21 CFR 330.3 - Imprinting of solid oral dosage form drug products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form drug...
21 CFR 330.3 - Imprinting of solid oral dosage form drug products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Imprinting of solid oral dosage form drug products... AS SAFE AND EFFECTIVE AND NOT MISBRANDED General Provisions § 330.3 Imprinting of solid oral dosage form drug products. A requirement to imprint an identification code on solid oral dosage form drug...
21 CFR 520.905 - Fenbendazole oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Fenbendazole oral dosage forms. 520.905 Section 520.905 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Fenbendazole oral dosage forms. ...
Christmann, V; Rosenberg, J; Seega, J; Lehr, C M
1997-08-01
Bioavailability of orally administered drugs is much influenced by the behavior, performance and fate of the dosage form within the gastrointestinal (GI) tract. Therefore, MRI in vivo methods that allow for the simultaneous visualization of solid oral dosage forms and anatomical structures of the GI tract have been investigated. Oral contrast agents containing Gd-DTPA were used to depict the lumen of the digestive organs. Solid oral dosage forms were visualized in a rat model by a 1H-MRI double contrast technique (magnetite-labelled microtablets) and a combination of 1H- and 19F-MRI (fluorine-labelled minicapsules). Simultaneous visualization of solid oral dosage forms and the GI environment in the rat was possible using MRI. Microtablets could reproducibly be monitored in the rat stomach and in the intestines using a 1H-MRI double contrast technique. Fluorine-labelled minicapsules were detectable in the rat stomach by a combination of 1H- and 19F-MRI in vivo. The in vivo 1H-MRI double contrast technique described allows solid oral dosage forms in the rat GI tract to be depicted. Solid dosage forms can easily be labelled by incorporating trace amounts of non-toxic iron oxide (magnetite) particles. 1H-MRI is a promising tool for observing such pharmaceutical dosage forms in humans. Combined 1H- and 19F-MRI offer a means of unambiguously localizing solid oral dosage forms in more distal parts of the GI tract. Studies correlating MRI examinations with drug plasma levels could provide valuable information for the development of pharmaceutical dosage forms.
21 CFR 520.1044 - Gentamicin sulfate oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Gentamicin sulfate oral dosage forms. 520.1044 Section 520.1044 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... sulfate oral dosage forms. ...
21 CFR 520.1044 - Gentamicin sulfate oral dosage forms.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Gentamicin sulfate oral dosage forms. 520.1044 Section 520.1044 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... sulfate oral dosage forms. ...
21 CFR 520.1044 - Gentamicin sulfate oral dosage forms.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gentamicin sulfate oral dosage forms. 520.1044 Section 520.1044 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... sulfate oral dosage forms. ...
21 CFR 520.1044 - Gentamicin sulfate oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentamicin sulfate oral dosage forms. 520.1044 Section 520.1044 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... sulfate oral dosage forms. ...
21 CFR 520.88 - Amoxicillin oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Amoxicillin oral dosage forms. 520.88 Section 520.88 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.88 Amoxicillin oral...
21 CFR 520.90 - Ampicillin oral dosage forms.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ampicillin oral dosage forms. 520.90 Section 520.90 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90 Ampicillin oral...
21 CFR 520.154 - Bacitracin oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Bacitracin oral dosage forms. 520.154 Section 520.154 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.154 Bacitracin oral...
21 CFR 520.45 - Albendazole oral dosage forms.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Albendazole oral dosage forms. 520.45 Section 520.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.45 Albendazole oral...
21 CFR 520.88 - Amoxicillin oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Amoxicillin oral dosage forms. 520.88 Section 520.88 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.88 Amoxicillin oral...
21 CFR 520.45 - Albendazole oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Albendazole oral dosage forms. 520.45 Section 520.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.45 Albendazole oral...
21 CFR 520.45 - Albendazole oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Albendazole oral dosage forms. 520.45 Section 520.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.45 Albendazole oral...
21 CFR 520.90 - Ampicillin oral dosage forms.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ampicillin oral dosage forms. 520.90 Section 520.90 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90 Ampicillin oral...
21 CFR 520.1120 - Haloxon oral dosage forms.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Haloxon oral dosage forms. 520.1120 Section 520.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1120 Haloxon oral...
21 CFR 520.90 - Ampicillin oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ampicillin oral dosage forms. 520.90 Section 520.90 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90 Ampicillin oral...
21 CFR 520.903 - Febantel oral dosage forms.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Febantel oral dosage forms. 520.903 Section 520.903 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.903 Febantel oral...
21 CFR 520.88 - Amoxicillin oral dosage forms.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Amoxicillin oral dosage forms. 520.88 Section 520.88 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.88 Amoxicillin oral...
21 CFR 520.38 - Albendazole oral dosage forms.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Albendazole oral dosage forms. 520.38 Section 520.38 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.38 Albendazole oral...
21 CFR 520.90 - Ampicillin oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ampicillin oral dosage forms. 520.90 Section 520.90 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90 Ampicillin oral...
21 CFR 520.154 - Bacitracin oral dosage forms.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Bacitracin oral dosage forms. 520.154 Section 520.154 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.154 Bacitracin oral...
21 CFR 520.154 - Bacitracin oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin oral dosage forms. 520.154 Section 520.154 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.154 Bacitracin oral...
21 CFR 520.154 - Bacitracin oral dosage forms.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Bacitracin oral dosage forms. 520.154 Section 520.154 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.154 Bacitracin oral...
21 CFR 520.88 - Amoxicillin oral dosage forms.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Amoxicillin oral dosage forms. 520.88 Section 520.88 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.88 Amoxicillin oral...
21 CFR 520.1696 - Penicillin oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Penicillin oral dosage forms. 520.1696 Section 520.1696 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1696 Penicillin oral...
21 CFR 520.1696 - Penicillin oral dosage forms.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Penicillin oral dosage forms. 520.1696 Section 520.1696 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1696 Penicillin oral...
21 CFR 520.1696 - Penicillin oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin oral dosage forms. 520.1696 Section 520.1696 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1696 Penicillin oral...
21 CFR 520.1802 - Piperazine-carbon disulfide complex oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Piperazine-carbon disulfide complex oral dosage forms. 520.1802 Section 520.1802 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... § 520.1802 Piperazine-carbon disulfide complex oral dosage forms. ...
21 CFR 520.390 - Chloramphenicol oral dosage forms.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Chloramphenicol oral dosage forms. 520.390 Section 520.390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390...
21 CFR 520.445 - Chlortetracycline oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Chlortetracycline oral dosage forms. 520.445 Section 520.445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.445...
21 CFR 520.540 - Dexamethasone oral dosage forms.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dexamethasone oral dosage forms. 520.540 Section 520.540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.540...
21 CFR 520.540 - Dexamethasone oral dosage forms.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dexamethasone oral dosage forms. 520.540 Section 520.540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.540...
21 CFR 520.300 - Cambendazole oral dosage forms.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Cambendazole oral dosage forms. 520.300 Section 520.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.300...
21 CFR 520.300 - Cambendazole oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Cambendazole oral dosage forms. 520.300 Section 520.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.300...
21 CFR 520.540 - Dexamethasone oral dosage forms.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dexamethasone oral dosage forms. 520.540 Section 520.540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.540...
21 CFR 520.390 - Chloramphenicol oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Chloramphenicol oral dosage forms. 520.390 Section 520.390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390...
21 CFR 520.540 - Dexamethasone oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dexamethasone oral dosage forms. 520.540 Section 520.540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.540...
21 CFR 520.620 - Diethylcarbamazine oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Diethylcarbamazine oral dosage forms. 520.620 Section 520.620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.620...
21 CFR 520.390 - Chloramphenicol oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Chloramphenicol oral dosage forms. 520.390 Section 520.390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390...
21 CFR 520.540 - Dexamethasone oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dexamethasone oral dosage forms. 520.540 Section 520.540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.540...
21 CFR 520.620 - Diethylcarbamazine oral dosage forms.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Diethylcarbamazine oral dosage forms. 520.620 Section 520.620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.620...
21 CFR 520.620 - Diethylcarbamazine oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diethylcarbamazine oral dosage forms. 520.620 Section 520.620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.620...
21 CFR 520.390 - Chloramphenicol oral dosage forms.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Chloramphenicol oral dosage forms. 520.390 Section 520.390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390...
21 CFR 520.620 - Diethylcarbamazine oral dosage forms.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Diethylcarbamazine oral dosage forms. 520.620 Section 520.620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.620...
21 CFR 520.445 - Chlortetracycline oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Chlortetracycline oral dosage forms. 520.445 Section 520.445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.445...
21 CFR 520.300 - Cambendazole oral dosage forms.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Cambendazole oral dosage forms. 520.300 Section 520.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.300...
21 CFR 520.620 - Diethylcarbamazine oral dosage forms.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Diethylcarbamazine oral dosage forms. 520.620 Section 520.620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.620...
21 CFR 520.300 - Cambendazole oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cambendazole oral dosage forms. 520.300 Section 520.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.300...
21 CFR 520.905 - Fenbendazole oral dosage forms.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Fenbendazole oral dosage forms. 520.905 Section 520.905 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.905...
21 CFR 520.622 - Diethylcarbamazine citrate oral dosage forms.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Diethylcarbamazine citrate oral dosage forms. 520.622 Section 520.622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.622...
21 CFR 520.622 - Diethylcarbamazine citrate oral dosage forms.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Diethylcarbamazine citrate oral dosage forms. 520.622 Section 520.622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.622...
21 CFR 520.763 - Dithiazanine iodide oral dosage forms.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763...
21 CFR 520.82 - Aminopropazine fumarate oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aminopropazine fumarate oral dosage forms. 520.82 Section 520.82 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.82...
21 CFR 520.622 - Diethylcarbamazine citrate oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diethylcarbamazine citrate oral dosage forms. 520.622 Section 520.622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.622...
21 CFR 520.1044 - Gentamicin sulfate oral dosage forms.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Gentamicin sulfate oral dosage forms. 520.1044 Section 520.1044 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1044 Gentamicin...
21 CFR 520.763 - Dithiazanine iodide oral dosage forms.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763...
21 CFR 520.82 - Aminopropazine fumarate oral dosage forms.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aminopropazine fumarate oral dosage forms. 520.82 Section 520.82 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.82...
21 CFR 520.763 - Dithiazanine iodide oral dosage forms.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763...
21 CFR 520.622 - Diethylcarbamazine citrate oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Diethylcarbamazine citrate oral dosage forms. 520.622 Section 520.622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.622...
21 CFR 520.82 - Aminopropazine fumarate oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aminopropazine fumarate oral dosage forms. 520.82 Section 520.82 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.82...
21 CFR 520.763 - Dithiazanine iodide oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763...
21 CFR 520.763 - Dithiazanine iodide oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763...
21 CFR 520.1242 - Levamisole hydrochloride oral dosage forms.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Levamisole hydrochloride oral dosage forms. 520.1242 Section 520.1242 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1242...
21 CFR 520.622 - Diethylcarbamazine citrate oral dosage forms.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Diethylcarbamazine citrate oral dosage forms. 520.622 Section 520.622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.622...
21 CFR 520.82 - Aminopropazine fumarate oral dosage forms.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aminopropazine fumarate oral dosage forms. 520.82 Section 520.82 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.82...
Applications of Natural Polymeric Materials in Solid Oral Modified-Release Dosage Forms.
Li, Liang; Zhang, Xin; Gu, Xiangqin; Mao, Shirui
2015-01-01
Solid oral modified-release dosage forms provide numerous advantages for drug delivery compared to dosage forms where the drugs are released and absorbed rapidly following ingestion. Natural polymers are of particular interest as drug carriers due to their good safety profile, biocompatibility, biodegradability, and rich sources. This review described the current applications of important natural polymers, such as chitosan, alginate, pectin, guar gum, and xanthan gum, in solid oral modified-release dosage forms. It was shown that natural polymers have been widely used to fabricate solid oral modified-release dosage forms such as matrix tablets, pellets and beads, and especially oral drug delivery systems such as gastroretentive and colon drug delivery systems. Moreover, chemical modifications could overcome the shortcomings associated with the use of natural polymers, and the combination of two or more polymers presented further advantages compared with that of single polymer. In conclusion, natural polymers and modified natural polymers have promising applications in solid oral modified-release dosage forms. However, commercial products based on them are still limited. To accelerate the application of natural polymers in commercial products, in vivo behavior of natural polymers-based solid oral modified-release dosage forms should be deeply investigated, and meanwhile quality of the natural polymers should be controlled strictly, and the influence of formulation and process parameters need to be understood intensively.
Soft gelatin capsules (softgels).
Gullapalli, Rampurna Prasad
2010-10-01
It is estimated that more than 40% of new chemical entities (NCEs) coming out of the current drug discovery process have poor biopharmaceutical properties, such as low aqueous solubility and/or permeability. These suboptimal properties pose significant challenges for the oral absorption of the compounds and for the development of orally bioavailable dosage forms. Development of soft gelatin capsule (softgel) dosage form is of growing interest for the oral delivery of poorly water soluble compounds (BCS class II or class IV). The softgel dosage form offers several advantages over other oral dosage forms, such as delivering a liquid matrix designed to solubilize and improve the oral bioavailability of a poorly soluble compound as a unit dose solid dosage form, delivering low and ultra-low doses of a compound, delivering a low melting compound, and minimizing potential generation of dust during manufacturing and thereby improving the safety of production personnel. However, due to the very dynamic nature of the softgel dosage form, its development and stability during its shelf-life are fraught with several challenges. The goal of the current review is to provide an in-depth discussion on the softgel dosage form to formulation scientists who are considering developing softgels for therapeutic compounds.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-12
...] Guidance for Industry on Incorporation of Physical-Chemical Identifiers Into Solid Oral Dosage Form Drug... entitled ``Incorporation of Physical-Chemical Identifiers Into Solid Oral Dosage Form Drug Products for Anticounterfeiting.'' This guidance provides recommendations on design considerations for incorporating physical...
21 CFR 520.1802 - Piperazine-carbon disulfide complex oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Piperazine-carbon disulfide complex oral dosage forms. 520.1802 Section 520.1802 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1802 Piperazine-carbon disulfide comple...
Biorelevant in vitro performance testing of orally administered dosage forms-workshop report.
Reppas, Christos; Friedel, Horst-Dieter; Barker, Amy R; Buhse, Lucinda F; Cecil, Todd L; Keitel, Susanne; Kraemer, Johannes; Morris, J Michael; Shah, Vinod P; Stickelmeyer, Mary P; Yomota, Chikako; Brown, Cynthia K
2014-07-01
Biorelevant in vitro performance testing of orally administered dosage forms has become an important tool for the assessment of drug product in vivo behavior. An in vitro performance test which mimics the intraluminal performance of an oral dosage form is termed biorelevant. Biorelevant tests have been utilized to decrease the number of in vivo studies required during the drug development process and to mitigate the risk related to in vivo bioequivalence studies. This report reviews the ability of current in vitro performance tests to predict in vivo performance and generate successful in vitro and in vivo correlations for oral dosage forms. It also summarizes efforts to improve the predictability of biorelevant tests. The report is based on the presentations at the 2013 workshop, Biorelevant In Vitro Performance Testing of Orally Administered Dosage Forms, in Washington, DC, sponsored by the FIP Dissolution/Drug Release Focus Group in partnership with the American Association of Pharmaceutical Scientists (AAPS) and a symposium at the AAPS 2012 Annual meeting on the same topic.
Oral drug delivery in personalized medicine: unmet needs and novel approaches.
Wening, Klaus; Breitkreutz, Jörg
2011-02-14
Increasing knowledge into personalized medicine has demonstrated the need for individual dosing. Drug dosage forms are urgently needed enabling an individual therapy, especially for oral drug delivery. This review is focusing on approaches for solid and liquid oral dosage forms for individual dosing. The proposed dosage forms and devices may be distinguished into assembling and partition concepts and have been categorized regarding their applicability, costs, dose flexibility and potential benefits. Opportunities, challenges and further unmet needs are elaborated and critically discussed. Liquid dosage forms can be accurately dosed by novel dropping tubes or oral syringes, but less precisely by dosing spoons and cups. Breaking scored tablets into fragments show major risks such as inaccurate dosing, formation of potent dust and stability issues of the residual segments. Novel approaches are proposed for solid dosage forms enabling a flexible and appropriate therapy such as various dispensers for multiparticulate drug formulations. However, most of the proposals still have to prove their applicability in practice. Promising concepts are the solid dosage pen and drug-loaded oral films which can be cut in individual sections enabling freely selectable doses. Further research and development are required for novel dosage forms and medical devices appropriate for individualized therapy. Copyright © 2010 Elsevier B.V. All rights reserved.
Weitschies, Werner; Blume, Henning; Mönnikes, Hubert
2010-01-01
Knowledge about the performance of dosage forms in the gastrointestinal tract is essential for the development of new oral delivery systems, as well as for the choice of the optimal formulation technology. Magnetic Marker Monitoring (MMM) is an imaging technology for the investigation of the behaviour of solid oral dosage forms within the gastrointestinal tract, which is based on the labelling of solid dosage forms as a magnetic dipole and determination of the location, orientation and strength of the dipole after oral administration using measurement equipment and localization methods that are established in biomagnetism. MMM enables the investigation of the performance of solid dosage forms in the gastrointestinal tract with a temporal resolution in the range of a few milliseconds and a spatial resolution in 3D in the range of some millimetres. Thereby, MMM provides real-time tracking of dosage forms in the gastrointestinal tract. MMM is also suitable for the determination of dosage form disintegration and for quantitative measurement of in vivo drug release in case of appropriate extended release dosage forms like hydrogel-forming matrix tablets. The combination of MMM with pharmacokinetic measurements (pharmacomagnetography) enables the determination of in vitro-in vivo correlations (IVIC) and the delineation of absorption sites in the gastrointestinal tract. Copyright 2009 Elsevier B.V. All rights reserved.
Oral Medicines for Children in the European Paediatric Investigation Plans
van Riet – Nales, Diana A.; Römkens, Erwin G. A. W.; Saint-Raymond, Agnes; Kozarewicz, Piotr; Schobben, Alfred F. A. M.; Egberts, Toine C. G.; Rademaker, Carin M. A.
2014-01-01
Introduction Pharmaceutical industry is no longer allowed to develop new medicines for use in adults only, as the 2007 Paediatric Regulation requires children to be considered also. The plans for such paediatric development called Paediatric Investigation Plans (PIPs) are subject to agreement by the European Medicines Agency (EMA) and its Paediatric Committee (PDCO). The aim of this study was to evaluate the key characteristics of oral paediatric medicines in the PIPs and the changes implemented as a result of the EMA/PDCO review. Methods All PIPs agreed by 31 December 2011 were identified through a proprietary EMA-database. PIPs were included if they contained an agreed proposal to develop an oral medicine for children 0 to 11 years. Information on the therapeutic area (EMA classification system); target age range (as defined by industry) and pharmaceutical characteristics (active substance, dosage form(s) as listed in the PIP, strength of each dosage form, excipients in each strength of each dosage form) was extracted from the EMA website or the EMA/PDCO assessment reports. Results A hundred and fifty PIPs were included corresponding to 16 therapeutic areas and 220 oral dosage forms in 431 strengths/compositions. Eighty-two PIPs (37%) included tablets, 44 (20%) liquids and 35 (16%) dosage forms with a specific composition/strength that were stored as a solid but swallowed as a liquid e.g. dispersible tablets. The EMA/PDCO review resulted in an increase of 13 (207 to 220) oral paediatric dosage forms and 44 (387 to 431) dosage forms with a specific composition/strength. For many PIPs, the target age range was widened and the excipient composition and usability aspects modified. Conclusion The EMA/PDCO review realized an increase in the number of requirements for the development of oral dosage forms and a larger increase in the number of dosage forms with a specific composition/strength, both targeting younger children. Changes to their pharmaceutical design were less profound. PMID:24897509
Oral medicines for children in the European paediatric investigation plans.
van Riet-Nales, Diana A; Römkens, Erwin G A W; Saint-Raymond, Agnes; Kozarewicz, Piotr; Schobben, Alfred F A M; Egberts, Toine C G; Rademaker, Carin M A
2014-01-01
Pharmaceutical industry is no longer allowed to develop new medicines for use in adults only, as the 2007 Paediatric Regulation requires children to be considered also. The plans for such paediatric development called Paediatric Investigation Plans (PIPs) are subject to agreement by the European Medicines Agency (EMA) and its Paediatric Committee (PDCO). The aim of this study was to evaluate the key characteristics of oral paediatric medicines in the PIPs and the changes implemented as a result of the EMA/PDCO review. All PIPs agreed by 31 December 2011 were identified through a proprietary EMA-database. PIPs were included if they contained an agreed proposal to develop an oral medicine for children 0 to 11 years. Information on the therapeutic area (EMA classification system); target age range (as defined by industry) and pharmaceutical characteristics (active substance, dosage form(s) as listed in the PIP, strength of each dosage form, excipients in each strength of each dosage form) was extracted from the EMA website or the EMA/PDCO assessment reports. A hundred and fifty PIPs were included corresponding to 16 therapeutic areas and 220 oral dosage forms in 431 strengths/compositions. Eighty-two PIPs (37%) included tablets, 44 (20%) liquids and 35 (16%) dosage forms with a specific composition/strength that were stored as a solid but swallowed as a liquid e.g. dispersible tablets. The EMA/PDCO review resulted in an increase of 13 (207 to 220) oral paediatric dosage forms and 44 (387 to 431) dosage forms with a specific composition/strength. For many PIPs, the target age range was widened and the excipient composition and usability aspects modified. The EMA/PDCO review realized an increase in the number of requirements for the development of oral dosage forms and a larger increase in the number of dosage forms with a specific composition/strength, both targeting younger children. Changes to their pharmaceutical design were less profound.
[Oral controlled release dosage forms].
Mehuys, Els; Vervaet, Chris
2010-06-01
Several technologies to control drug release from oral dosage forms have been developed. Drug release can be regulated in several ways: sustained release, whereby the drug is released slowly over a prolonged period of time, postponed release, whereby drug release is delayed until passage from the stomach into the intestine (via enteric coating), and targeted release, whereby the drug is targeted to a specific location of the gastrointestinal tract. This article reviews the various oral controlled release dosage forms on the market.
Reisenwitz, T H; Wimbish, G J
1996-01-01
The capsule dosage form in nonprescription pharmaceuticals persists as being one of the most vulnerable to product tampering. This study examines consumer preference toward three solid oral dosage forms (capsules, caplets, and tablets) in nonprescription products. Thirteen independent variables representing dosage form attributes are measured on semantic differential scales. The data are analyzed using analysis of variance (ANOVA) and factor analysis. Implications for the pharmaceutical marketer are noted. Future directions for research are also outlined.
An introduction to fast dissolving oral thin film drug delivery systems: a review.
Kathpalia, Harsha; Gupte, Aasavari
2013-12-01
Many pharmaceutical companies are switching their products from tablets to fast dissolving oral thin films (OTFs). Films have all the advantages of tablets (precise dosage, easy administration) and those of liquid dosage forms (easy swallowing, rapid bioavailability). Statistics have shown that four out of five patients prefer orally disintegrating dosage forms over conventional solid oral dosages forms. Pediatric, geriatric, bedridden, emetic patients and those with Central Nervous System disorders, have difficulty in swallowing or chewing solid dosage forms. Many of these patients are non-compliant in administering solid dosage forms due to fear of choking. OTFs when placed on the tip or the floor of the tongue are instantly wet by saliva. As a result, OTFs rapidly hydrate and then disintegrate and/or dissolve to release the medication for local and/or systemic absorption. This technology provides a good platform for patent non- infringing product development and for increasing the patent life-cycle of the existing products. The application of fast dissolving oral thin films is not only limited to buccal fast dissolving system, but also expands to other applications like gastroretentive, sublingual delivery systems. This review highlights the composition including the details of various types of polymers both natural and synthetic, the different types of manufacturing techniques, packaging materials and evaluation tests for the OTFs.
Semi-solid dosage form of clonazepam for rapid oral mucosal absorption.
Sakata, Osamu; Machida, Yoshiharu; Onishi, Hiraku
2011-07-01
In order to obtain an alternative to the intravenous (i.v.) dosage form of clonazepam (CZ), an oral droplet formulation of CZ was developed previously; however, the droplet was physically unstable. Therefore, in the present study, it was attempted to develop an easily-handled dosage form, which was more physically stable and allowed rapid drug absorption from oral mucosa. A semi-solid dosage form, composed of polyethylene glycol 1500 (PEG), CZ, and oleic acid (OA) at 37/1/2 (w/w) and named PEG/CZ/OA, and a semi-solid dosage form containing PEG and CZ at 39/1 (w/w), called PEG/CZ, were prepared. Their physical stability in air at room temperature and oral mucosal absorption in rats were investigated. The semi-solid dosage forms were much more stable physically than the droplet, that is, no recrystallization of CZ was observed for at least 8 days. The effective concentration for humans and rats (20 ng/mL or more) was achieved within 30 min after buccal administration for both PEG/CZ/OA and PEG/CZ. The plasma concentration increased gradually and less varied at each time point for PEG/CZ/OA. PEG/CZ/OA was found to show more rapid and higher absorption of CZ in buccal administration than in sublingual administration. Buccal administration with the semi-solid dosage PEG/CZ with or without OA was suggested to be a possibly useful novel dosage form as an alternative to i.v. injection.
Mc Gillicuddy, Aoife; Kelly, Maria; Crean, Abina M; Sahm, Laura J
The objective of this systematic review was to synthesize the available qualitative evidence on the knowledge, attitudes and beliefs of adult patients, healthcare professionals and carers about oral dosage form modification. A systematic review and synthesis of qualitative studies was undertaken, utilising the thematic synthesis approach. The following databases were searched from inception to September 2015: PubMed, Medline (EBSCO), EMBASE, CINAHL, PsycINFO, Web of Science, ProQuest Databases, Scopus, Turning Research Into Practice (TRIP), Cochrane Central Register of Controlled Trials (CENTRAL) and the Cochrane Database of Systematic Reviews (CDSR). Citation tracking and searching the references lists of included studies was also undertaken. Grey literature was searched using the OpenGrey database, internet searching and personal knowledge. An updated search was undertaken in June 2016. Studies meeting the following criteria were eligible for inclusion; (i) used qualitative data collection and analysis methods; (ii) full-text was available in English; (iii) included adult patients who require oral dosage forms to be modified to meet their needs or; (iv) carers or healthcare professionals of patients who require oral dosage forms to be modified. Two reviewers independently appraised the quality of the included studies using the Critical Appraisal Skills Programme Checklist. A thematic synthesis was conducted and analytical themes were generated. Of 5455 records screened, seven studies were eligible for inclusion; three involved healthcare professionals and the remaining four studies involved patients. Four analytical themes emerged from the thematic synthesis: (i) patient-centred individuality and variability; (ii) communication; (iii) knowledge and uncertainty and; (iv) complexity. The variability of individual patient's requirements, poor communication practices and lack of knowledge about oral dosage form modification, when combined with the complex and multi-faceted healthcare environment complicate decision making regarding oral dosage form modification and administration. This systematic review has highlighted the key factors influencing the knowledge, attitudes and beliefs of patients and healthcare professionals about oral dosage form modifications. The findings suggest that in order to optimise oral medicine modification practices the needs of individual patients should be routinely and systematically assessed and decision-making should be supported by evidence based recommendations with multidisciplinary input. Further research is needed to optimise oral dosage form modification practices and the factors identified in this review should be considered in the development of future interventions. Copyright © 2016 Elsevier Inc. All rights reserved.
Orubu, Samuel; Okwelogu, Chinyere; Opanuga, Olabisi; Tuleu, Catherine
2018-02-05
The World Health Organization (WHO) recommends flexible solid oral dosage forms such as dispersible tablet as the preferred formulation for (young) children, especially in developing/low- and middle-income countries, LMIC. The aim of this study was to assess experience, perceptions of acceptability, and formulation preferences, among 10 oral dosage forms for young children in a sample of end-users in Nigeria as an exemplar LMIC. Using a semi-structured and validated questionnaire, 148 caregivers were surveyed. Acceptability was assessed by level of liking using a 3-point Likert scale and ease of administration. Preference was assessed from participants' dosage form of choice. Oral dosage forms assessed were those mentioned in the British National Formulary for children, 2013. The formulation perceived as the most acceptable was the chewable/suckable tablet. However, preference was for liquids. Specifically with the dispersible tablet, whilst 89% (n=111) of caregivers of young children found it easy-to-administer, only 50% of children liked it. There is a gap between the proposal of dispersible tablet as the preferred dosage form for young children and caregivers' perceptions of acceptability and preference. Educational strategies to increase acceptability of dispersible tablets as the preferred formulation for young children would be required. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel delivery device for monolithical solid oral dosage forms for personalized medicine.
Wening, Klaus; Breitkreutz, Jörg
2010-08-16
There is an evident need for solid oral dosage forms allowing patients' tailor-made dosing due to variations in metabolization or small therapeutic indexes of drug substances. The objective of this work is the development of a device equipped with a novel solid dosage form, containing carvedilol as model drug, for the delivery of monolithical drug carriers in individual doses. The device was developed and constructed enabling an exact feed rate and dose adjustment by a cutting mechanism. A twin-screw extruder was used for producing cylindrical solid dosage forms. Divided doses were characterized by mass variation, cutting behavior and drug dissolution in order to investigate their applicability for practical use. Different formulations could be extruded obtaining straight cylindrical rods, which are divisible in exact slices by using the novel device. Forces below 20 N were needed to divide doses which comply with pharmacopoeial specification "conformity of mass". The developed formulations exhibit a sustained release of carvedilol within a range from 7 up to 16 h. A novel system consisting of a device and a cylindrical dosage form was developed. Patients' individual doses can be applied as monolithical solid dosage forms for oral use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.3 Definitions. The following... 600.3(t) of this chapter. Solid oral dosage form means capsules, tablets, or similar drug products...
Code of Federal Regulations, 2011 CFR
2011-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.3 Definitions. The following... 600.3(t) of this chapter. Solid oral dosage form means capsules, tablets, or similar drug products...
Code of Federal Regulations, 2012 CFR
2012-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.3 Definitions. The following... 600.3(t) of this chapter. Solid oral dosage form means capsules, tablets, or similar drug products...
76 FR 40808 - Oral Dosage Form New Animal Drugs; Amprolium
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-12
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 520 [Docket No. FDA-2011-N-0003] Oral Dosage Form New Animal Drugs; Amprolium AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug...
77 FR 15961 - Oral Dosage Form New Animal Drugs; Phenylpropanolamine
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-19
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 520 [Docket No. FDA-2011-N-0003] Oral Dosage Form New Animal Drugs; Phenylpropanolamine AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal...
76 FR 59023 - Oral Dosage Form New Animal Drugs; Tylosin
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-23
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 520 [Docket No. FDA-2011-N-0003] Oral Dosage Form New Animal Drugs; Tylosin AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug...
75 FR 67031 - Oral Dosage Form New Animal Drugs; Domperidone
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-01
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 520 [Docket No. FDA-2010-N-0002] Oral Dosage Form New Animal Drugs; Domperidone AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug...
77 FR 3927 - Oral Dosage Form New Animal Drugs; Deracoxib
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-26
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 520 [Docket No. FDA-2011-N-0003] Oral Dosage Form New Animal Drugs; Deracoxib AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug...
77 FR 15960 - Oral Dosage Form New Animal Drugs; Pergolide
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-19
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 520 [Docket No. FDA-2011-N-0003] Oral Dosage Form New Animal Drugs; Pergolide AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug...
76 FR 18648 - Oral Dosage Form New Animal Drugs; Robenacoxib
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-05
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 520 [Docket No. FDA-2011-N-0003] Oral Dosage Form New Animal Drugs; Robenacoxib AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug...
76 FR 78149 - Oral Dosage Form New Animal Drugs; Estriol
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-16
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 520 [Docket No. FDA-2011-N-0003] Oral Dosage Form New Animal Drugs; Estriol AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug...
21 CFR 206.10 - Code imprint required.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required. (a) Unless exempted under § 206.7, no drug product in solid oral dosage form may be introduced or...
21 CFR 206.10 - Code imprint required.
Code of Federal Regulations, 2013 CFR
2013-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required. (a) Unless exempted under § 206.7, no drug product in solid oral dosage form may be introduced or...
21 CFR 206.10 - Code imprint required.
Code of Federal Regulations, 2012 CFR
2012-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required. (a) Unless exempted under § 206.7, no drug product in solid oral dosage form may be introduced or...
76 FR 38554 - Oral Dosage Form New Animal Drugs; Amprolium
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
.... FDA-2011-N-0003] Oral Dosage Form New Animal Drugs; Amprolium AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug regulations to reflect approval of an original abbreviated new animal drug application (ANADA) filed by Cross...
77 FR 4226 - Oral Dosage Form New Animal Drugs; Gentamicin Sulfate
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
.... FDA-2011-N-0003] Oral Dosage Form New Animal Drugs; Gentamicin Sulfate AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug regulations to reflect approval of an original abbreviated new animal drug application (ANADA...
75 FR 76259 - Oral Dosage Form New Animal Drugs; Tylosin
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-08
.... FDA-2010-N-0002] Oral Dosage Form New Animal Drugs; Tylosin AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug regulations to reflect approval of an original abbreviated new animal drug application (ANADA) filed by...
75 FR 54492 - Oral Dosage Form New Animal Drugs; Tiamulin
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
.... FDA-2010-N-0002] Oral Dosage Form New Animal Drugs; Tiamulin AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug regulations to reflect approval of a supplemental new animal drug application (NADA) filed by Novartis Animal...
21 CFR 520.1448 - Monensin oral dosage forms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Monensin oral dosage forms. 520.1448 Section 520.1448 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... layer chromatography, the R f value must be comparable to a reference standard (the R f value is the...
21 CFR 520.1448 - Monensin oral dosage forms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monensin oral dosage forms. 520.1448 Section 520.1448 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... layer chromatography, the R f value must be comparable to a reference standard (the R f value is the...
75 FR 12981 - Oral Dosage Form New Animal Drugs; Tetracycline Powder
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
.... FDA-2010-N-0002] Oral Dosage Form New Animal Drugs; Tetracycline Powder AGENCY: Food and Drug... amending the animal drug regulations to reflect approval of a supplemental new animal drug application... approval of this product. This change is being made to improve the accuracy of the animal drug regulations...
76 FR 40229 - Oral Dosage Form New Animal Drugs; Change of Sponsor
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-08
.... FDA-2011-N-0003] Oral Dosage Form New Animal Drugs; Change of Sponsor AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug regulations to reflect a change of sponsor for a new animal drug application (NADA) from Virbac AH...
75 FR 54018 - Oral Dosage Form New Animal Drugs; Praziquantel and Pyrantel
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-03
.... FDA-2010-N-0002] Oral Dosage Form New Animal Drugs; Praziquantel and Pyrantel AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is amending the animal drug regulations to reflect approval of a supplemental new animal drug application (NADA) filed by...
Zajicek, Anne; Fossler, Michael J; Barrett, Jeffrey S; Worthington, Jeffrey H; Ternik, Robert; Charkoftaki, Georgia; Lum, Susan; Breitkreutz, Jörg; Baltezor, Mike; Macheras, Panos; Khan, Mansoor; Agharkar, Shreeram; MacLaren, David Douglas
2013-10-01
Despite the fact that a significant percentage of the population is unable to swallow tablets and capsules, these dosage forms continue to be the default standard. These oral formulations fail many patients, especially children, because of large tablet or capsule size, poor palatability, and lack of correct dosage strength. The clinical result is often lack of adherence and therapeutic failure. The American Association of Pharmaceutical Scientists formed a Pediatric Formulations Task Force, consisting of members with various areas of expertise including pediatrics, formulation development, clinical pharmacology, and regulatory science, in order to identify pediatric, manufacturing, and regulatory issues and areas of needed research and regulatory guidance. Dosage form and palatability standards for all pediatric ages, relative bioavailability requirements, and small batch manufacturing capabilities and creation of a viable economic model were identified as particular needs. This assessment is considered an important first step for a task force seeking creative approaches to providing more appropriate oral formulations for children.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-11
...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0... wholly owned subsidiary of Pfizer, Inc., 235 East 42d St., New York, NY 10017 has informed FDA that it...-0003] Oral Dosage Form New Animal Drugs; Change of Sponsor; Chlortetracycline; Sulfamethazine AGENCY...
Dissolution testing of orally disintegrating tablets.
Kraemer, Johannes; Gajendran, Jayachandar; Guillot, Alexis; Schichtel, Julian; Tuereli, Akif
2012-07-01
For industrially manufactured pharmaceutical dosage forms, product quality tests and performance tests are required to ascertain the quality of the final product. Current compendial requirements specify a disintegration and/or a dissolution test to check the quality of oral solid dosage forms. These requirements led to a number of compendial monographs for individual products and, at times, the results obtained may not be reflective of the dosage form performance. Although a general product performance test is desirable for orally disintegrating tablets (ODTs), the complexity of the release controlling mechanisms and short time-frame of release make such tests difficult to establish. For conventional oral solid dosage forms (COSDFs), disintegration is often considered to be the prerequisite for subsequent dissolution. Hence, disintegration testing is usually insufficient to judge product performance of COSDFs. Given the very fast disintegration of ODTs, the relationship between disintegration and dissolution is worthy of closer scrutiny. This article reviews the current status of dissolution testing of ODTs to establish the product quality standards. Based on experimental results, it appears that it may be feasible to rely on the dissolution test without a need for disintegration studies for selected ODTs on the market. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
21 CFR 520.1468 - Naproxen granules.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1468 Naproxen granules. (a... musculoskeletal system of the horse. (2)(i) For oral maintenance therapy following initial intravenous dosage...
Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Levetiracetam.
Petruševska, Marija; Berglez, Sandra; Krisch, Igor; Legen, Igor; Megušar, Klara; Peternel, Luka; Abrahamsson, Bertil; Cristofoletti, Rodrigo; Groot, D W; Kopp, Sabine; Langguth, Peter; Mehta, Mehul; Polli, James E; Shah, Vinod P; Dressman, Jennifer
2015-09-01
Literature and experimental data relevant for the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release (IR) solid oral dosage forms containing levetiracetam are reviewed. Data on solubility and permeability suggest that levetiracetam belongs to class I of the biopharmaceutical classification system (BCS). Levetiracetam's therapeutic use, its wide therapeutic index, and its favorable pharmacokinetic properties make levetiracetam a valid candidate for the BCS-based biowaiver approach. Further, no BE studies with levetiracetam IR formulations in which the test formulation failed to show BE with the comparator have been reported in the open literature. On the basis of the overall evidence, it appears unlikely that a BCS-based biowaiver approach for levetiracetam IR solid oral dosage forms formulated with established excipients would expose patients to undue risks. Thus, the BCS-based biowaiver approach procedure is recommended for IR solid oral dosage form containing levetiracetam, provided the excipients in the formulation are also present in products that have been approved in countries belonging to or associated with the International Committee on Harmonization and are used in their usual quantities, and provided the dissolution profiles of the test and reference product comply with the current requirements for BCS-based biowaivers. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
[Oral disintegrating tablets. A new, modern, solid dosage form].
Popa, Graţiela; Gafiţanu, Eliza
2003-01-01
The pharmaceutical market shows lately an increasing interest in orally disintegrating tablets, due to their good acceptability among certain age categories (ex. elderly, children), and other patients with difficulties in swallowing classic solid dosage forms. Some of the methods of preparing such tablets have gained industrial applicability: molding, lyophilization, direct compression with highly soluble excipients, super disintegrants and/or effervescent systems. Some of the patients have had a good impact on the pharmaceutical market and more improvements are expected in the next few years, with new drugs to be formulated as fast dissolving dosage formulations.
A review on oral liquid as an emerging technology in controlled drug delivery system.
Torne, Sangmesh Raosaheb; Sheela, Angappan; Sarada, N C
2017-12-03
The oral liquid drug delivery system (OLDDS) remains as the primary choice of dosage form, though challenging, for the pharmaceutical scientists. In the last two decades, Oral Liquid Controlled Release (OLCR) formulation has gained a lot of attention because of its advantages over the conventional dosage forms. The world of nanotechnology has paved multiple ways to administer the drug through oral cavity in liquid dosage form with an additional advantage of control over the release. In the current study, the various approaches towards the same have been discussed comprehensively to understand the different mechanisms of OLCR. This review also emphasizes on the existing techniques and the developments that have been made to improve on its efficacy including various formulation related factors. It also provides valuable insights into the role of polymers in the development of OLCR formulation that can be used in the management of Gastroesophageal reflux disease (GERD). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Biorelevant in-vitro performance testing of orally administered dosage forms.
Reppas, Christos; Vertzoni, Maria
2012-07-01
This review focuses on the evolution and current status of biorelevant media and hydrodynamics, and discusses the usefulness of biorelevant performance testing in the evaluation of specific dosage form related lumenal processes. During the last 15 years our knowledge of the gastrointestinal environment (including the lower gut) has improved dramatically and biorelevant media composition and, to a lesser extent, biorelevant hydrodynamics, have been refined. Biorelevant dissolution/release testing is useful for the evaluation of formulation and food effects on plasma levels after administration of immediate release dosage forms containing low solubility compounds and after administration of extended release products. Lumenal disintegration times of immediate release dosage forms and the bile acid sequestering activity of resins in the lumen can also be successfully forecasted with biorelevant in vitro testing. Biorelevant in-vitro performance testing is an important tool for evaluating intralumenal dosage form performance. Since the formulation of new active pharmaceutical ingredients for oral delivery is more challenging than ever before, efforts to improve the predictability of biorelevant tests are expected to continue. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
Ranmal, Sejal R; Cram, Anne; Tuleu, Catherine
2016-11-30
A lack of evidence to guide the design of age-appropriate and acceptable dosage forms has been a longstanding knowledge gap in paediatric formulation development. The Children's Acceptability of Oral Formulations (CALF) study captured end-user perceptions and practices with a focus on solid oral dosage forms, namely tablets, capsules, chewables, orodispersibles, multiparticulates (administered with food) and mini-tablets (administered directly into the mouth). A rigorous development and testing phase produced age-adapted questionnaires as measurement tools with strong evidence of validity and reliability. Overall, 590 school children and adolescents, and 428 adult caregivers were surveyed across hospitals and various community settings. Attitudes towards dosage forms primarily differed based on age and prior use. Positive attitudes to tablets and capsules increased with age until around 14 years. Preference was seen for chewable and orodispersible preparations across ages, while multiparticulates were seemingly less favourable. Overall, 59.6% of school children reported willingness to take 10mm diameter tablets, although only 32.1% of caregivers perceived this size to be suitable. While not to be taken as prescriptive guidance, the results of this study provide some evidence towards rational dosage form design, as well as methodological approaches to help design tools for further evaluation of acceptability within paediatric studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Haznar-Garbacz, Dorota; Kaminska, Ewa; Zakowiecki, Daniel; Lachmann, Marek; Kaminski, Kamil; Garbacz, Grzegorz; Dorożyński, Przemysław; Kulinowski, Piotr
2018-02-01
The presented work describes the formulation and characterization of modified release glassy solid dosage forms (GSDFs) containing an amorphous nifedipine, as a model BCS (Biopharmaceutical Classification System) class II drug. The GSDFs were prepared by melting nifedipine together with octaacetyl sucrose. Dissolution profiles, measured under standard and biorelevant conditions, were compared to those obtained from commercially available formulations containing nifedipine such as modified release (MR) tablets and osmotic release oral system (OROS). The results indicate that the dissolution profiles of the GSDFs with nifedipine are neither affected by the pH of the dissolution media, type and concentration of surfactants, nor by simulated mechanical stress of biorelevant intensity. Furthermore, it was found that the dissolution profiles of the novel dosage forms were similar to the profiles obtained from the nifedipine OROS. The formulation of GSDFs is relatively simple, and the dosage forms were found to have favorable dissolution characteristics.
Applications of Polymers as Pharmaceutical Excipients in Solid Oral Dosage Forms.
Debotton, Nir; Dahan, Arik
2017-01-01
Over the last few decades, polymers have been extensively used as pharmaceutical excipients in drug delivery systems. Pharmaceutical polymers evolved from being simply used as gelatin shells comprising capsule to offering great formulation advantages including enabling controlled/slow release and specific targeting of drugs to the site(s) of action (the "magic bullets" concept), hence hold a significant clinical promise. Oral administration of solid dosage forms (e.g., tablets and capsules) is the most common and convenient route of drug administration. When formulating challenging molecules into solid oral dosage forms, polymeric pharmaceutical excipients permit masking undesired physicochemical properties of drugs and consequently, altering their pharmacokinetic profiles to improve the therapeutic effect. As a result, the number of synthetic and natural polymers available commercially as pharmaceutical excipients has increased dramatically, offering potential solutions to various difficulties. For instance, the different polymers may allow increased solubility, swellability, viscosity, biodegradability, advanced coatings, pH dependency, mucodhesion, and inhibition of crystallization. The aim of this article is to provide a wide angle prospect of the different uses of pharmaceutical polymers in solid oral dosage forms. The various types of polymeric excipients are presented, and their distinctive role in oral drug delivery is emphasized. The comprehensive know-how provided in this article may allow scientists to use these polymeric excipients rationally, to fully exploit their different features and potential influence on drug delivery, with the overall aim of making better drug products. © 2016 Wiley Periodicals, Inc.
Kaneuchi, Miki; Kohri, Naonori; Senbongi, Kaname; Sakai, Hideo; Iseki, Ken
2005-02-01
Ketamine has been widely used in the operation as intravenous and intramuscular injections, since ketamine has dissociative anesthetic properties. When it is given in sub-anesthetic dose, ketamine is known to have an analgesic effect. The analgesic effect is observed for patients with neuropathic pain when administrated not only by injection but also orally. In Japan, since ketamine is not commercially available except injection forms, patients have to take it as solution of injections for the oral medication. Since the solution of injections has extremely bitter taste, patients intensely desire the development of preparations without the bitterness. In the present study, we prepared oral gel dosage forms of ketamine using agar. It is simple to prepare this dosage form, and most pharmacists can prepare it easily in many hospitals. This gel dosage form met content uniformity requirements and the shape of that was maintained intact during the dissolution test (for 10 hours). The release rate was reduced by additions of additives such as sugar and a flavor in the gel. The reason for the reduction in release could be the suppression of ketamine diffusion depended on the micro-viscosity of solution in the gel. The ketamine contents and the release profile of the gel preparations were unchanged at the room temperature for 12-week storage. The gel preparations in this study would be useful for the oral medication of ketamine, since it is easy for patients to carry them when they go out and the intensely bitter taste could be improved by the addition of a flavor.
Solid oral forms availability in children: a cost saving investigation
Lajoinie, Audrey; Henin, Emilie; Kassai, Behrouz; Terry, David
2014-01-01
Aim To assess the suitability and potential cost savings, from both the hospital and community perspective, of prescribed oral liquid medicine substitution with acceptable solid forms for children over 2 years. Method Oral liquid medicines dispensed from a paediatric hospital (UK) in 1 week were assessed by screening for existence of the solid form alternative and evaluating the acceptability of the available solid form, firstly related to the prescribed dose and secondly to acceptable size depending on the child's age. Costs were calculated based on providing treatment for 28 days or prescribed duration for short term treatments. Results Over 90% (440/476) of liquid formulations were available as a marketed solid form. Considering dosage acceptability (maximum of 10% deviation from prescribed dosage or 0% for narrow therapeutic range drugs, maximum tablet divisions into quarters) 80% of liquids could be substituted with a solid form. The main limitation for liquid substitution would be solid form size. However, two-thirds of prescribed liquids could have been substituted with a suitable solid form for dosage and size, with estimated savings being of £5K and £8K in 1 week, respectively based on hospital and community costs, corresponding to a projected annual saving of £238K and £410K (single institution). Conclusion Whilst not all children over 2 years will be able to swallow tablets, drug cost savings if oral liquid formulations were substituted with suitable solid dosage forms would be considerable. Given the numerous advantages of solid forms compared with liquids, this study may provide a theoretical basis for investing in supporting children to swallow tablets/capsules. PMID:24965935
Alyami, Hamad; Koner, Jasdip; Terry, David; Mohammed, Afzal R.
2018-01-01
The appropriate prescribing of paediatric dosage forms is paramount in providing the desired therapeutic effect alongside successful medication adherence with the paediatric population. Often it is the opinion of the healthcare practitioner that dictates which type of dosage form would be most appropriate for the paediatric patient, with liquids being both the most commonly available and most commonly used. Orally disintegrating tablets (ODTs) are an emerging dosage form which provide many benefits over traditional dosage forms for paediatric patients, such as rapid disintegration within the oral cavity, and the reduction in the risk of choking. However the opinion and professional use of healthcare practitioners regarding ODT’s is not known. This study was designed to assess the opinions of several types of healthcare professionals (n = 41) regarding ODTs, using a survey across two hospital sites. Results reaffirmed the popularity of liquids for prescribing in paediatrics, with 58.0% of participants preferring this dosage form. ODTs emerged as the second most popular dosage form (30.0%), with healthcare practitioners indicating an increasing popularity amongst patients in the hospital setting, belief with 63.0% of practitioners agreeing that many liquid formulations could be substituted with a suitable ODT. The desired properties of an ideal ODT were also identified by healthcare practitioners preferring a small, fast disintegrating tablet (90.2% and 95.1% respectively), with the taste, disintegration time and flavour being the three most important attributes identified (29.5%, 28.7% and 21.7% respectively). This study provided a pragmatic approach in assessing healthcare professional’s opinions on ODTs, highlighting the ideas and thoughts of practitioners who are on the frontline of paediatric prescribing and treatment and gave an indication to their preference for ODT properties. PMID:29489871
Kambayashi, Atsushi; Blume, Henning; Dressman, Jennifer B
2014-07-01
The objective of this research was to characterize the dissolution profile of a poorly soluble drug, diclofenac, from a commercially available multiple-unit enteric coated dosage form, Diclo-Puren® capsules, and to develop a predictive model for its oral pharmacokinetic profile. The paddle method was used to obtain the dissolution profiles of this dosage form in biorelevant media, with the exposure to simulated gastric conditions being varied in order to simulate the gastric emptying behavior of pellets. A modified Noyes-Whitney theory was subsequently fitted to the dissolution data. A physiologically-based pharmacokinetic (PBPK) model for multiple-unit dosage forms was designed using STELLA® software and coupled with the biorelevant dissolution profiles in order to simulate the plasma concentration profiles of diclofenac from Diclo-Puren® capsule in both the fasted and fed state in humans. Gastric emptying kinetics relevant to multiple-units pellets were incorporated into the PBPK model by setting up a virtual patient population to account for physiological variations in emptying kinetics. Using in vitro biorelevant dissolution coupled with in silico PBPK modeling and simulation it was possible to predict the plasma profile of this multiple-unit formulation of diclofenac after oral administration in both the fasted and fed state. This approach might be useful to predict variability in the plasma profiles for other drugs housed in multiple-unit dosage forms. Copyright © 2014 Elsevier B.V. All rights reserved.
Confectionery-based dose forms.
Tangso, Kristian J; Ho, Quy Phuong; Boyd, Ben J
2015-01-01
Conventional dosage forms such as tablets, capsules and syrups are prescribed in the normal course of practice. However, concerns about patient preferences and market demands have given rise to the exploration of novel unconventional dosage forms. Among these, confectionery-based dose forms have strong potential to overcome compliance problems. This report will review the availability of these unconventional dose forms used in treating the oral cavity and for systemic drug delivery, with a focus on medicated chewing gums, medicated lollipops, and oral bioadhesive devices. The aim is to stimulate increased interest in the opportunities for innovative new products that are available to formulators in this field, particularly for atypical patient populations.
Missaghi, Shahrzad; Young, Cara; Fegely, Kurt; Rajabi-Siahboomi, Ali R
2010-02-01
Formulation of proton pump inhibitors (PPIs) into oral solid dosage forms is challenging because the drug molecules are acid-labile. The aim of this study is to evaluate different formulation strategies (monolithic and multiparticulates) for three PPI drugs, that is, rabeprazole sodium, lansoprazole, and esomeprazole magnesium, using delayed release film coating applications. The core tablets of rabeprazole sodium were prepared using organic wet granulation method. Multiparticulates of lansoprazole and esomeprazole magnesium were prepared through drug layering of sugar spheres, using powder layering and suspension layering methods, respectively. Tablets and drug-layered multiparticulates were seal-coated, followed by delayed release film coating application, using Acryl-EZE(R), aqueous acrylic enteric system. Multiparticulates were then filled into capsules. The final dosage forms were evaluated for physical properties, as well as in vitro dissolution testing in both compendial acid phase, 0.1N HCl (pH 1.2), and intermediate pH, acetate buffer (pH 4.5), followed by phosphate buffer, pH 6.8. The stability of the delayed release dosage forms was evaluated upon storage in accelerated conditions [40 degrees C/75% relative humidity] for 3 months. All dosage forms demonstrated excellent enteric protection in the acid phase, followed by rapid release in their respective buffer media. Moreover, the delayed release dosage forms remained stable under accelerated stability conditions for 3 months. Results showed that Acryl-EZE enteric coating systems provide excellent performance in both media (0.1N HCl and acetate buffer pH 4.5) for monolithic and multiparticulate dosage forms.
Oral delivery of medications to companion animals: palatability considerations.
Thombre, Avinash G
2004-06-23
There is an increased need for highly palatable solid oral dosage forms for companion animals, which are voluntarily accepted by the dog or cat, either from a feeding bowl or from the outstretched hand of the pet owner. Such dosage forms represent an emerging trend in companion animal formulations with major impact on medical needs such as convenience and compliance, particularly for chronically administered medications, and on marketing needs such as product differentiation. This review focuses on the science of taste, food and flavor preferences of dogs and cats, and palatability testing, in the context of applying these principles to the development of an oral palatable tablet for companion animals.
Stahl, Jessica; Zessel, Katrin; Schulz, Jochen; Finke, Jan Henrik; Müller-Goymann, Christel Charlotte; Kietzmann, Manfred
2016-04-01
Due to antibiotic treatment of humans and animals, the prevalence of bacterial resistances increases worldwide. Especially in livestock farming, large quantities of faeces contaminated with antibiotics pose a risk of the carryover of the active ingredient to the environment. Accordingly, the aim of the present study was the evaluation of the benefit of different oral dosage forms (powder, pellets, granula) in pigs concerning the environmental pollution of sulfadiazine. Two subtherapeutic dosages were evaluated in powder mixtures to gain information about their potential to pollute the pig barn. Furthermore, a new group of pigs was kept in the stable after powder feeding of another pig group to determine the possible absorption of environmentally distributed antibiotics. Pigs were orally treated with three dosage forms. Simultaneously, sedimentation and airborne dust were collected and plasma and urine levels were determined. All formulations result in comparable plasma and urine levels, but massive differences in environmental pollution (powder > pellets, granula). Pigs housing in a contaminated barn exhibit traces of sulfadiazine in plasma and urine. Using pharmaceutical formulations like pellets or granula, the environmental pollution of sulfonamides can significantly be diminished due to massive dust reduction during feeding.
Specific aspects of gastro-intestinal transit in children for drug delivery design.
Bowles, Alexandra; Keane, Joanne; Ernest, Terry; Clapham, David; Tuleu, Catherine
2010-08-16
This mini-review discusses relevant aspects of gastro-intestinal transit in different ages of paediatric patients with an attempt to highlight factors which should be considered in oral dosage form design, in particular multi-particulate dosage forms. This emphasis is due to multi-particulates possessing many of the benefits of liquid oral formulations (such as ease of swallowing and dose adaptability) without many of their drawbacks (such as stability issues and lack of enteric or modified release functionalities). It is commonly stated that children are not merely small adults with regards to medicines. However, there has been very little research regarding how different dosage forms transit through the gastro-intestinal tract in children compared to adults, due to both ethical and practical hurdles. Due to this lack of studies on dosage form transit in children, information which was available on the transit of food, milk and liquids (often dependent upon the age of the patient) has been used to look at how various aspects of transit vary with age and, where possible, when they reach adult values and how these may affect the fate of dosage forms in vivo: swallowability, oesophageal transit, gastric emptying and pH, intestinal and colonic transit are discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Oral drug therapy in elderly with dysphagia: between a rock and a hard place!
Logrippo, Serena; Ricci, Giovanna; Sestili, Matteo; Cespi, Marco; Ferrara, Letizia; Palmieri, Giovanni F; Ganzetti, Roberta; Bonacucina, Giulia; Blasi, Paolo
2017-01-01
Demographic indicators forecast that by 2050, the elderly will account for about one-third of the global population. Geriatric patients require a large number of medicines, and in most cases, these products are administered as solid oral solid dosage forms, as they are by far the most common formulations on the market. However, this population tends to suffer difficulties with swallowing. Caregivers in hospital geriatric units routinely compound in solid oral dosage forms for dysphagic patients by crushing the tablets or opening the capsules to facilitate administration. The manipulation of a tablet or a capsule, if not clearly indicated in the product labeling, is an off-label use of the medicine, and must be supported by documented scientific evidence and requires the patient’s informed consent. Compounding of marketed products has been recognized as being responsible for an increased number of adverse events and medical errors. Since extemporaneous compounding is the rule and not the exception in geriatrics departments, the seriousness and scope of issues caused by this daily practice are probably underestimated. In this article, the potential problems associated with the manipulation of authorized solid oral dosage forms are discussed. PMID:28203065
In-vitro Drug Dissolution Studies in Medicinal Compounds.
Bozal-Palabiyik, Burcin; Uslu, Bengi; Ozkan, Yalcin; Ozkan, Sibel A
2018-03-22
After oral administration, drug absorption from solid dosage forms depend on the release of the drug active compounds from the dosage form, the dissolution or solubilization of the drug under physiological conditions, and the permeability across the gastrointestinal tract. Dissolution testing is an essential part of designing more effective solid dosage forms in pharmaceutical industry. Moreover dissolution testing contributes to the selection of appropriate formulation excipients for improving the dosage form efficiency. This study aims to analyze in-vitro drug dissolution testing in solid dosage forms since 2010 in order to present a comprehensive outlook of recent trends. In doing that the previous studies in the literature are summarized in the form of a table to demonstrate the apparatuses used for dissolution testing, the media in which the solid dosage form is dissolved, the method preferred for analysis from dissolution media, the conditions of analyses and the results obtained. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Buccal Dosage Forms: General Considerations for Pediatric Patients.
Montero-Padilla, Soledad; Velaga, Sitaram; Morales, Javier O
2017-02-01
The development of an appropriate dosage form for pediatric patients needs to take into account several aspects, since adult drug biodistribution differs from that of pediatrics. In recent years, buccal administration has become an attractive route, having different dosage forms under development including tablets, lozenges, films, and solutions among others. Furthermore, the buccal epithelium can allow quick access to systemic circulation, which could be used for a rapid onset of action. For pediatric patients, dosage forms to be placed in the oral cavity have higher requirements for palatability to increase acceptance and therapy compliance. Therefore, an understanding of the excipients required and their functions and properties needs to be particularly addressed. This review is focused on the differences and requirements relevant to buccal administration for pediatric patients (compared to adults) and how novel dosage forms can be less invasive and more acceptable alternatives.
Chen, Mei-Ling
2006-01-01
Ethnic or racial differences in pharmacokinetics and pharmacodynamics have been attributed to the distinctions in the genetic, physiological and pathological factors between ethnic/racial groups. These pharmacokinetic/pharmacodynamic differences are also known to be influenced by several extrinsic factors such as socioeconomic background, culture, diet and environment. However, it is noted that other factors related to dosage regimen and dosage form have largely been ignored or overlooked when conducting or analysing pharmacokinetic/pharmacodynamic studies in relation to ethnicity/race. Potential interactions can arise between the characteristics of ethnicity/race and a unique feature of dosage regimen or dosage form used in the study, which may partly account for the observed pharmacokinetic/pharmacodynamic differences between ethnic/racial groups. Ethnic/racial differences in pharmacokinetics/pharmacodynamics can occur from drug administration through a specific route that imparts distinct pattern of absorption, distribution, transport, metabolism or excretion. For example, racial differences in the first-pass metabolism of a drug following oral administration may not be relevant when the drug is applied to the skin. On the other hand, ethnic/racial difference in pharmacokinetics/pharmacodynamics can also happen via two different routes of drug delivery, with varying levels of dissimilarity between routes. For example, greater ethnic/racial differences were observed in oral clearance than in systemic clearance of some drugs, which might be explained by the pre-systemic factors involved in the oral administration as opposed to the intravenous administration. Similarly, changes in the dose frequency and/or duration may have profound impact on the ethnic/racial differences in pharmacokinetic/pharmacodynamic outcome. Saturation of enzymes, transporters or receptors at high drug concentrations is a possible reason for many observed ethnic/racial discrepancies between single- and multiple-dose regimens, or between low- and high-dose administrations. The presence of genetic polymorphism of enzymes and/or transporters can further complicate the analysis of pharmacokinetic/pharmacodynamic data in ethnic/racial populations. Even within the same dosage regimen, the use of different dosage forms may trigger significantly different pharmacokinetic/pharmacodynamic responses in various ethnic/racial groups, given that different dosage forms may exhibit different rates of drug release, may release the drug at different sites, and/or have different retention times at specific sites of the body. It is thus cautioned that the pharmacokinetic/pharmacodynamic data obtained from different ethnic/racial groups cannot be indiscriminately compared or combined for analysis if there is a lack of homogeneity in the apparent 'extrinsic' factors, including dosage regimen and dosage form.
Kersten, E; Barry, A; Klein, S
2016-03-01
Oral drug administration to children poses specific pharmaceutical challenges that are often not seen to the same extent in adults, and whose occurrence may also be age dependent. When an age-appropriate dosage form is not available, manipulation of adult dosage forms (e.g., splitting and crushing of tablets or opening of capsules) has been reported as a means to facilitate administration to children. To enhance swallowability and/or mask an unpleasant taste of the dosage form to be administered, crushed/split tablets or the contents of capsules are often mixed with food or drinks or suspended in a vehicle prior to administration. However, it seems that the risks and benefits of an approach whereby the dosage form is modified prior to administration in this manner are everything but clear. The aim of the present study was to gain an overview of the physicochemical properties of a number of fluids, soft foods and suspension vehicles that are commonly reported to be mixed with oral medications before administration to children to improve patient acceptability. For this purpose, physicochemical parameters of 15 different fluids, soft foods and suspension vehicles were measured. These included pH, buffer capacity, osmolality, surface tension and viscosity. Results of the study clearly show the differences in physicochemical properties of the test candidates. It is thus obvious that the type of fluid/food mixed with a drug product before administration may have a significant impact on bioavailability of the drug administered. Therefore, a risk-based assessment of such practices considering API properties, formulation features and physicochemical properties of the fluids and foods intended to be co-administered with the dosage form, in conjunction with the anatomical and physiological maturity of the gastro-intestinal tract in the intended paediatric population, should be an essential part of paediatric oral formulation development.
21 CFR 520.390c - Chloramphenicol palmitate oral suspension.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Chloramphenicol palmitate oral suspension. 520... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390c Chloramphenicol palmitate oral suspension. (a) Specifications. Each milliliter contains chloramphenicol palmitate...
Pharmacokinetics of orally administered DL-α-lipoic acid in dogs.
Zicker, Steven C; Avila, Albert; Joshi, Dinesh K; Gross, Kathy L
2010-11-01
To determine the pharmacokinetics of DL-α-lipoic acid in dogs when administered at 3 dosages via 3 methods of delivery. 27 clinically normal Beagles. In a 3 × 3 factorial Latin square design, 3 dosages (2.5, 12.5, and 25 mg/kg) of DL-α-lipoic acid were administered orally in a capsule form and provided without a meal, in a capsule form and provided with a meal, and as an ingredient included in an extruded dog food. Food was withheld for 12 hours prior to DL-α-lipoic acid administration. Blood samples were collected before (0 minutes) and at 15, 30, 45, 60, and 120 minutes after administration. Plasma concentrations of DL-α-lipoic acid were determined via high-performance liquid chromatography. A generalized linear models procedure was used to evaluate the effects of method of delivery and dosage. Noncompartmental analysis was used to determine pharmacokinetic parameters of DL-α-lipoic acid. Nonparametric tests were used to detect significant differences between pharmacokinetic parameters among treatment groups. A significant effect of dosage was observed regardless of delivery method. Method of delivery also significantly affected plasma concentrations of DL-α-lipoic acid, with extruded foods resulting in lowest concentration for each dosage administered. Maximum plasma concentration was significantly affected by method of delivery at each dosage administered. Other significant changes in pharmacokinetic parameters were variable and dependent on dosage and method of delivery. Values for pharmacokinetic parameters of orally administered DL-α-lipoic acid may differ significantly when there are changes in dosage, method of administration, and fed status.
Bredael, Gerard M; Bowers, Niya; Boulineau, Fabien; Hahn, David
2014-07-01
The ability to predict in vivo response of an oral dosage form based on an in vitro technique has been a sought after goal of the pharmaceutical scientist. Dissolution testing that demonstrates discrimination to various critical formulations or process attributes provides a sensitive quality check that may be representative or may be overpredictive of potential in vivo changes. Dissolution methodology with an established in vitro-in vivo relationship or correlation may provide the desired in vivo predictability. To establish this in vitro-in vivo link, a clinical study must be performed. In this article, recommendations are given in the selection of batches for the clinical study followed by potential outcome scenarios. The investigation of a Level C in vitro-in vivo correlation (IVIVC), which is the most common correlation for immediate-release oral dosage forms, is presented. Lastly, an IVIVC case study involving a biopharmaceutical classification system class IV compound is presented encompassing this strategy and techniques. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Yellepeddi, Venkata Kashyap; Roberson, Charles
2016-10-25
Objective. To evaluate the impact of animated videos of oral solid dosage form manufacturing as visual instructional aids on pharmacy students' perception and learning. Design. Data were obtained using a validated, paper-based survey instrument designed to evaluate the effectiveness, appeal, and efficiency of the animated videos in a pharmaceutics course offered in spring 2014 and 2015. Basic demographic data were also collected and analyzed. Assessment data at the end of pharmaceutics course was collected for 2013 and compared with assessment data from 2014, and 2015. Assessment. Seventy-six percent of the respondents supported the idea of incorporating animated videos as instructional aids for teaching pharmaceutics. Students' performance on the formative assessment in 2014 and 2015 improved significantly compared to the performance of students in 2013 whose lectures did not include animated videos as instructional aids. Conclusions. Implementing animated videos of oral solid dosage form manufacturing as instructional aids resulted in improved student learning and favorable student perceptions about the instructional approach. Therefore, use of animated videos can be incorporated in pharmaceutics teaching to enhance visual learning.
Roberson, Charles
2016-01-01
Objective. To evaluate the impact of animated videos of oral solid dosage form manufacturing as visual instructional aids on pharmacy students’ perception and learning. Design. Data were obtained using a validated, paper-based survey instrument designed to evaluate the effectiveness, appeal, and efficiency of the animated videos in a pharmaceutics course offered in spring 2014 and 2015. Basic demographic data were also collected and analyzed. Assessment data at the end of pharmaceutics course was collected for 2013 and compared with assessment data from 2014, and 2015. Assessment. Seventy-six percent of the respondents supported the idea of incorporating animated videos as instructional aids for teaching pharmaceutics. Students’ performance on the formative assessment in 2014 and 2015 improved significantly compared to the performance of students in 2013 whose lectures did not include animated videos as instructional aids. Conclusions. Implementing animated videos of oral solid dosage form manufacturing as instructional aids resulted in improved student learning and favorable student perceptions about the instructional approach. Therefore, use of animated videos can be incorporated in pharmaceutics teaching to enhance visual learning. PMID:27899837
Biowaiver monographs for immediate release solid oral dosage forms: efavirenz.
Cristofoletti, Rodrigo; Nair, Anita; Abrahamsson, Bertil; Groot, D W; Kopp, Sabine; Langguth, Peter; Polli, James E; Shah, Vinod P; Dressman, Jennifer B
2013-02-01
Literature data pertaining to the decision to allow a waiver of in vivo bioequivalence testing for the approval of immediate-release (IR) solid oral dosage forms containing efavirenz as the only active pharmaceutical ingredient (API) are reviewed. Because of lack of conclusive data about efavirenz's permeability and its failure to comply with the "high solubility" criteria according to the Biopharmaceutics Classification System (BCS), the API can be classified as BCS Class II/IV. In line with the solubility characteristics, the innovator product does not meet the dissolution criteria for a "rapidly dissolving product." Furthermore, product variations containing commonly used excipients or in the manufacturing process have been reported to impact the rate and extent of efavirenz absorption. Despite its wide therapeutic index, subtherapeutic levels of efavirenz can lead to treatment failure and also facilitate the emergence of efavirenz-resistant mutants. For all these reasons, a biowaiver for IR solid oral dosage forms containing efavirenz as the sole API is not scientifically justified for reformulated or multisource drug products. Copyright © 2012 Wiley Periodicals, Inc.
Micropellets coated with Kollicoat® Smartseal 30D for taste masking in liquid oral dosage forms.
Dashevskiy, Andriy; Mohylyuk, Valentyn; Ahmed, Abid Riaz; Kolter, Karl; Guth, Felicitas; Bodmeier, Roland
2017-09-01
The objective of this study was to develop delivery systems for taste masking based on multiparticulates coated with Kollicoat ® Smartseal 30D formulated as liquid oral suspensions. Coating of particles containing bitter drugs with Kollicoat ® Smartseal reduced drug leaching into aqueous medium, especially when increasing pH, therefore can be used for the formulation of liquid dosage forms. Application of an intermediate layer of ion exchange resins between drug layer and coating can further decrease drug leaching into aqueous vehicle that is beneficial in terms of taste masking. Using optimized compositions of liquid vehicles such as addition of sugar alcohols and ion exchange resin, reconstitutable or ready-to-use liquid dosage forms with micropellets can be developed with bitter taste protection after redispersion lasting longer than 3 weeks, which exceeds the usual period of application.
Biowaiver Monographs for Immediate-Release Solid Oral Dosage Forms: Folic Acid.
Hofsäss, Martin A; Souza, Jacqueline de; Silva-Barcellos, Neila M; Bellavinha, Karime R; Abrahamsson, Bertil; Cristofoletti, Rodrigo; Groot, D W; Parr, Alan; Langguth, Peter; Polli, James E; Shah, Vinod P; Tajiri, Tomokazu; Mehta, Mehul U; Dressman, Jennifer B
2017-12-01
This work presents a review of literature and experimental data relevant to the possibility of waiving pharmacokinetic bioequivalence studies in human volunteers for approval of immediate-release solid oral pharmaceutical forms containing folic acid as the single active pharmaceutical ingredient. For dosage forms containing 5 mg folic acid, the highest dose strength on the World Health Organization Essential Medicines List, the dose/solubility ratio calculated from solubility studies was higher than 250 mL, corresponding to a classification as "not highly soluble." Small, physiological doses of folic acid (≤320 μg) seem to be absorbed completely via active transport, but permeability data for higher doses of 1-5 mg are inconclusive. Following a conservative approach, folic acid is classified as a Biopharmaceutics Classification System class IV compound until more reliable data become available. Commensurate with its solubility characteristics, the results of dissolution studies indicated that none of the folic acid products evaluated showed rapid dissolution in media at pH 1.2 or 4.5. Therefore, according to the current criteria of the Biopharmaceutics Classification System, the biowaiver approval procedure cannot be recommended for immediate-release solid oral dosage forms containing folic acid. Copyright © 2017 American Pharmacists Association®. All rights reserved.
Advances in solid dosage form manufacturing technology.
Andrews, Gavin P
2007-12-15
Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation.
MRI as a tool for evaluation of oral controlled release dosage forms.
Dorożyński, Przemysław P; Kulinowski, Piotr; Młynarczyk, Anna; Stanisz, Greg J
2012-02-01
The magnetic resonance imaging (MRI) studies of controlled-release (CR) dosage forms can be roughly divided into two groups. The first comprises studies performed in static conditions (small solvent volumes and ambient temperature). Such studies have provided insight into molecular phenomena in hydrating polymeric matrices. The second group covers research performed in dynamic conditions (medium flow or stirring) related to drug dissolution. An important issue is supplementation of the MRI results with data obtained by complementary techniques, such as X-ray microtomography (μCT). As we discuss here, an understanding of the mechanism underlying the release of the drug from the dosage form will lead to the development of detailed, molecularly defined, CR dosage forms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thelen, Kirstin; Coboeken, Katrin; Willmann, Stefan; Dressman, Jennifer B; Lippert, Jörg
2012-03-01
The physiological absorption model presented in part I of this work is now extended to account for dosage-form-dependent gastrointestinal (GI) transit as well as disintegration and dissolution processes of various immediate-release and modified-release dosage forms. Empirical functions of the Weibull type were fitted to experimental in vitro dissolution profiles of solid dosage forms for eight test compounds (aciclovir, caffeine, cimetidine, diclofenac, furosemide, paracetamol, phenobarbital, and theophylline). The Weibull functions were then implemented into the model to predict mean plasma concentration-time profiles of the various dosage forms. On the basis of these dissolution functions, pharmacokinetics (PK) of six model drugs was predicted well. In the case of diclofenac, deviations between predicted and observed plasma concentrations were attributable to the large variability in gastric emptying time of the enteric-coated tablets. Likewise, oral PK of furosemide was found to be predominantly governed by the gastric emptying patterns. It is concluded that the revised model for GI transit and absorption was successfully integrated with dissolution functions of the Weibull type, enabling prediction of in vivo PK profiles from in vitro dissolution data. It facilitates a comparative analysis of the parameters contributing to oral drug absorption and is thus a powerful tool for formulation design. Copyright © 2011 Wiley Periodicals, Inc.
Biowaiver monograph for immediate-release solid oral dosage forms: bisoprolol fumarate.
Charoo, Naseem A; Shamsher, Areeg A A; Lian, Lai Y; Abrahamsson, Bertil; Cristofoletti, Rodrigo; Groot, D W; Kopp, Sabine; Langguth, Peter; Polli, James; Shah, Vinod P; Dressman, Jennifer
2014-02-01
Literature data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate-release (IR) solid oral dosage forms containing bisoprolol as the sole active pharmaceutical ingredient (API) are reviewed. Bisoprolol is classified as a Class I API according to the current Biopharmaceutics Classification System (BCS). In addition to the BCS class, its therapeutic index, pharmacokinetic properties, data related to the possibility of excipient interactions, and reported BE/bioavailability problems are taken into consideration. Qualitative compositions of IR tablet dosage forms of bisoprolol with a marketing authorization (MA) in ICH (International Conference on Harmonisation) countries are tabulated. It was inferred that these tablets had been demonstrated to be bioequivalent to the innovator product. No reports of failure to meet BE standards have been made in the open literature. On the basis of all these pieces of evidence, a biowaiver can currently be recommended for bisoprolol fumarate IR dosage forms if (1) the test product contains only excipients that are well known, and used in normal amounts, for example, those tabulated for products with MA in ICH countries and (2) both the test and comparator dosage form are very rapidly dissolving, or, rapidly dissolving with similarity of the dissolution profiles demonstrated at pH 1.2, 4.5, and 6.8. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Zeitler, J Axel; Shen, Yaochun; Baker, Colin; Taday, Philip F; Pepper, Michael; Rades, Thomas
2007-02-01
Three dimensional terahertz pulsed imaging (TPI) was evaluated as a novel tool for the nondestructive characterization of different solid oral dosage forms. The time-domain reflection signal of coherent pulsed light in the far infrared was used to investigate film-coated tablets, sugar-coated tablets, multilayered controlled release tablets, and soft gelatin capsules. It is possible to determine the spatial and statistical distribution of coating thickness in single and multiple coated products using 3D TPI. The measurements are nondestructive even for layers buried underneath other coating structures. The internal structure of coating materials can be analyzed. As the terahertz signal penetrates up to 3 mm into the dosage form interfaces between layers in multilayered tablets can be investigated. In soft gelatin capsules it is possible to measure the thickness of the gelatin layer and to characterize the seal between the gelatin layers for quality control. TPI is a unique approach for the nondestructive characterization and quality control of solid dosage forms. The measurements are fast and fully automated with the potential for much wider application of the technique in the process analytical technology scheme. Copyright (c) 2006 Wiley-Liss, Inc.
Melt-processed polymeric cellular dosage forms for immediate drug release.
Blaesi, Aron H; Saka, Nannaji
2015-12-28
The present immediate-release solid dosage forms, such as the oral tablets and capsules, comprise granular matrices. While effective in releasing the drug rapidly, they are fraught with difficulties inherent in processing particulate matter. By contrast, liquid-based processes would be far more predictable; but the standard cast microstructures are unsuited for immediate-release because they resist fluid percolation and penetration. In this article, we introduce cellular dosage forms that can be readily prepared from polymeric melts by incorporating the nucleation, growth, and coalescence of microscopic gas bubbles in a molding process. We show that the cell topology and formulation of such cellular structures can be engineered to reduce the length-scale of the mass-transfer step, which determines the time of drug release, from as large as the dosage form itself to as small as the thickness of the cell wall. This allows the cellular dosage forms to achieve drug release rates over an order of magnitude faster compared with those of cast matrices, spanning the entire spectrum of immediate-release and beyond. The melt-processed polymeric cellular dosage forms enable predictive design of immediate-release solid dosage forms by tailoring microstructures, and could be manufactured efficiently in a single step.
21 CFR 520.530 - Cythioate oral liquid.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Cythioate oral liquid. 520.530 Section 520.530 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.530 Cythioate oral liquid. (a...
21 CFR 520.1453 - Moxidectin and praziquantel gel.
Code of Federal Regulations, 2010 CFR
2010-04-01
...). One dose also suppresses strongyle egg production for 84 days. (3) Limitations. For oral use in horses... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1453 Moxidectin...
Physiological Parameters for Oral Delivery and In vitro Testing
Mudie, Deanna M.; Amidon, Gordon L.; Amidon, Gregory E.
2010-01-01
Pharmaceutical solid oral dosage forms must undergo dissolution in the intestinal fluids of the gastrointestinal tract before they can be absorbed and reach the systemic circulation. Therefore, dissolution is a critical part of the drug-delivery process. The rate and extent of drug dissolution and absorption depend on the characteristics of the active ingredient as well as properties of the dosage form. Just as importantly, characteristics of the physiological environment such as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and hydrodynamics can significantly impact dissolution and absorption. While significant progress has been made since 1970 when the first compendial dissolution test was introduced (USP Apparatus 1), current dissolution testing does not take full advantage of the extensive physiologic information that is available. For quality control purposes, where the question is one of lot-to-lot consistency in performance, using nonphysiologic test conditions that match drug and dosage form properties with practical dissolution media and apparatus may be appropriate. However, where in vitro – in vivo correlations are desired, it is logical to consider and utilize knowledge of the in vivo condition. This publication critically reviews the literature that is relevant to oral human drug delivery. Physiologically relevant information must serve as a basis for the design of dissolution test methods and systems that are more representative of the human condition. As in vitro methods advance in their physiological relevance, better in vitro - in vivo correlations will be possible. This will, in turn, lead to in vitro systems that can be utilized to more effectively design dosage forms that have improved and more consistent oral bioperformance. PMID:20822152
Biowaiver monograph for immediate-release solid oral dosage forms: fluconazole.
Charoo, Naseem; Cristofoletti, Rodrigo; Graham, Alexandra; Lartey, Paul; Abrahamsson, Bertil; Groot, D W; Kopp, Sabine; Langguth, Peter; Polli, James; Shah, Vinod P; Dressman, Jennifer
2014-12-01
Literature data pertaining to the decision to allow a waiver of in vivo bioequivalence (BE) testing requirements for the approval of immediate release (IR) solid oral dosage forms containing fluconazole as the only active pharmaceutical ingredient (API) are reviewed. The decision is based on solubility, dissolution, permeability, therapeutic index, pharmacokinetic parameters, pharmacodynamic properties, and other relevant data. BE/bioavailability (BA) problems and drug-excipients interaction data were also reviewed and taken into consideration. According to the biopharmaceutics classification system (BCS), fluconazole in polymorphic forms II and III is a BCS class I drug and has a wide therapeutic index. BE of test formulations from many different manufacturers containing different excipients confirmed that the risk of bioinequivalence because of formulation and manufacturing factors is low. It was inferred that risk can be further reduced if in vitro studies are performed according to biowaiver guidelines. Thus, it is concluded that a biowaiver can be recommended for fluconazole IR dosage forms if (a) fluconazole is present as polymorphic form II or III or any other form/mixture showing high solubility, (b) the selection of excipients be limited to those found in IR drug products approved in International Conference on Harmonisation (ICH) countries for the same dosage form and used in their usual amounts, and (c) both the test and comparator dosage form are very rapidly dissolving, or, rapidly dissolving throughout the shelf life with similar dissolution profiles at pH 1.2, 4.5, and 6.8. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Extemporaneous compounding in a sample of New Zealand hospitals: a retrospective survey.
Kairuz, Therése; Chhim, Srey; Hasan, Fhazeel; Kumar, Karishma; Lal, Aarti; Patel, Roshni; Singh, Ranjani; Dogra, Mridula; Garg, Sanjay
2007-03-23
To determine the extent and nature of extemporaneous compounding of liquid preparations in a sample of New Zealand hospitals. Retrospective data were collected from eight hospitals known to provide compounding services during the period 1 June 2004 to 31 December 2004; including dosage form, volume, and quantity prepared. Data were collected on site from compounding logbooks and batch sheets. Demographic patient data was limited to age and was only collected from pharmacy departments where this information was readily available. Off-label use was analysed where appropriate data were available. 2015 products were compounded over the 7-month period; an average of 251.9 per month. More oral dosage forms were compounded (n=152) compared to topical dosage forms (n=100); 74 drugs required extemporaneous preparation for oral use. There were 16 drugs used in an off-label manner on 144 occasions for paediatric patients. Most off-label drugs were reformulated as suspensions; omeprazole suspension was compounded at all of the hospitals. Off-label use of four drugs (sotalol, labetalol, diazoxide, and clonidine) was analysed for different paediatric age groups. Suspensions are the most frequently compounded dosage form and omeprazole is the drug that is most frequently reformulated. Off-label medicines form a small but integral role in the supply of medicinal products.
21 CFR 520.2345e - Tetracycline oral liquid.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2345e Tetracycline oral... animals which are raised for food production; Federal law restricts this drug to use by or on the order of a licensed veterinarian. (iv) National Academy of Sciences/National Research Council (NAS/NRC...
21 CFR 520.2345e - Tetracycline oral liquid.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2345e Tetracycline oral... animals which are raised for food production; Federal law restricts this drug to use by or on the order of a licensed veterinarian. (iv) National Academy of Sciences/National Research Council (NAS/NRC...
21 CFR 520.2345e - Tetracycline oral liquid.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2345e Tetracycline oral... animals which are raised for food production; Federal law restricts this drug to use by or on the order of a licensed veterinarian. (iv) National Academy of Sciences/National Research Council (NAS/NRC...
Bonhoeffer, Bastian; Kwade, Arno; Juhnke, Michael
2018-03-01
Flexible manufacturing technologies for solid oral dosage forms with a continuous adjustability of the manufactured dose strength are of interest for applications in personalized medicine. This study explored the feasibility of using microvalve technology for the manufacturing of different solid oral dosage form concepts. Hard gelatin capsules filled with excipients, placebo tablets, and polymer films, placed in hard gelatin capsules after drying, were considered as substrates. For each concept, a basic understanding of relevant formulation parameters and their impact on dissolution behavior has been established. Suitable matrix formers, present either on the substrate or directly in the drug nanosuspension, proved to be essential to prevent nanoparticle agglomeration of the drug nanoparticles and to ensure a fast dissolution behavior. Furthermore, convection and radiation drying methods were investigated for the fast drying of drug nanosuspensions dispensed onto polymer films, which were then placed in hard gelatin capsules. Changes in morphology and in drug and matrix former distribution were observed for increasing drying intensity. However, even fast drying times below 1 min could be realized, while maintaining the nanoparticulate drug structure and a good dissolution behavior. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Orally disintegrating dosage forms and taste-masking technologies; 2010.
Douroumis, Dennis
2011-05-01
In the last decade the development of orally disintegrating tablets (ODTs) and thin-film platforms has grown enormously in the field of pharmaceutical industry. A wide variety of new masking technologies combined with the aforementioned platforms have been developed in order to mask the taste of bitter active substances and achieve patient compliance. The commercial success and viability of such products requires the development of robust formulations with excellent palatability, disintegration times, physicochemical stability and pharmacokinetic profiles. In this review, emerging taste-masking technologies applied to solid dosage form manufacturing are summarized. The unique features and principles of taste-masking approaches used with ODT platforms are discussed, including the advantages and limitations of each technology. A brief discussion is also included on the taste masking of thin-film technologies, owing to their similar applications and requirements. This review elucidates the unique features of current commercially available or highly promising ODT and thin-film technologies, along with taste-masking approaches used in the manufacturing of oral solid dosage forms. A better understanding of these drug delivery approaches will help researchers to select the appropriate platform, or to develop innovative products with improved safety, compliance and clinical value.
Oral, ultra–long-lasting drug delivery: Application toward malaria elimination goals
Bellinger, Andrew M.; Jafari, Mousa; Grant, Tyler M.; Zhang, Shiyi; Slater, Hannah C.; Wenger, Edward A.; Mo, Stacy; Lee, Young-Ah Lucy; Mazdiyasni, Hormoz; Kogan, Lawrence; Barman, Ross; Cleveland, Cody; Booth, Lucas; Bensel, Taylor; Minahan, Daniel; Hurowitz, Haley M.; Tai, Tammy; Daily, Johanna; Nikolic, Boris; Wood, Lowell; Eckhoff, Philip A.; Langer, Robert; Traverso, Giovanni
2017-01-01
Efforts at elimination of scourges, such as malaria, are limited by the logistic challenges of reaching large rural populations and ensuring patient adherence to adequate pharmacologic treatment. We have developed an oral, ultra–long-acting capsule that dissolves in the stomach and deploys a star-shaped dosage form that releases drug while assuming a geometry that prevents passage through the pylorus yet allows passage of food, enabling prolonged gastric residence. This gastric-resident, drug delivery dosage form releases small-molecule drugs for days to weeks and potentially longer. Upon dissolution of the macrostructure, the components can safely pass through the gastrointestinal tract. Clinical, radiographic, and endoscopic evaluation of a swine large-animal model that received these dosage forms showed no evidence of gastrointestinal obstruction or mucosal injury. We generated long-acting formulations for controlled release of ivermectin, a drug that targets malaria-transmitting mosquitoes, in the gastric environment and incorporated these into our dosage form, which then delivered a sustained therapeutic dose of ivermectin for up to 14 days in our swine model. Further, by using mathematical models of malaria transmission that incorporate the lethal effect of ivermectin against malaria-transmitting mosquitoes, we demonstrated that this system will boost the efficacy of mass drug administration toward malaria elimination goals. Encapsulated, gastric-resident dosage forms for ultra–long-acting drug delivery have the potential to revolutionize treatment options for malaria and other diseases that affect large populations around the globe for which treatment adherence is essential for efficacy. PMID:27856796
Terminology challenges: defining modified release dosage forms in veterinary medicine.
Martinez, Marilyn N; Lindquist, Danielle; Modric, Sanja
2010-08-01
Terminologies for describing dosage form release characteristics for human pharmaceuticals have been addressed by bodies such as the US Food and Drug Administration (FDA), the International Conference on Harmonization (ICH), and the US Pharmacopeia (USP). While the definition for terms such as "immediate release," "modified release," "extended release," and "delayed release" are now well accepted for human pharmaceuticals, confusion still exists within the veterinary community. In part, this confusion is attributable to differences between human and veterinary dosage forms (such as the preponderance of parenteral vs. oral extended release products for use in animals vs. the focus on oral extended release formulations for human use) which reflect interspecies differences in physiology and conditions of use. It also simply reflects a lack of attention to existing definitions. In an effort to remedy this problem, this manuscript reflects an initial effort to suggest definitions that may be appropriate for describing formulation effects in veterinary medicine. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Formulation and delivery strategies of ibuprofen: challenges and opportunities.
Irvine, Jake; Afrose, Afrina; Islam, Nazrul
2018-02-01
Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), is mostly administered orally and topically to relieve acute pain and fever. Due to its mode of action this drug may be useful in the treatment regimens of other, more chronic conditions, like cystic fibrosis. This drug is poorly soluble in aqueous media and thus the rate of dissolution from the currently available solid dosage forms is limited. This leads to poor bioavailability at high doses after oral administration, thereby increasing the risk of unwanted adverse effects. The poor solubility is a problem for developing injectable solution dosage forms. Because of its poor skin permeability, it is difficult to obtain an effective therapeutic concentration from topical preparations. This review aims to give a brief insight into the status of ibuprofen dosage forms and their limitations, particle/crystallization technologies for improving formulation strategies as well as suggesting its incorporation into the pulmonary drug delivery systems for achieving better therapeutic action at low dose.
Use of similarity scoring in the development of oral solid dosage forms.
Ferreira, Ana P; Olusanmi, Dolapo; Sprockel, Omar; Abebe, Admassu; Nikfar, Faranak; Tobyn, Mike
2016-12-05
In the oral solid dosage form space, material physical properties have a strong impact on the behaviour of the formulation during processing. The ability to identify materials with similar characteristics (and thus expected to exhibit similar behaviour) within the company's portfolio can help accelerate drug development by enabling early assessment and prediction of potential challenges associated with the powder properties of a new active pharmaceutical ingredient. Such developments will aid the production of robust dosage forms, in an efficient manner. Similarity scoring metrics are widely used in a number of scientific fields. This study proposes a practical implementation of this methodology within pharmaceutical development. The developed similarity metrics is based on the Mahalanobis distance. Scanning electron microscopy was used to confirm morphological similarity between the reference material and the closest matches identified by the metrics proposed. The results show that the metrics proposed are able to successfully identify material with similar physical properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Drumond, Nélio; Stegemann, Sven
2018-05-01
The oral cavity is frequently used to administer pharmaceutical drug products. This route of administration is seen as the most accessible for the majority of patients and supports an independent therapy management. For current oral dosage forms under development, the prediction of their unintended mucoadhesive properties and esophageal transit profiles would contribute for future administration safety, as concerns regarding unintended adhesion of solid oral dosage forms (SODF) during oro-esophageal transit still remain. Different in vitro methods that access mucoadhesion of polymers and pharmaceutical preparations have been proposed over the years. The same methods might be used to test non-adhesive systems and contribute for developing safe-to-swallow technologies. Previous works have already investigated the suitability of non-animal derived in vitro methods to assess such properties. The aim of this work was to review the in vitro methodology available in the scientific literature that used animal esophageal tissue to evaluate mucoadhesion and esophageal transit of pharmaceutical preparations. Furthermore, in vivo methodology is also discussed. Since none of the in vitro methods developed are able to mimic the complex swallowing process and oro-esophageal transit, in vivo studies in humans remain as the gold standard. Copyright © 2018 Elsevier B.V. All rights reserved.
Gastric emptying of multi-particulate dosage forms.
Newton, J Michael
2010-08-16
The evidence in the literature for the concept that multi-particulate dosage forms below a specific size empty from the stomach as if they were liquids and hence have the potential to provide the best solution to the formulation of controlled release oral dosage forms, has been considered. There is some evidence that particles less than 1.0mm provide a more rapid response than larger size particles but there is also evidence that this is not always the case and that rapid and reproducible gastric emptying of small particles does not always occur when they are administered. There is strong evidence that food can delay the gastric emptying of multi-particulate systems. Some of the misconception for gastric emptying performance of multi-particulate system is shown to be related to the limitation of the study design and limitation of the way the data is processed. Nevertheless, there is clear evidence that multi-particulate systems can provide effective oral controlled release dosage forms. There is still some way to go with experimental techniques which would allow a definitive answer to the issue of how the variability of the gastric emptying of multi-particulate systems of less than 2.0mm arises. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Kawakami, Kohsaku
2009-09-01
Although most chemists in the pharmaceutical industry have a good understanding on favorable physicochemical properties for drug candidates, formulators must still deal with many challenging candidates. On the other hand, formulators are not allowed to spend much time on formulation development for early phases of the clinical studies. Thus, it is basically difficult to apply special dosage form technologies to the candidates for the first-in-human formulations. Despite the availability of numerous reviews on oral special dosage forms, information on their applicability as the early phase formulation has been limited. This article describes quick review on the oral special dosage forms that may be applied to the early clinical formulations, followed by discussion focused on the amorphous formulations, which still has relatively many issues to be proved for the general use. The major problems that inhibit the use of the amorphous formulation are difficulty in the manufacturing and the poor chemical/physical stability. Notably, the poor physical stability can be critical, because of not the poor stability itself but the difficulty in the timely evaluation in the preclinical developmental timeframes. Research directions of the amorphous formulations are suggested to utilize this promising technology without disturbing the preclinical developmental timelines.
Içten, Elçin; Giridhar, Arun; Nagy, Zoltan K; Reklaitis, Gintaras V
2016-04-01
The features of a drop-on-demand-based system developed for the manufacture of melt-based pharmaceuticals have been previously reported. In this paper, a supervisory control system, which is designed to ensure reproducible production of high quality of melt-based solid oral dosages, is presented. This control system enables the production of individual dosage forms with the desired critical quality attributes: amount of active ingredient and drug morphology by monitoring and controlling critical process parameters, such as drop size and product and process temperatures. The effects of these process parameters on the final product quality are investigated, and the properties of the produced dosage forms characterized using various techniques, such as Raman spectroscopy, optical microscopy, and dissolution testing. A crystallization temperature control strategy, including controlled temperature cycles, is presented to tailor the crystallization behavior of drug deposits and to achieve consistent drug morphology. This control strategy can be used to achieve the desired bioavailability of the drug by mitigating variations in the dissolution profiles. The supervisor control strategy enables the application of the drop-on-demand system to the production of individualized dosage required for personalized drug regimens.
21 CFR 520.522 - Cyclosporine.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.522 Cyclosporine. (a) Specifications...) cyclosporine. (2) Each milliliter of cyclosporine oral solution, USP (MODIFIED) contains 100 mg cyclosporine...
21 CFR 520.522 - Cyclosporine.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.522 Cyclosporine. (a) Specifications...) cyclosporine. (2) Each milliliter of cyclosporine oral solution, USP (MODIFIED) contains 100 mg cyclosporine...
21 CFR 520.522 - Cyclosporine.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.522 Cyclosporine. (a) Specifications...) cyclosporine. (2) Each milliliter of cyclosporine oral solution, USP (MODIFIED) contains 100 mg cyclosporine...
21 CFR 520.563 - Diatrizoate meglumine and diatrizoate sodium oral solution.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Diatrizoate meglumine and diatrizoate sodium oral solution. 520.563 Section 520.563 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.563 - Diatrizoate meglumine and diatrizoate sodium oral solution.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Diatrizoate meglumine and diatrizoate sodium oral solution. 520.563 Section 520.563 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.1044a - Gentamicin sulfate oral solution.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Gentamicin sulfate oral solution. 520.1044a Section 520.1044a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1044a...
21 CFR 520.563 - Diatrizoate meglumine and diatrizoate sodium oral solution.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diatrizoate meglumine and diatrizoate sodium oral solution. 520.563 Section 520.563 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.390c - Chloramphenicol palmitate oral suspension.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Chloramphenicol palmitate oral suspension. 520.390c Section 520.390c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390c...
21 CFR 520.390c - Chloramphenicol palmitate oral suspension.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Chloramphenicol palmitate oral suspension. 520.390c Section 520.390c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390c...
21 CFR 520.563 - Diatrizoate meglumine and diatrizoate sodium oral solution.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Diatrizoate meglumine and diatrizoate sodium oral solution. 520.563 Section 520.563 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.563 - Diatrizoate meglumine and diatrizoate sodium oral solution.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Diatrizoate meglumine and diatrizoate sodium oral solution. 520.563 Section 520.563 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.390c - Chloramphenicol palmitate oral suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Chloramphenicol palmitate oral suspension. 520.390c Section 520.390c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390c...
21 CFR 520.1192 - Ivermectin paste.
Code of Federal Regulations, 2012 CFR
2012-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1192 Ivermectin paste. (a...): Trichostrongylus axei; Large mouth Stomach Worms (adults): Habronema muscae; Bots (oral and gastric stages...
21 CFR 520.1194 - Ivermectin meal.
Code of Federal Regulations, 2012 CFR
2012-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1194 Ivermectin meal. (a...; Large Mouth Stomach Worms (adults): Habronema muscae; Bots (oral and gastric stages): Gasterophilus spp...
21 CFR 520.90d - Ampicillin trihydrate for oral suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ampicillin trihydrate for oral suspension. 520.90d Section 520.90d Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90d Ampicillin...
21 CFR 520.90d - Ampicillin trihydrate for oral suspension.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ampicillin trihydrate for oral suspension. 520.90d Section 520.90d Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90d Ampicillin...
21 CFR 520.1195 - Ivermectin liquid.
Code of Federal Regulations, 2012 CFR
2012-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1195 Ivermectin liquid. (a... oral drench. (ii) Indications for use. For treatment and control of: (A) Large Strongyles (adults...
78 FR 30197 - Oral Dosage Form New Animal Drugs; Clindamycin; Enrofloxacin
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... use in dogs and cats--(1) Amount. Administer orally as a single, daily dose or divided into two equal doses at 12- hour intervals. (i) Dogs. 5 to 20 mg per kilogram (/kg) (2.27 to 9.07 mg per pound (/lb...
Determination of methadone hydrochloride in a maintenance dosage formulation.
Hoffmann, T J; Thompson, R D
1975-07-01
A colorimetric method for direct quantitative assay of methadone hydrochloride in liquid oral dosage forms is presented. The procedure involves the formation of a dye complex with bromothymol blue buffer solution. The resultant complex is extracted with benzene and measured spectrophotometrically. Duplicate tests on the formulation showed 99.2% of the labeled amount of methadone.
21 CFR 520.246 - Butorphanol tartrate tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
....246 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.246 Butorphanol... associated with inflammatory conditions of the upper respiratory tract. (3) Limitations. For oral use in dogs...
21 CFR 520.816 - Epsiprantel tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.816 Epsiprantel tablets. (a... of feline cestodes D. caninum and T. taeniaeformis. (3) Limitations. For oral use only as a single...
21 CFR 520.246 - Butorphanol tartrate tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
....246 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.246 Butorphanol... associated with inflammatory conditions of the upper respiratory tract. (3) Limitations. For oral use in dogs...
21 CFR 520.90b - Ampicillin trihydrate tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
....90b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90b Ampicillin... 5 days, stop treatment, reevaluate diagnosis, and change therapy. (2) Indications for use. Oral...
21 CFR 520.246 - Butorphanol tartrate tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
....246 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.246 Butorphanol... associated with inflammatory conditions of the upper respiratory tract. (3) Limitations. For oral use in dogs...
21 CFR 520.90b - Ampicillin trihydrate tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
....90b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90b Ampicillin... 5 days, stop treatment, reevaluate diagnosis, and change therapy. (2) Indications for use. Oral...
21 CFR 520.903b - Febantel suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.903b Febantel suspension. (a... considerations. Febantel suspension may be used in combination with trichlorfon oral liquid in accordance with...
21 CFR 520.816 - Epsiprantel tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.816 Epsiprantel tablets. (a... of feline cestodes D. caninum and T. taeniaeformis. (3) Limitations. For oral use only as a single...
21 CFR 520.1284 - Sodium liothyronine tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium liothyronine tablets. 520.1284 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1284 Sodium liothyronine tablets. (a) Specifications. Sodium liothyronine tablets consist of tablets intended for oral...
21 CFR 520.1284 - Sodium liothyronine tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium liothyronine tablets. 520.1284 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1284 Sodium liothyronine tablets. (a) Specifications. Sodium liothyronine tablets consist of tablets intended for oral...
21 CFR 520.1284 - Sodium liothyronine tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium liothyronine tablets. 520.1284 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1284 Sodium liothyronine tablets. (a) Specifications. Sodium liothyronine tablets consist of tablets intended for oral...
21 CFR 520.1284 - Sodium liothyronine tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium liothyronine tablets. 520.1284 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1284 Sodium liothyronine tablets. (a) Specifications. Sodium liothyronine tablets consist of tablets intended for oral...
Isocratic RP-HPLC method for rutin determination in solid oral dosage forms.
Kuntić, Vesna; Pejić, Natasa; Ivković, Branka; Vujić, Zorica; Ilić, Katarina; Mićić, Svetlana; Vukojević, Vladana
2007-01-17
A rapid and sensitive assay for quantitative determination of rutin in oral dosage forms based on isocratic reversed phase high performance liquid chromatography (RP-HPLC) was developed and validated. Using a C(18) reverse-phase analytical column, the following conditions were chosen as optimal: mobile phase methanol-water 1:1 (v/v), pH 2.8 (adjusted with phosphoric acid), flow rate=1 mL min(-1) and temperature T=40.0 degrees C. Linearity was observed in the concentration range 8-120 microg mL(-1) with a correlation coefficient of 0.99982 and the limit of detection (LOD)=2.6 microg mL(-1), and limit of quantification (LOQ)=8.0 microg mL(-1). Intra- and inter-day precision were within acceptable limits. Robustness test indicated that the mobile phase composition and pH influence mainly the separation. The proposed method allowed direct determination of rutin in pharmaceutical dosage forms in the presence of excipients, but is not suitable for preparations where compounds structurally/chemically related to rutin may be present.
Continuous powder feeding for pharmaceutical solid dosage form manufacture: a short review.
Blackshields, Caroline A; Crean, Abina M
2018-07-01
There has been a noticeable shift from pharmaceutical batch processing towards a more continuous mode of manufacture for solid oral dosage forms. Continuous solid oral dose processes would not be possible in the absence of a highly accurate feeding system. The performance of feeders defines the content of formulations and is therefore a critical operation in continuous manufacturing of solid dosage forms. It was the purpose of this review to review the role of the initial powder feeding step in a continuous manufacturing process. Different feeding mechanisms are discussed with a particular emphasis on screw controlled loss in weight (LIW) feeding. The importance of understanding the physical properties of the raw materials and its impact on the feeding process is reviewed. Prior knowledge of materials provides an initial indication of how the powders will behave through processing and facilitates in the selection of the most suitable (i) feeder (capacity), (ii) feeding mechanism, and (iii) in the case of screw feeder - screw type. The studies identified in this review focus on the impact of material on powder feeding performance.
Biowaiver monographs for immediate release solid oral dosage forms: metronidazole.
Rediguieri, Camila F; Porta, Valentina; G Nunes, Diana S; Nunes, Taina M; Junginger, Hans E; Kopp, Sabine; Midha, Kamal K; Shah, Vinod P; Stavchansky, Salomon; Dressman, Jennifer B; Barends, Dirk M
2011-05-01
Literature data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release (IR) solid oral dosage forms containing metronidazole are reviewed. Metronidazole can be assigned to Biopharmaceutics Classification System Class I. Most BE studies that were identified reported the investigated formulations to be bioequivalent, indicating the risk of bioinequivalence to be low. Formulations showing differences in bioavailability showed dissimilarities in in vitro dissolution profiles. Furthermore, metronidazole has a wide therapeutic index. It is concluded that a biowaiver for solid IR formulations is justified, provided: (a) the test product and its comparator are both rapidly dissolving; (b) meet similarity of the dissolution profiles at pH 1.2, 4.5, and 6.8; (c) the test product contains only excipients present in IR drug products approved in International Conference on Harmonisation (ICH) or associated countries in the same dosage form; and (d) if the test product contains sorbitol, sodium laurilsulfate, or propylene glycol, the test product needs to be qualitatively and quantitatively identical to its comparator with respect to these excipients [corrected].. Copyright © 2011 Wiley-Liss, Inc.
3D-micro-patterned fibrous dosage forms for immediate drug release.
Blaesi, Aron H; Saka, Nannaji
2018-03-01
At present, the most prevalent pharmaceutical dosage forms, the orally-delivered immediate-release tablets and capsules, are porous, granular solids. They disintegrate into their constituent particulates upon ingestion to release drug rapidly. The design, development, and manufacture of such granular solids, however, is inefficient due to difficulties associated with the unpredictable inter-particle interactions. Therefore, to achieve more predictable dosage form properties and processing, we have recently introduced melt-processed polymeric cellular dosage forms. The cellular forms disintegrated and released drug rapidly if the cells were predominantly interconnected. Preparation of interconnected cells, however, relies on the coalescence of gas bubbles in the melt, which is unpredictable. In the present work, therefore, new melt-processed fibrous dosage forms with contiguous void space are presented. The dosage forms are prepared by melt extrusion of the drug-excipient mixture followed by patterning the fibrous extrudate on a moving surface. It is demonstrated that the resulting fibrous structures are fully predictable by the extruder nozzle diameter and the motion of the surface. Furthermore, drug release experiments show that the disintegration time of the fibrous forms prepared in this work is of the order of that of the corresponding single fibers. The thin fibers of polyethylene glycol (excipient) and acetaminophen (drug) in turn disintegrate in a time proportional to the fiber radius and well within immediate-release specification. Finally, models of dosage form disintegration and drug release by single fibers and fibrous dosage forms are developed. It is found that drug release from fibrous forms is predictable by the physico-chemical properties of the excipient and such microstructural parameters as the fiber radius, the inter-fiber spacing, and the volume fraction of water-soluble excipient in the fibers. Copyright © 2017 Elsevier B.V. All rights reserved.
21 CFR 520.2002 - Propiopromazine hydrochloride.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2002...) Conditions of use. (1) The drug is intended for oral administration to dogs as a tranquilizer. It is used as..., car sickness, and severe dermatitis. It is also indicated for use in minor surgery and prior to...
21 CFR 520.90f - Ampicillin trihydrate boluses.
Code of Federal Regulations, 2014 CFR
2014-04-01
....90f Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90f Ampicillin... daily for up to 5 days. (i) Indications for use. Oral treatment of colibacillosis caused by Escherichia...
21 CFR 520.45b - Albendazole paste.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.45b Albendazole paste. (a... as a single oral dose. Do not slaughter within 27 days of last treatment. Do not use in female dairy...
21 CFR 520.1198 - Ivermectin and praziquantel paste.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Section 520.1198 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1198 Ivermectin...; Large-mouth Stomach Worms (adults)—Habronema muscae; Bots (oral and gastric stages)—Gasterophilus spp...
21 CFR 520.90e - Ampicillin trihydrate soluble powder.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Section 520.90e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90e Ampicillin...) Indications for use. Oral treatment of porcine colibacillosis (Escherichia coli) and salmonellosis (Salmonella...
21 CFR 520.45b - Albendazole paste.
Code of Federal Regulations, 2013 CFR
2013-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.45b Albendazole paste. (a... as a single oral dose. Do not slaughter within 27 days of last treatment. Do not use in female dairy...
21 CFR 520.88e - Amoxicillin trihydrate boluses.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 520.88e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.88e Amoxicillin...) Limitations. For oral use in preruminating calves including veal calves only, not for use in other animals...
21 CFR 520.38b - Albendazole paste.
Code of Federal Regulations, 2014 CFR
2014-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.38b Albendazole paste. (a... as a single oral dose. Do not slaughter within 27 days of last treatment. Do not use in female dairy...
21 CFR 520.88e - Amoxicillin trihydrate boluses.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 520.88e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.88e Amoxicillin...) Limitations. For oral use in preruminating calves including veal calves only, not for use in other animals...
21 CFR 520.90e - Ampicillin trihydrate soluble powder.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Section 520.90e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90e Ampicillin...) Indications for use. Oral treatment of porcine colibacillosis (Escherichia coli) and salmonellosis (Salmonella...
21 CFR 520.90f - Ampicillin trihydrate boluses.
Code of Federal Regulations, 2013 CFR
2013-04-01
....90f Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90f Ampicillin... daily for up to 5 days. (i) Indications for use. Oral treatment of colibacillosis caused by Escherichia...
21 CFR 520.531 - Cythioate tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.531 Cythioate tablets. (a.... (3) Limitations. For oral use in dogs only. Do not use in greyhounds or in animals that are pregnant...
21 CFR 520.45b - Albendazole paste.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.45b Albendazole paste. (a... as a single oral dose. Do not slaughter within 27 days of last treatment. Do not use in female dairy...
21 CFR 520.88e - Amoxicillin trihydrate boluses.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 520.88e Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.88e Amoxicillin...) Limitations. For oral use in preruminating calves including veal calves only, not for use in other animals...
21 CFR 520.90e - Ampicillin trihydrate soluble powder.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.90e Ampicillin...) Indications for use. Oral treatment of porcine colibacillosis (Escherichia coli) and salmonellosis (Salmonella... in swine only. Not for use in other animals which are raised for food production. Treated swine must...
16 CFR 1700.14 - Substances requiring special packaging.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Aspirin. Any aspirin-containing preparation for human use in a dosage form intended for oral... following: (i) Effervescent tablets containing aspirin, other than those intended for pediatric use, provided the dry tablet contains not more than 15 percent aspirin and has an oral LD-50 in rats of 5 grams...
16 CFR 1700.14 - Substances requiring special packaging.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Aspirin. Any aspirin-containing preparation for human use in a dosage form intended for oral... following: (i) Effervescent tablets containing aspirin, other than those intended for pediatric use, provided the dry tablet contains not more than 15 percent aspirin and has an oral LD-50 in rats of 5 grams...
16 CFR § 1700.14 - Substances requiring special packaging.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Aspirin. Any aspirin-containing preparation for human use in a dosage form intended for oral... following: (i) Effervescent tablets containing aspirin, other than those intended for pediatric use, provided the dry tablet contains not more than 15 percent aspirin and has an oral LD-50 in rats of 5 grams...
16 CFR 1700.14 - Substances requiring special packaging.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Aspirin. Any aspirin-containing preparation for human use in a dosage form intended for oral... following: (i) Effervescent tablets containing aspirin, other than those intended for pediatric use, provided the dry tablet contains not more than 15 percent aspirin and has an oral LD-50 in rats of 5 grams...
16 CFR 1700.14 - Substances requiring special packaging.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Aspirin. Any aspirin-containing preparation for human use in a dosage form intended for oral... following: (i) Effervescent tablets containing aspirin, other than those intended for pediatric use, provided the dry tablet contains not more than 15 percent aspirin and has an oral LD-50 in rats of 5 grams...
Bioavailability of intranasal promethazine dosage forms in dogs
NASA Technical Reports Server (NTRS)
Ramanathan, R.; Geary, R. S.; Bourne, D. W.; Putcha, L.
1998-01-01
Intramuscular promethazine (PMZ) is used aboard the US Space Shuttle to ameliorate symptoms of space motion sickness. Bioavailability after an oral dose of PMZ during space flight is thought to be impaired because of gastrointestinal disturbances associated with weightlessness and space motion sickness. In an attempt to find an alternative dosage form for use in space, we evaluated two intranasal (i.n.) dosage forms of PMZ in dogs for absorption and bioavailability relative to that of an equivalent intramuscular dose. Promethazine (5 mg kg-1) was administered as two intranasal dosage forms and as an intramuscular (i.m.) dose to three dogs in a randomised cross-over design. Serial blood samples were taken and analysed for PMZ concentrations and the absorption and bioavailability of PMZ were calculated for the three dosage forms. PMZ absorption from the carboxymethyl cellulose microsphere i.n. dosage form was more rapid and complete than from the myverol cubic gel formulation or from an i.m. injection. Bioavailability of the microsphere formulation was also greater than that of the gel formulation (AUC 3009 vs 1727 ng h ml-1). The bioavailability of the two i.n. dosage forms (relative to that of the i.m. injection) were 94% (microsphere) and 54% (gel). The i.n. microsphere formulation of PMZ offers great promise as an effective non-invasive alternative for treating space motion sickness due to its rapid absorption and bioavailability equivalent to the i.m. dose.
Blaesi, Aron H; Saka, Nannaji
2016-07-25
At present, the immediate-release solid dosage forms, such as the oral tablets and capsules, are granular solids. They release drug rapidly and have adequate mechanical properties, but their manufacture is fraught with difficulties inherent in processing particulate matter. Such difficulties, however, could be overcome by liquid-based processing. Therefore, we have recently introduced polymeric cellular (i.e., highly porous) dosage forms prepared from a melt process. Experiments have shown that upon immersion in a dissolution medium, the cellular dosage forms with polyethylene glycol (PEG) as excipient and with predominantly open-cell topology disintegrate by exfoliation, thus enabling rapid drug release. If the volume fraction of voids of the open-cell structures is too large, however, their mechanical strength is adversely affected. At present, the common method for determining the tensile strength of brittle, solid dosage forms (such as select granular forms) is the diametral compression test. In this study, the theory of diametral compression is first refined to demonstrate that the relevant mechanical properties of ductile and cellular solids (i.e., the elastic modulus and the yield strength) can also be extracted from this test. Diametral compression experiments are then conducted on PEG-based solid and cellular dosage forms. It is found that the elastic modulus and yield strength of the open-cell structures are about an order of magnitude smaller than those of the non-porous solids, but still are substantially greater than the stiffness and strength requirements for handling the dosage forms manually. This work thus demonstrates that melt-processed polymeric cellular dosage forms that release drug rapidly can be designed and manufactured to have adequate mechanical properties. Copyright © 2016. Published by Elsevier B.V.
Bhatt-Mehta, Varsha; MacArthur, Robert B.; Löbenberg, Raimar; Cies, Jeffrey J.; Cernak, Ibolja; Parrish, Richard H.
2015-01-01
The lack of commercially-available pediatric drug products and dosage forms is well-known. A group of clinicians and scientists with a common interest in pediatric drug development and medicines-use systems developed a practical framework for identifying a list of active pharmaceutical ingredients (APIs) with the greatest market potential for development to use in pediatric patients. Reliable and reproducible evidence-based drug formulations designed for use in pediatric patients are needed vitally, otherwise safe and consistent clinical practices and outcomes assessments will continue to be difficult to ascertain. Identification of a prioritized list of candidate APIs for oral formulation using the described algorithm provides a broader integrated clinical, scientific, regulatory, and market basis to allow for more reliable dosage forms and safer, effective medicines use in children of all ages. Group members derived a list of candidate API molecules by factoring in a number of pharmacotherapeutic, scientific, manufacturing, and regulatory variables into the selection algorithm that were absent in other rubrics. These additions will assist in identifying and categorizing prime API candidates suitable for oral formulation development. Moreover, the developed algorithm aids in prioritizing useful APIs with finished oral liquid dosage forms available from other countries with direct importation opportunities to North America and beyond. PMID:28975916
NASA Astrophysics Data System (ADS)
Zou, Wen-bo; Chong, Xiao-meng; Wang, Yan; Hu, Chang-qin
2018-05-01
The accuracy of NIR quantitative models depends on calibration samples with concentration variability. Conventional sample collecting methods have some shortcomings especially the time-consuming which remains a bottleneck in the application of NIR models for Process Analytical Technology (PAT) control. A study was performed to solve the problem of sample selection collection for construction of NIR quantitative models. Amoxicillin and potassium clavulanate oral dosage forms were used as examples. The aim was to find a normal approach to rapidly construct NIR quantitative models using an NIR spectral library based on the idea of a universal model [2021]. The NIR spectral library of amoxicillin and potassium clavulanate oral dosage forms was defined and consisted of spectra of 377 batches of samples produced by 26 domestic pharmaceutical companies, including tablets, dispersible tablets, chewable tablets, oral suspensions, and granules. The correlation coefficient (rT) was used to indicate the similarities of the spectra. The samples’ calibration sets were selected from a spectral library according to the median rT of the samples to be analyzed. The rT of the samples selected was close to the median rT. The difference in rT of those samples was 1.0% to 1.5%. We concluded that sample selection is not a problem when constructing NIR quantitative models using a spectral library versus conventional methods of determining universal models. The sample spectra with a suitable concentration range in the NIR models were collected quickly. In addition, the models constructed through this method were more easily targeted.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Scope. 206.1 Section 206.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.1 Scope. This part applies to all solid oral...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Scope. 206.1 Section 206.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.1 Scope. This part applies to all solid oral...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Scope. 206.1 Section 206.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.1 Scope. This part applies to all solid oral...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Scope. 206.1 Section 206.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.1 Scope. This part applies to all solid oral...
21 CFR 520.88e - Amoxicillin trihydrate boluses.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.88e Amoxicillin...) Limitations. For oral use in preruminating calves including veal calves only, not for use in other animals which are raised for food production. Treatment should be continued for 48 hours after all symptoms have...
21 CFR 520.1452 - Moxidectin gel.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1452 Moxidectin gel. (a... instars) and G. nasalis (3rd instars). One dose also suppresses strongyle egg production for 84 days. (3) Limitations. For oral use in horses and ponies 6 months of age and older. Not for use in horses and ponies...
Berardi, Alberto; Bisharat, Lorina; AlKhatib, Hatim S; Cespi, Marco
2018-05-07
Zein is the main storage protein of corn and it has several industrial applications. Mainly in the last 10-15 years, zein has emerged as a potential pharmaceutical excipient with unique features. Zein is a natural, biocompatible and biodegradable material produced from renewable sources. It is insoluble, yet due to its amphiphilic nature, it has self-assembling properties, which have been exploited for the formation of micromicroparticle and nanoparticle and films. Moreover, zein can hydrate so it has been used in swellable matrices for controlled drug release. Other pharmaceutical applications of zein in oral drug delivery include its incorporation in solid dispersions of poorly soluble drugs and in colonic drug delivery systems. This review describes the features of zein significant for its use as a pharmaceutical excipient for oral drug delivery, and it summaries the literature relevant to macroscopic zein-based oral dosage forms, i.e. tablets, capsules, beads and powders. Particular attention is paid to the most novel formulations and applications of zein. Moreover, gaps of knowledge as well as possible venues for future investigations on zein are highlighted.
Ahad, Abdul; Al-Mohizea, Abdullah Mohammed; Al-Jenoobi, Fahad Ibrahim; Aqil, Mohd
2016-01-01
Angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) are some of the most commonly prescribed medications for hypertension. Most of all conventional dosage forms of ARBs and ACEIs undergo extensive first-pass metabolism, which significantly reduces bioavailability. Majority of ARBs and ACEIs are inherently short acting due to a rapid elimination half-life. In addition, oral dosage forms of ARBs and ACEIs have many high incidences of adverse effects due to variable absorption profiles, higher frequency of administration and poor patient compliance. Many attempts have been made globally at the laboratory level to investigate the skin permeation and to develop transdermal therapeutic systems of various ARBs, ACEIs and other anti-hypertensives, to circumvent the drawbacks associated with their conventional dosage form. This manuscript presents an outline of the transdermal research specifically in the area of ARBs, ACEIs and other anti-hypertensives reported in various pharmaceutical journals. The transdermal delivery has gained a significant importance for systemic treatment as it is able to avoid first-pass metabolism and major fluctuations of plasma levels typical of repeated oral administration. As we can experience from this review article that transdermal delivery of different ARBs and ACEIs improves bioavailability as well as patient compliance by many folds. In fact, the rationale development of some newer ARBs, ACEIs and other anti-hypertensives transdermal systems will provide new ways of treatment, circumventing current limitations for conventional dosage forms.
Biopharmaceutical Evaluation and CMC Aspects of Oral Modified Release Formulations.
Chang, Rong-Kun; Mathias, Neil; Hussain, Munir A
2017-09-01
This article discusses the range of outcomes from biopharmaceutical studies of specific modified release (MR) product examples in preclinical models and humans. It touches upon five major biopharmaceutical areas for MR drug products: (1) evidence for regional permeability throughout the GI tract, (2) susceptibility to food-effect, (3) susceptibility to pH-effect, (4) impact of chronopharmacology in designing MR products, and (5) implications to narrow therapeutic index products. Robust bioperformance requires that product quality is met through a thorough understanding of the appropriate critical quality attributes that ensure reliable and robust manufacture of a MR dosage form. The quality-by-design (QbD) aspects of MR dosage form design and development are discussed with the emphasis on the regulatory view of the data required to support dosage form development.
A Novel Disintegration Tester for Solid Dosage Forms Enabling Adjustable Hydrodynamics.
Kindgen, Sarah; Rach, Regine; Nawroth, Thomas; Abrahamsson, Bertil; Langguth, Peter
2016-08-01
A modified in vitro disintegration test device was designed that enables the investigation of the influence of hydrodynamic conditions on disintegration of solid oral dosage forms. The device represents an improved derivative of the compendial PhEur/USP disintegration test device. By the application of a computerized numerical control, a variety of physiologically relevant moving velocities and profiles can be applied. With the help of computational fluid dynamics, the hydrodynamic and mechanical forces present in the probe chamber were characterized for a variety of device moving speeds. Furthermore, a proof of concept study aimed at the investigation of the influence of hydrodynamic conditions on disintegration times of immediate release tablets. The experiments demonstrated the relevance of hydrodynamics for tablet disintegration, especially in media simulating the fasted state. Disintegration times increased with decreasing moving velocity. A correlation between experimentally determined disintegration times and computational fluid dynamics predicted shear stress on tablet surface was established. In conclusion, the modified disintegration test device is a valuable tool for biorelevant in vitro disintegration testing of solid oral dosage forms. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Leung, Jonathan G; Nelson, Sarah; Cunningham, Julie L; Thompson, Virginia H; Bobo, William V; Kung, Simon; Dierkhising, Ross A; Plevak, Matthew F; Lapid, Maria I
2016-08-01
Quetiapine is an oral atypical antipsychotic drug commonly used to treat a large number of neuropsychiatric disorders and conditions. However, a substantial number of patients who may benefit from treatment with quetiapine are unable to ingest quetiapine or other medications by mouth and thus require alternative routes of administration. There are currently no studies evaluating non-oral compounded dosage forms of quetiapine. We conducted a single-dose open-label crossover pharmacokinetic study in 10 healthy adults to determine whether quetiapine compounded as a rectal suppository or a topical cream achieved absorption similar to that achieved by a commercially available oral formulation. Rectal quetiapine produced an area under the plasma concentration-time curve from time zero to infinity (AUC∞) approximately 90 % greater than that produced by an equal (milligram per milligram) dose of oral quetiapine (15,333 ng/mL versus 8118.8 ng/mL, p = 0.005). However, only two of ten subjects who received topical quetiapine had detectable serum levels. When detected, serum levels achieved with topical quetiapine were delayed and low in comparison with those produced by the oral and rectal dosage forms. Our results suggest that rectal, but not topical, quetiapine may be useful in clinical settings. Clinical outcome studies of rectal quetiapine are needed.
Arafat, Basel; Qinna, Nidal; Cieszynska, Milena; Forbes, Robert T; Alhnan, Mohamed A
2018-04-16
Coumarin therapy has been associated with high levels of inter- and intra-individual variation in the required dose to reach a therapeutic anticoagulation outcome. Therefore, a dynamic system that is able to achieve accurate delivery of a warfarin dose is of significant importance. Here we assess, the ability of 3D printing to fabricate and deliver tailored individualised precision dosing using an in-vitro model. Sodium warfarin loaded filaments were compounded using hot melt extrusion (HME) and further fabricated via fused deposition modelling (FDM) 3D printing to produce capsular-ovoid-shaped dosage forms loaded at 200 and 400 µg dose. The solid dosage forms and comparator warfarin aqueous solutions were administered by oral gavage to Sprague-Dawley rats. In vitro, warfarin release was faster at pH 1.2 in comparison to pH 2. A novel UV imaging approach indicated that the erosion of the methacrylate matrix was at a rate of 16.4 and 15.2 µm/min for horizontal and vertical planes respectively. In vivo, 3D printed forms were as proportionately effective as their comparative solution form in doubling plasma exposure following a doubling of warfarin dose (184% versus 192% respectively). The 3D printed ovoids showed a lower C max of warfarin (1.51 and 3.33 mg/mL versus 2.5 and 6.44 mg/mL) and a longer T max (6 and 3.7 versus 4 and 1.5 h) in comparison to liquid formulation. This work demonstrates for the first time in vivo, the potential of FDM 3D printing to produce a tailored specific dosage form and to accurately titrate coumarin dose response to an individual patient. Copyright © 2018. Published by Elsevier B.V.
78 FR 57057 - Oral Dosage Form New Animal Drugs; Amprolium; Meloxicam
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-17
..., Center for Veterinary Medicine (HFV-6), Food and Drug Administration, 7519 Standish Pl., Rockville, MD..., MD 20852, between 9 a.m. and 4 p.m., Monday through Friday. Persons with access to the Internet may....100 Yes....... CE \\1\\. Health Corp., (amprolium) 9.6% as a generic GlenPointe Oral Solution. copy of...
Code of Federal Regulations, 2010 CFR
2010-04-01
... obesity, although their safety and effectiveness for that use have never been established. (b) Digitalis... the treatment of obesity. This use of digoxin or other digitalis glycosides is unwarranted. Moreover... the treatment of obesity is dangerous. (c) This section does not apply to digoxin products for oral...
Code of Federal Regulations, 2011 CFR
2011-04-01
... obesity, although their safety and effectiveness for that use have never been established. (b) Digitalis... the treatment of obesity. This use of digoxin or other digitalis glycosides is unwarranted. Moreover... the treatment of obesity is dangerous. (c) This section does not apply to digoxin products for oral...
Code of Federal Regulations, 2014 CFR
2014-04-01
... obesity, although their safety and effectiveness for that use have never been established. (b) Digitalis... the treatment of obesity. This use of digoxin or other digitalis glycosides is unwarranted. Moreover... the treatment of obesity is dangerous. (c) This section does not apply to digoxin products for oral...
Code of Federal Regulations, 2013 CFR
2013-04-01
... obesity, although their safety and effectiveness for that use have never been established. (b) Digitalis... the treatment of obesity. This use of digoxin or other digitalis glycosides is unwarranted. Moreover... the treatment of obesity is dangerous. (c) This section does not apply to digoxin products for oral...
Code of Federal Regulations, 2012 CFR
2012-04-01
... obesity, although their safety and effectiveness for that use have never been established. (b) Digitalis... the treatment of obesity. This use of digoxin or other digitalis glycosides is unwarranted. Moreover... the treatment of obesity is dangerous. (c) This section does not apply to digoxin products for oral...
Oral Delivery of Probiotics in Poultry Using pH-Sensitive Tablets.
Jiang, Tao; Li, Hui-Shan; Han, Geon Goo; Singh, Bijay; Kang, Sang-Kee; Bok, Jin-Duck; Kim, Dae-Duk; Hong, Zhong-Shan; Choi, Yun-Jaie; Cho, Chong-Su
2017-04-28
As alternatives to antibiotics in livestocks, probiotics have been used, although most of them in the form of liquid or semisolid formulations, which show low cell viability after oral administration. Therefore, suitable dry dosage forms should be developed for livestocks to protect probiotics against the low pH in the stomach such that the products have higher probiotics survivability. Here, in order to develop a dry dosage forms of probiotics for poultry, we used hydroxypropyl methylcellulose phthalate 55 (HPMCP 55) as a tablet-forming matrix to develop probiotics in a tablet form for poultry. Here, we made three different kinds of probiotics-loaded tablet under different compression forces and investigated their characteristics based on their survivability, morphology, disintegration time, and kinetics in simulated gastrointestinal fluid. The results indicated that the probiotics formulated in the tablets displayed higher survival rates in acidic gastric conditions than probiotics in solution. Rapid release of the probiotics from the tablets occurred in simulated intestinal fluid because of fast swelling of the tablets in neutral pH. As a matrix of tablet, HPMCP 55 provided good viability of probiotics after 6 months under refrigeration. Moreover, after oral administration of probiotics-loaded tablets to chicken, more viable probiotics were observed, than with solution type, through several digestive areas of chicken by the tablets.
Enhancement of bioavailability of ketoprofen using dry elixir as a novel dosage form.
Ahn, H J; Kim, K M; Kim, C K
1998-07-01
To enhance the dissolution rate and bioavailability of poorly water-soluble ketoprofen, a novel oral dosage form of ketoprofen, termed ketoprofen dry elixir, was developed by the spray-drying technique. Ketoprofen, dextrin, and sodium lauryl sulfate were dissolved in an ethanol-water mixture (20:25 w/w) and thereafter spray-dried to form the ketoprofen dry elixir. Comparative studies on the in vitro dissolution and in vivo adsorption of ketoprofen in the form of dry elixir and powder were carried out. Ketoprofen in the dry elixir completely dissolved within 5 min. On the other hand, only about 50.1% of ketoprofen powder alone dissolved during 60 min. The initial dissolution rate of ketoprofen in the dry elixir markedly increased in distilled water at 37 degrees C, becoming fourfold higher than that of ketoprofen powder alone. The maximal plasma concentration of ketoprofen (Cmax) and the area under the concentration-time curve from zero to 8 hr (AUC0-8 hr) after the oral administration of dry elixir increased about 3.2- (24.6 versus 7.6 micrograms/ml) and 2.2-(38.4 versus 17.3 micrograms hr/ml) fold compared with powder alone. It was obvious that ketoprofen dry elixir might be a useful solid dosage form to improve the dissolution rate and bioavailability of poorly water-soluble ketoprofen.
Dropwise additive manufacturing of pharmaceutical products for solvent-based dosage forms.
Hirshfield, Laura; Giridhar, Arun; Taylor, Lynne S; Harris, Michael T; Reklaitis, Gintaras V
2014-02-01
In recent years, the US Food and Drug Administration has encouraged pharmaceutical companies to develop more innovative and efficient manufacturing methods with improved online monitoring and control. Mini-manufacturing of medicine is one such method enabling the creation of individualized product forms for each patient. This work presents dropwise additive manufacturing of pharmaceutical products (DAMPP), an automated, controlled mini-manufacturing method that deposits active pharmaceutical ingredients (APIs) directly onto edible substrates using drop-on-demand (DoD) inkjet printing technology. The use of DoD technology allows for precise control over the material properties, drug solid state form, drop size, and drop dynamics and can be beneficial in the creation of high-potency drug forms, combination drugs with multiple APIs or individualized medicine products tailored to a specific patient. In this work, DAMPP was used to create dosage forms from solvent-based formulations consisting of API, polymer, and solvent carrier. The forms were then analyzed to determine the reproducibility of creating an on-target dosage form, the morphology of the API of the final form and the dissolution behavior of the drug over time. DAMPP is found to be a viable alternative to traditional mass-manufacturing methods for solvent-based oral dosage forms. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
21 CFR 520.1453 - Moxidectin and praziquantel gel.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1453 Moxidectin... (2nd and 3rd instars) and G. nasalis (3rd instars); and tapeworms: Anoplocephala perfoliata (adults...
21 CFR 520.1453 - Moxidectin and praziquantel gel.
Code of Federal Regulations, 2014 CFR
2014-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1453 Moxidectin... (2nd and 3rd instars) and G. nasalis (3rd instars); and tapeworms: Anoplocephala perfoliata (adults...
21 CFR 520.1453 - Moxidectin and praziquantel gel.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1453 Moxidectin... (2nd and 3rd instars) and G. nasalis (3rd instars); and tapeworms: Anoplocephala perfoliata (adults...
21 CFR 520.1453 - Moxidectin and praziquantel gel.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1453 Moxidectin... (2nd and 3rd instars) and G. nasalis (3rd instars); and tapeworms: Anoplocephala perfoliata (adults...
21 CFR 520.2045 - Pyrantel tartrate powder; pyrantel tartrate pellets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS... pounds and over are administered 5 pounds of ration per animal. (iii) Fast pigs over night for optimum...
On the exfoliating polymeric cellular dosage forms for immediate drug release.
Blaesi, Aron H; Saka, Nannaji
2016-06-01
The most prevalent pharmaceutical dosage forms at present-the oral immediate-release tablets and capsules-are granular solids. Though effective in releasing drug rapidly, development and manufacture of such dosage forms are fraught with difficulties inherent to particulate processing. Predictable dosage form manufacture could be achieved by liquid-based processing, but cast solid dosage forms are not suitable for immediate drug release due to their resistance to fluid percolation. To overcome this limitation, we have recently introduced cellular dosage forms that can be readily prepared from polymeric melts. It has been shown that open-cell structures comprising polyethylene glycol 8000 (PEG 8k) excipient and a drug exfoliate upon immersion in a dissolution medium. The drug is then released rapidly due to the large specific surface area of the exfoliations. In this work, we vary the molecular weight of the PEG excipient and investigate its effect on the drug release kinetics of structures with predominantly open-cell topology. We demonstrate that the exfoliation rate decreases substantially if the excipient molecular weight is increased from 12 to 100kg/mol, which causes the drug dissolution time to increase by more than a factor of ten. A model is then developed to elucidate the exfoliation behavior of cellular structures. Diverse transport processes are considered: percolation due to capillarity, diffusion of dissolution medium through the cell walls, and viscous flow of the saturated excipient. It is found that the lower exfoliation rate and the longer dissolution time of the dosage forms with higher excipient molecular weight are primarily due to the greater viscosity of the cell walls after fluid penetration. Copyright © 2016 Elsevier B.V. All rights reserved.
Krishnaiah, Yellela S R; Khan, Mansoor A
2012-01-01
Colorectal cancer (CRC) is the third most common cause of cancer-related death in both men and women. Often, surgical intervention remains the choice in treating CRC. Traditional dosage forms used for treating CRC deliver drug to wanted as well as unwanted sites of drug action resulting in several adverse side effects. Targeted oral drug delivery systems are being investigated to target and deliver chemotherapeutic and chemopreventive agents directly to colon and rectum. Site-specific delivery of a drug to colon increases its concentration at the target site, and thus requires a lower dose with reduced incidence of side effects. The major obstacle to be overcome for successful targeting of drug to colon through oral route is that drug absorption/degradation must be avoided in stomach and small intestine before the dosage form reaches colon. The review includes discussion of physiological factors that must be considered when targeting drugs directly to colorectal region, an outline on drugs used for treatment and prevention of CRC, and a brief description of various types of colon-targeted oral drug delivery systems. The focus is on the assessment of various formulation approaches being investigated for oral colon-specific delivery of drugs used in the treatment and prevention of CRC.
Submicron Emulsions and Their Applications in Oral Delivery.
Mundada, Veenu; Patel, Mitali; Sawant, Krutika
2016-01-01
A "submicron emulsion" is an isotropic mixture of drug, lipids, and surfactants, usually with hydrophilic cosolvents and with droplet diameters ranging from 10 to 500 nm. Submicron emulsions are of increasing interest in medicine due to their kinetic stability, high solubilizing capacity, and tiny globule size. Because of these properties, they have been applied in various fields, such as personal care, cosmetics, health care, pharmaceuticals, and agrochemicals. Submicron emulsions are by far the most advanced nanoparticulate systems for the systemic delivery of biologically active agents for controlled drug delivery and targeting. They are designed mainly for pharmaceutical formulations suitable for various routes of administration like parenteral, ocular, transdermal, and oral. This review article describes the marked potential of submicron emulsions for oral drug delivery owing to their numerous advantages like reduced first pass metabolism, inhibition of P-glycoprotein efflux system, and enhanced absorption via intestinal lymphatic pathway. To overcome the limitations of liquid dosage forms, submicron emulsions can be formulated into solid dosage forms such as solid self-emulsifying systems. This article covers various types of submicron emulsions like microemulsion, nanoemulsion, and self-emulsifying drug delivery system (SEDDS), and their potential pharmaceutical applications in oral delivery with emphasis on their advantages, limitations, and advancements.
Malamatari, Maria; Somavarapu, Satyanarayana; Taylor, Kevin M G; Buckton, Graham
2016-01-01
Nanosuspensions combine the advantages of nanotherapeutics (e.g. increased dissolution rate and saturation solubility) with ease of commercialisation. Transformation of nanosuspensions to solid oral and inhalable dosage forms minimises the physical instability associated with their liquid state, enhances patient compliance and enables targeted oral and pulmonary drug delivery. This review outlines solidification methods for nanosuspensions. It includes spray and freeze drying as the most widely used techniques. Fluidised-bed coating, granulation and pelletisation are also discussed as they yield nanocrystalline formulations with more straightforward downstream processing to tablets or capsules. Spray-freeze drying, aerosol flow reactor and printing of nanosuspensions are also presented as promising alternative solidification techniques. Results regarding the solid state, in vitro dissolution and/or aerosolisation efficiency of the nanocrystalline formulations are given and combined with available in vivo data. Focus is placed on the redispersibility of the solid nanocrystalline formulations, which is a prerequisite for their clinical application. A few solidified nanocrystalline products are already on the market and many more are in development. Oral and inhalable nanoparticle formulations are expected to have great potential especially in the areas of personalised medicine and delivery of high drug doses (e.g. antibiotics) to the lungs, respectively.
Nasal Drug Delivery in Traditional Persian Medicine
Zarshenas, Mohammad Mehdi; Zargaran, Arman; Müller, Johannes; Mohagheghzadeh, Abdolali
2013-01-01
Background Over one hundred different pharmaceutical dosage forms have been recorded in literatures of Traditional Persian Medicine among which nasal forms are considerable. Objectives This study designed to derive the most often applied nasal dosage forms together with those brief clinical administrations. Materials and Methods In the current study remaining pharmaceutical manuscripts of Persia during 9th to 18th century AD have been studied and different dosage forms related to nasal application of herbal medicines and their therapeutic effects were derived. Results By searching through pharmaceutical manuscripts of medieval Persia, different nasal dosage forms involving eleven types related to three main groups are found. These types could be derived from powder, solution or liquid and gaseous forms. Gaseous form were classified into fumigation (Bakhoor), vapor bath (Enkebab), inhalation (Lakhlakheh), aroma agents (Ghalieh) and olfaction or smell (Shomoom). Nasal solutions were as drops (Ghatoor), nasal snuffing drops (Saoot) and liquid snuff formulations (Noshoogh). Powders were as nasal insufflation or snorting agents (Nofookh) and errhine or sternutator medicine (Otoos). Nasal forms were not applied only for local purposes. Rather systemic disorders and specially CNS complications were said to be a target for these dosage forms. Discussion While this novel type of drug delivery is known as a suitable substitute for oral and parenteral administration, it was well accepted and extensively mentioned in Persian medical and pharmaceutical manuscripts and other traditional systems of medicine as well. Accordingly, medieval pharmaceutical standpoints on nasal dosage forms could still be an interesting subject of study. Therefore, the current work can briefly show the pharmaceutical knowledge on nasal formulations in medieval Persia and clarify a part of history of traditional Persian pharmacy. PMID:24624204
Intranasal scopolamine preparation and method
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi (Inventor); Cintron, Nitza M. (Inventor)
1991-01-01
A new method and preparation for intranasal delivery of scopolamine provides a safe and effective treatment for motion sickness and other conditions requiring anticholinergic therapy. The preparation can be in the form of aqueous nasal drops, mist spray, gel or oinment. Intranasal delivery of scopolamine has similar bioavailability and effect of intravenous delivery and is far superior to oral dosage. Scopolamine is prepared in a buffered saline solution at the desired dosage rate for effective anticholinergic response.
Multifunctional Delivery Systems for Advanced oral Uptake of Peptide/Protein Drugs.
Park, Jin Woo; Kim, Sun Jin; Kwag, Dong Sup; Kim, Sol; Park, Jeyoung; Youn, Yu Seok; Bae, You Han; Lee, Eun Seong
2015-01-01
In recent years, advances in biotechnology and protein engineering have enabled the production of large quantities of proteins and peptides as important therapeutic agents. Various researchers have used biocompatible functional polymers to prepare oral dosage forms of proteins and peptides for chronic use and for easier administration to enhance patient compliance. However, there is a need to enhance their safety and effectiveness further. Most macromolecules undergo severe denaturation at low pH and enzymatic degradation in the gastrointestinal tract. The macromolecules' large molecular size and low lipophilicity cause low permeation through the intestinal membrane. The major strategies that have been used to overcome these challenges (in oral drug carrier systems) can be classified as follows: enteric coating or encapsulation with pH-sensitive polymers or mucoadhesive polymers, co-administration of protease inhibitors, incorporation of absorption enhancers, modification of the physicochemical properties of the macromolecules, and site-specific delivery to the colon. This review attempts to summarize the various advanced oral delivery carriers, including nanoparticles, lipid carriers, such as liposomes, nano-aggregates using amphiphilic polymers, complex coacervation of oppositely charged polyelectrolytes, and inorganic porous particles. The particles were formulated and/or surface modified with functional polysaccharides or synthetic polymers to improve oral bioavailability of proteins and peptides. We also discuss formulation strategies to overcome barriers, therapeutic efficacies in vivo, and potential benefits and issues for successful oral dosage forms of the proteins and peptides.
Modification of oral dosage forms for the older adult: An Irish prevalence study.
Mc Gillicuddy, Aoife; Kelly, Maria; Sweeney, Catherine; Carmichael, Ann; Crean, Abina M; Sahm, Laura J
2016-08-20
Age-related pharmacological changes complicate oral dosage form (ODF) suitability for older adults. The aim of this study was to investigate the appropriateness of ODF for older adults by determining the prevalence of ODF modifications in an aged care facility in Ireland. Drug charts for eligible patients were obtained. Details of all medications administered were recorded. ODF modifications were examined to determine if they were evidence-based: defined as complying with the product license or best practice guidelines (BPG). In total, of 111 patients, 35.1% received at least one modified medicine. Medicines were most commonly modified to facilitate fractional dosing (82.0%). Of the 68 instances of medicine modification, 35.3% complied with the product license. Of the 44 unlicensed modifications, 14 complied with BPG. Therefore, 44.1% of modifications were not evidence-based. This study highlights that clinicians have to routinely tailor commercial ODF to meet older patients' needs despite the lack of an evidence-base for almost half of these modifications. The main factor contributing to these modifications is the lack of appropriate, licensed dosage forms. However, reimbursement policies also play a role. Research is needed to optimise medicine administration and to provide clinicians with much needed evidence to support their daily practice. Copyright © 2016 Elsevier B.V. All rights reserved.
Korasa, Klemen; Vrečer, Franc
2018-01-01
Over the last two decades, regulatory agencies have demanded better understanding of pharmaceutical products and processes by implementing new technological approaches, such as process analytical technology (PAT). Process analysers present a key PAT tool, which enables effective process monitoring, and thus improved process control of medicinal product manufacturing. Process analysers applicable in pharmaceutical coating unit operations are comprehensibly described in the present article. The review is focused on monitoring of solid oral dosage forms during film coating in two most commonly used coating systems, i.e. pan and fluid bed coaters. Brief theoretical background and critical overview of process analysers used for real-time or near real-time (in-, on-, at- line) monitoring of critical quality attributes of film coated dosage forms are presented. Besides well recognized spectroscopic methods (NIR and Raman spectroscopy), other techniques, which have made a significant breakthrough in recent years, are discussed (terahertz pulsed imaging (TPI), chord length distribution (CLD) analysis, and image analysis). Last part of the review is dedicated to novel techniques with high potential to become valuable PAT tools in the future (optical coherence tomography (OCT), acoustic emission (AE), microwave resonance (MR), and laser induced breakdown spectroscopy (LIBS)). Copyright © 2017 Elsevier B.V. All rights reserved.
Biowaiver monographs for immediate release solid oral dosage forms: piroxicam.
Shohin, Igor E; Kulinich, Julia I; Ramenskaya, Galina V; Abrahamsson, Bertil; Kopp, Sabine; Langguth, Peter; Polli, James E; Shah, Vinod P; Groot, D W; Barends, Dirk M; Dressman, Jennifer B
2014-02-01
Literature and experimental data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release (IR) solid oral dosage forms containing piroxicam in the free acid form are reviewed. Piroxicam solubility and permeability, its therapeutic use and therapeutic index, pharmacokinetic properties, data related to the possibility of excipient interactions and reported BE/bioavailability (BA), and corresponding dissolution data are taken into consideration. The available data suggest that according to the current biopharmaceutics classification system (BCS) and all current guidances, piroxicam would be assigned to BCS Class II. The extent of piroxicam absorption seems not to depend on manufacturing conditions or excipients, so the risk of bioinequivalence in terms of area under the curve (AUC) is very low, but the rate of absorption (i.e., BE in terms of Cmax ) can be affected by the formulation. Current in vitro dissolution methods may not always reflect differences in terms of Cmax for BCS Class II weak acids; however, minor differences in absorption rate of piroxicam would not subject the patient to unacceptable risks: as piroxicam products may be taken before or after meals, the rate of absorption cannot be considered crucial to drug action. Therefore, a biowaiver for IR piroxicam solid oral dosage form is considered feasible, provided that (a) the test product contains only excipients, which are also present in IR solid oral drug products containing piroxicam, which have been approved in ICH or associated countries, for instance, those presented in Table 3 of this paper; (b) both the test and comparator drug products dissolve 85% in 30 min or less at pH 1.2, 4.5, and 6.8; and (c) the test product and comparator show dissolution profile similarity in pH 1.2, 4.5, and 6.8. When not all of these conditions can be fulfilled, BE of the products should be established in vivo. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
21 CFR 310.518 - Drug products containing iron or iron salts.
Code of Federal Regulations, 2011 CFR
2011-04-01
... an active ingredient in solid oral dosage form, e.g., tablets or capsules shall meet the following.... (ii) If a drug product is packaged in unit-dose packaging, and if the immediate container bears...
21 CFR 310.518 - Drug products containing iron or iron salts.
Code of Federal Regulations, 2010 CFR
2010-04-01
... an active ingredient in solid oral dosage form, e.g., tablets or capsules shall meet the following.... (ii) If a drug product is packaged in unit-dose packaging, and if the immediate container bears...
21 CFR 520.88d - Amoxicillin trihydrate soluble powder.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.88d Amoxicillin... calves including veal calves only, not for use in other animals which are raised for food production. Do...
Physical aging in pharmaceutical polymers and the effect on solid oral dosage form stability.
Kucera, Shawn A; Felton, Linda A; McGinity, James W
2013-12-05
The application of a polymeric film to a solid oral dosage form can be an effective technique to modify drug release. Most polymers used for such purposes are amorphous in nature and are subject to physical aging. This physical aging phenomenon has been shown to cause changes not only in the mechanical and drug release properties of polymeric films, but also the permeability of these films due to a densification and decrease in free volume of the polymer as the material relaxes to an equilibrated thermodynamic state. Temperature, humidity, and additional excipients in the coating formulations have been shown to influence the aging process. This review article discusses the process of physical aging in films prepared from aqueous dispersions, describes various analytical techniques that can be used to investigate the aging process, and highlights strategies to prevent such aging. Copyright © 2013 Elsevier B.V. All rights reserved.
Mucoadhesive drug delivery systems
Shaikh, Rahamatullah; Raj Singh, Thakur Raghu; Garland, Martin James; Woolfson, A David; Donnelly, Ryan F.
2011-01-01
Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Over the past few decades, mucosal drug delivery has received a great deal of attention. Mucoadhesive dosage forms may be designed to enable prolonged retention at the site of application, providing a controlled rate of drug release for improved therapeutic outcome. Application of dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The mucoadhesive ability of a dosage form is dependent upon a variety of factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. This review article aims to provide an overview of the various aspects of mucoadhesion, mucoadhesive materials, factors affecting mucoadhesion, evaluating methods, and finally various mucoadhesive drug delivery systems (buccal, nasal, ocular, gastro, vaginal, and rectal). PMID:21430958
Bachar, Michal; Mandelbaum, Amitai; Portnaya, Irina; Perlstein, Hadas; Even-Chen, Simcha; Barenholz, Yechezkel; Danino, Dganit
2012-06-10
β-casein is an amphiphilic protein that self-organizes into well-defined core-shell micelles. We developed these micelles as efficient nanocarriers for oral drug delivery. Our model drug is celecoxib, an anti-inflammatory hydrophobic drug utilized for treatment of rheumatoid arthritis and osteoarthritis, now also evaluated as a potent anticancer drug. This system is unique as it enables encapsulation loads >100-fold higher than other β-casein/drug formulations, and does not require additives as do other formulations that have high loadings. This is combined with the ability to lyophilize the formulation without a cryoprotectant, long-term physical and chemical stability of the resulting powder, and fully reversible reconstitution of the structures by rehydration. The dry dosage form, in which >95% of the drug is encapsulated, meets the daily dose. Cryo-TEM and DLS prove that drug encapsulation results in micelle swelling, and X-ray diffraction shows that the encapsulated drug is amorphous. Altogether, our novel dosage form is highly advantageous for oral administration. Copyright © 2012 Elsevier B.V. All rights reserved.
Children's medicines in Tanzania: a national survey of administration practices and preferences.
Adams, Lisa V; Craig, Sienna R; Mmbaga, Elia John; Naburi, Helga; Lahey, Timothy; Nutt, Cameron T; Kisenge, Rodrick; Noel, Gary J; Spielberg, Stephen P
2013-01-01
The dearth of age-appropriate formulations of many medicines for children poses a major challenge to pediatric therapeutic practice, adherence, and health care delivery worldwide. We provide information on current administration practices of pediatric medicines and describe key stakeholder preferences for new formulation characteristics. We surveyed children aged 6-12 years, parents/caregivers over age 18 with children under age 12, and healthcare workers in 10 regions of Tanzania to determine current pediatric medicine prescription and administration practices as well as preferences for new formulations. Analyses were stratified by setting, pediatric age group, parent/caregiver education, and healthcare worker cadre. Complete data were available for 206 children, 202 parents/caregivers, and 202 healthcare workers. Swallowing oral solid dosage forms whole or crushing/dissolving them and mixing with water were the two most frequently reported methods of administration. Children frequently reported disliking medication taste, and many had vomited doses. Healthcare workers reported medicine availability most significantly influences prescribing practices. Most parents/caregivers and children prefer sweet-tasting medicine. Parents/caregivers and healthcare workers prefer oral liquid dosage forms for young children, and had similar thresholds for the maximum number of oral solid dosage forms children at different ages can take. There are many impediments to acceptable and accurate administration of medicines to children. Current practices are associated with poor tolerability and the potential for under- or over-dosing. Children, parents/caregivers, and healthcare workers in Tanzania have clear preferences for tastes and formulations, which should inform the development, manufacturing, and marketing of pediatric medications for resource-limited settings.
Duggan, Joan M; Akpanudo, Barbara; Shukla, Vipul; Gutterson, Glen; Eitniear, Lindsey; Sahloff, Eric G
2015-09-15
Evidence-based guidance is presented to assist clinicians in selecting alternative formulations of antiretroviral (ARV) agents for patients with human immunodeficiency virus (HIV) infection who are unable to swallow tablets or capsules. The inability to take medications in standard oral dosage forms can be associated with nonadherence or the use of alternative administration strategies such as capsule or tablet breaking, crushing, or chewing. Patients with HIV infection require long-term ARV therapy to maintain viral suppression; ARV agents are predominately available as tablets and capsules that may pose swallowing difficulties for some patients. Using a variety of sources (the primary literature, pharmaceutical package inserts, and requests for unpublished data from drug manufacturers), available evidence on the bioavailability of ARV medications after disruption of the capsule or tablet matrix was reviewed; information on alternative formulations of ARV agents was also assessed. With several ARV agents, disruption of the solid oral dosage form by crushing, chewing, or breaking tablets or opening capsules prior to ingestion has been shown to result in altered bioavailability or pharmacokinetics and thus the potential for incomplete virological suppression, increased adverse effects, and suboptimal health outcomes. Of the 33 single-agent ARV medications and combination ARV products in five classes available at the time of review, approximately half exist as powders, liquids, injectables, or chewable or dissolvable tablets. If alternative ARV formulations or administration methods are used, close monitoring for achievement of virological and immunologic success and potential toxicities is recommended. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Somogyi, O; Zelko, R
Although the non-conventional dosage forms (e.g. modified release per oral systems or transdermal patches) have more significant advantages than other conventional dosage forms, the pa- tients have to apply them correctly in their home medicine using to reach the effective and safe therapy. A guideline of relevant application instructions contribute to development of an effective pharmaceutical counseling in community pharmacies. The counseling and advices can improve the patients' knowledge concerning application rules of different new dosage forms (health- literacy) with patient adherence. Finally it will result more effective and safer therapies. The aim of our Hungarian questionnaire surveys was to explore the patients' drug application habits or application errors and improve special verbal counseling of mentioned non-conventional dosage forms in community pharmacies. Understandable patient information leaflets were developed about application rules and besides the levels of patients' reading comprehension was evaluated in case of the leaflet of medicinal patches. The results show that a properly developed text is useful for the majority of patients but they need the verbal explanation as well, moreover there is a demand for the verbal counseling in community pharmacies. The most common application errors were explored and the most effective instructions or application rules were collected for the pharmacists and patients concerning the modified release tablets or capsules and transdermal patches.
Genina, Natalja; Fors, Daniela; Vakili, Hossein; Ihalainen, Petri; Pohjala, Leena; Ehlers, Henrik; Kassamakov, Ivan; Haeggström, Edward; Vuorela, Pia; Peltonen, Jouko; Sandler, Niklas
2012-10-09
We combined conventional inkjet printing technology with flexographic printing to fabricate drug delivery systems with accurate doses and tailored drug release. Riboflavin sodium phosphate (RSP) and propranolol hydrochloride (PH) were used as water-soluble model drugs. Three different paper substrates: A (uncoated woodfree paper), B (triple-coated inkjet paper) and C (double-coated sheet fed offset paper) were used as porous model carriers for drug delivery. Active pharmaceutical ingredient (API) containing solutions were printed onto 1 cm × 1 cm substrate areas using an inkjet printer. The printed APIs were coated with water insoluble polymeric films of different thickness using flexographic printing. All substrates were characterized with respect to wettability, surface roughness, air permeability, and cell toxicity. In addition, content uniformity and release profiles of the produced solid dosage forms before and after coating were studied. The substrates were nontoxic for the human cell line assayed. Substrate B was smoothest and least porous. The properties of substrates B and C were similar, whereas those of substrate A differed significantly from those of B, C. The release kinetics of both printed APIs was slowest from substrate B before and after coating with the water insoluble polymer film, following by substrate C, whereas substrate A showed the fastest release. The release rate decreased with increasing polymer coating film thickness. The printed solid dosage forms showed excellent content uniformity. So, combining the two printing technologies allowed fabricating controlled-release oral dosage forms that are challenging to produce using a single technique. The approach opens up new perspectives in the manufacture of flexible doses and tailored drug-delivery systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Stability of pharmaceutical salts in solid oral dosage forms.
Nie, Haichen; Byrn, Stephen R; Zhou, Qi Tony
2017-08-01
Using pharmaceutical salts in solid dosage forms can raise stability concerns, especially salt dissociation which can adversely affect the product performance. Therefore, a thorough understanding of the salt instability encountered in solid-state formulations is imperative to ensure the product quality. The present article uses the fundamental theory of acid base, ionic equilibrium, relationship of pH and solubility as a starting point to illustrate and interpret the salt formation and salt disproportionation in pharmaceutical systems. The criteria of selecting the optimal salt form and the underlying theory of salt formation and disproportionation are reviewed in detail. Factors influencing salt stability in solid dosage forms are scrutinized and discussed with the case studies. In addition, both commonly used and innovative strategies for preventing salt dissociations in formulation, on storage and during manufacturing will be suggested herein. This article will provide formulation scientists and manufacturing engineers an insight into the mechanisms of salt disproportionation and salt formation, which can help them to avoid and solve the instability issues of pharmaceutical salts in the product design.
QR encoded smart oral dosage forms by inkjet printing.
Edinger, Magnus; Bar-Shalom, Daniel; Sandler, Niklas; Rantanen, Jukka; Genina, Natalja
2018-01-30
The use of inkjet printing (IJP) technology enables the flexible manufacturing of personalized medicine with the doses tailored for each patient. In this study we demonstrate, for the first time, the applicability of IJP in the production of edible dosage forms in the pattern of a quick response (QR) code. This printed pattern contains the drug itself and encoded information relevant to the patient and/or healthcare professionals. IJP of the active pharmaceutical ingredient (API)-containing ink in the pattern of QR code was performed onto a newly developed porous and flexible, but mechanically stable substrate with a good absorption capacity. The printing did not affect the mechanical properties of the substrate. The actual drug content of the printed dosage forms was in accordance with the encoded drug content. The QR encoded dosage forms had a good print definition without significant edge bleeding. They were readable by a smartphone even after storage in harsh conditions. This approach of efficient data incorporation and data storage combined with the use of smart devices can lead to safer and more patient-friendly drug products in the future. Copyright © 2017 Elsevier B.V. All rights reserved.
Terahertz pulsed imaging as an advanced characterisation tool for film coatings--a review.
Haaser, Miriam; Gordon, Keith C; Strachan, Clare J; Rades, Thomas
2013-12-05
Solid dosage forms are the pharmaceutical drug delivery systems of choice for oral drug delivery. These solid dosage forms are often coated to modify the physico-chemical properties of the active pharmaceutical ingredients (APIs), in particular to alter release kinetics. Since the product performance of coated dosage forms is a function of their critical coating attributes, including coating thickness, uniformity, and density, more advanced quality control techniques than weight gain are required. A recently introduced non-destructive method to quantitatively characterise coating quality is terahertz pulsed imaging (TPI). The ability of terahertz radiation to penetrate many pharmaceutical materials enables structural features of coated solid dosage forms to be probed at depth, which is not readily achievable with other established imaging techniques, e.g. near-infrared (NIR) and Raman spectroscopy. In this review TPI is introduced and various applications of the technique in pharmaceutical coating analysis are discussed. These include evaluation of coating thickness, uniformity, surface morphology, density, defects and buried structures as well as correlation between TPI measurements and drug release performance, coating process monitoring and scale up. Furthermore, challenges and limitations of the technique are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Floating dosage forms to prolong gastro-retention--the characterisation of calcium alginate beads.
Stops, Frances; Fell, John T; Collett, John H; Martini, Luigi G
2008-02-28
Floating calcium alginate beads, designed to improve drug bioavailability from oral preparations compared with that from many commercially available and modified release products, have been investigated as a possible gastro-retentive dosage form. A model drug, riboflavin, was also incorporated into the formula. The aims of the current work were (a) to obtain information regarding the structure, floating ability and changes that occurred when the dosage form was placed in aqueous media, (b) to investigate riboflavin release from the calcium alginate beads in physiologically relevant media prior to in vivo investigations. Physical properties of the calcium alginate beads were investigated. Using SEM and ESEM, externally the calcium alginate beads were spherical in shape, and internally, air filled cavities were present thereby enabling floatation of the beads. The calcium alginate beads remained buoyant for times in excess of 13h, and the density of the calcium alginate beads was <1.000gcm(-3). Riboflavin release from the calcium alginate beads showed that riboflavin release was slow in acidic media, whilst in more alkali media, riboflavin release was more rapid. The characterisation studies showed that the calcium alginate beads could be considered as a potential gastro-retentive dosage form.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... Penicillin G powder. (a) Specifications. Each gram of powder contains penicillin G potassium equivalent to 1.... * * * * * (b) * * * (4) Nos. 054925, 057561, 061623, and 076475: 324 grams per pound as in paragraph (d) of...
Code of Federal Regulations, 2011 CFR
2011-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1130 Hetacillin. (a) Specifications... infections, skin infections, soft tissue infections, and postsurgical infections associated with strains of...
Code of Federal Regulations, 2013 CFR
2013-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1130 Hetacillin. (a) Specifications... infections, skin infections, soft tissue infections, and postsurgical infections associated with strains of...
Code of Federal Regulations, 2014 CFR
2014-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1130 Hetacillin. (a) Specifications... infections, skin infections, soft tissue infections, and postsurgical infections associated with strains of...
The dubious effect of milnacipran for the treatment of burning mouth syndrome.
Sugimoto, Koreaki
2011-01-01
Burning mouth syndrome (BMS) is a condition accompanied by oral burning symptoms, including glossal pain (glossodynia) without a detectable cause. Although BMS is a chronic-pain syndrome, only one self-controlled pilot study and some case reports have reported that milnacipran is effective for the treatment of chronic pain, including that caused by BMS. However, these papers assessed only pain, and the dosage of prescribed milnacipran varied from 30 to 150 mg/d in each patient. In this study, the dosage of prescribed milnacipran was set at 60 mg/d for 12 weeks for all patients, and depression and quality of life (QOL) were assessed in addition to pain. Twelve patients with glossodynia participated in this study. Milnacipran was initiated at a dosage of 15 mg/d and then raised gradually to 60 mg/d after 4 weeks of treatment; this dose was continued until the end of the study (total of 12 weeks). The evaluation included the Hamilton Rating Scale for Depression, the Visual Analog Scale score for pain evaluation, the General Oral Health Assessment Index for oral-related QOL evaluation, and the Medical Outcomes Study's 36-Item Short-Form Health Survey (SF-36) for whole QOL evaluation. The Hamilton Rating Scale for Depression score decreased significantly after treatment with a 60-mg/d dosage of milnacipran for 12 weeks. However, the Visual Analog Scale pain, General Oral Health Assessment Index, and SF-36 scores did not change. A randomized, double-blind, placebo-controlled multi-institution trial of milnacipran will be essential to determine its effectiveness for the treatment of BMS.
Dissolution Failure of Solid Oral Drug Products in Field Alert Reports.
Sun, Dajun; Hu, Meng; Browning, Mark; Friedman, Rick L; Jiang, Wenlei; Zhao, Liang; Wen, Hong
2017-05-01
From 2005 to 2014, 370 data entries of dissolution failures of solid oral drug products were assessed with respect to the solubility of drug substances, dosage forms [immediate release (IR) vs. modified release (MR)], and manufacturers (brand name vs. generic). The study results show that the solubility of drug substances does not play a significant role in dissolution failures; however, MR drug products fail dissolution tests more frequently than IR drug products. When multiple variables were analyzed simultaneously, poorly water-soluble IR drug products failed the most dissolution tests, followed by poorly soluble MR drug products and very soluble MR drug products. Interestingly, the generic drug products fail dissolution tests at an earlier time point during a stability study than the brand name drug products. Whether the dissolution failure of these solid oral drug products has any in vivo implication will require further pharmacokinetic, pharmacodynamic, clinical, and drug safety evaluation. Food and Drug Administration is currently conducting risk-based assessment using in-house dissolution testing, physiologically based pharmacokinetic modeling and simulation, and post-market surveillance tools. At the meantime, this interim report will outline a general scheme of monitoring dissolution failures of solid oral dosage forms as a pharmaceutical quality indicator. Published by Elsevier Inc.
Drug delivery systems with modified release for systemic and biophase bioavailability.
Leucuta, Sorin E
2012-11-01
This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.
Formulation of medicines for children
Nunn, Tony; Williams, Julie
2005-01-01
The development of age-adapted dosage forms and taste-masking of bitter-tasting drugs administered orally for children, are formidable challenges for formulation scientists. Childhood is a period of maturation requiring knowledge of developmental pharmacology to establish dose but the ability of the child to manage different dosage forms and devices also changes. Paediatric formulations must allow accurate administration of the dose to children of widely varying age and weight. Whilst the oral route will be preferred for long term use and the intravenous route for the acutely ill, many of the dosage forms designed for adults, such as oro-dispersible tablets, buccal gels and transdermal patches, would also benefit children if they contained an appropriate paediatric dose. The age at which children can swallow conventional tablets is of great importance for their safety. Liquid medicines are usually recommended for infants and younger dhildren so the ability to mask unpleasant taste with sweeteners and flavours is crucial. More sophisticated formulations such as granules and oro-dispersible tablets may be required but there will be limitations on choice and concentration of excipients. There are many gaps in our knowledge about paediatric formulations and many challenges for the industry if suitable preparations are to be available for all ranges. A CHMP points to consider document is soon to be released. More research and clinical feedback are important because a formulation with poor acceptability may affect compliance, prescribing practice and ultimately commercial viability. PMID:15948931
21 CFR 520.370 - Cefpodoxime tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.370 Cefpodoxime tablets. (a.... For the treatment of skin infections (wounds and abscesses) caused by susceptible strains of...
21 CFR 520.1100 - Griseofulvin.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1100 Griseofulvin. (a... animal is free of infection. (ii) Indications for use. For treatment of fungal infections of the skin...
21 CFR 520.1100 - Griseofulvin.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1100 Griseofulvin. (a... animal is free of infection. (ii) Indications for use. For treatment of fungal infections of the skin...
21 CFR 520.1100 - Griseofulvin.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1100 Griseofulvin. (a... animal is free of infection. (ii) Indications for use. For treatment of fungal infections of the skin...
21 CFR 520.1100 - Griseofulvin.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1100 Griseofulvin. (a... animal is free of infection. (ii) Indications for use. For treatment of fungal infections of the skin...
Recent progress in continuous and semi-continuous processing of solid oral dosage forms: a review.
Teżyk, Michał; Milanowski, Bartłomiej; Ernst, Andrzej; Lulek, Janina
2016-08-01
Continuous processing is an innovative production concept well known and successfully used in other industries for many years. The modern pharmaceutical industry is facing the challenge of transition from a traditional manufacturing approach based on batch-wise production to a continuous manufacturing model. The aim of this article is to present technological progress in manufacturing based on continuous and semi-continuous processing of the solid oral dosage forms. Single unit processes possessing an alternative processing pathway to batch-wise technology or, with some modification, an altered approach that may run continuously, and are thus able to seamlessly switch to continuous manufacturing are briefly presented. Furthermore, the concept of semi-continuous processing is discussed. Subsequently, more sophisticated production systems created by coupling single unit processes and comprising all the steps of production, from powder to final dosage form, were reviewed. Finally, attempts of end-to-end production approach, meaning the linking of continuous synthesis of API from intermediates with the production of final dosage form, are described. There are a growing number of scientific articles showing an increasing interest in changing the approach to the production of pharmaceuticals in recent years. Numerous scientific publications are a source of information on the progress of knowledge and achievements of continuous processing. These works often deal with issues of how to modify or replace the unit processes in order to enable seamlessly switching them into continuous processing. A growing number of research papers concentrate on integrated continuous manufacturing lines in which the production concept of "from powder to tablet" is realized. Four main domains are under investigation: influence of process parameters on intermediates or final dosage forms properties, implementation of process analytical tools, control-managing system responsible for keeping continuous materials flow through the whole manufacturing process and the development of new computational methods to assess or simulate these new manufacturing techniques. The attempt to connect the primary and secondary production steps proves that development of continuously operating lines is possible. A mind-set change is needed to be able to face, and fully assess, the advantages and disadvantages of switching from batch to continuous mode production.
Sun, Jin; Shi, Jie-Ming; Zhang, Tian-Hong; Gao, Kun; Mao, Jing-Jing; Li, Bing; Sun, Ying-Hua; He, Zhong-Gui
2005-01-01
AIM: To investigate the effect of release behavior of sustained-release dosage forms of sinomenine hydrochloride (SM•HCl) on its pharmacokinetics in beagle dogs. METHODS: The in vitro release behavior of two SM•HCl dosage forms, including commercial 12-h sustained-release tablets and 24-h sustained-release pellets prepared in our laboratory, was examined. The two dosage forms were orally administrated to beagle dogs, and then the in vivo SM•HCl pharmacokinetics was investigated and compared. RESULTS: The optimal SM•HCl sustained-release formulation was achieved by mixing slow- and rapid-release pellets (9:1, w/w). The SM•HCl release profiles of the sustained-release pellets were scarcely influenced by the pH of the dissolution medium. Release from the 12-h sustained-release tablets was markedly quicker than that from the 24-h sustained-release pellets, the cumulative release up to 12-h was 99.9% vs 68.7%. From a pharmacokinetic standpoint, the 24-h SM•HCl sustained-release pellets had longer tmax and lower Cmax compared to the 12-h sustained-release tablets, the tmax being 2.67×0.52 h vs 9.83×0.98 h and the Cmax being 1 334.45±368.76 ng/mL vs 893.12±292.55 ng/mL, respectively. However, the AUC0-tn of two SM•HCl dosage forms was comparable and both preparations were statistically bioequivalent. Furthermore, the two preparations had good correlations between SM•HCl percentage absorption in vivo and the cumulative percentage release in vitro. CONCLUSION: The in vitro release properties of the dosage forms strongly affect their pharmacokinetic behavior in vivo. Therefore, managing the in vitro release behavior of dosage forms is a promising strategy for obtaining the optimal in vivo pharmacokinetic characteristics and safe therapeutic drug concentration-time curves. PMID:16052686
Pharmaceutical Product Development: Intranasal Scopolamine (INSCOP) Metered Dose Spray
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi; Crady, Camille; Putcha, Lakshmi
2012-01-01
Motion sickness (MS) has been a problem associated with space flight, the modern military and commercial air and water transportation for many years. Clinical studies have shown that scopolamine is the most effective medication for the prevention of motion sickness (Dornhoffer et al, 2004); however, the two most common methods of administration (transdermal and oral) have performance limitations that compromise its utility. Intranasal administration offers a noninvasive treatment modality, and has been shown to counter many of the problems associated with oral and transdermal administration. With the elimination of the first pass effect by the liver, intranasal delivery achieves higher and more reliable bioavailability than an equivalent oral dose. This allows for the potential of enhanced efficacy at a reduced dose, thus minimizing the occurrence of untoward side effects. An Intranasal scopolamine (INSCOP) gel formulation was prepared and tested in four ground-based clinical trials under an active Investigational New Drug (IND) application with the Food and Drug Administration (FDA). Although there were early indicators that the intranasal gel formulation was effective, there were aspects of formulation viscosity and the delivery system that were less desirable. The INSCOP gel formulation has since been reformulated into an aqueous spray dosage form packaged in a precise, metered dose delivery system; thereby enhancing dose uniformity, increased user satisfaction and palatability, and a potentially more rapid onset of action. Recent reports of new therapeutic indications for scopolamine has prompted a wide spread interest in new scopolamine dosage forms. The novel dosage form and delivery system of INSCOP spray shows promise as an effective treatment for motion sickness targeted at the armed forces, spaceflight, and commercial sea, air, and space travel markets, as well as prospective psychotherapy for mental and emotional disorders.
Andreas, Cord J; Tomaszewska, Irena; Muenster, Uwe; van der Mey, Dorina; Mueck, Wolfgang; Dressman, Jennifer B
2016-08-01
Food intake is known to have various effects on gastrointestinal luminal conditions in terms of transit times, hydrodynamic forces and/or luminal fluid composition and can therefore affect the dissolution behavior of solid oral dosage forms. The aim of this study was to investigate and detect the dosage form-dependent food effect that has been observed for two extended-release formulations of nifedipine using in vitro dissolution tests. Two monolithic extended release formulations, the osmotic pump Adalat® XL 60mg and matrix-type Adalat® Eins 30mg formulation, were investigated with biorelevant dissolution methods using the USP apparatus III and IV under both simulated prandial states, and their corresponding quality control dissolution method. In vitro data were compared to published and unpublished in vivo data using deconvolution-based in vitro - in vivo correlation (IVIVC) approaches. Quality control dissolution methods tended to overestimate the dissolution rate due to the excessive solubilizing capabilities of the sodium dodecyl sulfate (SDS)-containing dissolution media. Using Level II biorelevant media the dosage form dependent food effect for nifedipine was described well when studied with the USP apparatus III, whereas the USP apparatus IV failed to detect the positive food effect for the matrix-type dosage form. It was demonstrated that biorelevant methods can serve as a useful tool during formulation development as they were able to qualitatively reflect the in vivo data. Copyright © 2016 Elsevier B.V. All rights reserved.
Development and evaluation of a monolithic floating dosage form for furosemide.
Menon, A; Ritschel, W A; Sakr, A
1994-02-01
The poor bioavailability of orally dosed furosemide (60%), a weakly acidic drug, is due to the presence of a biological window comprised of the upper gastrointestinal tract. The purpose of the present study was to develop and optimize in vitro a monolithic modified-release dosage form (MMR) for furosemide with increased gastric residence time and to evaluate the in vivo performance of the dosage form. The principle of floatation was used to restrict the MMR to the stomach. A two-factor three-level full factorial experimental design was employed for formulation development. A flow-through cell was designed to evaluate in vitro dissolution parameters. Quadratic regression models indicated the polymer viscosity and polymer:drug ratio to be significant (p < 0.05) formulation factors in determining the duration of buoyancy and the release profile. Statistical optimization using response surface methodology with certain physiological constraints relating to gastric emptying time predicted an optimal MMR. In vivo evaluation of the optimized MMR in beagle dogs resulted in a significant increase (p < 0.05) in the absolute bioavailability for the MMR dosage form (42.9%) as compared to the commercially available tablet (33.4%) and enteric product (29.5%). Significant in vitro/in vivo correlations (p < 0.05) were obtained for the MMR using deconvolution analysis normalized for bioavailability. The floating dosage form was found to be a feasible approach in delivering furosemide to the upper gastrointestinal tract to maximize drug absorption.
Nielsen, Jace C; Tolbert, Dwain; Patel, Mahlaqa; Kowalski, Kenneth G; Wesche, David L
2014-12-01
We predicted vigabatrin dosages for adjunctive therapy for pediatric patients with refractory complex partial seizures (rCPS) that would produce efficacy comparable to that observed for approved adult dosages. A dose-response model related seizure-count data to vigabatrin dosage to identify dosages for pediatric rCPS patients. Seizure-count data were obtained from three pediatric and two adult rCPS clinical trials. Dosages were predicted for oral solution and tablet formulations. Predicted oral solution dosages to achieve efficacy comparable to that of a 1 g/day adult dosage were 350 and 450 mg/day for patients with body weight ranges 10-15 and >15-20 kg, respectively. Predicted oral solution dosages for efficacy comparable to a 3 g/day adult dosage were 1,050 and 1,300 mg/day for weight ranges 10-15 and >15-20 kg, respectively. Predicted tablet dosage for efficacy comparable to a 1 g/day adult dosage was 500 mg/day for weight ranges 25-60 kg. Predicted tablet dosage for efficacy comparable to a 3 g/day adult dosage was 2,000 mg for weight ranges 25-60 kg. Vigabatrin dosages were identified for pediatric rCPS patients with body weights ≥10 kg. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
Orodispersible tablets: A new trend in drug delivery
Dey, Paramita; Maiti, Sabyasachi
2010-01-01
The most common and preferred route of drug administration is through the oral route. Orodispersible tablets are gaining importance among novel oral drug-delivery system as they have improved patient compliance and have some additional advantages compared to other oral formulation. They are also solid unit dosage forms, which disintegrate in the mouth within a minute in the presence of saliva due to super disintegrants in the formulation. Thus this type of drug delivery helps a proper peroral administration in pediatric and geriatric population where swallowing is a matter of trouble. Various scientists have prepared orodispersible tablets by following various methods. However, the most common method of preparation is the compression method. Other special methods are molding, melt granulation, phase-transition process, sublimation, freeze-drying, spray-drying, and effervescent method. Since these tablets dissolve directly in the mouth, so, their taste is also an important factor. Various approaches have been taken in order to mask the bitter taste of the drug. A number of scientists have explored several drugs in this field. Like all other solid dosage forms, they are also evaluated in the field of hardness, friability, wetting time, moisture uptake, disintegration test, and dissolution test. PMID:22096326
Enhanced oral bioavailability and controlled release of dutasteride by a novel dry elixir.
Jang, Dong-Jin; Kim, Sung Tae; Oh, Euichaul; Ban, Eunmi
2014-01-01
To develop a solid dosage form of dutasteride for improving its oral bioavailability, a novel dry elixir (DE) system was fabricated. DEs incorporating dextrin and/or xanthan gum were prepared using spray-drying and evaluated by morphology, ethanol content, crystallinity, dissolution and oral bioavailability. DEs were spherical with a smooth surface and had an average particle size of 20-25 μm. The ethanol content could be easily varied by controlling the spray-drying temperature. The dissolution profiles of dutasteride from each DE proved to be much faster than that of dutasteride powder due to the amorphous state and a high amount of incorporated ethanol. In particular, the pharmacokinetic profiles of dutasteride were significantly altered depending on the proportions of dextrin and xanthan gum. Blood concentrations of dutasteride from DE formulations were similar to those of market products and much greater than those of native dutasteride. Interestingly, the dissolution and pharmacokinetic profiles were easily controlled by changing the ratio of dextrin to xanthan gum. The data suggests that a DE using dextrin and/or xanthan gum could provide an applicable solid dosage form to improve the dissolution and bio-availability of dutasteride as well as to modulate its pharmacokinetics.
WHO expert committee on specifications for pharmaceutical preparations. Fortieth report.
2006-01-01
This report presents the recommendations of an international group of experts convened by the World Health Organization to consider matters concerning the quality assurance of pharmaceuticals and specifications for drug substances and dosage forms. The report is complemented by a number of annexes. These include: a list of available International Chemical Reference Substances and International Infrared Spectra; supplementary guidelines on good manufacturing practices for heating, ventilation and air-conditioning systems for non-sterile pharmaceutical dosage forms; updated supplementary guidelines on good manufacturing practices for the manufacture of herbal medicines; supplementary guidelines on good manufacturing practices for validation; good distribution practices for pharmaceutical products; a model quality assurance system for procurement agencies (recommendations for quality assurance systems focusing on prequalification of products and manufacturers, purchasing, storage and distribution of pharmaceutical products); multisource (generic) pharmaceutical products: guidelines on registration requirements to establish interchangeability; a proposal to waive in vivo bioequivalence requirements for WHO Model List of Essential Medicines immediate-release, solid oral dosage forms; and additional guidance for organizations performing in vivo bioequivalence studies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2475 Toceranib. (a) Specifications...) Indications for use. For the treatment of Patnaik grade II or III, recurrent, cutaneous mast cell tumors with...
Code of Federal Regulations, 2010 CFR
2010-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.980 Fluoxetine. (a) Specifications. Each... conjunction with a behavior modification plan. (3) Limitations. Federal law restricts this drug to use by or...
Code of Federal Regulations, 2011 CFR
2011-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.980 Fluoxetine. (a) Specifications. Each... conjunction with a behavior modification plan. (3) Limitations. Federal law restricts this drug to use by or...
Code of Federal Regulations, 2014 CFR
2014-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.980 Fluoxetine. (a) Specifications. Each... conjunction with a behavior modification plan. (3) Limitations. Federal law restricts this drug to use by or...
Code of Federal Regulations, 2013 CFR
2013-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.980 Fluoxetine. (a) Specifications. Each... conjunction with a behavior modification plan. (3) Limitations. Federal law restricts this drug to use by or...
21 CFR 520.1660 - Oxytetracycline.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Oxytetracycline. 520.1660 Section 520.1660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1660 Oxytetracycline. ...
21 CFR 522.1468 - Naproxen for injection.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1468.... Five milligrams per kilogram of body weight intravenously followed by maintenance oral therapy of 10...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Penicillin. 520.1696 Section 520.1696 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1696 Penicillin. ...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Penicillin. 520.1696 Section 520.1696 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1696 Penicillin. ...
Simulated food effects on drug release from ethylcellulose: PVA-PEG graft copolymer-coated pellets.
Muschert, Susanne; Siepmann, Florence; Leclercq, Bruno; Carlin, Brian; Siepmann, Juergen
2010-02-01
Food effects might substantially alter drug release from oral controlled release dosage forms in vivo. The robustness of a novel type of controlled release film coating was investigated using various types of release media and two types of release apparatii. Importantly, none of the investigated conditions had a noteworthy impact on the release of freely water-soluble diltiazem HCl or slightly water-soluble theophylline from pellets coated with ethylcellulose containing small amounts of PVA-PEG graft copolymer. In particular, the presence of significant amounts of fats, carbohydrates, surfactants, bile salts, and calcium ions in the release medium did not alter drug release. Furthermore, changes in the pH and differences in the mechanical stress the dosage forms were exposed to did not affect drug release from the pellets. The investigated film coatings allowing for oral controlled drug delivery are highly robust in vitro and likely to be poorly sensitive to classical food effects in vivo.
Biowaiver monographs for immediate release solid oral dosage forms: ibuprofen.
Potthast, H; Dressman, J B; Junginger, H E; Midha, K K; Oeser, H; Shah, V P; Vogelpoel, H; Barends, D M
2005-10-01
Literature data are reviewed on the properties of ibuprofen related to the biopharmaceutics classification system (BCS). Ibuprofen was assessed to be a BCS class II drug. Differences in composition and/or manufacturing procedures were reported to have an effect on the rate, but not the extent of absorption; such differences are likely to be detectable by comparative in vitro dissolution tests. Also in view of its therapeutic use, its wide therapeutic index and uncomplicated pharmacokinetic properties, a biowaiver for immediate release (IR) ibuprofen solid oral drug products is scientifically justified, provided that the test product contains only those excipients reported in this paper in their usual amounts, the dosage form is rapidly dissolving (85% in 30 min or less) in buffer pH 6.8 and the test product also exhibits similar dissolution profiles to the reference product in buffer pH 1.2, 4.5, and 6.8. Copyright (c) 2005 Wiley-Liss, Inc. and the American Pharmacists Association
García, Agustina; Leonardi, Darío; Lamas, María C
2016-01-15
An efficient and green method has been developed for the synthesis of succinyl-β-cyclodextrin in aqueous media obtaining very good yield. Acidic groups have been introduced in the synthesized carrier molecule to improve the guest-host affinity. To evaluate the suitability of the novel excipient focused to develop oral dosage forms, albendazole, a BSC class II compound, was chosen as a model drug. The β-cyclodextrin derivative and the inclusion complex were thoroughly characterized in solution and solid state by phase solubility studies, FT-IR spectroscopy, SEM, XRD, ESI-MS, DSC, 1D (1)H NMR, 1D (13)C NMR, selective 1D TOCSY, 2D COSY, 2D HSQC, 2D HMBC and ROESY NMR spectroscopy. Phase solubility studies indicated that both of them β-cyclodextrin and succinyl-β-cyclodextrin formed 1:1 inclusion complexes with albendazole, and the stability constants were 68M(-1) (β-cyclodextrin), 437M(-1) (succinyl-β-cyclodextrin), respectively. Water solubility and dissolution rate of albendazole were significantly improved in complex forms. Thus, the succinyl-β-cyclodextrin derivative could be a promising excipient to design oral dosage forms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Sai-Jun; Wu, Zhen-Feng; Yang, Ming; Wang, Ya-Qi; Hu, Peng-Yi; Jie, Xiao-Lu; Han, Fei; Wang, Fang
2014-09-01
Aromatic traditional Chinese medicines have a long history in China, with wide varieties. Volatile oils are active ingredients extracted from aromatic herbal medicines, which usually contain tens or hundreds of ingredients, with many biological activities. Therefore, volatile oils are often used in combined prescriptions and made into various efficient preparations for oral administration or external use. Based on the sources from the database of Newly Edited National Chinese Traditional Patent Medicines (the second edition), the author selected 266 Chinese patent medicines containing volatile oils in this paper, and then established an information sheet covering such items as name, dosage, dosage form, specification and usage, and main functions. Subsequently, on the basis of the multidisciplinary knowledge of pharmaceutics, traditional Chinese pharmacology and basic theory of traditional Chinese medicine, efforts were also made in the statistics of the dosage form and usage, variety of volatile oils and main functions, as well as the status analysis on volatile oils in terms of the dosage form development, prescription development, drug instruction and quality control, in order to lay a foundation for the further exploration of the market development situations of volatile oils and the future development orientation.
Development of extended release dosage forms using non-uniform drug distribution techniques.
Huang, Kuo-Kuang; Wang, Da-Peng; Meng, Chung-Ling
2002-05-01
Development of an extended release oral dosage form for nifedipine using the non-uniform drug distribution matrix method was conducted. The process conducted in a fluid bed processing unit was optimized by controlling the concentration gradient of nifedipine in the coating solution and the spray rate applied to the non-pareil beads. The concentration of nifedipine in the coating was controlled by instantaneous dilutions of coating solution with polymer dispersion transported from another reservoir into the coating solution at a controlled rate. The USP dissolution method equipped with paddles at 100 rpm in 0.1 N hydrochloric acid solution maintained at 37 degrees C was used for the evaluation of release rate characteristics. Results indicated that (1) an increase in the ethyl cellulose content in the coated beads decreased the nifedipine release rate, (2) incorporation of water-soluble sucrose into the formulation increased the release rate of nifedipine, and (3) adjustment of the spray coating solution and the transport rate of polymer dispersion could achieve a dosage form with a zero-order release rate. Since zero-order release rate and constant plasma concentration were achieved in this study using the non-uniform drug distribution technique, further studies to determine in vivo/in vitro correlation with various non-uniform drug distribution dosage forms will be conducted.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Decoquinate. 520.534 Section 520.534 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.534 Decoquinate. (a) Specifications...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Domperidone. 520.766 Section 520.766 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.766 Domperidone. (a) Specifications...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Decoquinate. 520.534 Section 520.534 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.534 Decoquinate. (a) Specifications...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Decoquinate. 520.534 Section 520.534 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.534 Decoquinate. (a) Specifications...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dirlotapide. 520.666 Section 520.666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.666 Dirlotapide. (a) Specifications...
21 CFR 520.1100 - Griseofulvin.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Griseofulvin. 520.1100 Section 520.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1100 Griseofulvin. (a...
21 CFR 520.522 - Cyclosporine.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Cyclosporine. 520.522 Section 520.522 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.522 Cyclosporine. (a) Specifications...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dirlotapide. 520.666 Section 520.666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.666 Dirlotapide. (a) Specifications...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dirlotapide. 520.666 Section 520.666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.666 Dirlotapide. (a) Specifications...
21 CFR 520.522 - Cyclosporine.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cyclosporine. 520.522 Section 520.522 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.522 Cyclosporine. (a) Specifications...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Domperidone. 520.766 Section 520.766 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.766 Domperidone. (a) Specifications...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Domperidone. 520.766 Section 520.766 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.766 Domperidone. (a) Specifications...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Florfenicol. 520.955 Section 520.955 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.955 Florfenicol. (a) Specifications...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Decoquinate. 520.534 Section 520.534 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.534 Decoquinate. (a) Specifications...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Decoquinate. 520.534 Section 520.534 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.534 Decoquinate. (a) Specifications...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hetacillin. 520.1130 Section 520.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1130 Hetacillin. (a) Specifications...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dirlotapide. 520.666 Section 520.666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.666 Dirlotapide. (a) Specifications...
21 CFR 520.812 - Enrofloxacin.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Enrofloxacin. 520.812 Section 520.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.812 Enrofloxacin. (a) Specifications...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dirlotapide. 520.666 Section 520.666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.666 Dirlotapide. (a) Specifications...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Furosemide. 520.1010 Section 520.1010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1010 Furosemide. (a) Specifications...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Tilmicosin. 520.2471 Section 520.2471 Food and..., FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2471 Tilmicosin. (a) Specifications. Each milliliter of concentrate solution contains 250 milligrams (mg) tilmicosin as tilmicosin phosphate...
21 CFR 520.1310 - Marbofloxacin tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Marbofloxacin tablets. 520.1310 Section 520.1310... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1310 Marbofloxacin tablets. (a) Specifications. Each tablet contains 25, 50, 100, or 200 milligrams (mg) marbofloxacin. (b...
21 CFR 520.2330 - Sulfisoxazole tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfisoxazole tablets. 520.2330 Section 520.2330... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2330 Sulfisoxazole tablets. (a) Specifications. Each tablet contains 260 milligrams (4 grains) of sulfisoxazole. (b) Sponsor. See...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
... Hydrochloride Powder; Oxytetracycline Powder AGENCY: Food and Drug Administration, HHS. ACTION: Final rule..., levamisole hydrochloride soluble powder, and oxytetracycline hydrochloride soluble powder from Teva Animal... Griseofulvin Powder, ANADAs 200-146 and 200-247 for Oxytetracycline Hydrochloride Soluble Powder, and ANADAs...
21 CFR 520.1872 - Praziquantel, pyrantel pamoate, and febantel tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS... food as follows: Weight of animal Kilograms Pounds Number of tablets per dose Tablet no. 1 Tablet no. 2... tapeworms (Dipylidium caninum, Taenia pisiformis, Echinococcus granulosus); hookworms (Ancylostoma caninum...
21 CFR 520.1872 - Praziquantel, pyrantel pamoate, and febantel tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS... food as follows: Weight of animal Kilograms Pounds Number of tablets per dose Tablet no. 1 Tablet no. 2... tapeworms (Dipylidium caninum, Taenia pisiformis, Echinococcus granulosus); hookworms (Ancylostoma caninum...
21 CFR 520.1872 - Praziquantel, pyrantel pamoate, and febantel tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS... food as follows: Weight of animal Kilograms Pounds Number of tablets per dose Tablet no. 1 Tablet no. 2... tapeworms (Dipylidium caninum, Taenia pisiformis, Echinococcus granulosus); hookworms (Ancylostoma caninum...
21 CFR 520.1872 - Praziquantel, pyrantel pamoate, and febantel tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS... food as follows: Weight of animal Kilograms Pounds Number of tablets per dose Tablet no. 1 Tablet no. 2... tapeworms (Dipylidium caninum, Taenia pisiformis, Echinococcus granulosus); hookworms (Ancylostoma caninum...
21 CFR 520.1157 - Iodinated casein tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
....1157 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1157 Iodinated casein... alopecia, scaliness of the skin surface, loss of hair, seborrhea, thickening of the skin, hyperpigmentation...
21 CFR 520.1157 - Iodinated casein tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
....1157 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1157 Iodinated casein... alopecia, scaliness of the skin surface, loss of hair, seborrhea, thickening of the skin, hyperpigmentation...
21 CFR 520.1860 - Pradofloxacin.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1860 Pradofloxacin. (a... drug in food-producing animals. (d) Conditions of use in cats—(1) Amount. Administer 3.4 mg/lb (7.5 mg...
21 CFR 520.1860 - Pradofloxacin.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1860 Pradofloxacin. (a... drug in food-producing animals. (d) Conditions of use in cats—(1) Amount. Administer 3.4 mg/lb (7.5 mg...
21 CFR 520.1372 - Methimazole.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1372 Methimazole. (a) Specifications.... Following 3 weeks of treatment, the dose should be titrated to effect based on individual serum total T4...
21 CFR 520.1372 - Methimazole.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1372 Methimazole. (a) Specifications.... Following 3 weeks of treatment, the dose should be titrated to effect based on individual serum total T4...
Advances in mucoadhesion and mucoadhesive polymers.
Khutoryanskiy, Vitaliy V
2011-06-14
Mucoadhesion is the ability of materials to adhere to mucosal membranes in the human body and provide a temporary retention. This property has been widely used to develop polymeric dosage forms for buccal, oral, nasal, ocular and vaginal drug delivery. Excellent mucoadhesive properties are typical for hydrophilic polymers possessing charged groups and/or non-ionic functional groups capable of forming hydrogen bonds with mucosal surfaces. This feature article considers recent advances in the study of mucoadhesion and mucoadhesive polymers. It provides an overview on the structure of mucosal membranes, properties of mucus gels and the nature of mucoadhesion. It describes the most common methods to evaluate mucoadhesive properties of various dosage forms and discusses the main classes of mucoadhesives. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preis, Maren; Grother, Leon; Axe, Philip; Breitkreutz, Jörg
2015-08-01
The use of solid oral dosage forms is typically favored with regard to stability and ease of administration. The aim of this study was to investigate whether cyclodextrins (CD) or ion exchange resins (IER) could be used to taste-mask cetirizine HCl when formulated in a freeze-dried oral formulation. The oral lyophilisates were produced using the Zydis(®) technology that offer the opportunity to produce the dosage form directly in the aluminum laminate blister packs. This study confirmed that a pre-formed resinate of cetirizine HCl and various cyclodextrins can be successfully incorporated into the Zydis(®) oral lyophilisate. A chemically stable product with acceptable release profile was obtained in the case of cyclodextrin. This study has also demonstrated that the Insent(®) taste sensing system is a useful technique for predicting the taste-masking potential of Zydis(®) formulations. The electronic taste sensing system (e-tongue) data can be used to provide guidance on the selection of taste-masked formulations. Principal component analysis (PCA) of sensor data by plotting the PCA scores revealed the effects of used taste-masking techniques on the e-tongue sensors, indicating the successful taste improvement. The PCA plot of the taste sensor data revealed larger distances between the non-taste-masked sample and the CD- and IER-loaded samples, and the shift toward the drug-free formulations and excipient signals indicates a modification of the product taste. The human taste trial confirms the acceptability of the selected promising formulations. The taste evaluation results showed that an effectively taste-masked formulation has been achieved using β-cyclodextrin and cherry/sucralose flavor system with over 80% of volunteers finding the tablet to be acceptable. Copyright © 2015 Elsevier B.V. All rights reserved.
Ibrahim, Inas Rifaat; Ibrahim, Mohamed Izham Mohamed; Al-Haddad, Mahmoud Sa'di
2012-10-01
Beyond the direct pharmacological effect of medicines, preferences and perceptions toward a particular oral solid dosage form (OSDF) play a crucial role in recovery and may reduce adherence to the prescribed treatment. This study conducted to investigate the most preferred OSDF and the degree to which swallowing solid medication is an issue, to assess perceptions of the therapeutic benefits of the OSDF, and to find predictors of the most preferred OSDF. A cross-sectional study, through convenience sample method, was conducted to survey consumers visiting community pharmacies in Baghdad, Iraq. Data was collected by self-administered and pre-piloted questionnaires, and analyzed using Statistical Package for Social Science. Multiple logistic regression analysis and Chi-square tests were used at alpha level = 0.05. A total of 1,000 questionnaire were included in the analysis. Of all respondents, 52.9 % preferred capsule among other OSDF and this preference varied significantly with a number of socio-demographic factors. Ease of swallowing solid medication was the main issue which resulted in preferences for a particular form. A negative perception of the therapeutic benefits of the OSDF was found among 89.1 % of the consumers. Multiple logistic regression analysis indicated that gender, ease of swallowing, and perceptions of the therapeutic benefits of the OSDF were significant predictors of capsule preferences. Given the fact that consumers are the end users of medicines and their preferences may influence response to the treatment, efforts are worthwhile by the prescribers and medicines' manufactures to understand consumers' preferences of a particular dosage form in order to achieve successful therapy outcomes.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Definitions. 206.3 Section 206.3 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.3 Definitions. The following...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Florfenicol. 520.955 Section 520.955 Food and..., FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.955 Florfenicol. (a) Specifications. Each milliliter (mL) contains 23 milligrams (mg) florfenicol. (b) Sponsor. See No. 000061 in § 510.600...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Florfenicol. 520.955 Section 520.955 Food and..., FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.955 Florfenicol. (a) Specifications. Each milliliter (mL) contains 23 milligrams (mg) florfenicol. (b) Sponsor. See No. 000061 in § 510.600...
21 CFR 520.1157 - Iodinated casein tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iodinated casein tablets. 520.1157 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1157 Iodinated casein tablets. (a) Specifications. Each 1-gram tablet contains 25 milligrams of iodinated casein. (b) Sponsor...
21 CFR 520.1157 - Iodinated casein tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Iodinated casein tablets. 520.1157 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1157 Iodinated casein tablets. (a) Specifications. Each 1-gram tablet contains 25 milligrams of iodinated casein. (b) Sponsor...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diclazuril. 520.606 Section 520.606 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.606 Diclazuril. (a) Specifications. Each...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Altrenogest. 520.48 Section 520.48 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.48 Altrenogest. (a) Specifications. Each...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Diclazuril. 520.606 Section 520.606 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.606 Diclazuril. (a) Specifications. Each...
21 CFR 520.390b - Chloramphenicol capsules.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Chloramphenicol capsules. 520.390b Section 520.390b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390b Chloramphenicol...
21 CFR 520.445 - Chlortetracycline and sulfamethazine powder.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Chlortetracycline and sulfamethazine powder. 520.445 Section 520.445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.445...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Deracoxib. 520.538 Section 520.538 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.538 Deracoxib. (a) Specifications. Each...
21 CFR 520.1197 - Ivermectin sustained-release bolus.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ivermectin sustained-release bolus. 520.1197 Section 520.1197 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1197 Ivermectin...
21 CFR 520.623 - Diethylcarbamazine citrate, oxibendazole chewable tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Diethylcarbamazine citrate, oxibendazole chewable tablets. 520.623 Section 520.623 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Fluoxetine. 520.980 Section 520.980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.980 Fluoxetine. (a) Specifications. Each...
21 CFR 520.863 - Ethylisobutrazine hydrochloride tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ethylisobutrazine hydrochloride tablets. 520.863 Section 520.863 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.863...
21 CFR 520.580 - Dichlorophene and toluene.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dichlorophene and toluene. 520.580 Section 520.580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.580 Dichlorophene and toluene...
21 CFR 520.462 - Clorsulon drench.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Clorsulon drench. 520.462 Section 520.462 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.462 Clorsulon drench. (a...
21 CFR 520.420 - Chlorothiazide tablets and boluses.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Chlorothiazide tablets and boluses. 520.420 Section 520.420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.420...
21 CFR 520.580 - Dichlorophene and toluene capsules.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dichlorophene and toluene capsules. 520.580 Section 520.580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.580...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acepromazine. 520.23 Section 520.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.23 Acepromazine. (a) Specifications. Each...
21 CFR 520.1193 - Ivermectin tablets and chewables.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ivermectin tablets and chewables. 520.1193 Section 520.1193 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1193 Ivermectin...
21 CFR 520.420 - Chlorothiazide tablets and boluses.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Chlorothiazide tablets and boluses. 520.420 Section 520.420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.420...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Altrenogest. 520.48 Section 520.48 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.48 Altrenogest. (a) Specifications. Each...
21 CFR 520.310 - Caramiphen ethanedisulfonate and ammonium chloride tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Caramiphen ethanedisulfonate and ammonium chloride tablets. 520.310 Section 520.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.310 - Caramiphen ethanedisulfonate and ammonium chloride tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Caramiphen ethanedisulfonate and ammonium chloride tablets. 520.310 Section 520.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.445a - Chlortetracycline bisulfate/sulfamethazine bisulfate soluble powder.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Chlortetracycline bisulfate/sulfamethazine bisulfate soluble powder. 520.445a Section 520.445a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Difloxacin. 520.645 Section 520.645 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.645 Difloxacin. (a) Specifications. Each...
21 CFR 520.370 - Cefpodoxime tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Cefpodoxime tablets. 520.370 Section 520.370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.370 Cefpodoxime tablets. (a...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acepromazine. 520.23 Section 520.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.23 Acepromazine. (a) Specifications. Each...
21 CFR 520.390b - Chloramphenicol capsules.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Chloramphenicol capsules. 520.390b Section 520.390b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390b Chloramphenicol...
21 CFR 520.455 - Clomipramine tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Clomipramine tablets. 520.455 Section 520.455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.455 Clomipramine tablets. (a...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Carprofen. 520.309 Section 520.309 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.309 Carprofen. (a) Specifications. (1...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Diclazuril. 520.606 Section 520.606 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.606 Diclazuril. (a) Specifications. Each...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Flunixin. 520.970 Section 520.970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.970 Flunixin. (a) Specifications. (1...
21 CFR 520.804 - Enalapril tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Enalapril tablets. 520.804 Section 520.804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.804 Enalapril tablets. (a...
21 CFR 520.310 - Caramiphen ethanedisulfonate and ammonium chloride tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Caramiphen ethanedisulfonate and ammonium chloride tablets. 520.310 Section 520.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.784 - Doxylamine succinate tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Doxylamine succinate tablets. 520.784 Section 520.784 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.784 Doxylamine...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Diclazuril. 520.606 Section 520.606 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.606 Diclazuril. (a) Specifications. Each...
21 CFR 520.580 - Dichlorophene and toluene capsules.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dichlorophene and toluene capsules. 520.580 Section 520.580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.580...
21 CFR 520.445a - Chlortetracycline bisulfate/sulfamethazine bisulfate soluble powder.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Chlortetracycline bisulfate/sulfamethazine bisulfate soluble powder. 520.445a Section 520.445a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM...
21 CFR 520.455 - Clomipramine tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Clomipramine tablets. 520.455 Section 520.455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.455 Clomipramine tablets. (a...
21 CFR 520.863 - Ethylisobutrazine hydrochloride tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ethylisobutrazine hydrochloride tablets. 520.863 Section 520.863 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.863...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Deracoxib. 520.538 Section 520.538 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.538 Deracoxib. (a) Specifications. Each...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Cephalexin. 520.376 Section 520.376 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.376 Cephalexin. (a) Specifications. Each...
21 CFR 520.390b - Chloramphenicol capsules.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Chloramphenicol capsules. 520.390b Section 520.390b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390b Chloramphenicol...
21 CFR 520.452 - Clenbuterol syrup.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Clenbuterol syrup. 520.452 Section 520.452 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.452 Clenbuterol syrup. (a...
21 CFR 520.370 - Cefpodoxime tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Cefpodoxime tablets. 520.370 Section 520.370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.370 Cefpodoxime tablets. (a...
21 CFR 520.312 - Carnidazole tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Carnidazole tablets. 520.312 Section 520.312 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.312 Carnidazole tablets. (a...
21 CFR 520.608 - Dicloxacillin sodium monohydrate capsules.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dicloxacillin sodium monohydrate capsules. 520.608 Section 520.608 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.608...
21 CFR 520.390b - Chloramphenicol capsules.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Chloramphenicol capsules. 520.390b Section 520.390b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.390b Chloramphenicol...
21 CFR 520.370 - Cefpodoxime tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Cefpodoxime tablets. 520.370 Section 520.370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.370 Cefpodoxime tablets. (a...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carprofen. 520.309 Section 520.309 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.309 Carprofen. (a) Specifications. (1...
21 CFR 520.812 - Enrofloxacin tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Enrofloxacin tablets. 520.812 Section 520.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.812 Enrofloxacin tablets. (a...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Estriol. 520.852 Section 520.852 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.852 Estriol. (a) Specifications. Each...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false [Reserved] 520.903c Section 520.903c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.903c [Reserved] ...
21 CFR 520.462 - Clorsulon drench.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Clorsulon drench. 520.462 Section 520.462 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.462 Clorsulon drench. (a...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Diclazuril. 520.606 Section 520.606 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.606 Diclazuril. (a) Specifications. Each...
21 CFR 520.580 - Dichlorophene and toluene capsules.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dichlorophene and toluene capsules. 520.580 Section 520.580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.580...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Difloxacin. 520.645 Section 520.645 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.645 Difloxacin. (a) Specifications. Each...
21 CFR 520.455 - Clomipramine tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Clomipramine tablets. 520.455 Section 520.455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.455 Clomipramine tablets. (a...
21 CFR 520.452 - Clenbuterol syrup.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Clenbuterol syrup. 520.452 Section 520.452 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.452 Clenbuterol syrup. (a...
21 CFR 520.930 - Firocoxib paste.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Firocoxib paste. 520.930 Section 520.930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.930 Firocoxib paste. (a...
21 CFR 520.312 - Carnidazole tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Carnidazole tablets. 520.312 Section 520.312 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.312 Carnidazole tablets. (a...
21 CFR 520.581 - Dichlorophene tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dichlorophene tablets. 520.581 Section 520.581 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.581 Dichlorophene tablets. (a...
21 CFR 520.623 - Diethylcarbamazine citrate, oxibendazole chewable tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Diethylcarbamazine citrate, oxibendazole chewable tablets. 520.623 Section 520.623 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.623 - Diethylcarbamazine citrate, oxibendazole chewable tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Diethylcarbamazine citrate, oxibendazole chewable tablets. 520.623 Section 520.623 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.580 - Dichlorophene and toluene.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dichlorophene and toluene. 520.580 Section 520.580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.580 Dichlorophene and toluene...
21 CFR 520.44 - Acetazolamide sodium soluble powder.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acetazolamide sodium soluble powder. 520.44 Section 520.44 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.44...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Difloxacin. 520.645 Section 520.645 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.645 Difloxacin. (a) Specifications. Each...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Difloxacin. 520.645 Section 520.645 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.645 Difloxacin. (a) Specifications. Each...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Etodolac. 520.870 Section 520.870 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.870 Etodolac. (a) Specifications. Each...
21 CFR 520.784 - Doxylamine succinate tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Doxylamine succinate tablets. 520.784 Section 520.784 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.784 Doxylamine...
21 CFR 520.1157 - Iodinated casein tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Iodinated casein tablets. 520.1157 Section 520.1157 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1157 Iodinated casein...
21 CFR 520.462 - Clorsulon drench.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Clorsulon drench. 520.462 Section 520.462 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.462 Clorsulon drench. (a...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Deracoxib. 520.538 Section 520.538 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.538 Deracoxib. (a) Specifications. Each...
21 CFR 520.455 - Clomipramine tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Clomipramine tablets. 520.455 Section 520.455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.455 Clomipramine tablets. (a...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Cephalexin. 520.376 Section 520.376 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.376 Cephalexin. (a) Specifications. Each...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acepromazine. 520.23 Section 520.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.23 Acepromazine. (a) Specifications. Each...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Estriol. 520.852 Section 520.852 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.852 Estriol. (a) Specifications. Each...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Afoxolaner. 520.43 Section 520.43 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.43 Afoxolaner. (a) Specifications. Each...
21 CFR 520.804 - Enalapril tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Enalapril tablets. 520.804 Section 520.804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.804 Enalapril tablets. (a...
21 CFR 520.452 - Clenbuterol syrup.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Clenbuterol syrup. 520.452 Section 520.452 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.452 Clenbuterol syrup. (a...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Carprofen. 520.309 Section 520.309 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.309 Carprofen. (a) Specifications. (1...
21 CFR 520.445 - Chlortetracycline and sulfamethazine powder.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Chlortetracycline and sulfamethazine powder. 520.445 Section 520.445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.445...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Deracoxib. 520.538 Section 520.538 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.538 Deracoxib. (a) Specifications. Each...
21 CFR 520.623 - Diethylcarbamazine citrate, oxibendazole chewable tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Diethylcarbamazine citrate, oxibendazole chewable tablets. 520.623 Section 520.623 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Etodolac. 520.870 Section 520.870 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.870 Etodolac. (a) Specifications. Each...
21 CFR 520.28 - Acetazolamide sodium soluble powder.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acetazolamide sodium soluble powder. 520.28 Section 520.28 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.28...
21 CFR 520.312 - Carnidazole tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Carnidazole tablets. 520.312 Section 520.312 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.312 Carnidazole tablets. (a...
21 CFR 520.462 - Clorsulon drench.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Clorsulon drench. 520.462 Section 520.462 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.462 Clorsulon drench. (a...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Deracoxib. 520.538 Section 520.538 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.538 Deracoxib. (a) Specifications. Each...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Difloxacin. 520.645 Section 520.645 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.645 Difloxacin. (a) Specifications. Each...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Carprofen. 520.309 Section 520.309 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.309 Carprofen. (a) Specifications. (1...
21 CFR 520.608 - Dicloxacillin sodium monohydrate capsules.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dicloxacillin sodium monohydrate capsules. 520.608 Section 520.608 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.608...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acepromazine. 520.23 Section 520.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.23 Acepromazine. (a) Specifications. Each...
21 CFR 520.452 - Clenbuterol syrup.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Clenbuterol syrup. 520.452 Section 520.452 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.452 Clenbuterol syrup. (a...
21 CFR 520.462 - Clorsulon drench.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Clorsulon drench. 520.462 Section 520.462 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.462 Clorsulon drench. (a...
21 CFR 520.445 - Chlortetracycline and sulfamethazine powder.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Chlortetracycline and sulfamethazine powder. 520.445 Section 520.445 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.445...
21 CFR 520.452 - Clenbuterol syrup.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Clenbuterol syrup. 520.452 Section 520.452 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.452 Clenbuterol syrup. (a...
21 CFR 520.2184 - Sodium sulfachloropyrazine monohydrate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium sulfachloropyrazine monohydrate. 520.2184... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2184 Sodium sulfachloropyrazine monohydrate. (a) Chemical name. 2-Sulfamido-6-chloroxyrazine, sodium. (b) Sponsor. See Nos. 053501...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Carprofen. 520.309 Section 520.309 Food and Drugs..., AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.309 Carprofen. (a) Specifications. (1) Each caplet contains 25, 75, or 100 milligrams (mg) carprofen. (2) Each chewable tablet contains 25, 75...
76 FR 29773 - Call for Participation in Pillbox Patient-Safety Initiative
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-23
... digital images and descriptive information for solid oral dosage form medications. This project seeks to... Participation, NLM seeks to evaluate the photography methodology and procedures it has developed for creating... available via a publicly accessible resource ( http://pillbox.nlm.nih.gov ) digital images and descriptive...
21 CFR 520.455 - Clomipramine tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Clomipramine tablets. 520.455 Section 520.455 Food... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.455 Clomipramine tablets. (a) Specifications. Each tablet contains 5, 20, 40, or 80 milligrams (mg) clomipramine hydrochloride. (b) Sponsor...
21 CFR 520.370 - Cefpodoxime tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cefpodoxime tablets. 520.370 Section 520.370 Food... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.370 Cefpodoxime tablets. (a) Specifications. Each tablet contains cefpodoxime proxetil equivalent to 100 or 200 milligrams (mg) cefpodoxime...
21 CFR 520.2088 - Roxarsone tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Roxarsone tablets. 520.2088 Section 520.2088 Food... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2088 Roxarsone tablets. (a)(1) Specifications. Each tablet contains 36 milligrams of roxarsone (3-nitro-4-hydroxyphenylarsonic acid). (2...
21 CFR 520.1380 - Methocarbamol tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methocarbamol tablets. 520.1380 Section 520.1380... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1380 Methocarbamol tablets. (a) Chemical name. 3-(O-Methoxyphenoxy)-1,2-propanediol 1-carbamate. (b) Specifications. Each tablet...
21 CFR 520.1870 - Praziquantel tablets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Praziquantel tablets. 520.1870 Section 520.1870... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1870 Praziquantel tablets. (a) Specifications. Each tablet contains: (1) 34 milligrams (mg) praziquantel. (2) 11.5 or 23 mg praziquantel. (b...
21 CFR 520.1454 - Moxidectin solution.
Code of Federal Regulations, 2010 CFR
2010-04-01
... time in milk has not been established for this product, do not use in female sheep providing milk for... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1454 Moxidectin solution. (a...
21 CFR 520.1454 - Moxidectin solution.
Code of Federal Regulations, 2011 CFR
2011-04-01
... time in milk has not been established for this product, do not use in female sheep providing milk for... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1454 Moxidectin solution. (a...
21 CFR 520.1871 - Praziquantel and pyrantel.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1871 Praziquantel and... reinfection occurs, treatment may be repeated. (ii) Indications for use. For removal of tapeworms (Dipylidium... less than 2.0 pounds. Consult your veterinarian before giving to sick or pregnant animals. (2) Dogs—(i...
21 CFR 520.1871 - Praziquantel and pyrantel.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1871 Praziquantel and... reinfection occurs, treatment may be repeated. (ii) Indications for use. For removal of tapeworms (Dipylidium... less than 2.0 pounds. Consult your veterinarian before giving to sick or pregnant animals. (2) Dogs—(i...
21 CFR 520.1871 - Praziquantel and pyrantel.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1871 Praziquantel and... reinfection occurs, treatment may be repeated. (ii) Indications for use. For removal of tapeworms (Dipylidium... less than 2.0 pounds. Consult your veterinarian before giving to sick or pregnant animals. (2) Dogs—(i...
21 CFR 520.2184 - Sodium sulfachloropyrazine monohydrate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium sulfachloropyrazine monohydrate. 520.2184... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2184 Sodium sulfachloropyrazine monohydrate. (a) Chemical name. 2-Sulfamido-6-chloroxyrazine, sodium. (b) Sponsor. See Nos. 053501...
21 CFR 520.2184 - Sodium sulfachloropyrazine monohydrate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium sulfachloropyrazine monohydrate. 520.2184... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2184 Sodium sulfachloropyrazine monohydrate. (a) Chemical name. 2-Sulfamido-6-chloroxyrazine, sodium. (b) Sponsor. See Nos. 053501...
21 CFR 520.2184 - Sodium sulfachloropyrazine monohydrate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium sulfachloropyrazine monohydrate. 520.2184... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2184 Sodium sulfachloropyrazine monohydrate. (a) Chemical name. 2-Sulfamido-6-chloroxyrazine, sodium. (b) Sponsor. See Nos. 053501...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Tylvalosin. 520.2645 Section 520.2645 Food and..., FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2645 Tylvalosin. (a) Specifications. Granules containing 62.5 percent tylvalosin (w/w) as tylvalosin tartrate. (b) Sponsor. See No. 066916 in...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Tylvalosin. 520.2645 Section 520.2645 Food and..., FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2645 Tylvalosin. (a) Specifications. Granules containing 62.5 percent tylvalosin (w/w) as tylvalosin tartrate. (b) Sponsor. See No. 066916 in...
21 CFR 520.1331 - Meclofenamic acid tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Meclofenamic acid tablets. 520.1331 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1331 Meclofenamic acid tablets. (a) Specifications. Each tablet contains either 10 or 20 milligrams of meclofenamic acid. (b...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Tiamulin. 520.2455 Section 520.2455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2455 Tiamulin. (a) Specifications. (1...
21 CFR 520.1631 - Oxfendazole and trichlorfon paste.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Oxfendazole and trichlorfon paste. 520.1631 Section 520.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1631...
Influence of Postprandial Intragastric Pressures on Drug Release from Gastroretentive Dosage Forms.
Schneider, Felix; Hoppe, Melanie; Koziolek, Mirko; Weitschies, Werner
2018-05-29
Despite extensive research in the field of gastroretentive dosage forms, this "holy grail" of oral drug delivery yet remained an unmet goal. Especially under fasting conditions, the reproducible retention of dosage forms in the stomach seems to be an impossible task. This is why such systems are often advised to be taken together with food. But also the postprandial motility can contribute significantly to the failure of gastroretentive dosage forms. To investigate the influence of postprandial pressure conditions on drug release from such systems, we used a novel in vitro dissolution tool, the dissolution stress test device. With the aid of this device, we simulated three different intragastric pressure profiles that may occur after postprandial intake. These transit scenarios were based on recently obtained, postprandial SmartPill® data. The tested systems, Glumetza® 1000 and Madopar® HBS 125, are marketed dosage forms that are based on different approaches to achieve proper gastric retention. All three transit scenarios revealed a highly pressure-sensitive drug release behavior, for both drugs. For Madopar® HBS 125, nearly complete drug release was observed even after early occurring pressures. Glumetza® 1000 seemed to be more resistant to these, most likely due to incomplete wetting of the system. On the contrary to these findings, data from standard dissolution tests using the paddle apparatus displayed controlled drug release for both systems for about 6 h. Based on these results, it can be doubted that established gastroretentive systems stay intact over a longer period of time, even under postprandial conditions.
Jämstorp, Erik; Yarra, Tejaswi; Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne; Strømme, Maria
2012-01-01
Improving acid resistance, while maintaining the excellent mechanical stability is crucial in the development of a sustained and safe oral geopolymer dosage form for highly potent opioids. In the present work, commercially available Methacrylic acid-ethyl acrylate copolymer, Polyethylene-glycol (PEG) and Alginate polymer excipients were included in dissolved or powder form in geopolymer pellets to improve the release properties of Zolpidem, herein acting as a model drug for the highly potent opioid Fentanyl. Scanning electron microscopy, compression strength tests and drug release experiments, in gastric pH 1 and intestinal pH 6.8 conditions, were performed. The polymer excipients, with an exception for PEG, reduced the drug release rate in pH 1 due to their ability to keep the pellets in shape, in combination with the introduction of an insoluble excipient, and thereby maintain a barrier towards drug diffusion and release. Neither geopolymer compression strength nor the release in pH 6.8 was considerably impaired by the incorporation of the polymer excipients. The geopolymer/polymer composites combine high mechanical strength and good release properties under both gastric and intestinal pH conditions, and are therefore promising oral dosage forms for sustained release of highly potent opioids.
Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Proguanil Hydrochloride.
Plöger, Gerlinde F; Abrahamsson, Bertil; Cristofoletti, Rodrigo; Groot, Dirk W; Langguth, Peter; Mehta, Mehul U; Parr, Alan; Polli, James E; Shah, Vinod P; Tajiri, Tomokazu; Dressman, Jennifer B
2018-07-01
Literature data relevant to the decision to waive in vivo bioequivalence testing for the approval of generic immediate release solid oral dosage forms of proguanil hydrochloride are reviewed. To elucidate the Biopharmaceutics Classification System (BCS) classification, experimental solubility and dissolution studies were also carried out. The antimalarial proguanil hydrochloride, effective via the parent compound proguanil and the metabolite cycloguanil, is not considered to be a narrow therapeutic index drug. Proguanil hydrochloride salt was shown to be highly soluble according to the U.S. Food and Drug Administration, World Health Organization, and European Medicines Agency guidelines, but data for permeability are inconclusive. Therefore, proguanil hydrochloride is conservatively classified as a BCS class 3 substance. In view of this information and the assessment of risks associated with a false positive decision, a BCS-based biowaiver approval procedure can be recommended for orally administered solid immediate release products containing proguanil hydrochloride, provided well-known excipients are used in usual amounts and provided the in vitro dissolution of the test and reference products is very rapid (85% or more are dissolved in 15 min at pH 1.2, 4.5, and 6.8) and is performed according to the current requirements for BCS-based biowaivers. Copyright © 2018 American Pharmacists Association®. All rights reserved.
Biowaiver Monographs for Immediate-Release Solid Oral Dosage Forms: Enalapril.
Verbeeck, Roger K; Kanfer, Isadore; Löbenberg, Raimar; Abrahamsson, Bertil; Cristofoletti, Rodrigo; Groot, D W; Langguth, Peter; Polli, James E; Parr, Alan; Shah, Vinod P; Mehta, Mehul; Dressman, Jennifer B
2017-08-01
Literature data relevant to the decision to allow a waiver of in vivo bioequivalence testing for the marketing authorization of immediate-release, solid oral dosage forms containing enalapril maleate are reviewed. Enalapril, a prodrug, is hydrolyzed by carboxylesterases to the active angiotensin-converting enzyme inhibitor enalaprilat. Enalapril as the maleate salt is shown to be highly soluble, but only 60%-70% of an orally administered dose of enalapril is absorbed from the gastrointestinal tract into the enterocytes. Consequently, enalapril maleate is a Biopharmaceutics Classification System class III substance. Because in situ conversion of the maleate salt to the sodium salt is sometimes used in production of the finished drug product, not every enalapril maleate-labeled finished product actually contains the maleate salt. Enalapril is not considered to have a narrow therapeutic index. With this background, a biowaiver-based approval procedure for new generic products or after major revisions to existing products is deemed acceptable, provided the in vitro dissolution of both test and reference preparation is very rapid (at least 85% within 15 min at pH 1.2, 4.5, and 6.8). Additionally, the test and reference product must contain the identical active drug ingredient. Copyright © 2017 American Pharmacists Association®. All rights reserved.
Albrecht, K; Greindl, M; Kremser, C; Wolf, C; Debbage, P; Bernkop-Schnürch, A
2006-09-28
The aim of this study was to compare different oral delivery systems based on the thiolated polymer polycarbophil-cysteine (PCP-Cys) and to provide evidence for the validity of the hypothesis that unhydrated polymers provide better mucoadhesion in vivo. To achieve dry polymer application, a new, experimental dosage form named Eutex (made of Eudragit L100-55 and latex) capsule has been developed. Magnetic resonance imaging was used to localize the point of release of the thiolated polymer from the application forms via the positive magnetic resonance signal from a gadolinium complex (Gd-DTPA). In vivo mucoadhesion was determined by ascertaining the residence time of the fluorescence-tagged thiomer on intestinal mucosa after 3 h. Results showed that in comparison to conventional application forms the Eutex capsules led to 1.9-fold higher mucoadhesive properties of PCP-Cys when compared to application with a conventional enteric-coated capsule, and to 1.4-fold higher mucoadhesion when compared to administration with an enteric-coated tablet of the thiomer. The findings of this study should contribute to the understanding of mucoadhesion and mucoadhesion influencing parameters in vivo and should therefore be of considerable interest for the development of future mucoadhesive oral drug delivery dosage forms.
Characterisation of pore structures of pharmaceutical tablets: A review.
Markl, Daniel; Strobel, Alexa; Schlossnikl, Rüdiger; Bøtker, Johan; Bawuah, Prince; Ridgway, Cathy; Rantanen, Jukka; Rades, Thomas; Gane, Patrick; Peiponen, Kai-Erik; Zeitler, J Axel
2018-03-01
Traditionally, the development of a new solid dosage form is formulation-driven and less focus is put on the design of a specific microstructure for the drug delivery system. However, the compaction process particularly impacts the microstructure, or more precisely, the pore architecture in a pharmaceutical tablet. Besides the formulation, the pore structure is a major contributor to the overall performance of oral solid dosage forms as it directly affects the liquid uptake rate, which is the very first step of the dissolution process. In future, additive manufacturing is a potential game changer to design the inner structures and realise a tailor-made pore structure. In pharmaceutical development the pore structure is most commonly only described by the total porosity of the tablet matrix. Yet it is of great importance to consider other parameters to fully resolve the interplay between microstructure and dosage form performance. Specifically, tortuosity, connectivity, as well as pore shape, size and orientation all impact the flow paths and play an important role in describing the fluid flow in a pharmaceutical tablet. This review presents the key properties of the pore structures in solid dosage forms and it discusses how to measure these properties. In particular, the principles, advantages and limitations of helium pycnometry, mercury porosimetry, terahertz time-domain spectroscopy, nuclear magnetic resonance and X-ray computed microtomography are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Giuliano, Vincenzo; Giuliano, Concetta; Pinto, Fabio; Scaglione, Mariano
2005-07-01
The purpose of this study is to determine if focused CT examinations of the pelvis, utilizing fixed oral dosage of diatrizoate contrast media, improve overall reader confidence in visualization of the appendix. Five hundred and twenty-five patients referred for, rule out appendicitis, evaluations underwent focused CT examinations of the pelvis following fixed oral dosage of diatrizoate contrast media. A five-point scale was used to assess the effect of contrast enhancement of the distal small bowel, cecum, and appendix on overall reader confidence, and subsequent visualization of the appendix. Bowel preparation was ideal in 504 of 525 (96%) patients. Enhanced supine CT images following oral administration of fixed dosage of diatrizoate had consistently good scores for reader confidence for bowel opacification (4.8+/-0.1, P<0.005) and visualization of the appendix (3.7+/-0.1, P<0.005), at 50 min following oral contrast administration. This method improved visualization of the normal appendix in 446 of 504 (88%) patients, with a specificity of 99%. In a patients meeting CT criteria for appendicitis, 21 of 21 (100%) patients were proven at surgery. The use of fixed oral dosage of diatrizoate contrast media resulted in good overall reader confidence to visualize the appendix and peri-appendiceal area, in addition to high specificity and rapid transit time.
Palma-Aguirre, Jose Antonio; Absalón-Reyes, Jose Antonio; Novoa-Heckel, Germán; de Lago, Alberto; Oliva, Iván; Rodríguez, Zulema; González-de la Parra, Mario; Burke-Fraga, Victoria; Namur, Salvador
2007-06-01
Acyclovir is an important antiviral drug, used extensively for treatment of herpes simplex and varicella zoster. Six oral generic formulations of acyclovir are available in Mexico; however, a literature search failed to identify data information concerning the bioavailability of these formulations in the Mexican population. The aim of these 2 studies was to compare the bioavailability of 4 oral formulations of acyclovir 400 mg--2 tablet formulations and 2 suspension formulations--with their corresponding listed drug references in Mexico (a list issued by Mexican Health Authorities). Two separate, single-dose, open-label, randomized, 2-period crossover studies were conducted at the Centro de Estudios Científicos y Clínicos Pharma, S.A. de C.V. (clinical unit), Mexico City, Mexico. For each study, a different set of eligible subjects were selected. They included healthy Mexican volunteers of either sex. For each study, subjects were randomly assigned to receive 1 test formulation of acyclovir 400 mg followed by the reference formulation, or vice versa, with a 1-week washout period between doses. After a 12-hour (overnight) fast, subjects received a single 400-mg dose (tablet or 10-mL suspension) of the corresponding formulation. For the analysis of pharmacokinetic properties, including C(max), AUC from time 0 (baseline) to time t (AUC(0-t)), and AUC from baseline to infinity (AUC(0-infinity)), blood samples were drawn at baseline, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2, 3, 4, 6, 8, 12, and 24 hours after dosing. The formulations were considered bioequivalent if the natural logarithm (ln)-transformed ratios of Cmax and AUC were within the predetermined equivalence range of 80% to 125% and if P
21 CFR 206.10 - Code imprint required.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Code imprint required. 206.10 Section 206.10 Food...: GENERAL IMPRINTING OF SOLID ORAL DOSAGE FORM DRUG PRODUCTS FOR HUMAN USE § 206.10 Code imprint required... imprint that, in conjunction with the product's size, shape, and color, permits the unique identification...
78 FR 42006 - Oral Dosage Form New Animal Drugs; Nicarbazin; Oclacitinib; Zilpaterol
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
..., where applicable. DATES: This rule is effective July 15, 2013. FOR FURTHER INFORMATION CONTACT: George K... associated with allergic dermatitis and control of atopic dermatitis in dogs at least 12 months of age. 200... maintenance therapy. (2) Indications for use. For control of pruritus associated with allergic dermatitis and...
76 FR 78815 - Oral Dosage Form New Animal Drugs; Cyclosporine
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
... (MODIFIED) for the control of feline allergic dermatitis. DATES: This rule is effective December 20, 2011. FOR FURTHER INFORMATION CONTACT: Angela K.S. Clarke, Center for Veterinary Medicine (HFV-112), Food... dermatitis in cats at least 6 months of age and weighing at least 3 pounds. The NADA is approved as of August...
21 CFR 520.1447 - Milbemycin oxime, lufenuron, and praziquantel tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...) Amount. 0.5 mg milbemycin oxime, 10 mg lufenuron, and 5 mg of praziquantel per kilogram of body weight, once a month. (ii) Indications for use. For the prevention of heartworm disease caused by Dirofilaria...
21 CFR 520.1447 - Milbemycin oxime, lufenuron, and praziquantel tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...) Amount. 0.5 mg milbemycin oxime, 10 mg lufenuron, and 5 mg of praziquantel per kilogram of body weight, once a month. (ii) Indications for use. For the prevention of heartworm disease caused by Dirofilaria...
21 CFR 520.1447 - Milbemycin oxime, lufenuron, and praziquantel tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...) Amount. 0.5 mg milbemycin oxime, 10 mg lufenuron, and 5 mg of praziquantel per kilogram of body weight, once a month. (ii) Indications for use. For the prevention of heartworm disease caused by Dirofilaria...
21 CFR 520.622c - Diethylcarbamazine citrate chewable tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Diethylcarbamazine citrate chewable tablets. 520.622c Section 520.622c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.622c...
21 CFR 520.622b - Diethylcarbamazine citrate syrup.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Diethylcarbamazine citrate syrup. 520.622b Section 520.622b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.622b...
21 CFR 520.763a - Dithiazanine iodide tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dithiazanine iodide tablets. 520.763a Section 520.763a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763a Dithiazanine...
21 CFR 520.905b - Fenbendazole granules.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Fenbendazole granules. 520.905b Section 520.905b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.905b Fenbendazole granules...
21 CFR 520.540c - Dexamethasone chewable tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dexamethasone chewable tablets. 520.540c Section 520.540c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.540c...
21 CFR 520.622b - Diethylcarbamazine citrate syrup.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diethylcarbamazine citrate syrup. 520.622b Section 520.622b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.622b...
21 CFR 520.154a - Bacitracin methylene disalicylate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Bacitracin methylene disalicylate. 520.154a Section 520.154a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.154a Bacitracin...
21 CFR 520.154a - Bacitracin methylene disalicylate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Bacitracin methylene disalicylate. 520.154a Section 520.154a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.154a Bacitracin...
21 CFR 520.763b - Dithiazanine iodide powder.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dithiazanine iodide powder. 520.763b Section 520.763b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763b Dithiazanine...
21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dithiazanine iodide and piperazine citrate suspension. 520.763c Section 520.763c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...
21 CFR 520.260 - n-Butyl chloride.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false n-Butyl chloride. 520.260 Section 520.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.260 n-Butyl chloride. (a)(1...
21 CFR 520.300a - Cambendazole suspension.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Cambendazole suspension. 520.300a Section 520.300a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.300a Cambendazole suspension...
21 CFR 520.763a - Dithiazanine iodide tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dithiazanine iodide tablets. 520.763a Section 520.763a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.763a Dithiazanine...
21 CFR 520.622c - Diethylcarbamazine citrate chewable tablets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Diethylcarbamazine citrate chewable tablets. 520.622c Section 520.622c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.622c...
21 CFR 520.622a - Diethylcarbamazine citrate tablets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Diethylcarbamazine citrate tablets. 520.622a Section 520.622a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.622a...
21 CFR 520.622a - Diethylcarbamazine citrate tablets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Diethylcarbamazine citrate tablets. 520.622a Section 520.622a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.622a...
21 CFR 520.622a - Diethylcarbamazine citrate tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Diethylcarbamazine citrate tablets. 520.622a Section 520.622a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.622a...
21 CFR 520.905a - Fenbendazole suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Fenbendazole suspension. 520.905a Section 520.905a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.905a Fenbendazole suspension...
21 CFR 520.622c - Diethylcarbamazine citrate chewable tablets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Diethylcarbamazine citrate chewable tablets. 520.622c Section 520.622c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.622c...
21 CFR 520.300a - Cambendazole suspension.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Cambendazole suspension. 520.300a Section 520.300a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.300a Cambendazole suspension...
21 CFR 520.763c - Dithiazanine iodide and piperazine citrate suspension.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dithiazanine iodide and piperazine citrate suspension. 520.763c Section 520.763c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS...