sodium chloride, sodium bicarbonate, and potassium chloride for oral solution and two bisacodyl delayed release... kits containing PEG-3350, sodium chloride, sodium bicarbonate, and potassium chloride for oral solution...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
... determined that HALFLYTELY AND BISACODYL TABLETS BOWEL PREP KIT (polyethylene glycol (PEG) 3350, sodium chloride, sodium bicarbonate, and potassium chloride for oral solution and 4 bisacodyl delayed release... kits containing PEG-3350, sodium chloride, sodium bicarbonate, and potassium chloride for oral solution...
Natarajan, Madhumitha; Padmanabhan, Sridevi; Chitharanjan, Arun; Narasimhan, Malathi
2011-09-01
The release of metal ions from fixed orthodontic appliances is a source of concern. The aim of this study was to evaluate genotoxic damage in the oral mucosal cells of patients wearing fixed appliance, and the nickel and chromium ion contents in these cells. Twenty patients undergoing orthodontic treatment formed the experimental group, and 20 untreated subjects comprised the control group. Oral mucosal smears were collected at 2 times: at debonding and 30 days after debonding. The smears were stained with Papanicolaou stain and studied under a light microscope to evaluate the presence of micronuclei. Inductively coupled plasma-mass spectrometry was used to quantify the presence of metal ions. The data were subjected to the Mann-Whitney U test and the Spearman rank correlation test. The mean micronuclei frequency was significantly higher in the treated group than in the control group at debonding; the difference was smaller and not statistically significant 30 days after debonding. The nickel and chromium ion contents in the experimental group were not significantly higher than in the control group. No correlation could be established between micronuclei frequency and metal ion content. Nickel and chromium alloys of orthodontic appliances emit metal ions in sufficient quantities to induce localized genotoxic effects, but these changes revert on removal of the appliances. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Willems, Nicole; Yang, Hsiao-Yin; Langelaan, Marloes L P; Tellegen, Anna R; Grinwis, Guy C M; Kranenburg, Hendrik-Jan C; Riemers, Frank M; Plomp, Saskia G M; Craenmehr, Eric G M; Dhert, Wouter J A; Papen-Botterhuis, Nicole E; Meij, Björn P; Creemers, Laura B; Tryfonidou, Marianna A
2015-08-20
Chronic low back pain due to intervertebral disc (IVD) degeneration is associated with increased levels of inflammatory mediators. Current medical treatment consists of oral anti-inflammatory drugs to alleviate pain. In this study, the efficacy and safety of a novel thermoreversible poly-N-isopropylacrylamide MgFe-layered double hydroxide (pNIPAAM MgFe-LDH) hydrogel was evaluated for intradiscal controlled delivery of the selective cyclooxygenase (COX) 2 inhibitor and anti-inflammatory drug celecoxib (CXB). Degradation, release behavior, and the ability of a CXB-loaded pNIPAAM MgFe-LDH hydrogel to suppress prostaglandin E2 (PGE2) levels in a controlled manner in the presence of a proinflammatory stimulus (TNF-α) were evaluated in vitro. Biocompatibility was evaluated histologically after subcutaneous injection in mice. Safety of intradiscal application of the loaded and unloaded hydrogels was studied in a canine model of spontaneous mild IVD degeneration by histological, biomolecular, and biochemical evaluation. After the hydrogel was shown to be biocompatible and safe, an in vivo dose-response study was performed in order to determine safety and efficacy of the pNIPAAM MgFe-LDH hydrogel for intradiscal controlled delivery of CXB. CXB release correlated to hydrogel degradation in vitro. Furthermore, controlled release from CXB-loaded hydrogels was demonstrated to suppress PGE2 levels in the presence of TNF-α. The hydrogel was shown to exhibit a good biocompatibility upon subcutaneous injection in mice. Upon intradiscal injection in a canine model, the hydrogel exhibited excellent biocompatibility based on histological evaluation of the treated IVDs. Gene expression and biochemical analyses supported the finding that no substantial negative effects of the hydrogel were observed. Safety of application was further confirmed by the absence of clinical symptoms, IVD herniation or progression of degeneration. Controlled release of CXB resulted in a nonsignificant maximal inhibition (approximately 35 %) of PGE2 levels in the mildly degenerated canine IVDs. In conclusion, this study showed biocompatibility and safe intradiscal application of an MgFe LDH-pNIPAAM hydrogel. Controlled release of CXB resulted in only limited inhibition of PGE2 in this model with mild IVD degeneration, and further studies should concentrate on application of controlled release from this type of hydrogel in animal models with more severe IVD degeneration.
Park, Jun-Bom; Prodduturi, Suneela; Morott, Joe; Kulkarni, Vijay I.; Jacob, Melissa R.; Khan, Shabana I.; Stodghill, Steven P.; Repka, Michael A.
2017-01-01
Objectives The overall goal of this research was to produce a stable hot-melt extruded “Antifungal Denture Adhesive film” (ADA) system for the treatment of oral candidiasis. Methods The ADA systems with hydroxypropyl cellulose (HPC) and/or polyethylene oxide (PEO) containing clotrimazole (10%) or nystatin (10%) were extruded utilizing a lab scale twin-screw hot-melt extruder. Rolls of the antifungal-containing films were collected and subsequently die-cut into shapes adapted for a maxillary (upper) and mandibular (lower) denture. Results DSC and PXRD results indicated that the crystallinity of both APIs was changed to amorphous phase after hot-melt extrusion. The ADA system, containing blends of HPC and PEO, enhanced the effectiveness of the antimicrobials a maximum of 5-fold toward the inhibition of cell adherence of C. albicans to mammalian cells/Vero cells. Remarkably, a combination of the two polymers without drug also demonstrated a 38% decrease in cell adhesion to the fungi due to the viscosity and the flexibility of the polymers. Drug-release profiles indicated that both drug concentrations were above the minimum inhibitory concentration (MIC) for C. albicans within 10 minutes and was maintained for over 10 hours. In addition, based on the IC50 and MIC values, it was observed that the antifungal activities of both drugs were increased significantly in the ADA systems. Conclusions Based on these findings, the ADA system may be used for primary, prophylaxis or adjunct treatment of oral or pharyngeal candidiasis via controlled-release of the antifungal agent from the polymer matrix. PMID:25169007
Han, Xiaofeng; Wang, Zhe; Wang, Manyuan; Li, Jing; Xu, Yongsong; He, Rui; Guan, Hongyu; Yue, Zhujun; Gong, Muxin
2016-06-01
In order to enhance oral bioavailability and liver targeting delivery of silybin, two amphiphilic hyaluronic acid derivatives, hyaluronic acid-deoxycholic acid (HA-adh-DOCA) and hyaluronic acid-glycyrrhetinic acid (HA-adh-GA) conjugates, were designed and synthesized. Silybin was successfully loaded in HA-adh-DOCA and HA-adh-GA micelles with high drug-loading capacities (20.3% ± 0.5% and 20.6% ± 0.6%, respectively). The silybin-loaded micelles were spherical in shape with the average size around 130 nm. In vitro release study showed that two silybin-loaded micelles displayed similar steady continued-release pattern in simulated gastrointestinal fluids and PBS. Single-pass intestinal perfusion studies indicated that silybin-loaded micelles were absorbed in the whole intestine and transported via a passive diffusion mechanism. Compared with suspension formulation, silybin-loaded HA-adh-DOCA and HA-adh-GA micelles achieved significantly higher AUC and Cmax level. Moreover, liver targeting drug delivery of micelles was confirmed by in vivo imaging analysis. In comparison between the two micellar formulations, HA-adh-GA micelles possessed higher targeting capacity than HA-adh-DOCA micelles, owing to the active hepatic targeting properties of glycyrrhetinic acid. In the treatment of acute liver injury induced by CCl4, silybin-loaded HA-adh-GA micelles displayed better effects over suspension control and silybin-loaded HA-adh-DOCA micelles. Overall, pharmaceutical and pharmacological indicators suggested that the HA-adh-GA conjugates can be successfully utilized for liver targeting of orally administered therapeutics.
Ramírez-Rigo, María V; Olivera, María E; Rubio, Modesto; Manzo, Ruben H
2014-05-13
The low bioavailability of enalapril maleate associated to its instability in solid state motivated the development of a polyelectrolyte-drug complex between enalapril maleate and the cationic polymethacrylate Eudragit E100. The solid complexes were characterized by DSC-TG, FT-IR and X-ray diffraction. Their aqueous dispersions were evaluated for drug delivery in bicompartimental Franz cells and electrokinetic potentials. Stability in solid state was also evaluated using an HPLC-UV stability indicating method. Absorption of enalapril maleate was assessed thorough the rat everted gut sac model. In addition, urinary recovery after oral administration in rats was used as an indicator of systemic exposition. The solid materials are stable amorphous solids in which both moieties of enalapril maleate are ionically bonded to the polymer. Their aqueous dispersions exhibited controlled release over more than 7h in physiologic saline solution, being ionic exchange the fundamental mechanism that modified the extent and rate of drug release. Intestinal permeation of enalapril maleate was 1.7 times higher in the presence of the cationic polymer. This increase can be related with the capacity to adhere the mucosa due to the positive zeta potential of the complexes. As a consequence bioavailability was significantly improved (1.39 times) after oral administration of the complexes. In addition, no signs of chemical decomposition were observed after a 14months period. The results indicated that the products are new chemical entities that improve unfavorable properties of a useful drug. Copyright © 2014 Elsevier B.V. All rights reserved.
Park, Jun-Bom; Prodduturi, Suneela; Morott, Joe; Kulkarni, Vijay I; Jacob, Melissa R; Khan, Shabana I; Stodghill, Steven P; Repka, Michael A
2015-01-01
The overall goal of this research was to produce a stable hot-melt extruded 'Antifungal Denture Adhesive film' (ADA) system for the treatment of oral candidiasis. The ADA systems with hydroxypropyl cellulose (HPC) and/or polyethylene oxide (PEO) containing clotrimazole (10%) or nystatin (10%) were extruded utilizing a lab scale twin-screw hot-melt extruder. Rolls of the antifungal-containing films were collected and subsequently die-cut into shapes adapted for a maxillary (upper) and mandibular (lower) denture. Differential scanning calorimeter and powder X-ray diffraction results indicated that the crystallinity of both APIs was changed to amorphous phase after hot-melt extrusion. The ADA system, containing blends of HPC and PEO, enhanced the effectiveness of the antimicrobials a maximum of fivefold toward the inhibition of cell adherence of Candida albicans to mammalian cells/Vero cells. Remarkably, a combination of the two polymers without drug also demonstrated a 38% decrease in cell adhesion to the fungi due to the viscosity and the flexibility of the polymers. Drug-release profiles indicated that both drug concentrations were above the minimum inhibitory concentration (MIC) for C. albicans within 10 min and was maintained for over 10 h. In addition, based on the IC50 and MIC values, it was observed that the antifungal activities of both drugs were increased significantly in the ADA systems. Based on these findings, the ADA system may be used for primary, prophylaxis or adjunct treatment of oral or pharyngeal candidiasis via controlled release of the antifungal agent from the polymer matrix.
Effect of safflower oil on the protective properties of the in situ formed salivary pellicle.
Hannig, C; Wagenschwanz, C; Pötschke, S; Kümmerer, K; Kensche, A; Hoth-Hannig, W; Hannig, M
2012-01-01
The prevalence of dental erosion is still increasing. A possible preventive approach might be rinsing with edible oils to improve the protective properties of the pellicle layer. This was tested in the present in situ study using safflower oil. Pellicle formation was carried out in situ on bovine enamel slabs fixed buccally to individual upper jaw splints (6 subjects). After 1 min of pellicle formation subjects rinsed with safflower oil for 10 min, subsequently the samples were exposed in the oral cavity for another 19 min. Enamel slabs without oral exposure and slabs exposed to the oral cavity for 30 min without any rinse served as controls. After pellicle formation in situ, slabs were incubated in HCl (pH 2; 2.3; 3) for 120 s, and kinetics of calcium and phosphate release were measured photometrically (arsenazo III, malachite green). Furthermore, the ultrastructure of the pellicles was evaluated by transmission electron microscopy (TEM). Pellicle alone reduced erosive calcium and phosphate release significantly at all pH values. Pellicle modification by safflower oil resulted in an enhanced calcium loss at all pH values and caused an enhanced phosphate loss at pH 2.3. TEM indicated scattered accumulation of lipid micelles and irregular vesicle-like structures attached to the oil-treated pellicle layer. Acid etching affected the ultrastructure of the pellicle irrespective of oil rinsing. The protective properties of the pellicle layer against extensive erosive attacks are limited and mainly determined by pH. The protective effects are modified and reduced by rinses with safflower oil. Copyright © 2012 S. Karger AG, Basel.
Zeitler, J Axel; Shen, Yaochun; Baker, Colin; Taday, Philip F; Pepper, Michael; Rades, Thomas
2007-02-01
Three dimensional terahertz pulsed imaging (TPI) was evaluated as a novel tool for the nondestructive characterization of different solid oral dosage forms. The time-domain reflection signal of coherent pulsed light in the far infrared was used to investigate film-coated tablets, sugar-coated tablets, multilayered controlled release tablets, and soft gelatin capsules. It is possible to determine the spatial and statistical distribution of coating thickness in single and multiple coated products using 3D TPI. The measurements are nondestructive even for layers buried underneath other coating structures. The internal structure of coating materials can be analyzed. As the terahertz signal penetrates up to 3 mm into the dosage form interfaces between layers in multilayered tablets can be investigated. In soft gelatin capsules it is possible to measure the thickness of the gelatin layer and to characterize the seal between the gelatin layers for quality control. TPI is a unique approach for the nondestructive characterization and quality control of solid dosage forms. The measurements are fast and fully automated with the potential for much wider application of the technique in the process analytical technology scheme. Copyright (c) 2006 Wiley-Liss, Inc.
Development and optimization of buspirone oral osmotic pump tablet
Derakhshandeh, K.; berenji, M. Ghasemnejad
2014-01-01
The aim of the current study was to design a porous osmotic pump–based drug delivery system for controlling the release of buspirone from the delivery system. The osmotic pump was successfully developed using symmetric membrane coating. The core of the tablets was prepared by direct compression technique and coated using dip-coating technique. Drug release from the osmotic system was studied using USP paddle type apparatus. The effect of various processing variables such as the amount of osmotic agent, the amount of swellable polymer, concentration of the core former, concentration of the plasticizer, membrane thickness, quantum of orifice on drug release from osmotic pump were evaluated. Different kinetic models (zero order, first order and Higuchi model) were applied to drug release data in order to establish the kinetics of drug release. It was found that the drug release was mostly affected by the amount of NaCl as osmotic agent, the swellable polymer; hydroxy propyl methyl cellulose (HPMC), the amount of PEG-400 and cellulose acetate in the coating solution and thickness of the semipermeable membrane. The optimized formulation released buspirone independent of pH and orifice quantum at the osmogen amount of 42%, hydrophilic polymer of 13% and pore size of 0.8 mm on the tablet surface. The drug release of osmotic formulation during 24 h showed zero order kinetics and could be suggested that this formulation as a once-daily regimen improves pharmacokinetic parameters of the drug and enhances patient compliance. PMID:25657794
Development and optimization of buspirone oral osmotic pump tablet.
Derakhshandeh, K; Berenji, M Ghasemnejad
2014-01-01
The aim of the current study was to design a porous osmotic pump-based drug delivery system for controlling the release of buspirone from the delivery system. The osmotic pump was successfully developed using symmetric membrane coating. The core of the tablets was prepared by direct compression technique and coated using dip-coating technique. Drug release from the osmotic system was studied using USP paddle type apparatus. The effect of various processing variables such as the amount of osmotic agent, the amount of swellable polymer, concentration of the core former, concentration of the plasticizer, membrane thickness, quantum of orifice on drug release from osmotic pump were evaluated. Different kinetic models (zero order, first order and Higuchi model) were applied to drug release data in order to establish the kinetics of drug release. It was found that the drug release was mostly affected by the amount of NaCl as osmotic agent, the swellable polymer; hydroxy propyl methyl cellulose (HPMC), the amount of PEG-400 and cellulose acetate in the coating solution and thickness of the semipermeable membrane. The optimized formulation released buspirone independent of pH and orifice quantum at the osmogen amount of 42%, hydrophilic polymer of 13% and pore size of 0.8 mm on the tablet surface. The drug release of osmotic formulation during 24 h showed zero order kinetics and could be suggested that this formulation as a once-daily regimen improves pharmacokinetic parameters of the drug and enhances patient compliance.
Intestine-Specific, Oral Delivery of Captopril/Montmorillonite: Formulation and Release Kinetics
2011-01-01
The intercalation of captopril (CP) into the interlayers of montmorillonite (MMT) affords an intestine-selective drug delivery system that has a captopril-loading capacity of up to ca. 14 %w/w and which exhibits near-zero-order release kinetics. PMID:27502639
Haznar-Garbacz, Dorota; Kaminska, Ewa; Zakowiecki, Daniel; Lachmann, Marek; Kaminski, Kamil; Garbacz, Grzegorz; Dorożyński, Przemysław; Kulinowski, Piotr
2018-02-01
The presented work describes the formulation and characterization of modified release glassy solid dosage forms (GSDFs) containing an amorphous nifedipine, as a model BCS (Biopharmaceutical Classification System) class II drug. The GSDFs were prepared by melting nifedipine together with octaacetyl sucrose. Dissolution profiles, measured under standard and biorelevant conditions, were compared to those obtained from commercially available formulations containing nifedipine such as modified release (MR) tablets and osmotic release oral system (OROS). The results indicate that the dissolution profiles of the GSDFs with nifedipine are neither affected by the pH of the dissolution media, type and concentration of surfactants, nor by simulated mechanical stress of biorelevant intensity. Furthermore, it was found that the dissolution profiles of the novel dosage forms were similar to the profiles obtained from the nifedipine OROS. The formulation of GSDFs is relatively simple, and the dosage forms were found to have favorable dissolution characteristics.
Auiler, J F; Liu, K; Lynch, J M; Gelotte, C K
2002-01-01
Stimulant therapy is the mainstay of treatment for children, adolescents and adults with attention-deficit/hyperactivity disorder (ADHD). Once-daily, extended-release oral formulations offer long acting control of symptoms by modifying drug delivery and absorption. In particular, consistency in early drug exposure is important for symptom control during school or work hours. Because these once-daily formulations are usually taken in the morning, the timing of the doses with breakfast is important. This study compared the effect of a high-fat breakfast on early drug exposure from a morning dose of two extended-release stimulant formulations: the osmotic-controlled OROS tablet of methylphenidate HCI (CONCERTA) and the capsule containing extended-release beads of mixed amphetamine salts (ADDERALL XR). The study had a single-dose, open-label, randomised, four-treatment, crossover design in which healthy subjects received either 36 mg CONCERTA or 20 mg ADDERALL XR in the morning after an overnight fast or a high-fat breakfast. Serial blood samples were collected over 28h to determine plasma concentrations of methylphenidate and amphetamine. The food effect on early drug exposure and the pharmacokinetic profiles up to 8 h after dosing of the two extended-release stimulants were directly compared using partial area (AUC(p4h), AUC(p6h) and AUC(p8h)) fed/fasted ratios. Amphetamine concentrations were markedly lower when the subjects had eaten breakfast, resulting in lower early drug exposures (p < 0.0001). By contrast, methylphenidate concentrations over the same 8 h were unaffected by breakfast, providing consistent levels of early drug exposure. Therefore, as a child's or adult's eating pattern varies, methylphenidate exposure over the first 8 h would be expected to have less day-to-day variation compared with amphetamine exposure. The osmotic-controlled OROS tablet provides a reliable and consistent delivery of methylphenidate HCI, independent of food, for patients with ADHD.
Slow-release oral morphine for opioid maintenance treatment: a systematic review
Jegu, Jeremie; Gallini, Adeline; Soler, Pauline; Montastruc, Jean-Louis; Lapeyre-Mestre, Maryse
2011-01-01
This review article summarizes the results of all available clinical trials considering the use of slow-release oral morphine (SROM) for opioid maintenance treatment (OMT). All studies published up to October 2010 and assessing SROM for OMT in adult patients are included. Three independent reviewers assessed the selected articles using a standardized checklist. Study design, study length and number of subjects included were recorded. Data about retention rate (proportion of participants remaining under maintenance treatment at the end of the study), quality of life, withdrawal symptoms, craving, additional drug consumption, driving capacity and adverse events were collected. We identified 13 articles corresponding to nine clinical trials considering the use of SROM for OMT. Among them, only one was a randomized trial and one was a controlled not randomized trial. All other studies were uncontrolled. Retention rates were good (from 80.6 to 95%) with SROM maintenance, but similar retention rates were obtained with methadone. Most of the studies showed that quality of life, withdrawal symptoms, craving and additional drug consumption improved with SROM. However, there was no comparison with other maintenance drugs. As most of the studies assessing SROM efficacy were uncontrolled, there is no definite evidence that SROM is an effective alternative to methadone for OMT. PMID:21265874
Toxicity evaluation of zinc aluminium levodopa nanocomposite via oral route in repeated dose study
NASA Astrophysics Data System (ADS)
Kura, Aminu Umar; Cheah, Pike-See; Hussein, Mohd Zobir; Hassan, Zurina; Tengku Azmi, Tengku Ibrahim; Hussein, Nor Fuzina; Fakurazi, Sharida
2014-05-01
Nanotechnology, through nanomedicine, allowed drugs to be manipulated into nanoscale sizes for delivery to the different parts of the body, at the same time, retaining the valuable pharmacological properties of the drugs. However, efficient drug delivery and excellent release potential of these delivery systems may be hindered by possible untoward side effects. In this study, the sub-acute toxicity of oral zinc aluminium nanocomposite with and without levodopa was assessed using the Organization for Economic Co-operation and Development guidelines. No sign or symptom of toxicity was observed in orally treated rats with the nanocomposite at 5 and 500 mg/kg concentrations. Body weight gain, feeding, water intake, general survival and organosomatic index were not significantly different between control and treatment groups. Aspartate aminotransferase (AST) in 500 mg/kg levodopa nanocomposite (169 ± 30 U/L), 5 mg/kg levodopa nanocomposite (172 ± 49 U/L), and 500 mg/kg layered double hydroxides (LDH) nanocomposite (175 ± 25 U/L) were notably elevated compared to controls (143 ± 05 U/L); but the difference were not significant ( p > 0.05). However, the differences in aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio of 500 mg/kg levodopa nanocomposite (0.32 ± 0.12) and 500 mg/kg LDH nanocomposite (0.34 ± 0.12) were statistically significant ( p < 0.05) compared to the control (0.51 ± 0.07). Histology of the liver, spleen and brain was found to be of similar morphology in both control and experimental groups. The kidneys of 500-mg/kg-treated rats with levodopa nanocomposite and LDH nanocomposite were found to have slight inflammatory changes, notably leukocyte infiltration around the glomeruli. The ultra-structure of the neurons from the substantia nigra of nanocomposite-exposed group was similar to those receiving only normal saline. The observed result has suggested possible liver and renal toxicity in orally administered levodopa intercalated nanocomposite; it is also dose-dependent that needs further assessment.
pH- and ion-sensitive polymers for drug delivery
Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro
2013-01-01
Introduction Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Areas covered Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Expert opinion Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients. PMID:23930949
Chen, Qiubing; Gou, Shuangquan; Huang, Yamei; Zhou, Xin; Li, Qian; Han, Moon Kwon; Kang, Yuejun; Xiao, Bo
2018-05-05
Oral microparticles (MPs) have been considered as promising drug carriers in the treatment of ulcerative colitis (UC). Here, a facile strategy based on a conventional emulsion-solvent evaporation technique was used to fabricate bowl-shaped MPs (BMPs), and these MPs loaded with anti-inflammatory drug (curcumin, CUR) during the fabrication process. The physicochemical properties of the resultant BMPs were characterized by dynamic light scattering, scanning electron microscope, confocal laser scanning microscope and X-ray diffraction as well as contact angle goniometer. Results indicated that BMPs had a desirable hydrodynamic diameter (1.84 ± 0.20 μm), a negative zeta potential (-26.5 ± 1.13 mV), smooth surface morphology, high CUR encapsulation efficiency and controlled drug release profile. It was found that CUR molecules were dispersed in an amorphous state within the polymeric matrixes. In addition, BMPs showed excellent hydrophilicity due to the presence of Pluronic F127 and poly(vinyl alcohol) on their surface. More importantly, orally administered BMPs could efficiently alleviate UC based on a dextran sulfate sodium-induced mouse model. These results collectively suggest that BMP can be exploited as a readily scalable oral drug delivery system for UC therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Verstraete, G; Van Renterghem, J; Van Bockstal, P J; Kasmi, S; De Geest, B G; De Beer, T; Remon, J P; Vervaet, C
2016-06-15
Hydrophilic aliphatic thermoplastic polyurethane (Tecophilic™ grades) matrices for high drug loaded oral sustained release dosage forms were formulated via hot melt extrusion/injection molding (HME/IM). Drugs with different aqueous solubility (diprophylline, theophylline and acetaminophen) were processed and their influence on the release kinetics was investigated. Moreover, the effect of Tecophilic™ grade, HME/IM process temperature, extrusion speed, drug load, injection pressure and post-injection pressure on in vitro release kinetics was evaluated for all model drugs. (1)H NMR spectroscopy indicated that all grades have different soft segment/hard segment ratios, allowing different water uptake capacities and thus different release kinetics. Processing temperature of the different Tecophilic™ grades was successfully predicted by using SEC and rheology. Tecophilic™ grades SP60D60, SP93A100 and TG2000 had a lower processing temperature than other grades and were further evaluated for the production of IM tablets. During HME/IM drug loads up to 70% (w/w) were achieved. In addition, Raman mapping and (M)DSC results confirmed the homogenous distribution of mainly crystalline API in all polymer matrices. Besides, hydrophilic TPU based formulations allowed complete and sustained release kinetics without using release modifiers. As release kinetics were mainly affected by drug load and the length of the PEO soft segment, this polymer platform offers a versatile formulation strategy to adjust the release rate of drugs with different aqueous solubility. Copyright © 2016 Elsevier B.V. All rights reserved.
Development and evaluation of a sublingual film of the antiemetic granisetron hydrochloride.
Kalia, Vani; Garg, Tarun; Rath, Gautam; Goyal, Amit Kumar
2016-05-01
The objective of this study was to develop an oral transmucosal formulation of an antiemetic drug that can not only serve in the active form but also provide a controlled release profile. In this study, sublingual films based on the biodegradable and water-soluble polymers, that is HPMCK-4M and PVPK-30, were developed by the solvent casting method, and were loaded with the antiemetic drug granisetron hydrochloride (granisetron HCl). The entrapment efficiency of the developed formulation was found to be 86%. The in vitro profile showed an instant release of the drug from the sublingual film, in a pattern following the first order kinetics array. The in vivo studies showed that granisetron HCl was delivered in its active state and showed effective results, as compared to its activity in the marketed formulation.
Claeys, Bart; Vervaeck, Anouk; Vervaet, Chris; Remon, Jean Paul; Hoogenboom, Richard; De Geest, Bruno G
2012-10-15
Here we evaluate poly(2-ethyl-2-oxazoline)s (PEtOx) as a matrix excipient for the production of oral solid dosage forms by hot melt extrusion (HME) followed by injection molding (IM). Using metoprolol tartrate as a good water-soluble model drug we demonstrate that drug release can be delayed by HME/IM, with the release rate controlled by the molecular weight of the PEtOx. Using fenofibrate as a lipophilic model drug we demonstrate that relative to the pure drug the dissolution rate is strongly enhanced by formulation in HME/IM tablets. For both drug molecules we find that solid solutions, i.e. molecularly dissolved drug in a polymeric matrix, are obtained by HME/IM. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hormonal control of angiotensinogen production.
Dzau, V J; Herrmann, H C
The renin-angiotensin-aldosterone system appears to be under neural and hormonal control. Plasma angiotensinogen concentration is elevated in Cushing's disease, during pregnancy and in women taking oral contraceptives. An in vitro liver slice system was used to study the hormonal control of angiotensinogen synthesis and release in the rat. Dexamethasone administration in vivo resulted in increase in the in vitro rate of release of angiotensinogen by liver slices into the incubation media. This increase was inhibited by actinomycin D, an inhibitor of protein synthesis and vincristine which blocks secretion. Similarly, ethinyl estradiol treatment resulted in a 50% increase in angiotensinogen production. Hyperthyroid state was achieved by injecting rats with L-thyroxine daily for seven days. Hepatic production rate of angiotensinogen rose 21/2-fold above control and was accompanied by increases in plasma angiotensinogen concentration and plasma renin activity. In contrast, plasma angiotensinogen concentration and plasma renin activity were reduced in thyroidectomized rats. The rate of angiotensinogen production by liver slices of these rats decreased by five-fold below that of intact animals. These changes were largely corrected when thyroidectomized rats were treated with replacement doses of L-thyroxine. We conclude that hepatic angiotensinogen biosynthesis is under hormonal control. Glucocorticoid, estrogen and thyroid hormones all stimulate angiotensinogen production. These results may in part explain the pathogenesis of hypertension associated with certain disease states.
Valentine, Rudolph; Bamberger, J R; Szostek, B; Frame, S R; Hansen, J F; Bogdanffy, M S
2002-06-01
Chronic administration of vinyl acetate (VA) in drinking water to rats and mice has produced upper digestive tract neoplasms. These tumors were believed to arise from the intracellular metabolism of VA by carboxylesterases to cytotoxic and genotoxic compounds. We hypothesized that prolonged VA exposure at high concentrations would induce cytotoxicity and a restorative cell proliferation (CP). These endpoints were measured in F-344 rats and BDF1 mice administered drinking water containing 0, 1000, 5000, 10,000, or 24,000 ppm VA for 92 days. On test days, Days 1, 8, 29, and 92, upper digestive tract histopathology and oral cavity CP (pulsed 5-bromodeoxyuridine [BrdU] to measure S-phase DNA synthesis) were evaluated. Analysis of test solutions showed that VA spontaneously hydrolyzed, slowly releasing acetic acid and thereby lowering pH. Statistically significant, concentration-related increases in CP occurred in basal cells of the mandibular oral cavity mucosa of mice at 10,000 and 24,000 ppm but only after 92 days. CP increases were approximately 2.4- and 3.4-fold above controls and were considered to be toxicologically significant. Some statistically significant increases in CP were also measured in the oral cavity mucosa of rats; however, these changes were considered to be of equivocal biological relevance. No histopathological evidence of mucosal injury was seen in either species. The absence of cytotoxicity in the upper digestive tract mucosa suggests that the increased CP at high administered VA concentrations may be due to a mitogenic response, ostensibly from the loss of cell growth controls in oral cavity mucosa.
Repaglinide: a review of its use in type 2 diabetes mellitus.
Scott, Lesley J
2012-01-22
Oral repaglinide (GlucoNorm®; NovoNorm®; Prandin®; Surepost®) is a rapid-acting insulin secretagogue that lowers postprandial glucose (PPG) excursions by targeting early-phase insulin release, with reductions in PPG considered to be important in reducing long-term cardiovascular complications of diabetes mellitus. Repaglinide, a carbamoylbenzoic acid derivative, is chemically related to the meglitinide class of insulin secretagogues, but unrelated to the sulfonylurea insulin secretagogues. Meglitinides, including repaglinide, have a distinct binding site at the β-cell membrane, which differs from that of sulfonylureas, and corresponds to greater insulinotropic effects with repaglinide than with glibenclamide and/or glimepiride and a more rapid onset of action in in vitro and in vivo studies. This article reviews the clinical efficacy and tolerability of oral repaglinide in the treatment of patients with type 2 diabetes and provides an overview of its pharmacological properties. In well designed clinical trials of up to 52 weeks' duration and in the clinical practice setting, recommended dosages of repaglinide (0.5-4 mg three times daily up to 30 minutes prior to a meal) provided effective glycaemic control and were generally well tolerated in treatment-naive or -experienced adult patients with type 2 diabetes, including elderly patients and those with renal impairment. Furthermore, as monotherapy or in combination with other oral antihyperglycaemic drugs, repaglinide was at least as effective as other oral antihyperglycaemic drugs at improving or maintaining glycaemic control, with a tolerability profile that was generally similar to that of sulfonylurea drugs and nateglinide. Thus, repaglinide remains an effective option for the management of patients with type 2 diabetes.
García-Gea, Consuelo; Ballester, Maria Rosa; Martínez, Juan; Antonijoan, Rosa Maria; Donado, Esther; Izquierdo, Iñaki; Barbanoj, Manuel-José
2010-01-01
AIM The main objective was to assess whether benzodiazepine intake when rupatadine plasma concentrations were at steady-state would increase the CNS depressant effects. Rupatadine is a new H1-antihistamine which also inhibits platelet activating factor (PAF) release and has been shown to be clinically effective at doses of 10 mg. METHODS Sixteen healthy young volunteers took part in a crossover, randomized, double-blind, placebo controlled trial comprising two experimental periods (repeated administration for 7 days of rupatadine 10 mg or placebo as single oral daily doses, separated by a washout of 14 days). On days 5 and 7, according to a fully balanced design, a single oral dose of lorazepam 2 mg or placebo was added. CNS effects were evaluated on these days by seven objective tests of psychomotor performance and eight subjective visual analogue scales (VAS) at pre-dose and several times after drug intake. Four treatment conditions were evaluated: placebo, rupatadine 10 mg, lorazepam 2 mg and rupatadine 10 mg + lorazepam 2 mg. RESULTS Significant CNS effects, either impairment of psychomotor performance or subjective sedation, were observed when lorazepam was administered, either alone or in combination with steady state concentrations of rupatadine. No significant differences were found between these two conditions. In addition, rupatadine was not different from placebo. All treatments were well tolerated. CONCLUSION Repeated doses of rupatadine (10 mg orally) did not enhance the CNS depressant effects of lorazepam (2 mg orally, single dose) either in objective psychomotor tasks or in subjective evaluations. PMID:20565458
Talan, David A; Klimberg, Ira W; Nicolle, Lindsay E; Song, James; Kowalsky, Steven F; Church, Deborah A
2004-02-01
We assessed the efficacy and safety of 1,000 mg extended release ciprofloxacin orally once daily vs conventional 500 mg ciprofloxacin orally twice daily, each for 7 to 14 days, in patients with a complicated urinary tract infection (cUTI) or acute uncomplicated pyelonephritis (AUP). In this prospective, randomized, double-blind, North American multicenter clinical trial adults were stratified based on clinical presentation of cUTI or AUP and randomized to extended release ciprofloxacin or ciprofloxacin twice daily. Efficacy valid patients had positive pretherapy urine cultures (105 or greater cFU/ml) and pyuria within 48 hours of study entry. Bacteriological and clinical outcomes were assessed at the test of cure visit (5 to 11 days after therapy) and the late followup visit (28 to 42 days after therapy). The intent to treat population comprised 1,035 patients (extended release ciprofloxacin in 517 and twice daily in 518), of whom 435 were efficacy valid (cUTI in 343 and AUP in 92). For efficacy valid patients (cUTI and AUP combined) bacteriological eradication rates at test of cure were 89% (183 of 206) vs 85% (195 of 229) (95% CI -2.4%, 10.3%) and clinical cure rates were 97% (198 of 205) vs 94% (211 of 225) (95% CI -1.2%, 6.9%) for extended release vs twice daily ciprofloxacin. Late followup outcomes were consistent with test of cure findings. Eradication rates for Escherichia coli, which accounted for 58% of pathogens, were 97% or greater per group. Drug related adverse event rates were similar for extended release and twice daily ciprofloxacin (13% and 14%, respectively). Extended release ciprofloxacin at a dose of 1,000 mg once daily was as safe and effective as conventional treatment with 500 mg ciprofloxacin twice daily, each given orally for 7 to 14 days in adults with cUTI or AUP. It provides a convenient, once daily, empirical treatment option.
Miao, Yanfei; Sun, Jiqin; Chen, Guoguang; Lili, Ren; Ouyang, Pingkai
2016-08-01
The purpose of this work was to develop a new formulation to enhance the bioavailability and reduce the food effect of lurasidone using self-nanoemulsifying drug delivery systems (SNEDDSs). The formulation of lurasidone-SNEDDS was selected by the solubility and pseudo-ternary phase diagram studies. The prepared lurasidone-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis, zeta potential and in vitro drug release. Lurasidone-SNEDDSs were administered to beagle dogs in fed and fasted state and their pharmacokinetics were compared to commercial available tablet as a control. The result showed lurasidone-SNEDDS was successfully prepared using Capmul MCM, Tween 80 and glycerol as oil phase, surfactant and co-surfactant, respectively. In vitro drug release studies indicated that the lurasidone-SNEDDS showed improved drug release profiles and the release behavior was not affected by the medium pH with total drug release of over 90% within 5 min. Pharmacokinetic study showed that the AUC(0-∞) and Cmax for lurasidone-SNEDDS are similar in the fasted and fed state, indicating essentially there is no food effect on the drug absorption. It was concluded that enhanced bioavailability and no food effect of lurasidone had been achieved by using SNEDDS.
Hydrophilic excipients modulate the time lag of time-controlled disintegrating press-coated tablets.
Lin, Shan-Yang; Li, Mei-Jane; Lin, Kung-Hsu
2004-08-16
An oral press-coated tablet was developed by means of direct compression to achieve the time-controlled disintegrating or rupturing function with a distinct predetermined lag time. This press-coated tablet containing sodium diclofenac in the inner core was formulated with an outer shell by different weight ratios of hydrophobic polymer of micronized ethylcellulose (EC) powder and hydrophilic excipients such as spray-dried lactose (SDL) or hydroxypropyl methylcellulose (HPMC). The effect of the formulation of an outer shell comprising both hydrophobic polymer and hydrophilic excipients on the time lag of drug release was investigated. The release profile of the press-coated tablet exhibited a time period without drug release (time lag) followed by a rapid and complete release phase, in which the outer shell ruptured or broke into 2 halves. The lag phase was markedly dependent on the weight ratios of EC/SDL or EC/HPMC in the outer shell. Different time lags of the press-coated tablets from 1.0 to 16.3 hours could be modulated by changing the type and amount of the excipients. A semilogarithmic plot of the time lag of the tablet against the weight ratios of EC/SDL or EC/HPMC in the outer shell demonstrated a good linear relationship, with r = 0.976 and r = 0.982, respectively. The predetermined time lag prior to the drug release from a press-coated tablet prepared by using a micronized EC as a retarding coating shell can be adequately scheduled with the addition of hydrophilic excipients according to the time or site requirements.
Fransson, Bo; Silberg, Debra G; Niazi, Mohammad; Miller, Frank; Ruth, Magnus; Holmberg, Ann Aurell
2012-04-01
The novel Type B gamma-aminobutyric acid (GABAB)-receptor agonist lesogaberan (AZD3355) has been evaluated as an add-on to proton pump inhibitor treatment for gastroesophageal reflux disease, but the effect of food on the bioavailability of this compound has not been assessed. In this openlabel crossover study, healthy males received single 100 mg doses of lesogaberan (oral solution (A) or oral modified release (MR) capsules with a dissolution rate of 50% (B) or 100% (C) over 4 h) with and without food. Blood plasma concentrations of lesogaberan were assessed over 48 h. A log-transformed geometric mean Cmax and AUC ratio within the 90% confidence interval (CI) range (0.80 - 1.25) was defined as excluding a clinically relevant food effect. Overall, 57 subjects completed the study. Only the oral lesogaberan solution had a fed/fasting Cmax ratio outside the 90% CI range (Cmax ratio: 0.76). AUC ratios were within the 90% CI limits for all three lesogaberan formulations. The only substantial change in tmax associated with food intake was observed for the oral solution (1.0 h without food, 1.8 h with food). In conclusion, a clinically relevant food effect could be excluded for the lesogaberan MR formulations, but not for the oral lesogaberan solution.
In April 2018, EPA released the draft IRIS Assessment Plan for Ammonia and Ammonium Salts Noncancer Oral. The IAP communicates to the public the plan for assessing each individual chemical and includes summary information on the IRIS Program’s scoping and initial proble...
In April 2018, EPA released the draft IRIS Assessment Plan for Ammonia and Ammonium Salts Noncancer Oral. An IRIS Assessment Plan (IAP) communicates to the public the plan for assessing each individual chemical and includes summary information on the IRIS Program’s sco...
Biswas, Nikhil
2017-03-01
The aim was to improve the oral bioavailability and antihypertensive activity of poorly soluble drug valsartan (VAL) by modifying the design and delivery of mesoporous silica nanoparticles (MSNs). The synthesized MSNs were functionalized with aminopropyl groups (AP-MSN) through postsynthesis and coated with pH sensitive polymer Eudragit L100-55 (AP-MSN-L100-55) for pH dependant sustain release of anionic VAL. MSNs were characterized by Brauner-Emmett-Teller (BET) surface area analyzer, zeta sizer, Field Emission Scanning Electron Microscope (FESEM), Powder X-Ray Diffraction (PXRD) and Differential Scanning Calorimetry (DSC). Functionalized MSNs showed highest entrapment efficiency (59.77%) due to strong ionic interaction with VAL. In vitro dissolution of M-MSN [MSN-VAL and AP-MSN-VAL-L100-55 mixed equally] at physiological conditions demonstrated immediate release (MSN-VAL fraction) followed by sustained release (AP-MSN-VAL-L100-55 fraction) of 96% VAL in 960min. The dramatic improvement in dissolution was attributed to the amorphization of crystalline VAL by MSNs as evidenced by DSC and PXRD studies. No noticeable cytotoxicity was observed for MSN, AP-MSN and AP-MSN-L100-55 in MTT assay. Pharmacokinetic study of M-MSN confirmed 1.82 fold increases in bioavailability compared to commercial Diovan tablet in fasted male rabbits. Blood pressure monitoring in rats showed that the morning dosing of Diovan tablet efficiently controlled BP for just over 360min whereas the effect of M-MSN lasted for >840min. Copyright © 2016 Elsevier B.V. All rights reserved.
Wen, D.; Qing, L.; Harrison, G.; Golub, E.; Akintoye, S.O.
2010-01-01
Objectives Bisphosphonates commonly used to treat osteoporosis, Paget’s disease, multiple myeloma, hypercalcemia of malignancy and osteolytic lesions of cancer metastasis have been associated with bisphosphonate-associated jaw osteonecrosis (BJON). The underlying pathogenesis of BJON is unclear, but disproportionate bisphosphonate concentration in the jaw has been proposed as one potential etiological factor. This study tested the hypothesis that skeletal biodistribution of intravenous bisphosphonate is anatomic site-dependent in a rat model system. Materials and Methods Fluorescently labeled pamidronate was injected intravenously in athymic rats of equal weights followed by in vivo whole body fluorimetry, ex vivo optical imaging of oral, axial and appendicular bones and ethylenediaminetetraacetic acid bone decalcification to assess hydroxyapatite-bound bisphosphonate. Results Bisphosphonate uptake and bisphosphonate released per unit calcium were similar in oral and appendicular bones but lower than those in axial bones. Hydroxyapatite-bound bisphosphonate liberated by sequential acid decalcification was highest in oral relative to axial and appendicular bones (p < 0.05). Conclusions This study demonstrates regional differences in uptake and release of bisphosphonate from oral, axial and appendicular bones of immune deficient rats. PMID:21122034
Biowaiver Monographs for Immediate-Release Solid Oral Dosage Forms: Folic Acid.
Hofsäss, Martin A; Souza, Jacqueline de; Silva-Barcellos, Neila M; Bellavinha, Karime R; Abrahamsson, Bertil; Cristofoletti, Rodrigo; Groot, D W; Parr, Alan; Langguth, Peter; Polli, James E; Shah, Vinod P; Tajiri, Tomokazu; Mehta, Mehul U; Dressman, Jennifer B
2017-12-01
This work presents a review of literature and experimental data relevant to the possibility of waiving pharmacokinetic bioequivalence studies in human volunteers for approval of immediate-release solid oral pharmaceutical forms containing folic acid as the single active pharmaceutical ingredient. For dosage forms containing 5 mg folic acid, the highest dose strength on the World Health Organization Essential Medicines List, the dose/solubility ratio calculated from solubility studies was higher than 250 mL, corresponding to a classification as "not highly soluble." Small, physiological doses of folic acid (≤320 μg) seem to be absorbed completely via active transport, but permeability data for higher doses of 1-5 mg are inconclusive. Following a conservative approach, folic acid is classified as a Biopharmaceutics Classification System class IV compound until more reliable data become available. Commensurate with its solubility characteristics, the results of dissolution studies indicated that none of the folic acid products evaluated showed rapid dissolution in media at pH 1.2 or 4.5. Therefore, according to the current criteria of the Biopharmaceutics Classification System, the biowaiver approval procedure cannot be recommended for immediate-release solid oral dosage forms containing folic acid. Copyright © 2017 American Pharmacists Association®. All rights reserved.
Dünnhaupt, Sarah; Barthelmes, Jan; Iqbal, Javed; Perera, Glen; Thurner, Clemens C; Friedl, Heike; Bernkop-Schnürch, Andreas
2012-06-28
The aim of the present study was the development and evaluation in vitro as well as in vivo of an oral delivery system based on a novel type of thiolated chitosan, so-called S-protected thiolated chitosan, for the peptide drug antide. The sulfhydryl ligand thioglycolic acid (TGA) was covalently attached to chitosan (CS) in the first step of modification. In the second step, these thiol groups of thiolated chitosan were protected by disulfide bond formation with the thiolated aromatic residue 6-mercaptonicotinamide (6-MNA). Absorptive transport studies of antide were evaluated ex vivo using rat intestinal mucosa. Matrix tablets of each polymer sample were prepared and their effect on the absorption of antide evaluated in vivo in male Sprague-Dawley rats. In addition, tablets were examined in terms of their disintegration, swelling and drug release behavior. The resulting S-protected thiomer (TGA-MNA) exhibited 840μmol of covalently linked 6-MNA per gram thiomer. Based on the implementation of this hydrophobic ligand on the thiolated backbone, the disintegration behavior was reduced greatly and a controlled release of the peptide could be achieved. Furthermore, permeation studies with TGA-MNA on rat intestine revealed a 4.5-fold enhanced absorptive transport of the peptide in comparison to antide in solution. Additional in vivo studies confirmed the potential of this novel conjugate. Oral administration of antide in solution led to only very small detectable quantities in plasma with an absolute and relative bioavailability (BA) of 0.003 and 0.03%, only. In contrast, with antide incorporated in TGA-MNA matrix tablets an absolute and relative BA of 1.4 and 10.9% could be reached, resulting in a 421-fold increased area under the plasma concentration time curve (AUC) compared to the antide solution. According to these results, S-protected thiolated chitosan as oral drug delivery system might be a valuable tool for improving the bioavailability of peptides. Copyright © 2012 Elsevier B.V. All rights reserved.
Subramanian, Kaliappa gounder; Vijayakumar, Vediappan
2011-01-01
Chitosan-graft-poly (2-hydroxyethyl methacrylate-co-itaconic acid) has been synthesized for different feed ratios of 2-hydroxyethyl methacrylate and itaconic acid and characterized by FT-IR, thermogravimetry and swelling in simulated biological fluids (SBF) and evaluated as a drug carrier with model drug, tramadol hydrochloride (TRM). Grafting decreased the thermal stability of chitosan. FT-IR spectra of tablet did not reveal any molecular level (i.e. at <10 nm scale) drug–polymer interaction. But differential scanning calorimetric studies indicated a probable drug–polymer interaction at a scale >100 nm level. The observed Korsmeyer–Peppas’s power law exponents (0.19–1.21) for the in vitro release profiles of TRM in SBF and other drugs such as 5-fluorouracil (FU), paracetamol (PCM) and vanlafaxine hydrochloride (VNF) with the copolymer carriers revealed an anomalous drug release mechanism. The decreased release rates for the grafted chitosan and the enhanced release rate for the grafts with increasing itaconic acid content in the feed were more likely attributed to the enhanced drug–matrix interaction and polymer–SBF interactions, respectively. The different release profiles of FU, PCM, TRM and VNF with the copolymer matrix are attributed to the different chemical structures of drugs. The above features suggest the graft copolymer’s candidature for use as a promising oral drug delivery system. PMID:23960799
Fang, Wei-Yu; Chen, Yi-Wen; Hsiao, Jenn-Ren; Liu, Chiang-Shin; Kuo, Yi-Zih; Wang, Yi-Ching; Chang, Kung-Chao; Tsai, Sen-Tien; Chang, Mei-Zhu; Lin, Siao-Han; Wu, Li-Wha
2015-01-01
S100A9 is a calcium-binding protein with two EF-hands and frequently deregulated in several cancer types, however, with no clear role in oral cancer. In this report, the expression of S100A9 in cancer and adjacent tissues from 79 early-stage oral cancer patients was detected by immunohistochemical staining. Although S100A9 protein was present in both tumor and stromal cells, only the early-stage oral cancer patients with high stromal expression had reduced recurrence-free survival. High stromal S100A9 expression was also significantly associated with non-well differentiation and recurrence. In addition to increasing cell migration and invasion, ectopic S100A9 expression in tumor cells promoted xenograft tumorigenesis as well as the dominant expression of myeloid cell markers and pro-inflammatory IL-6. The expression of S100A9 in one stromal component, monocytes, stimulated the aggressiveness of co-cultured oral cancer cells. We also detected the elevation of serum S100A9 levels in early-stage oral cancer patients of a separate cohort of 73 oral cancer patients. The release of S100A9 protein into extracellular milieu enhanced tumor cell invasion, transendothelial monocyte migration and angiogenic activity. S100A9-mediated release of IL-6 requires the crosstalk of tumor cells with monocytes through the activation of NF-κB and STAT-3. Early-stage oral cancer patients with both high S100A9 expression and high CD68+ immune infiltrates in stroma had shortest recurrence-free survival, suggesting the use of both S100A9 and CD68 as poor prognostic markers for oral cancer. Together, both intracellular and extracellular S100A9 exerts a tumor-promoting action through the activation of oral cancer cells and their associated stroma in oral carcinogenesis. PMID:26315114
Fang, Wei-Yu; Chen, Yi-Wen; Hsiao, Jenn-Ren; Liu, Chiang-Shin; Kuo, Yi-Zih; Wang, Yi-Ching; Chang, Kung-Chao; Tsai, Sen-Tien; Chang, Mei-Zhu; Lin, Siao-Han; Wu, Li-Wha
2015-09-29
S100A9 is a calcium-binding protein with two EF-hands and frequently deregulated in several cancer types, however, with no clear role in oral cancer. In this report, the expression of S100A9 in cancer and adjacent tissues from 79 early-stage oral cancer patients was detected by immunohistochemical staining. Although S100A9 protein was present in both tumor and stromal cells, only the early-stage oral cancer patients with high stromal expression had reduced recurrence-free survival. High stromal S100A9 expression was also significantly associated with non-well differentiation and recurrence. In addition to increasing cell migration and invasion, ectopic S100A9 expression in tumor cells promoted xenograft tumorigenesis as well as the dominant expression of myeloid cell markers and pro-inflammatory IL-6. The expression of S100A9 in one stromal component, monocytes, stimulated the aggressiveness of co-cultured oral cancer cells. We also detected the elevation of serum S100A9 levels in early-stage oral cancer patients of a separate cohort of 73 oral cancer patients. The release of S100A9 protein into extracellular milieu enhanced tumor cell invasion, transendothelial monocyte migration and angiogenic activity. S100A9-mediated release of IL-6 requires the crosstalk of tumor cells with monocytes through the activation of NF-κB and STAT-3. Early-stage oral cancer patients with both high S100A9 expression and high CD68+ immune infiltrates in stroma had shortest recurrence-free survival, suggesting the use of both S100A9 and CD68 as poor prognostic markers for oral cancer. Together, both intracellular and extracellular S100A9 exerts a tumor-promoting action through the activation of oral cancer cells and their associated stroma in oral carcinogenesis.
Edmonds, M D; Vatta, A F; Marchiondo, A A; Vanimisetti, H B; Edmonds, J D
2018-03-15
In 2013, a 118-day study was initiated to investigate the efficacy of concurrent treatment at pasture turnout with an injectable macrocyclic lactone with activity up to 28 days and an oral benzimidazole, referred to as "conventional" anthelmintics, when compared to treatment with conventional macrocyclic lactone alone or an injectable macrocyclic lactone with extended activity of 100 days or longer. A group of 210 steers were obtained from a ranch in California and transported to Idaho, USA. A total of 176 steers with the highest fecal egg counts were blocked by pre-treatment body weights and pasture location. A total of 44 pasture paddocks were assigned with 4 steers per paddock with 12 paddocks per therapeutic treatment group and 8 paddocks per controls. The four treatments were injectable doramectin (Dectomax ® , Zoetis Inc., 0.2 mg kg -1 BW, SC), injectable doramectin concurrently with oral albendazole (Valbazen ® , Zoetis Inc., 10 mg kg -1 BW, PO), extended release injectable eprinomectin (LongRange™, Merial Limited, 1 mg kg -1 BW, SC) or saline. Cattle were individually weighed and sampled for fecal egg count on Days 0, 31/32, 61, 88, and 117/118 with an additional fecal sample on Day 14. At conclusion, one steer per paddock was euthanized for nematode recovery. The results from the first 32 days found evidence of macrocyclic lactone resistance against injectable doramectin and extended release eprinomectin. During this period the concurrent therapy provided nearly 100% efficacy based on fecal egg count reduction and a 19.98% improvement in total weight gain compared to controls (P = 0.039). At the conclusion of the 118-day study and past the approved efficacy for the conventional anthelmintics, the concurrent therapy with conventional anthelmintics provided a 22.98% improvement in total weight gain compared to controls (P = 0.004). The 118-day improvement in weight gain for the extended release eprinomectin group (29.06% compared to control) was not statistically different from the concurrent therapy with conventional anthelmintics. The results indicate that concurrent treatment with a conventional macrocyclic lactone and benzimidazole may provide production benefits early in the grazing period that continue throughout the entire period for cattle harboring macrocyclic lactone resistant nematodes. By using two different anthelmintic classes together, macrocyclic lactone resistant parasites were effectively controlled early in the period. Furthermore, the use of an effective conventional anthelmintic treatment regimen without an extended period of drug release may help to promote refugia and decrease the further selection for anthelmintic resistant parasites. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Liyao; Zhou, Cuiping; Xia, Xuejun; Liu, Yuling
2016-01-01
Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs) loaded with insulin following insulin-phospholipid complex preparation, with the aim of developing a method for oral insulin delivery. Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin-phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats. Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant hypoglycemic effect. The relative pharmacological bioavailability following oral administration of L/C NPs was 6.01%. With the aid of phospholipid-complexation techniques, some hydrophilic peptides, such as insulin, can be successfully entrapped into L/C NPs, which could improve oral bioavailability, time-dependent release, and therapeutic activity.
Liu, Liyao; Zhou, Cuiping; Xia, Xuejun; Liu, Yuling
2016-01-01
Purpose Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs) loaded with insulin following insulin–phospholipid complex preparation, with the aim of developing a method for oral insulin delivery. Methods Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin–phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats. Results Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant hypoglycemic effect. The relative pharmacological bioavailability following oral administration of L/C NPs was 6.01%. Conclusion With the aid of phospholipid-complexation techniques, some hydrophilic peptides, such as insulin, can be successfully entrapped into L/C NPs, which could improve oral bioavailability, time-dependent release, and therapeutic activity. PMID:26966360
Longet, Stephanie; Aversa, Vincenzo; O'Donnell, Daire; Tobias, Joshua; Rosa, Monica; Holmgren, Jan; Coulter, Ivan S; Lavelle, Ed C
2017-12-20
Oral vaccines present an attractive alternative to injectable vaccines for enteric diseases due to ease of delivery and the induction of intestinal immunity at the site of infection. However, susceptibility to gastrointestinal proteolysis, limited transepithelial uptake and a lack of clinically acceptable adjuvants present significant challenges. A further challenge to mass vaccination in developing countries is the very expensive requirement to maintain the cold chain. We recently described the effectiveness of a Single Multiple Pill ® (SmPill ® ) adjuvanted capsule approach to enhance the effectiveness of a candidate enterotoxigenic Escherichia coli (ETEC) oral vaccine. Here it was demonstrated that this delivery system maintains the antigenicity of ETEC colonisation factor antigen I (CFA/I) and the immunostimulatory activity of the orally active α-Galactosylceramide (α-GalCer) adjuvant after storage of SmPill ® minispheres under room temperature and extreme storage conditions for several months. In addition, the internal structure of the cores of SmPill ® minispheres and antigen release features at intestinal pH were found to be preserved under all these conditions. However, changes in the surface morphology of SmPill ® minispheres leading to the antigen release at gastric pH were observed after a few weeks of storage under extreme conditions. Those modifications were prevented by the introduction of an Opadry ® White film coating layer between the core of SmPill ® minispheres and the enteric coating. Under these conditions, protection against antigen release at gastric pH was maintained even under high temperature and humidity conditions. These results support the potential of the SmPill ® minisphere approach to maintain the stability of an adjuvanted whole cell killed oral vaccine formulation. Copyright © 2017 Elsevier B.V. All rights reserved.
Jin, Xin; Zhang, Zhen-hai; Sun, E; Tan, Xiao-bin; Li, Song-lin; Cheng, Xu-dong; You, Ming; Jia, Xiao-bin
2013-01-01
Background 20(S)-protopanaxadiol (PPD), similar to several other anticancer agents, has low oral absorption and is extensively metabolized. These factors limit the use of PPD for treatment of human diseases. Methods In this study, we used cubic nanoparticles containing piperine to improve the oral bioavailability of PPD and to enhance its absorption and inhibit its metabolism. Cubic nanoparticles loaded with PPD and piperine were prepared by fragmentation of glyceryl monoolein (GMO)/poloxamer 407 bulk cubic gel and verified using transmission electron microscopy and differential scanning calorimetry. We evaluated the in vitro release of PPD from these nanoparticles and its absorption across the Caco-2 cell monolayer model, and subsequently, we examined the bioavailability and metabolism of PPD and its nanoparticles in vivo. Results The in vitro release of PPD from these nanoparticles was less than 5% at 12 hours. PPD-cubosome and PPD-cubosome loaded with piperine (molar ratio PPD/piperine, 1:3) increased the apical to basolateral permeability values of PPD across the Caco-2 cell monolayer from 53% to 64%, respectively. In addition, the results of a pharmacokinetic study in rats showed that the relative bioavailabilities of PPD-cubosome [area under concentration–time curve (AUC)0–∞] and PPD-cubosome containing piperine (AUC0–∞) compared to that of raw PPD (AUC0–∞) were 166% and 248%, respectively. Conclusion The increased bioavailability of PPD-cubosome loaded with piperine is due to an increase in absorption and inhibition of metabolism of PPD by cubic nanoparticles containing piperine rather than because of improved release of PPD. The cubic nanoparticles containing piperine may be a promising oral carrier for anticancer drugs with poor oral absorption and that undergo extensive metabolism by cytochrome P450. PMID:23426652
Lin, Ming-Ta; Chou, Li-Wei; Chen, Hsin-Shui; Kao, Mu-Jung
2012-01-01
Objective. The purpose of this pilot study is to investigate the effectiveness of the percutaneous soft tissue release for the treatment of recurrent myofascial pain in the forearm due to recurrent lateral epicondylitis. Methods. Six patients with chronic recurrent pain in the forearm with myofascial trigger points (MTrPs) due to chronic lateral epicondylitis were treated with percutaneous soft tissue release of Lin's technique. Pain intensity (measured with a numerical pain rating scale), pressure pain threshold (measured with a pressure algometer), and grasping strength (measured with a hand dynamometer) were assessed before, immediately after, and 3 months and 12 months after the treatment. Results. For every individual case, the pain intensity was significantly reduced (P < 0.01) and the pressure pain threshold and the grasping strength were significantly increased (P < 0.01) immediately after the treatment. This significant effectiveness lasts for at least one year. Conclusions. It is suggested that percutaneous soft tissue release can be used for treating chronic recurrent lateral epicondylitis to avoid recurrence, if other treatment, such as oral anti-inflammatory medicine, physical therapy, or local steroid injection, cannot control the recurrent pain. PMID:23243428
Mikac, U; Sepe, A; Kristl, J; Baumgartner, I
2012-01-01
Modified-release matrix tablets have been extensively used by the pharmaceutical industry as one of the most successful oral drug-delivery systems. The key element in drug release from hydrophilic matrix tablets is the gel layer that regulates the penetration of water and controls drug dissolution and diffusion. Magnetic resonance imaging (MRI) is a powerful, non-invasive technique that can help improve our understanding of the gel layer formed on swellable, polymer-matrix tablets, as well as the layer's properties and its influence on the drug release. The aim was to investigate the effects of pH and ionic strength on swelling and to study the influence of structural changes in xanthan gel on drug release. For this purpose a combination of different MRI methods for accurate determination of penetration, swelling and erosion fronts was used. The position of the penetration and swelling fronts were the same, independently of the different xanthan gel structures formed under different conditions of pH and ionic strength. The position of the erosion front, on the other hand, is strongly dependent on pH and ionic strength, as reflected in different thicknesses of the gel layers.
Amphiphilic Polyurethane Hydrogels as Smart Carriers for Acidic Hydrophobic Drugs.
Fonseca, Lucas P; Trinca, Rafael B; Isabel Felisberti, Maria
2018-05-14
Amphiphilic hydrogels are widely reported as systems with great potential for controlled drug release. Nevertheless, the majority of studies make use of functionalization or attachment of drugs to the polymer chains. In this study, we propose a strategy of combining amphiphilic polyurethanes with pH-responsive drugs to develop smart drug carriers. While the amphiphilic character of the polymer imparts an efficient load of hydrophobic and hydrophilic drugs, the drug's characteristics determine the selectivity of the medium delivery. Drug loading and release behavior as well as hydrolytic degradation of chemically crosslinked polyurethane hydrogels based on PEG and PCL-triol (PU (polyurethane) hydrogels) synthesized by an easy one-pot route were studied. PU hydrogels have been shown to successfully load the hydrophobic acidic drug sodium diclofenac, reaching a partition coefficient of 8 between the most hydrophobic PU and diclofenac/ethanol solutions. Moreover, an oral administration simulation was conducted by changing the environment from an acidic to a neutral medium. PU hydrogels release less than 5 % of the drug in an acidic medium; however, in a PBS pH 7.4 solution, diclofenac is delivered in a sustained fashion for up to 40 hours, achieving 80% of cumulative release. Copyright © 2018. Published by Elsevier B.V.
Effect of soft drinks on the release of calcium from enamel surfaces.
Rirattanapong, Praphasri; Vongsavan, Kadkao; Surarit, Rudee
2013-09-01
Continuous consumption of soft drinks is the main cause of potential oral health problems, including dental caries and erosion. The purpose of this study was to compare the effect of three different types of soft drinks on the release of calcium from the enamel surface of teeth. Forty bovine teeth were selected for the experiment. They were divided into four groups (n=10/group): Group 1 (Coke), Group 2 (Pepsi), Group 3 (Sprite), and Group 4 (distilled water, the control). The pH of each beverage was measured using a pH meter. The release of calcium ions was measured using an atomic absorption spectrophotometer at baseline, 15, 30, and 60 minutes. The results were assessed by analysis of variance and then by the Tukey test (p< 0.05). Coke, with a pH of 2.39, was the most acidic among the soft drinks. Coke, Pepsi, and Sprite showed no significant mean differences in the calcium released, but there was a significant mean difference of these soft drinks with distilled water at 60 minutes. We concluded that prolonged exposure to soft drinks could lead to significant enamel loss.
21 CFR 520.1197 - Ivermectin sustained-release bolus.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ivermectin sustained-release bolus. 520.1197 Section 520.1197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1197 Ivermectin...
Ruela, André Luís Morais; Carvalho, Flávia Chiva; Pereira, Gislaine Ribeiro
2016-01-01
Donepezil is a drug usually administered by oral route for Alzheimer disease treatment, but several gastric side effects have been reported as diarrhea, nausea, and anorexia. We explored the phase behavior of lyotropic liquid crystalline (LLC) mesophases composed by monoolein/oleic acid/water for enhanced administration of donepezil. Polarized light microscopy suggested that these systems ranged from isotropic inverse micellar solutions (L2) to viscous and birefringent reverse hexagonal (HII) mesophases according to the amount of water in the ternary systems. Phase transition was observed from a L2 phase to HII mesophase after swelling studies, an interesting property to be explored as a precursor of LLC mesophases for mucosal administration that increases its viscosity in situ. Mucoadhesive properties of LLC mesophases were characterized using a texture analyzer indicating that these systems can have an increased residence time in the site of absorption. Donepezil-free base was incorporated in the evaluated formulations, and their in vitro release was controlled up to 24 h. The phase behavior of the systems demonstrated a great potential for enhanced donepezil administration once these mucoadhesive-controlled release formulations can incorporate the drug and prolong its release, possibly reducing its side effects. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Lau, Esther T L; Johnson, Stuart K; Williams, Barbara A; Mikkelsen, Deirdre; McCourt, Elizabeth; Stanley, Roger A; Mereddy, Ram; Halley, Peter J; Steadman, Kathryn J
2017-05-19
Kafirin microparticles have potential as colon-targeted delivery systems because of their ability to protect encapsulated material from digestive processes of the upper gastrointestinal tract (GIT). The aim was to optimize prednisolone loading into kafirin microparticles, and investigate their potential as an oral delivery system. Response surface methodology (RSM) was used to predict the optimal formulation of prednisolone loaded microparticles. Prednisolone release from the microparticles was measured in simulated conditions of the GIT. The RSM models were inadequate for predicting the relationship between starting quantities of kafirin and prednisolone, and prednisolone loading into microparticles. Compared to prednisolone released in the simulated gastric and small intestinal conditions, no additional drug release was observed in simulated colonic conditions. Hence, more insight into factors affecting drug loading into kafirin microparticles is required to improve the robustness of the RSM model. This present method of formulating prednisolone-loaded kafirin microparticles is unlikely to offer clinical benefits over commercially available dosage forms. Nevertheless, the overall amount of prednisolone released from the kafirin microparticles in conditions simulating the human GIT demonstrates their ability to prevent the release of entrapped core material. Further work developing the formulation methods may result in a delivery system that targets the lower GIT.
Biswas, Nikhil; Sahoo, Ranjan Kumar
2016-02-01
The objective of the study was to develop tapioca starch blended alginate mucoadhesive-floating beads for the intragastric delivery of Metoprolol Tartrate (MT). The beads were prepared by ionotropic gelation method using calcium chloride as crosslinker and gas forming calcium carbonate (CaCO3) as floating inducer. The alginate gel beads having 51-58% entrapped MT showed 90% release within 45 min in gastric medium (pH 1.2). Tapioca starch blending markedly improved the entrapment efficiency (88%) and sustained the release for 3-4 h. A 12% w/w HPMC coating on these beads extended the release upto 9-11 h. In vitro wash off and buoyancy test in gastric media revealed that the beads containing CaCO3 has gastric residence of more than 12 h. In vitro optimized multi-unit formulation consisting of immediate and sustained release mucoadhesive-floating beads (40:60) showed good initial release of 42% MT within 1h followed by a sustained release of over 90% for 11 h. Pharmacokinetic study performed in rabbit model showed that the relative oral bioavailability of MT after administration of oral solution, sustain release and optimized formulation was 51%, 67% and 87%, respectively. Optimized formulation showed a higher percent inhibition of isoprenaline induced heart rate in rabbits for almost 12 h. Copyright © 2015 Elsevier B.V. All rights reserved.
Onishi, Hiraku; Tokuyasu, Ayako
2016-09-13
The production of protein drugs has recently increased due to advances in biotechnology, but their clinical use is generally limited to parenteral administration due to low absorption in non-parenteral administration. Therefore, non-parenteral delivery systems allowing sufficient absorption draw much attention. Microparticles (MP) were prepared using chitosan-4-thio-butylamidine conjugate (Ch-TBA), trimethyl-chitosan (TMC), and chitosan (Ch). Using salmon calcitonin (sCT) as a model protein drug, Ch-TBA-, Ch-TBA/TMC (4/1)-, and Ch-based MP were produced, and their Eudragit L100 (Eud)-coated MP, named Ch-TBA-MP/Eud, Ch-TBA/TMC-MP/Eud, and Ch-MP/Eud, respectively, were prepared as oral delivery systems. These enteric-coated microparticles were examined in vitro and in vivo. All microparticles before and after enteric coating had a submicron size (600-800 nm) and micrometer size (1300-1500 nm), respectively. In vitro release patterns were similar among all microparticles; release occurred gradually, and the release rate was slower at pH 1.2 than at pH 6.8. In oral ingestion, Ch-TBA-MP/Eud suppressed plasma Ca levels most effectively among the microparticles tested. The relative effectiveness of Ch-TBA-MP/Eud to the intramuscular injection was 8.6%, while the sCT solution showed no effectiveness. The results suggest that Eud-coated Ch-TBA-based microparticles should have potential as an oral delivery system of protein drugs.
Wang, Xue-Qing; Zhang, Qiang
2012-10-01
pH-sensitive polymeric nanoparticles are promising for oral drug delivery, especially for peptide/protein drugs and poorly water-soluble medicines. This review describes current status of pH-sensitive polymeric nanoparticles for oral drug delivery and introduces the mechanisms of drug release from them as well as possible reasons for absorption improvement, with emphasis on our contribution to this field. pH-sensitive polymeric nanoparticles are prepared mainly with polyanions, polycations, their mixtures or cross-linked polymers. The mechanisms of drug release are the result of carriers' dissolution, swelling or both of them at specific pH. The possible reasons for improvement of oral bioavailability include the following: improve drug stability, enhance mucoadhesion, prolong resident time in GI tract, ameliorate intestinal permeability and increase saturation solubility and dissolution rate for poorly water-soluble drugs. As for the advantages of pH-sensitive nanoparticles over conventional nanoparticles, we conclude that (1) most carriers used are enteric-coating materials and their safety has been approved. (2) The rapid dissolution or swelling of carriers at specific pH results in quick drug release and high drug concentration gradient, which is helpful for absorption. (3) At the specific pH carriers dissolve or swell, and the bioadhesion of carriers to mucosa becomes high because nanoparticles turn from solid to gel, which can facilitate drug absorption. Copyright © 2012 Elsevier B.V. All rights reserved.
Onishi, Hiraku; Tokuyasu, Ayako
2016-01-01
Background: The production of protein drugs has recently increased due to advances in biotechnology, but their clinical use is generally limited to parenteral administration due to low absorption in non-parenteral administration. Therefore, non-parenteral delivery systems allowing sufficient absorption draw much attention. Methods: Microparticles (MP) were prepared using chitosan-4-thio-butylamidine conjugate (Ch-TBA), trimethyl-chitosan (TMC), and chitosan (Ch). Using salmon calcitonin (sCT) as a model protein drug, Ch-TBA-, Ch-TBA/TMC (4/1)-, and Ch-based MP were produced, and their Eudragit L100 (Eud)-coated MP, named Ch-TBA-MP/Eud, Ch-TBA/TMC-MP/Eud, and Ch-MP/Eud, respectively, were prepared as oral delivery systems. These enteric-coated microparticles were examined in vitro and in vivo. Results: All microparticles before and after enteric coating had a submicron size (600–800 nm) and micrometer size (1300–1500 nm), respectively. In vitro release patterns were similar among all microparticles; release occurred gradually, and the release rate was slower at pH 1.2 than at pH 6.8. In oral ingestion, Ch-TBA-MP/Eud suppressed plasma Ca levels most effectively among the microparticles tested. The relative effectiveness of Ch-TBA-MP/Eud to the intramuscular injection was 8.6%, while the sCT solution showed no effectiveness. Conclusion: The results suggest that Eud-coated Ch-TBA-based microparticles should have potential as an oral delivery system of protein drugs. PMID:27649146
El Behery, Manal M; Saleh, Hend S; Ibrahiem, Moustafa A; Kamal, Ebtesam M; Kassem, Gamal A; Mohamed, Mohamed El Sayed
2015-03-01
To compare the efficacy and safety of the levonorgestrel-releasing intrauterine device (LNG-IUD) with dydrogesterone applied for the same duration in patients having endometrial hyperplasia (EH) without atypia. One hundred thirty eight women aged between 30 and 50 years with abnormal uterine bleeding and diagnosed as EH by transvaginal ultrasound were randomized to receive either LNG-IUD or dydrogesterone for 6 months. Primary outcome measures were regression of hyperplasia after 6 months of therapy. Secondary outcome measures were occurrence of side effects during treatment or recurrence of hyperplasia during follow-up period. After 6 months of treatment, regression of EH occurs in 96% of women in the levonorgestrel-releasing intrauterine system (LNG-IUS) group versus 80% of women in the oral group (P < .001). Adverse effects were relatively common with minimal differences between the 2 groups. Intermenstrual vaginal spotting and amenorrhea were more common in the LNG-IUD group (P value .01 and .0001). Patient satisfaction was significantly higher in the LNG-IUS group (P value .0001). Hysterectomy rates were lower in the LNG-IUS group than in the oral group (P = .001). Recurrence rate was 0% in the LNG-IUD group compared to 12.5% in the oral group. In management of EH without atypia, LNG-IUS achieves a higher regression and a lower hysterectomy rate than oral progesterone and could be used as a first-line therapy. © The Author(s) 2014.
Taniguchi, Chika; Kawabata, Yohei; Wada, Koichi; Yamada, Shizuo; Onoue, Satomi
2014-04-01
Drug release and oral absorption of drugs with pH-dependent solubility are influenced by the conditions in the gastrointestinal tract. In some cases, poor oral absorption has been observed for these drugs, causing insufficient drug efficacy. The pH-modification of a formulation could be a promising approach to overcome the poor oral absorption of drugs with pH-dependent solubility. The present review aims to summarize the pH-modifier approach and strategic analyses of microenvironmental pH for formulation design and development. We also provide literature- and patent-based examples of the application of pH-modification technology to solid dosage forms. For the pH-modification approach, the microenvironmental pH at the diffusion area can be altered by dissolving pH-modifying excipients in the formulation. The modulation of the microenvironmental pH could improve dissolution behavior of drugs with pH-dependent solubility, possibly leading to better oral absorption. According to this concept, the modulated level of microenvironmental pH and its duration can be key factors for improvement in drug dissolution. The measurement of microenvironmental pH and release of pH-modifier would provide theoretical insight for the selection of an appropriate pH-modifier and optimization of the formulation.
Markowitz, Michael; Fu, Dong-Jing; Levitan, Bennett; Gopal, Srihari; Turkoz, Ibrahim; Alphs, Larry
2013-07-11
Increasing availability and use of long-acting injectable antipsychotics have generated a need to compare these formulations with their oral equivalents; however, a paucity of relevant data is available. This post hoc comparison of the long-term efficacy, safety and tolerability of maintenance treatment with paliperidone palmitate (PP) versus oral paliperidone extended release (ER) used data from two similarly designed, randomised, double-blind (DB), placebo-controlled schizophrenia relapse prevention trials. Assessments included measures of time to relapse, symptom changes/functioning and treatment-emergent adverse events (TEAEs). Time to relapse between treatment groups was evaluated using a Cox proportional hazards model. Between-group differences for continuous variables for change scores during the DB phase were assessed using analysis of co-variance models. Categorical variables were evaluated using Chi-square and Fisher's exact tests. No adjustment was made for multiplicity. Approximately 45% of enrolled subjects in both trials were stabilised and randomised to the DB relapse prevention phase. Risk of relapse was higher in subjects treated with paliperidone ER than in those treated with PP [paliperidone ER/PP hazard ratio (HR), 2.52; 95% confidence interval (CI), 1.46-4.35; p < 0.001]. Similarly, risk of relapse after withdrawal of paliperidone ER treatment (placebo group of the paliperidone ER study) was higher than after withdrawal of PP (paliperidone ER placebo/PP placebo HR, 2.25; 95% CI, 1.59-3.18; p < 0.001). Stabilised schizophrenic subjects treated with PP maintained functioning demonstrated by the same proportions of subjects with mild to no difficulties in functioning at DB baseline and end point [Personal and Social Performance (PSP) scale total score >70, both approximately 58.5%; p = 1.000] compared with a 10.9% decrease for paliperidone ER (58.5% vs 47.6%, respectively; p = 0.048). The least squares mean change for Positive and Negative Syndrome Scale (PANSS) total score at DB end point in these previously stabilised subjects was 3.5 points in favour of PP (6.0 vs 2.5; p = 0.025). The rates of TEAEs and AEs of interest appeared similar. This analysis supports maintenance of effect with the injectable compared with the oral formulation of paliperidone in patients with schizophrenia. The safety profile of PP was similar to that of paliperidone ER. Future studies are needed to confirm these findings.
Abu Hashim, Hatem; Ghayaty, Essam; El Rakhawy, Mohamed
2015-10-01
We sought to evaluate the therapeutic efficacy of levonorgestrel-releasing intrauterine system (LNG-IUS) with oral progestins for treatment of non-atypical endometrial hyperplasia (EH). Searches were conducted on PubMed, SCOPUS, and CENTRAL databases to August 2014, and reference lists of relevant articles were screened. The search was limited to articles conducted on human beings and females. The PRISMA Statement was followed. Seven randomized controlled trials (n = 766 women) were included. Main outcome measures were the therapeutic effect rate (histological response) after 3, 6, 12, and 24 months of treatment; rate of irregular vaginal bleeding; and the hysterectomy rate per woman randomized. The Cochrane Collaboration risk of bias tool was used for quality assessment. Metaanalysis was performed with fixed effects model. LNG-IUS achieved a highly significant therapeutic response rate compared with oral progestins after 3 months of treatment (odds ratio [OR], 2.30; 95% confidence interval [CI], 1.39-3.82; P = .001, 5 trials, I(2) = 0%, n = 376), after 6 months of treatment (OR, 3.16; 95% CI, 1.84-5.45; P < .00001, 4 trials, I(2) = 0%, n = 397), after 12 months of treatment (OR, 5.73; 95% CI, 2.67-12.33; P < .00001, 2 trials, I(2) = 0%, n = 224), and after 24 months of treatment (OR, 7.46; 95% CI, 2.55-21.78; P = .0002, 1 trial, n = 104). Subgroup analysis showed evidence of highly significant therapeutic response following LNG-IUS compared with oral progestins for non-atypical simple as well as complex EH (OR, 2.51; 95% CI, 1.14-5.53; P = .02, 6 trials, I(2) = 0%, n = 290; and OR, 3.31; 95% CI, 1.62-6.74; P = .001, 4 trials, I(2) = 0%, n = 216, respectively). Compared with oral progestins, LNG-IUS achieved significantly fewer hysterectomies (OR, 0.26; 95% CI, 0.15-0.45; P < .00001, 3 trials, n = 362, I² = 42%). No difference was observed in the rate of irregular vaginal bleeding between both groups (OR, 1.12; 95% CI, 0.54-2.32; P = .76, 2 trials, n = 207, I² = 77%). Funnel plot analysis was not performed because of the relatively small number of included studies. For treatment of non-atypical EH, LNG-IUS achieves higher therapeutic effect rates and lower hysterectomy rates than oral progestins and should be offered as an alternative to oral progestins in these cases. Copyright © 2015 Elsevier Inc. All rights reserved.
Simulated Digestion of Dried Leaves of Artemisia annua Consumed as a Treatment (pACT) for Malaria
Weathers, Pamela J.; Jordan, Nikole; Lasin, Praphapan; Towler, Melissa J.
2014-01-01
Ethnopharmacological Relevance Artemisinin (AN) is produced by Artemisia annua, a medicinal herb long used as a tea infusion in traditional Chinese medicine to treat fever; it is also the key ingredient in current artemisinin-based combination therapies (ACTs) effective in treating malaria. Recently we showed that dried leaves from the whole plant A. annua that produces artemisinin and contains artemisinin-synergistic flavonoids seems to be more effective and less costly than ACT oral malaria therapy; however little is known about how digestion affects release of artemisinin and flavonoids from dried leaves. Material and Methods In the current study we used a simulated digestion system to determine how artemisinin and flavonoids are released prior to absorption into the bloodstream. Various delivery methods and staple foods were combined with dried leaves for digestion in order to investigate their impact on the bioavailability of artemisinin and flavonoids. Digestate was recovered at the end of the oral, gastric, and intestinal stages, separated into solid and liquid fractions, and extracted for measurement of artemisinin and total flavonoids. Results Compared to unencapsulated digested dried leaves, addition of sucrose, various cooking oils, and rice did not reduce the amount of artemisinin released in the intestinal liquid fraction, but the amount of released flavonoids nearly doubled. When dried leaves were encapsulated into either hydroxymethylcellulose or gelatin capsules, there was >50% decrease in released artemisinin but no change in released flavonoids. In the presence of millet or corn meal, the amount of released artemisinin declined, but there was no change in released flavonoids. Use of a mutant A. annua lacking artemisinin showed that the plant matrix is critical in determining how artemisinin is affected during the digestion process. Conclusions This study provides evidence showing how both artemisinin and flavonoids are affected by digestion and dietary components for an orally consumed plant delivered therapeutic and that artemisinin delivered via dried leaves would likely be more bioavailable if provided as a tablet instead of in a capsule. PMID:24316176
Tabuchi, Ryo; Anraku, Makoto; Iohara, Daisuke; Ishiguro, Takako; Ifuku, Shinsuke; Nagae, Tomone; Uekama, Kaneto; Okazaki, Shoko; Takeshita, Keizo; Otagiri, Masaki; Hirayama, Fumitoshi
2017-10-15
Surface-deacetylated chitin nanofibers (SDACNFs) reinforced with a sulfobutyl ether β-cyclodextrin (SBE-β-CD) (NFs-CDs) gel were developed to obtain a controlled release carrier of prednisolone (PD) for the treatment of colitis. PD was released slowly from the gel at both pH 1.2 and 6.8. The in vitro slow release of PD from the NFs-CDs gel was reflected in the in vivo absorption of the drug after oral administration to rats. These results suggest that a simple gel composed of a mixture of SDACNFs and SBE-β-CD has the potential for use in the controlled release of PD. We also evaluated the therapeutic effects of the NFs-CDs gel containing PD on dextran sulfate sodium (DSS)-induced colitis model mice. The administration of the NFs-CDs gel at intervals of 3days from the beginning of the DSS treatment resulted in a significant improvement, not only in colitis symptoms but also histopathological changes in colon tissue. In addition, the therapeutic effects of the NFs-CDs gel on colitis can be attributed to decreased levels of neutrophil infiltration and the development of oxidative stress. These efficacy profiles of the NFs-CDs gel containing PD suggest that it has the potential for use in the treatment of, not only colitis, but also a variety of other disorders associated with inflammation and oxidative injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ikeuchi-Takahashi, Yuri; Kobayashi, Ayaka; Onishi, Hiraku
2017-06-01
Topical drug application has the advantage of avoiding systemic side effects. We attempted to develop a long-acting matrix-type tablet containing indomethacin (IM) with low physical stimulus and potent mucoadhesive force to treat pain caused by oral aphtha. A mixture of polyethylene glycol (PEG) and hard fat was used as the tablet base. Ethylcellulose was added to the base in an attempt to control drug release. Tablets with PEG as a base were also prepared for comparison. Polyvinyl alcohols (PVAs) with various degrees of saponification were added to increase the mucoadhesive force. From the optical microscopic observations, formulations using PEG and hard fat exhibit PEG/hard fat dispersions caused by the stabilizing effects of PVA. Although the tablets using PEG and hard fat showed sufficient adhesiveness and sustained drug release, those using PEG as the base did not. Drug release was controlled by the amount of hard fat and the saponification degree of PVA. The drug release rate was most increased in a tablet containing PVA with an intermediate degree of saponification, PEG and hard fat. From differential scanning calorimetry and powder X-ray diffraction, IM was considered to exist in the molecular phase. From the results of buccal administration of tablets to rats, highest tissue concentrations were observed in the tablet containing PVA with the intermediate degree of saponification using PEG and hard fat, and the plasma concentrations were sufficiently low in comparison.
Derajram M Benival, M; Devarajan, Padma V
2015-05-01
The present paper reports in situ lipidization as a novel approach for the design of Dox-self microemulsifying drug delivery system (SMEDDS). Dox-aerosol OT (AOT) ion pair complex (lipidized Dox), exhibited high log P value of 1.74, indicating lipophilic nature. The lipidized Dox revealed good solubility but limited stability in various oils. Rapid complex formation of Dox with AOT dissolved in oils, and the high partitioning of lipidized Dox (-90%) into the oily phase presented in situ lipidization as a strategy to overcome the limited chemical stability of lipidized Dox. SMEDDS was prepared by mixing the lipidizing agent AOT, the surfactant α-Tocopheryl-Polyethyleneglycol-1 000-Succinate (TPGS) and Capmul as the oil. Dox was suspended in the SMEDDS to obtain Dox-SMEDDS. Dox-SMEDDS on aqueous dilution, resulted in a microemulsion with globule size 196 ± 16.56 nm, and revealed slow release of Dox. Oral bioavailability study in rats revealed a 420% enhancement from Dox-SMEDDS compared to Dox solution. Dox-SMEDDS and control group revealed comparable superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) levels in heart and kidneys suggesting safety of the Dox-SMEDDS. Efficacy study (tumor size reduction) in fibrosarcoma mouse model suggested Dox-SMEDDS as a promising oral delivery system for the treatment of cancer. In situ lipidization of Dox in SMEDDS presents a novel approach for the design of an orally bioavailable and promising formulation of Dox for oral administration.
Applications of Polymers as Pharmaceutical Excipients in Solid Oral Dosage Forms.
Debotton, Nir; Dahan, Arik
2017-01-01
Over the last few decades, polymers have been extensively used as pharmaceutical excipients in drug delivery systems. Pharmaceutical polymers evolved from being simply used as gelatin shells comprising capsule to offering great formulation advantages including enabling controlled/slow release and specific targeting of drugs to the site(s) of action (the "magic bullets" concept), hence hold a significant clinical promise. Oral administration of solid dosage forms (e.g., tablets and capsules) is the most common and convenient route of drug administration. When formulating challenging molecules into solid oral dosage forms, polymeric pharmaceutical excipients permit masking undesired physicochemical properties of drugs and consequently, altering their pharmacokinetic profiles to improve the therapeutic effect. As a result, the number of synthetic and natural polymers available commercially as pharmaceutical excipients has increased dramatically, offering potential solutions to various difficulties. For instance, the different polymers may allow increased solubility, swellability, viscosity, biodegradability, advanced coatings, pH dependency, mucodhesion, and inhibition of crystallization. The aim of this article is to provide a wide angle prospect of the different uses of pharmaceutical polymers in solid oral dosage forms. The various types of polymeric excipients are presented, and their distinctive role in oral drug delivery is emphasized. The comprehensive know-how provided in this article may allow scientists to use these polymeric excipients rationally, to fully exploit their different features and potential influence on drug delivery, with the overall aim of making better drug products. © 2016 Wiley Periodicals, Inc.
Release of 5-Aminosalicylic Acid (5-ASA) from Mesalamine Formulations at Various pH Levels.
Abinusawa, Adeyinka; Tenjarla, Srini
2015-05-01
Oral formulations of 5-aminosalicylic acid (5-ASA) for treatment of ulcerative colitis have been developed to minimize absorption prior to the drug reaching the colon. In this study, we investigate the release of 5-ASA from available oral mesalamine formulations in physiologically relevant pH conditions. Release of 5-ASA from 6 mesalamine formulations (APRISO®, Salix Pharmaceuticals, Inc., USA; ASACOL® MR, Procter & Gamble Pharmaceuticals UK Ltd.; ASACOL® HD, Procter & Gamble Pharmaceuticals, USA; MEZAVANT XL®, Shire US Inc.; PENTASA®, Ferring Pharmaceuticals, Ltd., UK; SALOFALK®, Dr. Falk Pharma UK Ltd.) was evaluated using United States Pharmacopeia apparatus I and II at pH values of 1.0 (2 h), 6.0 (1 h), and 6.8 (8 h). Dissolution profiles were determined for each formulation, respectively. Of the tested formulations, only the PENTASA formulation demonstrated release of 5-ASA at pH 1.0 (48%), with 56% cumulative release after exposure to pH 6.0 and 92% 5-ASA release after 6-8 h at pH 6.8. No other mesalamine formulation showed >1% drug release at pH 1.0. The APRISO formulation revealed 36% 5-ASA release at pH 6.0, with 100% release after 3 h at pH 6.8. The SALOFALK formulation revealed 11% 5-ASA release at pH 6.0, with 100% release after 1 h at pH 6.8. No 5-ASA was released by the ASACOL MR, ASACOL HD, and MEZAVANT XL formulations at pH 6.0. At pH 6.8, the ASACOL MR and ASACOL HD formulations exhibited complete release of 5-ASA after 4 and 2 h, respectively, and the MEZAVANT XL formulation demonstrated complete 5-ASA release over 6-7 h. 5-Aminosalicylic acid release profiles were variable among various commercially available formulations. Shire Development LLC.
Inoue, Sayaka; Arai, Naoya; Tomihara, Kei; Takashina, Michinori; Hattori, Yuichi; Noguchi, Makoto
2015-08-15
Direct antitumor effects of bisphosphonates (BPs) have been demonstrated in various cancer cells in vitro. However, the effective concentrations of BPs are typically much higher than their clinically relevant concentrations. Oral cancers frequently invade jawbone and may lead to the release of Ca(2+) in primary lesions. We investigated the effects of the combined application of zoledronic acid (ZA) and Ca(2+) on proliferation and apoptosis of oral cancer cells. Human oral cancer cells, breast cancer cells, and colon cancer cells were treated with ZA at a wide range of concentrations in different Ca(2+) concentration environments. Under a standard Ca(2+) concentration (0.6mM), micromolar concentrations of ZA were required to inhibit oral cancer cell proliferation. Increasing extracellular Ca(2+) concentrations greatly enhanced the potency of the ZA cytocidal effect. The ability of Ca(2+) to enhance the cytocidal effects of ZA was negated by the Ca(2+)-selective chelator EGTA. In contrast, the cytocidal effect of ZA was less pronounced in breast and colon cancer cells regardless of whether extracellular Ca(2+) was elevated. In oral cancer cells incubated with 1.6mM Ca(2+), ZA up-regulated mitochondrial Bax expression and increased mitochondrial Ca(2+) uptake. This was associated with decreased mitochondrial membrane potential and increased release of cytochrome c. We suggest that ZA can specifically produce potent cytocidal activity in oral cancer cells in an extracellular Ca(2+)-dependent manner, implying that BPs may be useful for treatment of oral squamous cell carcinoma with jawbone invasion leading to the hypercalcemic state. Copyright © 2015 Elsevier B.V. All rights reserved.
Oral fluoride reservoirs and the prevention of dental caries.
Vogel, Gerald Lee
2011-01-01
Current models for increasing the anti-caries effects of fluoride (F) agents emphasize the importance of maintaining a cariostatic concentration of F in oral fluids. The concentration of F in oral fluids is maintained by the release of this ion from bioavailable reservoirs on the teeth, oral mucosa and - most importantly, because of its association with the caries process - dental plaque. Oral F reservoirs appear to be of two types: (1) mineral reservoirs, in particular calcium fluoride or phosphate-contaminated 'calcium-fluoride-like' deposits; (2) biological reservoirs, in particular (with regard to dental plaque) F held to bacteria or bacterial fragments via calcium-fluoride bonds. The fact that all these reservoirs are mediated by calcium implies that their formation is limited by the low concentration of calcium in oral fluids. By using novel procedures which overcome this limitation, the formation of these F reservoirs after topical F application can be greatly increased. Although these increases are associated with substantive increases in salivary and plaque fluid F, and hence a potential increase in cariostatic effect, it is unclear if such changes are related to the increases in the amount of these reservoirs, or changes in the types of F deposits formed. New techniques have been developed for identifying and quantifying these deposits which should prove useful in developing agents that enhance formation of oral F reservoirs with optimum F release characteristics. Such research offers the prospect of decreasing the F content of topical agents while simultaneously increasing their cariostatic effect. Copyright © 2011 S. Karger AG, Basel.
Sharma, Radhika; Kamboj, Sunil; Singh, Gursharan; Rana, Vikas
2016-03-10
The present investigation was aimed to prepare orally disintegrating films (ODFs) containing aprepitant (APT), an antiemetic drug employing pullulan as film forming agent, tamarind pectin as wetting agent and liquid glucose as plasticizer and solubiliser. The ODFs were prepared using solvent casting method. The method was optimized employing 3(2) full factorial design considering proportion of pullulan: tamarind pectin and concentration of liquid glucose as independent variables and disintegration time, wetting time, folding endurance, tensile strength and extensibility as dependent variables. The optimized ODF was evaluated for various physicochemical, mechanical, drug release kinetics and bioavailability studies. The results suggested prepared film has uniform film surface, non-sticky and disintegrated within 18s. The in-vitro release kinetics revealed more than 87% aprepitant was released from optimized ODF as compared to 85%, 49%, and 12% aprepitant release from marketed formulation Aprecap, micronized aprepitant and non micronized aprepitant, respectively. The results of animal preference study indicated that developed aprepitant loaded ODFs are accepted by rabbits as food material. Animal pharmacokinetic (PK) study showed 1.80, 1.56 and 1.36 fold enhancement in relative bioavailability for aprepitant loaded ODF, Aprecap and micronized aprepitant respectively, in comparison with non-micronized aprepitant. Overall, the solubilised aprepitant when incorporated in the form of aprepitant loaded ODF showed enhanced bioavailability as compared to micronized/non-micronized aprepitant based oral formulations. These findings suggested that aprepitant loaded ODF could be effective for antiemesis during cancer chemotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Kong, Eric F.; Tsui, Christina; Boyce, Heather; Ibrahim, Ahmed; Hoag, Stephen W.; Karlsson, Amy J.; Meiller, Timothy F.
2015-01-01
Oral candidiasis (OC), caused by the fungal pathogen Candida albicans, is the most common opportunistic infection in HIV+ individuals and other immunocompromised populations. The dramatic increase in resistance to common antifungals has emphasized the importance of identifying unconventional therapeutic options. Antimicrobial peptides have emerged as promising candidates for therapeutic intervention due to their broad antimicrobial properties and lack of toxicity. Histatin-5 (Hst-5) specifically has exhibited potent anticandidal activity indicating its potential as an antifungal agent. To that end, the goal of this study was to design a biocompatible hydrogel delivery system for Hst-5 application. The bioadhesive hydroxypropyl methylcellulose (HPMC) hydrogel formulation was developed for topical oral application against OC. The new formulation was evaluated in vitro for gel viscosity, Hst-5 release rate from the gel, and killing potency and, more importantly, was tested in vivo in our mouse model of OC. The findings demonstrated a controlled sustained release of Hst-5 from the polymer and rapid killing ability. Based on viable C. albicans counts recovered from tongues of treated and untreated mice, three daily applications of the formulation beginning 1 day postinfection with C. albicans were effective in protection against development of OC. Interestingly, in some cases, Hst-5 was able to clear existing lesions as well as associated tissue inflammation. These findings were confirmed by histopathology analysis of tongue tissue. Coupled with the lack of toxicity as well as anti-inflammatory and wound-healing properties of Hst-5, the findings from this study support the progression and commercial feasibility of using this compound as a novel therapeutic agent. PMID:26596951
Mouchrek Júnior, José Carlos Elias; Macedo, Cristina Gomes; Abdalla, Henrique Ballassini; Saba, Ana Karina; Teixeira, Lucas Novaes; Mouchrek, Adriana Quinzeiro e Silva; Napimoga, Marcelo Henrique; Clemente-Napimoga, Juliana Trindade; Borges, Alvaro Henrique; Tonetto, Mateus Rodrigues; Pinto, Shelon Cristina Souza; Bandeca, Matheus Coelho; Martinez, Elizabeth Ferreira
2017-01-01
Purpose The aim of this study was to evaluate the effect of simvastatin on the synthesis of cytokines TNF-α and IL-10 and metalloproteinase (MMPs) 2 and 9 in a rat model of ligature-induced periodontitis. Materials and methods Twenty Wistar rats were used, and a cotton ligature was place in a subgingival position encircling the entire cervix of the first molar of the left (ipsilateral) side of the mandible. The right (contralateral) side of the mandible had no ligature placed and was used as control. After the ligature placement, animals were randomly assigned to two experimental groups (n=10): 1) rats with ligature + vehicle (saline; 10 mL/kg; orally) and 2) rats with ligature + simvastatin (25 mg/kg; orally). After 14 days of treatment, the animals were euthanized by anesthetic overdose and the gingival tissue was removed and homogenized in appropriate buffer. MMP-2 and -9 release as well as the IL-10 and TNF-α levels were detected by enzyme-linked immunosorbent assay. Statistical comparison was performed by unpaired Student’s t-test, with p<0.05 representing significance. Results No differences were observed for TNF-α production between the groups (p>0.05). However, IL-10 was upregulated in simvastatin-treated animals (1.8-fold increase) in comparison with the vehicle-treated group (p<0.05). Simvastatin reduced the gingival levels of MMP-9 (64.3%) in comparison with vehicle-treated samples (p<0.05). Conclusion Oral treatment with simvastatin increased the release of IL-10 and reduced the MMP-9 in ligature-induced periodontitis model in rats. PMID:28553143
Shah, Nirmal; Seth, Avinashkumar; Balaraman, R; Sailor, Girish; Javia, Ankur; Gohil, Dipti
2018-04-01
The objective of this work was to utilize a potential of microemulsion for the improvement in oral bioavailability of raloxifene hydrochloride, a BCS class-II drug with 2% bioavailability. Drug-loaded microemulsion was prepared by water titration method using Capmul MCM C8, Tween 20, and Polyethylene glycol 400 as oil, surfactant, and co-surfactant respectively. The pseudo-ternary phase diagram was constructed between oil and surfactants mixture to obtain appropriate components and their concentration ranges that result in large existence area of microemulsion. D-optimal mixture design was utilized as a statistical tool for optimization of microemulsion considering oil, S mix , and water as independent variables with percentage transmittance and globule size as dependent variables. The optimized formulation showed 100 ± 0.1% transmittance and 17.85 ± 2.78 nm globule size which was identically equal with the predicted values of dependent variables given by the design expert software. The optimized microemulsion showed pronounced enhancement in release rate compared to plain drug suspension following diffusion controlled release mechanism by the Higuchi model. The formulation showed zeta potential of value -5.88 ± 1.14 mV that imparts good stability to drug loaded microemulsion dispersion. Surface morphology study with transmission electron microscope showed discrete spherical nano sized globules with smooth surface. In-vivo pharmacokinetic study of optimized microemulsion formulation in Wistar rats showed 4.29-fold enhancements in bioavailability. Stability study showed adequate results for various parameters checked up to six months. These results reveal the potential of microemulsion for significant improvement in oral bioavailability of poorly soluble raloxifene hydrochloride.
Novel Oral Therapies for Opioid-induced Bowel Dysfunction in Patients with Chronic Noncancer Pain.
Holder, Renee M; Rhee, Diane
2016-03-01
Opioid analgesics are frequently prescribed and play an important role in chronic pain management. Opioid-induced bowel dysfunction, which includes constipation, hardened stool, incomplete evacuation, gas, and nausea and vomiting, is the most common adverse event associated with opioid use. Mu-opioid receptors are specifically responsible for opioid-induced bowel dysfunction, resulting in reduced peristaltic and secretory actions. Agents that reverse these actions in the bowel without reversing pain control in the central nervous system may be preferred over traditional laxatives. The efficacy and safety of these agents in chronic noncancer pain were assessed from publications identified through Ovid and PubMed database searches. Trials that evaluated the safety and efficacy of oral agents for opioid-induced constipation or opioid-induced bowel dysfunction, excluding laxatives, were reviewed. Lubiprostone and naloxegol are approved in the United States by the Food and Drug Administration for use in opioid-induced constipation. Axelopran (TD-1211) and sustained-release naloxone have undergone phase 2 and phase 1 studies, respectively, for the same indication. Naloxegol and axelopran are peripherally acting μ-opioid receptor antagonists. Naloxone essentially functions as a peripherally acting μ-opioid receptor antagonist when administered orally in a sustained-release formulation. Lubiprostone is a locally acting chloride channel (CIC-2) activator that increases secretions and peristalsis. All agents increase spontaneous bowel movements and reduce other bowel symptoms compared with placebo in patients with noncancer pain who are chronic opioid users. The most common adverse events were gastrointestinal in nature, and none of the drugs were associated with severe adverse or cardiovascular events. Investigations comparing these agents to regimens using standard laxative and combination therapy and trials in special populations and patients with active cancer are needed to further define their role in therapy. © 2016 Pharmacotherapy Publications, Inc.
Tian, Jiyuan; Sun, Xiuqin; Chen, Xiguang; Yu, Juan; Qu, Lingyun; Wang, Lingchong
2008-06-01
Nucleic acid-based immunotherapy is a new treatment option for fish immunisation in intensive culture. However, DNA-based vaccines would be hydrolyzed or denaturized because of the existence of nucleases and severe gastrointestinal conditions. Poly(DL-lactide-co-glycolide) (PLGA) microcapsules, loaded with plasmid DNA (pDNA) against lymphocystis disease virus (LCDV), were prepared by modified water in oil in water (W/O/W) double emulsion method in our laboratory. Encapsulation efficiency, loading percent and diameter of microcapsules were 78-88%, 0.5-0.7% and less than 10 mum, respectively. In simulated gastric fluid (SGF), less than 10% of pDNA was released from microcapsules in 12 h, and about 6.5% of pDNA was released in 12 h in simulated intestinal fluid (SIF). The content of the supercoiled of pDNA in microcapsules and control was 80% and 89% respectively, which indicated that a little supercoiled pDNA degradation occurred during encapsulation. RT-PCR showed that lots of RNA containing information of MCP gene existed in all tissues of fish vaccinated with microcapsules 10-90 days after oral administration. SDS-PAGE and immunoblots, as well as immunofluorescence images, displayed that major capsid protein (MCP) of LCDV was expressed in tissues of fish vaccinated with pDNA-loaded microcapsules. In addition, indirect enzyme-linked immunosorbent assay (ELISA) showed that the immune responses of sera were positive (O.D> or =0.3) from week 1 to week 24 for fish vaccinated with microcapsules, in comparison with fish vaccinated with naked pDNA. Our results suggested that PLGA microcapsules were promising oral carriers for pDNA delivery. This encapsulation technique had potential for drug delivery applications due to its ease of operation and notable immunisation efficacy.
Allam, Ayat; Fetih, Gihan
2016-01-01
The aim of the present work was to prepare and evaluate sublingual fast dissolving films containing metoprolol tartrate-loaded niosomes. Niosomes were utilized to allow for prolonged release of the drug, whereas the films were used to increase the drug's bioavailability via the sublingual route. Niosomes were prepared using span 60 and cholesterol at different drug to surfactant ratios. The niosomes were characterized for size, zeta-potential, and entrapment efficiency. The selected niosomal formulation was incorporated into polymeric films using hydroxypropyl methyl cellulose E15 and methyl cellulose as film-forming polymers and Avicel as superdisintegrant. The physical characteristics (appearance, texture, pH, uniformity of weight and thickness, disintegration time, and palatability) of the prepared films were studied, in addition to evaluating the in vitro drug release, stability, and in vivo pharmacokinetics in rabbits. The release of the drug from the medicated film was fast (99.9% of the drug was released within 30 minutes), while the drug loaded into the niosomes, either incorporated into the film or not, showed only 22.85% drug release within the same time. The selected sublingual film showed significantly higher rate of drug absorption and higher drug plasma levels compared with that of commercial oral tablet. The plasma levels remained detectable for 24 hours following sublingual administration, compared with only 12 hours after administration of the oral tablet. In addition, the absolute bioavailability of the drug (ie, relative to intravenous administration) following sublingual administration was found to be significantly higher (91.06%±13.28%), as compared with that after oral tablet administration (39.37%±11.4%). These results indicate that the fast dissolving niosomal film could be a promising delivery system to enhance the bioavailability and prolong the therapeutic effect of metoprolol tartrate.
Allam, Ayat; Fetih, Gihan
2016-01-01
The aim of the present work was to prepare and evaluate sublingual fast dissolving films containing metoprolol tartrate-loaded niosomes. Niosomes were utilized to allow for prolonged release of the drug, whereas the films were used to increase the drug’s bioavailability via the sublingual route. Niosomes were prepared using span 60 and cholesterol at different drug to surfactant ratios. The niosomes were characterized for size, zeta-potential, and entrapment efficiency. The selected niosomal formulation was incorporated into polymeric films using hydroxypropyl methyl cellulose E15 and methyl cellulose as film-forming polymers and Avicel as superdisintegrant. The physical characteristics (appearance, texture, pH, uniformity of weight and thickness, disintegration time, and palatability) of the prepared films were studied, in addition to evaluating the in vitro drug release, stability, and in vivo pharmacokinetics in rabbits. The release of the drug from the medicated film was fast (99.9% of the drug was released within 30 minutes), while the drug loaded into the niosomes, either incorporated into the film or not, showed only 22.85% drug release within the same time. The selected sublingual film showed significantly higher rate of drug absorption and higher drug plasma levels compared with that of commercial oral tablet. The plasma levels remained detectable for 24 hours following sublingual administration, compared with only 12 hours after administration of the oral tablet. In addition, the absolute bioavailability of the drug (ie, relative to intravenous administration) following sublingual administration was found to be significantly higher (91.06%±13.28%), as compared with that after oral tablet administration (39.37%±11.4%). These results indicate that the fast dissolving niosomal film could be a promising delivery system to enhance the bioavailability and prolong the therapeutic effect of metoprolol tartrate. PMID:27536063
Agostini, Azzurra; Capasso Palmiero, Umberto; Barbieri, Sara D A; Lupi, Monica; Moscatelli, Davide
2018-06-01
Ibuprofen (IBU) is a widespread drug used to treat both acute and chronic disorders. It is generally taken orally but the free drug can induce the irritation of the gastric mucosa due to its acid nature. In literature, different approaches have been adopted to prevent the release in the stomach, such as physical entrapment with film-coated tablets and drug-conjugates. Nevertheless, these solutions have many disadvantages, including the fast release of the drug and the difficulty to swallow the tablet, especially for children who may vomit or refuse the tablet. For this reason, in this work, novel formulations are proposed that do not require the encapsulation of the drug into a solid form and, in turn, their assumption as a pill. IBU has been linked to different types of methacrylates via ester bond in order to produce pH-responsive macromolecular monomers. The novelty is related to the use of these drug-conjugates macromonomer for the production of nanoparticles (NPs) via emulsion polymerization (EP), using water as solvent. The final emulsion is able to load up to 30 mg ml -1 of IBU, so less than 10 ml is required to be assumed to reach the minimum therapeutic dose of the drug (200 mg). Finally, the release of IBU from these novel drinkable formulations has been investigated in the gastric and intestinal simulated fluids to show the preferential release of IBU from the NPs in basic conditions. A comparison with an existing oral suspension has been performed to highlight the slower release in acid environment of these new formulations. Afterwards, the IBU loaded NPs were tested in vitro showing lower toxicity compared to the free drug.
Activation of platelet-rich plasma using soluble type I collagen.
Fufa, Duretti; Shealy, Blake; Jacobson, May; Kevy, Sherwin; Murray, Martha M
2008-04-01
Platelet-rich plasma (PRP) has recently been found to be a useful delivery system for growth factors important to oral tissue healing. But application of PRP in a liquid form to a wound site within the oral cavity can be complicated by significant loss of the PRP into the surrounding oral space unless gelation through the clotting mechanism is accomplished. Gelation is currently accomplished using bovine thrombin; however, rare but serious complications of this method have led to the search for alternative clotting mechanisms, including the use of soluble collagen as a clotting activator. In this work, our hypothesis was that soluble type I collagen would be as effective as bovine thrombin in causing clotting of the PRP and stimulating growth factor release from the platelets and granulocytes. PRP from human donors was clotted using type I collagen or bovine thrombin. Clot retraction was determined by measuring clot diameters over time. The release of platelet-derived growth factor (PDGF)-AB, transforming growth factor (TGF)-beta1, and vascular endothelial growth factor (VEGF) from both types of clots was measured over 10 days using enzyme-linked immunosorbent assasy. Clots formed using type I collagen exhibited far less retraction than those formed with bovine thrombin. Bovine thrombin and type I collagen stimulated similar release of PDGF-AB and VEGF between 1 and 10 days; however, thrombin activation resulted in a greater release of TGF-beta1 during the first 5 days after activation. The use of type I collagen to activate clotting of PRP may be a safe and effective alternative to bovine thrombin. The use of collagen results in less clot retraction and equal release of PDGF-AB and VEGF compared with currently available methods of clot activation.
ACTIVATION OF PLATELET-RICH PLASMA USING SOLUBLE TYPE I COLLAGEN
Fufa, Duretti; Shealy, Blake; Jacobson, May; Kevy, Sherwin; Murray, Martha M.
2008-01-01
PURPOSE Platelet-rich plasma (PRP) has recently been found to be a useful delivery system for growth factors important in oral tissue healing. However, application of PRP in a liquid form to a wound site within the oral cavity can be complicated by significant loss of the PRP into the surrounding oral space unless gelation via the clotting mechanism is accomplished. Gelation is currently accomplished using bovine thrombin; however, rare but serious complications of this method have led to the search for alternative clotting mechanisms, including the use of soluble collagen as a clotting activator. In this paper, our hypothesis was that soluble Type I collagen would be as effective as bovine thrombin in causing clotting of the PRP and of stimulating growth factor release from the platelets and granulocytes. MATERIALS AND METHODS PRP from human donors was clotted using Type I collagen or bovine thrombin. Clot retraction was determined by measuring clot diameters over time. The release of PDGF-AB, TGF-β1 and VEGF from both types of clots was measured over 10 days using ELISA. RESULTS Clots formed using Type I collagen had far less retraction than those formed with bovine thrombin. Bovine thrombin and Type I collagen stimulated similar release of PDGF-AB and VEGF between 1 and 10 days; however, thrombin activation resulted in a greater release of TGF-β1 during the first five days after activation. CONCLUSIONS The use of Type I collagen to activate clotting of PRP may be a safe and effective alternative to bovine thrombin. The use of collagen results in less clot retraction and equal release of PDGF-AB and VEGF when compared to currently available methods of clot activation. PMID:18355591
Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet
2015-02-01
Clotrimazole (CZ)-loaded microemulsion-containing nanofiber mats were developed as an alternative for oral candidiasis applications. The microemulsion was composed of oleic acid (O), Tween 80 (T80), and a co-surfactant such as benzyl alcohol (BzOH), ethyl alcohol (EtOH) or isopropyl alcohol (IPA). The nanofiber mats were obtained by electrospinning a blended solution of a CZ-loaded microemulsion and a mixed polymer solution of 2% (w/v) chitosan (CS) and 10% (w/v) polyvinyl alcohol (PVA) at a weight ratio of 30:70. The nanofiber mats were characterized using various analytical techniques. The entrapment efficiency, drug release, antifungal activity and cytotoxicity were investigated. The average diameter of the nanofiber mats was in the range of 105.91-125.56 nm. The differential scanning calorimetry (DSC) and powder X-ray diffractometry (PXRD) results revealed the amorphous state of the CZ-loaded microemulsions incorporated into the nanofiber mats. The entrapment efficiency of CZ in the mats was approximately 72.58-98.10%, depended on the microemulsion formulation. The release experiment demonstrated different CZ release characteristics from nanofiber mats prepared using different CZ-loaded microemulsions. The extent of drug release from the fiber mats at 4h was approximately 64.81-74.15%. The release kinetics appeared to follow Higuchi's model. In comparison with CZ lozenges (10mg), the nanofiber mats exhibited more rapid killing activity. Moreover, the nanofiber mats demonstrated desirable mucoadhesive properties and were safe for 2h. Therefore, the nanofiber mats have the potential to be promising candidates for oral candidiasis applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Kassem, Ahmed Alaa; Abd El-Alim, Sameh Hosam; Basha, Mona; Salama, Abeer
2017-03-01
To enhance the oral antidiabetic effect of repaglinide (RG), a newly emerging approach, based on the combination of phospholipid complexation and micelle techniques, was employed. Repaglinide-phospholipid complex (RG-PLC) was prepared by the solvent-evaporation method then characterized using Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction (XPRD). The results revealed obvious disappearance of the characteristic peaks of the prepared RG-PLCs confirming the formation of drug-phospholipid complex. RG-PLC enriched micelles (RG-PLC-Ms) were prepared by the solvent-evaporation technique employing poloxamer 188 as surfactant. The prepared RG-PLC-Ms showed high drug encapsulation efficiencies (93.81-99.38%), with nanometric particle diameters (500.61-665.32nm) of monodisperse distribution and high stability (Zeta potential < -29.8mV). The in vitro release of RG from RG-PLC-Ms was pH-dependant according to the release media. A higher release pattern was reported in pH=1.2 compared to a more retarded release in pH=6.8 owing to two different kinetics of drug release. Oral antidiabetic effect of two optimized RG-PLC-M formulations was evaluated in an alloxan-induced diabetic rat model for 7-day treatment protocol. The two investigated formulations depicted normal blood glucose, serum malondialdehyde and insulin levels as well as an improved lipid profile, at the end of daily oral treatment, in contrast to RG marketed tablets implying enhanced antidiabetic effect of the drug. Hence, phospholipid-complex enriched micelles approach holds a promising potential for promoting the antidiabetic effect of RG. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Agostini, Azzurra; Capasso Palmiero, Umberto; Barbieri, Sara D. A.; Lupi, Monica; Moscatelli, Davide
2018-06-01
Ibuprofen (IBU) is a widespread drug used to treat both acute and chronic disorders. It is generally taken orally but the free drug can induce the irritation of the gastric mucosa due to its acid nature. In literature, different approaches have been adopted to prevent the release in the stomach, such as physical entrapment with film-coated tablets and drug-conjugates. Nevertheless, these solutions have many disadvantages, including the fast release of the drug and the difficulty to swallow the tablet, especially for children who may vomit or refuse the tablet. For this reason, in this work, novel formulations are proposed that do not require the encapsulation of the drug into a solid form and, in turn, their assumption as a pill. IBU has been linked to different types of methacrylates via ester bond in order to produce pH-responsive macromolecular monomers. The novelty is related to the use of these drug-conjugates macromonomer for the production of nanoparticles (NPs) via emulsion polymerization (EP), using water as solvent. The final emulsion is able to load up to 30 mg ml‑1 of IBU, so less than 10 ml is required to be assumed to reach the minimum therapeutic dose of the drug (200 mg). Finally, the release of IBU from these novel drinkable formulations has been investigated in the gastric and intestinal simulated fluids to show the preferential release of IBU from the NPs in basic conditions. A comparison with an existing oral suspension has been performed to highlight the slower release in acid environment of these new formulations. Afterwards, the IBU loaded NPs were tested in vitro showing lower toxicity compared to the free drug.
Navigating sticky areas in transdermal product development.
Strasinger, Caroline; Raney, Sam G; Tran, Doanh C; Ghosh, Priyanka; Newman, Bryan; Bashaw, Edward D; Ghosh, Tapash; Shukla, Chinmay G
2016-07-10
The benefits of transdermal delivery over the oral route to combat such issues of low bioavailability and limited controlled release opportunities are well known and have been previously discussed by many in the field (Prausnitz et al. (2004) [1]; Hadgraft and Lane (2006) [2]). However, significant challenges faced by developers as a product moves from the purely theoretical to commercial production have hampered full capitalization of the dosage forms vast benefits. While different technical aspects of transdermal system development have been discussed at various industry meetings and scientific workshops, uncertainties have persisted regarding the pharmaceutical industry's conventionally accepted approach for the development and manufacturing of transdermal systems. This review provides an overview of the challenges frequently faced and the industry's best practices for assuring the quality and performance of transdermal delivery systems and topical patches (collectively, TDS). The topics discussed are broadly divided into the evaluation of product quality and the evaluation of product performance; with the overall goal of the discussion to improve, advance and accelerate commercial development in the area of this complex controlled release dosage form. Published by Elsevier B.V.
Biorelevant in-vitro performance testing of orally administered dosage forms.
Reppas, Christos; Vertzoni, Maria
2012-07-01
This review focuses on the evolution and current status of biorelevant media and hydrodynamics, and discusses the usefulness of biorelevant performance testing in the evaluation of specific dosage form related lumenal processes. During the last 15 years our knowledge of the gastrointestinal environment (including the lower gut) has improved dramatically and biorelevant media composition and, to a lesser extent, biorelevant hydrodynamics, have been refined. Biorelevant dissolution/release testing is useful for the evaluation of formulation and food effects on plasma levels after administration of immediate release dosage forms containing low solubility compounds and after administration of extended release products. Lumenal disintegration times of immediate release dosage forms and the bile acid sequestering activity of resins in the lumen can also be successfully forecasted with biorelevant in vitro testing. Biorelevant in-vitro performance testing is an important tool for evaluating intralumenal dosage form performance. Since the formulation of new active pharmaceutical ingredients for oral delivery is more challenging than ever before, efforts to improve the predictability of biorelevant tests are expected to continue. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
Nayak, Amit Kumar; Pal, Dilipkumar
2013-08-01
The present study deals with the formulation optimization of jackfruit (Artocarpus heterophyllus Lam., family: Moraceae) seed starch (JFSS)-alginate mucoadhesive beads containing metformin HCl through ionotropic gelation using 3(2) factorial design. The effect of sodium alginate to JFSS ratio and CaCl2 concentration on the drug encapsulation efficiency (DEE, %), and cumulative drug release at 10h (R10h, %) was optimized. The optimized beads containing metformin HCl showed DEE of 97.48±3.92%, R10h of 65.70±2.22%, and mean diameter of 1.16±0.11mm. The in vitro drug release from these beads was followed controlled-release (zero-order) pattern with super case-II transport mechanism. The beads were also characterized by SEM and FTIR. The swelling and degradation of these beads were influenced by pH of the test medium. The optimized beads also exhibited good mucoadhesivity and significant hypoglycemic effect in alloxan-induced diabetic rats over prolonged period after oral administration. Copyright © 2013 Elsevier B.V. All rights reserved.
Conductive polymer nanotube patch for fast and controlled in vivo transdermal drug delivery
NASA Astrophysics Data System (ADS)
Nguyen, Thao M.
Transdermal drug delivery has created new applications for existing therapies and offered an alternative to the traditional oral route where drugs can prematurely metabolize in the liver causing adverse side effects. Opening the transdermal delivery route to large hydrophilic drugs is one of the greatest challenges due to the hydrophobicity of the skin. However, the ability to deliver hydrophilic drugs using a transdermal patch would provide a solution to problems of other delivery methods for hydrophilic drugs. The switching of conductive polymers (CP) between redox states cause simultaneous changes in the polymer charge, conductivity, and volume—properties that can all be exploited in the biomedical field of controlled drug delivery. Using the template synthesis method, poly(3,4-ethylenedioxythiophene (PEDOT) nanotubes were synthesized electrochemically and a transdermal drug delivery patch was successfully designed and developed. In vitro and in vivo uptake and release of hydrophilic drugs were investigated. The relationship between the strength of the applied potential and rate of drug release were also investigated. Results revealed that the strength of the applied potential is proportional to the rate of drug release; therefore one can control the rate of drug release by controlling the applied potential. The in vitro studies focused on the kinetics of the drug delivery system. It was determined that the drug released mainly followed zero-order kinetics. In addition, it was determined that applying a releasing potential to the transdermal drug delivery system lead to a higher release rate constant (up to 7 times greater) over an extended period of time (˜24h). In addition, over 24 hours, an average of 80% more model drug molecules were released with an applied potential than without. The in vivo study showed that the drug delivery system was capable of delivering model hydrophilic drugs molecules through the dermis layer of the skin within 30 minutes, while the control showed no visible drugs at the same depth. Most importantly, it was determined that the delivery of drugs into the blood stream was stable within 20 minutes. The functionalization of CP was also studied in order to enhance the properties and drug loading capabilities of the polymers. The co-polymerization of poly(3,4-(2-methylene)propylenedioxythiophene) (PMProDot) with polystyrene (PS) and polyvinylcarbazole (PVK) through the highly reactive methylene group was achieved. The modified PMProDot nanotubes demonstrated response times that were two times faster than without modification. The modification of PEDOT nanotubes with polydopamine, a biocompatible polymer, was also investigated and achieved. In depth characterization of functionalized CP demonstrate the ability to fine tune the properties of the polymer in order to achieve the required therapeutic drug release profile.
Molecularly Imprinted Polymers: Novel Discovery for Drug Delivery.
Dhanashree, Surve; Priyanka, Mohite; Manisha, Karpe; Vilasrao, Kadam
2016-01-01
Molecularly imprinted polymers (MIP) are novel carriers synthesized by imprinting of a template over a polymer. This paper presents the recent application of MIP for diagnostic and therapeutic drug delivery. MIP owing to their 3D polymeric structures and due to bond formation with the template serves as a reservoir of active causing stimuli sensitive, enantioselective, targetted and/or controlled release. The review elaborates about key factors for optimization of MIP, controlled release by MIP for various administration routes various forms like patches, contact lenses, nanowires along with illustrations. To overcome the limitation of organic solvent usage causing increased cost, water compatible MIP and use of supercritical fluid technology for molecular imprinting were developed. Novel methods for developing water compatible MIP like pickering emulsion polymerization, co-precipitation method, cyclodextrin imprinting, surface grafting, controlled/living radical chain polymerization methods are described with illustration in this review. Various protein imprinting methods like bulk, epitope and surface imprinting are described along with illustrations. Further, application of MIP in microdevices as biomimetic sensing element for personalized therapy is elaborated. Although development and application of MIP in drug delivery is still at its infancy, constant efforts of researchers will lead to a novel intelligent drug delivery with commercial value. Efforts should be directed in developing solid oral dosage forms consisting of MIP for therapeutic protein and peptide delivery and targeted release of potent drugs addressing life threatening disease like cancer. Amalgamation of bio-engineering and pharmaceutical techniques can make these future prospects into reality.
Maki, Joanne; Guiot, Anne-Laure; Aubert, Michel; Brochier, Bernard; Cliquet, Florence; Hanlon, Cathleen A; King, Roni; Oertli, Ernest H; Rupprecht, Charles E; Schumacher, Caroline; Slate, Dennis; Yakobson, Boris; Wohlers, Anne; Lankau, Emily W
2017-09-22
RABORAL V-RG ® is an oral rabies vaccine bait that contains an attenuated ("modified-live") recombinant vaccinia virus vector vaccine expressing the rabies virus glycoprotein gene (V-RG). Approximately 250 million doses have been distributed globally since 1987 without any reports of adverse reactions in wildlife or domestic animals since the first licensed recombinant oral rabies vaccine (ORV) was released into the environment to immunize wildlife populations against rabies. V-RG is genetically stable, is not detected in the oral cavity beyond 48 h after ingestion, is not shed by vaccinates into the environment, and has been tested for thermostability under a range of laboratory and field conditions. Safety of V-RG has been evaluated in over 50 vertebrate species, including non-human primates, with no adverse effects observed regardless of route or dose. Immunogenicity and efficacy have been demonstrated under laboratory and field conditions in multiple target species (including fox, raccoon, coyote, skunk, raccoon dog, and jackal). The liquid vaccine is packaged inside edible baits (i.e., RABORAL V-RG, the vaccine-bait product) which are distributed into wildlife habitats for consumption by target species. Field application of RABORAL V-RG has contributed to the elimination of wildlife rabies from three European countries (Belgium, France and Luxembourg) and of the dog/coyote rabies virus variant from the United States of America (USA). An oral rabies vaccination program in west-central Texas has essentially eliminated the gray fox rabies virus variant from Texas with the last case reported in a cow during 2009. A long-term ORV barrier program in the USA using RABORAL V-RG is preventing substantial geographic expansion of the raccoon rabies virus variant. RABORAL V-RG has also been used to control wildlife rabies in Israel for more than a decade. This paper: (1) reviews the development and historical use of RABORAL V-RG; (2) highlights wildlife rabies control programs using the vaccine in multiple species and countries; and (3) discusses current and future challenges faced by programs seeking to control or eliminate wildlife rabies.
Lee, Yeo-Song; Song, Jae Guen; Lee, Sang Hoon; Han, Hyo-Kyung
2017-11-01
The present study aimed to develop the sustained-release oral dosage form of pelubiprofen (PEL) by using the blended mixture of 3-aminopropyl functionalized-magnesium phyllosilicate (aminoclay) and pH-independent polymers. The sustained-release solid dispersion (SRSD) was prepared by the solvent evaporation method and the optimal composition of SRSD was determined as the weight ratio of drug: Eudragit® RL PO: Eudragit® RS PO of 1:1:2 in the presence of 1% of aminoclay (SRSD(F6)). The dissolution profiles of SRSD(F6) were examined at different pHs and in the simulated intestinal fluids. The drug release from SRSD(F6) was limited at pH 1.2 and gradually increased at pH 6.8, resulting in the best fit to Higuchi equation. The sustained drug release from SRSD(F6) was also maintained in simulated intestinal fluid at fasted-state (FaSSIF) and fed-state (FeSSIF). The structural characteristics of SRSD(F6) were examined by using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR), indicating the change of drug crystallinity to an amorphous form. After oral administration in rats, SRSD(F6) exhibited the prolonged drug exposure in plasma. For both PEL and PEL-transOH (active metabolite), once a day dosing of SRSD(F6) achieved oral exposure (AUC) comparable to those from the multiple dosing (3 times a day) of untreated drug. In addition, the in vivo absorption of SRSD(F6) was well-correlated with the in vitro dissolution data, establishing a good level A in vitro/in vivo correlation. These results suggest that SRSD(F6) should be promising for the sustained-release of PEL, thereby reducing the dosing frequency.
Islam, Mohammad Ariful; Firdous, Jannatul; Choi, Yun-Jaie; Yun, Cheol-Heui; Cho, Chong-Su
2012-01-01
Chitosan, a natural biodegradable polymer, is of great interest in biomedical research due to its excellent properties including bioavailability, nontoxicity, high charge density, and mucoadhesivity, which creates immense potential for various pharmaceutical applications. It has gelling properties when it interacts with counterions such as sulfates or polyphosphates and when it crosslinks with glutaraldehyde. This characteristic facilitates its usefulness in the coating or entrapment of biochemicals, drugs, antigenic molecules as a vaccine candidate, and microorganisms. Therefore, chitosan together with the advance of nanotechnology can be effectively applied as a carrier system for vaccine delivery. In fact, chitosan microspheres have been studied as a promising carrier system for mucosal vaccination, especially via the oral and nasal route to induce enhanced immune responses. Moreover, the thiolated form of chitosan is of considerable interest due to its improved mucoadhesivity, permeability, stability, and controlled/extended release profile. This review describes the various methods used to design and synthesize chitosan microspheres and recent updates on their potential applications for oral and nasal delivery of vaccines. The potential use of thiolated chitosan microspheres as next-generation mucosal vaccine carriers is also discussed. PMID:23271909
Lapatinib nano-delivery systems: a promising future for breast cancer treatment.
Bonde, Gunjan Vasant; Yadav, Sarita Kumari; Chauhan, Sheetal; Mittal, Pooja; Ajmal, Gufran; Thokala, Sathish; Mishra, Brahmeshwar
2018-05-01
Breast cancer stands the second prominent cause of death among women. For its efficient treatment, Lapatinib (LAPA) was developed as a selective tyrosine kinase inhibitor of receptors, overexpressed by breast cancer cells. Various explored delivery strategies for LAPA indicated its controlled release with enhanced aqueous solubility, improved bioavailability, decreased plasma protein binding, reduced dose and toxicity to the other organs with maximized clinical efficacy, compared to its marketed tablet formulation. Areas covered: This comprehensive review deals with the survey, performed through different electronic databases, regarding various challenges and their solutions attained by fabricating delivery systems like nanoparticles, micelle, nanocapsules, nanochannels, and liposomes. It also covers the synthesis of novel LAPA-conjugates for diagnostic purpose. Expert opinion: Unfortunately, clinical use of LAPA is restricted because of its extensive albumin binding capacity, poor oral bioavailability, and poor aqueous solubility. LAPA is marketed as the oral tablet only. Therefore, it becomes imperative to formulate alternate efficient multiparticulate or nano-delivery systems for administration through non-oral routes, for active/passive targeting, and to scale-up by pharmaceutical scientists followed by their clinical trials by clinical experts. LAPA combinations with capecitabine and letrozole should also be tried for breast cancer treatment.
Once daily 5-aminosalicylic acid for the treatment of ulcerative colitis; are we there yet?
Lakatos, Peter Laszlo; Lakatos, Laszlo
2008-01-01
5-Aminosalicylate (5-ASA) agents remain the mainstay treatment in ulcerative colitis (UC). A number of oral 5-ASA agents are commercially available, including azo-bond pro-drugs such as sulfasalazine, olsalazine and balsalazide, and delayed- and controlled-release forms of mesalazine. In addition, the effectiveness of oral therapy relies on good compliance, which may be adversely affected by frequent daily dosing and a large number of tablets. Furthermore, poor adherence has been shown to be an important barrier to successful management of patients with UC. Recently, new, once daily formulations of mesalazine including the unique multi-matrix delivery system and mesalazine granules were proven to be efficacious in inducing and maintaining remission in mild-to-moderate UC, with a good safety profile comparable to that of other oral mesalazine formulations. In addition, they offer the advantage of low pill burden and may contribute to increased long-term compliance and treatment success in clinical practice and might potentially further contribute to a decline in the risk for UC-associated colon cancers. In this systematic review, the authors summarize the available literature on the short- and medium-term efficacy and safety of the new once daily mesalazine formulations.
[Effectiveness of new, once-daily 5-aminosalicylic acid in the treatment of ulcerative colitis].
Lakatos, Péter László; Lakatos, László
2009-03-01
5-aminosalicylate (5-ASA) agents remain the mainstay treatment in ulcerative colitis (UC). A number of oral 5-ASA agents is commercially available, including azo-bond pro-drugs such as sulfasalazine, olsalazine and balsalazide, and delayed- and controlled-release forms of mesalazine. In addition, the effectiveness of oral therapy relies on good compliance, which may be adversely affected by frequent daily dosing and a large number of tablets. Furthermore, poor adherence has been shown to be an important barrier to successful management of patients with UC. Recently, new, once-daily formulations of mesalazine including the unique multi-matrix delivery system and mesalazine granules were proven to be efficacious in inducing and maintaining remission in mild-to-moderate UC, with a good safety profile comparable to that of other oral mesalazine formulations. In addition, they offer the advantage of low pill burden and may contribute to increased long-term compliance and treatment success in clinical practice and might potentially further contribute to a decline in the risk for UC-associated colon cancers. In this systematic review, the authors summarize the available literature on the short- and medium-term efficacy and safety of the new once-daily mesalazine formulations.
Neves, Ana Rute; Lúcio, Marlene; Martins, Susana; Lima, José Luís Costa; Reis, Salette
2013-01-01
Introduction Resveratrol is a polyphenol found in grapes and red wines. Interest in this polyphenol has increased due to its pharmacological cardio- and neuroprotective, chemopreventive, and antiaging effects, among others. Nevertheless, its pharmacokinetic properties are less favorable, since the compound has poor bioavailability, low water solubility, and is chemically unstable. To overcome these problems, we developed two novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance resveratrol’s oral bioavailability for further use in medicines, supplements, and nutraceuticals. Methods and materials Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) loaded with resveratrol were successfully produced by a modified hot homogenization technique. These were completely characterized to evaluate the quality of the developed resveratrol-loaded nanoparticles. Results Cryo-scanning electron microscopy morphology studies showed spherical and uniform nanoparticles with a smooth surface. An average resveratrol entrapment efficiency of ~70% was obtained for both SLNs and NLCs. Dynamic light scattering measurements gave a Z-average of 150–250 nm, polydispersity index of ~0.2, and a highly negative zeta potential of around −30 mV with no statistically significant differences in the presence of resveratrol. These characteristics remained unchanged for at least 2 months, suggesting good stability. Differential scanning calorimetry studies confirmed the solid state of the SLNs and NLCs at both room and body temperatures. The NLCs had a less ordered crystalline structure conferred by the inclusion of the liquid lipid, since they had lower values for phase transition temperature, melting enthalpy, and the recrystallization index. The presence of resveratrol induced a disorder in the crystal structure of the nanoparticles, suggesting a favoring of its entrapment. The in vitro release studies on conditions of storage showed a negligible resveratrol release over several hours for both nanosystems and the in vitro simulation of gastrointestinal transit showed that the resveratrol remained mostly associated with the lipid nanoparticles after their incubation in digestive fluids. Conclusion Both nanodelivery systems can be considered suitable carriers for oral administration, conferring protection to the incorporated resveratrol and allowing a controlled release after uptake. PMID:23326193
Preparation and in vitro evaluation of hydrophilic fenretinide nanoparticles.
Ledet, Grace A; Graves, Richard A; Glotser, Elena Y; Mandal, Tarun K; Bostanian, Levon A
2015-02-20
Fenretinide is an effective anti-cancer drug with high in vitro cytotoxicity and low in vivo systemic toxicity. In clinical trials, fenretinide has shown poor therapeutic efficacy following oral administration - attributed to its low bioavailability and solubility. The long term goal of this project is to develop a formulation for the oral delivery of fenretinide. The purpose of this part of the study was to prepare and characterize hydrophilic nanoparticle formulations of fenretinide. Three different ratios of polyvinyl pyrrolidone (PVP) to fenretinide were used, namely, 3:1, 4:1, and 5:1. Both drug and polymer were dissolved in a mixture of methanol and dichloromethane (2:23 v/v). Rotary evaporation was used to remove the solvents, and, following reconstitution with water, a high pressure homogenizer was used to form nanoparticles. The particle size and polydispersity index were measured before and after lyophilization. The formulations were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray powder diffraction (XRPD). The effectiveness of the formulations was assessed by release studies and Caco-2 cell permeability assays. As the PVP content increased, the recovered particle size following lyophilization became more consistent with the pre-lyophilization particle size, especially for those formulations with less lactose. The DSC scans of the formulations did not show any fenretinide melting endotherms, indicating that the drug was either present in an amorphous form in the formulation or that a solid solution of the drug in PVP had formed. For the release studies, the highest drug release among the formulations was 249.2±35.5ng/mL for the formulation with 4:1 polymer-to-drug. When the permeability of the formulations was evaluated in a Caco-2 cell model, the mean normalized flux for each treatment group was significantly higher (p<0.05) from the fenretinide control. The formulation containing 4:1 polymer-to-drug ratio and 6:5 lactose-to-formulation ratio emerged as the optimal choice for further evaluation as a potential oral delivery formulation for fenretinide. Copyright © 2014 Elsevier B.V. All rights reserved.
Eldor, Roy; Kidron, Miriam; Greenberg-Shushlav, Yael; Arbit, Ehud
2010-01-01
Background Glucagon-like peptide-1 (GLP-1) and its analogs are associated with a gamut of physiological processes, including induction of insulin release, support of normoglycemia, β-cell function preservation, improved lipid profiles, and increased insulin sensitivity. Thus, GLP-1 harbors significant therapeutic potential for regulating type 2 diabetes mellitus, where its physiological impact is markedly impaired. To date, GLP-1 analogs are only available as injectable dosage forms, and its oral delivery is expected to provide physiological portal/peripheral concentration ratios while fostering patient compliance and adherence. Methods Healthy, fasting, enterically cannulated pigs and beagle canines were administered a single dose of the exenatide-based ORMD-0901 formulation 30 min before oral glucose challenges. Blood samples were collected every 15 min for evaluation of ORMD-0901 safety and efficacy in regulating postchallenge glucose excursions. Results Enterically delivered ORMD-0901 was well tolerated by all animals. ORMD-0901 formulations RG3 and AG2 led to reduced glucose excursions in pigs when delivered prior to a 5 g/kg glucose challenge, where area under the curve (AUC)0–120 values were up to 43% lower than in control sessions. All canines challenged with a glucose load with no prior exposure to exenatide, demonstrated higher AUC0–150 values than in their exenatide-treated sessions. Subcutaneous exenatide delivery amounted to a 51% reduction in mean glucose AUC0–150, while formulations AG4 and AG3 prompted 43% and 29% reductions, respectively. Conclusions When delivered enterically, GLP-1 (ORMD-0901) is absorbed from the canine and porcine gastrointestinal tracts and retains its biological activity. Further development of this drug class in an oral dosage form is expected to enhance diabetes control and patient compliance. PMID:21129350
Rubin, David T; Cohen, Russell D; Sandborn, William J; Lichtenstein, Gary R; Axler, Jeffrey; Riddell, Robert H; Zhu, Cindy; Barrett, Andrew C; Bortey, Enoch; Forbes, William P
2017-07-01
Safety and efficacy of budesonide multimatrix, an oral extended-release second-generation corticosteroid designed for targeted delivery throughout the colon, were examined for induction of remission in patients with mild to moderate ulcerative colitis refractory to baseline mesalamine therapy. A randomised, double-blind, placebo-controlled, multicentre trial evaluated efficacy and safety of budesonide multimatrix for induction of remission [ulcerative colitis disease activity index score ≥ 4 and ≤ 10] in 510 adults randomised to once-daily oral budesonide multimatrix 9 mg or placebo for 8 weeks. Patients continued baseline treatment with oral mesalamine ≥ 2.4 g/day. Combined clinical and endoscopic remission at Week 8 was achieved by 13.0% and 7.5% of patients receiving budesonide multimatrix [n = 230] or placebo [n = 228], respectively, in the modified intention-to-treat population [p = 0.049]. Clinical remission [ulcerative colitis disease activity index rectal bleeding and stool frequency subscale scores of 0] was similar in both groups [p = 0.70]. More patients receiving budesonide multimatrix vs placebo achieved endoscopic remission [ulcerative colitis disease activity index mucosal appearance subscale score of 0; 20.0% vs 12.3%; p = 0.02] and histological healing [27.0% vs 17.5%; p = 0.02]. Adverse event rates were similar [budesonide multimatrix, 31.8%; placebo, 27.1%]. Mean morning cortisol concentrations decreased at Weeks 2, 4, and 8 with budesonide multimatrix but remained within the normal range. Budesonide multimatrix was safe and efficacious for inducing clinical and endoscopic remission for mild to moderate ulcerative colitis refractory to oral mesalamine therapy. Copyright © 2017 European Crohn's and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com