Science.gov

Sample records for oral fungal microbiome

  1. The Canine Oral Microbiome

    PubMed Central

    Dewhirst, Floyd E.; Klein, Erin A.; Thompson, Emily C.; Blanton, Jessica M.; Chen, Tsute; Milella, Lisa; Buckley, Catherine M. F.; Davis, Ian J.; Bennett, Marie-Lousie; Marshall-Jones, Zoe V.

    2012-01-01

    Determining the bacterial composition of the canine oral microbiome is of interest for two primary reasons. First, while the human oral microbiome has been well studied using molecular techniques, the oral microbiomes of other mammals have not been studied in equal depth using culture independent methods. This study allows a comparison of the number of bacterial taxa, based on 16S rRNA-gene sequence comparison, shared between humans and dogs, two divergent mammalian species. Second, canine oral bacteria are of interest to veterinary and human medical communities for understanding their roles in health and infectious diseases. The bacteria involved are mostly unnamed and not linked by 16S rRNA-gene sequence identity to a taxonomic scheme. This manuscript describes the analysis of 5,958 16S rRNA-gene sequences from 65 clone libraries. Full length 16S rRNA reference sequences have been obtained for 353 canine bacterial taxa, which were placed in 14 bacterial phyla, 23 classes, 37 orders, 66 families, and 148 genera. Eighty percent of the taxa are currently unnamed. The bacterial taxa identified in dogs are markedly different from those of humans with only 16.4% of oral taxa are shared between dogs and humans based on a 98.5% 16S rRNA sequence similarity cutoff. This indicates that there is a large divergence in the bacteria comprising the oral microbiomes of divergent mammalian species. The historic practice of identifying animal associated bacteria based on phenotypic similarities to human bacteria is generally invalid. This report describes the diversity of the canine oral microbiome and provides a provisional 16S rRNA based taxonomic scheme for naming and identifying unnamed canine bacterial taxa. PMID:22558330

  2. Key determinants of the fungal and bacterial microbiomes in homes.

    PubMed

    Kettleson, Eric M; Adhikari, Atin; Vesper, Stephen; Coombs, Kanistha; Indugula, Reshmi; Reponen, Tiina

    2015-04-01

    The microbiome of the home is of great interest because of its possible impact on health. Our goal was to identify some of the factors that determine the richness, evenness and diversity of the home's fungal and bacterial microbiomes. Vacuumed settled dust from homes (n=35) in Cincinnati, OH, were analyzed by pyrosequencing to determine the fungal and bacterial relative sequence occurrence. The correlation coefficients between home environmental characteristics, including age of home, Environmental Relative Moldiness Index (ERMI) values, occupant number, relative humidity and temperature, as well as pets (dog and cat) were evaluated for their influence on fungal and bacterial communities. In addition, linear discriminant analysis (LDA) was used for identifying fungal and bacterial genera and species associated with those housing determinants found to be significant. The fungal richness was found to be positively correlated with age of home (p=0.002), ERMI value (p=0.003), and relative humidity (p=0.015) in the home. However, fungal evenness and diversity were only correlated with the age of home (p=0.001). Diversity and evenness (not richness) of the bacterial microbiome in the homes were associated with dog ownership. Linear discriminant analysis showed total of 39 putative fungal genera/species with significantly higher LDA scores in high ERMI homes and 47 genera/species with significantly higher LDA scores in homes with high relative humidity. When categorized according to the age of the home, a total of 67 fungal genera/species had LDA scores above the significance threshold. Dog ownership appeared to have the most influence on the bacterial microbiome, since a total of 130 bacterial genera/species had significantly higher LDA scores in homes with dogs. Some key determinants of the fungal and bacterial microbiome appear to be excess moisture, age of the home and dog ownership. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Key Determinants of the Fungal and Bacterial Microbiomes in Homes

    PubMed Central

    Kettleson, Eric M.; Adhikari, Atin; Vesper, Stephen; Chatterjee, Kanistha; Indugula, Reshmi; Reponen, Tiina

    2015-01-01

    Backgroundy The microbiome of the home is of great interest because of its possible impact on health. Our goal was to identify some of the factors that determine the richness, evenness and diversity of the home's fungal and bacterial microbiomes. Methods Vacuumed settled dust from homes (n=35) in Cincinnati, OH, were analyzed by pyrosequencing to determine the fungal and bacterial relative sequence occurrence. The correlation coefficients between home environmental characteristics, including age of home, Environmental Relative Moldiness Index (ERMI) values, occupant number, relative humidity and temperature, as well as pets (dog and cat) were evaluated for their influence on fungal and bacterial communities. In addition, linear discriminant analysis (LDA) was used for identifying fungal and bacterial genera and species associated with those housing determinants found to be significant. Results The fungal richness was found to be positively correlated with age of home (p=0.002), ERMI value (p=0.003), and relative humidity (p=0.015) in the home. However, fungal evenness and diversity were only correlated with the age of home (p=0.001). Diversity and evenness (not richness) of the bacterial microbiome in the homes were associated with dog ownership. Linear discriminant analysis showed total of 39 putative fungal genera/species with significantly higher LDA scores in high ERMI homes and 47 genera/species with significantly higher LDA scores in homes with high relative humidity. When categorized according to the age of the home, a total of 67 fungal genera/species had LDA scores above the significance threshold. Dog ownership appeared to have the most influence on the bacterial microbiome, since a total of 130 bacterial genera/species had significantly higher LDA scores in homes with dogs. Conclusions Some key determinants of the fungal and bacterial microbiome appear to be excess moisture, age of the home and dog ownership. PMID:25707017

  4. The oral microbiome in health and disease.

    PubMed

    Wade, William G

    2013-03-01

    The human mouth harbours one of the most diverse microbiomes in the human body, including viruses, fungi, protozoa, archaea and bacteria. The bacteria are responsible for the two commonest bacterial diseases of man: dental caries (tooth decay) and the periodontal (gum) diseases. Archaea are restricted to a small number of species of methanogens while around 1000 bacterial species have been found, with representatives from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Spirochaetes, Synergistetes and Tenericutes and the uncultured divisions GN02, SR1 and TM7. Around half of oral bacteria are as yet uncultured and culture-independent methods have been successfully used to comprehensively describe the oral bacterial community. The human oral microbiome database (HOMD, www.homd.org) provides a comprehensive resource consisting of descriptions of oral bacterial taxa, a 16S rRNA identification tool and a repository of oral bacterial genome sequences. Individuals' oral microbiomes are highly specific at the species level, although overall the human oral microbiome shows few geographical differences. Although caries and periodontitis are clearly bacterial diseases, they are not infectious diseases in the classical sense because they result from a complex interaction between the commensal microbiota, host susceptibility and environmental factors such as diet and smoking. Periodontitis, in particular, appears to result from an inappropriate inflammatory reaction to the normal microbiota, exacerbated by the presence of some disease-associated bacterial species. In functional terms, there appears to considerable redundancy among the oral microbiota and a focus on functional rather than phylogenetic diversity may be required in order to fully understand host-microbiome interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Oral microbiome and oral and gastrointestinal cancer risk.

    PubMed

    Ahn, Jiyoung; Chen, Calvin Y; Hayes, Richard B

    2012-03-01

    A growing body of evidence implicates human oral bacteria in the etiology of oral and gastrointestinal cancers. Epidemiological studies consistently report increased risks of these cancers in men and women with periodontal disease or tooth loss, conditions caused by oral bacteria. More than 700 bacterial species inhabit the oral cavity, including at least 11 bacterial phyla and 70 genera. Oral bacteria may activate alcohol and smoking-related carcinogens locally or act systemically, through chronic inflammation. High-throughput genetic-based assays now make it possible to comprehensively survey the human oral microbiome, the totality of bacteria in the oral cavity. Establishing the association of the oral microbiome with cancer risk may lead to significant advances in understanding of cancer etiology, potentially opening a new research paradigm for cancer prevention.

  6. Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench.

    PubMed

    Diaz, Patricia I; Strausbaugh, Linda D; Dongari-Bagtzoglou, Anna

    2014-01-01

    High throughput sequencing has accelerated knowledge on the oral microbiome. While the bacterial component of oral communities has been extensively characterized, the role of the fungal microbiota in the oral cavity is largely unknown. Interactions among fungi and bacteria are likely to influence oral health as exemplified by the synergistic relationship between Candida albicans and oral streptococci. In this perspective, we discuss the current state of the field of fungal-bacterial interactions in the context of the oral cavity. We highlight the need to conduct longitudinal clinical studies to simultaneously characterize the bacterial and fungal components of the human oral microbiome in health and during disease progression. Such studies need to be coupled with investigations using disease-relevant models to mechanistically test the associations observed in humans and eventually identify fungal-bacterial interactions that could serve as preventive or therapeutic targets for oral diseases.

  7. Fungal-bacterial interactions and their relevance to oral health: linking the clinic and the bench

    PubMed Central

    Diaz, Patricia I.; Strausbaugh, Linda D.; Dongari-Bagtzoglou, Anna

    2014-01-01

    High throughput sequencing has accelerated knowledge on the oral microbiome. While the bacterial component of oral communities has been extensively characterized, the role of the fungal microbiota in the oral cavity is largely unknown. Interactions among fungi and bacteria are likely to influence oral health as exemplified by the synergistic relationship between Candida albicans and oral streptococci. In this perspective, we discuss the current state of the field of fungal-bacterial interactions in the context of the oral cavity. We highlight the need to conduct longitudinal clinical studies to simultaneously characterize the bacterial and fungal components of the human oral microbiome in health and during disease progression. Such studies need to be coupled with investigations using disease-relevant models to mechanistically test the associations observed in humans and eventually identify fungal-bacterial interactions that could serve as preventive or therapeutic targets for oral diseases. PMID:25120959

  8. Oral microbiome in HIV-associated periodontitis

    PubMed Central

    Noguera-Julian, Marc; Guillén, Yolanda; Peterson, Jessica; Reznik, David; Harris, Erica V.; Joseph, Sandeep J.; Rivera, Javier; Kannanganat, Sunil; Amara, Rama; Nguyen, Minh Ly; Mutembo, Simon; Paredes, Roger; Read, Timothy D.; Marconi, Vincent C.

    2017-01-01

    Abstract HIV-associated periodontal diseases (PD) could serve as a source of chronic inflammation. Here, we sought to characterize the oral microbial signatures of HIV+ and HIV– individuals at different levels of PD severity. This cross-sectional study included both HIV+ and HIV– patients with varying degrees of PD. Two tooth, 2 cheek, and 1 saliva samples were obtained for microbiome analysis. Mothur/SILVADB were used to classify sequences. R/Bioconductor (Vegan, PhyloSeq, and DESeq2) was employed to assess overall microbiome structure differences and differential abundance of bacterial genera between groups. Polychromatic flow cytometry was used to assess immune activation in CD4 and CD8 cell populations. Around 250 cheek, tooth, and saliva samples from 50 participants (40 HIV+ and 10 HIV–) were included. Severity of PD was classified clinically as None/Mild (N), Moderate (M), and Severe (S) with 18 (36%), 16 (32%), and 16 (32%) participants in each category, respectively. Globally, ordination analysis demonstrated clustering by anatomic site (R2 = 0.25, P < 0.001). HIV status and PD severity showed a statistically significant impact on microbiome composition but only accounted for a combined 2% of variation. HIV+ samples were enriched in genera Abiotrophia, Neisseria, Kingella, and unclassified Neisseriaceae and depleted in Leptotrichia and Selenomonas. The Neisseria genus was consistently enriched in HIV+ participants regardless of sampling site and PD level. Immune markers were altered in HIV+ participants but did not show association with the oral microbiome. HIV-associated changes in oral microbiome result in subtle microbial signatures along different stages of PD that are common in independent oral anatomic sites. PMID:28328799

  9. Oral microbiome in HIV-associated periodontitis.

    PubMed

    Noguera-Julian, Marc; Guillén, Yolanda; Peterson, Jessica; Reznik, David; Harris, Erica V; Joseph, Sandeep J; Rivera, Javier; Kannanganat, Sunil; Amara, Rama; Nguyen, Minh Ly; Mutembo, Simon; Paredes, Roger; Read, Timothy D; Marconi, Vincent C

    2017-03-01

    HIV-associated periodontal diseases (PD) could serve as a source of chronic inflammation. Here, we sought to characterize the oral microbial signatures of HIV+ and HIV- individuals at different levels of PD severity.This cross-sectional study included both HIV+ and HIV- patients with varying degrees of PD. Two tooth, 2 cheek, and 1 saliva samples were obtained for microbiome analysis. Mothur/SILVADB were used to classify sequences. R/Bioconductor (Vegan, PhyloSeq, and DESeq2) was employed to assess overall microbiome structure differences and differential abundance of bacterial genera between groups. Polychromatic flow cytometry was used to assess immune activation in CD4 and CD8 cell populations.Around 250 cheek, tooth, and saliva samples from 50 participants (40 HIV+ and 10 HIV-) were included. Severity of PD was classified clinically as None/Mild (N), Moderate (M), and Severe (S) with 18 (36%), 16 (32%), and 16 (32%) participants in each category, respectively. Globally, ordination analysis demonstrated clustering by anatomic site (R2 = 0.25, P < 0.001). HIV status and PD severity showed a statistically significant impact on microbiome composition but only accounted for a combined 2% of variation. HIV+ samples were enriched in genera Abiotrophia, Neisseria, Kingella, and unclassified Neisseriaceae and depleted in Leptotrichia and Selenomonas. The Neisseria genus was consistently enriched in HIV+ participants regardless of sampling site and PD level. Immune markers were altered in HIV+ participants but did not show association with the oral microbiome.HIV-associated changes in oral microbiome result in subtle microbial signatures along different stages of PD that are common in independent oral anatomic sites.

  10. Oligotyping analysis of the human oral microbiome

    PubMed Central

    Eren, A. Murat; Borisy, Gary G.; Huse, Susan M.; Mark Welch, Jessica L.

    2014-01-01

    The Human Microbiome Project provided a census of bacterial populations in healthy individuals, but an understanding of the biomedical significance of this census has been hindered by limited taxonomic resolution. A high-resolution method termed oligotyping overcomes this limitation by evaluating individual nucleotide positions using Shannon entropy to identify the most information-rich nucleotide positions, which then define oligotypes. We have applied this method to comprehensively analyze the oral microbiome. Using Human Microbiome Project 16S rRNA gene sequence data for the nine sites in the oral cavity, we identified 493 oligotypes from the V1-V3 data and 360 oligotypes from the V3-V5 data. We associated these oligotypes with species-level taxon names by comparison with the Human Oral Microbiome Database. We discovered closely related oligotypes, differing sometimes by as little as a single nucleotide, that showed dramatically different distributions among oral sites and among individuals. We also detected potentially pathogenic taxa in high abundance in individual samples. Numerous oligotypes were preferentially located in plaque, others in keratinized gingiva or buccal mucosa, and some oligotypes were characteristic of habitat groupings such as throat, tonsils, tongue dorsum, hard palate, and saliva. The differing habitat distributions of closely related oligotypes suggest a level of ecological and functional biodiversity not previously recognized. We conclude that the Shannon entropy approach of oligotyping has the capacity to analyze entire microbiomes, discriminate between closely related but distinct taxa and, in combination with habitat analysis, provide deep insight into the microbial communities in health and disease. PMID:24965363

  11. Dental Calculus and the Evolution of the Human Oral Microbiome.

    PubMed

    Warinner, Christina

    2016-07-01

    Characterizing the evolution of the oral microbiome is a challenging, but increasingly feasible, task. Recently, dental calculus has been shown to preserve ancient biomolecules from the oral microbiota, host tissues and diet for tens of thousands of years. As such, it provides a unique window into the ancestral oral microbiome. This article reviews recent advancements in ancient dental calculus research and emerging insights into the evolution and ecology of the human oral microbiome.

  12. Probing the diversity of healthy oral microbiome with bioinformatics approaches.

    PubMed

    Moon, Ji-Hoi; Lee, Jae-Hyung

    2016-12-01

    The human oral cavity contains a highly personalized microbiome essential to maintaining health, but capable of causing oral and systemic diseases. Thus, an in-depth definition of "healthy oral microbiome" is critical to understanding variations in disease states from preclinical conditions, and disease onset through progressive states of disease. With rapid advances in DNA sequencing and analytical technologies, population-based studies have documented the range and diversity of both taxonomic compositions and functional potentials observed in the oral microbiome in healthy individuals. Besides factors specific to the host, such as age and race/ethnicity, environmental factors also appear to contribute to the variability of the healthy oral microbiome. Here, we review bioinformatic techniques for metagenomic datasets, including their strengths and limitations. In addition, we summarize the interpersonal and intrapersonal diversity of the oral microbiome, taking into consideration the recent large-scale and longitudinal studies, including the Human Microbiome Project. [BMB Reports 2016; 49(12): 662-670].

  13. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome.

    PubMed

    de Souza, Rafael Soares Correa; Okura, Vagner Katsumi; Armanhi, Jaderson Silveira Leite; Jorrín, Beatriz; Lozano, Núria; da Silva, Márcio José; González-Guerrero, Manuel; de Araújo, Laura Migliorini; Verza, Natália Cristina; Bagheri, Homayoun Chaichian; Imperial, Juan; Arruda, Paulo

    2016-06-30

    Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes.

  14. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome

    PubMed Central

    de Souza, Rafael Soares Correa; Okura, Vagner Katsumi; Armanhi, Jaderson Silveira Leite; Jorrín, Beatriz; Lozano, Núria; da Silva, Márcio José; González-Guerrero, Manuel; de Araújo, Laura Migliorini; Verza, Natália Cristina; Bagheri, Homayoun Chaichian; Imperial, Juan; Arruda, Paulo

    2016-01-01

    Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes. PMID:27358031

  15. Acquiring and maintaining a normal oral microbiome: current perspective.

    PubMed

    Zaura, Egija; Nicu, Elena A; Krom, Bastiaan P; Keijser, Bart J F

    2014-01-01

    The oral microbiota survives daily physical and chemical perturbations from the intake of food and personal hygiene measures, resulting in a long-term stable microbiome. Biological properties that confer stability in the microbiome are important for the prevention of dysbiosis-a microbial shift toward a disease, e.g., periodontitis or caries. Although processes that underlie oral diseases have been studied extensively, processes involved in maintaining of a normal, healthy microbiome are poorly understood. In this review we present our hypothesis on how a healthy oral microbiome is acquired and maintained. We introduce our view on the prenatal development of tolerance for the normal oral microbiome: we propose that development of fetal tolerance toward the microbiome of the mother during pregnancy is the major factor for a successful acquisition of a normal microbiome. We describe the processes that influence the establishment of such microbiome, followed by our perspective on the process of sustaining a healthy oral microbiome. We divide microbiome-maintenance factors into host-derived and microbe-derived, while focusing on the host. Finally, we highlight the need and directions for future research.

  16. Probing the diversity of healthy oral microbiome with bioinformatics approaches

    PubMed Central

    Moon, Ji-Hoi; Lee, Jae-Hyung

    2016-01-01

    The human oral cavity contains a highly personalized microbiome essential to maintaining health, but capable of causing oral and systemic diseases. Thus, an in-depth definition of “healthy oral microbiome” is critical to understanding variations in disease states from preclinical conditions, and disease onset through progressive states of disease. With rapid advances in DNA sequencing and analytical technologies, population-based studies have documented the range and diversity of both taxonomic compositions and functional potentials observed in the oral microbiome in healthy individuals. Besides factors specific to the host, such as age and race/ethnicity, environmental factors also appear to contribute to the variability of the healthy oral microbiome. Here, we review bioinformatic techniques for metagenomic datasets, including their strengths and limitations. In addition, we summarize the interpersonal and intrapersonal diversity of the oral microbiome, taking into consideration the recent large-scale and longitudinal studies, including the Human Microbiome Project. PMID:27697111

  17. Betel nut chewing, oral premalignant lesions, and the oral microbiome

    PubMed Central

    Hernandez, Brenda Y.; Zhu, Xuemei; Goodman, Marc T.; Gatewood, Robert; Mendiola, Paul; Quinata, Katrina; Paulino, Yvette C.

    2017-01-01

    Oral cancers are attributed to a number of causal agents including tobacco, alcohol, human papillomavirus (HPV), and areca (betel) nut. Although betel nut chewing has been established as an independent cause of oral cancer, the mechanisms of carcinogenesis are poorly understood. An investigation was undertaken to evaluate the influence of betel nut chewing on the oral microbiome and oral premalignant lesions. Study participants were recruited from a dental clinic in Guam. Structured interviews and oral examinations were performed. Oral swabbing and saliva samples were evaluated by 454 pyrosequencing of the V3- V5 region of the 16S rRNA bacterial gene and genotyped for HPV. One hundred twenty-two adults were enrolled including 64 current betel nut chewers, 37 former chewers, and 21 with no history of betel nut use. Oral premalignant lesions, including leukoplakia and submucous fibrosis, were observed in 10 chewers. Within-sample bacterial diversity was significantly lower in long-term (≥10 years) chewers vs. never chewers and in current chewers with oral lesions vs. individuals without lesions. Between-sample bacterial diversity based on Unifrac distances significantly differed by chewing status and oral lesion status. Current chewers had significantly elevated levels of Streptococcus infantis and higher and lower levels of distinct taxa of the Actinomyces and Streptococcus genera. Long-term chewers had reduced levels of Parascardovia and Streptococcus. Chewers with oral lesions had significantly elevated levels of Oribacterium, Actinomyces, and Streptococcus, including Streptococcus anginosus. In multivariate analyses, controlling for smoking, oral HPV, S.anginosus, and S. infantis levels, current betel nut chewing remained the only predictor of oral premalignant lesions. Our study provides evidence that betel nut chewing alters the oral bacterial microbiome including that of chewers who develop oral premalignant lesions. Nonetheless, whether microbial changes

  18. Betel nut chewing, oral premalignant lesions, and the oral microbiome.

    PubMed

    Hernandez, Brenda Y; Zhu, Xuemei; Goodman, Marc T; Gatewood, Robert; Mendiola, Paul; Quinata, Katrina; Paulino, Yvette C

    2017-01-01

    Oral cancers are attributed to a number of causal agents including tobacco, alcohol, human papillomavirus (HPV), and areca (betel) nut. Although betel nut chewing has been established as an independent cause of oral cancer, the mechanisms of carcinogenesis are poorly understood. An investigation was undertaken to evaluate the influence of betel nut chewing on the oral microbiome and oral premalignant lesions. Study participants were recruited from a dental clinic in Guam. Structured interviews and oral examinations were performed. Oral swabbing and saliva samples were evaluated by 454 pyrosequencing of the V3- V5 region of the 16S rRNA bacterial gene and genotyped for HPV. One hundred twenty-two adults were enrolled including 64 current betel nut chewers, 37 former chewers, and 21 with no history of betel nut use. Oral premalignant lesions, including leukoplakia and submucous fibrosis, were observed in 10 chewers. Within-sample bacterial diversity was significantly lower in long-term (≥10 years) chewers vs. never chewers and in current chewers with oral lesions vs. individuals without lesions. Between-sample bacterial diversity based on Unifrac distances significantly differed by chewing status and oral lesion status. Current chewers had significantly elevated levels of Streptococcus infantis and higher and lower levels of distinct taxa of the Actinomyces and Streptococcus genera. Long-term chewers had reduced levels of Parascardovia and Streptococcus. Chewers with oral lesions had significantly elevated levels of Oribacterium, Actinomyces, and Streptococcus, including Streptococcus anginosus. In multivariate analyses, controlling for smoking, oral HPV, S.anginosus, and S. infantis levels, current betel nut chewing remained the only predictor of oral premalignant lesions. Our study provides evidence that betel nut chewing alters the oral bacterial microbiome including that of chewers who develop oral premalignant lesions. Nonetheless, whether microbial changes

  19. The Salivary Microbiome and Oral Cancer Risk.

    PubMed

    Furquim, C P; Soares, G M S; Ribeiro, L L; Azcarate-Peril, M A; Butz, N; Roach, J; Moss, K; Bonfim, C; Torres-Pereira, C C; Teles, F R F

    2017-03-01

    Fanconi anemia (FA) is a rare genetic disease characterized by chromosomal instability and impaired DNA damage repair. FA patients develop oral squamous cell carcinoma (OSCC) earlier and more frequently than the general population, especially after hematopoietic stem cell transplantation (HSCT). Although evidence of an etiological role of the local microbiome and carcinogenesis has been mounting, no information exists regarding the oral microbiome of FA patients. The aim of this study was to explore the salivary microbiome of 61 FA patients regarding their oral health status and OSCC risk factors. After answering a questionnaire and receiving clinical examination, saliva samples were collected and analyzed using 16S rRNA sequencing of the V3-V4 hypervariable region. The microbial profiles associated with medical and clinical parameters were analyzed using general linear models. Patients were young (mean age, 22 y) and most had received HSCT ( n = 53). The most abundant phyla were Firmicutes [mean relative abundance (SD), 42.1% (10.1%)] and Bacteroidetes [(25.4% (11.4%)]. A history of graft-versus-host disease (GVHD) ( n = 27) was associated with higher proportions of Firmicutes (43.8% × 38.5%, P = 0.05). High levels of gingival bleeding were associated with the genera Prevotella (22.25% × 20%), Streptococcus (19.83% × 17.61%), Porphyromonas (3.63% × 1.42%, P = 0.03), Treponema (1.02% × 0.28%, P = 0.009), Parvimonas (0.28% × 0.07%, P = 0.02) and Dialister (0.27% × 0.10%, P = 0.04). Finally, participants transplanted over 11 y ago showed the highest levels of Streptococcus (18.4%), Haemophilus (12.7%) and Neisseria (6.8%). In conclusion, FA patients that showed poor oral hygiene harbored higher proportions of the genera of bacteria compatible with gingival disease. Specific microbial differences were associated with a history of oral GVHD and a history of oral mucositis.

  20. Identifying a healthy oral microbiome through metagenomics.

    PubMed

    Alcaraz, L D; Belda-Ferre, P; Cabrera-Rubio, R; Romero, H; Simón-Soro, A; Pignatelli, M; Mira, A

    2012-07-01

    We present the results of an exploratory study of the bacterial communities from the human oral cavity showing the advantages of pyrosequencing complex samples. Over 1.6 million reads from the metagenomes of eight dental plaque samples were taxonomically assigned through a binning procedure. We performed clustering analysis to discern if there were associations between non-caries and caries conditions in the community composition. Our results show a given bacterial consortium associated with cariogenic and non-cariogenic conditions, in agreement with the existence of a healthy oral microbiome and giving support to the idea of dental caries being a polymicrobial disease. The data are coherent with those previously reported in the literature by 16S rRNA amplification, thus giving the chance to link gene functions with taxonomy in further studies involving larger sample numbers. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  1. The microbiome of the oral mucosa in irritable bowel syndrome

    PubMed Central

    Fourie, Nicolaas H.; Wang, Dan; Abey, Sarah K.; Sherwin, LeeAnne B.; Joseph, Paule V.; Rahim-Williams, Bridgett; Ferguson, Eric G.; Henderson, Wendy A.

    2016-01-01

    abstract Irritable bowel syndrome (IBS) is a poorly understood disorder characterized by persistent symptoms, including visceral pain. Studies have demonstrated oral microbiome differences in inflammatory bowel diseases suggesting the potential of the oral microbiome in the study of non-oral conditions. In this exploratory study we examine whether differences exist in the oral microbiome of IBS participants and healthy controls, and whether the oral microbiome relates to symptom severity. The oral buccal mucosal microbiome of 38 participants was characterized using PhyloChip microarrays. The severity of visceral pain was assessed by orally administering a gastrointestinal test solution. Participants self-reported their induced visceral pain. Pain severity was highest in IBS participants (P = 0.0002), particularly IBS-overweight participants (P = 0.02), and was robustly correlated to the abundance of 60 OTUs, 4 genera, 5 families and 4 orders of bacteria (r2 > 0.4, P < 0.001). IBS-overweight participants showed decreased richness in the phylum Bacteroidetes (P = 0.007) and the genus Bacillus (P = 0.008). Analysis of β-diversity found significant separation of the IBS-overweight group (P < 0.05). Our oral microbial results are concordant with described fecal and colonic microbiome-IBS and -weight associations. Having IBS and being overweight, rather than IBS-subtypes, was the most important factor in describing the severity of visceral pain and variation in the microbiome. Pain severity was strongly correlated to the abundance of many taxa, suggesting the potential of the oral microbiome in diagnosis and patient phenotyping. The oral microbiome has potential as a source of microbial information in IBS. PMID:26963804

  2. The microbiome of the oral mucosa in irritable bowel syndrome.

    PubMed

    Fourie, Nicolaas H; Wang, Dan; Abey, Sarah K; Sherwin, LeeAnne B; Joseph, Paule V; Rahim-Williams, Bridgett; Ferguson, Eric G; Henderson, Wendy A

    2016-07-03

    Irritable bowel syndrome (IBS) is a poorly understood disorder characterized by persistent symptoms, including visceral pain. Studies have demonstrated oral microbiome differences in inflammatory bowel diseases suggesting the potential of the oral microbiome in the study of non-oral conditions. In this exploratory study we examine whether differences exist in the oral microbiome of IBS participants and healthy controls, and whether the oral microbiome relates to symptom severity. The oral buccal mucosal microbiome of 38 participants was characterized using PhyloChip microarrays. The severity of visceral pain was assessed by orally administering a gastrointestinal test solution. Participants self-reported their induced visceral pain. Pain severity was highest in IBS participants (P = 0.0002), particularly IBS-overweight participants (P = 0.02), and was robustly correlated to the abundance of 60 OTUs, 4 genera, 5 families and 4 orders of bacteria (r(2) > 0.4, P < 0.001). IBS-overweight participants showed decreased richness in the phylum Bacteroidetes (P = 0.007) and the genus Bacillus (P = 0.008). Analysis of β-diversity found significant separation of the IBS-overweight group (P < 0.05). Our oral microbial results are concordant with described fecal and colonic microbiome-IBS and -weight associations. Having IBS and being overweight, rather than IBS-subtypes, was the most important factor in describing the severity of visceral pain and variation in the microbiome. Pain severity was strongly correlated to the abundance of many taxa, suggesting the potential of the oral microbiome in diagnosis and patient phenotyping. The oral microbiome has potential as a source of microbial information in IBS.

  3. Diet may influence the oral microbiome composition in cats.

    PubMed

    Adler, Christina J; Malik, Richard; Browne, Gina V; Norris, Jacqueline M

    2016-06-09

    Periodontal disease is highly prevalent amongst domestic cats, causing pain, gingival bleeding, reduced food intake, loss of teeth and possibly impacts on overall systemic health. Diet has been suggested to play a role in the development of periodontal disease in cats. There is a complete lack of information about how diet (composition and texture) affects the feline oral microbiome, the composition of which may influence oral health and the development of periodontal disease. We undertook a pilot study to assess if lifelong feeding of dry extruded kibble or wet (canned and/or fresh meat combinations) diets to cats (n = 10) with variable oral health affected the microbiome. Oral microbiome composition was assessed by amplifying the V1-V3 region of the 16S gene from supragingival dental plaque DNA extracts. These amplicons were sequenced using Illumina technology. This deep sequencing revealed the feline oral microbiome to be diverse, containing 411 bacterial species from 14 phyla. We found that diet had a significant influence on the overall diversity and abundance of specific bacteria in the oral environment. Cats fed a dry diet exclusively had higher bacterial diversity in their oral microbiome than wet-food diet cats (p < 0.001). Amongst this higher diversity, cats on dry-food diets had a higher abundance of Porphyromonas spp. (p < 0.01) and Treponema spp. (p < 0.01). While we observed differences in the oral microbiome between cats on the two diets assessed, the relationship between these differences and gingival health was unclear. Our preliminary results indicate that further analysis of the influence of dietary constituents and texture on the feline oral microbiome is required to reveal the relationship between diet, the oral microbiome and gingival health in cats.

  4. The oral microbiome and nitric oxide homoeostasis.

    PubMed

    Hezel, M P; Weitzberg, E

    2015-01-01

    The tiny radical nitric oxide (NO) participates in a vast number of physiological functions including vasodilation, nerve transmission, host defence and cellular energetics. Classically produced by a family of specific enzymes, NO synthases (NOSs), NO signals via reactions with other radicals or transition metals. An alternative pathway for the generation of NO is the nitrate-nitrite-NO pathway in which the inorganic anions nitrate (NO(3)(-)) and nitrite (NO(2)(-)) are reduced to NO and other reactive nitrogen intermediates. Nitrate and nitrite are oxidation products from NOS-dependent NO generation but also constituents in our diet, mainly in leafy green vegetables. Irrespective of origin, active uptake of circulating nitrate in the salivary glands, excretion in saliva and subsequent reduction to nitrite by oral commensal bacteria are all necessary steps for further NO generation. This central role of the oral cavity in regulating NO generation from nitrate presents a new and intriguing aspect of the human microbiome in health and disease. In this review, we present recent advances in our understanding of the nitrate-nitrite-NO pathway and specifically highlight the importance of the oral cavity as a hub for its function. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Role of oral microbiome on oral cancers, a review.

    PubMed

    Gholizadeh, Pourya; Eslami, Hosein; Yousefi, Mehdi; Asgharzadeh, Mohammad; Aghazadeh, Mohammad; Kafil, Hossein Samadi

    2016-12-01

    The oral cavity is inhibited by many of the bacterial species. Some of them have a key role in the development of oral disease. Interrelationships between oral microbiome and systemic conditions such as head-and-neck cancer have become increasingly appreciated in recent years. Emerging evidence also suggests a link between periodontal disease and oral cancer, and the explanation being that chronic inflammation could be a major factor in both diseases. Squamous cell carcinoma is that the most frequently occurring malignancy of the oral cavity and adjacent sites, representing over 90% of all cancers. The incidence of oral cancer is increasing, significantly among young people and women. Worldwide there are 350,000-400,000 new cases diagnosed every year. Bacteria, viruses, and fungi are strongly implicated as etiological factors in certain cancers. In this review we will discuss the association between the development of oral cancer in potentially malignant oral lesions with chronic periodontitis, chronic Porphyromonas gingivalis, Fusobacterium nucleatum, candida, other microbes and described mechanisms which may be involved in these carcinoma. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Oral Microbiome Link to Neurodegeneration in Glaucoma

    PubMed Central

    Astafurov, Konstantin; Elhawy, Eman; Ren, Lizhen; Dong, Cecilia Q.; Igboin, Christina; Hyman, Leslie; Griffen, Ann; Mittag, Thomas; Danias, John

    2014-01-01

    Background Glaucoma is a progressive optic nerve degenerative disease that often leads to blindness. Local inflammatory responses are implicated in the pathology of glaucoma. Although inflammatory episodes outside the CNS, such as those due to acute systemic infections, have been linked to central neurodegeneration, they do not appear to be relevant to glaucoma. Based on clinical observations, we hypothesized that chronic subclinical peripheral inflammation contributes to neurodegeneration in glaucoma. Methods Mouthwash specimens from patients with glaucoma and control subjects were analyzed for the amount of bacteria. To determine a possible pathogenic mechanism, low-dose subcutaneous lipopolysaccharide (LPS) was administered in two separate animal models of glaucoma. Glaucomatous neurodegeneration was assessed in the retina and optic nerve two months later. Changes in gene expression of toll-like receptor 4 (TLR4) signaling pathway and complement as well as changes in microglial numbers and morphology were analyzed in the retina and optic nerve. The effect of pharmacologic blockade of TLR4 with naloxone was determined. Findings Patients with glaucoma had higher bacterial oral counts compared to control subjects (p<0.017). Low-dose LPS administration in glaucoma animal models resulted in enhancement of axonal degeneration and neuronal loss. Microglial activation in the optic nerve and retina as well as upregulation of TLR4 signaling and complement system were observed. Pharmacologic blockade of TLR4 partially ameliorated the enhanced damage. Conclusions The above findings suggest that the oral microbiome contributes to glaucoma pathophysiology. A plausible mechanism by which increased bacterial loads can lead to neurodegeneration is provided by experiments in animal models of the disease and involves activation of microglia in the retina and optic nerve, mediated through TLR4 signaling and complement upregulation. The finding that commensal bacteria may play a

  7. The Fungal Biome of the Oral Cavity.

    PubMed

    Chandra, Jyotsna; Retuerto, Mauricio; Mukherjee, Pranab K; Ghannoum, Mahmoud

    2016-01-01

    Organisms residing in the oral cavity (oral microbiota) contribute to health and disease, and influence diseases like gingivitis, periodontitis, and oral candidiasis (the most common oral complication of HIV-infection). These organisms are also associated with cancer and other systemic diseases including upper respiratory infections. There is limited knowledge regarding how oral microbes interact together and influence the host immune system. Characterizing the oral microbial community (oral microbiota) in health and disease represents a critical step in gaining insight into various members of this community. While most of the studies characterizing oral microbiota have focused on bacterial community, there are few encouraging studies characterizing the oral mycobiome (the fungal component of the oral microbiota). Our group recently characterized the oral mycobiome in health and disease focusing on HIV. In this chapter we will describe the methods used by our group for characterization of the oral mycobiome.

  8. Oral Microbial Shift: Factors affecting the Microbiome and Prevention of Oral Disease.

    PubMed

    Dagli, Namrata; Dagli, Rushabh; Darwish, Shrouq; Baroudi, Kusai

    2016-01-01

    Recently, oral microbiome has gained popularity among scientists. Microorganisms are no longer considered as disease-producing pathogens, rather they are now considered as partners of human in maintaining health. Since ancient times, changes in our lifestyle have affected our microbiome and the balance with their human host has been perturbed. The present review includes the description about factors affecting oral microbiome and establishing symbiosis with the human host so that they contribute in maintaining health rather than eliciting diseases. A comprehensive literature search was performed on databases such as Google Scholar, PubMed and Medline until April 2015. First, articles were selected on the basis of their titles and then abstracts were screened and unwanted articles were excluded. Articles obtained from all the databases were checked and duplicate articles were removed. Articles obtained from various databases: PubMed = 35, Google Scholar=8. Out of these 43 articles, total 29 articles were finally selected for this review. The published literature suggests that the modern oral microbiome is less biodiverse, and possess more pathogenic bacterial species and lesser beneficial bacteria. The possible factors mainly responsible for this shift in microbiome were found to be change in diet, industrial revolution and indiscriminate use of antibiotics. Various changes in lifestyles have affected oral microbiome adversely and perturb the symbiosis between the microbiome and their hosts. The present oral microbiome is found to be less diverse and more pathogenic. The present review may be helpful in understanding the relationship between the microbiome and their human hosts so that microbiome contributes in maintaining healthy state of the body.

  9. Oral microbiome composition changes in mouse models of colitis.

    PubMed

    Rautava, Jaana; Pinnell, Lee J; Vong, Linda; Akseer, Nadia; Assa, Amit; Sherman, Philip M

    2015-03-01

    Oral mucosal pathologies are frequent in inflammatory bowel disease (IBD). Since host-microbiome interactions are implicated in the pathogenesis of IBD, in this study the potential for changes affecting the oral microbiome was evaluated using two complementary mouse models of colitis: either chemically (dextran sulfate sodium) or with Citrobacter rodentium infection. After sacrifice, the tongue, buccal mucosa, saliva, colon, and stool samples were collected for analyses. Denaturing gradient gel electrophoresis was performed to assess bacterial 16S rRNA gene profiles. Relative changes were determined using quantitative polymerase chain reaction analysis for the phyla Bacteroidetes, Firmicutes, Spirochetes, and Actinobacteria, classes Gammaproteobacteria and Betaproteobacteria, and the genera Bacillus and Lactobacillus. These groups represent over 99% of the oral microbiota of healthy C57BL/6 mice. Both models of colitis changed the oral microbiome, with the buccal microbiome being the most resistant to alterations in composition (maximum 1.8% change, vs tongue maximum 2.5% change, and saliva which demonstrated up to 7.2% total changes in microbiota composition). Changes in the oral microbiota were greater after dextran sulfate sodium challenge, compared with C. rodentium-induced colitis. Using cluster analysis, tongue and buccal mucosal microbiota composition changed ∼ 5%, saliva ∼ 35%, while stool changed ∼ 10%. These findings indicate that dysbiosis observed in murine models of colitis is associated with changes in the composition of bacteria present in the oral cavity and in saliva. Such changes in the oral microbiota could be relevant to the etiology and management of oral mucosal pathologies observed in IBD patients. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  10. Relocation, high-latitude warming and host genetic identity shape the foliar fungal microbiome of poplars.

    PubMed

    Bálint, Miklós; Bartha, László; O'Hara, Robert B; Olson, Matthew S; Otte, Jürgen; Pfenninger, Markus; Robertson, Amanda L; Tiffin, Peter; Schmitt, Imke

    2015-01-01

    Micro-organisms associated with plants and animals affect host fitness, shape community structure and influence ecosystem properties. Climate change is expected to influence microbial communities, but their reactions are not well understood. Host-associated micro-organisms are influenced by the climate reactions of their hosts, which may undergo range shifts due to climatic niche tracking, or may be actively relocated to mitigate the effects of climate change. We used a common-garden experiment and rDNA metabarcoding to examine the effect of host relocation and high-latitude warming on the complex fungal endophytic microbiome associated with leaves of an ecologically dominant boreal forest tree (Populus balsamifera L.). We also considered the potential effects of poplar genetic identity in defining the reactions of the microbiome to the treatments. The relocation of hosts to the north increased the diversity of the microbiome and influenced its structure, with results indicating enemy release from plausible pathogens. High-latitude warming decreased microbiome diversity in comparison with natural northern conditions. The warming also caused structural changes, which made the fungal communities distinct in comparison with both low-latitude and high-latitude natural communities, and increased the abundance of plausible pathogens. The reactions of the microbiome to relocation and warming were strongly dependent on host genetic identity. This suggests that climate change effects on host-microbiome systems may be mediated by the interaction of environmental factors and the population genetic processes of the hosts.

  11. Defining the healthy "core microbiome" of oral microbial communities

    PubMed Central

    2009-01-01

    Background Most studies examining the commensal human oral microbiome are focused on disease or are limited in methodology. In order to diagnose and treat diseases at an early and reversible stage an in-depth definition of health is indispensible. The aim of this study therefore was to define the healthy oral microbiome using recent advances in sequencing technology (454 pyrosequencing). Results We sampled and sequenced microbiomes from several intraoral niches (dental surfaces, cheek, hard palate, tongue and saliva) in three healthy individuals. Within an individual oral cavity, we found over 3600 unique sequences, over 500 different OTUs or "species-level" phylotypes (sequences that clustered at 3% genetic difference) and 88 - 104 higher taxa (genus or more inclusive taxon). The predominant taxa belonged to Firmicutes (genus Streptococcus, family Veillonellaceae, genus Granulicatella), Proteobacteria (genus Neisseria, Haemophilus), Actinobacteria (genus Corynebacterium, Rothia, Actinomyces), Bacteroidetes (genus Prevotella, Capnocytophaga, Porphyromonas) and Fusobacteria (genus Fusobacterium). Each individual sample harboured on average 266 "species-level" phylotypes (SD 67; range 123 - 326) with cheek samples being the least diverse and the dental samples from approximal surfaces showing the highest diversity. Principal component analysis discriminated the profiles of the samples originating from shedding surfaces (mucosa of tongue, cheek and palate) from the samples that were obtained from solid surfaces (teeth). There was a large overlap in the higher taxa, "species-level" phylotypes and unique sequences among the three microbiomes: 84% of the higher taxa, 75% of the OTUs and 65% of the unique sequences were present in at least two of the three microbiomes. The three individuals shared 1660 of 6315 unique sequences. These 1660 sequences (the "core microbiome") contributed 66% of the reads. The overlapping OTUs contributed to 94% of the reads, while nearly all

  12. The oral microbiome in health and disease and the potential impact on personalized dental medicine.

    PubMed

    Zarco, M F; Vess, T J; Ginsburg, G S

    2012-03-01

    Every human body contains a personalized microbiome that is essential to maintaining health but capable of eliciting disease. The oral microbiome is particularly imperative to health because it can cause both oral and systemic disease. The oral microbiome rests within biofilms throughout the oral cavity, forming an ecosystem that maintains health when in equilibrium. However, certain ecological shifts in the microbiome allow pathogens to manifest and cause disease. Severe forms of oral disease may result in systemic disease at different body sites. Microbiomics and metagenomics are two fields of research that have emerged to identify the presence of specific microbes in the body and understand the nature of the microbiome activity during both health and disease. The analysis of the microbiome and its genomes will pave the way for more effective therapeutic and diagnostic techniques and, ultimately, contribute to the development of personalized medicine and personalized dental medicine. © 2011 John Wiley & Sons A/S.

  13. Bacterial and fungal microbiome analysis of alfalfa rhizosphere soils

    USDA-ARS?s Scientific Manuscript database

    Soil microbial communities are increasingly being recognized for their critical roles in agriculture. While microbiome studies enabled by next generation sequencing platforms reveal soils to be some of the most diverse environments known, certain taxa may have disproportionate influence in their fu...

  14. Microbiota, oral microbiome, and pancreatic cancer.

    PubMed

    Michaud, Dominique S; Izard, Jacques

    2014-01-01

    Only 30% of patients with a diagnosis of pancreatic cancer survive 1 year after the diagnosis. Progress in understanding the causes of pancreatic cancer has been made, including solidifying the associations with obesity and diabetes, and a proportion of cases should be preventable through lifestyle modifications. Unfortunately, identifying reliable biomarkers of early pancreatic cancer has been extremely challenging, and no effective screening modality is currently available for this devastating form of cancer. Recent data suggest that the microbiota may play a role in the disease process, but many questions remain. Future studies focusing on the human microbiome, both etiologically and as a marker of disease susceptibility, should shed light on how to better tackle prevention, early detection, and treatment of this highly fatal disease.

  15. Acquisition and maturation of oral microbiome throughout childhood: An update

    PubMed Central

    Sampaio-Maia, Benedita; Monteiro-Silva, Filipa

    2014-01-01

    Traditional microbiology concepts are being renewed since the development of new microbiological technologies, such as, sequencing and large-scale genome analysis. Since the entry into the new millennium, a lot of new information has emerged regarding the oral microbiome. This revision presents an overview of this renewed knowledge on oral microbial community acquisition in the newborn and on the evolution of this microbiome to adulthood. Throughout childhood, the oral microbial load increases, but the microbial diversity decreases. The initial colonizers are related to the type of delivery, personal relationships, and living environment. These first colonizers seem to condition the subsequent colonization, which will lead to more complex and stable ecosystems in adulthood. These early oral microbial communities, therefore, play a major role in the development of the adult oral microbiota and may represent a source of both pathogenic and protective microorganisms in a very early stage of human life. The implications of this knowledge on the daily clinical practice of odontopediatrics are highlighted. PMID:25097637

  16. Acquisition and maturation of oral microbiome throughout childhood: An update.

    PubMed

    Sampaio-Maia, Benedita; Monteiro-Silva, Filipa

    2014-05-01

    Traditional microbiology concepts are being renewed since the development of new microbiological technologies, such as, sequencing and large-scale genome analysis. Since the entry into the new millennium, a lot of new information has emerged regarding the oral microbiome. This revision presents an overview of this renewed knowledge on oral microbial community acquisition in the newborn and on the evolution of this microbiome to adulthood. Throughout childhood, the oral microbial load increases, but the microbial diversity decreases. The initial colonizers are related to the type of delivery, personal relationships, and living environment. These first colonizers seem to condition the subsequent colonization, which will lead to more complex and stable ecosystems in adulthood. These early oral microbial communities, therefore, play a major role in the development of the adult oral microbiota and may represent a source of both pathogenic and protective microorganisms in a very early stage of human life. The implications of this knowledge on the daily clinical practice of odontopediatrics are highlighted.

  17. Bacterial microbiomes from vertically transmitted fungal inocula of the leaf-cutting ant Atta texana.

    PubMed

    Meirelles, Lucas A; McFrederick, Quinn S; Rodrigues, Andre; Mantovani, Joana D; de Melo Rodovalho, Cynara; Ferreira, Henrique; Bacci, Maurício; Mueller, Ulrich G

    2016-06-06

    Microbiome surveys provide clues for the functional roles of symbiotic microbial communities and their hosts. In this study, we elucidated bacterial microbiomes associated with the vertically transmitted fungal inocula (pellets) used by foundress queens of the leaf-cutting ant Atta texana as starter-cultures for new gardens. As reference microbiomes, we also surveyed bacterial microbiomes of foundress queens, gardens and brood of incipient nests. Pseudomonas, Acinetobacter, Propionibacterium and Corynebacterium were consistently present in high abundance in microbiomes. Some pellet and ant samples contained abundant bacteria from an Entomoplasmatales-clade, and a separate PCR-based survey of Entomoplasmatales bacteria in eight attine ant-genera from Brazil placed these bacteria in a monophyletic clade within the bacterial genus Mesoplasma. The attine ant-Mesoplasma association parallels a similar association between a closely related, monophyletic Entomoplasmatales-clade and army ants. Of thirteen A. texana nests surveyed, three nests with exceptionally high Mesoplasma abundance died, whereas the other nests survived. It is unclear whether Mesoplasma was the primary cause of mortality, or Mesoplasma became abundant in moribund nests for non-pathogenic reasons. However, the consistent and geographically widespread presence of Mesoplasma suggests an important functional role in the association with attine ants.

  18. The microbiome and disease: reviewing the links between the oral microbiome, aging, and Alzheimer's disease.

    PubMed

    Shoemark, Deborah K; Allen, Shelley J

    2015-01-01

    This review, gathered from diverse sources, shows how our microbiome influences health and ultimately how well we age. Evidence linking oral bacteria to Alzheimer's disease (AD) is discussed in the context of aging, drawing together data from epidemiological, experimental, genetic, and environmental studies. Immunosenescence results in increased bacterial load as cell-mediated and humoral immune responses wane. The innate immune system gradually takes over; contributing to the rise in circulating proinflammatory cytokines such as TNFα. Maintaining the integrity of the blood-brain barrier (BBB) against a backdrop of increasing bacterial load is important. Aging may favor the proliferation of anaerobes in the mouth eliciting a robust TNFα response from the oral epithelium. Prolonged exposure to high levels of circulating TNFα compromises the integrity of the BBB. Sensitive techniques now detect the "asymptomatic" presence of bacteria in areas previously thought to be sterile, providing new insights into the wider distribution of components of the microbiome. These "immune-tolerated" bacteria may slowly multiply elsewhere until they elicit a chronic inflammatory response; some are now considered causal in instances of atherosclerosis and back pain. Inflammatory processes have long been associated with AD. We propose for a subset of AD patients, aging favors the overgrowth of oral anaerobes established earlier in life provoking a pro-inflammatory innate response that weakens the BBB allowing bacteria to spread and quietly influence the pathogenesis of AD. Finally, we suggest that human polymorphisms considered alongside components of the microbiome may provide new avenues of research for the prevention and treatment of disease.

  19. Interkingdom networking within the oral microbiome

    PubMed Central

    Nobbs, Angela H.; Jenkinson, Howard F.

    2015-01-01

    Different sites within the oropharynx harbour unique microbial communities. Co-evolution of microbes and host has resulted in complex interkingdom circuitries. Metabolic signalling is crucial to these processes, and novel microbial communication factors are progressively being discovered. Resolving interkingdom networks will lead to better understanding of oral health or disease aetiology. PMID:25805401

  20. Interkingdom networking within the oral microbiome.

    PubMed

    Nobbs, Angela H; Jenkinson, Howard F

    2015-07-01

    Different sites within the oropharynx harbour unique microbial communities. Co-evolution of microbes and host has resulted in complex interkingdom circuitries. Metabolic signalling is crucial to these processes, and novel microbial communication factors are progressively being discovered. Resolving interkingdom networks will lead to better understanding of oral health or disease aetiology.

  1. Small RNA Transcriptome of the Oral Microbiome during Periodontitis Progression.

    PubMed

    Duran-Pinedo, Ana E; Yost, Susan; Frias-Lopez, Jorge

    2015-10-01

    The oral microbiome is one of the most complex microbial communities in the human body, and due to circumstances not completely understood, the healthy microbial community becomes dysbiotic, giving rise to periodontitis, a polymicrobial inflammatory disease. We previously reported the results of community-wide gene expression changes in the oral microbiome during periodontitis progression and identified signatures associated with increasing severity of the disease. Small noncoding RNAs (sRNAs) are key players in posttranscriptional regulation, especially in fast-changing environments such as the oral cavity. Here, we expanded our analysis to the study of the sRNA metatranscriptome during periodontitis progression on the same samples for which mRNA expression changes were analyzed. We observed differential expression of 12,097 sRNAs, identifying a total of 20 Rfam sRNA families as being overrepresented in progression and 23 at baseline. Gene ontology activities regulated by the differentially expressed (DE) sRNAs included amino acid metabolism, ethanolamine catabolism, signal recognition particle-dependent cotranslational protein targeting to membrane, intron splicing, carbohydrate metabolism, control of plasmid copy number, and response to stress. In integrating patterns of expression of protein coding transcripts and sRNAs, we found that functional activities of genes that correlated positively with profiles of expression of DE sRNAs were involved in pathogenesis, proteolysis, ferrous iron transport, and oligopeptide transport. These findings represent the first integrated sequencing analysis of the community-wide sRNA transcriptome of the oral microbiome during periodontitis progression and show that sRNAs are key regulatory elements of the dysbiotic process leading to disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. The Oral Microbiome of Denture Wearers Is Influenced by Levels of Natural Dentition

    PubMed Central

    O’Donnell, Lindsay E.; Robertson, Douglas; Nile, Christopher J.; Cross, Laura J.; Riggio, Marcello; Sherriff, Andrea; Bradshaw, David; Lambert, Margaret; Malcolm, Jennifer; Buijs, Mark J.; Zaura, Egija; Crielaard, Wim; Brandt, Bernd W.; Ramage, Gordon

    2015-01-01

    Objectives The composition of dental plaque has been well defined, whereas currently there is limited understanding of the composition of denture plaque and how it directly influences denture related stomatitis (DS). The aims of this study were to compare the microbiomes of denture wearers, and to understand the implications of these towards inter-kingdom and host-pathogen interactions within the oral cavity. Methods Swab samples were obtained from 123 participants wearing either a complete or partial denture; the bacterial composition of each sample was determined using bar-coded illumina MiSeq sequencing of the bacterial hypervariable V4 region of 16S rDNA. Sequencing data processing was undertaken using QIIME, clustered in Operational Taxonomic Units (OTUs) and assigned to taxonomy. The dentures were sonicated to remove the microbial flora residing on the prosthesis, sonicate was then cultured using diagnostic colorex Candida media. Samples of unstimulated saliva were obtained and antimicrobial peptides (AMP) levels were measured by ELISA. Results We have shown that dental and denture plaques are significantly distinct both in composition and diversity and that the oral microbiome composition of a denture wearer is variable and is influenced by the location within the mouth. Dentures and mucosa were predominantly made up of Bacilli and Actinobacteria. Moreover, the presence of natural teeth has a significant impact on the overall microbial composition, when compared to the fully edentulous. Furthermore, increasing levels of Candida spp. positively correlate with Lactobacillus spp. AMPs were quantified, though showed no specific correlations. Conclusions This is the first study to provide a detailed understanding of the oral microbiome of denture wearers and has provided evidence that DS development is more complex than simply a candidal infection. Both fungal and bacterial kingdoms clearly play a role in defining the progression of DS, though we were unable to

  3. Beyond microbial community composition: functional activities of the oral microbiome in health and disease

    PubMed Central

    Duran-Pinedo, Ana E.; Frias-Lopez, Jorge

    2015-01-01

    The oral microbiome plays a relevant role in the health status of the host and is a key element in a variety of oral and non-oral diseases. Despite advances in our knowledge of changes in microbial composition associated with different health conditions the functional aspects of the oral microbiome that lead to dysbiosis remain for the most part unknown. In this review, we discuss the progress made towards understanding the functional role of the oral microbiome in health and disease and how novel technologies are expanding our knowledge on this subject. PMID:25862077

  4. Beyond microbial community composition: functional activities of the oral microbiome in health and disease.

    PubMed

    Duran-Pinedo, Ana E; Frias-Lopez, Jorge

    2015-07-01

    The oral microbiome plays a relevant role in the health status of the host and is a key element in a variety of oral and non-oral diseases. Despite advances in our knowledge of changes in microbial composition associated with different health conditions the functional aspects of the oral microbiome that lead to dysbiosis remain for the most part unknown. In this review, we discuss the progress made towards understanding the functional role of the oral microbiome in health and disease and how novel technologies are expanding our knowledge on this subject.

  5. Oral microbiome diversity among Cheyenne and Arapaho individuals from Oklahoma.

    PubMed

    Ozga, Andrew T; Sankaranarayanan, Krithivasan; Tito, Raúl Y; Obregon-Tito, Alexandra J; Foster, Morris W; Tallbull, Gloria; Spicer, Paul; Warinner, Christina G; Lewis, Cecil M

    2016-10-01

    There is a major ascertainment bias in microbiome research, with individuals of predominately European ancestry living within metropolitan areas dominating most studies. Here we present a study of the salivary microbiome within a North American Indian community. This research is the culmination of four years of collaboration and community engagement with Cheyenne & Arapaho (C&A) tribal members from western Oklahoma. Using 16S rRNA gene amplification and next-generation sequencing, we generated microbial taxonomic inventories for 37 individuals representing five towns within the C&A tribes. For comparison, we performed the same laboratory techniques on saliva samples from 20 non-native individuals (NNI) from Norman, Oklahoma. The C&A participants differ from the NNI in having reduced within-individual species richness and higher between-individual variation. Unsupervised clustering analyses reveal that three ecological groupings best fit the data, and while C&A individuals include assignments to all three groups, the NNI individuals are assigned to only one group. One of the ecological groups found exclusively among C&A participants was characterized by high abundance of the oral bacterial genus Prevotella. The C&A and NNI participants from Oklahoma have notable differences in their microbiome diversity, with a wider range of variation observed among the C&A individuals, including a higher frequency of bacteria implicated in systemic disorders. Overall, this study highlights the importance of engagement with indigenous communities, and the need for an improved understanding of human microbiome diversity among underrepresented groups and those individuals living outside of metropolitan areas. © 2016 Wiley Periodicals, Inc.

  6. The microbiome associated with equine periodontitis and oral health.

    PubMed

    Kennedy, Rebekah; Lappin, David Francis; Dixon, Padraic Martin; Buijs, Mark Johannes; Zaura, Egija; Crielaard, Wim; O'Donnell, Lindsay; Bennett, David; Brandt, Bernd Willem; Riggio, Marcello Pasquale

    2016-04-14

    Equine periodontal disease is a common and painful condition and its severe form, periodontitis, can lead to tooth loss. Its aetiopathogenesis remains poorly understood despite recent increased awareness of this disorder amongst the veterinary profession. Bacteria have been found to be causative agents of the disease in other species, but current understanding of their role in equine periodontitis is extremely limited. The aim of this study was to use high-throughput sequencing to identify the microbiome associated with equine periodontitis and oral health. Subgingival plaque samples from 24 horses with periodontitis and gingival swabs from 24 orally healthy horses were collected. DNA was extracted from samples, the V3-V4 region of the bacterial 16S rRNA gene amplified by PCR and amplicons sequenced using Illumina MiSeq. Data processing was conducted using USEARCH and QIIME. Diversity analyses were performed with PAST v3.02. Linear discriminant analysis effect size (LEfSe) was used to determine differences between the groups. In total, 1308 OTUs were identified and classified into 356 genera or higher taxa. Microbial profiles at health differed significantly from periodontitis, both in their composition (p < 0.0001, F = 12.24; PERMANOVA) and in microbial diversity (p < 0.001; Mann-Whitney test). Samples from healthy horses were less diverse (1.78, SD 0.74; Shannon diversity index) and were dominated by the genera Gemella and Actinobacillus, while the periodontitis group samples showed higher diversity (3.16, SD 0.98) and were dominated by the genera Prevotella and Veillonella. It is concluded that the microbiomes associated with equine oral health and periodontitis are distinct, with the latter displaying greater microbial diversity.

  7. Redefining the Chronic-Wound Microbiome: Fungal Communities Are Prevalent, Dynamic, and Associated with Delayed Healing.

    PubMed

    Kalan, Lindsay; Loesche, Michael; Hodkinson, Brendan P; Heilmann, Kristopher; Ruthel, Gordon; Gardner, Sue E; Grice, Elizabeth A

    2016-09-06

    Chronic nonhealing wounds have been heralded as a silent epidemic, causing significant morbidity and mortality especially in elderly, diabetic, and obese populations. Polymicrobial biofilms in the wound bed are hypothesized to disrupt the highly coordinated and sequential events of cutaneous healing. Both culture-dependent and -independent studies of the chronic-wound microbiome have almost exclusively focused on bacteria, omitting what we hypothesize are important fungal contributions to impaired healing and the development of complications. Here we show for the first time that fungal communities (the mycobiome) in chronic wounds are predictive of healing time, associated with poor outcomes, and form mixed fungal-bacterial biofilms. We longitudinally profiled 100, nonhealing diabetic-foot ulcers with high-throughput sequencing of the pan-fungal internal transcribed spacer 1 (ITS1) locus, estimating that up to 80% of wounds contain fungi, whereas cultures performed in parallel captured only 5% of colonized wounds. The "mycobiome" was highly heterogeneous over time and between subjects. Fungal diversity increased with antibiotic administration and onset of a clinical complication. The proportions of the phylum Ascomycota were significantly greater (P = 0.015) at the beginning of the study in wounds that took >8 weeks to heal. Wound necrosis was distinctly associated with pathogenic fungal species, while taxa identified as allergenic filamentous fungi were associated with low levels of systemic inflammation. Directed culturing of wounds stably colonized by pathogens revealed that interkingdom biofilms formed between yeasts and coisolated bacteria. Combined, our analyses provide enhanced resolution of the mycobiome during impaired wound healing, its role in chronic disease, and impact on clinical outcomes. Wounds are an underappreciated but serious complication for a diverse spectrum of diseases. High-risk groups, such as persons with diabetes, have a 25% lifetime

  8. Progress dissecting the oral microbiome in caries and health.

    PubMed

    Burne, R A; Zeng, L; Ahn, S J; Palmer, S R; Liu, Y; Lefebure, T; Stanhope, M J; Nascimento, M M

    2012-09-01

    Recent rapid advances in "-omics" technologies have yielded new insights into the interaction of the oral microbiome with its host. Associations of species that are usually considered to be acid-tolerant with caries have been confirmed, while some recognized as health-associated are often present in greater proportions in the absence of caries. In addition, some newly identified bacteria have been suggested as potential contributors to the caries process. In spite of this progress, two major challenges remain. The first is that there is a great deal of heterogeneity in the phenotypic capabilities of individual species of oral bacteria. The second is that the most abundant taxa in oral biofilms display remarkable phenotypic plasticity, i.e., the bacteria associated most strongly with health or with caries can morph rapidly in response to alterations in environmental pH, carbohydrate availability and source, and oxygen tension and redox environment. However, new technologic advances coupled with "old-fashioned microbiology" are starting to erode the barriers to a more complete understanding of oral biofilm physiology and ecology, and in doing so are beginning to provide insights for the creation of novel cost-effective caries control therapies.

  9. Progress Dissecting the Oral Microbiome in Caries and Health

    PubMed Central

    Burne, R.A.; Zeng, L.; Ahn, S.J.; Palmer, S.R.; Liu, Y.; Lefebure, T.; Stanhope, M.J.; Nascimento, M.M.

    2012-01-01

    Recent rapid advances in “-omics” technologies have yielded new insights into the interaction of the oral microbiome with its host. Associations of species that are usually considered to be acid-tolerant with caries have been confirmed, while some recognized as health-associated are often present in greater proportions in the absence of caries. In addition, some newly identified bacteria have been suggested as potential contributors to the caries process. In spite of this progress, two major challenges remain. The first is that there is a great deal of heterogeneity in the phenotypic capabilities of individual species of oral bacteria. The second is that the most abundant taxa in oral biofilms display remarkable phenotypic plasticity, i.e., the bacteria associated most strongly with health or with caries can morph rapidly in response to alterations in environmental pH, carbohydrate availability and source, and oxygen tension and redox environment. However, new technologic advances coupled with “old-fashioned microbiology” are starting to erode the barriers to a more complete understanding of oral biofilm physiology and ecology, and in doing so are beginning to provide insights for the creation of novel cost-effective caries control therapies. PMID:22899685

  10. Systems approaches to computational modeling of the oral microbiome

    PubMed Central

    Dimitrov, Dimiter V.

    2013-01-01

    Current microbiome research has generated tremendous amounts of data providing snapshots of molecular activity in a variety of organisms, environments, and cell types. However, turning this knowledge into whole system level of understanding on pathways and processes has proven to be a challenging task. In this review we highlight the applicability of bioinformatics and visualization techniques to large collections of data in order to better understand the information that contains related diet—oral microbiome—host mucosal transcriptome interactions. In particular, we focus on systems biology of Porphyromonas gingivalis in the context of high throughput computational methods tightly integrated with translational systems medicine. Those approaches have applications for both basic research, where we can direct specific laboratory experiments in model organisms and cell cultures, and human disease, where we can validate new mechanisms and biomarkers for prevention and treatment of chronic disorders. PMID:23847548

  11. Redefining the Chronic-Wound Microbiome: Fungal Communities Are Prevalent, Dynamic, and Associated with Delayed Healing

    PubMed Central

    Kalan, Lindsay; Loesche, Michael; Hodkinson, Brendan P.; Heilmann, Kristopher; Ruthel, Gordon

    2016-01-01

    ABSTRACT Chronic nonhealing wounds have been heralded as a silent epidemic, causing significant morbidity and mortality especially in elderly, diabetic, and obese populations. Polymicrobial biofilms in the wound bed are hypothesized to disrupt the highly coordinated and sequential events of cutaneous healing. Both culture-dependent and -independent studies of the chronic-wound microbiome have almost exclusively focused on bacteria, omitting what we hypothesize are important fungal contributions to impaired healing and the development of complications. Here we show for the first time that fungal communities (the mycobiome) in chronic wounds are predictive of healing time, associated with poor outcomes, and form mixed fungal-bacterial biofilms. We longitudinally profiled 100, nonhealing diabetic-foot ulcers with high-throughput sequencing of the pan-fungal internal transcribed spacer 1 (ITS1) locus, estimating that up to 80% of wounds contain fungi, whereas cultures performed in parallel captured only 5% of colonized wounds. The “mycobiome” was highly heterogeneous over time and between subjects. Fungal diversity increased with antibiotic administration and onset of a clinical complication. The proportions of the phylum Ascomycota were significantly greater (P = 0.015) at the beginning of the study in wounds that took >8 weeks to heal. Wound necrosis was distinctly associated with pathogenic fungal species, while taxa identified as allergenic filamentous fungi were associated with low levels of systemic inflammation. Directed culturing of wounds stably colonized by pathogens revealed that interkingdom biofilms formed between yeasts and coisolated bacteria. Combined, our analyses provide enhanced resolution of the mycobiome during impaired wound healing, its role in chronic disease, and impact on clinical outcomes. PMID:27601572

  12. Characterization of the rat oral microbiome and the effects of dietary nitrate.

    PubMed

    Hyde, Embriette R; Luk, Berkley; Cron, Stanley; Kusic, Lenka; McCue, Tyler; Bauch, Tonya; Kaplan, Heidi; Tribble, Gena; Petrosino, Joseph F; Bryan, Nathan S

    2014-12-01

    The nitrate-nitrite-NO pathway to nitric oxide (NO) production is a symbiotic pathway in mammals that is dependent on nitrate reducing oral commensal bacteria. Studies suggest that by contributing NO to the mammalian host, the oral microbiome helps maintain cardiovascular health. To begin to understand how changes in oral microbiota affect physiological functions such as blood pressure, we have characterized the Wistar rat nitrate reducing oral microbiome. Using 16S rRNA gene sequencing and analysis we compare the native Wistar rat tongue microbiome to that of healthy humans and to that of rats with sodium nitrate and chlorhexidine mouthwash treatments. We demonstrate that the rat tongue microbiome is less diverse than the human tongue microbiome, but that the physiological activity is comparable, as sodium nitrate supplementation significantly lowered diastolic blood pressure in Wistar rats and also lowers blood pressure (diastolic and systolic) in humans. We also show for the first time that sodium nitrate supplementation alters the abundance of specific bacterial species on the tongue. Our results suggest that the changes in oral nitrate reducing bacteria may affect nitric oxide availability and physiological functions such as blood pressure. Understanding individual changes in human oral microbiome may offer novel dietary approaches to restore NO availability and blood pressure. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The Denture-Associated Oral Microbiome in Health and Stomatitis

    PubMed Central

    Shi, Baochen; Wu, Tingxi; McLean, Jeffrey; Edlund, Anna; Young, Youngik; He, Xuesong; Lv, Hongyang; Zhou, Xuedong; Shi, Wenyuan; Li, Huiying

    2016-01-01

    ABSTRACT While investigation of the microbiome on natural oral surfaces has generated a wealth of information, few studies have examined the microbial communities colonizing dentures and their relationship to oral health. To address this knowledge gap, we characterized the bacterial community associated with dentures and remaining teeth in healthy individuals and patients with denture stomatitis. The microbiome compositions of matched denture and tooth plaque samples of 10 healthy individuals and 9 stomatitis patients were determined by 16S rRNA gene pyrosequencing. The microbial communities colonizing dentures and remaining teeth in health and disease were very similar to each other. Matched denture and tooth samples from the same individuals shared a significantly higher percentage of identical phylotypes than random pairs of samples from different study participants. Despite these overall similarities, several bacterial phylotypes displayed discrete health- and stomatitis-associated denture colonization, while others were distinct in health and disease independently of the surface. Certain phylotypes exhibited differential colonization of dentures and teeth independently of denture health status. In conclusion, denture and natural tooth surfaces in health and stomatitis harbor similar bacterial communities. Individual-related rather than surface-specific factors play a significant role in the bacterial phylotype composition colonizing dentures and teeth. This individual-specific mutual influence on denture and tooth surface colonization could be an important factor in maintaining oral health in denture wearers. Discrete differences in colonization patterns for distinct genera and phylotypes warrant further studies regarding their potential involvement or utility as specific indicators of health and disease development in denture-wearing individuals. IMPORTANCE Denture stomatitis is a prevalent inflammatory condition of the mucosal tissue in denture wearers that

  14. The Denture-Associated Oral Microbiome in Health and Stomatitis.

    PubMed

    Shi, Baochen; Wu, Tingxi; McLean, Jeffrey; Edlund, Anna; Young, Youngik; He, Xuesong; Lv, Hongyang; Zhou, Xuedong; Shi, Wenyuan; Li, Huiying; Lux, Renate

    2016-01-01

    While investigation of the microbiome on natural oral surfaces has generated a wealth of information, few studies have examined the microbial communities colonizing dentures and their relationship to oral health. To address this knowledge gap, we characterized the bacterial community associated with dentures and remaining teeth in healthy individuals and patients with denture stomatitis. The microbiome compositions of matched denture and tooth plaque samples of 10 healthy individuals and 9 stomatitis patients were determined by 16S rRNA gene pyrosequencing. The microbial communities colonizing dentures and remaining teeth in health and disease were very similar to each other. Matched denture and tooth samples from the same individuals shared a significantly higher percentage of identical phylotypes than random pairs of samples from different study participants. Despite these overall similarities, several bacterial phylotypes displayed discrete health- and stomatitis-associated denture colonization, while others were distinct in health and disease independently of the surface. Certain phylotypes exhibited differential colonization of dentures and teeth independently of denture health status. In conclusion, denture and natural tooth surfaces in health and stomatitis harbor similar bacterial communities. Individual-related rather than surface-specific factors play a significant role in the bacterial phylotype composition colonizing dentures and teeth. This individual-specific mutual influence on denture and tooth surface colonization could be an important factor in maintaining oral health in denture wearers. Discrete differences in colonization patterns for distinct genera and phylotypes warrant further studies regarding their potential involvement or utility as specific indicators of health and disease development in denture-wearing individuals. IMPORTANCE Denture stomatitis is a prevalent inflammatory condition of the mucosal tissue in denture wearers that is

  15. Oral Microbiome Metabolism: From "Who Are They?" to "What Are They Doing?".

    PubMed

    Takahashi, N

    2015-12-01

    Recent advances in molecular biology have facilitated analyses of the oral microbiome ("Who are they?"); however, its functions (e.g., metabolic activities) are poorly understood ("What are they doing?"). This review aims to summarize our current understanding of the metabolism of the oral microbiome. Saccharolytic bacteria-including Streptococcus, Actinomyces, and Lactobacillus species-degrade carbohydrates into organic acids via the Embden-Meyerhof-Parnas pathway and several of its branch pathways, resulting in dental caries, while alkalization and acid neutralization via the arginine deiminase system, urease, and so on, counteract acidification. Proteolytic/amino acid-degrading bacteria, including Prevotella and Porphyromonas species, break down proteins and peptides into amino acids and degrade them further via specific pathways to produce short-chain fatty acids, ammonia, sulfur compounds, and indole/skatole, which act as virulent and modifying factors in periodontitis and oral malodor. Furthermore, it is suggested that ethanol-derived acetaldehyde can cause oral cancer, while nitrate-derived nitrite can aid caries prevention and systemic health. Microbial metabolic activity is influenced by the oral environment; however, it can also modify the oral environment, enhance the pathogenicity of bacteria, and induce microbial selection to create more pathogenic microbiome. Taking a metabolomic approach to analyzing the oral microbiome is crucial to improving our understanding of the functions of the oral microbiome.

  16. Comparison of the Oral Microbiomes of Canines and Their Owners Using Next-Generation Sequencing

    PubMed Central

    Oh, Changin; Lee, Kunkyu; Cheong, Yeotaek; Lee, Sang-Won; Park, Seung-Yong; Song, Chang-Seon; Choi, In-Soo; Lee, Joong-Bok

    2015-01-01

    The oral microbiome, which is closely associated with many diseases, and the resident pathogenic oral bacteria, which can be transferred by close physical contact, are important public health considerations. Although the dog is the most common companion animal, the composition of the canine oral microbiome, which may include human pathogenic bacteria, and its relationship with that of their owners are unclear. In this study, 16S rDNA pyrosequencing was used to compare the oral microbiomes of 10 dogs and their owners and to identify zoonotic pathogens. Pyrosequencing revealed 246 operational taxonomic units in the 10 samples, representing 57 genera from eight bacterial phyla. Firmicutes (57.6%), Proteobacteria (21.6%), Bacteroidetes (9.8%), Actinobacteria (7.1%), and Fusobacteria (3.9%) were the predominant phyla in the human oral samples, whereas Proteobacteria (25.7%), Actinobacteria (21%), Bacteroidetes (19.7%), Firmicutes (19.3%), and Fusobacteria (12.3%) were predominant in the canine oral samples. The predominant genera in the human samples were Streptococcus (43.9%), Neisseria (10.3%), Haemophilus (9.6%), Prevotella (8.4%), and Veillonella (8.1%), whereas the predominant genera in the canine samples were Actinomyces (17.2%), Unknown (16.8), Porphyromonas (14.8), Fusobacterium (11.8), and Neisseria (7.2%). The oral microbiomes of dogs and their owners were appreciably different, and similarity in the microbiomes of canines and their owners was not correlated with residing in the same household. Oral-to-oral transfer of Neisseria shayeganii, Porphyromonas canigingivalis, Tannerella forsythia, and Streptococcus minor from dogs to humans was suspected. The finding of potentially zoonotic and periodontopathic bacteria in the canine oral microbiome may be a public health concern. PMID:26134411

  17. Role of oral and gut microbiome in nitric oxide-mediated colon motility.

    PubMed

    Walker, Miriam Y; Pratap, Siddharth; Southerland, Janet H; Farmer-Dixon, Cherae M; Lakshmyya, Kesavalu; Gangula, Pandu R

    2017-06-07

    Periodontal disease (PD), a severe form of gum disease, is among the most prevalent chronic infection in humans and is associated with complex microbial synergistic dysbiosis in the subgingival cavity. The immune system of the body interacts with the microbes as the plaque extends and propagates below the gingival sulcus. Once bacteria reach the gingival sulcus, it can enter the blood stream and affect various areas of the human body. The polymicrobial nature of periodontal disease, if left untreated, promotes chronic inflammation, not only within the oral cavity, but also throughout the human body. Alterations seen in the concentrations of healthy gut microbiota may lead to systemic alterations, such as gut motility disorders, high blood pressure, and atherosclerosis. Although gut microbiome has been shown to play a vital role in intestinal motility functions, the role of oral bacteria in this setting remains to be investigated. It is unclear whether oral microbial DNA is present in the large intestine and, if so, whether it alters the gut microbiome. In addition, polybacterial infection induced PD reduced nitric oxide (NO) synthesis and antioxidant enzymes in rodent colon. In this review, we will discuss the interactions between oral and gut microbiome, specifics of how the oral microbiome may modulate the activities of the gut microbiome, and possible ramifications of these alterations. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information.

    PubMed

    Chen, Tsute; Yu, Wen-Han; Izard, Jacques; Baranova, Oxana V; Lakshmanan, Abirami; Dewhirst, Floyd E

    2010-07-06

    The human oral microbiome is the most studied human microflora, but 53% of the species have not yet been validly named and 35% remain uncultivated. The uncultivated taxa are known primarily from 16S rRNA sequence information. Sequence information tied solely to obscure isolate or clone numbers, and usually lacking accurate phylogenetic placement, is a major impediment to working with human oral microbiome data. The goal of creating the Human Oral Microbiome Database (HOMD) is to provide the scientific community with a body site-specific comprehensive database for the more than 600 prokaryote species that are present in the human oral cavity based on a curated 16S rRNA gene-based provisional naming scheme. Currently, two primary types of information are provided in HOMD--taxonomic and genomic. Named oral species and taxa identified from 16S rRNA gene sequence analysis of oral isolates and cloning studies were placed into defined 16S rRNA phylotypes and each given unique Human Oral Taxon (HOT) number. The HOT interlinks phenotypic, phylogenetic, genomic, clinical and bibliographic information for each taxon. A BLAST search tool is provided to match user 16S rRNA gene sequences to a curated, full length, 16S rRNA gene reference data set. For genomic analysis, HOMD provides comprehensive set of analysis tools and maintains frequently updated annotations for all the human oral microbial genomes that have been sequenced and publicly released. Oral bacterial genome sequences, determined as part of the Human Microbiome Project, are being added to the HOMD as they become available. We provide HOMD as a conceptual model for the presentation of microbiome data for other human body sites. Database URL: http://www.homd.org.

  19. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information

    PubMed Central

    Chen, Tsute; Yu, Wen-Han; Izard, Jacques; Baranova, Oxana V.; Lakshmanan, Abirami; Dewhirst, Floyd E.

    2010-01-01

    The human oral microbiome is the most studied human microflora, but 53% of the species have not yet been validly named and 35% remain uncultivated. The uncultivated taxa are known primarily from 16S rRNA sequence information. Sequence information tied solely to obscure isolate or clone numbers, and usually lacking accurate phylogenetic placement, is a major impediment to working with human oral microbiome data. The goal of creating the Human Oral Microbiome Database (HOMD) is to provide the scientific community with a body site-specific comprehensive database for the more than 600 prokaryote species that are present in the human oral cavity based on a curated 16S rRNA gene-based provisional naming scheme. Currently, two primary types of information are provided in HOMD—taxonomic and genomic. Named oral species and taxa identified from 16S rRNA gene sequence analysis of oral isolates and cloning studies were placed into defined 16S rRNA phylotypes and each given unique Human Oral Taxon (HOT) number. The HOT interlinks phenotypic, phylogenetic, genomic, clinical and bibliographic information for each taxon. A BLAST search tool is provided to match user 16S rRNA gene sequences to a curated, full length, 16S rRNA gene reference data set. For genomic analysis, HOMD provides comprehensive set of analysis tools and maintains frequently updated annotations for all the human oral microbial genomes that have been sequenced and publicly released. Oral bacterial genome sequences, determined as part of the Human Microbiome Project, are being added to the HOMD as they become available. We provide HOMD as a conceptual model for the presentation of microbiome data for other human body sites. Database URL: http://www.homd.org PMID:20624719

  20. Application of high-throughput sequencing in understanding human oral microbiome related with health and disease

    PubMed Central

    Chen, Hui; Jiang, Wen

    2014-01-01

    The oral microbiome is one of most diversity habitat in the human body and they are closely related with oral health and disease. As the technique developing, high-throughput sequencing has become a popular approach applied for oral microbial analysis. Oral bacterial profiles have been studied to explore the relationship between microbial diversity and oral diseases such as caries and periodontal disease. This review describes the application of high-throughput sequencing for characterization of oral microbiota and analyzing the changes of the microbiome in the states of health or disease. Deep understanding the knowledge of microbiota will pave the way for more effective prevent dentistry and contribute to the development of personalized dental medicine. PMID:25352835

  1. Deep Sequencing of the Oral Microbiome Reveals Signatures of Periodontal Disease

    PubMed Central

    Ghodsi, Mohammad; Sommer, Daniel D.; Gibbons, Theodore R.; Treangen, Todd J.; Chang, Yi-Chien; Li, Shan; Stine, O. Colin; Hasturk, Hatice; Kasif, Simon; Segrè, Daniel; Pop, Mihai; Amar, Salomon

    2012-01-01

    The oral microbiome, the complex ecosystem of microbes inhabiting the human mouth, harbors several thousands of bacterial types. The proliferation of pathogenic bacteria within the mouth gives rise to periodontitis, an inflammatory disease known to also constitute a risk factor for cardiovascular disease. While much is known about individual species associated with pathogenesis, the system-level mechanisms underlying the transition from health to disease are still poorly understood. Through the sequencing of the 16S rRNA gene and of whole community DNA we provide a glimpse at the global genetic, metabolic, and ecological changes associated with periodontitis in 15 subgingival plaque samples, four from each of two periodontitis patients, and the remaining samples from three healthy individuals. We also demonstrate the power of whole-metagenome sequencing approaches in characterizing the genomes of key players in the oral microbiome, including an unculturable TM7 organism. We reveal the disease microbiome to be enriched in virulence factors, and adapted to a parasitic lifestyle that takes advantage of the disrupted host homeostasis. Furthermore, diseased samples share a common structure that was not found in completely healthy samples, suggesting that the disease state may occupy a narrow region within the space of possible configurations of the oral microbiome. Our pilot study demonstrates the power of high-throughput sequencing as a tool for understanding the role of the oral microbiome in periodontal disease. Despite a modest level of sequencing (∼2 lanes Illumina 76 bp PE) and high human DNA contamination (up to ∼90%) we were able to partially reconstruct several oral microbes and to preliminarily characterize some systems-level differences between the healthy and diseased oral microbiomes. PMID:22675498

  2. Cigarette smoking and the oral microbiome in a large study of American adults

    PubMed Central

    Wu, Jing; Peters, Brandilyn A; Dominianni, Christine; Zhang, Yilong; Pei, Zhiheng; Yang, Liying; Ma, Yingfei; Purdue, Mark P; Jacobs, Eric J; Gapstur, Susan M; Li, Huilin; Alekseyenko, Alexander V; Hayes, Richard B; Ahn, Jiyoung

    2016-01-01

    Oral microbiome dysbiosis is associated with oral disease and potentially with systemic diseases; however, the determinants of these microbial imbalances are largely unknown. In a study of 1204 US adults, we assessed the relationship of cigarette smoking with the oral microbiome. 16S rRNA gene sequencing was performed on DNA from oral wash samples, sequences were clustered into operational taxonomic units (OTUs) using QIIME and metagenomic content was inferred using PICRUSt. Overall oral microbiome composition differed between current and non-current (former and never) smokers (P<0.001). Current smokers had lower relative abundance of the phylum Proteobacteria (4.6%) compared with never smokers (11.7%) (false discovery rate q=5.2 × 10−7), with no difference between former and never smokers; the depletion of Proteobacteria in current smokers was also observed at class, genus and OTU levels. Taxa not belonging to Proteobacteria were also associated with smoking: the genera Capnocytophaga, Peptostreptococcus and Leptotrichia were depleted, while Atopobium and Streptococcus were enriched, in current compared with never smokers. Functional analysis from inferred metagenomes showed that bacterial genera depleted by smoking were related to carbohydrate and energy metabolism, and to xenobiotic metabolism. Our findings demonstrate that smoking alters the oral microbiome, potentially leading to shifts in functional pathways with implications for smoking-related diseases. PMID:27015003

  3. Antibiotic treatment at delivery shapes the initial oral microbiome in neonates

    PubMed Central

    Gomez-Arango, Luisa F.; Barrett, Helen L.; McIntyre, H. David.; Callaway, Leonie K.; Morrison, Mark; Dekker Nitert, Marloes

    2017-01-01

    Oral microorganisms are important determinants of health and disease. The source of the initial neonatal microbiome and the factors dictating initial human oral microbiota development are unknown. This study aimed to investigate this in placental, oral and gut microbiome profiles from 36 overweight or obese mother-baby dyads as determined by 16S rRNA sequencing. Expression of five antibiotic resistance genes of the β-lactamase class was analysed in the infant oral microbiota samples by QPCR. The neonatal oral microbiota was 65.35% of maternal oral, 3.09% of placental, 31.56% of unknown and 0% of maternal gut origin. Two distinct neonatal oral microbiota profiles were observed: one strongly resembling the maternal oral microbiota and one with less similarity. Maternal exposure to intrapartum antibiotics explained the segregation of the profiles. Families belonging to Proteobacteria were abundant after antibiotics exposure while the families Streptococcaceae, Gemellaceae and Lactobacillales dominated in unexposed neonates. 26% of exposed neonates expressed the Vim-1 antibiotic resistance gene. These findings indicate that maternal intrapartum antibiotic treatment is a key regulator of the initial neonatal oral microbiome. PMID:28240736

  4. Biogeography of a human oral microbiome at the micron scale

    PubMed Central

    Mark Welch, Jessica L.; Rossetti, Blair J.; Rieken, Christopher W.; Dewhirst, Floyd E.; Borisy, Gary G.

    2016-01-01

    The spatial organization of complex natural microbiomes is critical to understanding the interactions of the individual taxa that comprise a community. Although the revolution in DNA sequencing has provided an abundance of genomic-level information, the biogeography of microbiomes is almost entirely uncharted at the micron scale. Using spectral imaging fluorescence in situ hybridization as guided by metagenomic sequence analysis, we have discovered a distinctive, multigenus consortium in the microbiome of supragingival dental plaque. The consortium consists of a radially arranged, nine-taxon structure organized around cells of filamentous corynebacteria. The consortium ranges in size from a few tens to a few hundreds of microns in radius and is spatially differentiated. Within the structure, individual taxa are localized at the micron scale in ways suggestive of their functional niche in the consortium. For example, anaerobic taxa tend to be in the interior, whereas facultative or obligate aerobes tend to be at the periphery of the consortium. Consumers and producers of certain metabolites, such as lactate, tend to be near each other. Based on our observations and the literature, we propose a model for plaque microbiome development and maintenance consistent with known metabolic, adherence, and environmental considerations. The consortium illustrates how complex structural organization can emerge from the micron-scale interactions of its constituent organisms. The understanding that plaque community organization is an emergent phenomenon offers a perspective that is general in nature and applicable to other microbiomes. PMID:26811460

  5. Gene Sequence Analyses of the Healthy Oral Microbiome in Humans and Companion Animals.

    PubMed

    Davis, Eric M

    2016-06-01

    It has long been accepted that certain oral bacterial species are responsible for the development of periodontal disease. However, the focus of microbial and immunological research is shifting from studying the organisms associated with disease to examining the indigenous microbial inhabitants that are present in health. Microbiome refers to the aggregate genetic material of all microorganisms living in, or on, a defined habitat. Recent developments in gene sequence analysis have enabled detection and identification of bacteria from polymicrobial samples, including subgingival plaque. Diversity surveys utilizing this technology have demonstrated that bacterial culture techniques have vastly underestimated the richness and diversity of microorganisms in vivo, since only certain bacteria grow in vitro. Surveys using gene sequence analysis have demonstrated that the healthy oral microbiome is composed of an unexpectedly high number of diverse species, including putative pathogens. These findings support the view that coevolution microorganisms and macroscopic hosts has occurred in which certain microorganisms have adapted to survive in the oral cavity and host immune tolerance has allowed the establishment of a symbiotic relationship in which both parties receive benefits (mutualism). This review describes gene sequence analysis as an increasingly common, culture-independent tool for detecting bacteria in vivo and describes the results of recent oral microbiome diversity surveys of clinically healthy humans, dogs, and cats. Six bacterial phyla consistently dominated the healthy oral microbiome of all 3 host species. Previous hypotheses on etiology of periodontitis are reviewed in light of new scientific findings. Finally, the consideration that clinically relevant periodontal disease occurs when immune tolerance of the symbiotic oral microbiome is altered to a proinflammatory response will be discussed.

  6. Characterization of oral and gut microbiome temporal variability in hospitalized cancer patients.

    PubMed

    Galloway-Peña, Jessica R; Smith, Daniel P; Sahasrabhojane, Pranoti; Wadsworth, W Duncan; Fellman, Bryan M; Ajami, Nadim J; Shpall, Elizabeth J; Daver, Naval; Guindani, Michele; Petrosino, Joseph F; Kontoyiannis, Dimitrios P; Shelburne, Samuel A

    2017-02-28

    Understanding longitudinal variability of the microbiome in ill patients is critical to moving microbiome-based measurements and therapeutics into clinical practice. However, the vast majority of data regarding microbiome stability are derived from healthy subjects. Herein, we sought to determine intra-patient temporal microbiota variability, the factors driving such variability, and its clinical impact in an extensive longitudinal cohort of hospitalized cancer patients during chemotherapy. The stool (n = 365) and oral (n = 483) samples of 59 patients with acute myeloid leukemia (AML) undergoing induction chemotherapy (IC) were sampled from initiation of chemotherapy until neutrophil recovery. Microbiome characterization was performed via analysis of 16S rRNA gene sequencing. Temporal variability was determined using coefficients of variation (CV) of the Shannon diversity index (SDI) and unweighted and weighted UniFrac distances per patient, per site. Measurements of intra-patient temporal variability and patient stability categories were analyzed for their correlations with genera abundances. Groups of patients were analyzed to determine if patients with adverse outcomes had significantly different levels of microbiome temporal variability. Potential clinical drivers of microbiome temporal instability were determined using multivariable regression analyses. Our cohort evidenced a high degree of intra-patient temporal instability of stool and oral microbial diversity based on SDI CV. We identified statistically significant differences in the relative abundance of multiple taxa amongst individuals with different levels of microbiota temporal stability. Increased intra-patient temporal variability of the oral SDI was correlated with increased risk of infection during IC (P = 0.02), and higher stool SDI CVs were correlated with increased risk of infection 90 days post-IC (P = 0.04). Total days on antibiotics was significantly associated with increased

  7. Human Oral Buccal Microbiomes Are Associated with Farmworker Status and Azinphos-Methyl Agricultural Pesticide Exposure

    PubMed Central

    Stanaway, Ian B.; Wallace, James C.; Shojaie, Ali; Griffith, William C.; Hong, Sungwoo; Wilder, Carly S.; Green, Foad H.; Tsai, Jesse; Knight, Misty; Workman, Tomomi; Vigoren, Eric M.; McLean, Jeffrey S.; Thompson, Beti

    2016-01-01

    ABSTRACT In a longitudinal agricultural community cohort sampling of 65 adult farmworkers and 52 adult nonfarmworkers, we investigated agricultural pesticide exposure-associated changes in the oral buccal microbiota. We found a seasonally persistent association between the detected blood concentration of the insecticide azinphos-methyl and the taxonomic composition of the buccal swab oral microbiome. Blood and buccal samples were collected concurrently from individual subjects in two seasons, spring/summer 2005 and winter 2006. Mass spectrometry quantified blood concentrations of the organophosphate insecticide azinphos-methyl. Buccal oral microbiome samples were 16S rRNA gene DNA sequenced, assigned to the bacterial taxonomy, and analyzed after “centered-log-ratio” transformation to handle the compositional nature of the proportional abundances of bacteria per sample. Nonparametric analysis of the transformed microbiome data for individuals with and without azinphos-methyl blood detection showed significant perturbations in seven common bacterial taxa (>0.5% of sample mean read depth), including significant reductions in members of the common oral bacterial genus Streptococcus. Diversity in centered-log-ratio composition between individuals' microbiomes was also investigated using principal-component analysis (PCA) to reveal two primary PCA clusters of microbiome types. The spring/summer “exposed” microbiome cluster with significantly less bacterial diversity was enriched for farmworkers and contained 27 of the 30 individuals who also had azinphos-methyl agricultural pesticide exposure detected in the blood. IMPORTANCE In this study, we show in human subjects that organophosphate pesticide exposure is associated with large-scale significant alterations of the oral buccal microbiota composition, with extinctions of whole taxa suggested in some individuals. The persistence of this association from the spring/summer to the winter also suggests that long

  8. A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees

    PubMed Central

    Shakya, Migun; Gottel, Neil; Castro, Hector; Yang, Zamin K.; Gunter, Lee; Labbé, Jessy; Muchero, Wellington; Bonito, Gregory; Vilgalys, Rytas; Tuskan, Gerald; Podar, Mircea; Schadt, Christopher W.

    2013-01-01

    Bacterial and fungal communities associated with plant roots are central to the host health, survival and growth. However, a robust understanding of the root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watersheds to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to its associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall host genotypic distances did not have a significant effect on corresponding communities that

  9. A multifactor analysis of fungal and bacterial community structure of the root microbiome of mature Populus deltoides trees

    SciTech Connect

    Shakya, Migun; Gottel, Neil R; Castro Gonzalez, Hector F; Yang, Zamin; Gunter, Lee E; Labbe, Jessy L; Muchero, Wellington; Bonito, Gregory; Vilgalys, Rytas; Tuskan, Gerald A; Podar, Mircea; Schadt, Christopher Warren

    2013-01-01

    Bacterial and fungal communities associated with plant roots are central to the host- health, survival and growth. However, a robust understanding of root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watersheds to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to it s associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall genotypic distances did not have a significant effect on corresponding communities that could be

  10. Dysbiosis as a determinant factor of systemic and oral pathology: importance of microbiome.

    PubMed

    Chimenos-Küstner, Eduardo; Giovannoni, María Laura; Schemel-Suárez, Mayra

    2017-10-11

    Advances in genetic and epigenetic studies modified some concepts of health and disease that had been kept intact for decades. In this respect, in the last few years, microorganisms that have evolved with superior life forms for millions of years have taken an increased prominence. The genes of organisms and their microbiota constitute a microbiome that intervenes in health maintenance. The oral cavity is inhabited by a variety of microorganisms, their control aids in stabilising oral and systemic disease. The objective of this article is to update some concepts related to oral microbiome and its correlation with general and oral health. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  11. Microbiomes.

    PubMed

    Nelson, Karen E

    2013-05-01

    During the past decade, there has been an explosion in the quantity of sequencing data that has come out of the studies of microbiomes. This has resulted primarily from new technological developments to interrogating any environment of choice. Additional downstream applications to interrogating these datasets include "omics" studies such as transcriptomics and proteomics, all leading to a deeper understanding of microbial diversity and the multitude of species that remain uncultured. Metagenomic studies are now being performed routinely on a wide range of environments including soils, oceans, air, plants, and various animal species. They are being used to identify novel microbial species, new pathways, and to elucidate the roles of viruses and phage in the environment. In this review, we get a perspective on where the science is headed and what we expect to learn as additional studies unfold.

  12. Advancements toward a systems level understanding of the human oral microbiome

    PubMed Central

    McLean, Jeffrey S.

    2014-01-01

    Oral microbes represent one of the most well studied microbial communities owing to the fact that they are a fundamental part of human development influencing health and disease, an easily accessible human microbiome, a highly structured and remarkably resilient biofilm as well as a model of bacteria-bacteria and bacteria-host interactions. In the last 80 years since oral plaque was first characterized for its functionally stable physiological properties such as the highly repeatable rapid pH decrease upon carbohydrate addition and subsequent recovery phase, the fundamental approaches to study the oral microbiome have cycled back and forth between community level investigations and characterizing individual model isolates. Since that time, many individual species have been well characterized and the development of the early plaque community, which involves many cell–cell binding interactions, has been carefully described. With high throughput sequencing enabling the enormous diversity of the oral cavity to be realized, a number of new challenges to progress were revealed. The large number of uncultivated oral species, the high interpersonal variability of taxonomic carriage and the possibility of multiple pathways to dysbiosis pose as major hurdles to obtain a systems level understanding from the community to the gene level. It is now possible however to start connecting the insights gained from single species with community wide approaches. This review will discuss some of the recent insights into the oral microbiome at a fundamental level, existing knowledge gaps, as well as challenges that have surfaced and the approaches to address them. PMID:25120956

  13. Advancements toward a systems level understanding of the human oral microbiome.

    PubMed

    McLean, Jeffrey S

    2014-01-01

    Oral microbes represent one of the most well studied microbial communities owing to the fact that they are a fundamental part of human development influencing health and disease, an easily accessible human microbiome, a highly structured and remarkably resilient biofilm as well as a model of bacteria-bacteria and bacteria-host interactions. In the last 80 years since oral plaque was first characterized for its functionally stable physiological properties such as the highly repeatable rapid pH decrease upon carbohydrate addition and subsequent recovery phase, the fundamental approaches to study the oral microbiome have cycled back and forth between community level investigations and characterizing individual model isolates. Since that time, many individual species have been well characterized and the development of the early plaque community, which involves many cell-cell binding interactions, has been carefully described. With high throughput sequencing enabling the enormous diversity of the oral cavity to be realized, a number of new challenges to progress were revealed. The large number of uncultivated oral species, the high interpersonal variability of taxonomic carriage and the possibility of multiple pathways to dysbiosis pose as major hurdles to obtain a systems level understanding from the community to the gene level. It is now possible however to start connecting the insights gained from single species with community wide approaches. This review will discuss some of the recent insights into the oral microbiome at a fundamental level, existing knowledge gaps, as well as challenges that have surfaced and the approaches to address them.

  14. Metatranscriptomics of the human oral microbiome during health and disease.

    PubMed

    Jorth, Peter; Turner, Keith H; Gumus, Pinar; Nizam, Nejat; Buduneli, Nurcan; Whiteley, Marvin

    2014-04-01

    The human microbiome plays important roles in health, but when disrupted, these same indigenous microbes can cause disease. The composition of the microbiome changes during the transition from health to disease; however, these changes are often not conserved among patients. Since microbiome-associated diseases like periodontitis cause similar patient symptoms despite interpatient variability in microbial community composition, we hypothesized that human-associated microbial communities undergo conserved changes in metabolism during disease. Here, we used patient-matched healthy and diseased samples to compare gene expression of 160,000 genes in healthy and diseased periodontal communities. We show that health- and disease-associated communities exhibit defined differences in metabolism that are conserved between patients. In contrast, the metabolic gene expression of individual species was highly variable between patients. These results demonstrate that despite high interpatient variability in microbial composition, disease-associated communities display conserved metabolic profiles that are generally accomplished by a patient-specific cohort of microbes. IMPORTANCE The human microbiome project has shown that shifts in our microbiota are associated with many diseases, including obesity, Crohn's disease, diabetes, and periodontitis. While changes in microbial populations are apparent during these diseases, the species associated with each disease can vary from patient to patient. Taking into account this interpatient variability, we hypothesized that specific microbiota-associated diseases would be marked by conserved microbial community behaviors. Here, we use gene expression analyses of patient-matched healthy and diseased human periodontal plaque to show that microbial communities have highly conserved metabolic gene expression profiles, whereas individual species within the community do not. Furthermore, disease-associated communities exhibit conserved changes

  15. Bioadhesive nanoparticles of fungal chitosan for oral DNA delivery.

    PubMed

    Plapied, Laurence; Vandermeulen, Gaëlle; Vroman, Benoît; Préat, Véronique; des Rieux, Anne

    2010-10-15

    Chitosan is an ideal candidate for oral DNA delivery due to its mucoadhesive properties. Chitosan (CS) produced under GMP conditions from fungal source was used to encapsulate a plasmid DNA coding for a reporter gene. Nanoparticles made by complex coacervation of CS and DNA had a size around 200 nm, a positive zeta potential, a high association of DNA and protected the plasmid against nuclease degradation. Their transfection ability was assessed in differentiated intestinal Caco-2 cells. An N/P ratio of 4 and a DNA concentration of 8 microg/ml were the optimal conditions leading to a transfection efficiency similar to the one reached with polyethyleneimine (PEI)-DNA complexes without cytotoxicity. M cells in monolayers influenced DNA uptake up to 8 microg of DNA/ml when complexed with CS. Fungal trimethylchitosan was also tested but the complexes interactions were too strong to induce transfection in vitro. Confocal microscopy studies showed that CS/DNA and PEI/DNA nanoparticles were found at the apical surface of cell monolayers and DNA was co-localized within the nucleus. Quantification seemed to show that more DNA was associated with the cells when incubated with CS nanoparticles and that the presence of M cells slightly influenced DNA uptake when complexed with CS. In conclusion, we developed a new nanocarrier made of fungal CS promising for oral gene delivery and oral DNA vaccination.

  16. Mouthguards: does the indigenous microbiome play a role in maintaining oral health?

    PubMed

    Kumar, Purnima S; Mason, Matthew R

    2015-01-01

    The existence of symbiotic relationships between bacteria and their hosts in various ecosystems have long been known to science. The human body also hosts vast numbers of bacteria in several habitats. Emerging evidence from the gastro-intestinal tract, genito-urinary tract and respiratory indicates that there are several health benefits to hosting a complex and diverse microbial community. Bacteria colonize the oral cavity within a few minutes after birth and form stable communities. Our knowledge of the oral microbiome has expanded exponentially with development of novel exploratory methods that allow us to examine diversity, structure, function, and topography without the need to cultivate the individual components of the biofilm. The purpose of this perspective, therefore, is to examine the strength of current evidence supporting a role for the oral microbiome in maintaining oral health. While several lines of evidence are emerging to suggest that indigenous oral microbiota may have a role in immune education and preventing pathogen expansion, much more work is needed to definitively establish whether oral bacteria do indeed contribute to sustaining oral health, and if so, the mechanisms underlying this role.

  17. Mouthguards: does the indigenous microbiome play a role in maintaining oral health?

    PubMed Central

    Kumar, Purnima S.; Mason, Matthew R.

    2015-01-01

    The existence of symbiotic relationships between bacteria and their hosts in various ecosystems have long been known to science. The human body also hosts vast numbers of bacteria in several habitats. Emerging evidence from the gastro-intestinal tract, genito-urinary tract and respiratory indicates that there are several health benefits to hosting a complex and diverse microbial community. Bacteria colonize the oral cavity within a few minutes after birth and form stable communities. Our knowledge of the oral microbiome has expanded exponentially with development of novel exploratory methods that allow us to examine diversity, structure, function, and topography without the need to cultivate the individual components of the biofilm. The purpose of this perspective, therefore, is to examine the strength of current evidence supporting a role for the oral microbiome in maintaining oral health. While several lines of evidence are emerging to suggest that indigenous oral microbiota may have a role in immune education and preventing pathogen expansion, much more work is needed to definitively establish whether oral bacteria do indeed contribute to sustaining oral health, and if so, the mechanisms underlying this role. PMID:26000251

  18. A Characterization of the Oral Microbiome in Allogeneic Stem Cell Transplant Patients

    PubMed Central

    Ames, Nancy J.; Sulima, Pawel; Ngo, Thoi; Barb, Jennifer; Munson, Peter J.; Paster, Bruce J.; Hart, Thomas C.

    2012-01-01

    Background The mouth is a complex biological structure inhabited by diverse bacterial communities. The purpose of this study is to describe the effects of allogeneic stem cell transplantation on the oral microbiota and to examine differences among those patients who acquired respiratory complications after transplantation. Methodology/Principal Findings All patients were consented at the National Institutes of Health, Clinical Center. Bacterial DNA was analyzed from patients' oral specimens using the Human Oral Microbe Identification Microarray. The specimens were collected from four oral sites in 45 allogeneic transplantation patients. Specimens were collected at baseline prior to transplantation, after transplantation at the nadir of the neutrophil count and after myeloid engraftment. If respiratory signs and symptoms developed, additional specimens were obtained. Patients were followed for 100 days post transplantation. Eleven patients' specimens were subjected to further statistical analysis. Many common bacterial genera, such as Streptococcus, Veillonella, Gemella, Granulicatella and Camplyobacter were identified as being present before and after transplantation. Five of 11 patients developed respiratory complications following transplantation and there was preliminary evidence that the oral microbiome changed in their oral specimens. Cluster analysis and principal component analysis revealed this change in the oral microbiota. Conclusions/Significance After allogeneic transplantation, the oral bacterial community's response to a new immune system was not apparent and many of the most common core oral taxa remained unaffected. However, the oral microbiome was affected in patients who developed respiratory signs and symptoms after transplantation. The association related to the change in the oral microbiota and respiratory complications after transplantation will be validated by future studies using high throughput molecular methods. PMID:23144704

  19. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis

    PubMed Central

    Duran-Pinedo, Ana E; Chen, Tsute; Teles, Ricardo; Starr, Jacqueline R; Wang, Xiaoshan; Krishnan, Keerthana; Frias-Lopez, Jorge

    2014-01-01

    Despite increasing knowledge on phylogenetic composition of the human microbiome, our understanding of the in situ activities of the organisms in the community and their interactions with each other and with the environment remains limited. Characterizing gene expression profiles of the human microbiome is essential for linking the role of different members of the bacterial communities in health and disease. The oral microbiome is one of the most complex microbial communities in the human body and under certain circumstances, not completely understood, the healthy microbial community undergoes a transformation toward a pathogenic state that gives rise to periodontitis, a polymicrobial inflammatory disease. We report here the in situ genome-wide transcriptome of the subgingival microbiome in six periodontally healthy individuals and seven individuals with periodontitis. The overall picture of metabolic activities showed that iron acquisition, lipopolysaccharide synthesis and flagellar synthesis were major activities defining disease. Unexpectedly, the vast majority of virulence factors upregulated in subjects with periodontitis came from organisms that are not considered major periodontal pathogens. One of the organisms whose gene expression profile was characterized was the uncultured candidate division TM7, showing an upregulation of putative virulence factors in the diseased community. These data enhance understanding of the core activities that are characteristic of periodontal disease as well as the role that individual organisms in the subgingival community play in periodontitis. PMID:24599074

  20. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis.

    PubMed

    Duran-Pinedo, Ana E; Chen, Tsute; Teles, Ricardo; Starr, Jacqueline R; Wang, Xiaoshan; Krishnan, Keerthana; Frias-Lopez, Jorge

    2014-08-01

    Despite increasing knowledge on phylogenetic composition of the human microbiome, our understanding of the in situ activities of the organisms in the community and their interactions with each other and with the environment remains limited. Characterizing gene expression profiles of the human microbiome is essential for linking the role of different members of the bacterial communities in health and disease. The oral microbiome is one of the most complex microbial communities in the human body and under certain circumstances, not completely understood, the healthy microbial community undergoes a transformation toward a pathogenic state that gives rise to periodontitis, a polymicrobial inflammatory disease. We report here the in situ genome-wide transcriptome of the subgingival microbiome in six periodontally healthy individuals and seven individuals with periodontitis. The overall picture of metabolic activities showed that iron acquisition, lipopolysaccharide synthesis and flagellar synthesis were major activities defining disease. Unexpectedly, the vast majority of virulence factors upregulated in subjects with periodontitis came from organisms that are not considered major periodontal pathogens. One of the organisms whose gene expression profile was characterized was the uncultured candidate division TM7, showing an upregulation of putative virulence factors in the diseased community. These data enhance understanding of the core activities that are characteristic of periodontal disease as well as the role that individual organisms in the subgingival community play in periodontitis.

  1. Learning the ABC of oral fungal drug resistance.

    PubMed

    Cannon, R D; Holmes, A R

    2015-12-01

    ATP-binding cassette (ABC) proteins are ubiquitous in prokaryotes and eukaryotes. They are involved in energy-dependent transport of molecules across membranes. ABC proteins are often promiscuous transporters that can translocate a variety of substrates. In oral fungi, especially in Candida species, they have been implicated as major contributors to the high-level azole resistance of clinical isolates from infections that do not respond to drug therapy. Although this is predominantly due to efflux of azoles from the cells, ABC proteins can contribute to fungal drug resistance in other ways as well. Cells in biofilms are notoriously resistant to antifungal agents. ABC proteins can contribute to this resistance through the efflux of drugs. Biofilms are complex communities of myriad microorganisms which, to survive in such a milieu, need to communicate with, and respond to, other microorganisms and their products. ABC proteins are involved in the secretion of fungal mating factors and quorum sensing molecules. These molecules affect biofilm structure and behavior that can result in increased drug resistance. Hence, ABC proteins make multiple contributions to oral fungal drug resistance through a variety of responses to environmental signals.

  2. The Relation between Oral Candida Load and Bacterial Microbiome Profiles in Dutch Older Adults

    PubMed Central

    Kraneveld, Eefje A.; Buijs, Mark J.; Bonder, Marc J.; Visser, Marjolein; Keijser, Bart J. F.; Crielaard, Wim; Zaura, Egija

    2012-01-01

    Currently there are no evidence-based ecological measures for prevention of overgrowth and subsequent infection by fungi in the oral cavity. The aim of this study was to increase our knowledge on fungal–bacterial ecological interactions. Salivary Candida abundance of 82 Dutch adults aged 58–80 years was established relative to the bacterial load by quantitative PCR analysis of the Internal Transcribed (ITS) region (Candida) and 16S rDNA gene (bacteria). The salivary microbiome was assessed using barcoded pyrosequencing of the bacterial hypervariable regions V5–V7 of 16S rDNA. Sequencing data was preprocessed by denoising and chimera removal, clustered in Operational Taxonomic Units (OTUs) and assigned to taxonomy. Both OTU-based (PCA, diversity statistics) and phylogeny-based analyses (UniFrac, PCoA) were performed. Saliva of Dutch older adults contained 0–4 × 108 CFU/mL Candida with a median Candida load of 0.06%. With increased Candida load the diversity of the salivary microbiome decreased significantly (p<0.001). Increase in the Candida load correlated positively with class Bacilli, and negatively with class Fusobacteria, Flavobacteria, and Bacteroidia. Microbiomes with high Candida load were less diverse and had a distinct microbial composition towards dominance by saccharolytic and acidogenic bacteria - streptococci. The control of the acidification of the oral environment may be a potential preventive measure for Candida outgrowth that should be evaluated in longitudinal clinical intervention trials. PMID:22900048

  3. The oral microbiome and the immunobiology of periodontal disease and caries

    PubMed Central

    Costalonga, Massimo; Herzberg, Mark C.

    2015-01-01

    The composition of the oral microbiome differs from one intraoral site to another, reflecting in part the host response and immune capacity at each site. By focusing on two major oral infections, periodontal disease and caries, new principles of disease emerge. Periodontal disease affects the soft tissues and bone that support the teeth. Caries is a unique infection of the dental hard tissues. The initiation of both diseases is marked by an increase in the complexity of the microbiome. In periodontitis, pathobionts and keystone pathogens such as Porphyromonas gingivalis appear in greater proportion than in health. As a keystone pathogen, P. gingivalis impairs host immune responses and appears necessary but not sufficient to cause periodontitis. Historically, dental caries had been causally linked to Streptococcus mutans. Contemporary microbiome studies now indicate that singular pathogens are not obvious in either caries or periodontitis. Both diseases appear to result from a perturbation among relatively minor constituents in local microbial communities resulting in dysbiosis. Emergent consortia of the minor members of the respective microbiomes act synergistically to stress the ability of the host to respond and protect. In periodontal disease, host protection first occurs at the level of innate gingival epithelial immunity. Secretory IgA antibody and other salivary antimicrobial systems also act against periodontopathic and cariogenic consortia. When the gingival immune response is impaired, periodontal tissue pathology results when matrix metalloproteinases are released from neutrophils and T cells mediate alveolar bone loss. In caries, several species are acidogenic and aciduric and appear to work synergistically to promote demineralization of the enamel and dentin. Whereas technically possible, particularly for caries, vaccines are unlikely to be commercialized in the near future because of the low morbidity of caries and periodontitis. PMID:25447398

  4. Characterising the Canine Oral Microbiome by Direct Sequencing of Reverse-Transcribed rRNA Molecules.

    PubMed

    McDonald, James E; Larsen, Niels; Pennington, Andrea; Connolly, John; Wallis, Corrin; Rooks, David J; Hall, Neil; McCarthy, Alan J; Allison, Heather E

    2016-01-01

    PCR amplification and sequencing of phylogenetic markers, primarily Small Sub-Unit ribosomal RNA (SSU rRNA) genes, has been the paradigm for defining the taxonomic composition of microbiomes. However, 'universal' SSU rRNA gene PCR primer sets are likely to miss much of the diversity therein. We sequenced a library comprising purified and reverse-transcribed SSU rRNA (RT-SSU rRNA) molecules from the canine oral microbiome and compared it to a general bacterial 16S rRNA gene PCR amplicon library generated from the same biological sample. In addition, we have developed BIONmeta, a novel, open-source, computer package for the processing and taxonomic classification of the randomly fragmented RT-SSU rRNA reads produced. Direct RT-SSU rRNA sequencing revealed that 16S rRNA molecules belonging to the bacterial phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Spirochaetes, were most abundant in the canine oral microbiome (92.5% of total bacterial SSU rRNA). The direct rRNA sequencing approach detected greater taxonomic diversity (1 additional phylum, 2 classes, 1 order, 10 families and 61 genera) when compared with general bacterial 16S rRNA amplicons from the same sample, simultaneously provided SSU rRNA gene inventories of Bacteria, Archaea and Eukarya, and detected significant numbers of sequences not recognised by 'universal' primer sets. Proteobacteria and Spirochaetes were found to be under-represented by PCR-based analysis of the microbiome, and this was due to primer mismatches and taxon-specific variations in amplification efficiency, validated by qPCR analysis of 16S rRNA amplicons from a mock community. This demonstrated the veracity of direct RT-SSU rRNA sequencing for molecular microbial ecology.

  5. Characterising the Canine Oral Microbiome by Direct Sequencing of Reverse-Transcribed rRNA Molecules

    PubMed Central

    McDonald, James E.; Larsen, Niels; Pennington, Andrea; Connolly, John; Wallis, Corrin; Rooks, David J.; Hall, Neil; McCarthy, Alan J.; Allison, Heather E.

    2016-01-01

    PCR amplification and sequencing of phylogenetic markers, primarily Small Sub-Unit ribosomal RNA (SSU rRNA) genes, has been the paradigm for defining the taxonomic composition of microbiomes. However, ‘universal’ SSU rRNA gene PCR primer sets are likely to miss much of the diversity therein. We sequenced a library comprising purified and reverse-transcribed SSU rRNA (RT-SSU rRNA) molecules from the canine oral microbiome and compared it to a general bacterial 16S rRNA gene PCR amplicon library generated from the same biological sample. In addition, we have developed BIONmeta, a novel, open-source, computer package for the processing and taxonomic classification of the randomly fragmented RT-SSU rRNA reads produced. Direct RT-SSU rRNA sequencing revealed that 16S rRNA molecules belonging to the bacterial phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Spirochaetes, were most abundant in the canine oral microbiome (92.5% of total bacterial SSU rRNA). The direct rRNA sequencing approach detected greater taxonomic diversity (1 additional phylum, 2 classes, 1 order, 10 families and 61 genera) when compared with general bacterial 16S rRNA amplicons from the same sample, simultaneously provided SSU rRNA gene inventories of Bacteria, Archaea and Eukarya, and detected significant numbers of sequences not recognised by ‘universal’ primer sets. Proteobacteria and Spirochaetes were found to be under-represented by PCR-based analysis of the microbiome, and this was due to primer mismatches and taxon-specific variations in amplification efficiency, validated by qPCR analysis of 16S rRNA amplicons from a mock community. This demonstrated the veracity of direct RT-SSU rRNA sequencing for molecular microbial ecology. PMID:27276347

  6. The oral microbiome and the immunobiology of periodontal disease and caries.

    PubMed

    Costalonga, Massimo; Herzberg, Mark C

    2014-12-01

    The composition of the oral microbiome differs from one intraoral site to another, reflecting in part the host response and immune capacity at each site. By focusing on two major oral infections, periodontal disease and caries, new principles of disease emerge. Periodontal disease affects the soft tissues and bone that support the teeth. Caries is a unique infection of the dental hard tissues. The initiation of both diseases is marked by an increase in the complexity of the microbiome. In periodontitis, pathobionts and keystone pathogens such as Porphyromonas gingivalis appear in greater proportion than in health. As a keystone pathogen, P. gingivalis impairs host immune responses and appears necessary but not sufficient to cause periodontitis. Historically, dental caries had been causally linked to Streptococcus mutans. Contemporary microbiome studies now indicate that singular pathogens are not obvious in either caries or periodontitis. Both diseases appear to result from a perturbation among relatively minor constituents in local microbial communities resulting in dysbiosis. Emergent consortia of the minor members of the respective microbiomes act synergistically to stress the ability of the host to respond and protect. In periodontal disease, host protection first occurs at the level of innate gingival epithelial immunity. Secretory IgA antibody and other salivary antimicrobial systems also act against periodontopathic and cariogenic consortia. When the gingival immune response is impaired, periodontal tissue pathology results when matrix metalloproteinases are released from neutrophils and T cells mediate alveolar bone loss. In caries, several species are acidogenic and aciduric and appear to work synergistically to promote demineralization of the enamel and dentin. Whereas technically possible, particularly for caries, vaccines are unlikely to be commercialized in the near future because of the low morbidity of caries and periodontitis.

  7. Complete Genome Sequences of Two Human Oral Microbiome Commensals, Streptococcus salivarius ATCC 25975 and S. salivarius ATCC 27945.

    PubMed

    Butler, Robert R; Soomer-James, Jahna T A; Frenette, Michel; Pombert, Jean-François

    2017-06-15

    Streptococcus salivarius strains are significant contributors to the human oral microbiome. Some possess unique fimbriae that give them the ability to coaggregate and colonize particular oral structures. We present here the complete genomes of Streptococcus salivarius Lancefield K(-)/K(+) strains ATCC 25975 and ATCC 27945, which can and cannot, respectively, produce fimbriae. Copyright © 2017 Butler et al.

  8. Complete Genome Sequence of Lactobacillus oris J-1, a Potential Probiotic Isolated from the Human Oral Microbiome

    PubMed Central

    2016-01-01

    Lactobacilli can exert health-promoting effects in the human oral microbiome through many mechanisms, including pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Here, we present the complete genome sequence of a potential probiotic, Lactobacillus oris J-1, that was isolated from the oral cavity of a health child. PMID:27634996

  9. Oral Microbiome and Nitric Oxide: the Missing Link in the Management of Blood Pressure.

    PubMed

    Bryan, Nathan S; Tribble, Gena; Angelov, Nikola

    2017-04-01

    Having high blood pressure puts you at risk for heart disease and stroke, which are leading causes of death in the USA and worldwide. One out of every three Americans has hypertension, and it is estimated that despite aggressive treatment with medications, only about half of those medicated have managed blood pressure. Recent discoveries of the oral microbiome that reduces inorganic nitrate to nitrite and nitric oxide provide a new therapeutic target for the management of hypertension. The presence or absence of select and specific bacteria may determine steady-state blood pressure levels. Eradication of oral bacteria through antiseptic mouthwash or overuse of antibiotics causes blood pressure to increase. Allowing recolonization of nitrate- and nitrite-reducing bacteria can normalize blood pressure. This review will provide evidence of the link between oral microbiota and the production of nitric oxide and regulation of systemic blood pressure. Management of systemic hypertension through maintenance of the oral microbiome is a completely new paradigm in cardiovascular medicine.

  10. Candida albicans alters the bacterial microbiome of early in vitro oral biofilms

    PubMed Central

    Janus, M. M.; Crielaard, W.; Volgenant, C. M. C.; van der Veen, M. H.; Brandt, B. W.; Krom, B. P.

    2017-01-01

    ABSTRACT The yeast Candida albicans is an oral commensal microorganism, occurring in the oral cavity of 50–70% of healthy individuals. Its effect on oral ecology has mostly been studied using dual-species models, which disregards the complex nature of oral biofilms. The aim of this study was to culture C. albicans in a complex model to study its effect on oral biofilms. Biofilms, inoculated using pooled stimulated saliva with or without addition of C. albicans, were grown under anaerobic, aerobic, or aerobic +5% CO2 conditions. Red autofluorescence was quantified using a spectrophotometer and visualized in fluorescence photographs. The microbiome of 5 h biofilms was determined using 16S rDNA sequencing. C. albicans was only able to proliferate in biofilms grown under aerobic conditions. After 48 h, C. albicans did not induce differences in total biofilm formation, lactic acid accumulation (cariogenic phenotype) or protease activity (periodontitis phenotype). In vitro, anaerobically grown biofilms developed red autofluorescence, irrespective of inoculum. However, under aerobic conditions, only C. albicans–containing biofilms showed red autofluorescence. Facultative or strict anaerobic Veillonella, Prevotella, Leptotrichia, and Fusobacterium genera were significantly more abundant in biofilms with C. albicans. Biofilms without C. albicans contained more of the aerobic and facultative anaerobic genera Neisseria, Rothia, and Streptococcus. The presence of C. albicans alters the bacterial microbiome in early in vitro oral biofilms, resulting in the presence of strictly anaerobic bacteria under oxygen-rich conditions. This in vitro study illustrates that C. albicans should not be disregarded in healthy oral ecosystems, as it has the potential to influence bacteria significantly. PMID:28326152

  11. Host-Microbiome Cross-talk in Oral Mucositis

    PubMed Central

    Vasconcelos, R.M.; Sanfilippo, N.; Paster, B.J.; Kerr, A.R.; Li, Y.; Ramalho, L.; Queiroz, E.L.; Smith, B.; Sonis, S.T.; Corby, P.M.

    2016-01-01

    Oral mucositis (OM) is among the most common, painful, and debilitating toxicities of cancer regimen–related treatment, resulting in the formation of ulcers, which are susceptible to increased colonization of microorganisms. Novel discoveries in OM have focused on understanding the host-microbial interactions, because current pathways have shown that major virulence factors from microorganisms have the potential to contribute to the development of OM and may even prolong the existence of already established ulcerations, affecting tissue healing. Additional comprehensive and disciplined clinical investigation is needed to carefully characterize the relationship between the clinical trajectory of OM, the local levels of inflammatory changes (both clinical and molecular), and the ebb and flow of the oral microbiota. Answering such questions will increase our knowledge of the mechanisms engaged by the oral immune system in response to mucositis, facilitating their translation into novel therapeutic approaches. In doing so, directed clinical strategies can be developed that specifically target those times and tissues that are most susceptible to intervention. PMID:27053118

  12. Characterization of the bacterial and fungal microbiome in indoor dust and outdoor air samples: a pilot study.

    PubMed

    Hanson, Blake; Zhou, Yanjiao; Bautista, Eddy J; Urch, Bruce; Speck, Mary; Silverman, Frances; Muilenberg, Michael; Phipatanakul, Wanda; Weinstock, George; Sodergren, Erica; Gold, Diane R; Sordillo, Joanne E

    2016-06-15

    Environmental microbes have been associated with both protective and adverse health effects in children and adults. Epidemiological studies often rely on broad biomarkers of microbial exposure (i.e. endotoxin, 1 → 3-beta-d-glucan), but fail to identify the taxonomic composition of the microbial community. Our aim was to characterize the bacterial and fungal microbiome in different types of environmental samples collected in studies of human health effects. We determined the composition of microbial communities present in home, school and outdoor air samples by amplifying and sequencing regions of rRNA genes from bacteria (16S) and fungi (18S and ITS). Samples for this pilot study included indoor settled dust (from both a Boston area birth cohort study on Home Allergens and Asthma (HAA) (n = 12) and a study of school exposures and asthma symptoms (SICAS) (n = 1)), as well as fine and coarse concentrated outdoor ambient particulate (CAP) samples (n = 9). Sequencing of amplified 16S, 18S, and ITS regions was performed on the Roche-454 Life Sciences Titanium pyrosequencing platform. Indoor dust samples were dominated by Gram-positive bacteria (Firmicutes and Actinobacteria); the most abundant bacterial genera were those related to human flora (Streptococcus, Staphylococcus, Corynebacterium and Lactobacillus). Outdoor CAPs were dominated by Gram-negative Proteobacteria from water and soil sources, in particular the genera Acidovorax, and Brevundimonas (which were present at very low levels or entirely absent in indoor dust). Phylum-level fungal distributions identified by 18S or ITS regions showed very similar findings: a predominance of Ascomycota in indoor dust and Basidiomycota in outdoor CAPs. ITS sequencing of fungal genera in indoor dust showed significant proportions of Aureobasidium and Leptosphaerulina along with some contribution from Cryptococcus, Epicoccum, Aspergillus and the human commensal Malassezia. ITS sequencing detected more than 70 fungal genera

  13. Characterization of the bacterial and fungal microbiome in indoor dust and outdoor air samples: a pilot study†

    PubMed Central

    Hanson, Blake; Zhou, Yanjiao; Bautista, Eddy J.; Urch, Bruce; Speck, Mary; Silverman, Frances; Muilenberg, Michael; Phipatanakul, Wanda; Weinstock, George; Sodergren, Erica; Gold, Diane R.; Sordillo, Joanne E.

    2016-01-01

    Environmental microbes have been associated with both protective and adverse health effects in children and adults. Epidemiological studies often rely on broad biomarkers of microbial exposure (i.e. endotoxin, 1→3, Beta-D glucan), but fail to identify the taxonomic composition of the microbial community. Our aim was to characterize the bacterial and fungal microbiome in different types of environmental samples collected in studies of human health effects. We determined the composition of microbial communities present in home, school and outdoor air samples by amplifying and sequencing regions of rRNA genes from bacteria (16S) and fungi (18S and ITS). Samples for this pilot study included indoor settled dust (from both a Boston area birth cohort study on Home Allergens and Asthma (HAA)(n=12) and a study of school exposures and asthma symptoms (SICAS) (n=1)), as well as fine and coarse concentrated outdoor ambient particulate (CAP) samples (n=9). Sequencing of amplified 16S, 18S, and ITS regions was performed on the Roche-454 Life Sciences Titanium pyrosequencing platform. Indoor dust samples were dominated by gram-positive bacteria (Firmicutes and Actinobacteria); the most abundant bacterial genera were those related to human flora (Streptococcus, Staphylococcus, Corynebacterium and Lactobacillus). Outdoor CAPs were dominated by gram-negative Proteobacteria from water and soil sources, in particular the genera Acidovorax, and Brevundimonas (which were present at very low levels or entirely absent in indoor dust). Phylum-level fungal distributions identified by 18S or ITS regions showed very similar findings: a predominance of Ascomycota in indoor dust and Basidiomycota in outdoor CAPs. ITS sequencing of fungal genera in indoor dust showed significant proportions of Aureobasidium and Leptosphaerulina along with some contribution from Cryptococcus, Epicoccum, Aspergillus and the human commensal Malassezia. ITS sequencing detected an additional 70 fungal genera in

  14. Deep Sequencing Identifies Ethnicity-Specific Bacterial Signatures in the Oral Microbiome

    PubMed Central

    Mason, Matthew R.; Nagaraja, Haikady N.; Camerlengo, Terry; Joshi, Vinayak; Kumar, Purnima S.

    2013-01-01

    Oral infections have a strong ethnic predilection; suggesting that ethnicity is a critical determinant of oral microbial colonization. Dental plaque and saliva samples from 192 subjects belonging to four major ethnicities in the United States were analyzed using terminal restriction fragment length polymorphism (t-RFLP) and 16S pyrosequencing. Ethnicity-specific clustering of microbial communities was apparent in saliva and subgingival biofilms, and a machine-learning classifier was capable of identifying an individual’s ethnicity from subgingival microbial signatures. The classifier identified African Americans with a 100% sensitivity and 74% specificity and Caucasians with a 50% sensitivity and 91% specificity. The data demonstrates a significant association between ethnic affiliation and the composition of the oral microbiome; to the extent that these microbial signatures appear to be capable of discriminating between ethnicities. PMID:24194878

  15. Phylogenetic and functional gene structure shifts of the oral microbiomes in periodontitis patients.

    PubMed

    Li, Yan; He, Jinzhi; He, Zhili; Zhou, Yuan; Yuan, Mengting; Xu, Xin; Sun, Feifei; Liu, Chengcheng; Li, Jiyao; Xie, Wenbo; Deng, Ye; Qin, Yujia; VanNostrand, Joy D; Xiao, Liying; Wu, Liyou; Zhou, Jizhong; Shi, Wenyuan; Zhou, Xuedong

    2014-09-01

    Determining the composition and function of subgingival dental plaque is crucial to understanding human periodontal health and disease, but it is challenging because of the complexity of the interactions between human microbiomes and human body. Here, we examined the phylogenetic and functional gene differences between periodontal and healthy individuals using MiSeq sequencing of 16S rRNA gene amplicons and a specific functional gene array (a combination of GeoChip 4.0 for biogeochemical processes and HuMiChip 1.0 for human microbiomes). Our analyses indicated that the phylogenetic and functional gene structure of the oral microbiomes were distinctly different between periodontal and healthy groups. Also, 16S rRNA gene sequencing analysis indicated that 39 genera were significantly different between healthy and periodontitis groups, and Fusobacterium, Porphyromonas, Treponema, Filifactor, Eubacterium, Tannerella, Hallella, Parvimonas, Peptostreptococcus and Catonella showed higher relative abundances in the periodontitis group. In addition, functional gene array data showed that a lower gene number but higher signal intensity of major genes existed in periodontitis, and a variety of genes involved in virulence factors, amino acid metabolism and glycosaminoglycan and pyrimidine degradation were enriched in periodontitis, suggesting their potential importance in periodontal pathogenesis. However, the genes involved in amino acid synthesis and pyrimidine synthesis exhibited a significantly lower relative abundance compared with healthy group. Overall, this study provides new insights into our understanding of phylogenetic and functional gene structure of subgingival microbial communities of periodontal patients and their importance in pathogenesis of periodontitis.

  16. Phylogenetic and functional gene structure shifts of the oral microbiomes in periodontitis patients

    PubMed Central

    Li, Yan; He, Jinzhi; He, Zhili; Zhou, Yuan; Yuan, Mengting; Xu, Xin; Sun, Feifei; Liu, Chengcheng; Li, Jiyao; Xie, Wenbo; Deng, Ye; Qin, Yujia; VanNostrand, Joy D; Xiao, Liying; Wu, Liyou; Zhou, Jizhong; Shi, Wenyuan; Zhou, Xuedong

    2014-01-01

    Determining the composition and function of subgingival dental plaque is crucial to understanding human periodontal health and disease, but it is challenging because of the complexity of the interactions between human microbiomes and human body. Here, we examined the phylogenetic and functional gene differences between periodontal and healthy individuals using MiSeq sequencing of 16S rRNA gene amplicons and a specific functional gene array (a combination of GeoChip 4.0 for biogeochemical processes and HuMiChip 1.0 for human microbiomes). Our analyses indicated that the phylogenetic and functional gene structure of the oral microbiomes were distinctly different between periodontal and healthy groups. Also, 16S rRNA gene sequencing analysis indicated that 39 genera were significantly different between healthy and periodontitis groups, and Fusobacterium, Porphyromonas, Treponema, Filifactor, Eubacterium, Tannerella, Hallella, Parvimonas, Peptostreptococcus and Catonella showed higher relative abundances in the periodontitis group. In addition, functional gene array data showed that a lower gene number but higher signal intensity of major genes existed in periodontitis, and a variety of genes involved in virulence factors, amino acid metabolism and glycosaminoglycan and pyrimidine degradation were enriched in periodontitis, suggesting their potential importance in periodontal pathogenesis. However, the genes involved in amino acid synthesis and pyrimidine synthesis exhibited a significantly lower relative abundance compared with healthy group. Overall, this study provides new insights into our understanding of phylogenetic and functional gene structure of subgingival microbial communities of periodontal patients and their importance in pathogenesis of periodontitis. PMID:24671083

  17. A systematic review of oral fungal infections in patients receiving cancer therapy

    PubMed Central

    Latortue, Marie C.; Hong, Catherine H.; Ariyawardana, Anura; D’Amato-Palumbo, Sandra; Fischer, Dena J.; Martof, Andrew; Nicolatou-Galitis, Ourania; Patton, Lauren L.; Elting, Linda S.; Spijkervet, Fred K. L.; Brennan, Michael T.

    2010-01-01

    Purpose The aims of this systematic review were to determine, in patients receiving cancer therapy, the prevalence of clinical oral fungal infection and fungal colonization, to determine the impact on quality of life and cost of care, and to review current management strategies for oral fungal infections. Methods Thirty-nine articles that met the inclusion/exclusion criteria were independently reviewed by two calibrated reviewers, each using a standard form. Information was extracted on a number of variables, including study design, study population, sample size, interventions, blinding, outcome measures, methods, results, and conclusions for each article. Areas of discrepancy between the two reviews were resolved by consensus. Studies were weighted as to the quality of the study design, and recommendations were based on the relative strength of each paper. Statistical analyses were performed to determine the weighted prevalence of clinical oral fungal infection and fungal colonization. Results For all cancer treatments, the weighted prevalence of clinical oral fungal infection was found to be 7.5% pretreatment, 39.1% during treatment, and 32.6% after the end of cancer therapy. Head and neck radiotherapy and chemotherapy were each independently associated with a significantly increased risk for oral fungal infection. For all cancer treatments, the prevalence of oral colonization with fungal organisms was 48.2% before treatment, 72.2% during treatment, and 70.1% after treatment. The prophylactic use of fluconazole during cancer therapy resulted in a prevalence of clinical fungal infection of 1.9%. No information specific to oral fungal infections was found on quality of life or cost of care. Conclusions There is an increased risk of clinically significant oral fungal infection during cancer therapy. Systemic antifungals are effective in the prevention of clinical oral fungal infection in patients receiving cancer therapy. Currently available topical antifungal

  18. Characterization and quantification of the fungal microbiome in serial samples from individuals with cystic fibrosis

    PubMed Central

    2014-01-01

    Background Human-associated microbial communities include fungi, but we understand little about which fungal species are present, their relative and absolute abundances, and how antimicrobial therapy impacts fungal communities. The disease cystic fibrosis (CF) often involves chronic airway colonization by bacteria and fungi, and these infections cause irreversible lung damage. Fungi are detected more frequently in CF sputum samples upon initiation of antimicrobial therapy, and several studies have implicated the detection of fungi in sputum with worse outcomes. Thus, a more complete understanding of fungi in CF is required. Results We characterized the fungi and bacteria in expectorated sputa from six CF subjects. Samples were collected upon admission for systemic antibacterial therapy and upon the completion of treatment and analyzed using a pyrosequencing-based analysis of fungal internal transcribed spacer 1 (ITS1) and bacterial 16S rDNA sequences. A mixture of Candida species and Malassezia dominated the mycobiome in all samples (74%–99% of fungal reads). There was not a striking trend correlating fungal and bacterial richness, and richness showed a decline after antibiotic therapy particularly for the bacteria. The fungal communities within a sputum sample resembled other samples from that subject despite the aggressive antibacterial therapy. Quantitative PCR analysis of fungal 18S rDNA sequences to assess fungal burden showed variation in fungal density in sputum before and after antibacterial therapy but no consistent directional trend. Analysis of Candida ITS1 sequences amplified from sputum or pure culture-derived genomic DNA from individual Candida species found little (<0.5%) or no variation in ITS1 sequences within or between strains, thereby validating this locus for the purpose of Candida species identification. We also report the enhancement of the publically available Visualization and Analysis of Microbial Population Structures (VAMPS) tool for

  19. Evaluating the Impact of DNA Extraction Method on the Representation of Human Oral Bacterial and Fungal Communities.

    PubMed

    Vesty, Anna; Biswas, Kristi; Taylor, Michael W; Gear, Kim; Douglas, Richard G

    2017-01-01

    The application of high-throughput, next-generation sequencing technologies has greatly improved our understanding of the human oral microbiome. While deciphering this diverse microbial community using such approaches is more accurate than traditional culture-based methods, experimental bias introduced during critical steps such as DNA extraction may compromise the results obtained. Here, we systematically evaluate four commonly used microbial DNA extraction methods (MoBio PowerSoil® DNA Isolation Kit, QIAamp® DNA Mini Kit, Zymo Bacterial/Fungal DNA Mini PrepTM, phenol:chloroform-based DNA isolation) based on the following criteria: DNA quality and yield, and microbial community structure based on Illumina amplicon sequencing of the V3-V4 region of the 16S rRNA gene of bacteria and the internal transcribed spacer (ITS) 1 region of fungi. Our results indicate that DNA quality and yield varied significantly with DNA extraction method. Representation of bacterial genera in plaque and saliva samples did not significantly differ across DNA extraction methods and DNA extraction method showed no effect on the recovery of fungal genera from plaque. By contrast, fungal diversity from saliva was affected by DNA extraction method, suggesting that not all protocols are suitable to study the salivary mycobiome.

  20. Evaluating the Impact of DNA Extraction Method on the Representation of Human Oral Bacterial and Fungal Communities

    PubMed Central

    Biswas, Kristi; Taylor, Michael W.; Gear, Kim

    2017-01-01

    The application of high-throughput, next-generation sequencing technologies has greatly improved our understanding of the human oral microbiome. While deciphering this diverse microbial community using such approaches is more accurate than traditional culture-based methods, experimental bias introduced during critical steps such as DNA extraction may compromise the results obtained. Here, we systematically evaluate four commonly used microbial DNA extraction methods (MoBio PowerSoil® DNA Isolation Kit, QIAamp® DNA Mini Kit, Zymo Bacterial/Fungal DNA Mini PrepTM, phenol:chloroform-based DNA isolation) based on the following criteria: DNA quality and yield, and microbial community structure based on Illumina amplicon sequencing of the V3–V4 region of the 16S rRNA gene of bacteria and the internal transcribed spacer (ITS) 1 region of fungi. Our results indicate that DNA quality and yield varied significantly with DNA extraction method. Representation of bacterial genera in plaque and saliva samples did not significantly differ across DNA extraction methods and DNA extraction method showed no effect on the recovery of fungal genera from plaque. By contrast, fungal diversity from saliva was affected by DNA extraction method, suggesting that not all protocols are suitable to study the salivary mycobiome. PMID:28099455

  1. Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera).

    PubMed

    Bálint, Miklós; Tiffin, Peter; Hallström, Björn; O'Hara, Robert B; Olson, Matthew S; Fankhauser, Johnathon D; Piepenbring, Meike; Schmitt, Imke

    2013-01-01

    Foliar fungal communities of plants are diverse and ubiquitous. In grasses endophytes may increase host fitness; in trees, their ecological roles are poorly understood. We investigated whether the genotype of the host tree influences community structure of foliar fungi. We sampled leaves from genotyped balsam poplars from across the species' range, and applied 454 amplicon sequencing to characterize foliar fungal communities. At the time of the sampling the poplars had been growing in a common garden for two years. We found diverse fungal communities associated with the poplar leaves. Linear discriminant analysis and generalized linear models showed that host genotypes had a structuring effect on the composition of foliar fungal communities. The observed patterns may be explained by a filtering mechanism which allows the trees to selectively recruit fungal strains from the environment. Alternatively, host genotype-specific fungal communities may be present in the tree systemically, and persist in the host even after two clonal reproductions. Both scenarios are consistent with host tree adaptation to specific foliar fungal communities and suggest that there is a functional basis for the strong biotic interaction.

  2. Molecular analysis of fungal populations in patients with oral candidiasis using internal transcribed spacer region.

    PubMed

    Ieda, Shinsuke; Moriyama, Masafumi; Takeshita, Toru; Takashita, Toru; Maehara, Takashi; Imabayashi, Yumi; Shinozaki, Shoichi; Tanaka, Akihiko; Hayashida, Jun-Nosuke; Furukawa, Sachiko; Ohta, Miho; Yamashita, Yoshihisa; Nakamura, Seiji

    2014-01-01

    Oral candidiasis is closely associated with changes in the oral fungal flora and is caused primarily by Candida albicans. Conventional methods of fungal culture are time-consuming and not always conclusive. However, molecular genetic analysis of internal transcribed spacer (ITS) regions of fungal rRNA is rapid, reproducible and simple to perform. In this study we examined the fungal flora in patients with oral candidiasis and investigated changes in the flora after antifungal treatment using length heterogeneity-polymerization chain reaction (LH-PCR) analysis of ITS regions. Fifty-two patients with pseudomembranous oral candidiasis (POC) and 30 healthy controls were included in the study. Fungal DNA from oral rinse was examined for fungal species diversity by LH-PCR. Fungal populations were quantified by real-time PCR and previously-unidentified signals were confirmed by nucleotide sequencing. Relationships between the oral fungal flora and treatment-resistant factors were also examined. POC patients showed significantly more fungal species and a greater density of fungi than control individuals. Sixteen fungi were newly identified. The fungal populations from both groups were composed predominantly of C. albicans, though the ratio of C. dubliniensis was significantly higher in POC patients than in controls. The diversity and density of fungi were significantly reduced after treatment. Furthermore, fungal diversity and the proportion of C. dubliniensis were positively correlated with treatment duration. These results suggest that C. dubliniensis and high fungal flora diversity might be involved in the pathogenesis of oral candidiasis. We therefore conclude that LH-PCR is a useful technique for diagnosing and assessing the severity of oral candidal infection.

  3. Molecular Analysis of Fungal Populations in Patients with Oral Candidiasis Using Internal Transcribed Spacer Region

    PubMed Central

    Ieda, Shinsuke; Moriyama, Masafumi; Takashita, Toru; Maehara, Takashi; Imabayashi, Yumi; Shinozaki, Shoichi; Tanaka, Akihiko; Hayashida, Jun-Nosuke; Furukawa, Sachiko; Ohta, Miho; Yamashita, Yoshihisa; Nakamura, Seiji

    2014-01-01

    Oral candidiasis is closely associated with changes in the oral fungal flora and is caused primarily by Candida albicans. Conventional methods of fungal culture are time-consuming and not always conclusive. However, molecular genetic analysis of internal transcribed spacer (ITS) regions of fungal rRNA is rapid, reproducible and simple to perform. In this study we examined the fungal flora in patients with oral candidiasis and investigated changes in the flora after antifungal treatment using length heterogeneity-polymerization chain reaction (LH-PCR) analysis of ITS regions. Fifty-two patients with pseudomembranous oral candidiasis (POC) and 30 healthy controls were included in the study. Fungal DNA from oral rinse was examined for fungal species diversity by LH-PCR. Fungal populations were quantified by real-time PCR and previously-unidentified signals were confirmed by nucleotide sequencing. Relationships between the oral fungal flora and treatment-resistant factors were also examined. POC patients showed significantly more fungal species and a greater density of fungi than control individuals. Sixteen fungi were newly identified. The fungal populations from both groups were composed predominantly of C. albicans, though the ratio of C. dubliniensis was significantly higher in POC patients than in controls. The diversity and density of fungi were significantly reduced after treatment. Furthermore, fungal diversity and the proportion of C. dubliniensis were positively correlated with treatment duration. These results suggest that C. dubliniensis and high fungal flora diversity might be involved in the pathogenesis of oral candidiasis. We therefore conclude that LH-PCR is a useful technique for diagnosing and assessing the severity of oral candidal infection. PMID:24979710

  4. Fungal Root Microbiome from Healthy and Brittle Leaf Diseased Date Palm Trees (Phoenix dactylifera L.) Reveals a Hidden Untapped Arsenal of Antibacterial and Broad Spectrum Antifungal Secondary Metabolites

    PubMed Central

    Mefteh, Fedia B.; Daoud, Amal; Chenari Bouket, Ali; Alenezi, Faizah N.; Luptakova, Lenka; Rateb, Mostafa E.; Kadri, Adel; Gharsallah, Neji; Belbahri, Lassaad

    2017-01-01

    In this study, we aimed to explore and compare the composition, metabolic diversity and antimicrobial potential of endophytic fungi colonizing internal tissues of healthy and brittle leaf diseased (BLD) date palm trees (Phoenix dactylifera L.) widely cultivated in arid zones of Tunisia. A total of 52 endophytic fungi were isolated from healthy and BLD roots of date palm trees, identified based on internal transcribed spacer-rDNA sequence analysis and shown to represent 13 species belonging to five genera. About 36.8% of isolates were shared between healthy and diseased root fungal microbiomes, whereas 18.4 and 44.7% of isolates were specific to healthy and BLD root fungal microbiomes, respectively. All isolates were able to produce at least two of the screened enzymes including amylase, cellulase, chitinase, pectinase, protease, laccase and lipase. A preliminary screening of the isolates using disk diffusion method for antibacterial activity against four Gram-positive and three Gram-negative bacteria and antifungal activities against three phytopathogenic fungi indicated that healthy and BLD root fungal microbiomes displayed interesting bioactivities against examined bacteria and broad spectrum bioactivity against fungal pathogens. Some of these endophytic fungi (17 isolates) were fermented and their extracts were evaluated for antimicrobial potential against bacterial and fungal isolates. Results revealed that fungal extracts exhibited antibacterial activities and were responsible for approximately half of antifungal activities against living fungi. These results suggest a strong link between fungal bioactivities and their secondary metabolite arsenal. EtOAc extracts of Geotrichum candidum and Thielaviopsis punctulata originating from BLD microbiome gave best results against Micrococcus luteus and Bacillus subtilis with minimum inhibitory concentration (MIC, 0.78 mg/mL) and minimum bactericidal concentration (6.25 mg/mL). G. candidum gave the best result against

  5. Fungal Root Microbiome from Healthy and Brittle Leaf Diseased Date Palm Trees (Phoenix dactylifera L.) Reveals a Hidden Untapped Arsenal of Antibacterial and Broad Spectrum Antifungal Secondary Metabolites.

    PubMed

    Mefteh, Fedia B; Daoud, Amal; Chenari Bouket, Ali; Alenezi, Faizah N; Luptakova, Lenka; Rateb, Mostafa E; Kadri, Adel; Gharsallah, Neji; Belbahri, Lassaad

    2017-01-01

    In this study, we aimed to explore and compare the composition, metabolic diversity and antimicrobial potential of endophytic fungi colonizing internal tissues of healthy and brittle leaf diseased (BLD) date palm trees (Phoenix dactylifera L.) widely cultivated in arid zones of Tunisia. A total of 52 endophytic fungi were isolated from healthy and BLD roots of date palm trees, identified based on internal transcribed spacer-rDNA sequence analysis and shown to represent 13 species belonging to five genera. About 36.8% of isolates were shared between healthy and diseased root fungal microbiomes, whereas 18.4 and 44.7% of isolates were specific to healthy and BLD root fungal microbiomes, respectively. All isolates were able to produce at least two of the screened enzymes including amylase, cellulase, chitinase, pectinase, protease, laccase and lipase. A preliminary screening of the isolates using disk diffusion method for antibacterial activity against four Gram-positive and three Gram-negative bacteria and antifungal activities against three phytopathogenic fungi indicated that healthy and BLD root fungal microbiomes displayed interesting bioactivities against examined bacteria and broad spectrum bioactivity against fungal pathogens. Some of these endophytic fungi (17 isolates) were fermented and their extracts were evaluated for antimicrobial potential against bacterial and fungal isolates. Results revealed that fungal extracts exhibited antibacterial activities and were responsible for approximately half of antifungal activities against living fungi. These results suggest a strong link between fungal bioactivities and their secondary metabolite arsenal. EtOAc extracts of Geotrichum candidum and Thielaviopsis punctulata originating from BLD microbiome gave best results against Micrococcus luteus and Bacillus subtilis with minimum inhibitory concentration (MIC, 0.78 mg/mL) and minimum bactericidal concentration (6.25 mg/mL). G. candidum gave the best result against

  6. Oral Microbiome of Deep and Shallow Dental Pockets In Chronic Periodontitis

    PubMed Central

    Ge, Xiuchun; Rodriguez, Rafael; Trinh, My; Gunsolley, John; Xu, Ping

    2013-01-01

    We examined the subgingival bacterial biodiversity in untreated chronic periodontitis patients by sequencing 16S rRNA genes. The primary purpose of the study was to compare the oral microbiome in deep (diseased) and shallow (healthy) sites. A secondary purpose was to evaluate the influences of smoking, race and dental caries on this relationship. A total of 88 subjects from two clinics were recruited. Paired subgingival plaque samples were taken from each subject, one from a probing site depth >5 mm (deep site) and the other from a probing site depth ≤3mm (shallow site). A universal primer set was designed to amplify the V4–V6 region for oral microbial 16S rRNA sequences. Differences in genera and species attributable to deep and shallow sites were determined by statistical analysis using a two-part model and false discovery rate. Fifty-one of 170 genera and 200 of 746 species were found significantly different in abundances between shallow and deep sites. Besides previously identified periodontal disease-associated bacterial species, additional species were found markedly changed in diseased sites. Cluster analysis revealed that the microbiome difference between deep and shallow sites was influenced by patient-level effects such as clinic location, race and smoking. The differences between clinic locations may be influenced by racial distribution, in that all of the African Americans subjects were seen at the same clinic. Our results suggested that there were influences from the microbiome for caries and periodontal disease and these influences are independent. PMID:23762384

  7. Distinct Ecological Niche of Anal, Oral, and Cervical Mucosal Microbiomes in Adolescent Women

    PubMed Central

    Smith, Benjamin C.; Zolnik, Christine P.; Usyk, Mykhaylo; Chen, Zigui; Kaiser, Katherine; Nucci-Sack, Anne; Peake, Ken; Diaz, Angela; Viswanathan, Shankar; Strickler, Howard D.; Schlecht, Nicolas F.; Burk, Robert D.

    2016-01-01

    Human body sites represent ecological niches for microorganisms, each providing variations in microbial exposure, nutrient availability, microbial competition, and host immunological responses. In this study, we investigated the oral, anal, and cervical microbiomes from the same 20 sexually active adolescent females, using culture-independent, next-generation sequencing. DNA from each sample was amplified for the bacterial 16S rRNA gene and sequenced on an Illumina platform using paired-end reads. Across the three anatomical niches, we found significant differences in bacterial community composition and diversity. Overall anal samples were dominated with Prevotella and Bacteriodes, oral samples with Streptococcus and Prevotella, and cervical samples with Lactobacillus. The microbiomes of a few cervical samples clustered with anal samples in weighted principal coordinate analyses, due in part to a higher proportion of Prevotella in those samples. Additionally, cervical samples had the lowest alpha diversity. Our results demonstrate the occurrence of distinct microbial communities across body sites within the same individual. PMID:27698612

  8. In vitro Increased Respiratory Activity of Selected Oral Bacteria May Explain Competitive and Collaborative Interactions in the Oral Microbiome

    PubMed Central

    Hernandez-Sanabria, Emma; Slomka, Vera; Herrero, Esteban R.; Kerckhof, Frederiek-Maarten; Zaidel, Lynette; Teughels, Wim; Boon, Nico

    2017-01-01

    Understanding the driving forces behind the shifts in the ecological balance of the oral microbiota will become essential for the future management and treatment of periodontitis. As the use of competitive approaches for modulating bacterial outgrowth is unexplored in the oral ecosystem, our study aimed to investigate both the associations among groups of functional compounds and the impact of individual substrates on selected members of the oral microbiome. We employed the Phenotype Microarray high-throughput technology to analyse the microbial cellular phenotypes of 15 oral bacteria. Multivariate statistical analysis was used to detect respiratory activity triggers and to assess similar metabolic activities. Carbon and nitrogen were relevant for the respiration of health-associated bacteria, explaining competitive interactions when grown in biofilms. Carbon, nitrogen, and peptides tended to decrease the respiratory activity of all pathobionts, but not significantly. None of the evaluated compounds significantly increased activity of pathobionts at both 24 and 48 h. Additionally, metabolite requirements of pathobionts were dissimilar, suggesting that collective modulation of their respiratory activity may be challenging. Flow cytometry indicated that the metabolic activity detected in the Biolog plates may not be a direct result of the number of bacterial cells. In addition, damage to the cell membrane may not influence overall respiratory activity. Our methodology confirmed previously reported competitive and collaborative interactions among bacterial groups, which could be used either as marker of health status or as targets for modulation of the oral environment. PMID:28638806

  9. In vitro Increased Respiratory Activity of Selected Oral Bacteria May Explain Competitive and Collaborative Interactions in the Oral Microbiome.

    PubMed

    Hernandez-Sanabria, Emma; Slomka, Vera; Herrero, Esteban R; Kerckhof, Frederiek-Maarten; Zaidel, Lynette; Teughels, Wim; Boon, Nico

    2017-01-01

    Understanding the driving forces behind the shifts in the ecological balance of the oral microbiota will become essential for the future management and treatment of periodontitis. As the use of competitive approaches for modulating bacterial outgrowth is unexplored in the oral ecosystem, our study aimed to investigate both the associations among groups of functional compounds and the impact of individual substrates on selected members of the oral microbiome. We employed the Phenotype Microarray high-throughput technology to analyse the microbial cellular phenotypes of 15 oral bacteria. Multivariate statistical analysis was used to detect respiratory activity triggers and to assess similar metabolic activities. Carbon and nitrogen were relevant for the respiration of health-associated bacteria, explaining competitive interactions when grown in biofilms. Carbon, nitrogen, and peptides tended to decrease the respiratory activity of all pathobionts, but not significantly. None of the evaluated compounds significantly increased activity of pathobionts at both 24 and 48 h. Additionally, metabolite requirements of pathobionts were dissimilar, suggesting that collective modulation of their respiratory activity may be challenging. Flow cytometry indicated that the metabolic activity detected in the Biolog plates may not be a direct result of the number of bacterial cells. In addition, damage to the cell membrane may not influence overall respiratory activity. Our methodology confirmed previously reported competitive and collaborative interactions among bacterial groups, which could be used either as marker of health status or as targets for modulation of the oral environment.

  10. Molecular analysis of fungal populations in patients with oral candidiasis using next-generation sequencing

    PubMed Central

    Imabayashi, Yumi; Moriyama, Masafumi; Takeshita, Toru; Ieda, Shinsuke; Hayashida, Jun-Nosuke; Tanaka, Akihiko; Maehara, Takashi; Furukawa, Sachiko; Ohta, Miho; Kubota, Keigo; Yamauchi, Masaki; Ishiguro, Noriko; Yamashita, Yoshihisa; Nakamura, Seiji

    2016-01-01

    Oral candidiasis is closely associated with changes in oral fungal biodiversity and is caused primarily by Candida albicans. However, the widespread use of empiric and prophylactic antifungal drugs has caused a shift in fungal biodiversity towards other Candida or yeast species. Recently, next-generation sequencing (NGS) has provided an improvement over conventional culture techniques, allowing rapid comprehensive analysis of oral fungal biodiversity. In this study, we used NGS to examine the oral fungal biodiversity of 27 patients with pseudomembranous oral candidiasis (POC) and 66 healthy controls. The total number of fungal species in patients with POC and healthy controls was 67 and 86, respectively. The copy number of total PCR products and the proportion of non-C. albicans, especially C. dubliniensis, in patients with POC, were higher than those in healthy controls. The detection patterns in patients with POC were similar to those in controls after antifungal treatment. Interestingly, the number of fungal species and the copy number of total PCR products in healthy controls increased with aging. These results suggest that high fungal biodiversity and aging might be involved in the pathogenesis of oral candidiasis. We therefore conclude that NGS is a useful technique for investigating oral candida infections. PMID:27305838

  11. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences.

    PubMed

    Dewhirst, Floyd E; Klein, Erin A; Bennett, Marie-Louise; Croft, Julie M; Harris, Stephen J; Marshall-Jones, Zoe V

    2015-02-25

    The human oral microbiome is known to play a significant role in human health and disease. While less well studied, the feline oral microbiome is thought to play a similarly important role. To determine roles oral bacteria play in health and disease, one first has to be able to accurately identify bacterial species present. 16S rRNA gene sequence information is widely used for molecular identification of bacteria and is also useful for establishing the taxonomy of novel species. The objective of this research was to obtain full 16S rRNA gene reference sequences for feline oral bacteria, place the sequences in species-level phylotypes, and create a curated 16S rRNA based taxonomy for common feline oral bacteria. Clone libraries were produced using "universal" and phylum-selective PCR primers and DNA from pooled subgingival plaque from healthy and periodontally diseased cats. Bacteria in subgingival samples were also cultivated to obtain isolates. Full-length 16S rDNA sequences were determined for clones and isolates that represent 171 feline oral taxa. A provisional curated taxonomy was developed based on the position of each taxon in 16S rRNA phylogenetic trees. The feline oral microbiome curated taxonomy and 16S rRNA gene reference set will allow investigators to refer to precisely defined bacterial taxa. A provisional name such as "Propionibacterium sp. feline oral taxon FOT-327" is an anchor to which clone, strain or GenBank names or accession numbers can point. Future next-generation-sequencing studies of feline oral bacteria will be able to map reads to taxonomically curated full-length 16S rRNA gene sequences.

  12. The oral bacterial microbiome of occlusal surfaces in children and its association with diet and caries

    PubMed Central

    Azcarate-Peril, Maria Andrea; Cadenas, Maria Belen; Butz, Natasha; Paster, Bruce J.; Chen, Tsute; Bair, Eric

    2017-01-01

    Dental caries is the most prevalent disease in humans globally. Efforts to control it have been invigorated by an increasing knowledge of the oral microbiome composition. This study aimed to evaluate the bacterial diversity in occlusal biofilms and its relationship with clinical surface diagnosis and dietary habits. Anamneses were recorded from thirteen 12-year-old children. Biofilm samples collected from occlusal surfaces of 46 permanent second molars were analyzed by 16S rRNA amplicon sequencing combined with the BLASTN-based search algorithm for species identification. The overall mean decayed, missing and filled surfaces modified index [DMFSm Index, including active white spot lesions (AWSL)] value was 8.77±7.47. Biofilm communities were highly polymicrobial collectively, representing 10 bacterial phyla, 25 classes, 29 orders, 58 families, 107 genera, 723 species. Streptococcus sp_Oral_Taxon_065, Corynebacterium matruchotii, Actinomyces viscosus, Actinomyces sp_Oral_Taxon_175, Actinomyces sp_Oral_Taxon_178, Actinomyces sp_Oral_Taxon_877, Prevotella nigrescens, Dialister micraerophilus, Eubacterium_XI G 1 infirmum were more abundant among surfaces with AWSL, and Streptococcus gordonii, Streptococcus sp._Oral_Taxon_058, Enterobacter sp._str._638 Streptococcus australis, Yersinia mollaretii, Enterobacter cloacae, Streptococcus sp._Oral_Taxon_71, Streptococcus sp._Oral_Taxon_F11, Centipeda sp._Oral_Taxon_D18 were more abundant among sound surfaces. Streptococcus mutans was detected on all surfaces in all patients, while Streptococcus sobrinus was detected only in three patients (mean relative abundances 7.1% and 0.6%, respectively). Neither species differentiated healthy from diseased sites. Diets of nine of the subjects were scored as high in fermentable carbohydrates (≧2X/day between meals). A direct association between relative abundances of bacteria and carbohydrate consumption was observed among 18 species. High consumption of fermentable carbohydrates and

  13. A randomised clinical study to determine the effect of a toothpaste containing enzymes and proteins on plaque oral microbiome ecology.

    PubMed

    Adams, S E; Arnold, D; Murphy, B; Carroll, P; Green, A K; Smith, A M; Marsh, P D; Chen, T; Marriott, R E; Brading, M G

    2017-02-27

    The numerous species that make up the oral microbiome are now understood to play a key role in establishment and maintenance of oral health. The ability to taxonomically identify community members at the species level is important to elucidating its diversity and association to health and disease. We report the overall ecological effects of using a toothpaste containing enzymes and proteins compared to a control toothpaste on the plaque microbiome. The results reported here demonstrate that a toothpaste containing enzymes and proteins can augment natural salivary defences to promote an overall community shift resulting in an increase in bacteria associated with gum health and a concomitant decrease in those associated with periodontal disease. Statistical analysis shows significant increases in 12 taxa associated with gum health including Neisseria spp. and a significant decrease in 10 taxa associated with periodontal disease including Treponema spp. The results demonstrate that a toothpaste containing enzymes and proteins can significantly shift the ecology of the oral microbiome (at species level) resulting in a community with a stronger association to health.

  14. Transcription Profiling Reveals Potential Mechanisms of Dysbiosis in the Oral Microbiome of Rhesus Macaques with Chronic Untreated SIV Infection

    PubMed Central

    Ocon, Susan; Murphy, Christina; Dang, Angeline T.; Sankaran-Walters, Sumathi; Li, Chin-Shang; Tarara, Ross; Borujerdpur, Niku; Dandekar, Satya; Paster, Bruce J.; George, Michael D.

    2013-01-01

    A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Due to the impracticalities of conducting host-microbe systems-based studies in HIV infected patients, we have evaluated the potential of simian immunodeficiency virus (SIV) infected rhesus macaques to serve as a non-human primate model for oral manifestations of HIV disease. We present the first description of the rhesus macaque oral microbiota and show that a mixture of human commensal bacteria and “macaque versions” of human commensals colonize the tongue dorsum and dental plaque. Our findings indicate that SIV infection results in chronic activation of antiviral and inflammatory responses in the tongue mucosa that may collectively lead to repression of epithelial development and impact the microbiome. In addition, we show that dysbiosis of the lingual microbiome in SIV infection is characterized by outgrowth of Gemella morbillorum that may result from impaired macrophage function. Finally, we provide evidence that the increased capacity of opportunistic pathogens (e.g. E. coli) to colonize the microbiome is associated with reduced production of antimicrobial peptides. PMID:24312248

  15. A randomised clinical study to determine the effect of a toothpaste containing enzymes and proteins on plaque oral microbiome ecology

    PubMed Central

    Adams, S. E.; Arnold, D.; Murphy, B.; Carroll, P.; Green, A. K.; Smith, A. M.; Marsh, P. D.; Chen, T.; Marriott, R. E.; Brading, M. G.

    2017-01-01

    The numerous species that make up the oral microbiome are now understood to play a key role in establishment and maintenance of oral health. The ability to taxonomically identify community members at the species level is important to elucidating its diversity and association to health and disease. We report the overall ecological effects of using a toothpaste containing enzymes and proteins compared to a control toothpaste on the plaque microbiome. The results reported here demonstrate that a toothpaste containing enzymes and proteins can augment natural salivary defences to promote an overall community shift resulting in an increase in bacteria associated with gum health and a concomitant decrease in those associated with periodontal disease. Statistical analysis shows significant increases in 12 taxa associated with gum health including Neisseria spp. and a significant decrease in 10 taxa associated with periodontal disease including Treponema spp. The results demonstrate that a toothpaste containing enzymes and proteins can significantly shift the ecology of the oral microbiome (at species level) resulting in a community with a stronger association to health. PMID:28240240

  16. Preterm delivery and intimacy during pregnancy: interaction between oral, vaginal and intestinal microbiomes.

    PubMed

    Herrera Morban, Demian Arturo

    2015-05-28

    During pregnancy, the microbiomes of the mouth, vagina and intestine undergo changes to adapt to the demands of the body, increasing the relationship and similarity between them. Therefore, it is pertinent to consider a literature review to determine the existence of influencing factors for a specific microbiome, which could also modify others. An example is the case of the mouth microbiome that is dependent on the intimate activities of the female, and therefore could be a factor that relates to preterm labor.

  17. Unearthing carrion beetles' microbiome: characterization of bacterial and fungal hindgut communities across the Silphidae.

    PubMed

    Kaltenpoth, Martin; Steiger, Sandra

    2014-03-01

    Carrion beetles (Coleoptera, Silphidae) are well known for their behaviour of exploiting vertebrate carcasses for nutrition. While species in the subfamily Silphinae feed on large carcasses and on larvae of competing scavengers, the Nicrophorinae are unique in monopolizing, burying and defending small carrion, and providing extensive biparental care. As a first step towards investigating whether microbial symbionts may aid in carcass utilization or defence, we characterized the microbial hindgut communities of six Nicrophorinae (Nicrophorus spp.) and two Silphinae species (Oiceoptoma noveboracense and Necrophila americana) by deep ribosomal RNA amplicon sequencing. Across all species, bacteria in the family Xanthomonadaceae, related to Ignatzschineriao larvae, were consistently common, and several other taxa were present in lower abundance (Enterobacteriales, Burkholderiales, Bacilli, Clostridiales and Bacteroidales). Additionally, the Nicrophorinae showed high numbers of unusual Clostridiales, while the Silphinae were characterized by Flavobacteriales and Rhizobiales (Bartonella sp.). In addition to the complex community of bacterial symbionts, each species of carrion beetle harboured a diversity of ascomycetous yeasts closely related to Yarrowia lipolytica. Despite the high degree of consistency in microbial communities across the Silphidae--specifically within the Nicrophorinae--both the fungal symbiont phylogeny and distance-based bacterial community clustering showed higher congruence with sampling locality than host phylogeny. Thus, despite the possibility for vertical transmission via anal secretions, the distinct hindgut microbiota of the Silphidae appears to be shaped by frequent horizontal exchange or environmental uptake of symbionts. The microbial community profiles, together with information on host ecology and the metabolic potential of related microorganisms, allow us to propose hypotheses on putative roles of the symbionts in carcass degradation

  18. The oral microbiome of patients with axial spondyloarthritis compared to healthy individuals.

    PubMed

    Bisanz, Jordan E; Suppiah, Praema; Thomson, W Murray; Milne, Trudy; Yeoh, Nigel; Nolan, Anita; Ettinger, Grace; Reid, Gregor; Gloor, Gregory B; Burton, Jeremy P; Cullinan, Mary P; Stebbings, Simon M

    2016-01-01

    Background. A loss of mucosal tolerance to the resident microbiome has been postulated in the aetiopathogenesis of spondyloarthritis, thus the purpose of these studies was to investigate microbial communities that colonise the oral cavity of patients with axial spondyloarthritis (AxSpA) and to compare these with microbial profiles of a matched healthy population. Methods. Thirty-nine participants, 17 patients with AxSpA and 22 age and gender-matched disease-free controls were recruited to the study. For patients with AxSpA, disease activity was assessed using the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). All participants underwent a detailed dental examination to assess oral health, including the presence of periodontal disease assessed using probing pocket depth (PPD). Plaque samples were obtained and their bacterial populations were profiled using Ion Torrent sequencing of the V6 region of the 16S rRNA gene. Results.Patients with AxSpA had active disease (BASDAI 4.1 ± 2.1 [mean ± SD]), and a significantly greater prevalence of periodontitis (PPD ≥ 4 mm at ≥4 sites) than controls. Bacterial communities did not differ between the two groups with multiple metrics of α and β diversity considered. Analysis of operational taxonomic units (OTUs) and higher levels of taxonomic assignment did not provide strong evidence of any single taxa associated with AxSpA in the subgingival plaque. Discussion. Although 16S rRNA gene sequencing did not identify specific bacterial profiles associated with AxSpA, there remains the potential for the microbiota to exert functional and metabolic influences in the oral cavity which could be involved in the pathogenesis of AxSpA.

  19. The oral microbiome of patients with axial spondyloarthritis compared to healthy individuals

    PubMed Central

    Bisanz, Jordan E.; Suppiah, Praema; Thomson, W. Murray; Milne, Trudy; Yeoh, Nigel; Nolan, Anita; Ettinger, Grace; Reid, Gregor; Gloor, Gregory B.; Burton, Jeremy P.; Cullinan, Mary P.

    2016-01-01

    Background. A loss of mucosal tolerance to the resident microbiome has been postulated in the aetiopathogenesis of spondyloarthritis, thus the purpose of these studies was to investigate microbial communities that colonise the oral cavity of patients with axial spondyloarthritis (AxSpA) and to compare these with microbial profiles of a matched healthy population. Methods. Thirty-nine participants, 17 patients with AxSpA and 22 age and gender-matched disease-free controls were recruited to the study. For patients with AxSpA, disease activity was assessed using the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). All participants underwent a detailed dental examination to assess oral health, including the presence of periodontal disease assessed using probing pocket depth (PPD). Plaque samples were obtained and their bacterial populations were profiled using Ion Torrent sequencing of the V6 region of the 16S rRNA gene. Results.Patients with AxSpA had active disease (BASDAI 4.1 ± 2.1 [mean ± SD]), and a significantly greater prevalence of periodontitis (PPD ≥ 4 mm at ≥4 sites) than controls. Bacterial communities did not differ between the two groups with multiple metrics of α and β diversity considered. Analysis of operational taxonomic units (OTUs) and higher levels of taxonomic assignment did not provide strong evidence of any single taxa associated with AxSpA in the subgingival plaque. Discussion. Although 16S rRNA gene sequencing did not identify specific bacterial profiles associated with AxSpA, there remains the potential for the microbiota to exert functional and metabolic influences in the oral cavity which could be involved in the pathogenesis of AxSpA. PMID:27330858

  20. Influence of soil type, cultivar and Verticillium dahliae on the structure of the root and rhizosphere soil fungal microbiome of strawberry.

    PubMed

    Nallanchakravarthula, Srivathsa; Mahmood, Shahid; Alström, Sadhna; Finlay, Roger D

    2014-01-01

    Sustainable management of crop productivity and health necessitates improved understanding of the ways in which rhizosphere microbial populations interact with each other, with plant roots and their abiotic environment. In this study we examined the effects of different soils and cultivars, and the presence of a soil-borne fungal pathogen, Verticillium dahliae, on the fungal microbiome of the rhizosphere soil and roots of strawberry plants, using high-throughput pyrosequencing. Fungal communities of the roots of two cultivars, Honeoye and Florence, were statistically distinct from those in the rhizosphere soil of the same plants, with little overlap. Roots of plants growing in two contrasting field soils had high relative abundance of Leptodontidium sp. C2 BESC 319 g whereas rhizosphere soil was characterised by high relative abundance of Trichosporon dulcitum or Cryptococcus terreus, depending upon the soil type. Differences between different cultivars were not as clear. Inoculation with the pathogen V. dahliae had a significant influence on community structure, generally decreasing the number of rhizosphere soil- and root-inhabiting fungi. Leptodontidium sp. C2 BESC 319 g was the dominant fungus responding positively to inoculation with V. dahliae. The results suggest that 1) plant roots select microorganisms from the wider rhizosphere pool, 2) that both rhizosphere soil and root inhabiting fungal communities are influenced by V. dahliae and 3) that soil type has a stronger influence on both of these communities than cultivar.

  1. Influence of Soil Type, Cultivar and Verticillium dahliae on the Structure of the Root and Rhizosphere Soil Fungal Microbiome of Strawberry

    PubMed Central

    Nallanchakravarthula, Srivathsa; Mahmood, Shahid; Alström, Sadhna; Finlay, Roger D.

    2014-01-01

    Sustainable management of crop productivity and health necessitates improved understanding of the ways in which rhizosphere microbial populations interact with each other, with plant roots and their abiotic environment. In this study we examined the effects of different soils and cultivars, and the presence of a soil-borne fungal pathogen, Verticillium dahliae, on the fungal microbiome of the rhizosphere soil and roots of strawberry plants, using high-throughput pyrosequencing. Fungal communities of the roots of two cultivars, Honeoye and Florence, were statistically distinct from those in the rhizosphere soil of the same plants, with little overlap. Roots of plants growing in two contrasting field soils had high relative abundance of Leptodontidium sp. C2 BESC 319 g whereas rhizosphere soil was characterised by high relative abundance of Trichosporon dulcitum or Cryptococcus terreus, depending upon the soil type. Differences between different cultivars were not as clear. Inoculation with the pathogen V. dahliae had a significant influence on community structure, generally decreasing the number of rhizosphere soil- and root-inhabiting fungi. Leptodontidium sp. C2 BESC 319 g was the dominant fungus responding positively to inoculation with V. dahliae. The results suggest that 1) plant roots select microorganisms from the wider rhizosphere pool, 2) that both rhizosphere soil and root inhabiting fungal communities are influenced by V. dahliae and 3) that soil type has a stronger influence on both of these communities than cultivar. PMID:25347069

  2. Global Analysis of the Fungal Microbiome in Cystic Fibrosis Patients Reveals Loss of Function of the Transcriptional Repressor Nrg1 as a Mechanism of Pathogen Adaptation

    PubMed Central

    Kim, Sang Hu; Clark, Shawn T.; Surendra, Anuradha; Copeland, Julia K.; Wang, Pauline W.; Ammar, Ron; Collins, Cathy; Tullis, D. Elizabeth; Nislow, Corey; Hwang, David M.; Guttman, David S.; Cowen, Leah E.

    2015-01-01

    The microbiome shapes diverse facets of human biology and disease, with the importance of fungi only beginning to be appreciated. Microbial communities infiltrate diverse anatomical sites as with the respiratory tract of healthy humans and those with diseases such as cystic fibrosis, where chronic colonization and infection lead to clinical decline. Although fungi are frequently recovered from cystic fibrosis patient sputum samples and have been associated with deterioration of lung function, understanding of species and population dynamics remains in its infancy. Here, we coupled high-throughput sequencing of the ribosomal RNA internal transcribed spacer 1 (ITS1) with phenotypic and genotypic analyses of fungi from 89 sputum samples from 28 cystic fibrosis patients. Fungal communities defined by sequencing were concordant with those defined by culture-based analyses of 1,603 isolates from the same samples. Different patients harbored distinct fungal communities. There were detectable trends, however, including colonization with Candida and Aspergillus species, which was not perturbed by clinical exacerbation or treatment. We identified considerable inter- and intra-species phenotypic variation in traits important for host adaptation, including antifungal drug resistance and morphogenesis. While variation in drug resistance was largely between species, striking variation in morphogenesis emerged within Candida species. Filamentation was uncoupled from inducing cues in 28 Candida isolates recovered from six patients. The filamentous isolates were resistant to the filamentation-repressive effects of Pseudomonas aeruginosa, implicating inter-kingdom interactions as the selective force. Genome sequencing revealed that all but one of the filamentous isolates harbored mutations in the transcriptional repressor NRG1; such mutations were necessary and sufficient for the filamentous phenotype. Six independent nrg1 mutations arose in Candida isolates from different patients

  3. Global Analysis of the Fungal Microbiome in Cystic Fibrosis Patients Reveals Loss of Function of the Transcriptional Repressor Nrg1 as a Mechanism of Pathogen Adaptation.

    PubMed

    Kim, Sang Hu; Clark, Shawn T; Surendra, Anuradha; Copeland, Julia K; Wang, Pauline W; Ammar, Ron; Collins, Cathy; Tullis, D Elizabeth; Nislow, Corey; Hwang, David M; Guttman, David S; Cowen, Leah E

    2015-11-01

    The microbiome shapes diverse facets of human biology and disease, with the importance of fungi only beginning to be appreciated. Microbial communities infiltrate diverse anatomical sites as with the respiratory tract of healthy humans and those with diseases such as cystic fibrosis, where chronic colonization and infection lead to clinical decline. Although fungi are frequently recovered from cystic fibrosis patient sputum samples and have been associated with deterioration of lung function, understanding of species and population dynamics remains in its infancy. Here, we coupled high-throughput sequencing of the ribosomal RNA internal transcribed spacer 1 (ITS1) with phenotypic and genotypic analyses of fungi from 89 sputum samples from 28 cystic fibrosis patients. Fungal communities defined by sequencing were concordant with those defined by culture-based analyses of 1,603 isolates from the same samples. Different patients harbored distinct fungal communities. There were detectable trends, however, including colonization with Candida and Aspergillus species, which was not perturbed by clinical exacerbation or treatment. We identified considerable inter- and intra-species phenotypic variation in traits important for host adaptation, including antifungal drug resistance and morphogenesis. While variation in drug resistance was largely between species, striking variation in morphogenesis emerged within Candida species. Filamentation was uncoupled from inducing cues in 28 Candida isolates recovered from six patients. The filamentous isolates were resistant to the filamentation-repressive effects of Pseudomonas aeruginosa, implicating inter-kingdom interactions as the selective force. Genome sequencing revealed that all but one of the filamentous isolates harbored mutations in the transcriptional repressor NRG1; such mutations were necessary and sufficient for the filamentous phenotype. Six independent nrg1 mutations arose in Candida isolates from different patients

  4. Treatment of oral fungal infections using antimicrobial photodynamic therapy: a systematic review of currently available evidence.

    PubMed

    Javed, Fawad; Samaranayake, Lakshman P; Romanos, Georgios E

    2014-05-01

    The aim was to review the efficacy of antimicrobial photodynamic therapy (PDT) in the treatment of oral fungal infections. To address the focused question "Should PDT be considered a possible treatment regimen for oral fungal infections?" PubMed/Medline and Google-Scholar databases were searched from 1997 up to March 2014 using various combinations of the following key words: "Candida albicans"; "Candidiasis"; "Candidosis"; "denture stomatitis"; "oral" and "photodynamic therapy". Original studies, experimental studies and articles published solely in English language were sought. Letters to the editor, historic reviews and unpublished data were excluded. Pattern of the present literature review was customized to mainly summarize the pertinent information. Fifteen studies (3 clinical and 12 experimental) were included. All studies reported antimicrobial PDT to be an effective antifungal treatment strategy. One study reported PDT and azole therapy to be equally effective in the treatment of oral fungal infections. Methylene blue, toluidine blue and porphyrin derivative were the most commonly used photosensitizers. The laser wavelengths and power output ranged between ∼455 nm-660 nm and 30 mW-400 mW. The energy fluence ranged between 26-245 J cm(-2) and the duration or irradiation ranged between 10 seconds and 26 minutes. Clinical effectiveness of antimicrobial PDT as a potent therapeutic strategy for oral fungal infections requires further investigations.

  5. From focal sepsis to periodontal medicine: a century of exploring the role of the oral microbiome in systemic disease.

    PubMed

    Kumar, Purnima S

    2017-01-15

    The oral microbiome is established within a few minutes after birth and consists of stable multi-species communities that engage in a dynamic equilibrium with the host immune system. Dental caries, endodontic infections and periodontal diseases are bacterially driven diseases that are caused by dysbiotic microbiomes. Over a century ago, the focal infection theory implicated these infections in the aetiology of several systemic diseases, ranging from arthritis to neurodegenerative diseases. However, a lack of concrete evidence, combined with the urgency with which clinicians embraced this approach without regard for appropriate case selection, led to its demise within 30 years. In the last decade of the 20th century, the concept of periodontal medicine was introduced to explain the correlations that were being observed between periodontitis and cardiovascular disease, rheumatoid arthritis, Alzheimer's disease, pulmonary disease, pre-term delivery of low birth weight infants and metabolic disease. It was proposed that periodontal pathobionts played a causal role in the initiating or exacerbating certain diseases either by direct invasion or by stimulating a florid immune-inflammatory response that extended into the systemic circulation. This review will examine the strength of current evidence in establishing a causal link between oral pathobionts and systemic disease. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  6. The Effect of Fixed Orthodontic Appliances and Fluoride Mouthwash on the Oral Microbiome of Adolescents – A Randomized Controlled Clinical Trial

    PubMed Central

    Buijs, Mark J.; Elyassi, Yassaman; van der Veen, Monique H.; Crielaard, Wim; ten Cate, Jacob M.; Zaura, Egija

    2015-01-01

    While the aesthetic effect of orthodontic treatment is clear, the knowledge on how it influences the oral microbiota and the consequential effects on oral health are limited. In this randomized controlled clinical trial we investigated the changes introduced in the oral ecosystem, during and after orthodontic treatment with fixed appliances in combination with or without a fluoride mouthwash, of 10–16.8 year old individuals (N = 91). We followed several clinical parameters in time, in combination with microbiome changes using next-generation sequencing of the bacterial 16S rRNA gene. During the course of our study, the oral microbial community displayed remarkable resilience towards the disturbances it was presented with. The effects of the fluoride mouthwash on the microbial composition were trivial. More pronounced microbial changes were related to gingival health status, orthodontic treatment and time. Periodontal pathogens (e.g. Selenomonas and Porphyromonas) were highest in abundance during the orthodontic treatment, while the health associated Streptococcus, Rothia and Haemophilus gained abundance towards the end and after the orthodontic treatment. Only minor compositional changes remained in the oral microbiome after the end of treatment. We conclude that, provided proper oral hygiene is maintained, changes in the oral microbiome composition resulting from orthodontic treatment are minimal and do not negatively affect oral health. PMID:26332408

  7. A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome

    PubMed Central

    Warinner, Christina; Speller, Camilla; Collins, Matthew J.

    2015-01-01

    The field of palaeomicrobiology is dramatically expanding thanks to recent advances in high-throughput biomolecular sequencing, which allows unprecedented access to the evolutionary history and ecology of human-associated and environmental microbes. Recently, human dental calculus has been shown to be an abundant, nearly ubiquitous, and long-term reservoir of the ancient oral microbiome, preserving not only microbial and host biomolecules but also dietary and environmental debris. Modern investigations of native human microbiota have demonstrated that the human microbiome plays a central role in health and chronic disease, raising questions about changes in microbial ecology, diversity and function through time. This paper explores the current state of ancient oral microbiome research and discusses successful applications, methodological challenges and future possibilities in elucidating the intimate evolutionary relationship between humans and their microbes. PMID:25487328

  8. N-acetylglucosamine increases symptoms and fungal burden in a murine model of oral candidiasis.

    PubMed

    Ishijima, Sanae A; Hayama, Kazumi; Takahashi, Miki; Holmes, Ann R; Cannon, Richard D; Abe, Shigeru

    2012-04-01

    The amino sugar N-acetylglucosamine (GlcNAc) is an in vitro inducer of the hyphal mode of growth of the opportunistic pathogen Candida albicans. The development of hyphae by C. albicans is considered to contribute to the pathogenesis of mucosal oral candidiasis. GlcNAc is also a commonly used nutritional supplement for the self-treatment of conditions such as arthritis. To date, no study has investigated whether ingestion of GlcNAc has an effect on the in vivo growth of C. albicans or the pathogenesis of a C. albicans infection. Using a murine model of oral candidiasis, we have found that administration of GlcNAc, but not glucose, increased oral symptoms of candidiasis and fungal burden. Groups of mice were given GlcNAc in either water or in a viscous carrier, i.e., 1% methylcellulose. There was a dose-dependent relationship between GlcNAc concentration and the severity of oral symptoms. Mice given the highest dose of GlcNAc, 45.2 mM, also showed a significant increase in fungal burden, and increased histological evidence of infection compared to controls given water alone. We propose that ingestion of GlcNAc, as a nutritional supplement, may have an impact on oral health in people susceptible to oral candidiasis.

  9. Effect of denture wearing on occurrence of fungal Isolates in the oral cavity: A pilot study

    PubMed Central

    Singh, Varsha A.; Garg, Sandeep K.; Mittal, Sanjeev; Chahal, Gagandeep K.

    2012-01-01

    Objectives: An attempt was made to evaluate effect of denture wearing on occurrence of fungal isolates in the oral cavity before and after complete denture insertion. Method: Twenty five completely edentulous patients were selected; swab samples were collected intraorally before fabrication of complete dentures from labial vestibular area and after complete denture fabrication (one and four days after denture insertion). Further these samples were inoculated and incubated. Results: In nineteen patients no isolate of fungus before denture insertion as well as 4 days after denture insertion was found. In two subject results were false positive (contamination from environment), and in four patients there was increase in growth but not much significant increase of growth of fungal isolates was seen (mild growth of fungus only after denture insertion). One of the major finding of this study was overall occurrence of fungal isolates (before and after denture insertion) in the oral cavity were not significant. Key words:Fungal isolates, denture stomatitis, denture, Candida, insertion. PMID:24558540

  10. Effects of combined oral contraceptives, depot medroxyprogesterone acetate and the levonorgestrel-releasing intrauterine system on the vaginal microbiome.

    PubMed

    Brooks, J Paul; Edwards, David J; Blithe, Diana L; Fettweis, Jennifer M; Serrano, Myrna G; Sheth, Nihar U; Strauss, Jerome F; Buck, Gregory A; Jefferson, Kimberly K

    2017-04-01

    Prior studies suggest that the composition of the vaginal microbiome may positively or negatively affect susceptibility to sexually transmitted infections (STIs) and bacterial vaginosis (BV). Some female hormonal contraceptive methods also appear to positively or negatively influence STI transmission and BV. Therefore, changes in the vaginal microbiome that are associated with different contraceptive methods may explain, in part, effects on STI transmission and BV. We performed a retrospective study of 16S rRNA gene survey data of vaginal samples from a subset of participants from the Human Vaginal Microbiome Project at Virginia Commonwealth University. The subset included 682 women who reported using a single form of birth control that was condoms, combined oral contraceptives (COCs), depot medroxyprogesterone acetate (DMPA) or the levonorgestrel-releasing intrauterine system (LNG-IUS). Women using COCs [adjusted odds ratio (aOR) 0.29, 95% confidence interval (CI) 0.13-0.64] and DMPA (aOR 0.34, 95% CI 0.13-0.89), but not LNG-IUS (aOR 1.55, 95% CI 0.72-3.35), were less likely to be colonized by BV-associated bacteria relative to women who used condoms. Women using COCs (aOR 1.94, 95% CI 1.25-3.02) were more likely to be colonized by beneficial H2O2-producing Lactobacillus species compared with women using condoms, while women using DMPA (aOR 1.09, 95% CI 0.63-1.86) and LNG-IUS (aOR 0.74, 95% CI 0.48-1.15) were not. Use of COCs is significantly associated with increased vaginal colonization by healthy lactobacilli and reduced BV-associated taxa. COC use may positively influence gynecologic health through an increase in healthy lactobacilli and a decrease in BV-associated bacterial taxa. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Towards microbiome transplant as a therapy for periodontitis: an exploratory study of periodontitis microbial signature contrasted by oral health, caries and edentulism.

    PubMed

    Pozhitkov, Alex E; Leroux, Brian G; Randolph, Timothy W; Beikler, Thomas; Flemmig, Thomas F; Noble, Peter A

    2015-10-14

    Conventional periodontal therapy aims at controlling supra- and subgingival biofilms. Although periodontal therapy was shown to improve periodontal health, it does not completely arrest the disease. Almost all subjects compliant with periodontal maintenance continue to experience progressive clinical attachment loss and a fraction of them loses teeth. An oral microbial transplant may be a new alternative for treating periodontitis (inspired by fecal transplant). First, it must be established that microbiomes of oral health and periodontitis are distinct. In that case, the health-associated microbiome could be introduced into the oral cavity of periodontitis patients. This relates to the goals of our study: (i) to assess if microbial communities of the entire oral cavity of subjects with periodontitis were different from or oral health contrasted by microbiotas of caries and edentulism patients; (ii) to test in vitro if safe concentration of sodium hypochlorite could be used for initial eradication of the original oral microbiota followed by a safe neutralization of the hypochlorite prior transplantation. Sixteen systemically healthy white adults with clinical signs of one of the following oral conditions were enrolled: periodontitis, established caries, edentulism, and oral health. Oral biofilm samples were collected from sub- and supra-gingival sites, and oral mucosae. DNA was extracted and 16S rRNA genes were amplified. Amplicons from the same patient were pooled, sequenced and quantified. Volunteer's oral plaque was treated with saline, 16 mM NaOCl and NaOCl neutralized by ascorbate buffer followed by plating on blood agar. Ordination plots of rRNA gene abundances revealed distinct groupings for the oral microbiomes of subjects with periodontitis, edentulism, or oral health. The oral microbiome in subjects with periodontitis showed the greatest diversity harboring 29 bacterial species at significantly higher abundance compared to subjects with the other

  12. Effects of Specimen Collection Methodologies and Storage Conditions on the Short-Term Stability of Oral Microbiome Taxonomy

    PubMed Central

    Luo, Ting; Srinivasan, Usha; Ramadugu, Kirtana; Shedden, Kerby A.; Neiswanger, Katherine; Trumble, Erika; Li, Jiean J.; McNeil, Daniel W.; Crout, Richard J.; Weyant, Robert J.; Marazita, Mary L.

    2016-01-01

    ABSTRACT Community profiling of the oral microbiome requires the recovery of quality sequences in order to accurately describe microbial community structure and composition. Our objective was to assess the effects of specimen collection method, storage medium, and storage conditions on the relative abundance of taxa in saliva and plaque identified using 16S rRNA genes. We also assessed short-term changes in taxon composition and relative abundance and compared the salivary and dental plaque communities in children and adults. Over a 2-week period, four successive saliva and dental plaque specimens were collected from four adults with no dental decay (108 samples), and two successive specimens were collected from six children with four or more erupted teeth (48 samples). There were minimal differences in community composition at the phylum and operational taxonomic unit levels between dental plaque collection using a scaler and collection using a CytoSoft brush. Plaque samples stored in OMNIgene medium showed higher within-sample Shannon diversity, were compositionally different, and were more similar to each other than plaque stored in liquid dental transport medium. Saliva samples stored in OMNIgene recovered similar communities for at least a week following storage at room temperature. However, the microbial communities recovered from plaque and saliva stored in OMNIgene were significantly different in composition from their counterparts stored in liquid dental transport medium. Dental plaque communities collected from the same tooth type over four successive visits from the same adult did not significantly differ in structure or composition. IMPORTANCE Large-scale epidemiologic studies require collection over time and space, often with multiple teams collecting, storing, and processing data. Therefore, it is essential to understand how sensitive study results are to modest changes in collection and storage protocols that may occur with variation in personnel

  13. Effects of Specimen Collection Methodologies and Storage Conditions on the Short-Term Stability of Oral Microbiome Taxonomy.

    PubMed

    Luo, Ting; Srinivasan, Usha; Ramadugu, Kirtana; Shedden, Kerby A; Neiswanger, Katherine; Trumble, Erika; Li, Jiean J; McNeil, Daniel W; Crout, Richard J; Weyant, Robert J; Marazita, Mary L; Foxman, Betsy

    2016-09-15

    Community profiling of the oral microbiome requires the recovery of quality sequences in order to accurately describe microbial community structure and composition. Our objective was to assess the effects of specimen collection method, storage medium, and storage conditions on the relative abundance of taxa in saliva and plaque identified using 16S rRNA genes. We also assessed short-term changes in taxon composition and relative abundance and compared the salivary and dental plaque communities in children and adults. Over a 2-week period, four successive saliva and dental plaque specimens were collected from four adults with no dental decay (108 samples), and two successive specimens were collected from six children with four or more erupted teeth (48 samples). There were minimal differences in community composition at the phylum and operational taxonomic unit levels between dental plaque collection using a scaler and collection using a CytoSoft brush. Plaque samples stored in OMNIgene medium showed higher within-sample Shannon diversity, were compositionally different, and were more similar to each other than plaque stored in liquid dental transport medium. Saliva samples stored in OMNIgene recovered similar communities for at least a week following storage at room temperature. However, the microbial communities recovered from plaque and saliva stored in OMNIgene were significantly different in composition from their counterparts stored in liquid dental transport medium. Dental plaque communities collected from the same tooth type over four successive visits from the same adult did not significantly differ in structure or composition. Large-scale epidemiologic studies require collection over time and space, often with multiple teams collecting, storing, and processing data. Therefore, it is essential to understand how sensitive study results are to modest changes in collection and storage protocols that may occur with variation in personnel, resources available at

  14. Metabolic Fingerprints from the Human Oral Microbiome Reveal a Vast Knowledge Gap of Secreted Small Peptidic Molecules.

    PubMed

    Edlund, Anna; Garg, Neha; Mohimani, Hosein; Gurevich, Alexey; He, Xuesong; Shi, Wenyuan; Dorrestein, Pieter C; McLean, Jeffrey S

    2017-01-01

    Recent research indicates that the human microbiota play key roles in maintaining health by providing essential nutrients, providing immune education, and preventing pathogen expansion. Processes underlying the transition from a healthy human microbiome to a disease-associated microbiome are poorly understood, partially because of the potential influences from a wide diversity of bacterium-derived compounds that are illy defined. Here, we present the analysis of peptidic small molecules (SMs) secreted from bacteria and viewed from a temporal perspective. Through comparative analysis of mass spectral profiles from a collection of cultured oral isolates and an established in vitro multispecies oral community, we found that the production of SMs both delineates a temporal expression pattern and allows discrimination between bacterial isolates at the species level. Importantly, the majority of the identified molecules were of unknown identity, and only ~2.2% could be annotated and classified. The catalogue of bacterially produced SMs we obtained in this study reveals an undiscovered molecular world for which compound isolation and ecosystem testing will facilitate a better understanding of their roles in human health and disease. IMPORTANCE Metabolomics is the ultimate tool for studies of microbial functions under any specific set of environmental conditions (D. S. Wishart, Nat Rev Drug Discov 45:473-484, 2016, https://doi.org/10.1038/nrd.2016.32). This is a great advance over studying genes alone, which only inform about metabolic potential. Approximately 25,000 compounds have been chemically characterized thus far; however, the richness of metabolites such as SMs has been estimated to be as high as 1 × 10(30) in the biosphere (K. Garber, Nat Biotechnol 33:228-231, 2015, https://doi.org/10.1038/nbt.3161). Our classical, one-at-a-time activity-guided approach to compound identification continues to find the same known compounds and is also incredibly tedious, which

  15. The Oral Microbiota: Living with a Permanent Guest

    PubMed Central

    Avila, Maria

    2009-01-01

    The oral cavity of healthy individuals contains hundreds of different bacterial, viral, and fungal species. Many of these can associate to form biofilms, which are resistant to mechanical stress or antibiotic treatment. Most are also commensal species, but they can become pathogenic in responses to changes in the environment or other triggers in the oral cavity, including the quality of an individual's personal hygiene. The complexity of the oral microbiome is being characterized through the newly developed tools of metagenomics. How the microbiome of the oral cavity contributes to health and disease is attracting the interest of a growing number of cell biologists, microbiologists, and immunologists. PMID:19485767

  16. The gut and oral microbiome in HIV disease: a workshop report.

    PubMed

    Moyes, D L; Saxena, D; John, M D; Malamud, D

    2016-04-01

    Recent years have seen a massive expansion in our understanding of how we interact with our microbial colonists. The development of new, rapid sequencing techniques such as pyrosequencing and other next-generation sequencing systems have enabled us to begin to characterise the constituents of our diverse microbial communities, revealing the astonishing genetic richness that is our microbiome. Despite this, our ignorance of how these communities change over the course of an HIV infection is profound. Whilst some steps have been made to characterise the HIV microbiome at selected sites, these reports are still limited and much remains to be done. It has become apparent, however, that host-microbiota interactions are perturbed during HIV infections, with microbial translocation of potential pathogens linked to a variety of different HIV complications, including more rapid progression of disease. The use of probiotics and prebiotics has been investigated as treatments to alleviate symptoms for a variety of conditions, and is now being proposed for the treatment of symptoms associated with HIV. However, this is a new area of investigations and many questions remain unanswered. What we know about both of these topics is a drop in the ocean compared with what we need to know. In this article, we report on a workshop where these two major under-investigated research areas were presented, and future directions explored and discussed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. The microbiome and the lung.

    PubMed

    Cui, Lijia; Morris, Alison; Huang, Laurence; Beck, James M; Twigg, Homer L; von Mutius, Erika; Ghedin, Elodie

    2014-08-01

    Investigation of the human microbiome has become an important field of research facilitated by advances in sequencing technologies. The lung, which is one of the latest body sites being explored for the characterization of human-associated microbial communities, has a microbiome that is suspected to play a substantial role in health and disease. In this review, we provide an overview of the basics of microbiome studies. Challenges in the study of the lung microbiome are highlighted, and further attention is called to the optimization and standardization of methodologies to explore the role of the lung microbiome in health and disease. We also provide examples of lung microbial communities associated with disease or infection status and discuss the role of fungal species in the lung. Finally, we review studies demonstrating that the environmental microbiome can influence lung health and disease, such as the finding that the diversity of microbial exposure correlates inversely with the development of childhood asthma.

  18. Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection

    PubMed Central

    Yang, Zhiwen; Chen, Meiwan; Yang, Muhua; Chen, Jian; Fang, Weijun; Xu, Ping

    2014-01-01

    The oral administration of amphotericin B (AmB) has a major drawback of poor bioavailability. The aim of this study was to investigate the potential of glyceryl monoolein (GMO) cubosomes as lipid nanocarriers to improve the oral efficacy of AmB. Antifungal efficacy was determined in vivo in rats after oral administration, to investigate its therapeutic use. The human colon adenocarcinoma cell line (Caco-2) was used in vitro to evaluate transport across a model of the intestinal barrier. In vivo antifungal results showed that AmB, loaded in GMO cubosomes, could significantly enhance oral efficacy, compared against Fungizone®, and that during a 2 day course of dosage 10 mg/kg the drug reached effective therapeutic concentrations in renal tissue for treating fungal infections. In the Caco-2 transport studies, GMO cubosomes resulted in a significantly larger amount of AmB being transported into Caco-2 cells, via both clathrin- and caveolae-mediated endocytosis, but not macropinocytosis. These results suggest that GMO cubosomes, as lipid nanovectors, could facilitate the oral delivery of AmB. PMID:24421641

  19. Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection.

    PubMed

    Yang, Zhiwen; Chen, Meiwan; Yang, Muhua; Chen, Jian; Fang, Weijun; Xu, Ping

    2014-01-01

    The oral administration of amphotericin B (AmB) has a major drawback of poor bioavailability. The aim of this study was to investigate the potential of glyceryl monoolein (GMO) cubosomes as lipid nanocarriers to improve the oral efficacy of AmB. Antifungal efficacy was determined in vivo in rats after oral administration, to investigate its therapeutic use. The human colon adenocarcinoma cell line (Caco-2) was used in vitro to evaluate transport across a model of the intestinal barrier. In vivo antifungal results showed that AmB, loaded in GMO cubosomes, could significantly enhance oral efficacy, compared against Fungizone, and that during a 2 day course of dosage 10 mg/kg the drug reached effective therapeutic concentrations in renal tissue for treating fungal infections. In the Caco-2 transport studies, GMO cubosomes resulted in a significantly larger amount of AmB being transported into Caco-2 cells, via both clathrin- and caveolae-mediated endocytosis, but not macropinocytosis. These results suggest that GMO cubosomes, as lipid nanovectors, could facilitate the oral delivery of AmB.

  20. The personal human oral microbiome obscures the effects of treatment on periodontal disease.

    PubMed

    Schwarzberg, Karen; Le, Rosalin; Bharti, Balambal; Lindsay, Suzanne; Casaburi, Giorgio; Salvatore, Francesco; Saber, Mohamed H; Alonaizan, Faisal; Slots, Jørgen; Gottlieb, Roberta A; Caporaso, J Gregory; Kelley, Scott T

    2014-01-01

    Periodontitis is a progressive disease of the periodontium with a complex, polymicrobial etiology. Recent Next-Generation Sequencing (NGS) studies of the microbial diversity associated with periodontitis have revealed strong, community-level differences in bacterial assemblages associated with healthy or diseased periodontal sites. In this study, we used NGS approaches to characterize changes in periodontal pocket bacterial diversity after standard periodontal treatment. Despite consistent changes in the abundance of certain taxa in individuals whose condition improved with treatment, post-treatment samples retained the highest similarity to pre-treatment samples from the same individual. Deeper phylogenetic analysis of periodontal pathogen-containing genera Prevotella and Fusobacterium found both unexpected diversity and differential treatment response among species. Our results highlight how understanding interpersonal variability among microbiomes is necessary for determining how polymicrobial diseases respond to treatment and disturbance.

  1. The Personal Human Oral Microbiome Obscures the Effects of Treatment on Periodontal Disease

    PubMed Central

    Schwarzberg, Karen; Le, Rosalin; Bharti, Balambal; Lindsay, Suzanne; Casaburi, Giorgio; Salvatore, Francesco; Saber, Mohamed H.; Alonaizan, Faisal; Slots, Jørgen; Gottlieb, Roberta A.; Caporaso, J. Gregory; Kelley, Scott T.

    2014-01-01

    Periodontitis is a progressive disease of the periodontium with a complex, polymicrobial etiology. Recent Next-Generation Sequencing (NGS) studies of the microbial diversity associated with periodontitis have revealed strong, community-level differences in bacterial assemblages associated with healthy or diseased periodontal sites. In this study, we used NGS approaches to characterize changes in periodontal pocket bacterial diversity after standard periodontal treatment. Despite consistent changes in the abundance of certain taxa in individuals whose condition improved with treatment, post-treatment samples retained the highest similarity to pre-treatment samples from the same individual. Deeper phylogenetic analysis of periodontal pathogen-containing genera Prevotella and Fusobacterium found both unexpected diversity and differential treatment response among species. Our results highlight how understanding interpersonal variability among microbiomes is necessary for determining how polymicrobial diseases respond to treatment and disturbance. PMID:24489772

  2. Sustained Release of a Novel Anti-Quorum-Sensing Agent against Oral Fungal Biofilms

    PubMed Central

    Feldman, Mark; Shenderovich, Julia; Al-Quntar, Abed Al Aziz; Friedman, Michael

    2015-01-01

    Thiazolidinedione-8 (S-8) has recently been identified as a potential anti-quorum-sensing/antibiofilm agent against bacteria and fungi. Based on these results, we investigated the possibility of incorporating S-8 in a sustained-release membrane (SRM) to increase its pharmaceutical potential against Candida albicans biofilm. We demonstrated that SRM containing S-8 inhibits fungal biofilm formation in a time-dependent manner for 72 h, due to prolonged release of S-8. Moreover, the SRM effectively delivered the agent in its active form to locations outside the membrane reservoir. In addition, eradication of mature biofilm by the SRM containing S-8 was also significant. Of note, S-8-containing SRM affected the characteristics of mature C. albicans biofilm, such as thickness, exopolysaccharide (EPS) production, and morphogenesis of fungal cells. The concept of using an antibiofilm agent with no antifungal activity incorporated into a sustained-release delivery system is new in medicine and dentistry. This concept of an SRM containing a quorum-sensing quencher with an antibiofilm effect could pave the way for combating oral fungal infectious diseases. PMID:25645835

  3. Variation in fungal microbiome (mycobiome) and aflatoxins during simulated storage of in-shell peanuts and peanut kernels

    PubMed Central

    Xing, Fuguo; Ding, Ning; Liu, Xiao; Selvaraj, Jonathan Nimal; Wang, Limin; Zhou, Lu; Zhao, Yueju; Wang, Yan; Liu, Yang

    2016-01-01

    Internal transcribed spacer 2 (ITS2) sequencing was used to characterize the peanut mycobiome during 90 days storage at five conditions. The fungal diversity in in-shell peanuts was higher with 110 operational taxonomic units (OTUs) and 41 genera than peanut kernels (91 OTUs and 37 genera). This means that the micro-environment in shell is more suitable for maintaining fungal diversity. At 20–30 d, Rhizopus, Eurotium and Wallemia were predominant in in-shell peanuts. In peanut kernels, Rhizopus (>30%) and Eurotium (>20%) were predominant at 10–20 d and 30 d, respectively. The relative abundances of Rhizopus, Eurotium and Wallemia were higher than Aspergillus, because they were xerophilic and grew well on substrates with low water activity (aw). During growth, they released metabolic water, thereby favoring the growth of Aspergillus. Therefore, from 30 to 90 d, the relative abundance of Aspergillus increased while that of Rhizopus, Eurotium and Wallemia decreased. Principal Coordinate Analysis (PCoA) revealed that peanuts stored for 60–90 days and for 10–30 days clustered differently from each other. Due to low aw values (0.34–0.72) and low levels of A. flavus, nine of 51 samples were contaminated with aflatoxins. PMID:27180614

  4. Variation in fungal microbiome (mycobiome) and aflatoxins during simulated storage of in-shell peanuts and peanut kernels.

    PubMed

    Xing, Fuguo; Ding, Ning; Liu, Xiao; Selvaraj, Jonathan Nimal; Wang, Limin; Zhou, Lu; Zhao, Yueju; Wang, Yan; Liu, Yang

    2016-05-16

    Internal transcribed spacer 2 (ITS2) sequencing was used to characterize the peanut mycobiome during 90 days storage at five conditions. The fungal diversity in in-shell peanuts was higher with 110 operational taxonomic units (OTUs) and 41 genera than peanut kernels (91 OTUs and 37 genera). This means that the micro-environment in shell is more suitable for maintaining fungal diversity. At 20-30 d, Rhizopus, Eurotium and Wallemia were predominant in in-shell peanuts. In peanut kernels, Rhizopus (>30%) and Eurotium (>20%) were predominant at 10-20 d and 30 d, respectively. The relative abundances of Rhizopus, Eurotium and Wallemia were higher than Aspergillus, because they were xerophilic and grew well on substrates with low water activity (aw). During growth, they released metabolic water, thereby favoring the growth of Aspergillus. Therefore, from 30 to 90 d, the relative abundance of Aspergillus increased while that of Rhizopus, Eurotium and Wallemia decreased. Principal Coordinate Analysis (PCoA) revealed that peanuts stored for 60-90 days and for 10-30 days clustered differently from each other. Due to low aw values (0.34-0.72) and low levels of A. flavus, nine of 51 samples were contaminated with aflatoxins.

  5. Sensitive responders among bacterial and fungal microbiome to pyrogenic organic matter (biochar) addition differed greatly between rhizosphere and bulk soils

    PubMed Central

    Dai, Zhongmin; Hu, Jiajie; Xu, Xingkun; Zhang, Lujun; Brookes, Philip C.; He, Yan; Xu, Jianming

    2016-01-01

    Sensitive responses among bacterial and fungal communities to pyrogenic organic matter (PyOM) (biochar) addition in rhizosphere and bulk soils are poorly understood. We conducted a pot experiment with manure and straw PyOMs added to an acidic paddy soil, and identified the sensitive “responders” whose relative abundance was significantly increased/decreased among the whole microbial community following PyOM addition. Results showed that PyOMs significantly (p < 0.05) increased root growth, and simultaneously changed soil chemical parameters by decreasing soil acidity and increasing biogenic resource. PyOM-induced acidity and biogenic resource co-determined bacterial responder community structure whereas biogenic resource was the dominant parameter structuring fungal responder community. Both number and proportion of responders in rhizosphere soil was larger than in bulk soil, regardless of PyOM types and microbial domains, indicating the microbial community in rhizosphere soil was sensitive to PyOM addition than bulk soil. The significant increased root biomass and length caused by PyOM addition, associated with physiological processes, e.g. C exudates secretion, likely favored more sensitive responders in rhizosphere soil than in bulk soil. Our study identified the responders at fine taxonomic resolution in PyOM amended soils, improved the understanding of their ecological phenomena associated with PyOM addition, and examined their interactions with plant roots. PMID:27824111

  6. Variability of indoor fungal microbiome of green and non-green low-income homes in Cincinnati, Ohio.

    PubMed

    Coombs, Kanistha; Taft, Diana; Ward, Doyle V; Green, Brett J; Chew, Ginger L; Shamsaei, Behrouz; Meller, Jaroslaw; Indugula, Reshmi; Reponen, Tiina

    2017-08-10

    "Green" housing is designed to use low-impact materials, increase energy efficiency and improve occupant health. However, little is known about the indoor mycobiome of green homes. The current study is a subset of a multicenter study that aims to investigate the indoor environment of green homes and the respiratory health of asthmatic children. In the current study, the mycobiome in air, bed dust and floor dust was compared between green (study site) and non-green (control site), low-income homes in Cincinnati, Ohio. The samples were collected at baseline (within four months following renovation), and 12months after the baseline at the study site. Parallel sample collection was conducted in non-green control homes. Air samples were collected by PM2.5 samplers over 5-days. Bed and floor dust samples were vacuumed after the air sampling was completed. The DNA sample extracts were analyzed using ITS amplicon sequencing. Analysis indicated that there was no clear trend in the fungal communities between green and non-green homes. Instead, fungal community differences were greatest between sample types - air, bed, and floor. Microbial communities also changed substantially between sampling intervals in both green and non-green homes for all sample types, potentially indicating that there was very little stability in the mycobiomes. Research gaps remain regarding how indoor mycobiome fluctuates over time. Longer follow-up periods might elucidate the effect of green renovation on microbial load in buildings. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The cultivable human oral gluten-degrading microbiome and its potential implications in coeliac disease and gluten sensitivity.

    PubMed

    Fernandez-Feo, M; Wei, G; Blumenkranz, G; Dewhirst, F E; Schuppan, D; Oppenheim, F G; Helmerhorst, E J

    2013-09-01

    Coeliac disease is characterized by intestinal inflammation caused by gluten, proteins which are widely contained in the Western diet. Mammalian digestive enzymes are only partly capable of cleaving gluten, and fragments remain that induce toxic responses in patients with coeliac disease. We found that the oral microbiome is a novel and rich source of gluten-degrading organisms. Here we report on the isolation and characterization of the cultivable resident oral microbes that are capable of cleaving gluten, with special emphasis on the immunogenic domains. Bacteria were obtained by a selective culturing approach and enzyme activities were characterized by: (i) hydrolysis of paranitroanilide-derivatized gliadin-derived tripeptide substrates; (ii) gliadin degradation in-gel (gliadin zymography); (iii) gliadin degradation in solution; (iv) proteolysis of the highly immunogenic α-gliadin-derived 33-mer peptide. For selected strains pH activity profiles were determined. The culturing strategy yielded 87 aerobic and 63 anaerobic strains. Species with activity in at least two of the four assays were typed as: Rothia mucilaginosa HOT-681, Rothia aeria HOT-188, Actinomyces odontolyticus HOT-701, Streptococcus mitis HOT-677, Streptococcus sp. HOT-071, Neisseria mucosa HOT-682 and Capnocytophaga sputigena HOT-775, with Rothia species being active in all four assays. Cleavage specificities and substrate preferences differed among the strains identified. The approximate molecular weights of the enzymes were ~75 kD (Rothia spp.), ~60 kD (A. odontolyticus) and ~150 kD (Streptococcus spp.). In conclusion, this study identified new gluten-degrading microorganisms in the upper gastrointestinal tract. A cocktail of the most active oral bacteria, or their isolated enzymes, may offer promising new treatment modalities for coeliac disease.

  8. The Cultivable Human Oral Gluten-Degrading Microbiome and its Potential Implications in Celiac Disease and Gluten Sensitivity

    PubMed Central

    Fernandez-Feo, Martin; Wei, Guoxian; Blumenkranz, Gabriel; Dewhirst, Floyd E.; Schuppan, Detlef; Oppenheim, Frank G.; Helmerhorst, Eva J.

    2013-01-01

    Celiac disease is characterized by intestinal inflammation caused by gluten, proteins which are widely contained in the Western diet. Mammalian digestive enzymes are only partly capable of cleaving gluten, and fragments remain that induce toxic responses in celiac patients. We found that the oral microbiome is a novel and rich source of gluten degrading enzymes. Here we report on the isolation and characterization of the cultivable resident oral microbes that are capable of cleaving gluten, with special emphasis on its immunogenic domains. Bacteria were obtained by a selective culturing approach and enzyme activities were characterised by: 1) Hydrolysis of paranitroanilide-derivatised gliadin-derived tripeptide substrates; 2) Gliadin degradation in-gel (gliadin zymography); 3) Gliadin degradation in solution; 4) Proteolysis of the highly immunogenic α-gliadin-derived 33-mer. For select strains pH activity profiles were determined. The culturing strategy yielded 87 aerobic and 63 anaerobic strains. Species with activity in at least two of the four assays were typed as: Rothia mucilaginosa HOT-681, Rothia aeria HOT-188, Actinomyces odontolyticus HOT-701, Streptococcus mitis HOT-677, Streptococcus sp. HOT-071, Neisseria mucosa HOT-682 and Capnocytophaga sputigena HOT-775, with Rothia species being active in all four assays. Cleavage specificities and substrate preferences differed among the strains identified. The approximate molecular weights of the enzymes were ~75 kD (Rothia spp.), ~60 kD (A. odontolyticus) and ~150 kD (Streptococcus spp.). In conclusion, this study identified new gluten-degrading microorganisms in the upper gastro-intestinal tract. A cocktail of the most active oral bacteria, or their isolated enzymes, may offer promising new treatment modalities for celiac disease. PMID:23714165

  9. Metabolic Fingerprints from the Human Oral Microbiome Reveal a Vast Knowledge Gap of Secreted Small Peptidic Molecules

    PubMed Central

    Garg, Neha; Mohimani, Hosein; Gurevich, Alexey; He, Xuesong; Shi, Wenyuan; Dorrestein, Pieter C.; McLean, Jeffrey S.

    2017-01-01

    ABSTRACT Recent research indicates that the human microbiota play key roles in maintaining health by providing essential nutrients, providing immune education, and preventing pathogen expansion. Processes underlying the transition from a healthy human microbiome to a disease-associated microbiome are poorly understood, partially because of the potential influences from a wide diversity of bacterium-derived compounds that are illy defined. Here, we present the analysis of peptidic small molecules (SMs) secreted from bacteria and viewed from a temporal perspective. Through comparative analysis of mass spectral profiles from a collection of cultured oral isolates and an established in vitro multispecies oral community, we found that the production of SMs both delineates a temporal expression pattern and allows discrimination between bacterial isolates at the species level. Importantly, the majority of the identified molecules were of unknown identity, and only ~2.2% could be annotated and classified. The catalogue of bacterially produced SMs we obtained in this study reveals an undiscovered molecular world for which compound isolation and ecosystem testing will facilitate a better understanding of their roles in human health and disease. IMPORTANCE Metabolomics is the ultimate tool for studies of microbial functions under any specific set of environmental conditions (D. S. Wishart, Nat Rev Drug Discov 45:473–484, 2016, https://doi.org/10.1038/nrd.2016.32). This is a great advance over studying genes alone, which only inform about metabolic potential. Approximately 25,000 compounds have been chemically characterized thus far; however, the richness of metabolites such as SMs has been estimated to be as high as 1 × 1030 in the biosphere (K. Garber, Nat Biotechnol 33:228–231, 2015, https://doi.org/10.1038/nbt.3161). Our classical, one-at-a-time activity-guided approach to compound identification continues to find the same known compounds and is also incredibly

  10. The Oral and Skin Microbiomes of Captive Komodo Dragons Are Significantly Shared with Their Habitat.

    PubMed

    Hyde, Embriette R; Navas-Molina, Jose A; Song, Se Jin; Kueneman, Jordan G; Ackermann, Gail; Cardona, Cesar; Humphrey, Gregory; Boyer, Don; Weaver, Tom; Mendelson, Joseph R; McKenzie, Valerie J; Gilbert, Jack A; Knight, Rob

    2016-01-01

    Examining the way in which animals, including those in captivity, interact with their environment is extremely important for studying ecological processes and developing sophisticated animal husbandry. Here we use the Komodo dragon (Varanus komodoensis) to quantify the degree of sharing of salivary, skin, and fecal microbiota with their environment in captivity. Both species richness and microbial community composition of most surfaces in the Komodo dragon's environment are similar to the Komodo dragon's salivary and skin microbiota but less similar to the stool-associated microbiota. We additionally compared host-environment microbiome sharing between captive Komodo dragons and their enclosures, humans and pets and their homes, and wild amphibians and their environments. We observed similar host-environment microbiome sharing patterns among humans and their pets and Komodo dragons, with high levels of human/pet- and Komodo dragon-associated microbes on home and enclosure surfaces. In contrast, only small amounts of amphibian-associated microbes were detected in the animals' environments. We suggest that the degree of sharing between the Komodo dragon microbiota and its enclosure surfaces has important implications for animal health. These animals evolved in the context of constant exposure to a complex environmental microbiota, which likely shaped their physiological development; in captivity, these animals will not receive significant exposure to microbes not already in their enclosure, with unknown consequences for their health. IMPORTANCE Animals, including humans, have evolved in the context of exposure to a variety of microbial organisms present in the environment. Only recently have humans, and some animals, begun to spend a significant amount of time in enclosed artificial environments, rather than in the more natural spaces in which most of evolution took place. The consequences of this radical change in lifestyle likely extend to the microbes residing in

  11. The Oral and Skin Microbiomes of Captive Komodo Dragons Are Significantly Shared with Their Habitat

    PubMed Central

    Hyde, Embriette R.; Navas-Molina, Jose A.; Kueneman, Jordan G.; Ackermann, Gail; Cardona, Cesar; Humphrey, Gregory; Boyer, Don; Weaver, Tom; Mendelson, Joseph R.; McKenzie, Valerie J.; Gilbert, Jack A.

    2016-01-01

    ABSTRACT Examining the way in which animals, including those in captivity, interact with their environment is extremely important for studying ecological processes and developing sophisticated animal husbandry. Here we use the Komodo dragon (Varanus komodoensis) to quantify the degree of sharing of salivary, skin, and fecal microbiota with their environment in captivity. Both species richness and microbial community composition of most surfaces in the Komodo dragon’s environment are similar to the Komodo dragon’s salivary and skin microbiota but less similar to the stool-associated microbiota. We additionally compared host-environment microbiome sharing between captive Komodo dragons and their enclosures, humans and pets and their homes, and wild amphibians and their environments. We observed similar host-environment microbiome sharing patterns among humans and their pets and Komodo dragons, with high levels of human/pet- and Komodo dragon-associated microbes on home and enclosure surfaces. In contrast, only small amounts of amphibian-associated microbes were detected in the animals’ environments. We suggest that the degree of sharing between the Komodo dragon microbiota and its enclosure surfaces has important implications for animal health. These animals evolved in the context of constant exposure to a complex environmental microbiota, which likely shaped their physiological development; in captivity, these animals will not receive significant exposure to microbes not already in their enclosure, with unknown consequences for their health. IMPORTANCE Animals, including humans, have evolved in the context of exposure to a variety of microbial organisms present in the environment. Only recently have humans, and some animals, begun to spend a significant amount of time in enclosed artificial environments, rather than in the more natural spaces in which most of evolution took place. The consequences of this radical change in lifestyle likely extend to the

  12. Characterisation of the human oral microbiome in patients with coronary artery disease using next-generation sequencing of 16SrRNA amplicons.

    PubMed

    Menon, Thangam; Gopalakrishnan, Sathya Narayanan; Balasubramanian, Rayvathy; Justin, Stalin Roy

    2017-01-01

    Oral health is suspected to be linked to heart disease since species of bacteria that cause periodontitis and dental caries have been found in the atherosclerotic plaque in arteries in the heart. The aim of this study was to characterize the oral microbiome in patients with coronary artery disease (CAD) and in a patient with dental caries (DC) without any clinical symptoms of CAD. DNA was extracted from the oral swabs collected from the patients and sequencing was performed by next generation sequencing method using Illumina (MiSeq) platform. The resulting sequencing data set was analysed using QIIME. A total of 31 phyla were found in all the samples. The predominant phylum found in both CAD and DC was Firmicutes (46.09% & 38.98%), Proteobacteria (17.73% & 9.79%), Fusobacteria (13.44% & 17.95%), Bacteroidetes (11.82% & 22.73%), Actinobacteria (8.33% & 7.71%) and TM7 (2.25% & 2.71%). We found a similarity in the bacterial diversity in the two groups of patients. A comparison of the oral microbiome in patients with CAD and DC shows a similarity in the composition of the oral microbiota with variations in the proportion of a few genera.

  13. Meta-omics uncover temporal regulation of pathways across oral microbiome genera during in vitro sugar metabolism

    PubMed Central

    Edlund, Anna; Yang, Youngik; Yooseph, Shibu; Hall, Adam P; Nguyen, Don D; Dorrestein, Pieter C; Nelson, Karen E; He, Xuesong; Lux, Renate; Shi, Wenyuan; McLean, Jeffrey S

    2015-01-01

    Dental caries, one of the most globally widespread infectious diseases, is intimately linked to pH dynamics. In supragingival plaque, after the addition of a carbohydrate source, bacterial metabolism decreases the pH which then subsequently recovers. Molecular mechanisms supporting this important homeostasis are poorly characterized in part due to the fact that there are hundreds of active species in dental plaque. Only a few mechanisms (for example, lactate fermentation, the arginine deiminase system) have been identified and studied in detail. Here, we conducted what is to our knowledge, the first full transcriptome and metabolome analysis of a diverse oral plaque community by using a functionally and taxonomically robust in vitro model system greater than 100 species. Differential gene expression analyses from the complete transcriptome of 14 key community members revealed highly varied regulation of both known and previously unassociated pH-neutralizing pathways as a response to the pH drop. Unique expression and metabolite signatures from 400 detected metabolites were found for each stage along the pH curve suggesting it may be possible to define healthy and diseased states of activity. Importantly, for the maintenance of healthy plaque pH, gene transcription activity of known and previously unrecognized pH-neutralizing pathways was associated with the genera Lactobacillus, Veillonella and Streptococcus during the pH recovery phase. Our in vitro study provides a baseline for defining healthy and disease-like states and highlights the power of moving beyond single and dual species applications to capture key players and their orchestrated metabolic activities within a complex human oral microbiome model. PMID:26023872

  14. Skin-to-Skin Care and the Development of the Preterm Infant Oral Microbiome

    PubMed Central

    Hendricks-Muñoz, Karen D.; Xu, Jie; Parikh, Hardik I.; Xu, Ping; Fettweis, Jennifer M.; Kim, Yang; Louie, Moi; Buck, Gregory A.; Thacker, Leroy R.; Sheth, Nihar U.

    2017-01-01

    Objective The oral cavity represents an initial entry way for oral and gut indigenous colonization. Skin-to-skin (STS) care, in which the mother holds the diaper clad naked preterm (PT) infant between her breasts, is associated with improved digestive function, decreased stress, and improved survival. This study evaluated the development of oral microbial colonization repertoires and health characteristics in PT infants with or without STS exposure. Methods Saliva from 42 PT infants (<32 weeks of gestation at birth) was collected prospectively at 1 month and/or at discharge. High-throughput 16S rRNA sequencing identified microbial diversity and prevalence of bacterial signatures correlated with clinical STS or non-STS care. Results Corrected for gestational age (CGA) at sampling, bacterial taxa demonstrated increased Streptococcus as a signature of oral repertoire maturation. STS was associated with increased Streptococcus (p < 0.024), while non-STS was associated with greater Corynebacterium (p < 0.023) and Pseudomonas (p < 0.019) in infants ≤ 32 weeks CGA. In infants > 32 weeks CGA, Neisseria and Acinetobacter were more prevalent, 50 vs. 16.7% and 40 vs. 0%, respectively. STS care was associated with shorter hospitalization (p < 0.039). Conclusion STS care during earlier gestation was associated with a distinct microbial pattern and an accelerated pace of oral microbial repertoire maturity. PMID:26007311

  15. Identifying Low pH Active and Lactate-Utilizing Taxa within Oral Microbiome Communities from Healthy Children Using Stable Isotope Probing Techniques

    SciTech Connect

    McLean, Jeffrey S.; Fansler, Sarah J.; Majors, Paul D.; Mcateer, Kathleen; Allen, Lisa Z.; Shirtliff, Mark E.; Lux, Renate; Shi, Wenyuan

    2012-03-05

    Many human microbial infectious diseases including dental caries are polymicrobial in nature and how these complex multi-species communities evolve from a healthy to a diseased state is not well understood. Although many health- or disease-associated oral microbes have been characterized in vitro, their physiology in vivo in the presence of the complex oral microbiome is difficult to determine with current approaches. In addition, about half of these oral species remain uncultivated to date and little is known except their 16S rRNA sequence. Lacking culture-based physiological analyses, the functional roles of uncultivated microorganisms will remain enigmatic despite their apparent disease correlation. To start addressing these knowledge gaps, we applied a novel combination of in vivo Magnetic Resonance Spectroscopy (MRS) with RNA and DNA based Stable Isotope Probing (SIP) to oral plaque communities from healthy children for temporal monitoring of carbohydrate utilization, organic acid production and identification of metabolically active and inactive bacterial species.

  16. Variation in fungal microbiome (mycobiome) and aflatoxin in stored in-shell peanuts at four different areas of China

    PubMed Central

    Ding, Ning; Xing, Fuguo; Liu, Xiao; Selvaraj, Jonathan N.; Wang, Limin; Zhao, Yueju; Wang, Yan; Guo, Wei; Dai, Xiaofeng; Liu, Yang

    2015-01-01

    The contamination of peanuts with Aspergillus sp. and subsequently aflatoxins is considered to be one of the most serious safety problems in the world. Mycobiome in peanuts is critical for aflatoxin production and food safety. To evaluate the biodiversity and ecological characteristics of whole communities in stored peanuts, the barcoded Illumina paired-end sequencing of the internal transcribed spacer 2 (ITS2) region of rDNA was used to characterize the peanut mycobiome monthly over a period of 1 year at four main peanut grown areas, i.e., Liaoning (LN, North East), Shandong (SD, East), Hubei (HB, Central), and Guangdong (GD, South) provinces. The fungal diversity of peanuts stored in SD was the highest with 98 OTUs and 43 genera, followed by LN, HB and GD. In peanuts stored in SD, Rhizopus, Emericella, and Clonostachys were predominant. In peanuts from LN, Penicillium, Eurotium, and Clonostachys were abundant. In peanuts from HB, Penicillium, Eurotium, and Aspergillus were higher. In GD peanuts, Eurotium, Aspergillus, and Emericella were mainly seen. The abundances of Aspergillus in LN, SD, HB, and GD were 0.53, 6.29, 10.86, and 25.75%, respectively. From the North of China to the South, that increased over the latitude, suggesting that the higher temperature and relative humidity might increase the risk of peanuts contaminated with Aspergillus and aflatoxins. During the storage, Aspergillus levels were higher at 7–12 months than in 0–6 months, suggesting that the risk increases over storage time. At 7–10 months, AFB1 was higher in four areas, while declined further. The reduction of AFB1 might be attributed to the inhibition and degradation of AFB1 by Aspergillus niger or to the combination with the compounds of peanuts. This is the first study that identified the mycobiome and its variation in stored peanuts using ITS2 sequencing technology, and provides the basis for a detailed characterization of whole mycobiome in peanuts. PMID:26557107

  17. Variation in fungal microbiome (mycobiome) and aflatoxin in stored in-shell peanuts at four different areas of China.

    PubMed

    Ding, Ning; Xing, Fuguo; Liu, Xiao; Selvaraj, Jonathan N; Wang, Limin; Zhao, Yueju; Wang, Yan; Guo, Wei; Dai, Xiaofeng; Liu, Yang

    2015-01-01

    The contamination of peanuts with Aspergillus sp. and subsequently aflatoxins is considered to be one of the most serious safety problems in the world. Mycobiome in peanuts is critical for aflatoxin production and food safety. To evaluate the biodiversity and ecological characteristics of whole communities in stored peanuts, the barcoded Illumina paired-end sequencing of the internal transcribed spacer 2 (ITS2) region of rDNA was used to characterize the peanut mycobiome monthly over a period of 1 year at four main peanut grown areas, i.e., Liaoning (LN, North East), Shandong (SD, East), Hubei (HB, Central), and Guangdong (GD, South) provinces. The fungal diversity of peanuts stored in SD was the highest with 98 OTUs and 43 genera, followed by LN, HB and GD. In peanuts stored in SD, Rhizopus, Emericella, and Clonostachys were predominant. In peanuts from LN, Penicillium, Eurotium, and Clonostachys were abundant. In peanuts from HB, Penicillium, Eurotium, and Aspergillus were higher. In GD peanuts, Eurotium, Aspergillus, and Emericella were mainly seen. The abundances of Aspergillus in LN, SD, HB, and GD were 0.53, 6.29, 10.86, and 25.75%, respectively. From the North of China to the South, that increased over the latitude, suggesting that the higher temperature and relative humidity might increase the risk of peanuts contaminated with Aspergillus and aflatoxins. During the storage, Aspergillus levels were higher at 7-12 months than in 0-6 months, suggesting that the risk increases over storage time. At 7-10 months, AFB1 was higher in four areas, while declined further. The reduction of AFB1 might be attributed to the inhibition and degradation of AFB1 by Aspergillus niger or to the combination with the compounds of peanuts. This is the first study that identified the mycobiome and its variation in stored peanuts using ITS2 sequencing technology, and provides the basis for a detailed characterization of whole mycobiome in peanuts.

  18. What are We Learning and What Can We Learn from the Human Oral Microbiome Project?

    PubMed Central

    Cross, Benjamin; Faustoferri, Roberta C.; Quivey, Robert G.

    2016-01-01

    Extraordinary technological advances have greatly accelerated our ability to identify bacteria, at the species level, present in clinical samples taken from the human mouth. In addition, technologies are evolving such that the oral samples can be analyzed for their protein and metabolic products. As a result, pictures are the advent of personalized dental medicine is becoming closer to reality. PMID:27152251

  19. Diversity of microbiomes in beef cattle

    USDA-ARS?s Scientific Manuscript database

    Collectively, the microbes in an ecosystem consist of bacterial and fungal communities called the microbiome. The bovine microbome serves as a foundation for animal health, a reservoir for human pathogens, and, in the case of the gastrointestinal microbiomes, a potential rich source of enzymes for ...

  20. [Efficacy of taurine haloamines and chlorhexidine against selected oral microbiome species].

    PubMed

    Pasich, Ewa; Bialecka, Anna; Marcinkiewicz, Janusz

    2013-01-01

    Uncontrolled bacteria of dental plaque generate formation of oral biofilm located on teeth and subgingival surfaces. It may induce local inflammation (gingivitis) with further development of periodontal diseases. A variety of oral bacteria such as Streptococcus mutans and Porhyromonas gingivalis are involved in pathogenesis of dental carries and periodontitis. Very often bacterial infections are associated with candidiasis (Candida albicans). Chlorhexidine (CHX) is the most commonly used antiseptic in dentistry due to its strong antibacterial activity and capacity to reduce the accumulation of oral biofilms. However, other antiseptics, especially endodontic irrigants, are still tested to improve their preventive and therapeutic effects in oral cavity infections. In this in vitro study we have compared antimicrobial activity of CHX with that of taurine chloramine (TauC1) and taurine bromamine (TauBr), natural taurine derivatives with known antibacterial and anti-inflammatory properties. Antimicrobial activity of CHX, TauC1 and TauBr was tested by incubation of the compounds with S. mutans, P gingivalis and C. albicans. The agents were incubated in low (105/ml) and high (108/ml) density microbe suspensions, related to early and late biofilm infections, respectively. In some experiments bacteria were incubated with a combination of CHX + NaOCl and CHX + TauBr. MIC was determined by the pour-plate method. CHX showed the strongest antimicrobial activity against all tested pathogens. On the contrary, TauC1 was the weakest antiseptics used without effect on the growth of C. albicans. TauBr at non-cytotoxic concentrations inhibited the growth of S. mutans and P gingivalis with slight effect on the low density C. albicans. All tested agents showed weaker antiseptic properties in the presence of serum. Moreover, we have shown that interactions between CHX and sodium hypochlorite (NaOC1), the main endodontic irrigant, but not between CHX and TauBr,resulted in precipitation

  1. Development of SYN-004, an oral beta-lactamase treatment to protect the gut microbiome from antibiotic-mediated damage and prevent Clostridium difficile infection.

    PubMed

    Kaleko, Michael; Bristol, J Andrew; Hubert, Steven; Parsley, Todd; Widmer, Giovanni; Tzipori, Saul; Subramanian, Poorani; Hasan, Nur; Koski, Perrti; Kokai-Kun, John; Sliman, Joseph; Jones, Annie; Connelly, Sheila

    2016-10-01

    The gut microbiome, composed of the microflora that inhabit the gastrointestinal tract and their genomes, make up a complex ecosystem that can be disrupted by antibiotic use. The ensuing dysbiosis is conducive to the emergence of opportunistic pathogens such as Clostridium difficile. A novel approach to protect the microbiome from antibiotic-mediated dysbiosis is the use of beta-lactamase enzymes to degrade residual antibiotics in the gastrointestinal tract before the microflora are harmed. Here we present the preclinical development and early clinical studies of the beta-lactamase enzymes, P3A, currently referred to as SYN-004, and its precursor, P1A. Both P1A and SYN-004 were designed as orally-delivered, non-systemically available therapeutics for use with intravenous beta-lactam antibiotics. SYN-004 was engineered from P1A, a beta-lactamase isolated from Bacillus licheniformis, to broaden its antibiotic degradation profile. SYN-004 efficiently hydrolyses penicillins and cephalosporins, the most widely used IV beta-lactam antibiotics. In animal studies, SYN-004 degraded ceftriaxone in the GI tract of dogs and protected the microbiome of pigs from ceftriaxone-induced changes. Phase I clinical studies demonstrated SYN-004 safety and tolerability. Phase 2 studies are in progress to assess the utility of SYN-004 for the prevention of antibiotic-associated diarrhea and Clostridium difficile disease.

  2. Differential responses of human dendritic cells to metabolites from the oral/airway microbiome.

    PubMed

    Whiteson, K; Agrawal, S; Agrawal, A

    2017-02-14

    Small molecule metabolites that are produced or altered by host-associated microbial communities are emerging as significant immune response modifiers. However, there is a key gap in our knowledge of how oral microbial metabolites affect the immune response. Here, we examined the effects of metabolites from five bacterial strains found commonly in the oral/airway microbial communities of humans. The five strains, each isolated from cystic fibrosis patient sputum, were Pseudomonas aeruginosa FLR01 non-mucoid (P1) and FLR02 mucoid (P2) forms, Streptococcus pneumoniae (Sp), S. salivarius (Ss) and Rothia mucilaginosa (Rm). The effect of bacterial metabolites on dendritic cell (DC) activation, T cell priming and cytokine secretion was determined by exposing DCs to bacterial supernatants and individual metabolites of interest. Supernatants from P1 and P2 induced high levels of tumour necrosis factor (TNF)-α, interleukin (IL)-12 and IL-6 from DCs and primed T cells to secrete interferon (IFN)-γ, IL-22 compared to supernatants from Sp, Ss and Rm. Investigations into the composition of supernatants using gas chromatography-mass spectroscopy (GC-MS) revealed signature metabolites for each of the strains. Supernatants from P1 and P2 contained high levels of putrescine and glucose, while Sp and Ss contained high levels of 2,3-butanediol. The individual metabolites replicated the results of whole supernatants, although the magnitudes of their effects were reduced significantly. Altogether, our data demonstrate for the first time that the signature metabolites produced by different bacteria have different effects on DC functions. The identification of signature metabolites and their effects on the host immune system can provide mechanistic insights into diseases and may also be developed as biomarkers.

  3. Breastmilk-Saliva Interactions Boost Innate Immunity by Regulating the Oral Microbiome in Early Infancy

    PubMed Central

    Al-Shehri, Saad S.; Knox, Christine L.; Liley, Helen G.; Cowley, David M.; Wright, John R.; Henman, Michael G.; Hewavitharana, Amitha K.; Charles, Bruce G.; Shaw, Paul N.; Sweeney, Emma L.; Duley, John A.

    2015-01-01

    Introduction Xanthine oxidase (XO) is distributed in mammals largely in the liver and small intestine, but also is highly active in milk where it generates hydrogen peroxide (H2O2). Adult human saliva is low in hypoxanthine and xanthine, the substrates of XO, and high in the lactoperoxidase substrate thiocyanate, but saliva of neonates has not been examined. Results Median concentrations of hypoxanthine and xanthine in neonatal saliva (27 and 19 μM respectively) were ten-fold higher than in adult saliva (2.1 and 1.7 μM). Fresh breastmilk contained 27.3±12.2 μM H2O2 but mixing baby saliva with breastmilk additionally generated >40 μM H2O2, sufficient to inhibit growth of the opportunistic pathogens Staphylococcus aureus and Salmonella spp. Oral peroxidase activity in neonatal saliva was variable but low (median 7 U/L, range 2–449) compared to adults (620 U/L, 48–1348), while peroxidase substrate thiocyanate in neonatal saliva was surprisingly high. Baby but not adult saliva also contained nucleosides and nucleobases that encouraged growth of the commensal bacteria Lactobacillus, but inhibited opportunistic pathogens; these nucleosides/bases may also promote growth of immature gut cells. Transition from neonatal to adult saliva pattern occurred during the weaning period. A survey of saliva from domesticated mammals revealed wide variation in nucleoside/base patterns. Discussion and Conclusion During breast-feeding, baby saliva reacts with breastmilk to produce reactive oxygen species, while simultaneously providing growth-promoting nucleotide precursors. Milk thus plays more than a simply nutritional role in mammals, interacting with infant saliva to produce a potent combination of stimulatory and inhibitory metabolites that regulate early oral–and hence gut–microbiota. Consequently, milk-saliva mixing appears to represent unique biochemical synergism which boosts early innate immunity. PMID:26325665

  4. Structural and functional probing of PorZ, an essential bacterial surface component of the type-IX secretion system of human oral-microbiomic Porphyromonas gingivalis.

    PubMed Central

    Lasica, Anna M.; Goulas, Theodoros; Mizgalska, Danuta; Zhou, Xiaoyan; de Diego, Iñaki; Ksiazek, Mirosław; Madej, Mariusz; Guo, Yonghua; Guevara, Tibisay; Nowak, Magdalena; Potempa, Barbara; Goel, Apoorv; Sztukowska, Maryta; Prabhakar, Apurva T.; Bzowska, Monika; Widziolek, Magdalena; Thøgersen, Ida B.; Enghild, Jan J.; Simonian, Mary; Kulczyk, Arkadiusz W.; Nguyen, Ky-Anh; Potempa, Jan; Gomis-Rüth, F. Xavier

    2016-01-01

    Porphyromonas gingivalis is a member of the human oral microbiome abundant in dysbiosis and implicated in the pathogenesis of periodontal (gum) disease. It employs a newly described type-IX secretion system (T9SS) for secretion of virulence factors. Cargo proteins destined for secretion through T9SS carry a recognition signal in the conserved C-terminal domain (CTD), which is removed by sortase PorU during translocation. Here, we identified a novel component of T9SS, PorZ, which is essential for surface exposure of PorU and posttranslational modification of T9SS cargo proteins. These include maturation of enzyme precursors, CTD removal and attachment of anionic lipopolysaccharide for anchorage in the outer membrane. The crystal structure of PorZ revealed two β-propeller domains and a C-terminal β-sandwich domain, which conforms to the canonical CTD architecture. We further documented that PorZ is itself transported to the cell surface via T9SS as a full-length protein with its CTD intact, independently of the presence or activity of PorU. Taken together, our results shed light on the architecture and possible function of a novel component of the T9SS. Knowledge of how T9SS operates will contribute to our understanding of protein secretion as part of host-microbiome interactions by dysbiotic members of the human oral cavity. PMID:27883039

  5. An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome

    PubMed Central

    2013-01-01

    Background Our knowledge of microbial diversity in the human oral cavity has vastly expanded during the last two decades of research. However, much of what is known about the behavior of oral species to date derives from pure culture approaches and the studies combining several cultivated species, which likely does not fully reflect their function in complex microbial communities. It has been shown in studies with a limited number of cultivated species that early oral biofilm development occurs in a successional manner and that continuous low pH can lead to an enrichment of aciduric species. Observations that in vitro grown plaque biofilm microcosms can maintain similar pH profiles in response to carbohydrate addition as plaque in vivo suggests a complex microbial community can be established in the laboratory. In light of this, our primary goal was to develop a robust in vitro biofilm-model system from a pooled saliva inoculum in order to study the stability, reproducibility, and development of the oral microbiome, and its dynamic response to environmental changes from the community to the molecular level. Results Comparative metagenomic analyses confirmed a high similarity of metabolic potential in biofilms to recently available oral metagenomes from healthy subjects as part of the Human Microbiome Project. A time-series metagenomic analysis of the taxonomic community composition in biofilms revealed that the proportions of major species at 3 hours of growth are maintained during 48 hours of biofilm development. By employing deep pyrosequencing of the 16S rRNA gene to investigate this biofilm model with regards to bacterial taxonomic diversity, we show a high reproducibility of the taxonomic carriage and proportions between: 1) individual biofilm samples; 2) biofilm batches grown at different dates; 3) DNA extraction techniques and 4) research laboratories. Conclusions Our study demonstrates that we now have the capability to grow stable oral microbial in vitro

  6. Utilization of posaconazole oral suspension or delayed-released tablet salvage treatment for invasive fungal infection.

    PubMed

    Kim, Jong Hun; Benefield, Russell J; Ditolla, Kali

    2016-11-01

    Posaconazole may be useful for salvage treatment (ST) for invasive fungal infections (IFIs). The aim of this study was to evaluate the efficacy of posaconazole ST with either posaconazole oral suspension (SUS) or delayed-released tablet (TAB) in patients with IFI. A retrospective review of patients who received posaconazole ST for IFI at the University of Utah Health Sciences Center between December 2007 and March 2014 was conducted. A total of 14 episodes of posaconazole ST for proven (9 episodes) and probable (5 episodes) IFI were identified in 14 patients. The median age was 54 years and the majority of patients (64.3%) had underlying haematological diseases. Posaconazole SUS and TAB were used in 11 episodes and 3 episodes respectively. The duration of posaconazole ST ranged from 28 to 370 days with a median of 65 days. Posaconazole ST with TAB achieved favourable serum posaconazole trough concentrations (median 1.4 μg mL(-1) ) compared to posaconazole SUS (median 1.0 μg mL(-1) ). The overall clinical success rate with posaconazole ST was 71.4% (10 of 14 episodes). One patient died of progression of IFI. Adverse events were noted in two patients. Posaconazole SUS or TAB may be used effectively for IFI ST.

  7. Do you kiss your mother with that mouth? An authentic large-scale undergraduate research experience in mapping the human oral microbiome.

    PubMed

    Wang, Jack T H; Daly, Joshua N; Willner, Dana L; Patil, Jayee; Hall, Roy A; Schembri, Mark A; Tyson, Gene W; Hugenholtz, Philip

    2015-05-01

    Clinical microbiology testing is crucial for the diagnosis and treatment of community and hospital-acquired infections. Laboratory scientists need to utilize technical and problem-solving skills to select from a wide array of microbial identification techniques. The inquiry-driven laboratory training required to prepare microbiology graduates for this professional environment can be difficult to replicate within undergraduate curricula, especially in courses that accommodate large student cohorts. We aimed to improve undergraduate scientific training by engaging hundreds of introductory microbiology students in an Authentic Large-Scale Undergraduate Research Experience (ALURE). The ALURE aimed to characterize the microorganisms that reside in the healthy human oral cavity-the oral microbiome-by analyzing hundreds of samples obtained from student volunteers within the course. Students were able to choose from selective and differential culture media, Gram-staining, microscopy, as well as polymerase chain reaction (PCR) and 16S rRNA gene sequencing techniques, in order to collect, analyze, and interpret novel data to determine the collective oral microbiome of the student cohort. Pre- and postsurvey analysis of student learning gains across two iterations of the course (2012-2013) revealed significantly higher student confidence in laboratory skills following the completion of the ALURE (p < 0.05 using the Mann-Whitney U-test). Learning objectives on effective scientific communication were also met through effective student performance in laboratory reports describing the research outcomes of the project. The integration of undergraduate research in clinical microbiology has the capacity to deliver authentic research experiences and improve scientific training for large cohorts of undergraduate students.

  8. Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: An insight into the microbiome of Crocus sativus Linn.

    PubMed

    Wani, Zahoor Ahmed; Mirza, Dania Nazir; Arora, Palak; Riyaz-Ul-Hassan, Syed

    2016-12-01

    A total of 294 fungal endophytes were isolated from the corms of Crocus sativus at two stages of crocus life cycle collected from 14 different saffron growing sites in Jammu and Kashmir (J & K) State, India. Molecular phylogeny assigned them into 36 distinct internal transcribed spacer (ITS) genotypes which spread over 19 genera. The diversity of endophytes was higher at the dormant than at the vegetative stage. The Saffron microbiome was dominated by Phialophora mustea and Cadophora malorum, both are dark septate endophytes (DSEs). Some endophytes were found to possess antimicrobial properties that could be helpful for the host in evading the pathogens. These endophytes generally produced significant quantities of indole acetic acid (IAA) as well. However, thirteen of the endophytic taxa were found to cause corm rot in the host with different levels of severity under in vitro as well as in vivo conditions. This is the first report of community structure and biological properties of fungal endophytes associated with C. sativus, which may eventually help us to develop agro-technologies, based on plant-endophyte interactions for sustainable cultivation of saffron. The endophytes preserved ex situ, in this study, may also yield bioactive natural products for pharmacological and industrial applications. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  9. Human microbiome and HIV/AIDS.

    PubMed

    Saxena, Deepak; Li, Yihong; Yang, Liying; Pei, Zhiheng; Poles, Michael; Abrams, William R; Malamud, Daniel

    2012-03-01

    Understanding of the human microbiome continues to grow rapidly; however, reports on changes in the microbiome after HIV infection are still limited. This review surveys the progress made in methodology associated with microbiome studies and highlights the remaining challenges to this field. Studies have shown that commensal oral, gut, vaginal, and penile bacteria are vital to the health of the human immune system. Our studies on crosstalk among oral and gastrointestinal soluble innate factors, HIV, and microbes indicated that the oral and gut microbiome was altered in the HIV-positive samples compared to the negative controls. The importance of understanding the bacterial component of HIV/AIDS, and likelihood of "crosstalk" between viral and bacterial pathogens, will help in understanding the role of the microbiome in HIV-infected individuals and facilitate identification of novel antiretroviral factors for use as novel diagnostics, microbicides, or therapeutics against HIV infection.

  10. Human Microbiome and HIV/AIDS

    PubMed Central

    Li, Yihong; Yang, Liying; Pei, Zhiheng; Poles, Michael; Abrams, William R.; Malamud, Daniel

    2013-01-01

    Understanding of the human microbiome continues to grow rapidly; however, reports on changes in the microbiome after HIV infection are still limited. This review surveys the progress made in methodology associated with microbiome studies and highlights the remaining challenges to this field. Studies have shown that commensal oral, gut, vaginal, and penile bacteria are vital to the health of the human immune system. Our studies on crosstalk among oral and gastrointestinal soluble innate factors, HIV, and microbes indicated that the oral and gut microbiome was altered in the HIV-positive samples compared to the negative controls. The importance of understanding the bacterial component of HIV/AIDS, and likelihood of “crosstalk” between viral and bacterial pathogens, will help in understanding the role of the microbiome in HIV-infected individuals and facilitate identification of novel antiretroviral factors for use as novel diagnostics, microbicides, or therapeutics against HIV infection. PMID:22193889

  11. Normal Oral Flora and the Oral Ecosystem.

    PubMed

    Samaranayake, Lakshman; Matsubara, Victor H

    2017-04-01

    The oral ecosystem comprises the oral flora, so-called oral microbiome, the different anatomic microniches of the oral cavity, and its bathing fluid, saliva. The oral microbiome comprises a group of organisms and includes bacteria, archaea, fungi, protozoa, and viruses. The oral microbiome exists suspended in saliva as planktonic phase organisms or attached to oral surfaces as a plaque biofilm. Homeostasis of the plaque biofilm and its symbiotic relationship with the host is critical for oral health. Disequilibrium or dysbiosis within the plaque biofilms is the initiating event that leads to major oral diseases, such as caries and periodontal disease.

  12. Microbiome in parturition and preterm birth.

    PubMed

    Mysorekar, Indira U; Cao, Bin

    2014-01-01

    Preterm parturition is a one of the most significant global maternal-child health problem. In recent years, there has been an explosion in reports on a role for microbiomes (i.e., a microbial biomass) on a plethora of physiologic and pathologic human conditions. This review aims to describe our current understanding of the microbiome and its impact on parturition, with particular emphasis on preterm birth. We will focus on the roles of vaginal and oral mucosal microbiomes in premature parturition and describe the state-of-the-art methodologies used in microbiome studies. Next, we will present new studies on a potential microbiome in the placenta and how it may affect pregnancy outcomes. Finally, we will propose that host genetic factors can perturb the normal "pregnancy microbiome" and trigger adverse pregnancy outcomes.

  13. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates

    PubMed Central

    Olm, Matthew R.; Brown, Christopher T.; Brooks, Brandon; Firek, Brian; Baker, Robyn; Burstein, David; Soenjoyo, Karina; Thomas, Brian C.; Morowitz, Michael; Banfield, Jillian F.

    2017-01-01

    The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth, and gut of two hospitalized premature infants during the first month of life. Seven bacterial populations, considered to be identical given whole-genome average nucleotide identity of >99.9%, colonized multiple body sites, yet none were shared between infants. Gut-associated Citrobacter koseri genomes harbored 47 polymorphic sites that we used to define 10 subpopulations, one of which appeared in the gut after 1 wk but did not spread to other body sites. Differential genome coverage was used to measure bacterial population replication rates in situ. In all cases where the same bacterial population was detected in multiple body sites, replication rates were faster in mouth and skin compared to the gut. The ability of identical strains to colonize multiple body sites underscores the habit flexibility of initial colonists, whereas differences in microbial replication rates between body sites suggest differences in host control and/or resource availability. Population genomic analyses revealed microdiversity within bacterial populations, implying initial inoculation by multiple individual cells with distinct genotypes. Overall, however, the overlap of strains across body sites implies that the premature infant microbiome can exhibit very low microbial diversity. PMID:28073918

  14. Serum antibody levels correlate with oral fungal cell numbers and influence the patients' response to chronic paracoccidioidomycosis.

    PubMed

    de Carli, Marina Lara; Cardoso, Beatriz Cristina Bachião; Malaquias, Luiz Cosme Cotta; Nonogaki, Suely; Pereira, Alessandro Antônio Costa; Sperandio, Felipe Fornias; Hanemann, João Adolfo Costa

    2015-06-01

    Paracoccidioidomycosis (PCM) is a neglected fungal disease that elicits an important granulomatous inflammatory reaction which aims to isolate the fungi and resolve the infection; besides the innate cellular response, the patients' sera may contain different levels of antibodies directed against PCM's pathogenic agent: Paracoccidioides brasiliensis (Pb). The aim of the study was to assess the distinct serum antibody levels of 19 chronic PCM patients and to associate these levels to the granulomatous inflammatory response and presence of fungi in oral lesions caused by Pb. The presence of Pb was detected and counted within oral tissues using immunohistochemistry; antibody levels were classified as negative, low-grade, moderate or high-grade groups. The Kruskal-Wallis and Dunn's test were used to verify possible associations among the groups. Interestingly, lower antibody titres were associated with lesser numbers of Pb, which favours the cellular response over the humoral response to fight PCM. On the other hand, negative serological results were linked to a higher presence of Pb in the tissues, indicating that a deficient humoral response supports the fungal proliferation. The number of Pb was conveniently associated with the level of serum antibodies, showing that the humoral immune response is required, however, not solely responsible to restrain the dissemination of Pb.

  15. Identifying low pH active and lactate-utilizing taxa within oral microbiome communities from healthy children using stable isotope probing techniques.

    PubMed

    McLean, Jeffrey S; Fansler, Sarah J; Majors, Paul D; McAteer, Kathleen; Allen, Lisa Z; Shirtliff, Mark E; Lux, Renate; Shi, Wenyuan

    2012-01-01

    Many human microbial infectious diseases including dental caries are polymicrobial in nature. How these complex multi-species communities evolve from a healthy to a diseased state is not well understood. Although many health- or disease-associated oral bacteria have been characterized in vitro, their physiology within the complex oral microbiome is difficult to determine with current approaches. In addition, about half of these species remain uncultivated to date with little known besides their 16S rRNA sequence. Lacking culture-based physiological analyses, the functional roles of uncultivated species will remain enigmatic despite their apparent disease correlation. To start addressing these knowledge gaps, we applied a combination of Magnetic Resonance Spectroscopy (MRS) with RNA and DNA based Stable Isotope Probing (SIP) to oral plaque communities from healthy children for in vitro temporal monitoring of metabolites and identification of metabolically active and inactive bacterial species. Supragingival plaque samples from caries-free children incubated with (13)C-substrates under imposed healthy (buffered, pH 7) and diseased states (pH 5.5 and pH 4.5) produced lactate as the dominant organic acid from glucose metabolism. Rapid lactate utilization upon glucose depletion was observed under pH 7 conditions. SIP analyses revealed a number of genera containing cultured and uncultivated taxa with metabolic capabilities at pH 5.5. The diversity of active species decreased significantly at pH 4.5 and was dominated by Lactobacillus and Propionibacterium species, both of which have been previously found within carious lesions from children. Our approach allowed for identification of species that metabolize carbohydrates under different pH conditions and supports the importance of Lactobacilli and Propionibacterium in the development of childhood caries. Identification of species within healthy subjects that are active at low pH can lead to a better understanding of oral

  16. Quorum-Sensing Dysbiotic Shifts in the HIV-Infected Oral Metabiome

    PubMed Central

    Brown, Robert E.; Ghannoum, Mahmoud A.; Mukherjee, Pranab K.; Gillevet, Patrick M.; Sikaroodi, Masoumeh

    2015-01-01

    We implemented a Systems Biology approach using Correlation Difference Probability Network (CDPN) analysis to provide insights into the statistically significant functional differences between HIV-infected patients and uninfected individuals. The analysis correlates bacterial microbiome (“bacteriome”), fungal microbiome (“mycobiome”), and metabolome data to model the underlying biological processes comprising the Human Oral Metabiome. CDPN highlights the taxa-metabolite-taxa differences between the cohorts that frequently capture quorum-sensing modifications that reflect communication disruptions in the dysbiotic HIV cohort. The results also highlight the significant role of cyclic mono and dipeptides as quorum-sensing (QS) mediators between oral bacteria and fungal genus. The developed CDPN approach allowed us to model the interactions of taxa and key metabolites, and hypothesize their possible contribution to the etiology of Oral Candidiasis (OC). PMID:25886290

  17. The microbiome of uncontacted Amerindians

    PubMed Central

    Clemente, Jose C.; Pehrsson, Erica C.; Blaser, Martin J.; Sandhu, Kuldip; Gao, Zhan; Wang, Bin; Magris, Magda; Hidalgo, Glida; Contreras, Monica; Noya-Alarcón, Óscar; Lander, Orlana; McDonald, Jeremy; Cox, Mike; Walter, Jens; Oh, Phaik Lyn; Ruiz, Jean F.; Rodriguez, Selena; Shen, Nan; Song, Se Jin; Metcalf, Jessica; Knight, Rob; Dantas, Gautam; Dominguez-Bello, M. Gloria

    2015-01-01

    Most studies of the human microbiome have focused on westernized people with life-style practices that decrease microbial survival and transmission, or on traditional societies that are currently in transition to westernization. We characterize the fecal, oral, and skin bacterial microbiome and resistome of members of an isolated Yanomami Amerindian village with no documented previous contact with Western people. These Yanomami harbor a microbiome with the highest diversity of bacteria and genetic functions ever reported in a human group. Despite their isolation, presumably for >11,000 years since their ancestors arrived in South America, and no known exposure to antibiotics, they harbor bacteria that carry functional antibiotic resistance (AR) genes, including those that confer resistance to synthetic antibiotics and are syntenic with mobilization elements. These results suggest that westernization significantly affects human microbiome diversity and that functional AR genes appear to be a feature of the human microbiome even in the absence of exposure to commercial antibiotics. AR genes are likely poised for mobilization and enrichment upon exposure to pharmacological levels of antibiotics. Our findings emphasize the need for extensive characterization of the function of the microbiome and resistome in remote nonwesternized populations before globalization of modern practices affects potentially beneficial bacteria harbored in the human body. PMID:26229982

  18. Identifying Low pH Active and Lactate-Utilizing Taxa within Oral Microbiome Communities from Healthy Children Using Stable Isotope Probing Techniques

    PubMed Central

    McLean, Jeffrey S.; Fansler, Sarah J.; Majors, Paul D.; McAteer, Kathleen; Allen, Lisa Z.; Shirtliff, Mark E.; Lux, Renate; Shi, Wenyuan

    2012-01-01

    Background Many human microbial infectious diseases including dental caries are polymicrobial in nature. How these complex multi-species communities evolve from a healthy to a diseased state is not well understood. Although many health- or disease-associated oral bacteria have been characterized in vitro, their physiology within the complex oral microbiome is difficult to determine with current approaches. In addition, about half of these species remain uncultivated to date with little known besides their 16S rRNA sequence. Lacking culture-based physiological analyses, the functional roles of uncultivated species will remain enigmatic despite their apparent disease correlation. To start addressing these knowledge gaps, we applied a combination of Magnetic Resonance Spectroscopy (MRS) with RNA and DNA based Stable Isotope Probing (SIP) to oral plaque communities from healthy children for in vitro temporal monitoring of metabolites and identification of metabolically active and inactive bacterial species. Methodology/Principal Findings Supragingival plaque samples from caries-free children incubated with 13C-substrates under imposed healthy (buffered, pH 7) and diseased states (pH 5.5 and pH 4.5) produced lactate as the dominant organic acid from glucose metabolism. Rapid lactate utilization upon glucose depletion was observed under pH 7 conditions. SIP analyses revealed a number of genera containing cultured and uncultivated taxa with metabolic capabilities at pH 5.5. The diversity of active species decreased significantly at pH 4.5 and was dominated by Lactobacillus and Propionibacterium species, both of which have been previously found within carious lesions from children. Conclusions/Significance Our approach allowed for identification of species that metabolize carbohydrates under different pH conditions and supports the importance of Lactobacilli and Propionibacterium in the development of childhood caries. Identification of species within healthy subjects that

  19. The role of the cutaneous microbiome in skin cancer: lessons learned from the gut.

    PubMed

    Yu, Yang; Champer, Jackson; Beynet, David; Kim, Jenny; Friedman, Adam J

    2015-05-01

    The human microbiome has recently gained prominence as a major factor in health and disease. Here we review the literature regarding the microbiome and cancer and suggest how the microbiome may be manipulated for improved health outcomes. The gut microbiome has been relatively well studied, and the mechanisms of how it may increase or decrease the risk of certain cancers may apply to the skin microbiome. Additionally, the gut microbiome may directly impact the risk of cancer in the skin and other organs by promoting systemic inflammation. The skin microbiome itself is as diverse as the gut microbiome, but research has just begun to unravel its influence on the host. Like the gut microbiome, it affects the risk for several diseases, including cancer. By using healthpromoting strains from the microbiome in oral or topical probiotics, it may be possible to reduce the risk of skin cancer and perhaps even increase the likelihood of successful treatment.

  20. Anti-fungal resistance in candida isolated from oral and diaper rash candidiasis in neonates.

    PubMed

    Mohamadi, Jasem; Motaghi, Mahsa; Panahi, Jafar; Havasian, Mohamad Reza; Delpisheh, Ali; Azizian, Mitra; Pakzad, Iraj

    2014-01-01

    The purpose of the present study is to evaluate the sensitivity of Candida species isolated from oral candidiasis and diaper dermatitis infections in children. The children referring to private and public clinics in Ilam, Iran were exmined for oral candidiasis and diaper dermatitis. In this study, 248 oral candidiasis and diaper dermatitis samples were collected and cultured.Candida species were identified by using standard methods. Resistance and sensitivity to amphotericin B, nystatin, ketoconazole, fluconazole, itraconazole, clotrimazole, and posaconazole were determined using the CLSI M44-A standard disk diffusion method. From the 248 studied samples, 149 were positive for Candida, among which the Candida albicans was the most prevalent (64.4%). The resistance of different Candida species to nystatin, itraconazole, fluconazole, ketoconazole, clotrimazole, voriconazole, and posaconazole were 4, 43, 34.2, 34.9, 21.5, 6, and 6.7%, respectively. No resistance to amphotericin B was observed. Considering rather low resistance to nystatin, this drug is the best choice for oral candidiasis and diaper dermatitis.

  1. The Placenta Harbors a Unique Microbiome

    PubMed Central

    Aagaard, Kjersti; Ma, Jun; Antony, Kathleen M.; Ganu, Radhika; Petrosino, Joseph; Versalovic, James

    2016-01-01

    Humans and their microbiomes have coevolved as a physiologic community composed of distinct body site niches with metabolic and antigenic diversity. The placental microbiome has not been robustly interrogated, despite recent demonstrations of intracellular bacteria with diverse metabolic and immune regulatory functions. A population-based cohort of placental specimens collected under sterile conditions from 320 subjects with extensive clinical data was established for comparative 16S ribosomal DNA–based and whole-genome shotgun (WGS) metagenomic studies. Identified taxa and their gene carriage patterns were compared to other human body site niches, including the oral, skin, airway (nasal), vaginal, and gut microbiomes from nonpregnant controls. We characterized a unique placental microbiome niche, composed of nonpathogenic commensal microbiota from the Firmicutes, Tenericutes, Proteobacteria, Bacteroidetes, and Fusobacteria phyla. In aggregate, the placental microbiome profiles were most akin (Bray-Curtis dissimilarity <0.3) to the human oral microbiome. 16S-based operational taxonomic unit analyses revealed associations of the placental microbiome with a remote history of antenatal infection (permutational multivariate analysis of variance, P = 0.006), such as urinary tract infection in the first trimester, as well as with preterm birth <37 weeks (P = 0.001). PMID:24848255

  2. Investigating Oral Microbiome Profiles in Children with Cleft Lip and Palate for Prognosis of Alveolar Bone Grafting

    PubMed Central

    Liu, Luwei; Zhang, Qian; Lin, Jiuxiang; Ma, Lian; Zhou, Zhibo; He, Xuesong; Jia, Yilin; Chen, Feng

    2016-01-01

    In this study, we sought to investigate the oral microbiota structure of children with cleft lip and palate (CLP) and explore the pre-operative oral bacterial composition related to the prognosis of alveolar bone grafting. In total, 28 patients (19 boys, 9 girls) with CLP who were scheduled to undergo alveolar bone grafting for the first time were recruited. According to the clinical examination of operative sites at the third month after the operation, the individuals were divided into a non-inflammation group (n = 15) and an inflammation group (n = 13). In all, 56 unstimulated saliva samples were collected before and after the operation. The v3-v4 hypervariable regions of the 16S rRNA gene were sequenced using an Illumina MiSeq sequencing platform. Based on the beta diversity of the operational taxonomic units (OTUs) in the inflammation and non-inflammation samples, the microbial variation in the oral cavity differed significantly between the two groups before and after the operation (P < 0.05). Analysis of the relative abundances of pre-operative OTUs revealed 26 OTUs with a relative abundance higher than 0.01%, reflecting a significant difference of the relative abundance between groups (P < 0.05). According to a principal component analysis of the pre-operative samples, the inflammation-related OTUs included Tannerella sp., Porphyromonas sp., Gemella sp., Moraxella sp., Prevotella nigrescens, and Prevotella intermedia, most of which were enriched in the inflammation group and showed a significant positive correlation. A cross-validated random forest model based on the 26 different OTUs before the operation was able to fit the post-operative status of grafted sites and yielded a good classification result. The sensitivity and specificity of this classified model were 76.9% and 86.7%, respectively. These findings show that the oral microbiota profile before alveolar bone grafting may be related to the risk of post-operative inflammation at grafted sites. PMID

  3. Host-parasite interaction and microbiome response: effects of fungal infections on the bacterial community of the Alpine lichen Solorina crocea.

    PubMed

    Grube, Martin; Köberl, Martina; Lackner, Stefan; Berg, Christian; Berg, Gabriele

    2012-11-01

    The lichen symbiosis allows a self-sustained life under harsh environmental conditions, yet symbiotic integrity can be affected by fungal parasites. Nothing is known about the impact of these biologically diverse and often specific infections on the recently detected bacterial community in lichens. To address this question, we studied the arctic-alpine 'chocolate chip lichen' Solorina crocea, which is frequently infected by Rhagadostoma lichenicola. We sampled healthy and infected lichens at two different sites in the Eastern Alps. High abundances of Acidobacteria, Planctomycetes, and Proteobacteria were identified analyzing 16S rRNA gene regions obtained by barcoded pyrosequencing. At the phylum and genus level, no significant alterations were present among infected and healthy individuals. Yet, evidence for a differentiation of communities emerged, when data were analyzed at the strain level by detrended correspondence analysis. Further, a profile clustering network revealed strain-specific abundance shifts among Acidobacteria and other bacteria. Study of stability and change in host-associated bacterial communities requires a fine-grained analysis at strain level. No correlation with the infection was found by analysis of nifH genes responsible for nitrogen fixation.

  4. Structural insights unravel the zymogenic mechanism of the virulence factor gingipain K from Porphyromonas gingivalis, a causative agent of gum disease from the human oral microbiome.

    PubMed

    Pomowski, Anja; Usón, Isabel; Nowakowska, Zuzanna; Veillard, Florian; Sztukowska, Maryta N; Guevara, Tibisay; Goulas, Theodoros; Mizgalska, Danuta; Nowak, Magdalena; Potempa, Barbara; Huntington, James A; Potempa, Jan; Gomis-Rüth, F Xavier

    2017-04-07

    Skewing of the human oral microbiome causes dysbiosis and preponderance of bacteria such as Porphyromonas gingivalis, the main etiological agent of periodontitis. P. gingivalis secretes proteolytic gingipains (Kgp and RgpA/B) as zymogens inhibited by a pro-domain that is removed during extracellular activation. Unraveling the molecular mechanism of Kgp zymogenicity is essential to design inhibitors blocking its activity. Here, we found that the isolated 209-residue Kgp pro-domain is a boomerang-shaped all-β protein similar to the RgpB pro-domain. Using composite structural information of Kgp and RgpB, we derived a plausible homology model and mechanism of Kgp-regulating zymogenicity. Accordingly, the pro-domain would laterally attach to the catalytic moiety in Kgp and block the active site through an exposed inhibitory loop. This loop features a lysine (Lys(129)) likely occupying the S1 specificity pocket and exerting latency. Lys(129) mutation to glutamate or arginine led to misfolded protein that was degraded in vivo Mutation to alanine gave milder effects but still strongly diminished proteolytic activity, without affecting the subcellular location of the enzyme. Accordingly, the interactions of Lys(129) within the S1 pocket are also essential for correct folding. Uniquely for gingipains, the isolated Kgp pro-domain dimerized through an interface, which partially overlapped with that between the catalytic moiety and the pro-domain within the zymogen, i.e. both complexes are mutually exclusive. Thus, pro-domain dimerization, together with partial rearrangement of the active site upon activation, explains the lack of inhibition of the pro-domain in trans. Our results reveal that the specific latency mechanism of Kgp differs from those of Rgps. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Plant and Fungal Food Components with Potential Activity on the Development of Microbial Oral Diseases

    PubMed Central

    Daglia, Maria; Papetti, Adele; Mascherpa, Dora; Grisoli, Pietro; Giusto, Giovanni; Lingström, Peter; Pratten, Jonathan; Signoretto, Caterina; Spratt, David A.; Wilson, Michael; Zaura, Egija; Gazzani, Gabriella

    2011-01-01

    This paper reports the content in macronutrients, free sugars, polyphenols, and inorganic ions, known to exert any positive or negative action on microbial oral disease such as caries and gingivitis, of seven food/beverages (red chicory, mushroom, raspberry, green and black tea, cranberry juice, dark beer). Tea leaves resulted the richest material in all the detected ions, anyway tea beverages resulted the richest just in fluoride. The highest content in zinc was in chicory, raspberry and mushroom. Raspberry is the richest food in strontium and boron, beer in selenium, raspberry and mushroom in copper. Beer, cranberry juice and, especially green and black tea are very rich in polyphenols, confirming these beverages as important sources of such healthy substances. The fractionation, carried out on the basis of the molecular mass (MM), of the water soluble components occurring in raspberry, chicory, and mushroom extracts (which in microbiological assays revealed the highest potential action against oral pathogens), showed that both the high and low MM fractions are active, with the low MM fractions displaying the highest potential action for all the fractionated extracts. Our findings show that more compounds that can play a different active role occur in these foods. PMID:22013381

  6. Characterization of Bacterial and Fungal Microbiome in Children with Hirschsprung Disease with and without a History of Enterocolitis: A Multicenter Study.

    PubMed

    Frykman, Philip K; Nordenskjöld, Agneta; Kawaguchi, Akemi; Hui, Thomas T; Granström, Anna L; Cheng, Zhi; Tang, Jie; Underhill, David M; Iliev, Iliyan; Funari, Vince A; Wester, Tomas

    2015-01-01

    Development of potentially life-threatening enterocolitis is the most frequent complication in children with Hirschsprung disease (HSCR), even after definitive corrective surgery. Intestinal microbiota likely contribute to the etiology of enterocolitis, so the aim of this study was to compare the fecal bacterial and fungal communities of children who developed Hirschsprung-associated enterocolitis (HAEC) with HSCR patients who had never had enterocolitis. Eighteen Hirschsprung patients who had completed definitive surgery were enrolled: 9 had a history of HAEC and 9 did not. Fecal DNA was isolated and 16S and ITS-1 regions sequenced using Next Generation Sequencing and data analysis for species identification. The HAEC group bacterial composition showed a modest reduction in Firmicutes and Verrucomicrobia with increased Bacteroidetes and Proteobacteria compared with the HSCR group. In contrast, the fecal fungi composition of the HAEC group showed marked reduction in diversity with increased Candida sp., and reduced Malassezia and Saccharomyces sp. compared with the HSCR group. The most striking finding within the HAEC group is that the Candida genus segregated into "high burden" patients with 97.8% C. albicans and 2.2% C. tropicalis compared with "low burden" patients 26.8% C. albicans and 73% C. tropicalis. Interestingly even the low burden HAEC group had altered Candida community structure with just two species compared to more diverse Candida populations in the HSCR patients. This is the first study to identify Candida sp. as potentially playing a role in HAEC either as expanded commensal species as a consequence of enterocolitis (or treatment), or possibly as pathobioants contributing to the pathogenesis of HAEC. These findings suggest a dysbiosis in the gut microbial ecosystem of HAEC patients, such that there may be dominance of fungi and bacteria predisposing patients to development of HAEC.

  7. Exploring Preterm Birth as a Polymicrobial Disease: An Overview of the Uterine Microbiome

    PubMed Central

    Payne, Matthew S.; Bayatibojakhi, Sara

    2014-01-01

    Infection is a leading cause of preterm birth (PTB). A focus of many studies over the past decade has been to characterize microorganisms present in the uterine cavity and document any association with negative pregnancy outcome. A range of techniques have been used to achieve this, including microbiological culture and targeted polymerase chain reaction assays, and more recently, microbiome-level analyses involving either conserved, phylogenetically informative genes such as the bacterial 16S rRNA gene or whole shotgun metagenomic sequencing. These studies have contributed vast amounts of data toward characterization of the uterine microbiome, specifically that present in the amniotic fluid, fetal membranes, and placenta. However, an overwhelming emphasis has been placed on the bacterial microbiome, with far less data produced on the viral and fungal/yeast microbiomes. With numerous studies now referring to PTB as a polymicrobial condition, there is the need to investigate the role of viruses and fungi/yeasts in more detail and in particular, look for associations between colonization with these microorganisms and bacteria in the same samples. Although the major pathway by which microorganisms are believed to colonize the uterine cavity is vertical ascension from the vagina, numerous studies are now emerging suggesting hematogenous transfer of oral microbiota to the uterine cavity. Evidence of this has been produced in mouse models and although DNA-based evidence in humans appears convincing in some aspects, use of methodologies that only detect viable cells as opposed to lysed cells and extracellular DNA are needed to clarify this. Such techniques as RNA analyses and viability polymerase chain reaction are likely to play key roles in the clinical translation of future microbiome-based data, particularly in confined environments such as the uterus, as detection of viable cells plays a key role in diagnosis and treatment of infection. PMID:25505898

  8. Safety and tolerability of oral antifungal agents in the treatment of fungal nail disease: a proven reality

    PubMed Central

    Elewski, Boni; Tavakkol, Amir

    2005-01-01

    Clinicians now have five oral antifungal therapeutic agents to choose from when assessing the risk–benefits associated with a particular treatment for onychomycosis (OM): griseofulvin, itraconazole, terbinafine, ketoconazole, and fluconazole. Only the first three are approved by the FDA for this indication. Griseofulvin is fungistatic and inhibits nucleic acid synthesis, arresting cell division at metaphase, and impairing fungal wall synthesis. Due to its low cure rates and high relapse, it is rarely used for treatment of onychomycosis. Itraconazole is a broad spectrum drug and is effective against dermatophytes, candida, and some nondermatophytic molds. Itraconazole works by inhibiting ergosterol synthesis via cytochrome P-450 (CYP450)-dependent demethylation step. This azole antifungal agent is metabolized in the liver by cytochrome P-450 3A4 (CYP3A4), and therefore has the potential to interact with drugs metabolized through this pathway. Terbinafine, an allylamine, is fungicidal and remains at therapeutic levels in keratinized tissues, but with a short plasma half-life of 36 hours. Terbinafine has the advantage in that it does not inhibit CYP3A4 isoenzyme during its metabolism where some 50% of all commonly prescribed drugs are metabolized. The only potentially significant drug interaction with terbinafine is with the cytochrome P-450 2D6 (CYP2D6) isoenzyme. The lack of widely reported or published clinically relevant drug interactions, and extensive experience from a large prospective, surveillance study conducted in “real world” setting with no patient exclusions, suggest that this is not a major issue. The high cure rates of terbinafine against dermatophytes, as shown in many studies since its launch in the 1990s, together with lack of clinically significant drug interactions and well established safety record, indicate the use of continuous oral terbinafine as the top choice for the treatment of onychomycosis in most patients. PMID:18360572

  9. Dietary iron depletion at weaning imprints low microbiome diversity and this is not recovered with oral nano Fe(III)

    PubMed Central

    Pereira, Dora I A; Aslam, Mohamad F; Frazer, David M; Schmidt, Annemarie; Walton, Gemma E; McCartney, Anne L; Gibson, Glenn R; Anderson, Greg J; Powell, Jonathan J

    2015-01-01

    Alterations in the gut microbiota have been recently linked to oral iron. We conducted two feeding studies including an initial diet-induced iron-depletion period followed by supplementation with nanoparticulate tartrate-modified ferrihydrite (Nano Fe(III): considered bioavailable to host but not bacteria) or soluble ferrous sulfate (FeSO4: considered bioavailable to both host and bacteria). We applied denaturing gradient gel electrophoresis and fluorescence in situ hybridization for study-1 and 454-pyrosequencing of fecal 16S rRNA in study-2. In study-1, the within-community microbial diversity increased with FeSO4 (P = 0.0009) but not with Nano Fe(III) supplementation. This was confirmed in study-2, where we also showed that iron depletion at weaning imprinted significantly lower within- and between-community microbial diversity compared to mice weaned onto the iron-sufficient reference diet (P < 0.0001). Subsequent supplementation with FeSO4 partially restored the within-community diversity (P = 0.006 in relation to the continuously iron-depleted group) but not the between-community diversity, whereas Nano Fe(III) had no effect. We conclude that (1) dietary iron depletion at weaning imprints low diversity in the microbiota that is not, subsequently, easily recovered; (2) in the absence of gastrointestinal disease iron supplementation does not negatively impact the microbiota; and (3) Nano Fe(III) is less available to the gut microbiota. PMID:25461615

  10. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype

    PubMed Central

    Segal, Leopoldo N.; Clemente, Jose C.; Tsay, Jun-Chieh J.; Koralov, Sergei B.; Keller, Brian C.; Wu, Benjamin G.; Li, Yonghua; Shen, Nan; Ghedin, Elodie; Morris, Alison; Diaz, Phillip; Huang, Laurence; Wikoff, William R.; Ubeda, Carles; Artacho, Alejandro; Rom, William N.; Sterman, Daniel H.; Collman, Ronald G.; Blaser, Martin J.; Weiden, Michael D.

    2016-01-01

    Microaspiration is a common phenomenon in healthy subjects, but its frequency is increased in chronic inflammatory airway diseases, and its role in inflammatory and immune phenotypes is unclear. We have previously demonstrated that acellular bronchoalveolar lavage samples from half of the healthy people examined are enriched with oral taxa (here called pneumotypeSPT) and this finding is associated with increased numbers of lymphocytes and neutrophils in bronchoalveolar lavage. Here, we have characterized the inflammatory phenotype using a multi-omic approach. By evaluating both upper airway and acellular bronchoalveolar lavage samples from 49 subjects from three cohorts without known pulmonary disease, we observed that pneumotypeSPT was associated with a distinct metabolic profile, enhanced expression of inflammatory cytokines, a pro-inflammatory phenotype characterized by elevated Th-17 lymphocytes and, conversely, a blunted alveolar macrophage TLR4 response. The cellular immune responses observed in the lower airways of humans with pneumotypeSPT indicate a role for the aspiration-derived microbiota in regulating the basal inflammatory status at the pulmonary mucosal surface. PMID:27572644

  11. Transcriptome Analysis of B Cell Immune Functions in Periodontitis: Mucosal Tissue Responses to the Oral Microbiome in Aging

    PubMed Central

    Ebersole, Jeffrey L.; Kirakodu, Sreenatha S.; Novak, M. John; Orraca, Luis; Martinez, Janis Gonzalez; Cunningham, Larry L.; Thomas, Mark V.; Stromberg, Arnold; Pandruvada, Subramanya N.; Gonzalez, Octavio A.

    2016-01-01

    Evidence has shown activation of T and B cells in gingival tissues in experimental models and in humans diagnosed with periodontitis. The results of this adaptive immune response are noted both locally and systemically with antigenic specificity for an array of oral bacteria, including periodontopathic species, e.g., Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. It has been recognized through epidemiological studies and clinical observations that the prevalence of periodontitis increases with age. This report describes our studies evaluating gingival tissue transcriptomes in humans and specifically exploiting the use of a non-human primate model of naturally occurring periodontitis to delineate gingival mucosal tissue gene expression profiles focusing on cells/genes critical for the development of humoral adaptive immune responses. Patterns of B cell and plasmacyte genes were altered in aging healthy gingival tissues. Substantial increases in a large number of genes reflecting antigen-dependent activation, B cell activation, B cell proliferation, and B cell differentiation/maturation were observed in periodontitis in adults and aged animals. Finally, evaluation of the relationship of these gene expression patterns with those of various tissue destructive molecules (MMP2, MMP9, CTSK, TNFα, and RANKL) showed a greater frequency of positive correlations in healthy tissues versus periodontitis tissues, with only MMP9 correlations similar between the two tissue types. These results are consistent with B cell response activities in healthy tissues potentially contributing to muting the effects of the tissue destructive biomolecules, whereas with periodontitis this relationship is adversely affected and enabling a progression of tissue destructive events. PMID:27486459

  12. Dietary iron depletion at weaning imprints low microbiome diversity and this is not recovered with oral Nano Fe(III).

    PubMed

    Pereira, Dora I A; Aslam, Mohamad F; Frazer, David M; Schmidt, Annemarie; Walton, Gemma E; McCartney, Anne L; Gibson, Glenn R; Anderson, Greg J; Powell, Jonathan J

    2015-02-01

    Alterations in the gut microbiota have been recently linked to oral iron. We conducted two feeding studies including an initial diet-induced iron-depletion period followed by supplementation with nanoparticulate tartrate-modified ferrihydrite (Nano Fe(III): considered bioavailable to host but not bacteria) or soluble ferrous sulfate (FeSO4: considered bioavailable to both host and bacteria). We applied denaturing gradient gel electrophoresis and fluorescence in situ hybridization for study-1 and 454-pyrosequencing of fecal 16S rRNA in study-2. In study-1, the within-community microbial diversity increased with FeSO4 (P = 0.0009) but not with Nano Fe(III) supplementation. This was confirmed in study-2, where we also showed that iron depletion at weaning imprinted significantly lower within- and between-community microbial diversity compared to mice weaned onto the iron-sufficient reference diet (P < 0.0001). Subsequent supplementation with FeSO4 partially restored the within-community diversity (P = 0.006 in relation to the continuously iron-depleted group) but not the between-community diversity, whereas Nano Fe(III) had no effect. We conclude that (1) dietary iron depletion at weaning imprints low diversity in the microbiota that is not, subsequently, easily recovered; (2) in the absence of gastrointestinal disease iron supplementation does not negatively impact the microbiota; and (3) Nano Fe(III) is less available to the gut microbiota. © 2014 Crown Copyright. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. Hidden fungi, emergent properties: endophytes and microbiomes.

    PubMed

    Porras-Alfaro, Andrea; Bayman, Paul

    2011-01-01

    Endophytes are microorganisms that live within plant tissues without causing symptoms of disease. They are important components of plant microbiomes. Endophytes interact with, and overlap in function with, other core microbial groups that colonize plant tissues, e.g., mycorrhizal fungi, pathogens, epiphytes, and saprotrophs. Some fungal endophytes affect plant growth and plant responses to pathogens, herbivores, and environmental change; others produce useful or interesting secondary metabolites. Here, we focus on new techniques and approaches that can provide an integrative understanding of the role of fungal endophytes in the plant microbiome. Clavicipitaceous endophytes of grasses are not considered because they have unique properties distinct from other endophytes. Hidden from view and often overlooked, endophytes are emerging as their diversity, importance for plant growth and survival, and interactions with other organisms are revealed. Copyright © 2011 by Annual Reviews. All rights reserved.

  14. Defining the Human Microbiome

    PubMed Central

    Ursell, Luke K; Metcalf, Jessica L; Parfrey, Laura Wegener; Knight, Rob

    2012-01-01

    Rapidly developing sequencing methods and analytical techniques are enhancing our ability to understand the human microbiome, and, indeed, how we define the microbiome and its constituents. In this review we highlight recent research that expands our ability to understand the human microbiome on different spatial and temporal scales, including daily timeseries datasets spanning months. Furthermore, we discuss emerging concepts related to defining operational taxonomic units, diversity indices, core versus transient microbiomes and the possibility of enterotypes. Additional advances in sequencing technology and in our understanding of the microbiome will provide exciting prospects for exploiting the microbiota for personalized medicine. PMID:22861806

  15. COPD and the microbiome.

    PubMed

    Mammen, Manoj J; Sethi, Sanjay

    2016-05-01

    Traditional culture techniques confirm that bacteria have an important role in Chronic Obstructive Pulmonary Disease (COPD). In individuals with COPD, acquisition of novel bacterial strains is associated with onset of acute exacerbation of COPD, which leads to further lung dysfunction and enormous health-care costs. Recent study of the human microbiome, the total composite of the bacteria on the human body, posited the microbiome as the last human organ studied, as the microbiome performs a multitude of metabolic functions absent in the human genome. The largest project to study the human microbiome was the National Institutes of Health (NIH) human microbiome project (HMP) started in 2007 to understand the 'normal' microbiome. However due to the presumption that the healthy human lung was sterile, the respiratory tract was not included in that study. The advent of next-generation sequencing technologies has allowed the investigation of the human respiratory microbiome, which revealed that the healthy lung does have a robust microbiome. Subsequent studies in individuals with COPD revealed that the microbiome composition fluctuates with severity of COPD, composition of the individual aero-digestive tract microbiomes, age, during an acute exacerbation of COPD and with the use of steroids and/or antibiotics. Understanding the impact of the microbiome on COPD progression and risk of exacerbation will lead to directed therapies for prevention of COPD progression and exacerbation.

  16. Global diversity in the human salivary microbiome

    PubMed Central

    Nasidze, Ivan; Li, Jing; Quinque, Dominique; Tang, Kun; Stoneking, Mark

    2009-01-01

    The human salivary microbiome may play a role in diseases of the oral cavity and interact with microbiomes from other parts of the human body (in particular, the intestinal tract), but little is known about normal variation in the salivary microbiome. We analyzed 14,115 partial (∼500 bp) 16S ribosomal RNA (rRNA) sequences from saliva samples from 120 healthy individuals (10 individuals from each of 12 worldwide locations). These sequences could be assigned to 101 known bacterial genera, of which 39 were not previously reported from the human oral cavity; phylogenetic analysis suggests that an additional 64 unknown genera are present. There is high diversity in the salivary microbiome within and between individuals, but little geographic structure. Overall, ∼13.5% of the total variance in the composition of genera is due to differences among individuals, which is remarkably similar to the fraction of the total variance in neutral genetic markers that can be attributed to differences among human populations. Investigation of some environmental variables revealed a significant association between the genetic distances among locations and the distance of each location from the equator. Further characterization of the enormous diversity revealed here in the human salivary microbiome will aid in elucidating the role it plays in human health and disease, and in the identification of potentially informative species for studies of human population history. PMID:19251737

  17. Soil microbiome transfer method affects microbiome composition, including dominant microorganisms, in a novel environment.

    PubMed

    Howard, Mia M; Bell, Terrence H; Kao-Kniffin, Jenny

    2017-06-15

    We show that choice of soil microbiome transfer method, i.e. direct soil transfers and a common soil wash procedure, dramatically influences the microbiome that develops in a new environment, using high-throughput amplicon sequencing of 16S rRNA genes and the fungal internal transcribed spacer (ITS) region. After 3 weeks of incubation in commercial potting mix, microbiomes were most similar to the source soil when a greater volume of initial soil was transferred (5% v/v transfer), and least similar when using a soil wash. Abundant operational taxonomic units were substantially affected by transfer method, suggesting that compounds transferred from the source soil, shifts in biotic interactions, or both, play an important role in their success. © FEMS 2017.

  18. Microbiome in atopic dermatitis

    PubMed Central

    Wollina, Uwe

    2017-01-01

    Atopic dermatitis (AD) is a common chronic inflammatory skin disease affecting ~10–20% of the general population. AD is characterized by disturbances in epidermal barrier function and hyperactive immune response. Recently, changes in the skin and intestinal microbiome have been analyzed in more detail. The available data suggest a link between disturbed skin microbiome and course of the disease. Flares of the disease are associated with an expansion of Staphylococcus aureus on lesional skin and a substantial loss of biodiversity in skin microbiome. Staphylococci exoproteins and superantigens evoke inflammatory reactions in the host. Skin microbiome includes superficial stratum corneum that is affected by environmental factors such as exposure to germs and cleansing. Available evidence argues for a link between epidermal barrier impairment and disturbances in skin microbiome in AD. In contrast to skin microbiome, intestinal microbiome seems to become stabilized after infancy. There is also a significant heritable component for intestinal microbiome. The microbial taxa, relative percentages and quantities vary remarkably between the different parts of the intestinal tract. Early intestinal microbial colonization may be a critical step for prevention of further development of AD. Skin barrier-aimed topical treatments help to develop a neo-microbiome from deeper compartments. Probiotics, prebiotics and synbiotics have been investigated for the treatment of AD, but further investigations are needed. Targeted treatment options to normalize skin and intestinal microbiome in AD are under investigation. PMID:28260936

  19. The potential impact of the pulmonary microbiome on immunopathogenesis of Aspergillus-related lung disease.

    PubMed

    Kolwijck, Eva; van de Veerdonk, Frank L

    2014-11-01

    Aspergillosis is an infection or allergic response caused by fungi of the genus Aspergillus. The most common forms of aspergillosis are allergic bronchopulmonary aspergillosis, chronic pulmonary aspergillosis, and invasive pulmonary aspergillosis. Aspergillus also plays an important role in fungal sensitized asthma. Humans inhale Aspergillus spores every day and when the host is immunocompromised, Aspergillus spp. may cause severe pulmonary disease. There is increasing evidence that the microbiome plays a significant role in immune regulation, chronic inflammatory diseases, metabolism, and other physiological processes, including recovery from the effects of antibiotic treatment. Bacterial microbiome mediated resistance mechanisms probably play a major role in limiting fungal colonization of the lungs, and may therefore prevent humans from contracting Aspergillus-related diseases. In this perspective, we review this emerging area of research and discuss the role of the microbiome in aspergillosis, role of Aspergillus in the microbiome, and the influence of the microbiome on anti-Aspergillus host defense and its role in preventing aspergillosis.

  20. Microbiome in HIV infection

    PubMed Central

    Salas, January T.; Chang, Theresa L.

    2014-01-01

    HIV primary infection occurs at mucosa tissues, suggesting an intricate interplay between microbiome and HIV infection. Recent advanced technologies of high-throughput sequencing and bioinformatics allow researchers to explore nonculturable microbes including bacteria, virus and fungi and their association with diseases. HIV/SIV infection is associated with microbiome shifts and immune activation that may affect the outcome of disease progression. Similarly, altered microbiome and inflammation are associated with increased risks of HIV acquisition, suggesting the role of microbiome in HIV transmission. In this review, we will focus on microbiome in HIV infection at various mucosal compartments. Understanding the relationship between microbiome and HIV may offer insights into development of better strategies for HIV prevention and treatment. PMID:25439273

  1. Menopause and the vaginal microbiome.

    PubMed

    Muhleisen, Alicia L; Herbst-Kralovetz, Melissa M

    2016-09-01

    For over a century it has been well documented that bacteria in the vagina maintain vaginal homeostasis, and that an imbalance or dysbiosis may be associated with poor reproductive and gynecologic health outcomes. Vaginal microbiota are of particular significance to postmenopausal women and may have a profound effect on vulvovaginal atrophy, vaginal dryness, sexual health and overall quality of life. As molecular-based techniques have evolved, our understanding of the diversity and complexity of this bacterial community has expanded. The objective of this review is to compare the changes that have been identified in the vaginal microbiota of menopausal women, outline alterations in the microbiome associated with specific menopausal symptoms, and define how hormone replacement therapy impacts the vaginal microbiome and menopausal symptoms; it concludes by considering the potential of probiotics to reinstate vaginal homeostasis following menopause. This review details the studies that support the role of Lactobacillus species in maintaining vaginal homeostasis and how the vaginal microbiome structure in postmenopausal women changes with decreasing levels of circulating estrogen. In addition, the associated transformations in the microanatomical features of the vaginal epithelium that can lead to vaginal symptoms associated with menopause are described. Furthermore, hormone replacement therapy directly influences the dominance of Lactobacillus in the microbiota and can resolve vaginal symptoms. Oral and vaginal probiotics hold great promise and initial studies complement the findings of previous research efforts concerning menopause and the vaginal microbiome; however, additional trials are required to determine the efficacy of bacterial therapeutics to modulate or restore vaginal homeostasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Microbiome, biofilms, and pneumonia in the ICU.

    PubMed

    Pirrone, Massimiliano; Pinciroli, Riccardo; Berra, Lorenzo

    2016-04-01

    Lower respiratory tract infections remain one of the leading causes of death in the world. Recently, the introduction of molecular methods based on DNA sequencing and microarrays for the identification of nonculturable microorganisms and subspecies variations has challenged the previous 'one bug - one disease' paradigm, providing us with a broader view on human microbial communities and their role in the development of infectious diseases. The purpose of this review is to describe recent understanding of the role of microbiome and bacterial biofilm in the development of lung infections, and, at the same time, to present new areas of research opportunities. The review describes recent literature in cystic fibrosis patients, chronic obstructive pulmonary disease patients, and literature in mechanically ventilated patients that helped to elucidate the role of microbiome and biofilm formation in the development of pneumonia. The characterization of the human microbiome and biofilms has changed our understanding of lower respiratory tract infections. More comprehensive, sensitive, and fast methods for bacterial, fungal, and viral detection are warranted to establish the colonization of the lower respiratory tract in healthy individuals and sick patients. Future research might explore the global bacterial, fungal, and viral pulmonary ecosystems and their interdependence to target novel preventive approaches and therapeutic strategies in chronic and acute lung infections.

  3. The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters

    PubMed Central

    Aagaard, Kjersti; Petrosino, Joseph; Keitel, Wendy; Watson, Mark; Katancik, James; Garcia, Nathalia; Patel, Shital; Cutting, Mary; Madden, Tessa; Hamilton, Holli; Harris, Emily; Gevers, Dirk; Simone, Gina; McInnes, Pamela; Versalovic, James

    2013-01-01

    The Human Microbiome Project used rigorous good clinical practice standards to complete comprehensive body site sampling in healthy 18- to 40-yr-old adults, creating an unparalleled reference set of microbiome specimens. To ensure that specimens represented minimally perturbed microbiomes, we first screened potential participants using exclusion criteria based on health history, including the presence of systemic diseases (e.g., hypertension, cancer, or immunodeficiency or autoimmune disorders), use of potential immunomodulators, and recent use of antibiotics or probiotics. Subsequent physical examinations excluded individuals based on body mass index (BMI), cutaneous lesions, and oral health. We screened 554 individuals to enroll 300 (149 men and 151 women, mean age 26 yr, mean BMI 24 kg/m2, 20.0% racial minority, and 10.7% Hispanic). We obtained specimens from the oral cavity, nares, skin, gastrointestinal tract, and vagina (15 specimens from men and 18 from women). The study evaluated longitudinal changes in an individual's microbiome by sampling 279 participants twice (mean 212 d after the first sampling; range 30-359 d) and 100 individuals 3 times (mean 72 d after the second sampling; range 30-224 d). This sampling strategy yielded 11,174 primary specimens, from which 12,479 DNA samples were submitted to 4 centers for metagenomic sequencing. Our clinical design and well-defined reference cohort has laid a foundation for microbiome research.—Aagaard, K., Petrosino, J., Keitel, W., Watson, M., Katancik, J., Garcia, N., Patel, S., Cutting, M., Madden, T., Hamilton, H., Harris, E., Gevers, D., Simone, G., McInnes, P., Versalovic, J. The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters. PMID:23165986

  4. Fungal Diseases

    MedlinePlus

    ... after a disaster . Global emergence of multidrug-resistant Candida auris Fungal Outbreaks Fungal Diseases Types of Fungal ... Treatment & Outcomes Health Professionals Statistics More Resources Candidiasis Candida infections of the mouth, throat, and esophagus Vaginal ...

  5. The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters.

    PubMed

    Aagaard, Kjersti; Petrosino, Joseph; Keitel, Wendy; Watson, Mark; Katancik, James; Garcia, Nathalia; Patel, Shital; Cutting, Mary; Madden, Tessa; Hamilton, Holli; Harris, Emily; Gevers, Dirk; Simone, Gina; McInnes, Pamela; Versalovic, James

    2013-03-01

    The Human Microbiome Project used rigorous good clinical practice standards to complete comprehensive body site sampling in healthy 18- to 40-yr-old adults, creating an unparalleled reference set of microbiome specimens. To ensure that specimens represented minimally perturbed microbiomes, we first screened potential participants using exclusion criteria based on health history, including the presence of systemic diseases (e.g., hypertension, cancer, or immunodeficiency or autoimmune disorders), use of potential immunomodulators, and recent use of antibiotics or probiotics. Subsequent physical examinations excluded individuals based on body mass index (BMI), cutaneous lesions, and oral health. We screened 554 individuals to enroll 300 (149 men and 151 women, mean age 26 yr, mean BMI 24 kg/m, 20.0% racial minority, and 10.7% Hispanic). We obtained specimens from the oral cavity, nares, skin, gastrointestinal tract, and vagina (15 specimens from men and 18 from women). The study evaluated longitudinal changes in an individual's microbiome by sampling 279 participants twice (mean 212 d after the first sampling; range 30-359 d) and 100 individuals 3 times (mean 72 d after the second sampling; range 30-224 d). This sampling strategy yielded 11,174 primary specimens, from which 12,479 DNA samples were submitted to 4 centers for metagenomic sequencing. Our clinical design and well-defined reference cohort has laid a foundation for microbiome research.

  6. Characterization of Fungal Population During 30-Day Occupation in a Simulated Lunar/Mars Analog Habitat

    NASA Astrophysics Data System (ADS)

    Blachowicz, A.; Mayer, T.; Swarmer, T. M.; De Leon, P.; Venkateswaran, K.

    2015-10-01

    The simulated Lunar/Mars Analog Habitat (LMAH) keeps its inhabitants in isolation from the outside environment what enabled to observe the changes in the fungal microbiome during human occupation. It is crucial since fungi might be hazardous.

  7. Feasibility of Providing Safe Mouth Care and Collecting Oral and Fecal Microbiome Samples from Nursing Home Residents with Dysphagia: Proof of Concept Study.

    PubMed

    Jablonski, Rita A; Winstead, Vicki; Azuero, Andres; Ptacek, Travis; Jones-Townsend, Corteza; Byrd, Elizabeth; Geisinger, Maria L; Morrow, Casey

    2017-09-01

    Individuals with dysphagia who reside in nursing homes often receive inadequate mouth care and experience poor oral health. From a policy perspective, the combination of absent evidence-based mouth care protocols coupled with insufficient dental coverage create a pool of individuals at great risk for preventable infectious illnesses that contribute to high health care costs. The purpose of the current study was to determine (a) the safety of a mouth care protocol tailored for individuals with dysphagia residing in nursing homes without access to suction equipment, and (b) the feasibility of collecting oral and fecal samples for microbiota analyses. The mouth care protocol resulted in improved oral hygiene without aspiration, and oral and fecal samples were safely collected from participants. Policies supporting ongoing testing of evidence-based mouth care protocols for individuals with dysphagia are important to improve quality, demonstrate efficacy, and save health care costs. [Journal of Gerontological Nursing, 43(9), 9-15.]. Copyright 2017, SLACK Incorporated.

  8. The plant microbiome

    PubMed Central

    2013-01-01

    Plant genomes contribute to the structure and function of the plant microbiome, a key determinant of plant health and productivity. High-throughput technologies are revealing interactions between these complex communities and their hosts in unprecedented detail. PMID:23805896

  9. USGS microbiome research

    USGS Publications Warehouse

    Kellogg, Christina A.; Hopkins, M. Camille

    2017-09-26

    Microbiomes are the communities of microorganisms (for example, bacteria, viruses, and fungi) that live on, in, and around people, plants, animals, soil, water, and the atmosphere. Microbiomes are active in the functioning of diverse ecosystems, for instance, by influencing water quality, nutrient acquisition 
and stress tolerance in plants, and stability of soil and aquatic environments. Microbiome research conducted by the U.S. Geological Survey spans many of our mission areas. Key research areas include water quality, understanding climate effects on soil and permafrost, ecosystem and wildlife health, invasive species, contaminated environments to improve bioremediation, and enhancing energy production. Microbiome research will fundamentally strengthen the ability to address the global challenges of maintaining clean water, ensuring adequate food supply, meeting energy needs, and preserving human and ecosystem health.

  10. The gut microbiome.

    PubMed

    Sidhu, Mayenaaz; van der Poorten, David

    2017-01-01

    More than a trillion, mostly good, microbes live within our gastrointestinal tract and are responsible for vital metabolic, immune and nutritional functions. Dysbiosis, meaning a maladaptive imbalance of the microbiome, is associated with many common diseases and is a target for therapy. This article provides an overview of the gut microbiome in health and disease, highlighting conditions such as Clostridium difficile infection, inflammatory bowel disease, irritable bowel syndrome, obesity and non-alcoholic fatty liver disease, with which dysbiosis is associated. Information about treatments that affect the gut microbiome, including probiotics and faecal microbiota transplant, are discussed. As our knowledge of the microbiome increases, we are likely to better understand the complex interactions that cause disease, and develop new and more effective treatments for many common conditions.

  11. Urban Dust Microbiome: Impact on Later Atopy and Wheezing.

    PubMed

    Tischer, Christina; Weikl, Fabian; Probst, Alexander J; Standl, Marie; Heinrich, Joachim; Pritsch, Karin

    2016-12-01

    Investigations in urban areas have just begun to explore how the indoor dust microbiome may affect the pathogenesis of asthma and allery. We aimed to investigate the early fungal and bacterial microbiome in house dust with allergic sensitization and wheezing later in childhood. Individual dust samples from 189 homes of the LISAplus birth cohort study were collected shortly after birth from living room floors and profiled for fungal and bacterial microbiome. Fungal and bacterial diversity was assessed with terminal restriction fragment length polymorphism (tRFLP) and defined by Simpson's Diversity Index. Information on wheezing outcomes and covariates until the age of 10 years was obtained by parent questionnaires. Information on specific allergic sensitization was available at child's age 6 and 10 years. Logistic regression and general estimation equation (GEE) models were used to examine the relationship between microbial diversity and health outcomes. Adjusted logistic regression analyses revealed a significantly reduced risk of developing sensitization to aero-allergens at 6 years and ever wheezing until the age of 10 years for exposure to higher fungal diversity [adjusted odds ratio (aOR) = 0.26 (95% CI: 0.10, 0.70), and 0.42 (95% CI: 0.18, 0.96), respectively]. The associations were attenuated for the longitudinal analyses (GEE) until the age of 10 years. There was no association between higher exposure to bacterial diversity and the tested health outcomes. Higher early exposure to fungal diversity might help to prevent a child from developing sensitization to aero-allergens in early childhood, but the reasons for attenuated effects in later childhood require further prospective studies. Citation: Tischer C, Weikl F, Probst AJ, Standl M, Heinrich J, Pritsch K. 2016. Urban dust microbiome: impact on later atopy and wheezing. Environ Health Perspect 124:1919-1923; http://dx.doi.org/10.1289/EHP158.

  12. Antibiotic use and microbiome function.

    PubMed

    Ferrer, Manuel; Méndez-García, Celia; Rojo, David; Barbas, Coral; Moya, Andrés

    2017-06-15

    Our microbiome should be understood as one of the most complex components of the human body. The use of β-lactam antibiotics is one of the microbiome covariates that influence its composition. The extent to which our microbiota changes after an antibiotic intervention depends not only on the chemical nature of the antibiotic or cocktail of antibiotics used to treat specific infections, but also on the type of administration, duration and dose, as well as the level of resistance that each microbiota develops. We have begun to appreciate that not all bacteria within our microbiota are vulnerable or reactive to different antibiotic interventions, and that their influence on both microbial composition and metabolism may differ. Antibiotics are being used worldwide on a huge scale and the prescription of antibiotics is continuing to rise; however, their effects on our microbiota have been reported for only a limited number of them. This article presents a critical review of the antibiotics or antibiotic cocktails whose use in humans has been linked to changes in the composition of our microbial communities, with a particular focus on the gut, oral, respiratory, skin and vaginal microbiota, and on their molecular agents (genes, proteins and metabolites). We review the state of the art as of June 2016, and cover a total of circa 68 different antibiotics. The data herein are the first to compile information about the bacteria, fungi, archaea and viruses most influenced by the main antibiotic treatments prescribed nowadays. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Gut microbiome and liver diseases.

    PubMed

    Tilg, Herbert; Cani, Patrice D; Mayer, Emeran A

    2016-12-01

    The gut microbiota has recently evolved as a new important player in the pathophysiology of many intestinal and extraintestinal diseases. The liver is the organ which is in closest contact with the intestinal tract, and is exposed to a substantial amount of bacterial components and metabolites. Various liver disorders such as alcoholic liver disease, non-alcoholic liver disease and primary sclerosing cholangitis have been associated with an altered microbiome. This dysbiosis may influence the degree of hepatic steatosis, inflammation and fibrosis through multiple interactions with the host's immune system and other cell types. Whereas few results from clinical metagenomic studies in liver disease are available, evidence is accumulating that in liver cirrhosis an oral microbiome is overrepresented in the lower intestinal tract, potentially contributing to disease process and severity. A major role for the gut microbiota in liver disorders is also supported by the accumulating evidence that several complications of severe liver disease such as hepatic encephalopathy are efficiently treated by various prebiotics, probiotics and antibiotics. A better understanding of the gut microbiota and its components in liver diseases might provide a more complete picture of these complex disorders and also form the basis for novel therapies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Microbiome: Paediatricians' perspective.

    PubMed

    Arora, Shilpa Khanna; Dewan, Pooja; Gupta, Piyush

    2015-11-01

    Millions of microorganisms inhabit the human body and affect its homeostasis in multiple ways. Alterations in this microbial community have implications for the health and survival of the human hosts. It is believed that these microorganisms should be included as part of the human genome because of their influence on human physiology hence the term "microbiome" is commonly used to refer to these microbes along with their genetic make-up and their environmental interactions. In this article we attempt to provide an insight into this recently discovered vital organ of the human body which is yet to be fully explored. We herein discuss the composition and role of microbiome in human health and disease with a special emphasis in children and culture-independent techniques employed in mapping of the microbiome. Alteration in the gut microbiome has been associated with causation of several paediatric diseases like infantile colic, necrotizing enterocolitis, asthma, atopy, obesity, type -1 diabetes, and autism. Atopic dermatitis and psoriasis have also been associated with changes in the cutaneous microbiome. Respiratory microbial imbalances during infancy have been linked with wheezing and bronchial asthma. Dysbiosis in the regional microbiome has been linked with caries, periodontitis, and chronic rhinosinusitis. The future therapeutic implications of this rapidly evolving area of research are also highlighted.

  15. Deep sequencing of the 16S ribosomal RNA of the neonatal oral microbiome: a comparison of breast-fed and formula-fed infants

    PubMed Central

    Al-Shehri, S. S.; Sweeney, E. L.; Cowley, D. M.; Liley, H. G.; Ranasinghe, P. D.; Charles, B. G.; Shaw, P. N.; Vagenas, D.; Duley, J. A.; Knox, C. L.

    2016-01-01

    In utero and upon delivery, neonates are exposed to a wide array of microorganisms from various sources, including maternal bacteria. Prior studies have proposed that the mode of feeding shapes the gut microbiota and, subsequently the child’s health. However, the effect of the mode of feeding and its influence on the development of the neonatal oral microbiota in early infancy has not yet been reported. The aim of this study was to compare the oral microbiota of healthy infants that were exclusively breast-fed or formula-fed using 16S-rRNA gene sequencing. We demonstrated that the oral bacterial communities were dominated by the phylum Firmicutes, in both groups. There was a higher prevalence of the phylum Bacteroidetes in the mouths of formula-fed infants than in breast-fed infants (p = 0.01), but in contrast Actinobacteria were more prevalent in breast-fed babies; Proteobacteria was more prevalent in saliva of breast-fed babies than in formula-fed neonates (p = 0.04). We also found evidence suggesting that the oral microbiota composition changed over time, particularly Streptococcus species, which had an increasing trend between 4–8 weeks in both groups. This study findings confirmed that the mode of feeding influences the development of oral microbiota, and this may have implications for long-term human health. PMID:27922070

  16. The salivary microbiome is consistent between subjects and resistant to impacts of short-term hospitalization.

    PubMed

    Cabral, Damien J; Wurster, Jenna I; Flokas, Myrto E; Alevizakos, Michail; Zabat, Michelle; Korry, Benjamin J; Rowan, Aislinn D; Sano, William H; Andreatos, Nikolaos; Ducharme, R Bobby; Chan, Philip A; Mylonakis, Eleftherios; Fuchs, Beth Burgwyn; Belenky, Peter

    2017-09-08

    In recent years, a growing amount of research has begun to focus on the oral microbiome due to its links with health and systemic disease. The oral microbiome has numerous advantages that make it particularly useful for clinical studies, including non-invasive collection, temporal stability, and lower complexity relative to other niches, such as the gut. Despite recent discoveries made in this area, it is unknown how the oral microbiome responds to short-term hospitalization. Previous studies have demonstrated that the gut microbiome is extremely sensitive to short-term hospitalization and that these changes are associated with significant morbidity and mortality. Here, we present a comprehensive pipeline for reliable bedside collection, sequencing, and analysis of the human salivary microbiome. We also develop a novel oral-specific mock community for pipeline validation. Using our methodology, we analyzed the salivary microbiomes of patients before and during hospitalization or azithromycin treatment to profile impacts on this community. Our findings indicate that azithromycin alters the diversity and taxonomic composition of the salivary microbiome; however, we also found that short-term hospitalization does not impact the richness or structure of this community, suggesting that the oral cavity may be less susceptible to dysbiosis during short-term hospitalization.

  17. Space Station Live: Microbiome Experiment

    NASA Image and Video Library

    NASA Public Affairs Officer Lori Meggs talks with Microbiome experiment Investigator Mark Ott to learn more about this research taking place aboard the International Space Station. The Microbiome e...

  18. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity.

    PubMed

    Gupta, Vinod K; Paul, Sandip; Dutta, Chitra

    2017-01-01

    One of the fundamental issues in the microbiome research is characterization of the healthy human microbiota. Recent studies have elucidated substantial divergences in the microbiome structure between healthy individuals from different race and ethnicity. This review provides a comprehensive account of such geography, ethnicity or life-style-specific variations in healthy microbiome at five major body habitats-Gut, Oral-cavity, Respiratory Tract, Skin, and Urogenital Tract (UGT). The review focuses on the general trend in the human microbiome evolution-a gradual transition in the gross compositional structure along with a continual decrease in diversity of the microbiome, especially of the gut microbiome, as the human populations passed through three stages of subsistence like foraging, rural farming and industrialized urban western life. In general, gut microbiome of the hunter-gatherer populations is highly abundant with Prevotella, Proteobacteria, Spirochaetes, Clostridiales, Ruminobacter etc., while those of the urban communities are often enriched in Bacteroides, Bifidobacterium, and Firmicutes. The oral and skin microbiome are the next most diverse among different populations, while respiratory tract and UGT microbiome show lesser variations. Higher microbiome diversity is observed for oral-cavity in hunter-gatherer group with higher prevalence of Haemophilus than agricultural group. In case of skin microbiome, rural and urban Chinese populations show variation in abundance of Trabulsiella and Propionibacterium. On the basis of published data, we have characterized the core microbiota-the set of genera commonly found in all populations, irrespective of their geographic locations, ethnicity or mode of subsistence. We have also identified the major factors responsible for geography-based alterations in microbiota; though it is not yet clear which factor plays a dominant role in shaping the microbiome-nature or nurture, host genetics or his environment. Some of

  19. Insights from Characterizing Extinct Human Gut Microbiomes

    PubMed Central

    Tito, Raul Y.; Knights, Dan; Metcalf, Jessica; Obregon-Tito, Alexandra J.; Cleeland, Lauren; Najar, Fares; Roe, Bruce; Reinhard, Karl; Sobolik, Kristin; Belknap, Samuel; Foster, Morris; Spicer, Paul; Knight, Rob; Lewis, Cecil M.

    2012-01-01

    In an effort to better understand the ancestral state of the human distal gut microbiome, we examine feces retrieved from archaeological contexts (coprolites). To accomplish this, we pyrosequenced the 16S rDNA V3 region from duplicate coprolite samples recovered from three archaeological sites, each representing a different depositional environment: Hinds Cave (∼8000 years B.P.) in the southern United States, Caserones (1600 years B.P.) in northern Chile, and Rio Zape in northern Mexico (1400 years B.P.). Clustering algorithms grouped samples from the same site. Phyletic representation was more similar within sites than between them. A Bayesian approach to source-tracking was used to compare the coprolite data to published data from known sources that include, soil, compost, human gut from rural African children, human gut, oral and skin from US cosmopolitan adults and non-human primate gut. The data from the Hinds Cave samples largely represented unknown sources. The Caserones samples, retrieved directly from natural mummies, matched compost in high proportion. A substantial and robust proportion of Rio Zape data was predicted to match the gut microbiome found in traditional rural communities, with more minor matches to other sources. One of the Rio Zape samples had taxonomic representation consistent with a child. To provide an idealized scenario for sample preservation, we also applied source tracking to previously published data for Ötzi the Iceman and a soldier frozen for 93 years on a glacier. Overall these studies reveal that human microbiome data has been preserved in some coprolites, and these preserved human microbiomes match more closely to those from the rural communities than to those from cosmopolitan communities. These results suggest that the modern cosmopolitan lifestyle resulted in a dramatic change to the human gut microbiome. PMID:23251439

  20. Insights from characterizing extinct human gut microbiomes.

    PubMed

    Tito, Raul Y; Knights, Dan; Metcalf, Jessica; Obregon-Tito, Alexandra J; Cleeland, Lauren; Najar, Fares; Roe, Bruce; Reinhard, Karl; Sobolik, Kristin; Belknap, Samuel; Foster, Morris; Spicer, Paul; Knight, Rob; Lewis, Cecil M

    2012-01-01

    In an effort to better understand the ancestral state of the human distal gut microbiome, we examine feces retrieved from archaeological contexts (coprolites). To accomplish this, we pyrosequenced the 16S rDNA V3 region from duplicate coprolite samples recovered from three archaeological sites, each representing a different depositional environment: Hinds Cave (~8000 years B.P.) in the southern United States, Caserones (1600 years B.P.) in northern Chile, and Rio Zape in northern Mexico (1400 years B.P.). Clustering algorithms grouped samples from the same site. Phyletic representation was more similar within sites than between them. A Bayesian approach to source-tracking was used to compare the coprolite data to published data from known sources that include, soil, compost, human gut from rural African children, human gut, oral and skin from US cosmopolitan adults and non-human primate gut. The data from the Hinds Cave samples largely represented unknown sources. The Caserones samples, retrieved directly from natural mummies, matched compost in high proportion. A substantial and robust proportion of Rio Zape data was predicted to match the gut microbiome found in traditional rural communities, with more minor matches to other sources. One of the Rio Zape samples had taxonomic representation consistent with a child. To provide an idealized scenario for sample preservation, we also applied source tracking to previously published data for Ötzi the Iceman and a soldier frozen for 93 years on a glacier. Overall these studies reveal that human microbiome data has been preserved in some coprolites, and these preserved human microbiomes match more closely to those from the rural communities than to those from cosmopolitan communities. These results suggest that the modern cosmopolitan lifestyle resulted in a dramatic change to the human gut microbiome.

  1. Proton pump inhibitors affect the gut microbiome

    PubMed Central

    Imhann, Floris; Bonder, Marc Jan; Vich Vila, Arnau; Fu, Jingyuan; Mujagic, Zlatan; Vork, Lisa; Tigchelaar, Ettje F; Jankipersadsing, Soesma A; Cenit, Maria Carmen; Harmsen, Hermie J M; Dijkstra, Gerard; Franke, Lude; Xavier, Ramnik J; Jonkers, Daisy; Wijmenga, Cisca; Weersma, Rinse K; Zhernakova, Alexandra

    2016-01-01

    Background and aims Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or promoting colonisation by pathogens. In this study, we investigated the influence of PPI use on the gut microbiome. Methods The gut microbiome composition of 1815 individuals, spanning three cohorts, was assessed by tag sequencing of the 16S rRNA gene. The difference in microbiota composition in PPI users versus non-users was analysed separately in each cohort, followed by a meta-analysis. Results 211 of the participants were using PPIs at the moment of stool sampling. PPI use is associated with a significant decrease in Shannon's diversity and with changes in 20% of the bacterial taxa (false discovery rate <0.05). Multiple oral bacteria were over-represented in the faecal microbiome of PPI-users, including the genus Rothia (p=9.8×10−38). In PPI users we observed a significant increase in bacteria: genera Enterococcus, Streptococcus, Staphylococcus and the potentially pathogenic species Escherichia coli. Conclusions The differences between PPI users and non-users observed in this study are consistently associated with changes towards a less healthy gut microbiome. These differences are in line with known changes that predispose to C. difficile infections and can potentially explain the increased risk of enteric infections in PPI users. On a population level, the effects of PPI are more prominent than the effects of antibiotics or other commonly used drugs. PMID:26657899

  2. The microbiome in asthma.

    PubMed

    Huang, Yvonne J; Boushey, Homer A

    2015-01-01

    The application of recently developed sensitive, specific, culture-independent tools for identification of microbes is transforming concepts of microbial ecology, including concepts of the relationships between the vast complex populations of microbes associated with ourselves and with states of health and disease. Although most work initially focused on the community of microbes (microbiome) in the gastrointestinal tract and its relationship to gastrointestinal disease, interest has expanded to include study of the relationships of the airway microbiome to asthma and its phenotypes and to the relationships between the gastrointestinal microbiome, development of immune function, and predisposition to allergic sensitization and asthma. Here we provide our perspective on the findings of studies of differences in the airway microbiome between asthmatic patients and healthy subjects and of studies of relationships between environmental microbiota, gut microbiota, immune function, and asthma development. In addition, we provide our perspective on how these findings suggest the broad outline of a rationale for approaches involving directed manipulation of the gut and airway microbiome for the treatment and prevention of allergic asthma.

  3. The Microbiome in Asthma

    PubMed Central

    Huang, Yvonne J.; Boushey, Homer A.

    2014-01-01

    The application of recently developed sensitive, specific, culture-independent tools for identification of microbes is transforming concepts of microbial ecology, including concepts of the relationships between the vast, complex populations of microbes associated with ourselves and with states of health and disease. While most work initially focused on the community of microbes (microbiome) in the gastrointestinal tract and its relationships to gastrointestinal disease, interest has expanded to include study of the relationships of the microbiome of the airways to asthma and its phenotypes, and to the relationships between the gastrointestinal microbiome, development of immune function, and predisposition to development of allergic sensitization and asthma. We here provide our perspective on the findings of studies of differences in the airway microbiome in patients with asthma vs. healthy subjects, and of studies of relationships between environmental microbiota, gut microbiota, immune function, and the development of asthma, and additionally provide our perspective on how these findings suggest in broad outline a rationale for approaches involving directed manipulation of the gut and airway microbiome for treatment and prevention of allergic asthma. PMID:25567040

  4. Microbiome: Paediatricians’ perspective

    PubMed Central

    Arora, Shilpa Khanna; Dewan, Pooja; Gupta, Piyush

    2015-01-01

    Millions of microorganisms inhabit the human body and affect its homeostasis in multiple ways. Alterations in this microbial community have implications for the health and survival of the human hosts. It is believed that these microorganisms should be included as part of the human genome because of their influence on human physiology hence the term “microbiome” is commonly used to refer to these microbes along with their genetic make-up and their environmental interactions. In this article we attempt to provide an insight into this recently discovered vital organ of the human body which is yet to be fully explored. We herein discuss the composition and role of microbiome in human health and disease with a special emphasis in children and culture-independent techniques employed in mapping of the microbiome. Alteration in the gut microbiome has been associated with causation of several paediatric diseases like infantile colic, necrotizing enterocolitis, asthma, atopy, obesity, type -1 diabetes, and autism. Atopic dermatitis and psoriasis have also been associated with changes in the cutaneous microbiome. Respiratory microbial imbalances during infancy have been linked with wheezing and bronchial asthma. Dysbiosis in the regional microbiome has been linked with caries, periodontitis, and chronic rhinosinusitis. The future therapeutic implications of this rapidly evolving area of research are also highlighted. PMID:26658584

  5. Microbiome and skin diseases.

    PubMed

    Zeeuwen, Patrick L J M; Kleerebezem, Michiel; Timmerman, Harro M; Schalkwijk, Joost

    2013-10-01

    This article reviews recent findings on the skin microbiome. It provides an update on the current understanding of the role of microbiota in healthy skin and in inflammatory and allergic skin diseases. Advances in computing and high-throughput sequencing technology have enabled in-depth analysis of microbiota composition and functionality of human skin. Most data generated to date are related to the skin microbiome of healthy volunteers, but recent studies have also addressed the dynamics of the microbiome in diseased and injured skin. Currently, reports are emerging that evaluate the strategies to manipulate the skin microbiome, intending to modulate diseases and/or their symptoms. The microbiome of normal human skin was found to have a high diversity and high interpersonal variation. Microbiota compositions of diseased lesional skin (in atopic dermatitis and psoriasis) showed distinct differences compared with healthy skin. The function of microbial colonization in establishing immune system homeostasis has been reported, whereas host-microbe interactions and genetically determined variation of stratum corneum properties might be linked to skin dysbiosis. Both are relevant for cutaneous disorders with aberrant immune responses and/or disturbed skin barrier function. Modulation of skin microbiota composition to restore host-microbiota homeostasis could be future strategies to treat or prevent disease.

  6. Companion animals symposium: humanized animal models of the microbiome.

    PubMed

    Gootenberg, D B; Turnbaugh, P J

    2011-05-01

    Humans and other mammals are colonized by trillions of microorganisms, most of which reside in the gastrointestinal tract, that provide key metabolic capabilities, such as the biosynthesis of vitamins and AA, the degradation of dietary plant polysaccharides, and the metabolism of orally administered therapeutics. Although much progress has been made by studying the human microbiome directly, comparing the human microbiome with that of other animals, and constructing in vitro models of the human gut, there remains a need to develop in vivo models where host, microbial, and environmental parameters can be manipulated. Here, we discuss some of the initial results from a promising method that enables the direct manipulation of microbial community structure, environmental exposures, host genotype, and other factors: the colonization of germ-free animals with complex microbial communities, including those from humans or other animal donors. Analyses of these resulting "humanized" gut microbiomes have begun to reveal 1) that key microbial activities can be transferred from the donor to the recipient animal (e.g., microbial reduction of cholesterol and production of equol), 2) that dietary shifts can affect the composition, gene abundance, and gene expression of the gut microbiome, 3) the succession of the microbial community in infants and ex-germ-free adult animals, and 4) the biogeography of these microbes across the length of gastrointestinal tract. Continued studies of humanized and other intentionally colonized animal models stand to provide new insight into not only the human microbiome, but also the microbiomes of our animal companions.

  7. Ancient human microbiomes

    PubMed Central

    Warinner, Christina; Speller, Camilla; Collins, Matthew J.; Lewis, Cecil M.

    2015-01-01

    Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and therefore, we lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today. PMID:25559298

  8. The microbiome revolution

    PubMed Central

    Blaser, Martin J.

    2014-01-01

    The collection of bacteria, viruses, and fungi that live in and on the human body, collectively known as the microbiome, has recently emerged as an important factor in human physiology and disease. The gut in particular is a biological niche that is home to a diverse array of microbes that influence nearly all aspects of human biology through their interactions with their host; new technologies are beginning to reveal important aspects of host-microbe interactions. Articles in this Review series address how perturbations of the microbiota, such as through antibiotic use, influence its overall structure and function; how our microbiome influences the impact of infectious agents, such as C. difficile; how our microbiome mediates metabolism of xenobiotics; how the microbiota contribute to immunity as well as to metabolic and inflammatory diseases; and the role of commensal microbes in oncogenesis. PMID:25271724

  9. The microbiome revolution.

    PubMed

    Blaser, Martin J

    2014-10-01

    The collection of bacteria, viruses, and fungi that live in and on the human body, collectively known as the microbiome, has recently emerged as an important factor in human physiology and disease. The gut in particular is a biological niche that is home to a diverse array of microbes that influence nearly all aspects of human biology through their interactions with their host; new technologies are beginning to reveal important aspects of host-microbe interactions. Articles in this Review series address how perturbations of the microbiota, such as through antibiotic use, influence its overall structure and function; how our microbiome influences the impact of infectious agents, such as C. difficile; how our microbiome mediates metabolism of xenobiotics; how the microbiota contribute to immunity as well as to metabolic and inflammatory diseases; and the role of commensal microbes in oncogenesis.

  10. Ancient human microbiomes.

    PubMed

    Warinner, Christina; Speller, Camilla; Collins, Matthew J; Lewis, Cecil M

    2015-02-01

    Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and we therefore lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today.

  11. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity

    PubMed Central

    Gupta, Vinod K.; Paul, Sandip; Dutta, Chitra

    2017-01-01

    One of the fundamental issues in the microbiome research is characterization of the healthy human microbiota. Recent studies have elucidated substantial divergences in the microbiome structure between healthy individuals from different race and ethnicity. This review provides a comprehensive account of such geography, ethnicity or life-style-specific variations in healthy microbiome at five major body habitats—Gut, Oral-cavity, Respiratory Tract, Skin, and Urogenital Tract (UGT). The review focuses on the general trend in the human microbiome evolution—a gradual transition in the gross compositional structure along with a continual decrease in diversity of the microbiome, especially of the gut microbiome, as the human populations passed through three stages of subsistence like foraging, rural farming and industrialized urban western life. In general, gut microbiome of the hunter-gatherer populations is highly abundant with Prevotella, Proteobacteria, Spirochaetes, Clostridiales, Ruminobacter etc., while those of the urban communities are often enriched in Bacteroides, Bifidobacterium, and Firmicutes. The oral and skin microbiome are the next most diverse among different populations, while respiratory tract and UGT microbiome show lesser variations. Higher microbiome diversity is observed for oral-cavity in hunter-gatherer group with higher prevalence of Haemophilus than agricultural group. In case of skin microbiome, rural and urban Chinese populations show variation in abundance of Trabulsiella and Propionibacterium. On the basis of published data, we have characterized the core microbiota—the set of genera commonly found in all populations, irrespective of their geographic locations, ethnicity or mode of subsistence. We have also identified the major factors responsible for geography-based alterations in microbiota; though it is not yet clear which factor plays a dominant role in shaping the microbiome—nature or nurture, host genetics or his environment

  12. The gut microbiome.

    PubMed

    Actis, Giovanni C

    2014-01-01

    Since the discovery and use of the microscope in the 17(th) century, we know that we host trillions of micro-organisms mostly in the form of bacteria indwelling the "barrier organs" skin, gut, and airways. They exert regulatory functions, are in a continuous dialogue with the intestinal epithelia, influence energy handling, produce nutrients, and may cause diabetes and obesity. The human microbiome has developed by modulating or avoiding inflammatory responses; the host senses bacterial presence through cell surface sensors (the Toll-like receptors) as well as by refining mucous barriers as passive defense mechanisms. The cell density and composition of the microbiome are variable and multifactored. The way of delivery establishes the type of initial flora; use of antibiotics is another factor; diet composition after weaning will shape the adult's microbiome composition, depending on the subject's life-style. Short-chain fatty acids participate in the favoring action exerted by microbiome in the pathogenesis of type-2 diabetes and obesity. Clinical observation has pinpointed a sharp rise of various dysimmune conditions in the last decades, including IBD and rheumatoid arthritis, changes that outweigh the input of simple heritability. It is nowadays proposed that the microbiome, incapable to keep up with the changes of our life-style and feeding sources in the past few decades might have contributed to these immune imbalances, finding itself inadequate to handle the changed gut environment. Another pathway to pathology is the rise of directly pathogenic phyla within a given microbiome: growth of adherent E. coli, of C. concisus, and of C. jejuni, might be examples of causes of local enteropathy, whereas the genus Prevotella copri is now suspected to be linked to rise of arthritic disorders. Inflammasomes are required to shape a non colitogenic flora. Treatment of IBD and infectious enteritides by the use of fecal transplant is warranted by this knowledge.

  13. The microbiome and cancer

    PubMed Central

    Schwabe, Robert F.; Jobin, Christian

    2014-01-01

    Microbiota and host form a complex ‘super-organism’ in which symbiotic relationships confer benefits to the host in many key aspects of life. However, defects in the regulatory circuits of the host that control bacterial sensing and homeostasis, or alterations of the microbiome, through environmental changes (infection, diet or lifestyle), may disturb this symbiotic relationship and promote disease. Increasing evidence indicates a key role for the bacterial microbiota in carcinogenesis. In this Opinion article, we discuss links between the bacterial microbiota and cancer, with a particular focus on immune responses, dysbiosis, genotoxicity, metabolism and strategies to target the microbiome for cancer prevention. PMID:24132111

  14. The global ocean microbiome.

    PubMed

    Moran, Mary Ann

    2015-12-11

    The microbiome of the largest environment on Earth has been gradually revealing its secrets over four decades of study. Despite the dispersed nature of substrates and the transience of surfaces, marine microbes drive essential transformations in all global elemental cycles. Much has been learned about the microbes that carry out key biogeochemical processes, but there are still plenty of ambiguities about the factors important in regulating activity, including the role of microbial interactions. Identifying the molecular "currencies" exchanged within the microbial community will provide key information on microbiome function and its vulnerability to environmental change. Copyright © 2015, American Association for the Advancement of Science.

  15. Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research

    PubMed Central

    Comeau, André M.; Douglas, Gavin M.

    2017-01-01

    ABSTRACT Sequence-based approaches to study microbiomes, such as 16S rRNA gene sequencing and metagenomics, are uncovering associations between microbial taxa and a myriad of factors. A drawback of these approaches is that the necessary sequencing library preparation and bioinformatic analyses are complicated and continuously changing, which can be a barrier for researchers new to the field. We present three essential components to conducting a microbiome experiment from start to finish: first, a simplified and step-by-step custom gene sequencing protocol that requires limited lab equipment, is cost-effective, and has been thoroughly tested and utilized on various sample types; second, a series of scripts to integrate various commonly used bioinformatic tools that is available as a standalone installation or as a single downloadable virtual image; and third, a set of bioinformatic workflows and tutorials to provide step-by-step guidance and education for those new to the microbiome field. This resource will provide the foundations for those newly entering the microbiome field and will provide much-needed guidance and best practices to ensure that quality microbiome research is undertaken. All protocols, scripts, workflows, tutorials, and virtual images are freely available through the Microbiome Helper website (https://github.com/mlangill/microbiome_helper/wiki). IMPORTANCE As the microbiome field continues to grow, a multitude of researchers are learning how to conduct proper microbiome experiments. We outline here a streamlined and custom approach to processing samples from detailed sequencing library construction to step-by-step bioinformatic standard operating procedures. This allows for rapid and reliable microbiome analysis, allowing researchers to focus more on their experiment design and results. Our sequencing protocols, bioinformatic tutorials, and bundled software are freely available through Microbiome Helper. As the microbiome research field continues

  16. Wine fermentation microbiome: a landscape from different Portuguese wine appellations

    PubMed Central

    Pinto, Cátia; Pinho, Diogo; Cardoso, Remy; Custódio, Valéria; Fernandes, Joana; Sousa, Susana; Pinheiro, Miguel; Egas, Conceição; Gomes, Ana C.

    2015-01-01

    Grapes and wine musts harbor a complex microbiome, which plays a crucial role in wine fermentation as it impacts on wine flavour and, consequently, on its final quality and value. Unveiling the microbiome and its dynamics, and understanding the ecological factors that explain such biodiversity, has been a challenge to oenology. In this work, we tackle this using a metagenomics approach to describe the natural microbial communities, both fungal and bacterial microorganisms, associated with spontaneous wine fermentations. For this, the wine microbiome, from six Portuguese wine appellations, was fully characterized as regards to three stages of fermentation – Initial Musts (IM), and Start and End of alcoholic fermentations (SF and EF, respectively). The wine fermentation process revealed a higher impact on fungal populations when compared with bacterial communities, and the fermentation evolution clearly caused a loss of the environmental microorganisms. Furthermore, significant differences (p < 0.05) were found in the fungal populations between IM, SF, and EF, and in the bacterial population between IM and SF. Fungal communities were characterized by either the presence of environmental microorganisms and phytopathogens in the IM, or yeasts associated with alcoholic fermentations in wine must samples as Saccharomyces and non-Saccharomyces yeasts (as Lachancea, Metschnikowia, Hanseniaspora, Hyphopichia, Sporothrix, Candida, and Schizosaccharomyces). Among bacterial communities, the most abundant family was Enterobacteriaceae; though families of species associated with the production of lactic acid (Lactobacillaceae, Leuconostocaceae) and acetic acid (Acetobacteriaceae) were also detected. Interestingly, a biogeographical correlation for both fungal and bacterial communities was identified between wine appellations at IM suggesting that each wine region contains specific and embedded microbial communities which may contribute to the uniqueness of regional wines. PMID

  17. Fungal Sinusitis.

    PubMed

    Raz, Eytan; Win, William; Hagiwara, Mari; Lui, Yvonne W; Cohen, Benjamin; Fatterpekar, Girish M

    2015-11-01

    Fungal sinusitis is characterized into invasive and noninvasive forms. The invasive variety is further classified into acute, chronic and granulomatous forms; and the noninvasive variety into fungus ball and allergic fungal sinusitis. Each of these different forms has a unique radiologic appearance. The clinicopathologic and corresponding radiologic spectrum and differences in treatment strategies of fungal sinusitis make it an important diagnosis for clinicians and radiologists to always consider. This is particularly true of invasive fungal sinusitis, which typically affects immuno compromised patients and is associated with significant morbidity and mortality. Early diagnosis allows initiation of appropriate treatment strategies resulting in favorable outcome. Published by Elsevier Inc.

  18. Fungal melanonychia.

    PubMed

    Finch, Justin; Arenas, Roberto; Baran, Robert

    2012-05-01

    Fungal melanonychia is a relatively rare nail disorder caused by nail infection that produces brown-to-black pigmentation of the nail unit. The number of organisms implicated as etiologic agents of fungal melanonychia is increasing, and the list currently tops 21 species of dematiaceous fungi and at least 8 species of nondematiaceous fungi. These superficial infections may clinically mimic subungual melanoma and are often not responsive to traditional antifungal therapy. This article reviews the literature on fungal melanonychia and the role of fungal melanin in infection.

  19. The dynamic microbiome.

    PubMed

    Gerber, Georg K

    2014-11-17

    While our genomes are essentially static, our microbiomes are inherently dynamic. The microbial communities we harbor in our bodies change throughout our lives due to many factors, including maturation during childhood, alterations in our diets, travel, illnesses, and medical treatments. Moreover, there is mounting evidence that our microbiomes change us, by promoting health through their beneficial actions or by increasing our susceptibility to diseases through a process termed dysbiosis. Recent technological advances are enabling unprecedentedly detailed studies of the dynamics of the microbiota in animal models and human populations. This review will highlight key areas of investigation in the field, including establishment of the microbiota during early childhood, temporal variability of the microbiome in healthy adults, responses of the microbiota to intentional perturbations such as antibiotics and dietary changes, and prospective analyses linking changes in the microbiota to host disease status. Given the importance of computational methods in the field, this review will also discuss issues and pitfalls in the analysis of microbiome time-series data, and explore several promising new directions for mathematical model and algorithm development.

  20. The caprine abomasal microbiome

    USDA-ARS?s Scientific Manuscript database

    Parasitism is considered the number one health problem in small ruminants. The barber's pole worm Haemonchus contortus infection in goats elicits a strong host immune response. However, the effect of the parasitic infection on the structure and function of the gut microbiome remains largely unknown....

  1. The chicken gastrointestinal microbiome.

    PubMed

    Oakley, Brian B; Lillehoj, Hyun S; Kogut, Michael H; Kim, Woo K; Maurer, John J; Pedroso, Adriana; Lee, Margie D; Collett, Stephen R; Johnson, Timothy J; Cox, Nelson A

    2014-11-01

    The domestic chicken is a common model organism for human biological research and of course also forms the basis of a global protein industry. Recent methodological advances have spurred the recognition of microbiomes as complex communities with important influences on the health and disease status of the host. In this minireview, we provide an overview of the current state of knowledge of the chicken gastrointestinal microbiome focusing on spatial and temporal variability, the presence and importance of human pathogens, the influence of the microbiota on the immune system, and the importance of the microbiome for poultry nutrition. Review and meta-analysis of public data showed cecal communities dominated by Firmicutes and Bacteroides at the phylum level, while at finer levels of taxonomic resolution, a phylogenetically diverse assemblage of microorganisms appears to have similar metabolic functions that provide important benefits to the host as inferred from metagenomic data. This observation of functional redundancy may have important implications for management of the microbiome. We foresee advances in strategies to improve gut health in commercial operations through management of the intestinal microbiota as an alternative to in-feed subtherapeutic antibiotics, improvements in pre- and probiotics, improved management of polymicrobial poultry diseases, and better control of human pathogens via colonization reduction or competitive exclusion strategies. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. The Microbiome (Chapter 378)

    USDA-ARS?s Scientific Manuscript database

    The microbiome refers to the totality of microorganisms, their collective genetic elements, and environmental interactions, in a specific environment. Trillions of microbes in the mammalian host play important roles in the development of the host immune system and the regulation of host metabolism, ...

  3. The chicken gastrointestinal microbiome

    USDA-ARS?s Scientific Manuscript database

    We are in the midst of what may, in retrospect, come to be referred to as the golden age of microbial ecology. Once considered as only a relatively few pathogens, the microorganisms and their genes (the microbiome) associated with higher organisms are now recognized as complex communities with impo...

  4. The Home Microbiome Project

    ScienceCinema

    Gilbert, Jack

    2016-07-12

    The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

  5. The Home Microbiome Project

    SciTech Connect

    Gilbert, Jack

    2014-08-25

    The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

  6. Fungal endophytes: modifiers of plant disease.

    PubMed

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.

  7. Evolutionary Biology Needs Wild Microbiomes.

    PubMed

    Hird, Sarah M

    2017-01-01

    The microbiome is a vital component to the evolution of a host and much of what we know about the microbiome derives from studies on humans and captive animals. But captivity alters the microbiome and mammals have unique biological adaptations that affect their microbiomes (e.g., milk). Birds represent over 30% of known tetrapod diversity and possess their own suite of adaptations relevant to the microbiome. In a previous study, we showed that 59 species of birds displayed immense variation in their microbiomes and host (bird) taxonomy and ecology were most correlated with the gut microbiome. In this Frontiers Focused Review, I put those results in a broader context by discussing how collecting and analyzing wild microbiomes contributes to the main goals of evolutionary biology and the specific ways that birds are unique microbial hosts. Finally, I outline some of the methodological considerations for adding microbiome sampling to the research of wild animals and urge researchers to do so. To truly understand the evolution of a host, we need to understand the millions of microorganisms that inhabit it as well: evolutionary biology needs wild microbiomes.

  8. Evolutionary Biology Needs Wild Microbiomes

    PubMed Central

    Hird, Sarah M.

    2017-01-01

    The microbiome is a vital component to the evolution of a host and much of what we know about the microbiome derives from studies on humans and captive animals. But captivity alters the microbiome and mammals have unique biological adaptations that affect their microbiomes (e.g., milk). Birds represent over 30% of known tetrapod diversity and possess their own suite of adaptations relevant to the microbiome. In a previous study, we showed that 59 species of birds displayed immense variation in their microbiomes and host (bird) taxonomy and ecology were most correlated with the gut microbiome. In this Frontiers Focused Review, I put those results in a broader context by discussing how collecting and analyzing wild microbiomes contributes to the main goals of evolutionary biology and the specific ways that birds are unique microbial hosts. Finally, I outline some of the methodological considerations for adding microbiome sampling to the research of wild animals and urge researchers to do so. To truly understand the evolution of a host, we need to understand the millions of microorganisms that inhabit it as well: evolutionary biology needs wild microbiomes. PMID:28487687

  9. Microbiome Disturbances and Autism Spectrum Disorders.

    PubMed

    Rosenfeld, Cheryl S

    2015-10-01

    Autism spectrum disorders (ASDs) are considered a heterogenous set of neurobehavioral diseases, with the rates of diagnosis dramatically increasing in the past few decades. As genetics alone does not explain the underlying cause in many cases, attention has turned to environmental factors as potential etiological agents. Gastrointestinal disorders are a common comorbidity in ASD patients. It was thus hypothesized that a gut-brain link may account for some autistic cases. With the characterization of the human microbiome, this concept has been expanded to include the microbiota-gut-brain axis. There are mounting reports in animal models and human epidemiologic studies linking disruptive alterations in the gut microbiota or dysbiosis and ASD symptomology. In this review, we will explore the current evidence that gut dysbiosis in animal models and ASD patients correlates with disease risk and severity. The studies to date have surveyed how gut microbiome changes may affect these neurobehavioral disorders. However, we harbor other microbiomes in the body that might impact brain function. We will consider microbial colonies residing in the oral cavity, vagina, and the most recently discovered one in the placenta. Based on the premise that gut microbiota alterations may be causative agents in ASD, several therapeutic options have been tested, such as diet modulations, prebiotics, probiotics, synbiotics, postbiotics, antibiotics, fecal transplantation, and activated charcoal. The potential benefits of these therapies will be considered. Finally, the possible mechanisms by which changes in the gut bacterial communities may result in ASD and related neurobehavioral disorders will be examined.

  10. Diverse CRISPRs evolving in human microbiomes.

    PubMed

    Rho, Mina; Wu, Yu-Wei; Tang, Haixu; Doak, Thomas G; Ye, Yuzhen

    2012-01-01

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, together with cas (CRISPR-associated) genes, form the CRISPR/Cas adaptive immune system, a primary defense strategy that eubacteria and archaea mobilize against foreign nucleic acids, including phages and conjugative plasmids. Short spacer sequences separated by the repeats are derived from foreign DNA and direct interference to future infections. The availability of hundreds of shotgun metagenomic datasets from the Human Microbiome Project (HMP) enables us to explore the distribution and diversity of known CRISPRs in human-associated microbial communities and to discover new CRISPRs. We propose a targeted assembly strategy to reconstruct CRISPR arrays, which whole-metagenome assemblies fail to identify. For each known CRISPR type (identified from reference genomes), we use its direct repeat consensus sequence to recruit reads from each HMP dataset and then assemble the recruited reads into CRISPR loci; the unique spacer sequences can then be extracted for analysis. We also identified novel CRISPRs or new CRISPR variants in contigs from whole-metagenome assemblies and used targeted assembly to more comprehensively identify these CRISPRs across samples. We observed that the distributions of CRISPRs (including 64 known and 86 novel ones) are largely body-site specific. We provide detailed analysis of several CRISPR loci, including novel CRISPRs. For example, known streptococcal CRISPRs were identified in most oral microbiomes, totaling ∼8,000 unique spacers: samples resampled from the same individual and oral site shared the most spacers; different oral sites from the same individual shared significantly fewer, while different individuals had almost no common spacers, indicating the impact of subtle niche differences on the evolution of CRISPR defenses. We further demonstrate potential applications of CRISPRs to the tracing of rare species and the virus exposure of individuals. This work

  11. The airway microbiome and disease.

    PubMed

    Marsland, Benjamin J; Yadava, Koshika; Nicod, Laurent P

    2013-08-01

    Although traditionally thought to be sterile, accumulating evidence now supports the concept that our airways harbor a microbiome. Thus far, studies have focused upon characterizing the bacterial constituents of the airway microbiome in both healthy and diseased lungs, but what perhaps provides the greatest impetus for the exploration of the airway microbiome is that different bacterial phyla appear to dominate diseased as compared with healthy lungs. As yet, there is very limited evidence supporting a functional role for the airway microbiome, but continued research in this direction is likely to provide such evidence, particularly considering the progress that has been made in understanding host-microbe mutualism in the intestinal tract. In this review, we highlight the major advances that have been made discovering and describing the airway microbiome, discuss the experimental evidence that supports a functional role for the microbiome in health and disease, and propose how this emerging field is going to impact clinical practice.

  12. Impact of orally administered lozenges with Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB-12 on the number of salivary mutans streptococci, amount of plaque, gingival inflammation and the oral microbiome in healthy adults.

    PubMed

    Toiviainen, Aino; Jalasvuori, Heli; Lahti, Emilia; Gursoy, Ulvi; Salminen, Seppo; Fontana, Margherita; Flannagan, Susan; Eckert, George; Kokaras, Alexis; Paster, Bruce; Söderling, Eva

    2015-01-01

    The aim was to evaluate the effects of orally administered Lactobacillus rhamnosus GG (LGG) and Bifidobacterium animalis subsp. lactis BB-12 (BB-12) on the number of salivary mutans streptococci (MS), amount of plaque, gingival inflammation and the oral microbiota in healthy young adults. The study was a randomised, controlled, double-blind trial. Healthy volunteers used lozenges containing a combination of LGG and BB-12 (test group, n = 29) or lozenges without added probiotics (control group, n = 31) for 4 weeks. At baseline and at the end of the test period, the plaque index (PI) and gingival index (GI) were determined, and stimulated saliva was collected. The microbial composition of saliva was assessed using human oral microbe identification microarray (n = 30). MS and lactobacilli (LB) were plate cultured. The probiotic lozenge decreased both PI and GI (p < 0.05) while no changes were observed in the control group. However, no probiotic-induced changes were found in the microbial compositions of saliva in either group. The probiotic lozenge improved the periodontal status without affecting the oral microbiota. Short-term consumption of LGG and BB-12 decreased the amount of plaque which was associated with a clinical impact: a decrease in gingival inflammation.

  13. Mechanistic and Technical Challenges in Studying the Human Microbiome and Cancer Epidemiology.

    PubMed

    Verma, Mukesh

    2017-04-01

    This article reviews the significance of the microbiome in cancer epidemiology, mechanistic and technical challenges in the field, and characterization of the microbiome in different tumor types to identify biomarkers of risk, progression, and prognosis. Publications on the microbiome and cancer epidemiology were reviewed to analyze sample collection and processing, microbiome taxa characterization by 16S ribosomal RNA sequencing, and microbiome metabolite characterization (metabotyping) by nuclear magnetic resonance and mass spectrometry. The analysis identified methodology types, research design, sample types, and issues in integrating data from different platforms. Aerodigestive cancer epidemiology studies conducted by different groups demonstrated the significance of microbiome information in developing approaches to improve health. Challenges exist in sample preparation and processing (eg, standardization of methods for collection and analysis). These challenges relate to technology, data integration from "omics" studies, inherent bias in primer selection during 16S ribosomal RNA sequencing, the need for large consortia with well-characterized biospecimens, cause and effect issues, resilience of microbiota to exposure events (requires longitudinal studies), and expanding studies for fungal and viral diversity (most studies used bacterial 16S ribosomal RNA sequencing for microbiota characterization). Despite these challenges, microbiome and cancer epidemiology studies are significant and may facilitate cancer risk assessment, diagnosis, and prognosis. In the future, clinical trials likely will use microbiota modifications to improve the efficacy of existing treatments.

  14. Mechanistic and Technical Challenges in Studying the Human Microbiome and Cancer Epidemiology

    PubMed Central

    2016-01-01

    This article reviews the significance of the microbiome in cancer epidemiology, mechanistic and technical challenges in the field, and characterization of the microbiome in different tumor types to identify biomarkers of risk, progression, and prognosis. Publications on the microbiome and cancer epidemiology were reviewed to analyze sample collection and processing, microbiome taxa characterization by 16S ribosomal RNA sequencing, and microbiome metabolite characterization (metabotyping) by nuclear magnetic resonance and mass spectrometry. The analysis identified methodology types, research design, sample types, and issues in integrating data from different platforms. Aerodigestive cancer epidemiology studies conducted by different groups demonstrated the significance of microbiome information in developing approaches to improve health. Challenges exist in sample preparation and processing (eg, standardization of methods for collection and analysis). These challenges relate to technology, data integration from “omics” studies, inherent bias in primer selection during 16S ribosomal RNA sequencing, the need for large consortia with well-characterized biospecimens, cause and effect issues, resilience of microbiota to exposure events (requires longitudinal studies), and expanding studies for fungal and viral diversity (most studies used bacterial 16S ribosomal RNA sequencing for microbiota characterization). Despite these challenges, microbiome and cancer epidemiology studies are significant and may facilitate cancer risk assessment, diagnosis, and prognosis. In the future, clinical trials likely will use microbiota modifications to improve the efficacy of existing treatments. PMID:27121074

  15. Neutral Models of Microbiome Evolution

    PubMed Central

    Zeng, Qinglong; Sukumaran, Jeet; Wu, Steven; Rodrigo, Allen

    2015-01-01

    There has been an explosion of research on host-associated microbial communities (i.e.,microbiomes). Much of this research has focused on surveys of microbial diversities across a variety of host species, including humans, with a view to understanding how these microbiomes are distributed across space and time, and how they correlate with host health, disease, phenotype, physiology and ecology. Fewer studies have focused on how these microbiomes may have evolved. In this paper, we develop an agent-based framework to study the dynamics of microbiome evolution. Our framework incorporates neutral models of how hosts acquire their microbiomes, and how the environmental microbial community that is available to the hosts is assembled. Most importantly, our framework also incorporates a Wright-Fisher genealogical model of hosts, so that the dynamics of microbiome evolution is studied on an evolutionary timescale. Our results indicate that the extent of parental contribution to microbial availability from one generation to the next significantly impacts the diversity of microbiomes: the greater the parental contribution, the less diverse the microbiomes. In contrast, even when there is only a very small contribution from a constant environmental pool, microbial communities can remain highly diverse. Finally, we show that our models may be used to construct hypotheses about the types of processes that operate to assemble microbiomes over evolutionary time. PMID:26200800

  16. Microbiome and pancreatic cancer: A comprehensive topic review of literature

    PubMed Central

    Ertz-Archambault, Natalie; Keim, Paul; Von Hoff, Daniel

    2017-01-01

    AIM To review microbiome alterations associated with pancreatic cancer, its potential utility in diagnostics, risk assessment, and influence on disease outcomes. METHODS A comprehensive literature review was conducted by all-inclusive topic review from PubMed, MEDLINE, and Web of Science. The last search was performed in October 2016. RESULTS Diverse microbiome alterations exist among several body sites including oral, gut, and pancreatic tissue, in patients with pancreatic cancer compared to healthy populations. CONCLUSION Pilot study successes in non-invasive screening strategies warrant further investigation for future translational application in early diagnostics and to learn modifiable risk factors relevant to disease prevention. Pre-clinical investigations exist in other tumor types that suggest microbiome manipulation provides opportunity to favorably transform cancer response to existing treatment protocols and improve survival. PMID:28348497

  17. Gut mucosal microbiome across stages of colorectal carcinogenesis.

    PubMed

    Nakatsu, Geicho; Li, Xiangchun; Zhou, Haokui; Sheng, Jianqiu; Wong, Sunny Hei; Wu, William Ka Kai; Ng, Siew Chien; Tsoi, Ho; Dong, Yujuan; Zhang, Ning; He, Yuqi; Kang, Qian; Cao, Lei; Wang, Kunning; Zhang, Jingwan; Liang, Qiaoyi; Yu, Jun; Sung, Joseph J Y

    2015-10-30

    Gut microbial dysbiosis contributes to the development of colorectal cancer (CRC). Here we catalogue the microbial communities in human gut mucosae at different stages of colorectal tumorigenesis. We analyse the gut mucosal microbiome of 47 paired samples of adenoma and adenoma-adjacent mucosae, 52 paired samples of carcinoma and carcinoma-adjacent mucosae and 61 healthy controls. Probabilistic partitioning of relative abundance profiles reveals that a metacommunity predominated by members of the oral microbiome is primarily associated with CRC. Analysis of paired samples shows differences in community configurations between lesions and the adjacent mucosae. Correlations of bacterial taxa indicate early signs of dysbiosis in adenoma, and co-exclusive relationships are subsequently more common in cancer. We validate these alterations in CRC-associated microbiome by comparison with two previously published data sets. Our results suggest that a taxonomically defined microbial consortium is implicated in the development of CRC.

  18. Extreme Dysbiosis of the Microbiome in Critical Illness

    PubMed Central

    McDonald, Daniel; Ackermann, Gail; Khailova, Ludmila; Baird, Christine; Heyland, Daren; Kozar, Rosemary; Lemieux, Margot; Derenski, Karrie; King, Judy; Vis-Kampen, Christine; Knight, Rob

    2016-01-01

    ABSTRACT Critical illness is hypothesized to associate with loss of “health-promoting” commensal microbes and overgrowth of pathogenic bacteria (dysbiosis). This dysbiosis is believed to increase susceptibility to nosocomial infections, sepsis, and organ failure. A trial with prospective monitoring of the intensive care unit (ICU) patient microbiome using culture-independent techniques to confirm and characterize this dysbiosis is thus urgently needed. Characterizing ICU patient microbiome changes may provide first steps toward the development of diagnostic and therapeutic interventions using microbiome signatures. To characterize the ICU patient microbiome, we collected fecal, oral, and skin samples from 115 mixed ICU patients across four centers in the United States and Canada. Samples were collected at two time points: within 48 h of ICU admission, and at ICU discharge or on ICU day 10. Sample collection and processing were performed according to Earth Microbiome Project protocols. We applied SourceTracker to assess the source composition of ICU patient samples by using Qiita, including samples from the American Gut Project (AGP), mammalian corpse decomposition samples, childhood (Global Gut study), and house surfaces. Our results demonstrate that critical illness leads to significant and rapid dysbiosis. Many taxons significantly depleted from ICU patients versus AGP healthy controls are key “health-promoting” organisms, and overgrowth of known pathogens was frequent. Source compositions of ICU patient samples are largely uncharacteristic of the expected community type. Between time points and within a patient, the source composition changed dramatically. Our initial results show great promise for microbiome signatures as diagnostic markers and guides to therapeutic interventions in the ICU to repopulate the normal, “health-promoting” microbiome and thereby improve patient outcomes. IMPORTANCE Critical illness may be associated with the loss of

  19. Pyrosequencing as a tool for better understanding of human microbiomes.

    PubMed

    Siqueira, José F; Fouad, Ashraf F; Rôças, Isabela N

    2012-01-01

    Next-generation sequencing technologies have revolutionized the analysis of microbial communities in diverse environments, including the human body. This article reviews several aspects of one of these technologies, the pyrosequencing technique, including its principles, applications, and significant contribution to the study of the human microbiome, with especial emphasis on the oral microbiome. The results brought about by pyrosequencing studies have significantly contributed to refining and augmenting the knowledge of the community membership and structure in and on the human body in healthy and diseased conditions. Because most oral infectious diseases are currently regarded as biofilm-related polymicrobial infections, high-throughput sequencing technologies have the potential to disclose specific patterns related to health or disease. Further advances in technology hold the perspective to have important implications in terms of accurate diagnosis and more effective preventive and therapeutic measures for common oral diseases.

  20. Pyrosequencing as a tool for better understanding of human microbiomes

    PubMed Central

    Siqueira, José F.; Fouad, Ashraf F.; Rôças, Isabela N.

    2012-01-01

    Next-generation sequencing technologies have revolutionized the analysis of microbial communities in diverse environments, including the human body. This article reviews several aspects of one of these technologies, the pyrosequencing technique, including its principles, applications, and significant contribution to the study of the human microbiome, with especial emphasis on the oral microbiome. The results brought about by pyrosequencing studies have significantly contributed to refining and augmenting the knowledge of the community membership and structure in and on the human body in healthy and diseased conditions. Because most oral infectious diseases are currently regarded as biofilm-related polymicrobial infections, high-throughput sequencing technologies have the potential to disclose specific patterns related to health or disease. Further advances in technology hold the perspective to have important implications in terms of accurate diagnosis and more effective preventive and therapeutic measures for common oral diseases. PMID:22279602

  1. Fungal rhinosinusitis.

    PubMed

    Netkovski, J; Shirgoska, B

    2012-01-01

    Fungi are a major part of the ecosystem. In fact, over 250 fungal species have been reported to produce human infections. More than ever, fungal diseases have emerged as major challenges for physicians and clinical microbiologists. The aim of this study was to summarize the diagnostic procedures and endoscopic surgical treatment of patients with fungal rhinosinusitis. Eleven patients, i.e. 10% of all cases with chronic inflammation of paranasal sinuses, were diagnosed with fungal rhinosinusitis. Ten of them were patients with a noninvasive form, fungus ball, while only one patient was classified in the group of chronic invasive fungal rhinosinusitis which was accompanied with diabetes mellitus. All patients underwent nasal endoscopic examination, skin allergy test and had preoperative computed tomography (CT) scans of the sinuses in axial and coronal plane. Functional endoscopic sinus surgery was performed in 10 patients with fungus ball, while a combined approach, endoscopic and external, was done in the immunocompromised patient with the chronic invasive form of fungal rhinosinusitis. Most cases (9/11) had unilateral infection. In 9 cases infection was restricted to a single sinus, and here the maxillary sinus was most commonly affected (8/9) with infections in other patients being restricted to the sphenoid sinus (1/9). Two patients had infections affecting two or more sinuses. In patients with an invasive form of the fungal disease there was involvement of the periorbital and orbital tissues. In patients with fungus ball the mycelia masses were completely removed from the sinus cavities. Long-term outcome was positive in all the operated patients and no recurrence was detected. The most frequent fungal agent that caused rhinosinusitis was Aspergillus. Mucor was identified in the patient with the invasive form. Endoscopic examination of the nasal cavity and CT scanning of paranasal sinuses followed by endoscopic sinus surgery were represented as valuable

  2. [Fundamentals of the microbiome].

    PubMed

    Steinhagen, P R; Baumgart, D C

    2017-05-01

    Until the middle of the 20th century, clinical microbiology was limited to bacterial cultures enabling the detection of pathogenic microorganisms. Knowledge about the mutual relationship between humans and microorganisms has increased slowly. With the introduction of culture-independent analysis methods, comprehensive cataloging of the human microbiome was possible for the first time. Since then, compositional changes in relation to diseases have been studied. The goals of the Human Microbiome Project and MetaHIT include comparative studies of healthy and diseased individuals. Numerous libraries on time- and location-dependent changes of the microbiota composition in human diseases have been created. However, a mathematical correlation does not equal biological or medical relevance. Future research needs to validate the hypotheses generated in these studies in functional experiments and evaluate their true impact on clinical practice.

  3. The microbiome and probiotics in childhood.

    PubMed

    Hsieh, Michael Harrison

    2014-01-01

    Infants, from the moment of birth, are colonized by large numbers of microbes. This colonization continues throughout childhood and from preliminary studies seems to be a highly dynamic process, even during the usual physiologic state we refer to as health. In this context, the persistence of bacterial and fungal species in and on the human body likely confers various benefits to the host. One specific approach to modulate such beneficial effects is the administration of probiotics, also known as beneficial microbes. Herein, we outline the highest level evidence in regard to the evolution of the microbiome during childhood and its manipulation by probiotics for genitourinary, enteric, and allergic and atopic disorders. Thus, probiotic approaches are promising alternatives and adjuvants to traditional vaccines and antibiotics. This may usher in a new age in which vaccine and antibiotic side effects and antibiotic resistance are minimal issues in the setting of maintaining children's health and prevention of disease.

  4. Fungal hemolysins

    PubMed Central

    Nayak, Ajay P.; Green, Brett J.; Beezhold, Donald H.

    2015-01-01

    Hemolysins are a class of proteins defined by their ability to lyse red cells but have been described to exhibit pleiotropic functions. These proteins have been extensively studied in bacteria and more recently in fungi. Within the last decade, a number of studies have characterized fungal hemolysins and revealed a fascinating yet diverse group of proteins. The purpose of this review is to provide a synopsis of the known fungal hemolysins with an emphasis on those belonging to the aegerolysin protein family. New insight and perspective into fungal hemolysins in biotechnology and health are additionally presented. PMID:22769586

  5. The Microbiome and Asthma

    PubMed Central

    Huang, Yvonne J.

    2014-01-01

    That the subglottic airways are not sterile, as was once believed, but are populated by a distinct “bronchial microbiome,” is now accepted. Also accepted is the concept that asthma is associated with differences in the composition of this microbiome. What is not clear is whether the differences in microbial community composition themselves mediate pathologic changes in the airways or whether they reflect differences in systemic immune function driven by differences in the development of the gastrointestinal microbiome in early life, when the immune system is most malleable. Recognition of the probable existence of a “common mucosal immune system” allowed synthesis of these apparently opposing ideas into a single conceptual model. Gastrointestinal microbiome–driven differences in systemic immune function predispose to sensitization to allergens deposited on mucosal surfaces, whereas possibly similar, but not identical, differences in immune function predispose to less effective responses to microbial infection of the airways, resulting in persistence of the inflammation underlying the structural and functional abnormalities of asthma. In this model, allergic sensitization and asthma are thus seen as commonly overlapping but not necessarily coincident consequences of abnormalities in microbial colonization, development of immune function, and encounter with agents infecting the respiratory tract. PMID:24437406

  6. The perinatal microbiome and pregnancy: moving beyond the vaginal microbiome.

    PubMed

    Prince, Amanda L; Chu, Derrick M; Seferovic, Maxim D; Antony, Kathleen M; Ma, Jun; Aagaard, Kjersti M

    2015-03-16

    The human microbiome, the collective genome of the microbial community that is on and within us, has recently been mapped. The initial characterization of healthy subjects has provided investigators with a reference population for interrogating the microbiome in metabolic, intestinal, and reproductive health and disease states. Although it is known that bacteria can colonize the vagina, recent metagenomic studies have shown that the vaginal microbiome varies among reproductive age women. Similarly, the richness and diversity of intestinal microbiota also naturally fluctuate among gravidae in both human and nonhuman primates, as well as mice. Moreover, recent evidence suggests that microbiome niches in pregnancy are not limited to maternal body sites, as the placenta appears to harbor a low biomass microbiome that is presumptively established in early pregnancy and varies in association with a remote history of maternal antenatal infection as well as preterm birth. In this article, we will provide a brief overview on metagenomics science as a means to investigate the microbiome, observations pertaining to both variation and the presumptive potential role of a varied microbiome during pregnancy, and how future studies of the microbiome in pregnancy may lend to a better understanding of human biology, reproductive health, and parturition.

  7. The Perinatal Microbiome and Pregnancy: Moving Beyond the Vaginal Microbiome

    PubMed Central

    Prince, Amanda L.; Chu, Derrick M.; Seferovic, Maxim D.; Antony, Kathleen M.; Ma, Jun; Aagaard, Kjersti M.

    2016-01-01

    The human microbiome, the collective genome of the microbial community that is on and within us, has recently been mapped. The initial characterization of healthy subjects has provided investigators with a reference population for interrogating the microbiome in metabolic, intestinal, and reproductive health and disease states. Although it is known that bacteria can colonize the vagina, recent metagenomic studies have shown that the vaginal microbiome varies among reproductive age women. Similarly, the richness and diversity of intestinal microbiota also naturally fluctuate among gravidae in both human and nonhuman primates, as well as mice. Moreover, recent evidence suggests that microbiome niches in pregnancy are not limited to maternal body sites, as the placenta appears to harbor a low biomass microbiome that is presumptively established in early pregnancy and varies in association with a remote history of maternal antenatal infection as well as preterm birth. In this article, we will provide a brief overview on metagenomics science as a means to investigate the microbiome, observations pertaining to both variation and the presumptive potential role of a varied microbiome during pregnancy, and how future studies of the microbiome in pregnancy may lend to a better understanding of human biology, reproductive health, and parturition. PMID:25775922

  8. Serious fungal infections in Pakistan.

    PubMed

    Jabeen, K; Farooqi, J; Mirza, S; Denning, D; Zafar, A

    2017-02-04

    The true burden of fungal infection in Pakistan is unknown. High-risk populations for fungal infections [tuberculosis (TB), diabetes, chronic respiratory diseases, asthma, cancer, transplant and human immunodeficiency virus (HIV) infection] are numerous. Here, we estimate the burden of fungal infections to highlight their public health significance. Whole and at-risk population estimates were obtained from the WHO (TB), BREATHE study (COPD), UNAIDS (HIV), GLOBOCAN (cancer) and Heartfile (diabetes). Published data from Pakistan reporting fungal infections rates in general and specific populations were reviewed and used when applicable. Estimates were made for the whole population or specific populations at risk, as previously described in the LIFE methodology. Of the 184,500,000 people in Pakistan, an estimated 3,280,549 (1.78%) are affected by a serious fungal infection, omitting all cutaneous infection, oral candidiasis and allergic fungal sinusitis, which we could not estimate. Compared with other countries, the rates of candidaemia (21/100,000) and mucormycosis (14/100,000) are estimated to be very high, and are based on data from India. Chronic pulmonary aspergillosis rates are estimated to be high (39/100,000) because of the high TB burden. Invasive aspergillosis was estimated to be around 5.9/100,000. Fungal keratitis is also problematic in Pakistan, with an estimated rate of 44/100,000. Pakistan probably has a high rate of certain life- or sight-threatening fungal infections.

  9. Potential Role of the Microbiome in Barrett's Esophagus and Esophageal Adenocarcinoma.

    PubMed

    Snider, Erik J; Freedberg, Daniel E; Abrams, Julian A

    2016-08-01

    Esophageal adenocarcinoma and its precursor Barrett's esophagus have been rapidly increasing in incidence for half a century, for reasons not adequately explained by currently identified risk factors such as gastroesophageal reflux disease and obesity. The upper gastrointestinal microbiome may represent another potential cofactor. The distal esophagus has a distinct microbiome of predominantly oral-derived flora, which is altered in Barrett's esophagus and reflux esophagitis. Chronic low-grade inflammation or direct carcinogenesis from this altered microbiome may combine with known risk factors to promote Barrett's metaplasia and progression to adenocarcinoma.

  10. Fungal Tests

    MedlinePlus

    ... diagnosis is needed, as in cases of persistent, deep, or systemic infections, more extensive testing may be ... mouth (thrush) Vaginal itching and discharge (yeast infection) Deep and systemic fungal infections may cause a variety ...

  11. Fungal allergens.

    PubMed Central

    Horner, W E; Helbling, A; Salvaggio, J E; Lehrer, S B

    1995-01-01

    Airborne fungal spores occur widely and often in far greater concentrations than pollen grains. Immunoglobulin E-specific antigens (allergens) on airborne fungal spores induce type I hypersensitivity (allergic) respiratory reactions in sensitized atopic subjects, causing rhinitis and/or asthma. The prevalence of respiratory allergy to fungi is imprecisely known but is estimated at 20 to 30% of atopic (allergy-predisposed) individuals or up to 6% of the general population. Diagnosis and immunotherapy of allergy to fungi require well-characterized or standardized extracts that contain the relevant allergen(s) of the appropriate fungus. Production of standardized extracts is difficult since fungal extracts are complex mixtures and a variety of fungi are allergenic. Thus, the currently available extracts are largely nonstandardized, even uncharacterized, crude extracts. Recent significant progress in isolating and characterizing relevant fungal allergens is summarized in the present review. Particularly, some allergens from the genera Alternaria, Aspergillus, and Cladosporium are now thoroughly characterized, and allergens from several other genera, including some basidiomycetes, have also been purified. The availability of these extracts will facilitate definitive studies of fungal allergy prevalence and immunotherapy efficacy as well as enhance both the diagnosis and therapy of fungal allergy. PMID:7621398

  12. Tick microbiome: the force within

    PubMed Central

    Narasimhan, Sukanya; Fikrig, Erol

    2015-01-01

    Ticks are obligate blood-feeders and serve as vectors of human and livestock pathogens worldwide. Defining the tick microbiome and deciphering the interactions between the tick and its symbiotic bacteria in the context of tick development and pathogen transmission, will likely reveal new insights and spawn new paradigms to control tick-borne diseases. Descriptive observations on the tick microbiome that began almost a century ago serve as forerunners to the gathering momentum to define the tick microbiome in greater detail. This review will focus on the current efforts to address the microbiomes of diverse ticks, and the evolving understanding of tick microbiomes. There is hope that these efforts will bring a holistic understanding of pathogen transmission by ticks. PMID:25936226

  13. Networking in the Plant Microbiome

    PubMed Central

    van der Heijden, Marcel G. A.; Hartmann, Martin

    2016-01-01

    Almost all higher organisms, including plants, insects, and mammals, are colonized by complex microbial communities and harbor a microbiome. Emerging studies with plants reveal that these microbiomes are structured and form complex, interconnected microbial networks. Within these networks, different taxa have different roles, and keystone species have been identified that could be crucial for plant health and ecosystem functioning. A new paper in this issue of PLOS Biology by Agler et al. highlights the presence of microbial hubs in these networks that may act as mediators between the plant and its microbiome. A next major frontier is now to link microbiome composition to function. In order to do this, we present a number of hypothetical examples of how microbiome diversity and function potentially influence host performance. PMID:26871440

  14. Visceral Pain and Gastrointestinal Microbiome

    PubMed Central

    Chichlowski, Maciej; Rudolph, Colin

    2015-01-01

    A complex set of interactions between the microbiome, gut and brain modulate responses to visceral pain. These interactions occur at the level of the gastrointestinal mucosa, and via local neural, endocrine or immune activity; as well as by the production of factors transported through the circulatory system, like bacterial metabolites or hormones. Various psychological, infectious and other stressors can disrupt this harmonious relationship and alter both the microbiome and visceral pain responses. There are critical sensitive periods that can impact visceral pain responses in adulthood. In this review we provide a brief background of the intestinal microbiome and emerging concepts of the bidirectional interactions between the microbiome, gut and brain. We also discuss recent work in animal models, and human clinical trials using prebiotics and probiotics that alter the microbiome with resultant alterations in visceral pain responses. PMID:25829337

  15. Visceral pain and gastrointestinal microbiome.

    PubMed

    Chichlowski, Maciej; Rudolph, Colin

    2015-03-30

    A complex set of interactions between the microbiome, gut and brain modulate responses to visceral pain. These interactions occur at the level of the gastrointestinal mucosa, and via local neural, endocrine or immune activity; as well as by the pro-duction of factors transported through the circulatory system, like bacterial metabolites or hormones. Various psychological, in-fectious and other stressors can disrupt this harmonious relationship and alter both the microbiome and visceral pain responses. There are critical sensitive periods that can impact visceral pain responses in adulthood. In this review we provide a brief background of the intestinal microbiome and emerging concepts of the bidirectional interactions between the micro-biome, gut and brain. We also discuss recent work in animal models, and human clinical trials using prebiotics and probiotics that alter the microbiome with resultant alterations in visceral pain responses.

  16. The microbiome and critical illness

    PubMed Central

    Dickson, Robert P

    2016-01-01

    The central role of the microbiome in critical illness is supported by a half century of experimental and clinical study. The physiological effects of critical illness and the clinical interventions of intensive care substantially alter the microbiome. In turn, the microbiome predicts patients’ susceptibility to disease, and manipulation of the microbiome has prevented or modulated critical illness in animal models and clinical trials. This Review surveys the microbial ecology of critically ill patients, presents the facts and unanswered questions surrounding gut-derived sepsis, and explores the radically altered ecosystem of the injured alveolus. The revolution in culture-independent microbiology has provided the tools needed to target the microbiome rationally for the prevention and treatment of critical illness, holding great promise to improve the acute and chronic outcomes of the critically ill. PMID:26700442

  17. A Pathogen-Selective Antibiotic Minimizes Disturbance to the Microbiome

    PubMed Central

    Yao, Jiangwei; Carter, Robert A.; Vuagniaux, Grégoire; Barbier, Maryse; Rosch, Jason W.

    2016-01-01

    Broad-spectrum antibiotic therapy decimates the gut microbiome, resulting in a variety of negative health consequences. Debio 1452 is a staphylococcus-selective enoyl-acyl carrier protein reductase (FabI) inhibitor under clinical development and was used to determine whether treatment with pathogen-selective antibiotics would minimize disturbance to the microbiome. The effect of oral Debio 1452 on the microbiota of mice was compared to the effects of four commonly used broad-spectrum oral antibiotics. During the 10 days of oral Debio 1452 treatment, there was minimal disturbance to the gut bacterial abundance and composition, with only the unclassified S24-7 taxon reduced at days 6 and 10. In comparison, broad-spectrum oral antibiotics caused ∼100- to 4,000-fold decreases in gut bacterial abundance and severely altered the microbial composition. The gut bacterial abundance and composition of Debio 1452-treated mice were indistinguishable from those of untreated mice 2 days after the antibiotic treatment was stopped. In contrast, the bacterial abundance in broad-spectrum-antibiotic-treated mice took up to 7 days to recover, and the gut composition of the broad-spectrum-antibiotic-treated mice remained different from that of the control group 20 days after the cessation of antibiotic treatment. These results illustrate that a pathogen-selective approach to antibiotic development will minimize disturbance to the gut microbiome. PMID:27161626

  18. A Pathogen-Selective Antibiotic Minimizes Disturbance to the Microbiome.

    PubMed

    Yao, Jiangwei; Carter, Robert A; Vuagniaux, Grégoire; Barbier, Maryse; Rosch, Jason W; Rock, Charles O

    2016-07-01

    Broad-spectrum antibiotic therapy decimates the gut microbiome, resulting in a variety of negative health consequences. Debio 1452 is a staphylococcus-selective enoyl-acyl carrier protein reductase (FabI) inhibitor under clinical development and was used to determine whether treatment with pathogen-selective antibiotics would minimize disturbance to the microbiome. The effect of oral Debio 1452 on the microbiota of mice was compared to the effects of four commonly used broad-spectrum oral antibiotics. During the 10 days of oral Debio 1452 treatment, there was minimal disturbance to the gut bacterial abundance and composition, with only the unclassified S24-7 taxon reduced at days 6 and 10. In comparison, broad-spectrum oral antibiotics caused ∼100- to 4,000-fold decreases in gut bacterial abundance and severely altered the microbial composition. The gut bacterial abundance and composition of Debio 1452-treated mice were indistinguishable from those of untreated mice 2 days after the antibiotic treatment was stopped. In contrast, the bacterial abundance in broad-spectrum-antibiotic-treated mice took up to 7 days to recover, and the gut composition of the broad-spectrum-antibiotic-treated mice remained different from that of the control group 20 days after the cessation of antibiotic treatment. These results illustrate that a pathogen-selective approach to antibiotic development will minimize disturbance to the gut microbiome. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Microbiomes: unifying animal and plant systems through the lens of community ecology theory

    PubMed Central

    Christian, Natalie; Whitaker, Briana K.; Clay, Keith

    2015-01-01

    The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant–fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant–fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant–fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration). The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research. PMID:26441846

  20. Microbiomes: unifying animal and plant systems through the lens of community ecology theory.

    PubMed

    Christian, Natalie; Whitaker, Briana K; Clay, Keith

    2015-01-01

    The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration). The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.

  1. Serious fungal infections in Korea.

    PubMed

    Huh, K; Ha, Y E; Denning, D W; Peck, K R

    2017-02-04

    Information on the incidence and prevalence of fungal infections is of critical value in public health policy. However, nationwide epidemiological data on fungal infections are scarce, due to a lack of surveillance and funding. The objective of this study was to estimate the disease burden of fungal infections in the Republic of Korea. An actuarial approach using a deterministic model was used for the estimation. Data on the number of populations at risk and the frequencies of fungal infections in those populations were obtained from national statistics reports and epidemiology papers. Approximately 1 million people were estimated to be affected by fungal infections every year. The burdens of candidemia (4.12 per 100,000), cryptococcal meningitis (0.09 per 100,000), and Pneumocystis pneumonia (0.51 per 100,000) in South Korea were estimated to be comparable to those in other countries. The prevalence of chronic pulmonary aspergillosis (22.4 per 100,000) was markedly high, probably due to the high burden of tuberculosis in Korea. The low burdens of allergic bronchopulmonary aspergillosis (56.9 per 100,000) and severe asthma with fungal sensitization (75.1 per 100,000) warrant further study. Oral candidiasis (539 per 100,000) was estimated to affect a much larger population than noted in previous studies. Our work provides valuable insight on the epidemiology of fungal infections; however, additional studies are needed.

  2. Insights of the dental calculi microbiome of pre-Columbian inhabitants from Puerto Rico

    PubMed Central

    Narganes-Storde, Yvonne; Toranzos, Gary A.; Cano, Raul J.

    2017-01-01

    Background The study of ancient microorganisms in mineralized dental plaque or calculi is providing insights into microbial evolution, as well as lifestyles and disease states of extinct cultures; yet, little is still known about the oral microbial community structure and function of pre-Columbian Caribbean cultures. In the present study, we investigated the dental calculi microbiome and predicted function of one of these cultures, known as the Saladoid. The Saladoids were horticulturalists that emphasized root-crop production. Fruits, as well as small marine and terrestrial animals were also part of the Saladoid diet. Methods Dental calculi samples were recovered from the archaeological site of Sorcé, in the municipal island of Vieques, Puerto Rico, characterized using 16S rRNA gene high-throughput sequencing, and compared to the microbiome of previously characterized coprolites of the same culture, as well modern plaque, saliva and stool microbiomes available from the Human Microbiome Project. Results Actinobacteria, Proteobacteria and Firmicutes comprised the majority of the Saladoid dental calculi microbiome. The Saladoid dental calculi microbiome was distinct when compared to those of modern saliva and dental plaque, but showed the presence of common inhabitants of modern oral cavities including Streptococcus sp., Veillonella dispar and Rothia mucilaginosa. Cell motility, signal transduction and biosynthesis of other secondary metabolites may be unique features of the Saladoid microbiome. Discussion Results suggest that the Saladoid dental calculi microbiome structure and function may possibly reflect a horticulturalist lifestyle and distinct dietary habits. Results also open the opportunity to further elucidate oral disease states in extinct Caribbean cultures and extinct indigenous cultures with similar lifestyles. PMID:28480145

  3. The Airway Microbiome at Birth

    PubMed Central

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H.; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A.; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease. PMID:27488092

  4. The functional microbiome of arthropods.

    PubMed

    Degli Esposti, Mauro; Martinez Romero, Esperanza

    2017-01-01

    Many studies on the microbiome of animals have been reported but a comprehensive analysis is lacking. Here we present a meta-analysis on the microbiomes of arthropods and their terrestrial habitat, focusing on the functional profile of bacterial communities derived from metabolic traits that are essential for microbial life. We report a detailed analysis of probably the largest set of biochemically defined functional traits ever examined in microbiome studies. This work deals with the phylum proteobacteria, which is usually dominant in marine and terrestrial environments and covers all functions associated with microbiomes. The considerable variation in the distribution and abundance of proteobacteria in microbiomes has remained fundamentally unexplained. This analysis reveals discrete functional groups characteristic for adaptation to anaerobic conditions, which appear to be defined by environmental filtering of taxonomically related taxa. The biochemical diversification of the functional groups suggests an evolutionary trajectory in the structure of arthropods' microbiome, from metabolically versatile to specialized proteobacterial organisms that are adapted to complex environments such as the gut of social insects. Bacterial distribution in arthropods' microbiomes also shows taxonomic clusters that do not correspond to functional groups and may derive from other factors, including common contaminants of soil and reagents.

  5. Captivity humanizes the primate microbiome

    PubMed Central

    Vangay, Pajau; Huang, Hu; Ward, Tonya; Hillmann, Benjamin M.; Al-Ghalith, Gabriel A.; Travis, Dominic A.; Long, Ha Thang; Tuan, Bui Van; Minh, Vo Van; Cabana, Francis; Nadler, Tilo; Toddes, Barbara; Murphy, Tami; Glander, Kenneth E.; Johnson, Timothy J.; Knights, Dan

    2016-01-01

    The primate gastrointestinal tract is home to trillions of bacteria, whose composition is associated with numerous metabolic, autoimmune, and infectious human diseases. Although there is increasing evidence that modern and Westernized societies are associated with dramatic loss of natural human gut microbiome diversity, the causes and consequences of such loss are challenging to study. Here we use nonhuman primates (NHPs) as a model system for studying the effects of emigration and lifestyle disruption on the human gut microbiome. Using 16S rRNA gene sequencing in two model NHP species, we show that although different primate species have distinctive signature microbiota in the wild, in captivity they lose their native microbes and become colonized with Prevotella and Bacteroides, the dominant genera in the modern human gut microbiome. We confirm that captive individuals from eight other NHP species in a different zoo show the same pattern of convergence, and that semicaptive primates housed in a sanctuary represent an intermediate microbiome state between wild and captive. Using deep shotgun sequencing, chemical dietary analysis, and chloroplast relative abundance, we show that decreasing dietary fiber and plant content are associated with the captive primate microbiome. Finally, in a meta-analysis including published human data, we show that captivity has a parallel effect on the NHP gut microbiome to that of Westernization in humans. These results demonstrate that captivity and lifestyle disruption cause primates to lose native microbiota and converge along an axis toward the modern human microbiome. PMID:27573830

  6. Comparison of the Respiratory Microbiome in Healthy Nonsmokers and Smokers

    PubMed Central

    Beck, James M.; Schloss, Patrick D.; Campbell, Thomas B.; Crothers, Kristina; Curtis, Jeffrey L.; Flores, Sonia C.; Fontenot, Andrew P.; Ghedin, Elodie; Huang, Laurence; Jablonski, Kathleen; Kleerup, Eric; Lynch, Susan V.; Sodergren, Erica; Twigg, Homer; Young, Vincent B.; Bassis, Christine M.; Venkataraman, Arvind; Schmidt, Thomas M.; Weinstock, George M.

    2013-01-01

    Rationale: Results from 16S rDNA-encoding gene sequence–based, culture-independent techniques have led to conflicting conclusions about the composition of the lower respiratory tract microbiome. Objectives: To compare the microbiome of the upper and lower respiratory tract in healthy HIV-uninfected nonsmokers and smokers in a multicenter cohort. Methods: Participants were nonsmokers and smokers without significant comorbidities. Oral washes and bronchoscopic alveolar lavages were collected in a standardized manner. Sequence analysis of bacterial 16S rRNA-encoding genes was performed, and the neutral model in community ecology was used to identify bacteria that were the most plausible members of a lung microbiome. Measurements and Main Results: Sixty-four participants were enrolled. Most bacteria identified in the lung were also in the mouth, but specific bacteria such as Enterobacteriaceae, Haemophilus, Methylobacterium, and Ralstonia species were disproportionally represented in the lungs compared with values predicted by the neutral model. Tropheryma was also in the lung, but not the mouth. Mouth communities differed between nonsmokers and smokers in species such as Porphyromonas, Neisseria, and Gemella, but lung bacterial populations did not. Conclusions: This study is the largest to examine composition of the lower respiratory tract microbiome in healthy individuals and the first to use the neutral model to compare the lung to the mouth. Specific bacteria appear in significantly higher abundance in the lungs than would be expected if they originated from the mouth, demonstrating that the lung microbiome does not derive entirely from the mouth. The mouth microbiome differs in nonsmokers and smokers, but lung communities were not significantly altered by smoking. PMID:23491408

  7. Overview of fungal rhinosinusitis.

    PubMed

    Chakrabarti, Arunaloke; Das, Ashim; Panda, Naresh K

    2004-10-01

    The incidence of fungal rhinosinusitis has increased to such extent in recent years that fungal infection should be considered in all patients with chronic rhino sinusitis. In India though the disease was reported earlier only from northern regions of this country, nowadays the disease is increasingly diagnosed from other parts as well. The disease has been categorized with possible five types: acute necrothing (fulminant), chronic invasive, chronic granulomatous invasive, fungal hall (sinus mycetoma), allergic. The first three types are tissue-invasive and the last two are non-invasive fungal rhinosinusitis. However, the categorization is still controversial and open to discussion. Chronic fungal rhinosinusitis can occur in otherwise healthy host and Aspergillus flavus is the common etiological agent in Indian scenario. The pathophys iologic mechanism of the disease remains unclear. It may represent an allergic IgE response, a cell-mediated reaction, or a combination of two. Early diagnosis may prevent multiple surgical procedures and lead to effective treatment. Histopathology and radio-imaging techniques help to distinguish different types and delineate extension of disease process. Culture helps to identify the responsible etiological agent. The presence or absence oj precipitating antibody correlates well with disease progression or recovery. The most immediate need regarding management is to establish the respective roles of surgery and antifungal therapy. Non-invasive disease requires surgical debridement and sinus ventilation only, though, additional oral or local corticosterold therapy may be beneficial in allergie type. For invasive disease, the adjuvant medical therapy is recommended to prevent recurrence and further extension. Itraconazole has been found as an effective drug in such situation. Patients with acute neerotizing type require radical surgery and amphotericin B therapy.

  8. The Plastisphere "Microbiome"

    NASA Astrophysics Data System (ADS)

    Amaral-Zettler, L. A.; Dupont, C. L.; Zettler, E. R.; Slikas, B.; Kaul, D.; Mincer, T. J.

    2016-02-01

    Alongside other ocean stressors, plastic marine debris (PMD) is now considered a major source of marine pollution and potential source of invasive alien species, two important ocean health index criteria. While macroplastics are recognized as a visible problem in coastal environments, the less conspicuous microplastics (< 5 mm) numerically dominate pristine open ocean gyres where their impact is much less understood. Central to biological interactions with plastic is the almost instant colonization upon entry into the sea by a thin film of microorganisms, the Plastisphere microbiome. While the phylogenetic diversity of the Plastisphere is now recognized to be highly variable and diverse in nature, less is known about its metabolic potential. Using shotgun metagenomics techniques, we characterized the metabolic potential of Plastisphere microbiomes from ocean gyre-collected microplastics and contrasted it with those of known biotic substrates such as macroalgae. Our data reveal that microbial eukaryotic assemblages dominate some Plastisphere communities, and bacteria dominate others, while archaea appear to be consistently rare inhabitants. We have successfully recovered dozens of draft bacterial genomes and several partial eukaryotic genomes from our libraries. Our data allow us to conduct comparative genomics on commonly occurring Plastisphere residents, further gaining insights into their physiology, ecology, pathogenicity, and substrate transformation potential.

  9. Maternal-Child Microbiome: Specimen Collection, Storage, and Implications for Research and Practice.

    PubMed

    Jordan, Sheila; Baker, Brenda; Dunn, Alexis; Edwards, Sara; Ferranti, Erin; Mutic, Abby D; Yang, Irene; Rodriguez, Jeannie

    The maternal microbiome is a key contributor to the development and outcomes of pregnancy and the health status of both mother and infant. Significant advances are occurring in the science of the maternal and child microbiome and hold promise in improving outcomes related to pregnancy complications, child development, and chronic health conditions of mother and child. The purpose of this study was to review site-specific considerations in the collection and storage of maternal and child microbiome samples and its implications for nursing research and practice. Microbiome sampling protocols were reviewed and synthesized. Precautions across sampling protocols were also noted. Oral, vaginal, gut, placental, and breast milk are viable sources for sampling the maternal and/or child microbiome. Prior to sampling, special considerations need to be addressed related to various factors including current medications, health status, and hygiene practices. Proper storage of samples will avoid degradation of cellular and DNA structures vital for analysis. Changes in the microbiome throughout the perinatal, postpartum, and childhood periods are dramatic and significant to outcomes of the pregnancy and the long-term health of mother and child. Proper sampling techniques are required to produce reliable results from which evidence-based practice recommendations will be built. Ethical and practical issues surrounding study design and protocol development must also be considered when researching vulnerable groups such as pregnant women and infants. Nurses hold the responsibility to both perform the research and to translate findings from microbiome investigations for clinical use.

  10. Fungal Entomopathogens

    USDA-ARS?s Scientific Manuscript database

    Fungal entomopathogens are important biological control agents worldwide and have been the subject of intense research for more than100 years. They exhibit both sexual and asexual reproduction and produce different types of infective propagules. Their mode of action against insects involves attachme...

  11. Fungal arthritis

    MedlinePlus

    ... A.D.A.M. Editorial team. Related MedlinePlus Health Topics Fungal Infections Infectious Arthritis Browse the Encyclopedia A.D.A.M., Inc. is accredited by URAC, also known as the American Accreditation HealthCare ... for online health information and services. Learn more about A.D. ...

  12. Fungal Infections

    MedlinePlus

    ... it, you'll be saying bye-bye to fungi (say: FUN-guy). What Is a Fungal Infection? Fungi , the word for more than one fungus, can ... but of course, they're not!). Because the fungi that cause tinea (ringworm) live on different parts ...

  13. Fungal polysaccharides.

    PubMed

    San-Blas, G; Suzuki, S; Hearn, V; Pinel, C; Kobayashi, H; Mendez, C; Niño, G; Nishikawa, A; San-Blas, F; Shibata, N

    1994-01-01

    Fungal polysaccharides are cell wall components which may act as antigens or as structural substrates. As antigens, the role of mannans in Saccharomyces cerevisiae and Candida albicans, and of glycoproteins in Aspergillus fumigatus are discussed. Analyses on beta-glucan synthetase in Paracoccidioides brasiliensis and the inhibitory effect of Hansenula mrakii killer toxin on beta-glucan biosynthesis are also considered.

  14. Fungal Infections

    MedlinePlus

    ... it, you'll be saying bye-bye to fungi (say: FUN-guy). What Is a Fungal Infection? Fungi , the word for more than one fungus, can ... but of course, they're not!). Because the fungi that cause tinea (ringworm) live on different parts ...

  15. Fungal Infections

    MedlinePlus

    ... of all types of fungi are harmful. Some fungi reproduce through tiny spores in the air. You can inhale the spores or they can land on you. As a result, fungal infections often start in the lungs ... or take antibiotics. Fungi can be difficult to kill. For skin and ...

  16. Serious fungal infections in Portugal.

    PubMed

    Sabino, R; Verissímo, C; Brandão, J; Martins, C; Alves, D; Pais, C; Denning, D W

    2017-02-10

    There is a lack of knowledge on the epidemiology of fungal infections worldwide because there are no reporting obligations. The aim of this study was to estimate the burden of fungal disease in Portugal as part of a global fungal burden project. Most published epidemiology papers reporting fungal infection rates from Portugal were identified. Where no data existed, specific populations at risk and fungal infection frequencies in those populations were used in order to estimate national incidence or prevalence, depending on the condition. An estimated 1,510,391 persons develop a skin or nail fungal infection each year. The second most common fungal infection in Portugal is recurrent vulvovaginal candidiasis, with an estimated 150,700 women (15-50 years of age) suffering from it every year. In human immunodeficiency virus (HIV)-infected people, oral or oesophageal candidiasis rates were estimated to be 19.5 and 16.8/100,000, respectively. Candidaemia affects 2.19/100,000 patients, in a total of 231 cases nationally. Invasive aspergillosis is less common than in other countries as chronic obstructive pulmonary disease (COPD) is uncommon in Portugal, a total of 240 cases annually. The estimated prevalence of chronic pulmonary aspergillosis after tuberculosis (TB) is 194 cases, whereas its prevalence for all underlying pulmonary conditions was 776 patients. Asthma is common (10% in adults) and we estimate 16,614 and 12,600 people with severe asthma with fungal sensitisation and allergic bronchopulmonary aspergillosis, respectively. Sixty-five patients develop Pneumocystis pneumonia in acquired immune deficiency syndrome (AIDS) and 13 develop cryptococcosis. Overall, we estimate a total number of 1,695,514 fungal infections starting each year in Portugal.

  17. The Lung Microbiome in Moderate and Severe Chronic Obstructive Pulmonary Disease

    PubMed Central

    Pragman, Alexa A.; Kim, Hyeun Bum; Reilly, Cavan S.; Wendt, Christine; Isaacson, Richard E.

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is an inflammatory disorder characterized by incompletely reversible airflow obstruction. Bacterial infection of the lower respiratory tract contributes to approximately 50% of COPD exacerbations. Even during periods of stable lung function, the lung harbors a community of bacteria, termed the microbiome. The role of the lung microbiome in the pathogenesis of COPD remains unknown. The COPD lung microbiome, like the healthy lung microbiome, appears to reflect microaspiration of oral microflora. Here we describe the COPD lung microbiome of 22 patients with Moderate or Severe COPD compared to 10 healthy control patients. The composition of the lung microbiomes was determined using 454 pyrosequencing of 16S rDNA found in bronchoalveolar lavage fluid. Sequences were analyzed using mothur, Ribosomal Database Project, Fast UniFrac, and Metastats. Our results showed a significant increase in microbial diversity with the development of COPD. The main phyla in all samples were Actinobacteria, Firmicutes, and Proteobacteria. Principal coordinate analyses demonstrated separation of control and COPD samples, but samples did not cluster based on disease severity. However, samples did cluster based on the use of inhaled corticosteroids and inhaled bronchodilators. Metastats analyses demonstrated an increased abundance of several oral bacteria in COPD samples. PMID:23071781

  18. Development of HuMiChip for Functional Profiling of Human Microbiomes

    PubMed Central

    Tu, Qichao; He, Zhili; Li, Yan; Chen, Yanfei; Deng, Ye; Lin, Lu; Hemme, Christopher L.; Yuan, Tong; Van Nostrand, Joy D.; Wu, Liyou; Zhou, Xuedong; Shi, Wenyuan; Li, Lanjuan; Xu, Jian; Zhou, Jizhong

    2014-01-01

    Understanding the diversity, composition, structure, function, and dynamics of human microbiomes in individual human hosts is crucial to reveal human-microbial interactions, especially for patients with microbially mediated disorders, but challenging due to the high diversity of the human microbiome. Here we have developed a functional gene-based microarray for profiling human microbiomes (HuMiChip) with 36,802 probes targeting 50,007 protein coding sequences for 139 key functional gene families. Computational evaluation suggested all probes included are highly specific to their target sequences. HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome. Obvious shifts of microbial functional structure and composition were observed for both patients with dental caries and periodontitis from moderate to advanced stages, suggesting a progressive change of microbial communities in response to the diseases. Consistent gene family profiles were observed by both HuMiChip and next generation sequencing technologies. Additionally, HuMiChip was able to detect gene families at as low as 0.001% relative abundance. The results indicate that the developed HuMiChip is a useful and effective tool for functional profiling of human microbiomes. PMID:24595026

  19. Variation in koala microbiomes within and between individuals: effect of body region and captivity status

    PubMed Central

    Alfano, Niccoló; Courtiol, Alexandre; Vielgrader, Hanna; Timms, Peter; Roca, Alfred L.; Greenwood, Alex D.

    2015-01-01

    Metagenomic analysis of 16S ribosomal RNA has been used to profile microbial communities at high resolution, and to examine their association with host diet or diseases. We examined the oral and gut microbiome composition of two captive koalas to determine whether bacterial communities are unusual in this species, given that their diet consists almost exclusively of Eucalyptus leaves. Despite a highly specialized diet, koala oral and gut microbiomes were similar in composition to the microbiomes from the same body regions of other mammals. Rectal swabs contained all of the diversity present in faecal samples, along with additional taxa, suggesting that faecal bacterial communities may merely subsample the gut bacterial diversity. Furthermore, the faecal microbiomes of the captive koalas were similar to those reported for wild koalas, suggesting that captivity may not compromise koala microbial health. Since koalas frequently suffer from ocular diseases caused by Chlamydia infection, we also examined the eye microbiome composition of two captive koalas, establishing the healthy baseline for this body part. The eye microbial community was very diverse, similar to other mammalian ocular microbiomes but with an unusually high representation of bacteria from the family Phyllobacteriaceae. PMID:25960327

  20. Variation in koala microbiomes within and between individuals: effect of body region and captivity status.

    PubMed

    Alfano, Niccoló; Courtiol, Alexandre; Vielgrader, Hanna; Timms, Peter; Roca, Alfred L; Greenwood, Alex D

    2015-05-11

    Metagenomic analysis of 16S ribosomal RNA has been used to profile microbial communities at high resolution, and to examine their association with host diet or diseases. We examined the oral and gut microbiome composition of two captive koalas to determine whether bacterial communities are unusual in this species, given that their diet consists almost exclusively of Eucalyptus leaves. Despite a highly specialized diet, koala oral and gut microbiomes were similar in composition to the microbiomes from the same body regions of other mammals. Rectal swabs contained all of the diversity present in faecal samples, along with additional taxa, suggesting that faecal bacterial communities may merely subsample the gut bacterial diversity. Furthermore, the faecal microbiomes of the captive koalas were similar to those reported for wild koalas, suggesting that captivity may not compromise koala microbial health. Since koalas frequently suffer from ocular diseases caused by Chlamydia infection, we also examined the eye microbiome composition of two captive koalas, establishing the healthy baseline for this body part. The eye microbial community was very diverse, similar to other mammalian ocular microbiomes but with an unusually high representation of bacteria from the family Phyllobacteriaceae.

  1. Bioprospecting plant-associated microbiomes.

    PubMed

    Müller, Christina A; Obermeier, Melanie M; Berg, Gabriele

    2016-10-10

    There is growing demand for new bioactive compounds and biologicals for the pharmaceutical, agro- and food industries. Plant-associated microbes present an attractive and promising source to this end, but are nearly unexploited. Therefore, bioprospecting of plant microbiomes is gaining more and more attention. Due to their highly specialized and co-evolved genetic pool, plant microbiomes host a rich secondary metabolism. This article highlights the potential detection and use of secondary metabolites and enzymes derived from plant-associated microorganisms in biotechnology. As an example we summarize the findings from the moss microbiome with special focus on the genus Sphagnum and its biotechnological potential for the discovery of novel microorganisms and bioactive molecules. The selected examples illustrate unique and yet untapped properties of plant-associated microbiomes, which are an immense treasure box for future research.

  2. The microbiome and psoriatic arthritis.

    PubMed

    Eppinga, Hester; Konstantinov, Sergey R; Peppelenbosch, Maikel P; Thio, H Bing

    2014-03-01

    Psoriatic arthritis is a chronic inflammatory joint disease, seen in combination with the chronic inflammatory skin disease psoriasis and belonging to the family of spondylarthritides (SpA). A link is recognized between psoriatic arthritis and inflammatory bowel disease (IBD). Environmental factors seem to induce inflammatory disease in individuals with underlying genetic susceptibility. The microbiome is a subject of increasing interest in the etiology of these inflammatory immune-mediated diseases. The intestinal microbiome is able to affect extra-intestinal distant sites, including the joints, through immunomodulation. At this point, evidence regarding a relationship between the microbiome and psoriatic arthritis is scarce. However, we hypothesize that common immune-mediated inflammatory pathways seen in the "skin-joint-gut axis" in psoriatic arthritis are induced or at least mediated by the microbiome. Th17 has a crucial function in this mechanism. Further establishment of this connection may lead to novel therapeutic approaches for psoriatic arthritis.

  3. The rhizosphere revisited: root microbiomics

    PubMed Central

    Bakker, Peter A. H. M.; Berendsen, Roeland L.; Doornbos, Rogier F.; Wintermans, Paul C. A.; Pieterse, Corné M. J.

    2013-01-01

    The rhizosphere was defined over 100 years ago as the zone around the root where microorganisms and processes important for plant growth and health are located. Recent studies show that the diversity of microorganisms associated with the root system is enormous. This rhizosphere microbiome extends the functional repertoire of the plant beyond imagination. The rhizosphere microbiome of Arabidopsis thaliana is currently being studied for the obvious reason that it allows the use of the extensive toolbox that comes with this model plant. Deciphering plant traits that drive selection and activities of the microbiome is now a major challenge in which Arabidopsis will undoubtedly be a major research object. Here we review recent microbiome studies and discuss future research directions and applicability of the generated knowledge. PMID:23755059

  4. The Intestinal Microbiome and Health

    PubMed Central

    Tuddenham, Susan; Sears, Cynthia L.

    2015-01-01

    Purpose of Review A diverse array of microbes colonizes the human intestine. In this review we seek to outline the current state of knowledge on what characterizes a “healthy” or “normal” intestinal microbiome, what factors modify the intestinal microbiome in the healthy state and how the intestinal microbiome affects normal host physiology Recent Findings What constitutes a “normal” or “healthy” intestinal microbiome is an area of active research, but key characteristics may include diversity, richness and a microbial community’s resilience and ability to resist change. A number of factors, including age, the host immune system, host genetics, diet and antibiotic use appear to modify the intestinal microbiome in the normal state. New research shows that the microbiome likely plays a critical role in the healthy human immune system and metabolism. Summary It is clear that there is a complicated bi-directional relationship between the intestinal microbiota and host which is vital to health. An enhanced understanding of this relationship will be critical not only to maximize and maintain human health but also to shape our understanding of disease and to foster new therapeutic approaches. PMID:26237547

  5. The Human Microbiome and Cancer.

    PubMed

    Rajagopala, Seesandra V; Vashee, Sanjay; Oldfield, Lauren M; Suzuki, Yo; Venter, J Craig; Telenti, Amalio; Nelson, Karen E

    2017-04-01

    Recent scientific advances have significantly contributed to our understanding of the complex connection between the microbiome and cancer. Our bodies are continuously exposed to microbial cells, both resident and transient, as well as their byproducts, including toxic metabolites. Circulation of toxic metabolites may contribute to cancer onset or progression at locations distant from where a particular microbe resides. Moreover, microbes may migrate to other locations in the human body and become associated with tumor development. Several case-control metagenomics studies suggest that dysbiosis in the commensal microbiota is also associated with inflammatory disorders and various cancer types throughout the body. Although the microbiome influences carcinogenesis through mechanisms independent of inflammation and immune system, the most recognizable link is between the microbiome and cancer via the immune system, as the resident microbiota plays an essential role in activating, training, and modulating the host immune response. Immunologic dysregulation is likely to provide mechanistic explanations as to how our microbiome influences cancer development and cancer therapies. In this review, we discuss recent developments in understanding the human gut microbiome's relationship with cancer and the feasibility of developing novel cancer diagnostics based on microbiome profiles. Cancer Prev Res; 10(4); 226-34. ©2017 AACR. ©2017 American Association for Cancer Research.

  6. The skin microbiome

    PubMed Central

    Grice, Elizabeth A.; Segre, Julia A.

    2012-01-01

    The skin is the human body’s largest organ, colonized by a diverse milieu of microorganisms, most of which are harmless or even beneficial to their host. Colonization is driven by the ecology of the skin surface, which is highly variable depending on topographical location, endogenous host factors and exogenous environmental factors. The cutaneous innate and adaptive immune responses can modulate the skin microbiota, but the microbiota also functions in educating the immune system. The development of molecular methods to identify microorganisms has led to an emerging view of the resident skin bacteria as highly diverse and variable. An enhanced understanding of the skin microbiome is necessary to gain insight into microbial involvement in human skin disorders and to enable novel promicrobial and antimicrobial therapeutic approaches for their treatment. PMID:21407241

  7. Changes in Abundance of Oral Microbiota Associated with Oral Cancer

    PubMed Central

    Schmidt, Brian L.; Kuczynski, Justin; Bhattacharya, Aditi; Huey, Bing; Corby, Patricia M.; Queiroz, Erica L. S.; Nightingale, Kira; Kerr, A. Ross; DeLacure, Mark D.; Veeramachaneni, Ratna; Olshen, Adam B.; Albertson, Donna G.

    2014-01-01

    Individual bacteria and shifts in the composition of the microbiome have been associated with human diseases including cancer. To investigate changes in the microbiome associated with oral cancers, we profiled cancers and anatomically matched contralateral normal tissue from the same patient by sequencing 16S rDNA hypervariable region amplicons. In cancer samples from both a discovery and a subsequent confirmation cohort, abundance of Firmicutes (especially Streptococcus) and Actinobacteria (especially Rothia) was significantly decreased relative to contralateral normal samples from the same patient. Significant decreases in abundance of these phyla were observed for pre-cancers, but not when comparing samples from contralateral sites (tongue and floor of mouth) from healthy individuals. Weighted UniFrac principal coordinates analysis based on 12 taxa separated most cancers from other samples with greatest separation of node positive cases. These studies begin to develop a framework for exploiting the oral microbiome for monitoring oral cancer development, progression and recurrence. PMID:24887397

  8. Effects of host species and environment on the skin microbiome of Plethodontid salamanders.

    PubMed

    Muletz Wolz, Carly R; Yarwood, Stephanie A; Campbell Grant, Evan H; Fleischer, Robert C; Lips, Karen R

    2017-07-06

    The amphibian skin microbiome is recognized for its role in defence against pathogens, including the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd). Yet, we have little understanding of evolutionary and ecological processes that structure these communities, especially for salamanders and closely related species. We investigated patterns in the distribution of bacterial communities on Plethodon salamander skin across host species and environments. Quantifying salamander skin microbiome structure contributes to our understanding of how host-associated bacteria are distributed across the landscape, among host species, and their putative relationship with disease. We characterized skin microbiome structure (alpha-diversity, beta-diversity and bacterial operational taxonomic unit [OTU] abundances) using 16S rRNA gene sequencing for co-occurring Plethodon salamander species (35 Plethodon cinereus, 17 Plethodon glutinosus, 10 Plethodon cylindraceus) at three localities to differentiate the effects of host species from environmental factors on the microbiome. We sampled the microbiome of P. cinereus along an elevational gradient (n = 50, 700-1,000 m a.s.l.) at one locality to determine whether elevation predicts microbiome structure. Finally, we quantified prevalence and abundance of putatively anti-Bd bacteria to determine if Bd-inhibitory bacteria are dominant microbiome members. Co-occurring salamanders had similar microbiome structure, but among sites salamanders had dissimilar microbiome structure for beta-diversity and abundance of 28 bacterial OTUs. We found that alpha-diversity increased with elevation, beta-diversity and the abundance of 17 bacterial OTUs changed with elevation (16 OTUs decreasing, 1 OTU increasing). We detected 11 putatively anti-Bd bacterial OTUs that were present on 90% of salamanders and made up an average relative abundance of 83% (SD ± 8.5) per salamander. All salamanders tested negative for Bd. We conclude that

  9. THE HUMAN MICROBIOME AND PROBIOTICS: IMPLICATIONS FOR PEDIATRICS

    PubMed Central

    Hsieh, Michael H.; Versalovic, James

    2010-01-01

    The “human super-organism” refers to the human body and the massive numbers of microbes which dwell within us and on the skin surface. Despite the large numbers of microbes co-existing within the human body, humans including infants and children achieve a physiologic state of equilibrium known as health in the context of this microbial world. These key concepts suggest that many individual members of the human microbiome, including bacterial and fungal species, confer different benefits on the human host. Probiotics, or beneficial microbes, may modulate immune responses, provide key nutrients, or suppress the proliferation and virulence of infectious agents. The human microbiome is in fact dynamic and often in flux, which may be indicative of the continuous interplay among commensal microbes, pathogens, and the human host. In this article we review the state-of-the-art regarding probiotics applications to prevent or treat diseases of the pediatric gastrointestinal and genitourinary systems. Additionally, probiotics may regulate local and systemic immunity, thereby reducing allergic disease severity and susceptibilities of infants and children to allergies and atopic diseases. In summary, beneficial microbes offer promising alternatives for new strategies in therapeutic microbiology with implications for different subspecialties within pediatrics. Instead of simply trying to counteract microbes with vaccines and antibiotics, a new field of medical microbiology is emerging that strives to translate human microbiome research into new probiotics strategies for promotion of health and prevention of disease in children. PMID:18992706

  10. The microbiome of New World vultures.

    PubMed

    Roggenbuck, Michael; Bærholm Schnell, Ida; Blom, Nikolaj; Bælum, Jacob; Bertelsen, Mads Frost; Sicheritz-Pontén, Thomas; Pontén, Thomas Sicheritz; Sørensen, Søren Johannes; Gilbert, M Thomas P; Graves, Gary R; Hansen, Lars H

    2014-11-25

    Vultures are scavengers that fill a key ecosystem niche, in which they have evolved a remarkable tolerance to bacterial toxins in decaying meat. Here we report the first deep metagenomic analysis of the vulture microbiome. Through face and gut comparisons of 50 vultures representing two species, we demonstrate a remarkably conserved low diversity of gut microbial flora. The gut samples contained an average of 76 operational taxonomic units (OTUs) per specimen, compared with 528 OTUs on the facial skin. Clostridia and Fusobacteria, widely pathogenic to other vertebrates, dominate the vulture's gut microbiota. We reveal a likely faecal-oral-gut route for their origin. DNA of prey species detectable on facial swabs was completely degraded in the gut samples from most vultures, suggesting that the gastrointestinal tracts of vultures are extremely selective. Our findings show a strong adaption of vultures and their bacteria to their food source, exemplifying a specialized host-microbial alliance.

  11. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering

    PubMed Central

    Quiza, Liliana; St-Arnaud, Marc; Yergeau, Etienne

    2015-01-01

    The goal of microbiome engineering is to manipulate the microbiome toward a certain type of community that will optimize plant functions of interest. For instance, in crop production the goal is to reduce disease susceptibility, increase nutrient availability increase abiotic stress tolerance and increase crop yields. Various approaches can be devised to engineer the plant–microbiome, but one particularly promising approach is to take advantage of naturally evolved plant–microbiome communication channels. This is, however, very challenging as the understanding of the plant–microbiome communication is still mostly rudimentary and plant–microbiome interactions varies between crops species (and even cultivars), between individual members of the microbiome and with environmental conditions. In each individual case, many aspects of the plant–microorganisms relationship should be thoroughly scrutinized. In this article we summarize some of the existing plant–microbiome engineering studies and point out potential avenues for further research. PMID:26236319

  12. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies.

    PubMed

    Oh, Julia; Freeman, Alexandra F; Park, Morgan; Sokolic, Robert; Candotti, Fabio; Holland, Steven M; Segre, Julia A; Kong, Heidi H

    2013-12-01

    While landmark studies have shown that microbiota activate and educate host immunity, how immune systems shape microbiomes and contribute to disease is incompletely characterized. Primary immunodeficiency (PID) patients suffer recurrent microbial infections, providing a unique opportunity to address this issue. To investigate the potential influence of host immunity on the skin microbiome, we examined skin microbiomes in patients with rare monogenic PIDs: hyper-IgE (STAT3-deficient), Wiskott-Aldrich, and dedicator of cytokinesis 8 syndromes. While specific immunologic defects differ, a shared hallmark is atopic dermatitis (AD)-like eczema. We compared bacterial and fungal skin microbiomes (41 PID, 13 AD, 49 healthy controls) at four clinically relevant sites representing the major skin microenvironments. PID skin displayed increased ecological permissiveness with altered population structures, decreased site specificity and temporal stability, and colonization with microbial species not observed in controls, including Clostridium species and Serratia marcescens. Elevated fungal diversity and increased representation of opportunistic fungi (Candida, Aspergillus) supported increased PID skin permissiveness, suggesting that skin may serve as a reservoir for the recurrent fungal infections observed in these patients. The overarching theme of increased ecological permissiveness in PID skin was counterbalanced by the maintenance of a phylum barrier in which colonization remained restricted to typical human-associated phyla. Clinical parameters, including markers of disease severity, were positively correlated with prevalence of Staphylococcus, Corynebacterium, and other less abundant taxa. This study examines differences in microbial colonization and community stability in PID skin and informs our understanding of host-microbiome interactions, suggesting a bidirectional dialogue between skin commensals and the host organism.

  13. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies

    PubMed Central

    Oh, Julia; Freeman, Alexandra F.; Park, Morgan; Sokolic, Robert; Candotti, Fabio; Holland, Steven M.; Segre, Julia A.; Kong, Heidi H.

    2013-01-01

    While landmark studies have shown that microbiota activate and educate host immunity, how immune systems shape microbiomes and contribute to disease is incompletely characterized. Primary immunodeficiency (PID) patients suffer recurrent microbial infections, providing a unique opportunity to address this issue. To investigate the potential influence of host immunity on the skin microbiome, we examined skin microbiomes in patients with rare monogenic PIDs: hyper-IgE (STAT3-deficient), Wiskott-Aldrich, and dedicator of cytokinesis 8 syndromes. While specific immunologic defects differ, a shared hallmark is atopic dermatitis (AD)–like eczema. We compared bacterial and fungal skin microbiomes (41 PID, 13 AD, 49 healthy controls) at four clinically relevant sites representing the major skin microenvironments. PID skin displayed increased ecological permissiveness with altered population structures, decreased site specificity and temporal stability, and colonization with microbial species not observed in controls, including Clostridium species and Serratia marcescens. Elevated fungal diversity and increased representation of opportunistic fungi (Candida, Aspergillus) supported increased PID skin permissiveness, suggesting that skin may serve as a reservoir for the recurrent fungal infections observed in these patients. The overarching theme of increased ecological permissiveness in PID skin was counterbalanced by the maintenance of a phylum barrier in which colonization remained restricted to typical human-associated phyla. Clinical parameters, including markers of disease severity, were positively correlated with prevalence of Staphylococcus, Corynebacterium, and other less abundant taxa. This study examines differences in microbial colonization and community stability in PID skin and informs our understanding of host–microbiome interactions, suggesting a bidirectional dialogue between skin commensals and the host organism. PMID:24170601

  14. The saliva microbiome of Pan and Homo

    PubMed Central

    2013-01-01

    Background It is increasingly recognized that the bacteria that live in and on the human body (the microbiome) can play an important role in health and disease. The composition of the microbiome is potentially influenced by both internal factors (such as phylogeny and host physiology) and external factors (such as diet and local environment), and interspecific comparisons can aid in understanding the importance of these factors. Results To gain insights into the relative importance of these factors on saliva microbiome diversity, we here analyze the saliva microbiomes of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) from two sanctuaries in Africa, and from human workers at each sanctuary. The saliva microbiomes of the two Pan species are more similar to one another, and the saliva microbiomes of the two human groups are more similar to one another, than are the saliva microbiomes of human workers and apes from the same sanctuary. We also looked for the existence of a core microbiome and find no evidence for a taxon-based core saliva microbiome for Homo or Pan. In addition, we studied the saliva microbiome from apes from the Leipzig Zoo, and found an extraordinary diversity in the zoo ape saliva microbiomes that is not found in the saliva microbiomes of the sanctuary animals. Conclusions The greater similarity of the saliva microbiomes of the two Pan species to one another, and of the two human groups to one another, are in accordance with both the phylogenetic relationships of the hosts as well as with host physiology. Moreover, the results from the zoo animals suggest that novel environments can have a large impact on the microbiome, and that microbiome analyses based on captive animals should be viewed with caution as they may not reflect the microbiome of animals in the wild. PMID:24025115

  15. Network modules and hubs in plant-root fungal biomes

    PubMed Central

    Toju, Hirokazu; Yamamoto, Satoshi; Tanabe, Akifumi S.; Hayakawa, Takashi; Ishii, Hiroshi S.

    2016-01-01

    Terrestrial plants host phylogenetically and functionally diverse groups of below-ground microbes, whose community structure controls plant growth/survival in both natural and agricultural ecosystems. Therefore, understanding the processes by which whole root-associated microbiomes are organized is one of the major challenges in ecology and plant science. We here report that diverse root-associated fungi can form highly compartmentalized networks of coexistence within host roots and that the structure of the fungal symbiont communities can be partitioned into semi-discrete types even within a single host plant population. Illumina sequencing of root-associated fungi in a monodominant south beech forest revealed that the network representing symbiont–symbiont co-occurrence patterns was compartmentalized into clear modules, which consisted of diverse functional groups of mycorrhizal and endophytic fungi. Consequently, terminal roots of the plant were colonized by either of the two largest fungal species sets (represented by Oidiodendron or Cenococcum). Thus, species-rich root microbiomes can have alternative community structures, as recently shown in the relationships between human gut microbiome type (i.e. ‘enterotype’) and host individual health. This study also shows an analytical framework for pinpointing network hubs in symbiont–symbiont networks, leading to the working hypothesis that a small number of microbial species organize the overall root–microbiome dynamics. PMID:26962029

  16. Oral Histoplasmosis.

    PubMed

    Folk, Gillian A; Nelson, Brenda L

    2017-02-20

    A 44-year-old female presented to her general dentist with the chief complaint of a painful mouth sore of 2 weeks duration. Clinical examination revealed an irregularly shaped ulcer of the buccal and lingual attached gingiva of the anterior mandible. A biopsy was performed and microscopic evaluation revealed histoplasmosis. Histoplasmosis, caused by Histoplasma capsulate, is the most common fungal infection in the United States. Oral lesions of histoplasmosis are generally associated with the disseminated form of histoplasmosis and may present as a fungating or ulcerative lesion of the oral mucosa. The histologic findings and differential diagnosis for oral histoplasmosis are discussed.

  17. Improved Glucose Homeostasis in Obese Mice Treated With Resveratrol Is Associated With Alterations in the Gut Microbiome.

    PubMed

    Sung, Miranda M; Kim, Ty T; Denou, Emmanuel; Soltys, Carrie-Lynn M; Hamza, Shereen M; Byrne, Nikole J; Masson, Grant; Park, Heekuk; Wishart, David S; Madsen, Karen L; Schertzer, Jonathan D; Dyck, Jason R B

    2017-02-01

    Oral administration of resveratrol is able to improve glucose homeostasis in obese individuals. Herein we show that resveratrol ingestion produces taxonomic and predicted functional changes in the gut microbiome of obese mice. In particular, changes in the gut microbiome were characterized by a decreased relative abundance of Turicibacteraceae, Moryella, Lachnospiraceae, and Akkermansia and an increased relative abundance of Bacteroides and Parabacteroides Moreover, fecal transplantation from healthy resveratrol-fed donor mice is sufficient to improve glucose homeostasis in obese mice, suggesting that the resveratrol-mediated changes in the gut microbiome may play an important role in the mechanism of action of resveratrol. © 2017 by the American Diabetes Association.

  18. Dynamic changes in the subgingival microbiome and their potential for diagnosis and prognosis of periodontitis.

    PubMed

    Shi, Baochen; Chang, Michaela; Martin, John; Mitreva, Makedonka; Lux, Renate; Klokkevold, Perry; Sodergren, Erica; Weinstock, George M; Haake, Susan K; Li, Huiying

    2015-02-17

    The human microbiome influences and reflects the health or disease state of the host. Periodontitis, a disease affecting about half of American adults, is associated with alterations in the subgingival microbiome of individual tooth sites. Although it can be treated, the disease can reoccur and may progress without symptoms. Without prognostic markers, follow-up examinations are required to assess reoccurrence and disease progression and to determine the need for additional treatments. To better identify and predict the disease progression, we aim to determine whether the subgingival microbiome can serve as a diagnosis and prognosis indicator. Using metagenomic shotgun sequencing, we characterized the dynamic changes in the subgingival microbiome in periodontitis patients before and after treatment at the same tooth sites. At the taxonomic composition level, the periodontitis-associated microorganisms were significantly shifted from highly correlated in the diseased state to poorly correlated after treatment, suggesting that coordinated interactions among the pathogenic microorganisms are essential to disease pathogenesis. At the functional level, we identified disease-associated pathways that were significantly altered in relative abundance in the two states. Furthermore, using the subgingival microbiome profile, we were able to classify the samples to their clinical states with an accuracy of 81.1%. Follow-up clinical examination of the sampled sites supported the predictive power of the microbiome profile on disease progression. Our study revealed the dynamic changes in the subgingival microbiome contributing to periodontitis and suggested potential clinical applications of monitoring the subgingival microbiome as an indicator in disease diagnosis and prognosis. Periodontitis is a common oral disease. Although it can be treated, the disease may reoccur without obvious symptoms. Current clinical examination parameters are useful in disease diagnosis but cannot

  19. Four cats with fungal rhinitis.

    PubMed

    Whitney, Beth L; Broussard, John; Stefanacci, Joseph D

    2005-02-01

    Fungal rhinitis is uncommon in the cat and cases of nasal aspergillosis-penicilliosis have been rarely reported. Signs of fungal rhinitis include epistaxis, sneezing, mucopurulent nasal discharge and exophthalmos. Brachycephalic feline breeds seem to be at increased risk for development of nasal aspergillosis-penicilliosis. Computed tomography (CT) imaging and rhinoscopy are useful in assessing the extent of the disease and in obtaining diagnostic samples. Fungal culture may lead to false negative or positive results and must be used in conjunction with other diagnostic tests. Serological testing was not useful in two cats tested. The cats in this study were treated with oral itraconazole therapy. When itraconazole therapy was discontinued prematurely, clinical signs recurred. Hepatotoxicosis is a possible sequel to itraconazole therapy.

  20. The Microbiome and Sustainable Healthcare

    PubMed Central

    Dietert, Rodney R.; Dietert, Janice M.

    2015-01-01

    Increasing prevalences, morbidity, premature mortality and medical needs associated with non-communicable diseases and conditions (NCDs) have reached epidemic proportions and placed a major drain on healthcare systems and global economies. Added to this are the challenges presented by overuse of antibiotics and increased antibiotic resistance. Solutions are needed that can address the challenges of NCDs and increasing antibiotic resistance, maximize preventative measures, and balance healthcare needs with available services and economic realities. Microbiome management including microbiota seeding, feeding, and rebiosis appears likely to be a core component of a path toward sustainable healthcare. Recent findings indicate that: (1) humans are mostly microbial (in terms of numbers of cells and genes); (2) immune dysfunction and misregulated inflammation are pivotal in the majority of NCDs; (3) microbiome status affects early immune education and risk of NCDs, and (4) microbiome status affects the risk of certain infections. Management of the microbiome to reduce later-life health risk and/or to treat emerging NCDs, to spare antibiotic use and to reduce the risk of recurrent infections may provide a more effective healthcare strategy across the life course particularly when a personalized medicine approach is considered. This review will examine the potential for microbiome management to contribute to sustainable healthcare. PMID:27417751

  1. Microbiomes associated with infective stages of root-knot and lesion nematodes in soil.

    PubMed

    Elhady, Ahmed; Giné, Ariadna; Topalovic, Olivera; Jacquiod, Samuel; Sørensen, Søren J; Sorribas, Francisco Javier; Heuer, Holger

    2017-01-01

    Endoparasitic root-knot (Meloidogyne spp.) and lesion (Pratylenchus spp.) nematodes cause considerable damage in agriculture. Before they invade roots to complete their life cycle, soil microbes can attach to their cuticle or surface coat and antagonize the nematode directly or by induction of host plant defenses. We investigated whether the nematode-associated microbiome in soil differs between infective stages of Meloidogyne incognita and Pratylenchus penetrans, and whether it is affected by variation in the composition of microbial communities among soils. Nematodes were incubated in suspensions of five organically and two integrated horticultural production soils, recovered by sieving and analyzed for attached bacteria and fungi after washing off loosely adhering microbes. Significant effects of the soil type and nematode species on nematode-associated fungi and bacteria were revealed as analyzed by community profiling using denaturing gradient gel electrophoresis. Attached microbes represented a small specific subset of the soil microbiome. Two organic soils had very similar bacterial and fungal community profiles, but one of them was strongly suppressive towards root-knot nematodes. They were selected for deep amplicon sequencing of bacterial 16S rRNA genes and fungal ITS. Significant differences among the microbiomes associated with the two species in both soils suggested specific surface epitopes. Among the 28 detected bacterial classes, Betaproteobacteria, Bacilli and Actinobacteria were the most abundant. The most frequently detected fungal genera were Malassezia, Aspergillus and Cladosporium. Attached microbiomes did not statistically differ between these two soils. However, Malassezia globosa and four fungal species of the family Plectosphaerellaceae, and the bacterium Neorhizobium galegae were strongly enriched on M. incognita in the suppressive soil. In conclusion, the highly specific attachment of microbes to infective stages of phytonematodes in

  2. Microbiomes associated with infective stages of root-knot and lesion nematodes in soil

    PubMed Central

    Elhady, Ahmed; Giné, Ariadna; Topalovic, Olivera; Jacquiod, Samuel; Sørensen, Søren J.; Sorribas, Francisco Javier

    2017-01-01

    Endoparasitic root-knot (Meloidogyne spp.) and lesion (Pratylenchus spp.) nematodes cause considerable damage in agriculture. Before they invade roots to complete their life cycle, soil microbes can attach to their cuticle or surface coat and antagonize the nematode directly or by induction of host plant defenses. We investigated whether the nematode-associated microbiome in soil differs between infective stages of Meloidogyne incognita and Pratylenchus penetrans, and whether it is affected by variation in the composition of microbial communities among soils. Nematodes were incubated in suspensions of five organically and two integrated horticultural production soils, recovered by sieving and analyzed for attached bacteria and fungi after washing off loosely adhering microbes. Significant effects of the soil type and nematode species on nematode-associated fungi and bacteria were revealed as analyzed by community profiling using denaturing gradient gel electrophoresis. Attached microbes represented a small specific subset of the soil microbiome. Two organic soils had very similar bacterial and fungal community profiles, but one of them was strongly suppressive towards root-knot nematodes. They were selected for deep amplicon sequencing of bacterial 16S rRNA genes and fungal ITS. Significant differences among the microbiomes associated with the two species in both soils suggested specific surface epitopes. Among the 28 detected bacterial classes, Betaproteobacteria, Bacilli and Actinobacteria were the most abundant. The most frequently detected fungal genera were Malassezia, Aspergillus and Cladosporium. Attached microbiomes did not statistically differ between these two soils. However, Malassezia globosa and four fungal species of the family Plectosphaerellaceae, and the bacterium Neorhizobium galegae were strongly enriched on M. incognita in the suppressive soil. In conclusion, the highly specific attachment of microbes to infective stages of phytonematodes in

  3. Microbiome interplay: plants alter microbial abundance and diversity within the built environment.

    PubMed

    Mahnert, Alexander; Moissl-Eichinger, Christine; Berg, Gabriele

    2015-01-01

    The built indoor microbiome has importance for human health. Residents leave their microbial fingerprint but nothing is known about the transfer from plants. Our hypothesis that indoor plants contribute substantially to the microbial abundance and diversity in the built environment was experimentally confirmed as proof of principle by analyzing the microbiome of the spider plant Chlorophytum comosum in relation to their surroundings. The abundance of Archaea, Bacteria, and Eukaryota (fungi) increased on surrounding floor and wall surfaces within 6 months of plant isolation in a cleaned indoor environment, whereas the microbial abundance on plant leaves and indoor air remained stable. We observed a microbiome shift: the bacterial diversity on surfaces increased significantly but fungal diversity decreased. The majority of cells were intact at the time of samplings and thus most probably alive including diverse Archaea as yet unknown phyllosphere inhabitants. LEfSe and network analysis showed that most microbes were dispersed from plant leaves to the surrounding surfaces. This led to an increase of specific taxa including spore-forming fungi with potential allergic potential but also beneficial plant-associated bacteria, e.g., Paenibacillus. This study demonstrates for the first time that plants can alter the microbiome of a built environment, which supports the significance of plants and provides insights into the complex interplay of plants, microbiomes and human beings.

  4. Microbiome and Gluten.

    PubMed

    Sanz, Yolanda

    2015-01-01

    Celiac disease (CD) is a frequent chronic inflammatory enteropathy caused by gluten in genetically predisposed individuals that carry disease susceptibility genes (HLA-DQ2/8). These genes are present in about 30-40% of the general population, but only a small percentage of carriers develops CD. Gluten is the key environmental trigger of CD, but its intake does not fully explain disease onset; indeed, an increased number of cases experience gluten intolerance in late adulthood after many years of gluten exposure. Consequently, additional environmental factors seem to be involved in CD. Epidemiological studies indicate that common perinatal and early postnatal factors influence both CD risk and intestinal microbiota structure. Prospective studies in healthy infants at risk of developing CD also reveal that the HLA-DQ genotype, in conjunction with other environmental factors, influences the microbiota composition. Furthermore, CD patients have imbalances in the intestinal microbiota (dysbiosis), which are not fully normalized despite their adherence to a gluten-free diet. Therefore, it is hypothesized that the disease can promote dysbiosis that aggravates CD pathogenesis, and dysbiosis, in turn, can initiate and sustain inflammation through the expansion of proinflammatory pathobionts and decline of anti-inflammatory mutualistic bacteria. Studies in experimental models are also contributing to understand the role of intestinal bacteria and its interactions with a predisposed genotype in promoting CD. Advances in this area could aid in the development of microbiome-informed intervention strategies that optimize the partnership between the gut microbiota and host immunity for improving CD management.

  5. Gaia and her microbiome.

    PubMed

    Stolz, John F

    2017-02-01

    The Gaia hypothesis, proposed 50 years ago, posits that the Earth's biosphere, atmosphere, hydrosphere and lithosphere interact as a cybernetic system, maintaining the long-term habitability of the planet. The resulting chemical composition of the atmosphere, oceans and crust is unique as compared to the other planets of our solar system, and due to the presence of life. Together these components comprise the biosphere, the life support system of the planet, with most of the essential processes carried out by microbes. Over a half of the elements in the periodic table are now known to have some biological role with many having complex biogeochemical cycles. The global microbiome inhabits a wide range of environments including deep into the Earth's crust, with a population of ∼10(30) cells and more than a trillion species. Deep sequencing projects have revealed hitherto unknown phyla and 'microbial dark matter'. The discoveries of conductive pili and cable bacteria have demonstrated that microbes transfer electrons to and from external sources, sometimes over significant distances, while research on quorum sensing and the plethora of microbial volatile organic substances have provided new insights into how microbes communicate. These advances in microbiology have expanded our understanding how Gaia could actually work. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia.

    PubMed

    Galloway-Peña, Jessica R; Smith, Daniel P; Sahasrabhojane, Pranoti; Ajami, Nadim J; Wadsworth, W Duncan; Daver, Naval G; Chemaly, Roy F; Marsh, Lisa; Ghantoji, Shashank S; Pemmaraju, Naveen; Garcia-Manero, Guillermo; Rezvani, Katayoun; Alousi, Amin M; Wargo, Jennifer A; Shpall, Elizabeth J; Futreal, Phillip A; Guindani, Michele; Petrosino, Joseph F; Kontoyiannis, Dimitrios P; Shelburne, Samuel A

    2016-07-15

    Despite increasing data on the impact of the microbiome on cancer, the dynamics and role of the microbiome in infection during therapy for acute myelogenous leukemia (AML) are unknown. Therefore, the authors sought to determine correlations between microbiome composition and infectious outcomes in patients with AML who were receiving induction chemotherapy (IC). Buccal and fecal specimens (478 samples) were collected twice weekly from 34 patients with AML who were undergoing IC. Oral and stool microbiomes were characterized by 16S ribosomal RNA V4 sequencing using an Illumina MiSeq system. Microbial diversity and genera composition were associated with clinical outcomes. Baseline stool α-diversity was significantly lower in patients who developed infections during IC compared with those who did not (P = .047). Significant decreases in both oral and stool microbial α-diversity were observed over the course of IC, with a linear correlation between α-diversity change at the 2 sites (P = .02). Loss of both oral and stool α-diversity was associated significantly with the receipt of a carbapenem P < 0.001. Domination events by the majority of genera were transient (median duration, 1 sample), whereas the number of domination events by pathogenic genera increased significantly over the course of IC (P = .002). Moreover, patients who lost microbial diversity over the course of IC were significantly more likely to contract a microbiologically documented infection within the 90 days after IC neutrophil recovery (P = .04). The current data present the largest longitudinal analyses to date of oral and stool microbiomes in patients with AML and suggest that microbiome measurements could assist with the mitigation of infectious complications of AML therapy. Cancer 2016;122:2186-96. © 2016 American Cancer Society. © 2016 American Cancer Society.

  7. The Role Of The Gastrointestinal Microbiome in Infectious Complications During Induction Chemotherapy For Acute Myeloid Leukemia

    PubMed Central

    Galloway-Peña, Jessica; Smith, Daniel P.; Sahasrabhojane, Pranoti; Ajami, Nadim J.; Wadsworth, W. Duncan; Daver, Naval G.; Chemaly, Roy F.; Marsh, Lisa; Ghantoji, Shashank S.; Pemmaraju, Naveen; Garcia-Manero, Guillermo; Rezvani, Katayoun; Alousi, Amin M.; Wargo, Jennifer A.; Shpall, Elizabeth J.; Futreal, Phillip A.; Guindani, Michele; Petrosino, Joseph F.; Kontoyiannis, Dimitrios P.; Shelburne, Samuel A.

    2017-01-01

    Background Despite increasing data on the impact of the microbiome on cancer, the dynamics and role of the microbiome in infection during acute myelogenous leukemia (AML) therapy are unknown. Thus, we sought to determine relationships between microbiome composition and infectious outcomes in AML patients receiving induction chemotherapy (IC). Methods Buccal and fecal specimens (478 samples) were collected twice weekly from 34 AML patients undergoing IC. Oral and stool microbiomes were characterized by 16S rRNA V4 sequencing using Illumina MiSeq. Microbial diversity and genera composition were associated with clinical outcomes. Results Baseline stool α-diversity was significantly lower in patients that developed infections during IC compared to those that did not (P = 0.047). Significant decreases in both oral and stool microbial α-diversity were observed over the course of IC, with a linear correlation between α-diversity change at the two sites (P = 0.02). Loss of both oral and stool α-diversity was significantly associated with carbapenem receipt (P < 0.01). Domination events by the majority of genera were transient (median duration = 1 sample), while the number of domination events by pathogenic genera significantly increased over the course of IC (P=0.002). Moreover, patients who lost microbial diversity over the course of induction chemotherapy were significantly more likely to contract a microbiologically documented infection within the 90 days post-IC neutrophil recovery (P=0.04). Conclusion These data present the largest longitudinal analyses of oral and stool microbiomes in AML patients and suggest that microbiome measurements could assist with mitigation of infectious complications of AML therapy. PMID:27142181

  8. The Gut Microbiome and Obesity.

    PubMed

    John, George Kunnackal; Mullin, Gerard E

    2016-07-01

    The gut microbiome consists of trillions of bacteria which play an important role in human metabolism. Animal and human studies have implicated distortion of the normal microbial balance in obesity and metabolic syndrome. Bacteria causing weight gain are thought to induce the expression of genes related to lipid and carbohydrate metabolism thereby leading to greater energy harvest from the diet. There is a large body of evidence demonstrating that alteration in the proportion of Bacteroidetes and Firmicutes leads to the development of obesity, but this has been recently challenged. It is likely that the influence of gut microbiome on obesity is much more complex than simply an imbalance in the proportion of these phyla of bacteria. Modulation of the gut microbiome through diet, pre- and probiotics, antibiotics, surgery, and fecal transplantation has the potential to majorly impact the obesity epidemic.

  9. The Tasmanian devil microbiome-implications for conservation and management.

    PubMed

    Cheng, Yuanyuan; Fox, Samantha; Pemberton, David; Hogg, Carolyn; Papenfuss, Anthony T; Belov, Katherine

    2015-12-21

    The Tasmanian devil, the world's largest carnivorous marsupial, is at risk of extinction due to devil facial tumour disease (DFTD), a fatal contagious cancer. The Save the Tasmanian Devil Program has established an insurance population, which currently holds over 600 devils in captive facilities across Australia. Microbes are known to play a crucial role in the health and well-being of humans and other animals, and increasing evidence suggests that changes in the microbiota can influence various aspects of host physiology and development. To improve our understanding of devils and facilitate management and conservation of the species, we characterised the microbiome of wild devils and investigated differences in the composition of microbial community between captive and wild individuals. A total of 1,223,550 bacterial 16S ribosomal RNA (rRNA) sequences were generated via Roche 454 sequencing from 56 samples, including 17 gut, 15 skin, 18 pouch and 6 oral samples. The devil's gut microbiome was dominated by Firmicutes and showed a high Firmicutes-to-Bacteroidetes ratio, which appears to be a common feature of many carnivorous mammals. Metabolisms of carbohydrates, amino acids, energy, cofactors and vitamins, nucleotides and lipids were predicted as the most prominent metabolic pathways that the devil's gut flora contributed to. The microbiota inside the female's pouch outside lactation was highly similar to that of the skin, both co-dominated by Firmicutes and Proteobacteria. The oral microbiome had similar proportions of Proteobacteria, Bacteroidetes, Firmicutes and Fusobacteria. Compositional differences were observed in all four types of microbiota between devils from captive and wild populations. Certain captive devils had significantly lower levels of gut bacterial diversity than wild individuals, and the two groups differed in the proportion of gut bacteria accounting for the metabolism of glycan, amino acids and cofactors and vitamins. Further studies are

  10. The successful use of amphotericin B followed by oral posaconazole in a rare case of invasive fungal sinusitis caused by co-infection with mucormycosis and aspergillus

    PubMed Central

    Mahomed, Sharana; Basanth, Sujith; Mlisana, Koleka

    2015-01-01

    We report on an unusual case of oro-rhinocerebral disease caused by mucormycosis and aspergillus co-infection in a 54-year-old insulin dependent diabetic patient. Although she was successfully treated with parenteral amphotericin B followed by oral posaconazole, she was left with irreversible blindness of the right eye and multiple cranial nerve palsies. PMID:26793475

  11. Microbiome engineering: Current applications and its future.

    PubMed

    Foo, Jee Loon; Ling, Hua; Lee, Yung Seng; Chang, Matthew Wook

    2017-03-01

    Microbiomes exist in all ecosystems and are composed of diverse microbial communities. Perturbation to microbiomes brings about undesirable phenotypes in the hosts, resulting in diseases and disorders, and disturbs the balance of the associated ecosystems. Engineering of microbiomes can be used to modify structures of the microbiota and restore ecological balance. Consequently, microbiome engineering has been employed for improving human health and agricultural productivity. The importance and current applications of microbiome engineering, particularly in humans, animals, plants and soil is reviewed. Furthermore, we explore the challenges in engineering microbiome and the future of this field, thus providing perspectives and outlook of microbiome engineering. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Phylogenetics and the Human Microbiome

    PubMed Central

    Matsen, Frederick A.

    2015-01-01

    The human microbiome is the ensemble of genes in the microbes that live inside and on the surface of humans. Because microbial sequencing information is now much easier to come by than phenotypic information, there has been an explosion of sequencing and genetic analysis of microbiome samples. Much of the analytical work for these sequences involves phylogenetics, at least indirectly, but methodology has developed in a somewhat different direction than for other applications of phylogenetics. In this article, I review the field and its methods from the perspective of a phylogeneticist, as well as describing current challenges for phylogenetics coming from this type of work. PMID:25102857

  13. Phylogenetics and the human microbiome.

    PubMed

    Matsen, Frederick A

    2015-01-01

    The human microbiome is the ensemble of genes in the microbes that live inside and on the surface of humans. Because microbial sequencing information is now much easier to come by than phenotypic information, there has been an explosion of sequencing and genetic analysis of microbiome samples. Much of the analytical work for these sequences involves phylogenetics, at least indirectly, but methodology has developed in a somewhat different direction than for other applications of phylogenetics. In this article, I review the field and its methods from the perspective of a phylogeneticist, as well as describing current challenges for phylogenetics coming from this type of work.

  14. Where Next for Microbiome Research?

    PubMed Central

    Waldor, Matthew K.; Tyson, Gene; Borenstein, Elhanan; Ochman, Howard; Moeller, Andrew; Finlay, B. Brett; Kong, Heidi H.; Gordon, Jeffrey I.; Nelson, Karen E.; Dabbagh, Karim; Smith, Hamilton

    2015-01-01

    The development of high-throughput sequencing technologies has transformed our capacity to investigate the composition and dynamics of the microbial communities that populate diverse habitats. Over the past decade, these advances have yielded an avalanche of metagenomic data. The current stage of “van Leeuwenhoek”–like cataloguing, as well as functional analyses, will likely accelerate as DNA and RNA sequencing, plus protein and metabolic profiling capacities and computational tools, continue to improve. However, it is time to consider: what’s next for microbiome research? The short pieces included here briefly consider the challenges and opportunities awaiting microbiome research. PMID:25602283

  15. Serious fungal infections in Peru.

    PubMed

    Bustamante, B; Denning, D W; Campos, P E

    2017-02-10

    Epidemiological data about mycotic diseases are limited in Peru and estimation of the fungal burden has not been previously attempted. Data were obtained from the Peruvian National Institute of Statistics and Informatics, UNAIDS and from the Ministry of Health's publications. We also searched the bibliography for Peruvian data on mycotic diseases, asthma, COPD, cancer and transplants. Incidence or prevalence for each fungal disease were estimated in specific populations at risk. The Peruvian population for 2015 was 31,151,543. In 2014, the estimated number of HIV/AIDS and pulmonary tuberculosis cases was 88,625, 38,581 of them not on ART, and 22,027, respectively. A total of 581,174 cases of fungal diseases were estimated, representing approximately 1.9% of the Peruvian population. This figure includes 498,606, 17,361 and 4,431 vulvovaginal, oral and esophageal candidiasis, respectively, 1,557 candidemia cases, 3,593 CPA, 1,621 invasive aspergillosis, 22,453 allergic bronchopulmonary aspergilllosis, 29,638 severe asthma with fungal sensitization, and 1,447 Pneumocystis pneumonia. This first attempt to assess the fungal burden in Peru needs to be refined. We believe the figure obtained is an underestimation, because of under diagnosis, non-mandatory reporting and lack of a surveillance system and of good data about the size of populations at risk.

  16. REPRODUCIBLE RESEARCH WORKFLOW IN R FOR THE ANALYSIS OF PERSONALIZED HUMAN MICROBIOME DATA.

    PubMed

    Callahan, Benjamin; Proctor, Diana; Relman, David; Fukuyama, Julia; Holmes, Susan

    2016-01-01

    This article presents a reproducible research workflow for amplicon-based microbiome studies in personalized medicine created using Bioconductor packages and the knitr markdown interface.We show that sometimes a multiplicity of choices and lack of consistent documentation at each stage of the sequential processing pipeline used for the analysis of microbiome data can lead to spurious results. We propose its replacement with reproducible and documented analysis using R packages dada2, knitr, and phyloseq. This workflow implements both key stages of amplicon analysis: the initial filtering and denoising steps needed to construct taxonomic feature tables from error-containing sequencing reads (dada2), and the exploratory and inferential analysis of those feature tables and associated sample metadata (phyloseq). This workow facilitates reproducible interrogation of the full set of choices required in microbiome studies. We present several examples in which we leverage existing packages for analysis in a way that allows easy sharing and modification by others, and give pointers to articles that depend on this reproducible workflow for the study of longitudinal and spatial series analyses of the vaginal microbiome in pregnancy and the oral microbiome in humans with healthy dentition and intra-oral tissues.

  17. REPRODUCIBLE RESEARCH WORKFLOW IN R FOR THE ANALYSIS OF PERSONALIZED HUMAN MICROBIOME DATA

    PubMed Central

    CALLAHAN, BENJAMIN; PROCTOR, DIANA; RELMAN, DAVID; FUKUYAMA, JULIA; HOLMES, SUSAN

    2016-01-01

    This article presents a reproducible research workow for amplicon-based microbiome studies in personalized medicine created using Bioconductor packages and the knitr markdown interface. We show that sometimes a multiplicity of choices and lack of consistent documentation at each stage of the sequential processing pipeline used for the analysis of microbiome data can lead to spurious results. We propose its replacement with reproducible and documented analysis using R packages dada2, knitr, and phyloseq. This workow implements both key stages of amplicon analysis: the initial filtering and denoising steps needed to construct taxonomic feature tables from error-containing sequencing reads (dada2), and the exploratory and inferential analysis of those feature tables and associated sample metadata (phyloseq). This workow facilitates reproducible interrogation of the full set of choices required in microbiome studies. We present several examples in which we leverage existing packages for analysis in a way that allows easy sharing and modification by others, and give pointers to articles that depend on this reproducible workow for the study of longitudinal and spatial series analyses of the vaginal microbiome in pregnancy and the oral microbiome in humans with healthy dentition and intra-oral tissues. PMID:26776185

  18. Childhood Malnutrition and the Intestinal Microbiome Malnutrition and the microbiome

    PubMed Central

    Kane, Anne V.; Dinh, Duy M.; Ward, Honorine D.

    2015-01-01

    Malnutrition contributes to almost half of all deaths in children under the age of 5 years, particularly those who live in resource-constrained areas. Those who survive frequently suffer from long-term sequelae including growth failure and neurodevelopmental impairment. Malnutrition is part of a vicious cycle of impaired immunity, recurrent infections and worsening malnutrition. Recently, alterations in the gut microbiome have also been strongly implicated in childhood malnutrition. It has been suggested that malnutrition may delay the normal development of the gut microbiota in early childhood or force it towards an altered composition that lacks the required functions for healthy growth and/or increases the risk for intestinal inflammation. This review addresses our current understanding of the beneficial contributions of gut microbiota to human nutrition (and conversely the potential role of changes in that community to malnutrition), the process of acquiring an intestinal microbiome, potential influences of malnutrition on the developing microbiota and the evidence directly linking alterations in the intestinal microbiome to childhood malnutrition. We review recent studies on the association between alterations in the intestinal microbiome and early childhood malnutrition and discuss them in the context of implications for intervention or prevention of the devastation caused by malnutrition. PMID:25356748

  19. The Serpentinite Subsurface Microbiome

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  20. Transplanting Soil Microbiomes Leads to Lasting Effects on Willow Growth, but not on the Rhizosphere Microbiome

    PubMed Central

    Yergeau, Etienne; Bell, Terrence H.; Champagne, Julie; Maynard, Christine; Tardif, Stacie; Tremblay, Julien; Greer, Charles W.

    2015-01-01

    Plants interact closely with microbes, which are partly responsible for plant growth, health, and adaptation to stressful environments. Engineering the plant-associated microbiome could improve plant survival and performance in stressful environments such as contaminated soils. Here, willow cuttings were planted into highly petroleum-contaminated soils that had been gamma-irradiated and subjected to one of four treatments: inoculation with rhizosphere soil from a willow that grew well (LA) or sub-optimally (SM) in highly contaminated soils or with bulk soil in which the planted willow had died (DE) or no inoculation (CO). Samples were taken from the starting inoculum, at the beginning of the experiment (T0) and after 100 days of growth (TF). Short hypervariable regions of archaeal/bacterial 16S rRNA genes and the fungal ITS region were amplified from soil DNA extracts and sequenced on the Illumina MiSeq. Willow growth was monitored throughout the experiment, and plant biomass was measured at TF. CO willows were significantly smaller throughout the experiment, while DE willows were the largest at TF. Microbiomes of different treatments were divergent at T0, but for most samples, had converged on highly similar communities by TF. Willow biomass was more strongly linked to overall microbial community structure at T0 than to microbial community structure at TF, and the relative abundance of many genera at T0 was significantly correlated to final willow root and shoot biomass. Although microbial communities had mostly converged at TF, lasting differences in willow growth were observed, probably linked to differences in T0 microbial communities. PMID:26733977

  1. The NIH Human Microbiome Project.

    PubMed

    Peterson, Jane; Garges, Susan; Giovanni, Maria; McInnes, Pamela; Wang, Lu; Schloss, Jeffery A; Bonazzi, Vivien; McEwen, Jean E; Wetterstrand, Kris A; Deal, Carolyn; Baker, Carl C; Di Francesco, Valentina; Howcroft, T Kevin; Karp, Robert W; Lunsford, R Dwayne; Wellington, Christopher R; Belachew, Tsegahiwot; Wright, Michael; Giblin, Christina; David, Hagit; Mills, Melody; Salomon, Rachelle; Mullins, Christopher; Akolkar, Beena; Begg, Lisa; Davis, Cindy; Grandison, Lindsey; Humble, Michael; Khalsa, Jag; Little, A Roger; Peavy, Hannah; Pontzer, Carol; Portnoy, Matthew; Sayre, Michael H; Starke-Reed, Pamela; Zakhari, Samir; Read, Jennifer; Watson, Bracie; Guyer, Mark

    2009-12-01

    The Human Microbiome Project (HMP), funded as an initiative of the NIH Roadmap for Biomedical Research (http://nihroadmap.nih.gov), is a multi-component community resource. The goals of the HMP are: (1) to take advantage of new, high-throughput technologies to characterize the human microbiome more fully by studying samples from multiple body sites from each of at least 250 "normal" volunteers; (2) to determine whether there are associations between changes in the microbiome and health/disease by studying several different medical conditions; and (3) to provide both a standardized data resource and new technological approaches to enable such studies to be undertaken broadly in the scientific community. The ethical, legal, and social implications of such research are being systematically studied as well. The ultimate objective of the HMP is to demonstrate that there are opportunities to improve human health through monitoring or manipulation of the human microbiome. The history and implementation of this new program are described here.

  2. The Microbiome of the Lung

    PubMed Central

    Beck, James M.; Young, Vincent B.; Huffnagle, Gary B.

    2012-01-01

    Investigation of the lung microbiome is a relatively new field. Although the lungs were classically believed to be sterile, recently published investigations have identified microbial communities in the lungs of healthy humans. At the present time, there are significant methodologic and technical hurdles that must be addressed in ongoing investigations, including distinguishing the microbiota of the upper and lower respiratory tracts. However, characterization of the lung microbiome is likely to provide important pathogenic insights into cystic fibrosis, respiratory disease of the newborn, chronic obstructive pulmonary disease, and asthma. In addition to characterization of the lung microbiome, the microbiota of the gastrointestinal tract have profound influence on development and maintenance of lung immunity and inflammation. Further study of gastrointestinal-respiratory interactions are likely to yield important insights into the pathogenesis of pulmonary diseases, including asthma. As this field advances over the next several years, we anticipate that studies utilizing larger cohorts, multi-center designs, and longitudinal sampling will add to our knowledge and understanding of the lung microbiome. PMID:22683412

  3. Nutrition, microbiomes, and intestinal inflammation.

    PubMed

    Devkota, Suzanne; Chang, Eugene B

    2013-11-01

    To present and evaluate the recent findings that contribute to our understanding of the functional impact of diet on the enteric microbiome and outcomes of disease. Nutrients in excess and in deficiency have significant impact on gut microbial communities in both rodents and humans, acting directly on the microbiota or indirectly via altering host physiology. Furthermore, the effects of diet on the microbiome in determining health or disease can differ substantially depending on the age and environment of the individual. Dietary compounds can have profound short-term and long-term effects on the assemblage of the gut microbiome, which in turn affects the host-microbe interactions critically important for intestinal, metabolic, and immune homeostasis. Until recently, the mechanisms underlying these effects were poorly understood. However, new insights have now been gained, made possible through the application of advanced technologies and bioinformatics, novel experimental models, and human research. As a result, our conceptual framework for understanding the impact of diet on the gut microbiome, health, and disease has advanced considerably, bringing the promise of better tools of risk assessment, diagnostics, and therapeutic intervention in an age of personalized medicine.

  4. The NIH Human Microbiome Project

    PubMed Central

    Peterson, Jane; Garges, Susan; Giovanni, Maria; McInnes, Pamela; Wang, Lu; Schloss, Jeffery A.; Bonazzi, Vivien; McEwen, Jean E.; Wetterstrand, Kris A.; Deal, Carolyn; Baker, Carl C.; Di Francesco, Valentina; Howcroft, T. Kevin; Karp, Robert W.; Lunsford, R. Dwayne; Wellington, Christopher R.; Belachew, Tsegahiwot; Wright, Michael; Giblin, Christina; David, Hagit; Mills, Melody; Salomon, Rachelle; Mullins, Christopher; Akolkar, Beena; Begg, Lisa; Davis, Cindy; Grandison, Lindsey; Humble, Michael; Khalsa, Jag; Little, A. Roger; Peavy, Hannah; Pontzer, Carol; Portnoy, Matthew; Sayre, Michael H.; Starke-Reed, Pamela; Zakhari, Samir; Read, Jennifer; Watson, Bracie; Guyer, Mark

    2009-01-01

    The Human Microbiome Project (HMP), funded as an initiative of the NIH Roadmap for Biomedical Research (http://nihroadmap.nih.gov), is a multi-component community resource. The goals of the HMP are: (1) to take advantage of new, high-throughput technologies to characterize the human microbiome more fully by studying samples from multiple body sites from each of at least 250 “normal” volunteers; (2) to determine whether there are associations between changes in the microbiome and health/disease by studying several different medical conditions; and (3) to provide both a standardized data resource and new technological approaches to enable such studies to be undertaken broadly in the scientific community. The ethical, legal, and social implications of such research are being systematically studied as well. The ultimate objective of the HMP is to demonstrate that there are opportunities to improve human health through monitoring or manipulation of the human microbiome. The history and implementation of this new program are described here. PMID:19819907

  5. Shrinkage of the human core microbiome and a proposal for launching microbiome biobanks.

    PubMed

    Barzegari, Abolfazl; Saeedi, Nazli; Saei, Amir Ata

    2014-01-01

    The Human Microbiome Project (HMP) revealed the significance of the gut microbiome in promoting health. Disruptions in microbiome composition are associated with the pathogenesis of numerous diseases. The indigenous microflora has co-evolved with humans for millions of years and humans have preserved the inherited microbiomes through consumption of fermented foods and interactions with environmental microbes. Through modernization, traditional foods were abandoned, native food starters were substituted with industrial products, vaccines and antibiotics were used, extreme hygiene measures were taken, the rate of cesarean section increased, and breast feeding changed into formula. These factors have reduced human exposure to microbial symbionts and led to shrinkage of the core microbiome. Reduction in microbiome biodiversity can compromise the human immune system and predispose individuals to several modern diseases. This article suggests launching microbiome biobanks for archiving native microbiomes, supervising antibiotic use, probiotic design and native starter production, as well as advertising a revisit to native lifestyles.

  6. Burden of serious fungal infections in Nepal.

    PubMed

    Khwakhali, Ushana Shrestha; Denning, David W

    2015-10-01

    There are few reports of serious fungal infections in Nepal though the pathogenic and allergenic fungi including Aspergillus species are common in the atmosphere. Herein, we estimate the burden of serious fungal infections in Nepal. All published papers reporting fungal infection rates from Nepal were identified. When few data existed, we used specific populations at risk and fungal infection frequencies in those populations to estimate national incidence or prevalence. Of the 27.3 M population, about 1.87% was estimated to suffer from serious fungal infections annually. We estimated the incidence of fungal keratitis at 73 per 100,000 annually. Chronic obstructive pulmonary disease is common with 215,765 cases, contributing to 1119 cases of invasive aspergillosis annually. Of 381,822 adult asthma cases, we estimated 9546 patients (range 2673-13,364) develop allergic bronchopulmonary aspergillosis and 12,600 have severe asthma with fungal sensitisation. Based on 26,219 cases of pulmonary tuberculosis, the annual incidence of new chronic pulmonary aspergillosis (CPA) cases was estimated at 1678 with a 5 year period prevalence of 5289, 80% of CPA cases. Of 22,994 HIV patients with CD4 counts <350 not on antiretrovirals, Pneumocystis pneumonia was estimated at 990 cases annually. Cases of oral and oesophageal candidiasis in HIV/AIDS patients were estimated at 10,347 and 2950, respectively. There is a significant burden of serious fungal infections in Nepal. Epidemiological studies are necessary to validate these estimates.

  7. Control of the gut microbiome by fecal microRNA

    PubMed Central

    Liu, Shirong; Weiner, Howard L.

    2016-01-01

    Since their discovery in the early 90s, microRNAs (miRNAs), small non-coding RNAs, have mainly been associated with posttranscriptional regulation of gene expression on a cell-autonomous level. Recent evidence has extended this role by adding inter-species communication to the manifold functional range. In our latest study [Liu S, et al., 2016, Cell Host & Microbe], we identified miRNAs in gut lumen and feces of both mice and humans. We found that intestinal epithelial cells (IEC) and Hopx+ cells were the two main sources of fecal miRNA. Deficiency of IEC-miRNA resulted in gut dysbiosis and WT fecal miRNA transplantation restored the gut microbiota. We investigated potential mechanisms for this effect and found that miRNAs were able to regulate the gut microbiome. By culturing bacteria with miRNAs, we found that host miRNAs were able to enter bacteria, specifically regulate bacterial gene transcripts and affect bacterial growth. Oral administration of synthetic miRNA mimics affected specific bacteria in the gut. Our findings describe a previously unknown pathway by which the gut microbiome is regulated by the host and raises the possibility that miRNAs may be used therapeutically to manipulate the microbiome for the treatment of disease. PMID:28357349

  8. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures

    PubMed Central

    Kakumanu, Madhavi L.; Reeves, Alison M.; Anderson, Troy D.; Rodrigues, Richard R.; Williams, Mark A.

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2–V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation. PMID:27579024

  9. Relations of microbiome characteristics to edaphic properties of tropical soils from Trinidad

    PubMed Central

    de Gannes, Vidya; Eudoxie, Gaius; Bekele, Isaac; Hickey, William J.

    2015-01-01

    Understanding how community structure of Bacteria, Archaea, and Fungi varies as a function of edaphic characteristics is key to elucidating associations between soil ecosystem function and the microbiome that sustains it. In this study, non-managed tropical soils were examined that represented a range of edaphic characteristics, and a comprehensive soil microbiome analysis was done by Illumina sequencing of amplicon libraries that targeted Bacteria (universal prokaryotic 16S rRNA gene primers), Archaea (primers selective for archaeal 16S rRNA genes), or Fungi (internal transcribed spacer region). Microbiome diversity decreased in the order: Bacteria > Archaea > Fungi. Bacterial community composition had a strong relationship to edaphic factors while that of Archaea and Fungi was comparatively weak. Bacterial communities were 70–80% alike, while communities of Fungi and Archaea had 40–50% similarity. While each of the three component communities differed in species turnover patterns, soils having relatively similar bacterial communities also housed similar archaeal communities. In contrast, the composition of fungal communities had no correlation to bacterial or archaeal communities. Bacterial and archaeal diversity had significant (negative) correlations to pH, whereas fungal diversity was not correlated to pH. Edaphic characteristics that best explained variation between soils in bacterial community structure were: total carbon, sodium, magnesium, and zinc. For fungi, the best variables were: sodium, magnesium, phosphorus, boron, and C/N. Archaeal communities had two sets of edaphic factors of equal strength, one contained sulfur, sodium, and ammonium-N and the other was composed of clay, potassium, ammonium-N, and nitrate-N. Collectively, the data indicate that Bacteria, Archaea, and Fungi did not closely parallel one another in community structure development, and thus microbiomes in each soil acquired unique identities. This divergence could in part reflect

  10. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures.

    PubMed

    Kakumanu, Madhavi L; Reeves, Alison M; Anderson, Troy D; Rodrigues, Richard R; Williams, Mark A

    2016-01-01

    Honey bees (Apis mellifera) are the primary pollinators of major horticultural crops. Over the last few decades, a substantial decline in honey bees and their colonies have been reported. While a plethora of factors could contribute to the putative decline, pathogens, and pesticides are common concerns that draw attention. In addition to potential direct effects on honey bees, indirect pesticide effects could include alteration of essential gut microbial communities and symbionts that are important to honey bee health (e.g., immune system). The primary objective of this study was to determine the microbiome associated with honey bees exposed to commonly used in-hive pesticides: coumaphos, tau-fluvalinate, and chlorothalonil. Treatments were replicated at three independent locations near Blacksburg Virginia, and included a no-pesticide amended control at each location. The microbiome was characterized through pyrosequencing of V2-V3 regions of the bacterial 16S rRNA gene and fungal ITS region. Pesticide exposure significantly affected the structure of bacterial but not fungal communities. The bee bacteriome, similar to other studies, was dominated by sequences derived from Bacilli, Actinobacteria, α-, β-, γ-proteobacteria. The fungal community sequences were dominated by Ascomycetes and Basidiomycetes. The Multi-response permutation procedures (MRPP) and subsequent Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that chlorothalonil caused significant change to the structure and functional potential of the honey bee gut bacterial community relative to control. Putative genes for oxidative phosphorylation, for example, increased while sugar metabolism and peptidase potential declined in the microbiome of chlorothalonil exposed bees. The results of this field-based study suggest the potential for pesticide induced changes to the honey bee gut microbiome that warrant further investigation.

  11. Microbiome change by symbiotic invasion in lichens

    NASA Astrophysics Data System (ADS)

    Maier, Stefanie; Wedin, Mats; Fernandez-Brime, Samantha; Cronholm, Bodil; Westberg, Martin; Weber, Bettina; Grube, Martin

    2016-04-01

    Biological soil crusts (BSC) seal the soil surface from erosive forces in many habitats where plants cannot compete. Lichens symbioses of fungi and algae often form significant fraction of these microbial assemblages. In addition to the fungal symbiont, many species of other fungi can inhabit the lichenic structures and interact with their hosts in different ways, ranging from commensalism to parasitism. More than 1800 species of lichenicolous (lichen-inhabiting) fungi are known to science. One example is Diploschistes muscorum, a common species in lichen-dominated BSC that infects lichens of the genus Cladonia. D. muscorum starts as a lichenicolous fungus, invading the lichen Cladonia symphycarpa and gradually develops an independent Diploschistes lichen thallus. Furthermore, bacterial groups, such as Alphaproteobacteria and Acidobacteria, have been consistently recovered from lichen thalli and evidence is rapidly accumulating that these microbes may generally play integral roles in the lichen symbiosis. Here we describe lichen microbiome dynamics as the parasitic lichen D. muscorum takes over C. symphycarpa. We used high-throughput 16S rRNA gene and photobiont-specific ITS rDNA sequencing to track bacterial and algal transitions during the infection process, and employed fluorescence in situ hybridization to localize bacteria in the Cladonia and Diploschistes lichen thalli. We sampled four transitional stages, at sites in Sweden and Germany: A) Cladonia with no visible infection, B) early infection stage defined by the first visible Diploschistes thallus, C) late-stage infection with parts of the Cladonia thallus still identifiable, and D) final stage with a fully developed Diploschistes thallus, A gradual microbiome shift occurred during the transition, but fractions of Cladonia-associated bacteria were retained during the process of symbiotic reorganization. Consistent changes observed across sites included a notable decrease in the relative abundance of

  12. Mucosal microbiome in patients with recurrent aphthous stomatitis.

    PubMed

    Hijazi, K; Lowe, T; Meharg, C; Berry, S H; Foley, J; Hold, G L

    2015-03-01

    Recurrent aphthous stomatitis (RAS) is the most common disease affecting oral mucosae. Etiology is unknown, but several factors have been implicated, all of which influence the composition of microbiota residing on oral mucosae, which in turn modulates immunity and thereby affects disease progression. Although no individual pathogens have been conclusively shown to be causative agents of RAS, imbalanced composition of the oral microbiota may play a key role. In this study, we sought to determine composition profiles of bacterial microbiota in the oral mucosa associated with RAS. Using high-throughput 16S rRNA gene sequencing, we characterized the most abundant bacterial populations residing on healthy and ulcerated mucosae in patients with RAS (recruited using highly stringent criteria) and no associated medical conditions; we also compared these to the bacterial microbiota of healthy controls (HCs). Phylum-level diversity comparisons revealed decreased Firmicutes and increased Proteobacteria in ulcerated sites, as compared with healthy sites in RAS patients, and no differences between RAS patients with healthy sites and HCs. Genus-level analysis demonstrated higher abundance of total Bacteroidales in RAS patients with healthy sites over HCs. Porphyromonadaceae comprising species associated with periodontal disease and Veillonellaceae predominated in ulcerated sites over HCs, while no quantitative differences of these families were observed between healthy sites in RAS patients and HCs. Streptococcaceae comprising species associated with oral health predominated in HCs over ulcerated sites but not in HCs over healthy sites in RAS patients. This study demonstrates that mucosal microbiome changes in patients with idiopathic RAS--namely, increased Bacteroidales species in mucosae of RAS patients not affected by active ulceration. While these changes suggest a microbial role in initiation of RAS, this study does not provide data on causality. Within this limitation

  13. Mucosal Microbiome in Patients with Recurrent Aphthous Stomatitis

    PubMed Central

    Hijazi, K.; Lowe, T.; Meharg, C.; Berry, S.H.; Foley, J.; Hold, G.L.

    2015-01-01

    Recurrent aphthous stomatitis (RAS) is the most common disease affecting oral mucosae. Etiology is unknown, but several factors have been implicated, all of which influence the composition of microbiota residing on oral mucosae, which in turn modulates immunity and thereby affects disease progression. Although no individual pathogens have been conclusively shown to be causative agents of RAS, imbalanced composition of the oral microbiota may play a key role. In this study, we sought to determine composition profiles of bacterial microbiota in the oral mucosa associated with RAS. Using high-throughput 16S rRNA gene sequencing, we characterized the most abundant bacterial populations residing on healthy and ulcerated mucosae in patients with RAS (recruited using highly stringent criteria) and no associated medical conditions; we also compared these to the bacterial microbiota of healthy controls (HCs). Phylum-level diversity comparisons revealed decreased Firmicutes and increased Proteobacteria in ulcerated sites, as compared with healthy sites in RAS patients, and no differences between RAS patients with healthy sites and HCs. Genus-level analysis demonstrated higher abundance of total Bacteroidales in RAS patients with healthy sites over HCs. Porphyromonadaceae comprising species associated with periodontal disease and Veillonellaceae predominated in ulcerated sites over HCs, while no quantitative differences of these families were observed between healthy sites in RAS patients and HCs. Streptococcaceae comprising species associated with oral health predominated in HCs over ulcerated sites but not in HCs over healthy sites in RAS patients. This study demonstrates that mucosal microbiome changes in patients with idiopathic RAS—namely, increased Bacteroidales species in mucosae of RAS patients not affected by active ulceration. While these changes suggest a microbial role in initiation of RAS, this study does not provide data on causality. Within this limitation

  14. Saliva microbiomes distinguish caries-active from healthy human populations

    PubMed Central

    Yang, Fang; Zeng, Xiaowei; Ning, Kang; Liu, Kuan-Liang; Lo, Chien-Chi; Wang, Wei; Chen, Jie; Wang, Dongmei; Huang, Ranran; Chang, Xingzhi; Chain, Patrick S; Xie, Gary; Ling, Junqi; Xu, Jian

    2012-01-01

    The etiology of dental caries remains elusive because of our limited understanding of the complex oral microbiomes. The current methodologies have been limited by insufficient depth and breadth of microbial sampling, paucity of data for diseased hosts particularly at the population level, inconsistency of sampled sites and the inability to distinguish the underlying microbial factors. By cross-validating 16S rRNA gene amplicon-based and whole-genome-based deep-sequencing technologies, we report the most in-depth, comprehensive and collaborated view to date of the adult saliva microbiomes in pilot populations of 19 caries-active and 26 healthy human hosts. We found that: first, saliva microbiomes in human population were featured by a vast phylogenetic diversity yet a minimal organismal core; second, caries microbiomes were significantly more variable in community structure whereas the healthy ones were relatively conserved; third, abundance changes of certain taxa such as overabundance of Prevotella Genus distinguished caries microbiota from healthy ones, and furthermore, caries-active and normal individuals carried different arrays of Prevotella species; and finally, no ‘caries-specific' operational taxonomic units (OTUs) were detected, yet 147 OTUs were ‘caries associated', that is, differentially distributed yet present in both healthy and caries-active populations. These findings underscored the necessity of species- and strain-level resolution for caries prognosis, and were consistent with the ecological hypothesis where the shifts in community structure, instead of the presence or absence of particular groups of microbes, underlie the cariogenesis. PMID:21716312

  15. The lung microbiome and exacerbations of COPD.

    PubMed

    Dy, Rajany; Sethi, Sanjay

    2016-05-01

    Traditional culture methods have identified airway bacterial pathogens that cause acute exacerbations of chronic obstructive pulmonary disease (COPD), and contribute to airway inflammation and COPD progression. However, conventional microbiology is limited by low sensitivity and bias toward predetermined and predominant pathogens. Highly sensitive, unbiased microbiome techniques overcome these limitations. Here, we present recent lung microbiome data, specifically in the context of smoking, COPD, and exacerbations. In contrast to the sterile lung environment found with conventional microbiology, microbiome techniques demonstrate a lower respiratory tract microbiome in health. Alterations in the lung microbiome with smoking and COPD have been clearly demonstrated by culture techniques, however, the findings in microbiome studies are limited and controversial. Increasing COPD disease severity is associated with a reduction in microbial diversity. Though microbial community structure does not change with exacerbation, there are notable changes in its composition. Antibiotic and corticosteroid treatment of acute exacerbations of COPD have significant but opposing effects on microbiome composition. The composition of the lung microbiome changes with smoking, the severity of COPD, during acute exacerbations and with the use of steroids and/or antibiotics. Understanding the role of the microbiome in disease progression and development of exacerbations will lead to novel therapies.

  16. Dynamics in the Strawberry Rhizosphere Microbiome in Response to Biochar and Botrytis cinerea Leaf Infection

    PubMed Central

    De Tender, Caroline; Haegeman, Annelies; Vandecasteele, Bart; Clement, Lieven; Cremelie, Pieter; Dawyndt, Peter; Maes, Martine; Debode, Jane

    2016-01-01

    Adding biochar, the solid coproduct of biofuel production, to peat can enhance strawberry growth, and disease resistance against the airborne fungal pathogen Botrytis cinerea. Additionally, biochar can induce shifts in the strawberry rhizosphere microbiome. However, the moment that this biochar-mediated shift occurs in the rhizosphere is not known. Further, the effect of an above-ground infection on the strawberry rhizosphere microbiome is unknown. In the present study we established two experiments in which strawberry transplants (cv. Elsanta) were planted either in peat or in peat amended with 3% biochar. First, we established a time course experiment to measure the effect of biochar on the rhizosphere bacterial and fungal communities over time. In a second experiment, we inoculated the strawberry leaves with B. cinerea, and studied the impact of the infection on the rhizosphere bacterial community. The fungal rhizosphere community was stabilized after 1 week, except for the upcoming Auriculariales, whereas the bacterial community shifted till 6 weeks. An effect of the addition of biochar to the peat on the rhizosphere microbiome was solely measured for the bacterial community from week 6 of plant growth onwards. When scoring the plant development, biochar addition was associated with enhanced root formation, fruit production, and postharvest resistance of the fruits against B. cinerea. We hypothesize that the bacterial rhizosphere microbiome, but also biochar-mediated changes in chemical substrate composition could be involved in these events. Infection of the strawberry leaves with B. cinerea induced shifts in the bacterial rhizosphere community, with an increased bacterial richness. This disease-induced effect was not observed in the rhizospheres of the B. cinerea-infected plants grown in the biochar-amended peat. The results show that an above-ground infection has its effect on the strawberry rhizosphere microbiome, changing the bacterial interactions in the

  17. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice.

    PubMed

    Brown, Kirsty; Godovannyi, Artem; Ma, Caixia; Zhang, YiQun; Ahmadi-Vand, Zahra; Dai, Chaunbin; Gorzelak, Monika A; Chan, YeeKwan; Chan, Justin M; Lochner, Arion; Dutz, Jan P; Vallance, Bruce A; Gibson, Deanna L

    2016-02-01

    Accumulating evidence supports that the intestinal microbiome is involved in Type 1 diabetes (T1D) pathogenesis through the gut-pancreas nexus. Our aim was to determine whether the intestinal microbiota in the non-obese diabetic (NOD) mouse model played a role in T1D through the gut. To examine the effect of the intestinal microbiota on T1D onset, we manipulated gut microbes by: (1) the fecal transplantation between non-obese diabetic (NOD) and resistant (NOR) mice and (2) the oral antibiotic and probiotic treatment of NOD mice. We monitored diabetes onset, quantified CD4+T cells in the Peyer's patches, profiled the microbiome and measured fecal short-chain fatty acids (SCFA). The gut microbiota from NOD mice harbored more pathobionts and fewer beneficial microbes in comparison with NOR mice. Fecal transplantation of NOD microbes induced insulitis in NOR hosts suggesting that the NOD microbiome is diabetogenic. Moreover, antibiotic exposure accelerated diabetes onset in NOD mice accompanied by increased T-helper type 1 (Th1) and reduced Th17 cells in the intestinal lymphoid tissues. The diabetogenic microbiome was characterized by a metagenome altered in several metabolic gene clusters. Furthermore, diabetes susceptibility correlated with reduced fecal SCFAs. In an attempt to correct the diabetogenic microbiome, we administered VLS#3 probiotics to NOD mice but found that VSL#3 colonized the intestine poorly and did not delay diabetes. We conclude that NOD mice harbor gut microbes that induce diabetes and that their diabetogenic microbiome can be amplified early in life through antibiotic exposure. Protective microbes like VSL#3 are insufficient to overcome the effects of a diabetogenic microbiome.

  18. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice

    PubMed Central

    Brown, Kirsty; Godovannyi, Artem; Ma, Caixia; Zhang, YiQun; Ahmadi-Vand, Zahra; Dai, Chaunbin; Gorzelak, Monika A; Chan, YeeKwan; Chan, Justin M; Lochner, Arion; Dutz, Jan P; Vallance, Bruce A; Gibson, Deanna L

    2016-01-01

    Accumulating evidence supports that the intestinal microbiome is involved in Type 1 diabetes (T1D) pathogenesis through the gut-pancreas nexus. Our aim was to determine whether the intestinal microbiota in the non-obese diabetic (NOD) mouse model played a role in T1D through the gut. To examine the effect of the intestinal microbiota on T1D onset, we manipulated gut microbes by: (1) the fecal transplantation between non-obese diabetic (NOD) and resistant (NOR) mice and (2) the oral antibiotic and probiotic treatment of NOD mice. We monitored diabetes onset, quantified CD4+T cells in the Peyer's patches, profiled the microbiome and measured fecal short-chain fatty acids (SCFA). The gut microbiota from NOD mice harbored more pathobionts and fewer beneficial microbes in comparison with NOR mice. Fecal transplantation of NOD microbes induced insulitis in NOR hosts suggesting that the NOD microbiome is diabetogenic. Moreover, antibiotic exposure accelerated diabetes onset in NOD mice accompanied by increased T-helper type 1 (Th1) and reduced Th17 cells in the intestinal lymphoid tissues. The diabetogenic microbiome was characterized by a metagenome altered in several metabolic gene clusters. Furthermore, diabetes susceptibility correlated with reduced fecal SCFAs. In an attempt to correct the diabetogenic microbiome, we administered VLS#3 probiotics to NOD mice but found that VSL#3 colonized the intestine poorly and did not delay diabetes. We conclude that NOD mice harbor gut microbes that induce diabetes and that their diabetogenic microbiome can be amplified early in life through antibiotic exposure. Protective microbes like VSL#3 are insufficient to overcome the effects of a diabetogenic microbiome. PMID:26274050

  19. Oral candidiasis: pathogenesis, clinical presentation, diagnosis and treatment strategies.

    PubMed

    Lalla, Rajesh V; Patton, Lauren L; Dongari-Bagtzoglou, Anna

    2013-04-01

    Oral candidiasis is a clinical fungal infection that is the most common opportunistic infection affecting the human oral cavity. This article reviews the pathogenesis, clinical presentations, diagnosis and treatmentstrategies for oral candidiasis.

  20. Burden of fungal infections in Senegal.

    PubMed

    Badiane, Aida S; Ndiaye, Daouda; Denning, David W

    2015-10-01

    Senegal has a high rate of tuberculosis and a low HIV seropositivity rate and aspergilloma, life-threatening fungal infections, dermatophytosis and mycetoma have been reported in this study. All published epidemiology papers reporting fungal infection rates from Senegal were identified. Where no data existed, we used specific populations at risk and fungal infection frequencies in each to estimate national incidence or prevalence. The results show that tinea capitis is common being found in 25% of children, ~1.5 million. About 191,000 Senegalese women get recurrent vaginal thrush, ≥4 times annually. We estimate 685 incident cases of chronic pulmonary aspergillosis (CPA) following TB and prevalence of 2160 cases. Asthma prevalence in adults varies from 3.2% to 8.2% (mean 5%); 9976 adults have allergic bronchopulmonary aspergillosis (ABPA) and 13,168 have severe asthma with fungal sensitisation (SAFS). Of the 59,000 estimated HIV-positive patients, 366 develop cryptococcal meningitis; 1149 develop Pneumocystis pneumonia and 1946 develop oesophageal candidiasis, in which oral candidiasis (53%) and dermatophytosis (16%) are common. Since 2008-2010, 113 cases of mycetoma were diagnosed. In conclusion, we estimate that 1,743,507 (12.5%) people in Senegal suffer from a fungal infection, excluding oral candidiasis, fungal keratitis, invasive candidiasis or aspergillosis. Diagnostic and treatment deficiencies should be rectified to allow epidemiological studies.

  1. Diagnosis and management of oral candidiasis.

    PubMed

    Giannini, Peter J; Shetty, Kishore V

    2011-02-01

    Oral candidiasis is the most common fungal infection in both the immunocompetent and the immunocompromised populations. This article reviews the clinical presentations of the different forms of oral candidiasis, as well as the diagnosis and management.

  2. Context and the human microbiome.

    PubMed

    McDonald, Daniel; Birmingham, Amanda; Knight, Rob

    2015-11-04

    Human microbiome reference datasets provide epidemiological context for researchers, enabling them to uncover new insights into their own data through meta-analyses. In addition, large and comprehensive reference sets offer a means to develop or test hypotheses and can pave the way for addressing practical study design considerations such as sample size decisions. We discuss the importance of reference sets in human microbiome research, limitations of existing resources, technical challenges to employing reference sets, examples of their usage, and contributions of the American Gut Project to the development of a comprehensive reference set. Through engaging the general public, the American Gut Project aims to address many of the issues present in existing reference resources, characterizing health and disease, lifestyle, and dietary choices of the participants while extending its efforts globally through international collaborations.

  3. Gastrointestinal Malignancy and the Microbiome

    PubMed Central

    Abreu, Maria T.; Peek, Richard M.

    2014-01-01

    Microbial species participate in the genesis of a substantial number of malignancies—in conservative estimates, at least 15% of all cancer cases are attributable to infectious agents. Little is known about the contribution of the gastrointestinal (GI) microbiome to the development of malignancies. Resident microbes can promote carcinogenesis by inducing inflammation, increasing cell proliferation, altering stem cell dynamics, and producing metabolites such as butyrate, which affect DNA integrity and immune regulation. Studies in humans and rodent models of cancer have identified effector species and relationships among members of the microbial community in the stomach and colon that increase the risk for malignancy. Strategies to manipulate the microbiome, or the immune response to such bacteria, could be developed to prevent or treat certain GI cancers. PMID:24406471

  4. Microbiome Tools for Forensic Science.

    PubMed

    Metcalf, Jessica L; Xu, Zhenjiang Z; Bouslimani, Amina; Dorrestein, Pieter; Carter, David O; Knight, Rob

    2017-09-01

    Microbes are present at every crime scene and have been used as physical evidence for over a century. Advances in DNA sequencing and computational approaches have led to recent breakthroughs in the use of microbiome approaches for forensic science, particularly in the areas of estimating postmortem intervals (PMIs), locating clandestine graves, and obtaining soil and skin trace evidence. Low-cost, high-throughput technologies allow us to accumulate molecular data quickly and to apply sophisticated machine-learning algorithms, building generalizable predictive models that will be useful in the criminal justice system. In particular, integrating microbiome and metabolomic data has excellent potential to advance microbial forensics. Copyright © 2017. Published by Elsevier Ltd.

  5. Metagenomic Insights into Transferable Antibiotic Resistance in Oral Bacteria.

    PubMed

    Sukumar, S; Roberts, A P; Martin, F E; Adler, C J

    2016-08-01

    Antibiotic resistance is considered one of the greatest threats to global public health. Resistance is often conferred by the presence of antibiotic resistance genes (ARGs), which are readily found in the oral microbiome. In-depth genetic analyses of the oral microbiome through metagenomic techniques reveal a broad distribution of ARGs (including novel ARGs) in individuals not recently exposed to antibiotics, including humans in isolated indigenous populations. This has resulted in a paradigm shift from focusing on the carriage of antibiotic resistance in pathogenic bacteria to a broader concept of an oral resistome, which includes all resistance genes in the microbiome. Metagenomics is beginning to demonstrate the role of the oral resistome and horizontal gene transfer within and between commensals in the absence of selective pressure, such as an antibiotic. At the chairside, metagenomic data reinforce our need to adhere to current antibiotic guidelines to minimize the spread of resistance, as such data reveal the extent of ARGs without exposure to antimicrobials and the ecologic changes created in the oral microbiome by even a single dose of antibiotics. The aim of this review is to discuss the role of metagenomics in the investigation of the oral resistome, including the transmission of antibiotic resistance in the oral microbiome. Future perspectives, including clinical implications of the findings from metagenomic investigations of oral ARGs, are also considered. © International & American Associations for Dental Research 2016.

  6. The Gut Microbiome and Its Role in Obesity

    PubMed Central

    Davis, Cindy D.

    2016-01-01

    The human body is host to a vast number of microbes, including bacterial, fungal and protozoal microoganisms, which together constitute our microbiota. Evidence is emerging that the intestinal microbiome is intrinsically linked with overall health, including obesity risk. Obesity and obesity-related metabolic disorders are characterized by specific alterations in the composition and function of the human gut microbiome. Mechanistic studies have indicated that the gastrointestinal microbiota can influence both sides of the energy balance equation; namely, as a factor influencing energy utilization from the diet and as a factor that influences host genes that regulate energy expenditure and storage. Moreover, its composition is not fixed and can be influenced by several dietary components. This fact raises the attractive possibility that manipulating the gut microbiota could facilitate weight loss or prevent obesity in humans. Emerging as possible strategies for obesity prevention and/or treatment are targeting the microbiota, in order to restore or modulate its composition through the consumption of live bacteria (probiotics), nondigestible or limited digestible food constituents such as oligosaccharides (prebiotics), or both (synbiotics), or even fecal transplants. PMID:27795585

  7. The Human Microbiome. Early Life Determinant of Health Outcomes

    PubMed Central

    2014-01-01

    The development of new technologies to isolate and identify microbial genomes has markedly increased our understanding of the role of microbiomes in health and disease. The idea, first proposed as part of the hygiene hypothesis, that environmental microbes influence the developmental trajectories of the immune system in early life, has now been considerably extended and refined. The abundant microbiota present in mucosal surfaces, especially the gut, is actively selected by the host through complex receptor systems that respond differentially depending on the molecular patterns presented to mucosal cells. Germ-free mice are more likely to develop allergic airway inflammation and show alterations in normal motor control and anxiety. These effects can be reversed by neonatal microbial recolonization but remain unchanged if recolonization occurs in adults. What emerges from these recent studies is the discovery of a complex, major early environmental determinant of lifetime human phenotypes. To change the natural course of asthma, obesity, and other chronic inflammatory conditions, active manipulation of the extensive bacterial, phage, and fungal metagenomes present in mucosal surfaces may be required, specifically during the developing years. Domesticating the human microbiome and adapting it to our health needs may be a challenge akin to, but far more complex than, the one faced by humanity when a few dozen species of plants and animals were domesticated during the transition between hunter-gatherer and sedentary societies after the end of the Pleistocene era. PMID:24437411

  8. Application of a Neutral Community Model To Assess Structuring of the Human Lung Microbiome

    PubMed Central

    Venkataraman, Arvind; Bassis, Christine M.; Beck, James M.; Young, Vincent B.; Curtis, Jeffrey L.; Huffnagle, Gary B.

    2015-01-01

    ABSTRACT  DNA from phylogenetically diverse microbes is routinely recovered from healthy human lungs and used to define the lung microbiome. The proportion of this DNA originating from microbes adapted to the lungs, as opposed to microbes dispersing to the lungs from other body sites and the atmosphere, is not known. We use a neutral model of community ecology to distinguish members of the lung microbiome whose presence is consistent with dispersal from other body sites and those that deviate from the model, suggesting a competitive advantage to these microbes in the lungs. We find that the composition of the healthy lung microbiome is consistent with predictions of the neutral model, reflecting the overriding role of dispersal of microbes from the oral cavity in shaping the microbial community in healthy lungs. In contrast, the microbiome of diseased lungs was readily distinguished as being under active selection. We also assessed the viability of microbes from lung samples by cultivation with a variety of media and incubation conditions. Bacteria recovered by cultivation from healthy lungs represented species that comprised 61% of the 16S rRNA-encoding gene sequences derived from bronchoalveolar lavage samples. Importance  Neutral distribution of microbes is a distinguishing feature of the microbiome in healthy lungs, wherein constant dispersal of bacteria from the oral cavity overrides differential growth of bacteria. No bacterial species consistently deviated from the model predictions in healthy lungs, although representatives of many of the dispersed species were readily cultivated. In contrast, bacterial populations in diseased lungs were identified as being under active selection. Quantification of the relative importance of selection and neutral processes such as dispersal in shaping the healthy lung microbiome is a first step toward understanding its impacts on host health. PMID:25604788

  9. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants.

    PubMed

    Turner, Thomas R; Ramakrishnan, Karunakaran; Walshaw, John; Heavens, Darren; Alston, Mark; Swarbreck, David; Osbourn, Anne; Grant, Alastair; Poole, Philip S

    2013-12-01

    Plant-microbe interactions in the rhizosphere have important roles in biogeochemical cycling, and maintenance of plant health and productivity, yet remain poorly understood. Using RNA-based metatranscriptomics, the global active microbiomes were analysed in soil and rhizospheres of wheat, oat, pea and an oat mutant (sad1) deficient in production of anti-fungal avenacins. Rhizosphere microbiomes differed from bulk soil and between plant species. Pea (a legume) had a much stronger effect on the rhizosphere than wheat and oat (cereals), resulting in a dramatically different rhizosphere community. The relative abundance of eukaryotes in the oat and pea rhizospheres was more than fivefold higher than in the wheat rhizosphere or bulk soil. Nematodes and bacterivorous protozoa were enriched in all rhizospheres, whereas the pea rhizosphere was highly enriched for fungi. Metabolic capabilities for rhizosphere colonisation were selected, including cellulose degradation (cereals), H2 oxidation (pea) and methylotrophy (all plants). Avenacins had little effect on the prokaryotic community of oat, but the eukaryotic community was strongly altered in the sad1 mutant, suggesting that avenacins have a broader role than protecting from fungal pathogens. Profiling microbial communities with metatranscriptomics allows comparison of relative abundance, from multiple samples, across all domains of life, without polymerase chain reaction bias. This revealed profound differences in the rhizosphere microbiome, particularly at the kingdom level between plants.

  10. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants

    PubMed Central

    Turner, Thomas R; Ramakrishnan, Karunakaran; Walshaw, John; Heavens, Darren; Alston, Mark; Swarbreck, David; Osbourn, Anne; Grant, Alastair; Poole, Philip S

    2013-01-01

    Plant–microbe interactions in the rhizosphere have important roles in biogeochemical cycling, and maintenance of plant health and productivity, yet remain poorly understood. Using RNA-based metatranscriptomics, the global active microbiomes were analysed in soil and rhizospheres of wheat, oat, pea and an oat mutant (sad1) deficient in production of anti-fungal avenacins. Rhizosphere microbiomes differed from bulk soil and between plant species. Pea (a legume) had a much stronger effect on the rhizosphere than wheat and oat (cereals), resulting in a dramatically different rhizosphere community. The relative abundance of eukaryotes in the oat and pea rhizospheres was more than fivefold higher than in the wheat rhizosphere or bulk soil. Nematodes and bacterivorous protozoa were enriched in all rhizospheres, whereas the pea rhizosphere was highly enriched for fungi. Metabolic capabilities for rhizosphere colonisation were selected, including cellulose degradation (cereals), H2 oxidation (pea) and methylotrophy (all plants). Avenacins had little effect on the prokaryotic community of oat, but the eukaryotic community was strongly altered in the sad1 mutant, suggesting that avenacins have a broader role than protecting from fungal pathogens. Profiling microbial communities with metatranscriptomics allows comparison of relative abundance, from multiple samples, across all domains of life, without polymerase chain reaction bias. This revealed profound differences in the rhizosphere microbiome, particularly at the kingdom level between plants. PMID:23864127

  11. Specificity of root microbiomes in native-grown Nicotiana attenuata and plant responses to UVB increase Deinococcus colonization.

    PubMed

    Santhanam, Rakesh; Oh, Youngjoo; Kumar, Ramesh; Weinhold, Arne; Luu, Van Thi; Groten, Karin; Baldwin, Ian T

    2017-05-01

    Plants recruit microbial communities from the soil in which they germinate. Our understanding of the recruitment process and the factors affecting it is still limited for most microbial taxa. We analysed several factors potentially affecting root microbiome structure - the importance of geographic location of natural populations, the microbiome of native seeds as putative source of colonization and the effect of a plant's response to UVB exposure on root colonization of highly abundant species. The microbiome of Nicotiana attenuata seeds was determined by a culture-dependent and culture-independent approach, and the root microbiome of natural N. attenuata populations from five different locations was analysed using 454-pyrosequencing. To specifically address the influence of UVB light on root colonization by Deinococcus, a genus abundant and consistently present in N. attenuata roots, transgenic lines impaired in UVB perception (irUVR8) and response (irCHAL) were investigated in a microcosm experiment with/without UVB supplementation using a synthetic bacterial community. The seed microbiome analysis indicated that N. attenuata seeds are sterile. Alpha and beta diversities of native root bacterial communities differed significantly between soil and root, while location had only a significant effect on the fungal but not the bacterial root communities. With UVB supplementation, root colonization of Deinococcus increased in wild type, but decreased in irUVR8 and irCHAL plants compared to nontreated plants. Our results suggest that N. attenuata recruits a core root microbiome exclusively from soil, with fungal root colonization being less selective than bacterial colonization. Root colonization by Deinococcus depends on the plant's response to UVB. © 2017 John Wiley & Sons Ltd.

  12. Furcation Therapy With Enamel Matrix Derivative: Effects on the Subgingival Microbiome.

    PubMed

    Queiroz, Lucas A; Casarin, Renato C V; Dabdoub, Shareef M; Tatakis, Dimitris N; Sallum, Enilson A; Kumar, Purnima S

    2017-07-01

    Although enamel matrix derivative (EMD) has been used to promote periodontal regeneration, little is known of its effect on the microbiome. Therefore, this investigation aims to identify changes in periodontal microbiome after treatment with EMD using a deep-sequencing approach. Thirty-nine patients with mandibular Class II buccal furcation defects were randomized to beta-tricalcium-phosphate/hydroxyapatite graft (BONE group), EMD+BONE, or EMD alone. Plaque was collected from furcation defects at baseline and 3 and 6 months post-treatment. Bacterial DNA was analyzed using terminal restriction fragment length polymorphism and 16S pyrotag sequencing, resulting in 169,000 classifiable sequences being compared with the Human Oral Microbiome Database. Statistical comparisons were made using parametric tests. At baseline, a total of 422 species were identified from the 39 defects, belonging to Fusobacterium, Pseudomonas, Streptococcus, Filifactor, and Parvimonas. All three regenerative procedures predictably altered the disease-associated microbiome, with a restitution of health-compatible species. However, EMD and BONE+EMD groups demonstrated more long-term reductions in a higher number of species than the BONE group (P <0.05), especially disease-associated species, e.g., Selenomonas noxia, F. alocis, and Fusobacterium. EMD treatment predictably alters a dysbiotic subgingival microbiome, decreasing pathogen richness and increasing commensal abundance. Further investigations are needed to investigate how this impacts regenerative outcomes.

  13. Same Exposure but Two Radically Different Responses to Antibiotics: Resilience of the Salivary Microbiome versus Long-Term Microbial Shifts in Feces.

    PubMed

    Zaura, Egija; Brandt, Bernd W; Teixeira de Mattos, M Joost; Buijs, Mark J; Caspers, Martien P M; Rashid, Mamun-Ur; Weintraub, Andrej; Nord, Carl Erik; Savell, Ann; Hu, Yanmin; Coates, Antony R; Hubank, Mike; Spratt, David A; Wilson, Michael; Keijser, Bart J F; Crielaard, Wim

    2015-11-10

    Due to the spread of resistance, antibiotic exposure receives increasing attention. Ecological consequences for the different niches of individual microbiomes are, however, largely ignored. Here, we report the effects of widely used antibiotics (clindamycin, ciprofloxacin, amoxicillin, and minocycline) with different modes of action on the ecology of both the gut and the oral microbiomes in 66 healthy adults from the United Kingdom and Sweden in a two-center randomized placebo-controlled clinical trial. Feces and saliva were collected at baseline, immediately after exposure, and 1, 2, 4, and 12 months after administration of antibiotics or placebo. Sequences of 16S rRNA gene amplicons from all samples and metagenomic shotgun sequences from selected baseline and post-antibiotic-treatment sample pairs were analyzed. Additionally, metagenomic predictions based on 16S rRNA gene amplicon data were performed using PICRUSt. The salivary microbiome was found to be significantly more robust, whereas the antibiotics negatively affected the fecal microbiome: in particular, health-associated butyrate-producing species became strongly underrepresented. Additionally, exposure to different antibiotics enriched genes associated with antibiotic resistance. In conclusion, healthy individuals, exposed to a single antibiotic treatment, undergo considerable microbial shifts and enrichment in antibiotic resistance in their feces, while their salivary microbiome composition remains unexpectedly stable. The health-related consequences for the gut microbiome should increase the awareness of the individual risks involved with antibiotic use, especially in a (diseased) population with an already dysregulated microbiome. On the other hand, understanding the mechanisms behind the resilience of the oral microbiome toward ecological collapse might prove useful in combating microbial dysbiosis elsewhere in the body. Many health care professionals use antibiotic prophylaxis strategies to prevent

  14. Microbial cargo: do bacteria on symbiotic propagules reinforce the microbiome of lichens?

    PubMed

    Aschenbrenner, Ines Aline; Cardinale, Massimiliano; Berg, Gabriele; Grube, Martin

    2014-12-01

    According to recent research, bacteria contribute as recurrent associates to the lichen symbiosis. Yet, the variation of the microbiomes within species and across geographically separated populations remained largely elusive. As a quite common dispersal mode, lichens evolved vertical transmission of both fungal and algal partners in specifically designed mitotic propagules. Bacteria, if co-transmitted with these symbiotic propagules, could contribute to a geographical structure of lichen-associated microbiomes. The lung lichen was sampled from three localities in eastern Austria to analyse their associated bacterial communities by bar-coded pyrosequencing, network analysis and fluorescence in situ hybridization. For the first time, bacteria were documented to colonize symbiotic propagules of lichens developed for short-distance transmission of the symbionts. The propagules share the overall bacterial community structure with the thalli at class level, except for filamentous Cyanobacteria (Nostocophycideae), and with Alphaproteobacteria as predominant group. All three sampling sites share a core fraction of the microbiome. Bacterial communities of lichen thalli from the same sampling site showed higher similarity than those of distant populations. This variation and the potential co-dispersal of a microbiome fraction with structures of the host organism contribute new aspects to the 'everything is everywhere' hypothesis. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Gut microbiome and metabolic syndrome.

    PubMed

    Mazidi, Mohsen; Rezaie, Peyman; Kengne, Andre Pascal; Mobarhan, Majid Ghayour; Ferns, Gordon A

    2016-01-01

    The gut microbiome contributes approximately 2kg of the whole body weight, and recent studies suggest that gut microbiota has a profound effect on human metabolism, potentially contributing to several features of the metabolic syndrome. Metabolic syndrome is defined by a clustering of metabolic disorders that include central adiposity with visceral fat accumulation, dyslipidemia, insulin resistance, dysglycemia and non-optimal blood pressure levels. Metabolic syndrome is associated with an increased risk of cardiovascular diseases and type 2 diabetes. It is estimated that around 20-25 percent of the world's adult population has metabolic syndrome. In this manuscript, we have reviewed the existing data linking gut microbiome with metabolic syndrome. Existing evidence from studies both in animals and humans support a link between gut microbiome and various components of metabolic syndrome. Possible pathways include involvement with energy homeostasis and metabolic processes, modulation of inflammatory signaling pathways, interferences with the immune system, and interference with the renin-angiotensin system. Modification of gut microbiota via prebiotics, probiotics or other dietary interventions has provided evidence to support a possible beneficial effect of interventions targeting gut microbiota modulation to treat components or complications of metabolic syndrome.

  16. Microbiome/microbiota and allergies.

    PubMed

    Inoue, Yuzaburo; Shimojo, Naoki

    2015-01-01

    Allergies are characterized by a hypersensitive immune reaction to originally harmless antigens. In recent decades, the incidence of allergic diseases has markedly increased, especially in developed countries. The increase in the frequency of allergic diseases is thought to be primarily due to environmental changes related to a westernized lifestyle, which affects the commensal microbes in the human body. The human gut is the largest organ colonized by bacteria and contains more than 1000 bacterial species, called the "gut microbiota." The recent development of sequencing technology has enabled researchers to genetically investigate and clarify the diversity of all species of commensal microbes. The collective genomes of commensal microbes are together called the "microbiome." Although the detailed mechanisms remain unclear, it has been proposed that the microbiota/microbiome, especially that in the gut, impacts the systemic immunity and metabolism, thus affecting the development of various immunological diseases, including allergies. In this review, we summarize the recent findings regarding the importance of the microbiome/microbiota in the development of allergic diseases and also the results of interventional studies using probiotics or prebiotics to prevent allergies.

  17. Xenobiotic Metabolism and Gut Microbiomes

    PubMed Central

    Das, Anubhav; Srinivasan, Meenakshi; Ghosh, Tarini Shankar; Mande, Sharmila S.

    2016-01-01

    Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome) in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs) also indicate geographic as well as age specific trends. PMID:27695034

  18. Introduction: Microbiome in human reproduction.

    PubMed

    Franasiak, Jason M; Scott, Richard T

    2015-12-01

    The human microbiome has been termed the "second human genome" and data that has come about of late certainly makes it appear every bit as complex. The human body contains 10-fold more microbial cells than the human cells and accounts for 1%-3% of our total body mass. As we learn more about this symbiotic relationship, it appears this complex interaction occurs in nearly every part of the body, even those areas at one time considered to be sterile. Indeed, the microbiome in human reproduction has been investigated in terms of both the lower and upper reproductive tract and includes interactions even at the point of gametogenesis. What is all the more fascinating is that we have known about the importance of microbes for over 150 years, even before they existed in name. And now, with the assistance of an exciting technologic revolution which has pushed forward our understanding of the microbiome, we appear to stand on the precipice of a higher level of understanding of microbes, the biofilms they create, and their impact of health and disease in human reproduction.

  19. Immunological Consequences of Intestinal Fungal Dysbiosis.

    PubMed

    Wheeler, Matthew L; Limon, Jose J; Bar, Agnieszka S; Leal, Christian A; Gargus, Matthew; Tang, Jie; Brown, Jordan; Funari, Vincent A; Wang, Hanlin L; Crother, Timothy R; Arditi, Moshe; Underhill, David M; Iliev, Iliyan D

    2016-06-08

    Compared to bacteria, the role of fungi within the intestinal microbiota is poorly understood. In this study we investigated whether the presence of a "healthy" fungal community in the gut is important for modulating immune function. Prolonged oral treatment of mice with antifungal drugs resulted in increased disease severity in acute and chronic models of colitis, and also exacerbated the development of allergic airway disease. Microbiota profiling revealed restructuring of fungal and bacterial communities. Specifically, representation of Candida spp. was reduced, while Aspergillus, Wallemia, and Epicoccum spp. were increased. Oral supplementation with a mixture of three fungi found to expand during antifungal treatment (Aspergillus amstelodami, Epicoccum nigrum, and Wallemia sebi) was sufficient to recapitulate the exacerbating effects of antifungal drugs on allergic airway disease. Taken together, these results indicate that disruption of commensal fungal populations can influence local and peripheral immune responses and enhance relevant disease states.

  20. Oral yeast colonization throughout pregnancy

    PubMed Central

    Rio, Rute; Simões-Silva, Liliana; Garro, Sofia; Silva, Mário-Jorge; Azevedo, Álvaro

    2017-01-01

    Background Recent studies suggest that placenta may harbour a unique microbiome that may have origin in maternal oral microbiome. Although the major physiological and hormonal adjustments observed in pregnant women lead to biochemical and microbiological modifications of the oral environment, very few studies evaluated the changes suffered by the oral microbiota throughout pregnancy. So, the aim of our study was to evaluate oral yeast colonization throughout pregnancy and to compare it with non-pregnant women. Material and Methods The oral yeast colonization was assessed in saliva of 30 pregnant and non-pregnant women longitudinally over a 6-months period. Demographic information was collected, a non-invasive intra-oral examination was performed and saliva flow and pH were determined. Results Pregnant and non-pregnant groups were similar regarding age and level of education. Saliva flow rate did not differ, but saliva pH was lower in pregnant than in non-pregnant women. Oral yeast prevalence was higher in pregnant than in non-pregnant women, either in the first or in the third trimester, but did not attain statistical significance. In individuals colonized with yeast, the total yeast quantification (Log10CFU/mL) increase from the 1st to the 3rd trimester in pregnant women, but not in non-pregnant women. Conclusions Pregnancy may favour oral yeast growth that may be associated with an acidic oral environment. Key words:Oral yeast, fungi, pregnancy, saliva pH. PMID:28160578

  1. Molecular Identification of Human Fungal Pathogens

    DTIC Science & Technology

    2009-03-01

    the histopathology report indicating a fungal infection was received. The  enrofloxacin was discontinued and ketoconazole was initiated. Single...oral administration of  ketoconazole (Apotex, Inc., Toronto, Ontario) 50mg/kg was administered daily. The snake was  kept at 29.5oC and was tube

  2. The Willow Microbiome Is Influenced by Soil Petroleum-Hydrocarbon Concentration with Plant Compartment-Specific Effects

    PubMed Central

    Tardif, Stacie; Yergeau, Étienne; Tremblay, Julien; Legendre, Pierre; Whyte, Lyle G.; Greer, Charles W.

    2016-01-01

    The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC) contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and after two growing seasons, bulk soil, rhizosphere soil, roots, and stems samples of two willow cultivars (Salix purpurea cv. FishCreek, and Salix miyabeana cv. SX67) growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) regions were amplified and sequenced using an Ion Torrent Personal Genome Machine (PGM). Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial, and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders, and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root, and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment, and thus, protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology. PMID:27660624

  3. Seasonal Variation in Human Gut Microbiome Composition

    PubMed Central

    Davenport, Emily R.; Mizrahi-Man, Orna; Michelini, Katelyn; Barreiro, Luis B.; Ober, Carole; Gilad, Yoav

    2014-01-01

    The composition of the human gut microbiome is influenced by many environmental factors. Diet is thought to be one of the most important determinants, though we have limited understanding of the extent to which dietary fluctuations alter variation in the gut microbiome between individuals. In this study, we examined variation in gut microbiome composition between winter and summer over the course of one year in 60 members of a founder population, the Hutterites. Because of their communal lifestyle, Hutterite diets are similar across individuals and remarkably stable throughout the year, with the exception that fresh produce is primarily served during the summer and autumn months. Our data indicate that despite overall gut microbiome stability within individuals over time, there are consistent and significant population-wide shifts in microbiome composition across seasons. We found seasonal differences in both (i) the abundance of particular taxa (false discovery rate <0.05), including highly abundant phyla Bacteroidetes and Firmicutes, and (ii) overall gut microbiome diversity (by Shannon diversity; P = 0.001). It is likely that the dietary fluctuations between seasons with respect to produce availability explain, at least in part, these differences in microbiome composition. For example, high levels of produce containing complex carbohydrates consumed during the summer months might explain increased abundance of Bacteroidetes, which contain complex carbohydrate digesters, and decreased levels of Actinobacteria, which have been negatively correlated to fiber content in food questionnaires. Our observations demonstrate the plastic nature of the human gut microbiome in response to variation in diet. PMID:24618913

  4. Different types of fungal sinusitis occurring concurrently: implications for therapy.

    PubMed

    Rupa, V; Thomas, Meera

    2013-02-01

    The purpose of this study is to describe the clinical and histopathological features, management and outcome of a series of patients with simultaneous occurrence of invasive and non-invasive fungal sinusitis (mixed fungal sinusitis). The histopathological records of patients with fungal sinusitis seen over the last 6 years were reviewed. The clinical, histopathological, treatment and follow up details of all cases with mixed fungal sinusitis were noted. Six cases of mixed fungal sinusitis with concurrent occurrence of chronic granulomatous fungal sinusitis and allergic fungal sinusitis (AFS) were seen during the study period. Most (83.3 %) had bilateral disease. All patients had undergone prior endoscopic sinus surgery at least once within the previous 2 years. Histopathological features showed predominance of invasive disease in half the patients. Except for one patient who did not report for follow up, all patients with predominant chronic granulomatous fungal sinusitis received systemic antifungal therapy and inhaled steroids. Those with predominant features of AFS received oral and inhaled steroids. Five patients with mixed fungal sinusitis who had follow up ranging from 6 months to 5 years were disease free following treatment. Mixed fungal sinusitis should be recognized by the surgeon and pathologist as a separate category of fungal sinusitis whose treatment depends on accurate histological diagnosis. A good outcome may be expected with appropriate therapy.

  5. Exploring the Dynamic Core Microbiome of Plaque Microbiota during Head-and-Neck Radiotherapy Using Pyrosequencing

    PubMed Central

    Wang, Qian; Jiang, Yun-tao; Ma, Rui; Tang, Zi-sheng; Liu, Zheng; Liang, Jing-ping; Huang, Zheng-wei

    2013-01-01

    Radiotherapy is the primary treatment modality used for patients with head-and-neck cancers, but inevitably causes microorganism-related oral complications. This study aims to explore the dynamic core microbiome of oral microbiota in supragingival plaque during the course of head-and-neck radiotherapy. Eight subjects aged 26 to 70 were recruited. Dental plaque samples were collected (over seven sampling time points for each patient) before and during radiotherapy. The V1–V3 hypervariable regions of bacterial 16S rRNA genes were amplified, and the high-throughput pyrosequencing was performed. A total of 140 genera belonging to 13 phyla were found. Four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) and 11 genera (Streptococcus, Actinomyces, Veillonella, Capnocytophaga, Derxia, Neisseria, Rothia, Prevotella, Granulicatella, Luteococcus, and Gemella) were found in all subjects, supporting the concept of a core microbiome. Temporal variation of these major cores in relative abundance were observed, as well as a negative correlation between the number of OTUs and radiation dose. Moreover, an optimized conceptual framework was proposed for defining a dynamic core microbiome in extreme conditions such as radiotherapy. This study presents a theoretical foundation for exploring a core microbiome of communities from time series data, and may help predict community responses to perturbation as caused by exposure to ionizing radiation. PMID:23437114

  6. The intestinal microbiome in type 1 diabetes

    PubMed Central

    Dunne, J L; Triplett, E W; Gevers, D; Xavier, R; Insel, R; Danska, J; Atkinson, M A

    2014-01-01

    Few concepts in recent years have garnered more disease research attention than that of the intestinal (i.e. ‘gut’) microbiome. This emerging interest has included investigations of the microbiome's role in the pathogenesis of a variety of autoimmune disorders, including type 1 diabetes (T1D). Indeed, a growing number of recent studies of patients with T1D or at varying levels of risk for this disease, as well as in animal models of the disorder, lend increasing support to the notion that alterations in the microbiome precede T1D onset. Herein, we review these investigations, examining the mechanisms by which the microbiome may influence T1D development and explore how multi-disciplinary analysis of the microbiome and the host immune response may provide novel biomarkers and therapeutic options for prevention of T1D. PMID:24628412

  7. The intestinal microbiome in type 1 diabetes.

    PubMed

    Dunne, J L; Triplett, E W; Gevers, D; Xavier, R; Insel, R; Danska, J; Atkinson, M A

    2014-07-01

    Few concepts in recent years have garnered more disease research attention than that of the intestinal (i.e. 'gut') microbiome. This emerging interest has included investigations of the microbiome's role in the pathogenesis of a variety of autoimmune disorders, including type 1 diabetes (T1D). Indeed, a growing number of recent studies of patients with T1D or at varying levels of risk for this disease, as well as in animal models of the disorder, lend increasing support to the notion that alterations in the microbiome precede T1D onset. Herein, we review these investigations, examining the mechanisms by which the microbiome may influence T1D development and explore how multi-disciplinary analysis of the microbiome and the host immune response may provide novel biomarkers and therapeutic options for prevention of T1D.

  8. Microbiome Associated with Severe Caries in Canadian First Nations Children.

    PubMed

    Agnello, M; Marques, J; Cen, L; Mittermuller, B; Huang, A; Chaichanasakul Tran, N; Shi, W; He, X; Schroth, R J

    2017-07-01

    Young Indigenous children in North America suffer from a higher degree of severe early childhood caries (S-ECC) than the general population, leading to speculation that the etiology and characteristics of the disease may be distinct in this population. To address this knowledge gap, we conducted the first microbiome analysis of an Indigenous population using modern molecular techniques. We investigated the caries-associated microbiome among Canadian First Nations children with S-ECC. Thirty First Nations children <72 mo of age with S-ECC and 20 caries-free children were recruited in Winnipeg, Canada. Parents or caregivers completed a questionnaire on general and dental health, diet, and demographics. The plaque microbiome was investigated by sequencing the 16S rRNA gene. Sequences were clustered into operational taxonomic units and taxonomy assigned via the Human Oral Microbiome Database, then analyzed at the community level with alpha and beta diversity measures. Compared with those who were caries free, children with S-ECC came from households with lower income; they were more likely to live in First Nations communities and were more likely to be bottle-fed; and they were weaned from the bottle at a later age. The microbial communities of the S-ECC and caries-free groups did not differ in terms of species richness or phylogenetic diversity. Beta diversity analysis showed that the samples significantly clustered into groups based on caries status. Twenty-eight species-level operational taxonomic units were significantly different between the groups, including Veillonella HOT 780 and Porphyromonas HOT 284, which were 4.6- and 9-fold higher, respectively, in the S-ECC group, and Streptococcus gordonii and Streptococcus sanguinis, which were 5- and 2-fold higher, respectively, in the caries-free group. Extremely high levels of Streptococcus mutans were detected in the S-ECC group. Overall, First Nations children with S-ECC have a significantly different plaque

  9. Application of metagenomics in understanding oral health and disease.

    PubMed

    Xu, Ping; Gunsolley, John

    2014-04-01

    Oral diseases including periodontal disease and caries are some of the most prevalent infectious diseases in humans. Different microbial species cohabitate and form a polymicrobial biofilm called dental plaque in the oral cavity. Metagenomics using next generation sequencing technologies has produced bacterial profiles and genomic profiles to study the relationships between microbial diversity, genetic variation, and oral diseases. Several oral metagenomic studies have examined the oral microbiome of periodontal disease and caries. Gene annotations in these studies support the association of specific genes or metabolic pathways with oral health and with specific diseases. The roles of pathogenic species and functions of specific genes in oral disease development have been recognized by metagenomic analysis. A model is proposed in which three levels of interactions occur in the oral microbiome that determines oral health or disease.

  10. Application of metagenomics in understanding oral health and disease

    PubMed Central

    Xu, Ping; Gunsolley, John

    2014-01-01

    Oral diseases including periodontal disease and caries are some of the most prevalent infectious diseases in humans. Different microbial species cohabitate and form a polymicrobial biofilm called dental plaque in the oral cavity. Metagenomics using next generation sequencing technologies has produced bacterial profiles and genomic profiles to study the relationships between microbial diversity, genetic variation, and oral diseases. Several oral metagenomic studies have examined the oral microbiome of periodontal disease and caries. Gene annotations in these studies support the association of specific genes or metabolic pathways with oral health and with specific diseases. The roles of pathogenic species and functions of specific genes in oral disease development have been recognized by metagenomic analysis. A model is proposed in which three levels of interactions occur in the oral microbiome that determines oral health or disease. PMID:24642489

  11. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome

    PubMed Central

    Bikel, Shirley; Valdez-Lara, Alejandra; Cornejo-Granados, Fernanda; Rico, Karina; Canizales-Quinteros, Samuel; Soberón, Xavier; Del Pozo-Yauner, Luis; Ochoa-Leyva, Adrián

    2015-01-01

    The advances in experimental methods and the development of high performance bioinformatic tools have substantially improved our understanding of microbial communities associated with human niches. Many studies have documented that changes in microbial abundance and composition of the human microbiome is associated with human health and diseased state. The majority of research on human microbiome is typically focused in the analysis of one level of biological information, i.e., metagenomics or metatranscriptomics. In this review, we describe some of the different experimental and bioinformatic strategies applied to analyze the 16S rRNA gene profiling and shotgun sequencing data of the human microbiome. We also discuss how some of the recent insights in the combination of metagenomics, metatranscriptomics and viromics can provide more detailed description on the interactions between microorganisms and viruses in oral and gut microbiomes. Recent studies on viromics have begun to gain importance due to the potential involvement of viruses in microbial dysbiosis. In addition, metatranscriptomic combined with metagenomic analysis have shown that a substantial fraction of microbial transcripts can be differentially regulated relative to their microbial genomic abundances. Thus, understanding the molecular interactions in the microbiome using the combination of metagenomics, metatranscriptomics and viromics is one of the main challenges towards a system level understanding of human microbiome. PMID:26137199

  12. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome.

    PubMed

    Bikel, Shirley; Valdez-Lara, Alejandra; Cornejo-Granados, Fernanda; Rico, Karina; Canizales-Quinteros, Samuel; Soberón, Xavier; Del Pozo-Yauner, Luis; Ochoa-Leyva, Adrián

    2015-01-01

    The advances in experimental methods and the development of high performance bioinformatic tools have substantially improved our understanding of microbial communities associated with human niches. Many studies have documented that changes in microbial abundance and composition of the human microbiome is associated with human health and diseased state. The majority of research on human microbiome is typically focused in the analysis of one level of biological information, i.e., metagenomics or metatranscriptomics. In this review, we describe some of the different experimental and bioinformatic strategies applied to analyze the 16S rRNA gene profiling and shotgun sequencing data of the human microbiome. We also discuss how some of the recent insights in the combination of metagenomics, metatranscriptomics and viromics can provide more detailed description on the interactions between microorganisms and viruses in oral and gut microbiomes. Recent studies on viromics have begun to gain importance due to the potential involvement of viruses in microbial dysbiosis. In addition, metatranscriptomic combined with metagenomic analysis have shown that a substantial fraction of microbial transcripts can be differentially regulated relative to their microbial genomic abundances. Thus, understanding the molecular interactions in the microbiome using the combination of metagenomics, metatranscriptomics and viromics is one of the main challenges towards a system level understanding of human microbiome.

  13. Antenatal Microbiome: Potential Contributor to Fetal Programming and Establishment of the Microbiome in Offspring.

    PubMed

    Wright, Michelle L; Starkweather, Angela R

    2015-01-01

    Endogenous and exogenous exposures during fetal development have potential to impact birth and health outcomes of offspring. Accumulating evidence suggests exposures may alter the antenatal microbiome and subsequently alter the microbiome and health of offspring. The purpose of this integrative review is to summarize and critically evaluate the current state of knowledge regarding the assessment of the antenatal microbiome on the health of human offspring. The article provides a brief summary of the known factors affecting the human microbiome and studies that assessed relationships between the antenatal microbiome and health outcomes of the offspring. An integrative review was conducted to examine human research studies that focused on the antenatal microbiome and the health of the offspring using the electronic databases PubMed/MEDLINE and CINAHL from 2004 to the present. In addition to the known individual factors that are associated with establishment of the microbiome, the results of the integrative review suggest that medications (including antibiotics) and comorbidities (including infectious diseases, diet, socioeconomic status, and exposure to pollutants) should also be measured. The composition of the antenatal microbiome at various time points and body sites may be important mediators of short- and long-term health outcomes in offspring. In order to advance our understanding of the role of the antenatal microbiome on health and disease risk of the offspring, it will be important to further elucidate the composition of a healthy microbiome and specific mechanisms that contribute to altered health in later life.

  14. Oral yeast colonization throughout pregnancy.

    PubMed

    Rio, R; Simões-Silva, L; Garro, S; Silva, M-J; Azevedo, Á; Sampaio-Maia, B

    2017-03-01

    Recent studies suggest that placenta may harbour a unique microbiome that may have origin in maternal oral microbiome. Although the major physiological and hormonal adjustments observed in pregnant women lead to biochemical and microbiological modifications of the oral environment, very few studies evaluated the changes suffered by the oral microbiota throughout pregnancy. So, the aim of our study was to evaluate oral yeast colonization throughout pregnancy and to compare it with non-pregnant women. The oral yeast colonization was assessed in saliva of 30 pregnant and non-pregnant women longitudinally over a 6-months period. Demographic information was collected, a non-invasive intra-oral examination was performed and saliva flow and pH were determined. Pregnant and non-pregnant groups were similar regarding age and level of education. Saliva flow rate did not differ, but saliva pH was lower in pregnant than in non-pregnant women. Oral yeast prevalence was higher in pregnant than in non-pregnant women, either in the first or in the third trimester, but did not attain statistical significance. In individuals colonized with yeast, the total yeast quantification (Log10CFU/mL) increase from the 1st to the 3rd trimester in pregnant women, but not in non-pregnant women. Pregnancy may favour oral yeast growth that may be associated with an acidic oral environment.

  15. Endophyte Microbiome Diversity in Micropropagated Atriplex canescens and Atriplex torreyi var griffithsii

    PubMed Central

    Lucero, Mary E.; Unc, Adrian; Cooke, Peter; Dowd, Scot; Sun, Shulei

    2011-01-01

    Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP) analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities. PMID:21437280

  16. Forensic human identification using skin microbiomes.

    PubMed

    Schmedes, Sarah E; Woerner, August E; Budowle, Bruce

    2017-09-08

    The human microbiome contributes significantly to the genetic content of the human body. Genetic and environmental factors help shape the microbiome, and as such, the microbiome can be unique to an individual. Previous studies have demonstrated the potential to use microbiome profiling for forensic applications, however a method has yet to identify stable features of skin microbiomes that produce high classification accuracies for samples collected over reasonably long time intervals. A novel approach is described to classify skin microbiomes to their donors by comparing two features types, Propionibacterium acnes pangenome presence/absence features and nucleotide diversities of stable clade-specific markers. Supervised learning was used to attribute skin microbiomes from 14 skin body sites from 12 healthy individuals sampled at three time points over a >2.5 year period with accuracies up to 100% for three body sites. Feature selection identified a reduced subset of markers from each body site that are highly individualizing, identifying 187 markers from 12 clades. Classification accuracies were compared in a formal model testing framework, and the results of this indicate that learners trained on nucleotide diversity perform significantly better than those trained on presence/absence encodings. This study used supervised learning to identify individuals with high accuracy and associated stable features from skin microbiomes over a period of up to almost 3 years. These selected features provide a preliminary marker panel for future development of a robust and reproducible method for skin microbiome profiling for forensic human identification.Importance A novel approach is described to attribute skin microbiomes, collected over a period of >2.5 years, to their individual hosts with a high degree of accuracy. Nucleotide diversities of stable clade-specific markers with supervised learning was used to classify skin microbiomes from a particular individual with up to

  17. The microbiome of urban waters.

    PubMed

    McLellan, Sandra L; Fisher, Jenny C; Newton, Ryan J

    2015-09-01

    More than 50% of the world's population lives in urban centers. As collection basins for landscape activity, urban waters are an interface between human activity and the natural environment. The microbiome of urban waters could provide insight into the impacts of pollution, the presence of human health risks, or the potential for long-term consequences for these ecosystems and the people who depend upon them. An integral part of the urban water cycle is sewer infrastructure. Thousands of miles of pipes line cities as part of wastewater and stormwater systems. As stormwater and sewage are released into natural waterways, traces of human and animal microbiomes reflect the sources and magnitude of fecal pollution and indicate the presence of pollutants, such as nutrients, pathogens, and chemicals. Non-fecal organisms are also released as part of these systems. Runoff from impervious surfaces delivers microbes from soils, plants and the built environment to stormwater systems. Further, urban sewer infrastructure contains its own unique microbial community seemingly adapted to this relatively new artificial habitat. High microbial densities are conveyed via pipes to waterways, and these organisms can be found as an urban microbial signature imprinted on the natural community of rivers and urban coastal waters. The potential consequences of mass releases of non-indigenous microorganisms into natural waters include creation of reservoirs for emerging human pathogens, altered nutrient flows into aquatic food webs, and increased genetic exchange between two distinct gene pools. This review highlights the recent characterization of the microbiome of urban sewer and stormwater infrastructure and its connection to and potential impact upon freshwater systems. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  18. The Fungal Mycobiome and Its Interaction with Gut Bacteria in the Host.

    PubMed

    Sam, Qi Hui; Chang, Matthew Wook; Chai, Louis Yi Ann

    2017-02-04

    The advent of sequencing technology has endowed us with the capacity to study microbes constituting the human commensal community that were previously non-culturable. Much of the initial works have concentrated on the bacterial flora constituting the gut microbiome, since specimens are readily accessible in health and disease. Less, however, is understood of the "silent population"-the fungal species, also known as the mycobiome. Living in symbiosis with bacteria as commensals in our body, it is perceivable that the mycobiome exerts an inadvertent influence on the microbiome. We review here the recent knowledge gained from study of the interaction between the mycobiome and microbiome in health and disease susceptibility, immunity, and consequences from antimicrobial treatment.

  19. The Fungal Mycobiome and Its Interaction with Gut Bacteria in the Host

    PubMed Central

    Sam, Qi Hui; Chang, Matthew Wook; Chai, Louis Yi Ann

    2017-01-01

    The advent of sequencing technology has endowed us with the capacity to study microbes constituting the human commensal community that were previously non-culturable. Much of the initial works have concentrated on the bacterial flora constituting the gut microbiome, since specimens are readily accessible in health and disease. Less, however, is understood of the “silent population”—the fungal species, also known as the mycobiome. Living in symbiosis with bacteria as commensals in our body, it is perceivable that the mycobiome exerts an inadvertent influence on the microbiome. We review here the recent knowledge gained from study of the interaction between the mycobiome and microbiome in health and disease susceptibility, immunity, and consequences from antimicrobial treatment. PMID:28165395

  20. Lung microbiome dynamics in COPD exacerbations.

    PubMed

    Wang, Zhang; Bafadhel, Mona; Haldar, Koirobi; Spivak, Aaron; Mayhew, David; Miller, Bruce E; Tal-Singer, Ruth; Johnston, Sebastian L; Ramsheh, Mohammadali Yavari; Barer, Michael R; Brightling, Christopher E; Brown, James R

    2016-04-01

    Increasing evidence suggests that the lung microbiome plays an important role in chronic obstructive pulmonary disease (COPD) severity. However, the dynamics of the lung microbiome during COPD exacerbations and its potential role in disease aetiology remain poorly understood.We completed a longitudinal 16S ribosomal RNA survey of the lung microbiome on 476 sputum samples collected from 87 subjects with COPD at four visits defined as stable state, exacerbation, 2 weeks post-therapy and 6 weeks recovery.Our analysis revealed a dynamic lung microbiota where changes appeared to be associated with exacerbation events and indicative of specific exacerbation phenotypes. Antibiotic and steroid treatments appear to have differential effects on the lung microbiome. We depict a microbial interaction network for the lung microbiome and suggest that perturbation of a few bacterial operational taxonomic units, in particular Haemophilus spp., could greatly impact the overall microbial community structure. Furthermore, several serum and sputum biomarkers, in particular sputum interleukin-8, appear to be highly correlated with the structure and diversity of the microbiome.Our study furthers the understanding of lung microbiome dynamics in COPD patients and highlights its potential as a biomarker, and possibly a target, for future respiratory therapeutics.

  1. The human microbiome and juvenile idiopathic arthritis.

    PubMed

    Verwoerd, Anouk; Ter Haar, Nienke M; de Roock, Sytze; Vastert, Sebastiaan J; Bogaert, Debby

    2016-09-20

    Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in childhood. The pathogenesis of JIA is thought to be the result of a combination of host genetic and environmental triggers. However, the precise factors that determine one's susceptibility to JIA remain to be unravelled. The microbiome has received increasing attention as a potential contributing factor to the development of a wide array of immune-mediated diseases, including inflammatory bowel disease, type 1 diabetes and rheumatoid arthritis. Also in JIA, there is accumulating evidence that the composition of the microbiome is different from healthy individuals. A growing body of evidence indeed suggests that, among others, the microbiome may influence the development of the immune system, the integrity of the intestinal mucosal barrier, and the differentiation of T cell subsets. In turn, this might lead to dysregulation of the immune system, thereby possibly playing a role in the development of JIA. The potential to manipulate the microbiome, for example by faecal microbial transplantation, might then offer perspectives for future therapeutic interventions. Before we can think of such interventions, we need to first obtain a deeper understanding of the cause and effect relationship between JIA and the microbiome. In this review, we discuss the existing evidence for the involvement of the microbiome in JIA pathogenesis and explore the potential mechanisms through which the microbiome may influence the development of autoimmunity in general and JIA specifically.

  2. An assessment of US microbiome research.

    PubMed

    Stulberg, Elizabeth; Fravel, Deborah; Proctor, Lita M; Murray, David M; LoTempio, Jonathan; Chrisey, Linda; Garland, Jay; Goodwin, Kelly; Graber, Joseph; Harris, M Camille; Jackson, Scott; Mishkind, Michael; Porterfield, D Marshall; Records, Angela

    2016-01-11

    Genome-enabled technologies have supported a dramatic increase in our ability to study microbial communities in environments and hosts. Taking stock of previously funded microbiome research can help to identify common themes, under-represented areas and research priorities to consider moving forward. To assess the status of US microbiome research, a team of government scientists conducted an analysis of federally funded microbiome research. Microbiomes were defined as host-, ecosystem- or habitat-associated communities of microorganisms, and microbiome research was defined as those studies that emphasize community-level analyses using 'omics technologies. Single pathogen, single strain and culture-based studies were not included, except symbiosis studies that served as models for more complex communities. Fourteen governmental organizations participated in the data call. The analysis examined three broad research themes, eight environments and eight microbial categories. Human microbiome research was larger than any other environment studied, and the basic biology research theme accounted for half of the total research activities. Computational biology and bioinformatics, reference databases and biorepositories, standardized protocols and high-throughput tools were commonly identified needs. Longitudinal and functional studies and interdisciplinary research were also identified as needs. This study has implications for the funding of future microbiome research, not only in the United States but beyond.

  3. The intestinal microbiome of fish under starvation

    PubMed Central

    2014-01-01

    Background Starvation not only affects the nutritional and health status of the animals, but also the microbial composition in the host’s intestine. Next-generation sequencing provides a unique opportunity to explore gut microbial communities and their interactions with hosts. However, studies on gut microbiomes have been conducted predominantly in humans and land animals. Not much is known on gut microbiomes of aquatic animals and their changes under changing environmental conditions. To address this shortcoming, we determined the microbial gene catalogue, and investigated changes in the microbial composition and host-microbe interactions in the intestine of Asian seabass in response to starvation. Results We found 33 phyla, 66 classes, 130 orders and 278 families in the intestinal microbiome. Proteobacteria (48.8%), Firmicutes (15.3%) and Bacteroidetes (8.2%) were the three most abundant bacteria taxa. Comparative analyses of the microbiome revealed shifts in bacteria communities, with dramatic enrichment of Bacteroidetes, but significant depletion of Betaproteobacteria in starved intestines. In addition, significant differences in clusters of orthologous groups (COG) functional categories and orthologous groups were observed. Genes related to antibiotic activity in the microbiome were significantly enriched in response to starvation, and host genes related to the immune response were generally up-regulated. Conclusions This study provides the first insights into the fish intestinal microbiome and its changes under starvation. Further detailed study on interactions between intestinal microbiomes and hosts under dynamic conditions will shed new light on how the hosts and microbes respond to the changing environment. PMID:24708260

  4. Bile Acids and the Gut Microbiome

    PubMed Central

    Ridlon, Jason M.; Kang, Dae Joong; Hylemon, Phillip B.; Bajaj, Jasmohan S.

    2014-01-01

    Purpose of the review We examine the latest research on the emerging bile acid-gut microbiome axis and its role in health and disease. Our focus revolves around two key microbial pathways for degrading bile salts, and the impact of bile acid composition in the gut on the gut microbiome and host physiology. Recent findings Bile acid pool size has recently been shown to be a function of microbial metabolism of bile acids in the intestines. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. Bile acids are emerging as regulators of the gut microbiome at the highest taxomic levels. The role of bile acids as hormones and potentiators of liver cancer are also emerging. Summary The host and microbiome appear to regulate bile acid pool size. The host produces a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of FXR in intestine and liver. Members of the microbiome utilize bile acids and their conjugates resulting in agonism of FXR in intestine and liver resulting in a smaller, unconjugated hydrophobic bile acid pool. Hydrophilicity of the bile acid pool is associated with disease states. Reduced bile acid levels in the gut are associated with bacterial overgrowth and inflammation. Diet, antibiotic therapy, and disease states affect the balance of the microbiome-bile acid pool. PMID:24625896

  5. The Intestinal Microbiome in Spondyloarthritis

    PubMed Central

    Gill, Tejpal; Asquith, Mark; Rosenbaum, James T.; Colbert, Robert A.

    2015-01-01

    Purpose of the review Microbial dysbiosis in the gut is emerging as a common component in various inflammatory disorders including spondyloarthritis (SpA). The depth of this influence has begun to be realized with next generation sequencing of the gut microbiome providing unbiased assessment of previously uncharted bacterial populations. Recent findings Decreased numbers of Firmicutes, a major phyla of gut commensals, especially the species Faecalibacterium prausnitzii and Clostridium leptum have been found in various inflammatory disorders including SpA and IBD, and could be an important link between SpA and gut inflammation. Multiple studies in ankylosing spondylitis, psoriatic arthritis, juvenile SpA and animals models of SpA are revealing common bacterial associations among these diseases as well as IBD. Summary We are beginning to appreciate the complex relationship between the gut microbiome and host immune regulation and dysregulation in health and disease. Potentially important differences have been revealed in SpA, but cause and effect relationships remain far from established. Many critical questions remain to be answered before we can apply new knowledge to improve therapeutics in SpA. PMID:26002022

  6. Pancreatic cancer, inflammation, and microbiome.

    PubMed

    Zambirinis, Constantinos P; Pushalkar, Smruti; Saxena, Deepak; Miller, George

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers worldwide. No effective screening methods exist, and available treatment modalities do not effectively treat the disease. Inflammatory conditions such as pancreatitis represent a well-known risk factor for pancreatic cancer development. Yet only in the past 2 decades has pancreatic cancer been recognized as an inflammation-driven cancer, and the precise mechanisms underlying the pathogenic role of inflammation are beginning to be explored in detail. A substantial amount of preclinical and clinical evidence suggests that bacteria are likely to influence this process by activating immune receptors and perpetuating cancer-associated inflammation. The recent explosion of investigations of the human microbiome have highlighted how perturbations of commensal bacterial populations can promote inflammation and promote disease processes, including carcinogenesis. The elucidation of the interplay between inflammation and microbiome in the context of pancreatic carcinogenesis will provide novel targets for intervention to prevent and treat pancreatic cancer more efficiently. Further studies toward this direction are urgently needed.

  7. Cognitive Function and the Microbiome.

    PubMed

    Gareau, M G

    2016-01-01

    There is increasing evidence that the composition of the resident bacteria within the gastrointestinal tract can influence the brain and behavior, particularly with respect to cognitive function. Cognitive function encompasses the life-long process of learning, both long- and short-term processes. Cognition was originally thought to be exclusively regulated by the central nervous system, with long-term potentiation and neurogenesis contributing to the creation and storage of memories, but now other systems, including, for example, the immune system and the intestinal microbiome may also be involved. Cognitive impairment has been identified in numerous disease states, both gastrointestinal and extraintestinal in nature, many of which have also been characterized as having a role for dysbiosis in disease pathogenesis. This includes, but is not limited to, inflammatory bowel diseases, irritable bowel syndrome, type 1 diabetes, obesity, major depressive disorder, and autism spectrum disorder. The role of cognition and the microbiome will be discussed in this chapter for all these diseases, as well as evidence for a role in maintaining overall human health and well being. Finally, evidence for a role for probiotics in beneficially modulating the microbiota and leading to improved cognition will be discussed.

  8. The microbiome and rheumatoid arthritis

    PubMed Central

    Scher, Jose U.; Abramson, Steven B.

    2012-01-01

    Humans are not (and have never been) alone. From the moment we are born, millions of micro-organisms populate our bodies and coexist with us rather peacefully for the rest of our lives. This microbiome represents the totality of micro-organisms (and their genomes) that we necessarily acquire from the environment. Micro-organisms living in or on us have evolved to extract the energy they require to survive, and in exchange they support the physiological, metabolic and immune capacities that have contributed to our evolutionary success. Although currently categorized as an autoimmune disorder and regarded as a complex genetic disease, the ultimate cause of rheumatoid arthritis (RA) remains elusive. It seems that interplay between predisposing genetic factors and environmental triggers is required for disease manifestation. New insights from DNA sequence-based analyses of gut microbial communities and a renewed interest in mucosal immunology suggest that the microbiome represents an important environmental factor that can influence autoimmune disease manifestation. This Review summarizes the historical clues that suggest a possible role for the microbiota in the pathogenesis of RA, and will focus on new technologies that might provide scientific evidence to support this hypothesis. PMID:21862983

  9. The vaginal microbiome in health and disease

    PubMed Central

    White, Bryan A.; Creedon, Douglas J.; Nelson, Karen E.; Wilson, Brenda A.

    2011-01-01

    Infections of the vaginal tract result from perturbations in the complex interactions between the microbiome and the host vaginal ecosystem. Recent data have linked specific vaginal microbes and urogenital infection with pre-term birth. Here we discuss how next generation sequencing-based approaches to study the vaginal microbiome will be important for defining what constitutes an imbalance of the microbiome and the associated host conditions that lead to subsequent infection and disease states. These studies will provide clinicians reliable diagnostic tools and treatments for women who are at increased risk for vaginal infections, preterm birth, HIV and other sexually acquired diseases, and will provide opportunities for intervention. PMID:21757370

  10. The gut microbiome modulates colon tumorigenesis.

    PubMed

    Zackular, Joseph P; Baxter, Nielson T; Iverson, Kathryn D; Sadler, William D; Petrosino, Joseph F; Chen, Grace Y; Schloss, Patrick D

    2013-11-05

    Recent studies have shown that individuals with colorectal cancer have an altered gut microbiome compared to healthy controls. It remains unclear whether these differences are a response to tumorigenesis or actively drive tumorigenesis. To determine the role of the gut microbiome in the development of colorectal cancer, we characterized the gut microbiome in a murine model of inflammation-associated colorectal cancer that mirrors what is seen in humans. We followed the development of an abnormal microbial community structure associated with inflammation and tumorigenesis in the colon. Tumor-bearing mice showed enrichment in operational taxonomic units (OTUs) affiliated with members of the Bacteroides, Odoribacter, and Akkermansia genera and decreases in OTUs affiliated with members of the Prevotellaceae and Porphyromonadaceae families. Conventionalization of germfree mice with microbiota from tumor-bearing mice significantly increased tumorigenesis in the colon compared to that for animals colonized with a healthy gut microbiome from untreated mice. Furthermore, at the end of the model, germfree mice colonized with microbiota from tumor-bearing mice harbored a higher relative abundance of populations associated with tumor formation in conventional animals. Manipulation of the gut microbiome with antibiotics resulted in a dramatic decrease in both the number and size of tumors. Our results demonstrate that changes in the gut microbiome associated with inflammation and tumorigenesis directly contribute to tumorigenesis and suggest that interventions affecting the composition of the microbiome may be a strategy to prevent the development of colon cancer. The trillions of bacteria that live in the gut, known collectively as the gut microbiome, are important for normal functioning of the intestine. There is now growing evidence that disruptive changes in the gut microbiome are strongly associated with the development colorectal cancer. However, how the gut microbiome

  11. Ecological therapeutic opportunities for oral diseases

    PubMed Central

    Hoare, Anilei; Marsh, Philip D.; Diaz, Patricia I.

    2017-01-01

    SUMMARY The three main oral diseases of humans, that is caries, periodontal diseases and oral candidiasis, are associated with microbiome shifts initiated by changes in the oral environment and/or decreased effectiveness of mucosal immune surveillance. In this review we discuss the role that microbial-based therapies may have in the control of these conditions. Most investigations on the use of microorganisms for management of oral disease have been conducted with probiotic strains with some positive but very discrete clinical outcomes. Other strategies such as whole oral microbiome transplantation or modification of community function by enrichment with health-promoting indigenous oral strains may offer more promise but research in this field is still in its infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one component within a holistic preventive strategy that should also aim at modification of the environmental influences responsible for the initiation and perpetuation of microbiome shifts associated with oral dysbiosis. PMID:28840820

  12. Activity of Potent and Selective Host Defense Peptide Mimetics in Mouse Models of Oral Candidiasis

    PubMed Central

    Ryan, Lisa K.; Freeman, Katie B.; Masso-Silva, Jorge A.; Falkovsky, Klaudia; Aloyouny, Ashwag; Markowitz, Kenneth; Hise, Amy G.; Fatahzadeh, Mahnaz; Scott, Richard W.

    2014-01-01

    There is a strong need for new broadly active antifungal agents for the treatment of oral candidiasis that not only are active against many species of Candida, including drug-resistant strains, but also evade microbial countermeasures which may lead to resistance. Host defense peptides (HDPs) can provide a foundation for the development of such agents. Toward this end, we have developed fully synthetic, small-molecule, nonpeptide mimetics of the HDPs that improve safety and other pharmaceutical properties. Here we describe the identification of several HDP mimetics that are broadly active against C. albicans and other species of Candida, rapidly fungicidal, and active against yeast and hyphal cultures and that exhibit low cytotoxicity for mammalian cells. Importantly, specificity for Candida over commensal bacteria was also evident, thereby minimizing potential damage to the endogenous microbiome which otherwise could favor fungal overgrowth. Three compounds were tested as topical agents in two different mouse models of oral candidiasis and were found to be highly active. Following single-dose administrations, total Candida burdens in tongues of infected animals were reduced up to three logs. These studies highlight the potential of HDP mimetics as a new tool in the antifungal arsenal for the treatment of oral candidiasis. PMID:24752272

  13. Deconstructing the Bat Skin Microbiome: Influences of the Host and the Environment

    PubMed Central

    Avena, Christine V.; Parfrey, Laura Wegener; Leff, Jonathan W.; Archer, Holly M.; Frick, Winifred F.; Langwig, Kate E.; Kilpatrick, A. Marm; Powers, Karen E.; Foster, Jeffrey T.; McKenzie, Valerie J.

    2016-01-01

    Bats are geographically widespread and play an important role in many ecosystems, but relatively little is known about the ecology of their associated microbial communities and the role microbial taxa play in bat health, development, and evolution. Moreover, few vertebrate animal skin microbiomes have been comprehensively assessed, and thus characterizing the bat skin microbiome will yield valuable insight into the variability of vertebrate skin microbiomes as a whole. The recent emergence of the skin fungal disease white-nose syndrome highlights the potentially important role bat skin microbial communities could play in bat health. Understanding the determinant of bat skin microbial communities could provide insight into important factors allowing individuals to persist with disease. We collected skin swabs from a total of 11 bat species from the eastern United States (n = 45) and Colorado (n = 119), as well as environmental samples (n = 38) from a subset of sites, and used 16S rRNA marker gene sequencing to observe bacterial communities. In addition, we conducted a literature survey to compare the skin microbiome across vertebrate groups, including the bats presented in this study. Host species, region, and site were all significant predictors of the variability across bat skin bacterial communities. Many bacterial taxa were found both on bats and in the environment. However, some bacterial taxa had consistently greater relative abundances on bat skin relative to their environments. Bats shared many of their abundant taxa with other vertebrates, but also hosted unique bacterial lineages such as the class Thermoleophilia (Actinobacteria). A strong effect of site on the bat skin microbiome indicates that the environment very strongly influences what bacteria are present on bat skin. Bat skin microbiomes are largely composed of site-specific microbiota, but there do appear to be important host-specific taxa. How this translates to differences in host

  14. Deconstructing the Bat Skin Microbiome: Influences of the Host and the Environment.

    PubMed

    Avena, Christine V; Parfrey, Laura Wegener; Leff, Jonathan W; Archer, Holly M; Frick, Winifred F; Langwig, Kate E; Kilpatrick, A Marm; Powers, Karen E; Foster, Jeffrey T; McKenzie, Valerie J

    2016-01-01

    Bats are geographically widespread and play an important role in many ecosystems, but relatively little is known about the ecology of their associated microbial communities and the role microbial taxa play in bat health, development, and evolution. Moreover, few vertebrate animal skin microbiomes have been comprehensively assessed, and thus characterizing the bat skin microbiome will yield valuable insight into the variability of vertebrate skin microbiomes as a whole. The recent emergence of the skin fungal disease white-nose syndrome highlights the potentially important role bat skin microbial communities could play in bat health. Understanding the determinant of bat skin microbial communities could provide insight into important factors allowing individuals to persist with disease. We collected skin swabs from a total of 11 bat species from the eastern United States (n = 45) and Colorado (n = 119), as well as environmental samples (n = 38) from a subset of sites, and used 16S rRNA marker gene sequencing to observe bacterial communities. In addition, we conducted a literature survey to compare the skin microbiome across vertebrate groups, including the bats presented in this study. Host species, region, and site were all significant predictors of the variability across bat skin bacterial communities. Many bacterial taxa were found both on bats and in the environment. However, some bacterial taxa had consistently greater relative abundances on bat skin relative to their environments. Bats shared many of their abundant taxa with other vertebrates, but also hosted unique bacterial lineages such as the class Thermoleophilia (Actinobacteria). A strong effect of site on the bat skin microbiome indicates that the environment very strongly influences what bacteria are present on bat skin. Bat skin microbiomes are largely composed of site-specific microbiota, but there do appear to be important host-specific taxa. How this translates to differences in host

  15. Archaeal Lineages within the Human Microbiome: Absent, Rare or Elusive?

    PubMed Central

    Horz, Hans-Peter

    2015-01-01

    Archaea are well-recognized components of the human microbiome. However, they appear to be drastically underrepresented compared to the high diversity of bacterial taxa which can be found on various human anatomic sites, such as the gastrointestinal environment, the oral cavity and the skin. As our “microbial” view of the human body, including the methodological concepts used to describe them, has been traditionally biased towards bacteria, the question arises whether our current knowledge reflects the actual ratio of archaea versus bacteria or whether we have failed so far to unravel the full diversity of human-associated archaea. This review article hypothesizes that distinct archaeal lineages within humans exist, which still await our detection. First, previously unrecognized taxa might be quite common but they have eluded conventional detection methods. Two recent prime examples are described that demonstrate that this might be the case for specific archaeal lineages. Second, some archaeal taxa might be overlooked because they are rare and/or in low abundance. Evidence for this exists for a broad range of phylogenetic lineages, however we currently do not know whether these sporadically appearing organisms are mere transients or important members of the so called “rare biosphere” with probably basic ecosystem functions. Lastly, evidence exists that different human populations harbor different archaeal taxa and/or the abundance and activity of shared archaeal taxa may differ and thus their impact on the overall microbiome. This research line is rather unexplored and warrants further investigation. While not recapitulating exhaustively all studies on archaeal diversity in humans, this review highlights pertinent recent findings that show that the choice of appropriate methodological approaches and the consideration of different human populations may lead to the detection of archaeal lineages previously not associated with humans. This in turn will help

  16. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease.

    PubMed

    Huang, Yvonne J; Sethi, Sanjay; Murphy, Timothy; Nariya, Snehal; Boushey, Homer A; Lynch, Susan V

    2014-08-01

    Specific bacterial species are implicated in the pathogenesis of exacerbations of chronic obstructive pulmonary disease (COPD). However, recent studies of clinically stable COPD patients have demonstrated a greater diversity of airway microbiota, whose role in acute exacerbations is unclear. In this study, temporal changes in the airway microbiome before, at the onset of, and after an acute exacerbation were examined in 60 sputum samples collected from subjects enrolled in a longitudinal study of bacterial infection in COPD. Microbiome composition and predicted functions were examined using 16S rRNA-based culture-independent profiling methods. Shifts in the abundance (≥ 2-fold, P < 0.05) of many taxa at exacerbation and after treatment were observed. Microbiota members that were increased at exacerbation were primarily of the Proteobacteria phylum, including nontypical COPD pathogens. Changes in the bacterial composition after treatment for an exacerbation differed significantly among the therapy regimens clinically prescribed (antibiotics only, oral corticosteroids only, or both). Treatment with antibiotics alone primarily decreased the abundance of Proteobacteria, with the prolonged suppression of some microbiota members being observed. In contrast, treatment with corticosteroids alone led to enrichment for Proteobacteria and members of other phyla. Predicted metagenomes of particular microbiota members involved in these compositional shifts indicated exacerbation-associated loss of functions involved in the synthesis of antimicrobial and anti-inflammatory products, alongside enrichment in functions related to pathogen-elicited inflammation. These trends reversed upon clinical recovery. Further larger studies will be necessary to determine whether specific compositional or functional changes detected in the airway microbiome could be useful indicators of exacerbation development or outcome. Copyright © 2014, American Society for Microbiology. All Rights

  17. The effects of family, dentition, and dental caries on the salivary microbiome.

    PubMed

    Foxman, Betsy; Luo, Ting; Srinivasan, Usha; Ramadugu, Kirtana; Wen, Ai; Goldberg, Deborah; Shedden, Kerby; Crout, Richard; McNeil, Daniel W; Weyant, Robert; Marazita, Mary L

    2016-05-01

    Family members share genes, environment, and microbial communities. If there is a strong effect of family on the salivary microbiota, controlling for family will enhance identification of microbial communities associated with cariogenesis. The present study was designed to assess the similarity of the salivary microbiome among families and the association between the salivary microbiome and dental decay taking age into account. We selected families (n = 49) participating in the cohort study of oral health conducted by the Center for Oral Health Research in Appalachia. All families where at least two children and at least one parent gave a saliva sample (n = 173) were included. Saliva samples were collected at least 1 hour after eating or drinking. After DNA extraction, the V6 region of the 16s rRNA gene was sequenced. Paired ends were joined using fast length adjustment of short reads, sequences were demultiplexed and filtered using Quantitative Insights Into Microbial Ecology 1.9.0, and taxonomy was assigned using the Ribosomal Database Project (RDP; http://rdp.cme.msu.edu/) classifier and sequences aligned with the CORE database using PyNAST. The salivary microbiome changed with age and was more similar within families than between families. There was no difference in the diversity of the salivary microbiome by dental decay. After taking into account age and family, signals of dental decay were weak in the saliva, whether examined at the phyla, genus, or operational taxonomic level. The salivary microbiome does not appear to be a good indicator of dental caries. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Towards understanding oral health.

    PubMed

    Zaura, Egija; ten Cate, Jacob M

    2015-01-01

    During the last century, dental research has focused on unraveling the mechanisms behind various oral pathologies, while oral health was typically described as the mere absence of oral diseases. The term 'oral microbial homeostasis' is used to describe the capacity of the oral ecosystem to maintain microbial community stability in health. However, the oral ecosystem itself is not stable: throughout life an individual undergoes multiple physiological changes while progressing through infancy, childhood, adolescence, adulthood and old age. Recent discussions on the definition of general health have led to the proposal that health is the ability of the individual to adapt to physiological changes, a condition known as allostasis. In this paper the allostasis principle is applied to the oral ecosystem. The multidimensionality of the host factors contributing to allostasis in the oral cavity is illustrated with an example on changes occurring in puberty. The complex phenomenon of oral health and the processes that prevent the ecosystem from collapsing during allostatic changes in the entire body are far from being understood. As yet individual components (e.g. hard tissues, microbiome, saliva, host response) have been investigated, while only by consolidating these and assessing their multidimensional interactions should we be able to obtain a comprehensive understanding of the ecosystem, which in turn could serve to develop rational schemes to maintain health. Adapting such a 'system approach' comes with major practical challenges for the entire research field and will require vast resources and large-scale multidisciplinary collaborations.

  19. The demographic determinants of human microbiome health

    PubMed Central

    Estrela, Sylvie; Whiteley, Marvin; Brown, Sam P.

    2014-01-01

    The human microbiome is a vast reservoir of microbial diversity and increasingly recognized to play a fundamental role in human health. In polymicrobial communities, the presence of one species can modulate the demography (growth and distribution) of other species. These demographic impacts generate feedbacks in multi-species interactions, which can be magnified in spatially structured populations (e.g., host-associated communities). Here we argue that demographic feedbacks between species are central to microbiome development, shaping whether and how potential metabolic interactions come to be realized between expanding lineages of bacteria. Understanding how demographic feedbacks tune metabolic interactions and in turn shape microbiome structure and function is now a key challenge to our abilities to better manage microbiome health. PMID:25500524

  20. Microbiome diversity and asthma and allergy risk.

    PubMed

    Legatzki, Antje; Rösler, Barbara; von Mutius, Erika

    2014-10-01

    The prevalence of asthma and allergy has been constantly increasing in Westernized countries in the last decades. Asthma and allergies are complex diseases with a local tissue inflammation that are determined by genetic and environmental factors. Because the commensal microflora is crucial to maintain inflammatory homeostasis and to induce immune regulation, the microbiome may play an important role for the development of allergic conditions. New techniques such as next-generation sequencing methods give the opportunity to explore the microbial community structure of the human body comprehensively. In this review, we will discuss the available literature concerning the human microbiota and asthma and allergy development and occurrence. The focus is on studies of the local microbiome of the place of inflammation, the gastrointestinal microbiome, and the influence of intrinsic factors relating to the host and extrinsic factors relating to the external environment on the microbiome.

  1. Tools for the Microbiome: Nano and Beyond.

    PubMed

    Biteen, Julie S; Blainey, Paul C; Cardon, Zoe G; Chun, Miyoung; Church, George M; Dorrestein, Pieter C; Fraser, Scott E; Gilbert, Jack A; Jansson, Janet K; Knight, Rob; Miller, Jeff F; Ozcan, Aydogan; Prather, Kimberly A; Quake, Stephen R; Ruby, Edward G; Silver, Pamela A; Taha, Sharif; van den Engh, Ger; Weiss, Paul S; Wong, Gerard C L; Wright, Aaron T; Young, Thomas D

    2016-01-26

    The microbiome presents great opportunities for understanding and improving the world around us and elucidating the interactions that compose it. The microbiome also poses tremendous challenges for mapping and manipulating the entangled networks of interactions among myriad diverse organisms. Here, we describe the opportunities, technical needs, and potential approaches to address these challenges, based on recent and upcoming advances in measurement and control at the nanoscale and beyond. These technical needs will provide the basis for advancing the largely descriptive studies of the microbiome to the theoretical and mechanistic understandings that will underpin the discipline of microbiome engineering. We anticipate that the new tools and methods developed will also be more broadly useful in environmental monitoring, medicine, forensics, and other areas.

  2. Tools for the microbiome. Nano and beyond

    DOE PAGES

    Biteen, Julie S.; Blainey, Paul C.; Cardon, Zoe G.; ...

    2015-12-22

    Here, the microbiome presents great opportunities for understanding and improving the world around us and elucidating the interactions that compose it. The microbiome also poses tremendous challenges for mapping and manipulating the entangled networks of interactions among myriad diverse organisms. Here, we describe the opportunities, technical needs, and potential approaches to address these challenges, based on recent and upcoming advances in measurement and control at the nanoscale and beyond. Moreover, these technical needs will provide the basis for advancing the largely descriptive studies of the microbiome to the theoretical and mechanistic understandings that will underpin the discipline of microbiome engineering.more » We anticipate that the new tools and methods developed will also be more broadly useful in environmental monitoring, medicine, forensics, and other areas.« less

  3. Microbiome in reflux disorders and esophageal adenocarcinoma.

    PubMed

    Yang, Liying; Chaudhary, Noami; Baghdadi, Jonathan; Pei, Zhiheng

    2014-01-01

    The incidence of esophageal adenocarcinoma has increased dramatically in the United States and Europe since the 1970s without apparent cause. Although specific host factors can affect risk of disease, such a rapid increase in incidence must be predominantly environmental. In the stomach, infection with Helicobacter pylori has been linked to chronic atrophic gastritis, an inflammatory precursor of gastric adenocarcinoma. However, the role of H. pylori in the development of esophageal adenocarcinoma is not well established. Meanwhile, several studies have established that a complex microbiome in the distal esophagus might play a more direct role. Transformation of the microbiome in precursor states to esophageal adenocarcinoma-reflux esophagitis and Barrett metaplasia-from a predominance of gram-positive bacteria to mostly gram-negative bacteria raises the possibility that dysbiosis is contributing to pathogenesis. However, knowledge of the microbiome in esophageal adenocarcinoma itself is lacking. Microbiome studies open a new avenue to the understanding of the etiology and pathogenesis of reflux disorders.

  4. Microbiome: Should we diversify from diversity?

    PubMed Central

    Johnson, Katerina V.-A.; Burnet, Philip W. J.

    2016-01-01

    ABSTRACT Studies on microbiome diversity are flooding the current literature, yet lessons from ecology clearly demonstrate that diversity is just one factor to consider when analyzing an ecosystem, along with its stability, structure and function. Measures of diversity may be a useful tool for interpreting metagenomic data but the question remains as to how informative they are and what insight they may provide into the state of the microbiome. A study utilizing mathematical modeling to investigate the ecological dynamics of microbial communities has shown that diversity and stability may not always be concomitant. This finding is pertinent to the gut microbiome field, especially since diversity comparisons between healthy and pathological states frequently yield contradictory results. There is a need to broaden our approach to the analysis of microbiome data if we are to better understand this complex ecological community and its role in human health and disease. PMID:27723427

  5. Novel Aggregation Properties of Candida albicans Secreted Aspartyl Proteinase Sap6 Mediate Virulence in Oral Candidiasis.

    PubMed

    Kumar, Rohitashw; Saraswat, Darpan; Tati, Swetha; Edgerton, Mira

    2015-07-01

    Candida albicans, a commensal fungus of the oral microbiome, causes oral candidiasis in humans with localized or systemic immune deficiencies. Secreted aspartic proteinases (Saps) are a family of 10 related proteases and are virulence factors due to their proteolytic activity, as well as their roles in adherence and colonization of host tissues. We found that mice infected sublingually with C. albicans cells overexpressing Sap6 (SAP6 OE and a Δsap8 strain) had thicker fungal plaques and more severe oral infection, while infection with the Δsap6 strain was attenuated. These hypervirulent strains had highly aggregative colony structure in vitro and higher secreted proteinase activity; however, the levels of proteinase activity of C. albicans Saps did not uniformly match their abilities to damage cultured oral epithelial cells (SCC-15 cells). Hyphal induction in cells overexpressing Sap6 (SAP6 OE and Δsap8 cells) resulted in formation of large cell-cell aggregates. These aggregates could be produced in germinated wild-type cells by addition of native or heat-inactivated Sap6. Sap6 bound only to germinated cells and increased C. albicans adhesion to oral epithelial cells. The adhesion properties of Sap6 were lost upon deletion of its integrin-binding motif (RGD) and could be inhibited by addition of RGD peptide or anti-integrin antibodies. Thus, Sap6 (but not Sap5) has an alternative novel function in cell-cell aggregation, independent of its proteinase activity, to promote infection and virulence in oral candidiasis.

  6. Novel Aggregation Properties of Candida albicans Secreted Aspartyl Proteinase Sap6 Mediate Virulence in Oral Candidiasis

    PubMed Central

    Kumar, Rohitashw; Saraswat, Darpan; Tati, Swetha

    2015-01-01

    Candida albicans, a commensal fungus of the oral microbiome, causes oral candidiasis in humans with localized or systemic immune deficiencies. Secreted aspartic proteinases (Saps) are a family of 10 related proteases and are virulence factors due to their proteolytic activity, as well as their roles in adherence and colonization of host tissues. We found that mice infected sublingually with C. albicans cells overexpressing Sap6 (SAP6 OE and a Δsap8 strain) had thicker fungal plaques and more severe oral infection, while infection with the Δsap6 strain was attenuated. These hypervirulent strains had highly aggregative colony structure in vitro and higher secreted proteinase activity; however, the levels of proteinase activity of C. albicans Saps did not uniformly match their abilities to damage cultured oral epithelial cells (SCC-15 cells). Hyphal induction in cells overexpressing Sap6 (SAP6 OE and Δsap8 cells) resulted in formation of large cell-cell aggregates. These aggregates could be produced in germinated wild-type cells by addition of native or heat-inactivated Sap6. Sap6 bound only to germinated cells and increased C. albicans adhesion to oral epithelial cells. The adhesion properties of Sap6 were lost upon deletion of its integrin-binding motif (RGD) and could be inhibited by addition of RGD peptide or anti-integrin antibodies. Thus, Sap6 (but not Sap5) has an alternative novel function in cell-cell aggregation, independent of its proteinase activity, to promote infection and virulence in oral candidiasis. PMID:25870228

  7. A Stoichioproteomic Analysis of Samples from the Human Microbiome Project.

    PubMed

    Vecchio-Pagan, Briana; Bewick, Sharon; Mainali, Kumar; Karig, David K; Fagan, William F

    2017-01-01

    Ecological stoichiometry (ES) uses organism-specific elemental content to explain differences in species life histories, species interactions, community organization, environmental constraints and even ecosystem function. Although ES has been successfully applied to a range of different organisms, most emphasis on microbial ecological stoichiometry focuses on lake, ocean, and soil communities. With the recent advances in human microbiome research, however, large amounts of data are being generated that describe differences in community composition across body sites and individuals. We suggest that ES may provide a framework for beginning to understand the structure, organization, and function of human microbial communities, including why certain organisms exist at certain locations, and how they interact with both the other microbes in their environment and their human host. As a first step, we undertake a stoichioproteomic analysis of microbial communities from different body sites. Specifically, we compare and contrast the elemental composition of microbial protein samples using annotated sequencing data from 690 gut, vaginal, oral, nares, and skin samples currently available through the Human Microbiome Project. Our results suggest significant differences in both the median and variance of the carbon, oxygen, nitrogen, and sulfur contents of microbial protein samples from different locations. For example, whereas proteins from vaginal sites are high in carbon, proteins from skin and nasal sites are high in nitrogen and oxygen. Meanwhile, proteins from stool (the gut) are particularly high in sulfur content. We interpret these differences in terms of the local environments at different human body sites, including atmospheric exposure and food intake rates.

  8. The dormant blood microbiome in chronic, inflammatory diseases

    PubMed Central

    Potgieter, Marnie; Bester, Janette; Kell, Douglas B.; Pretorius, Etheresia

    2015-01-01

    Blood in healthy organisms is seen as a ‘sterile’ environment: it lacks proliferating microbes. Dormant or not-immediately-culturable forms are not absent, however, as intracellular dormancy is well established. We highlight here that a great many pathogens can survive in blood and inside erythrocytes. ‘Non-culturability’, reflected by discrepancies between plate counts and total counts, is commonplace in environmental microbiology. It is overcome by improved culturing methods, and we asked how common this would be in blood. A number of recent, sequence-based and ultramicroscopic studies have uncovered an authentic blood microbiome in a number of non-communicable diseases. The chief origin of these microbes is the gut microbiome (especially when it shifts composition to a pathogenic state, known as ‘dysbiosis’). Another source is microbes translocated from the oral cavity. ‘Dysbiosis’ is also used to describe translocation of cells into blood or other tissues. To avoid ambiguity, we here use the term ‘atopobiosis’ for microbes that appear in places other than their normal location. Atopobiosis may contribute to the dynamics of a variety of inflammatory diseases. Overall, it seems that many more chronic, non-communicable, inflammatory diseases may have a microbial component than are presently considered, and may be treatable using bactericidal antibiotics or vaccines. PMID:25940667

  9. The dormant blood microbiome in chronic, inflammatory diseases.

    PubMed

    Potgieter, Marnie; Bester, Janette; Kell, Douglas B; Pretorius, Etheresia

    2015-07-01

    Blood in healthy organisms is seen as a 'sterile' environment: it lacks proliferating microbes. Dormant or not-immediately-culturable forms are not absent, however, as intracellular dormancy is well established. We highlight here that a great many pathogens can survive in blood and inside erythrocytes. 'Non-culturability', reflected by discrepancies between plate counts and total counts, is commonplace in environmental microbiology. It is overcome by improved culturing methods, and we asked how common this would be in blood. A number of recent, sequence-based and ultramicroscopic studies have uncovered an authentic blood microbiome in a number of non-communicable diseases. The chief origin of these microbes is the gut microbiome (especially when it shifts composition to a pathogenic state, known as 'dysbiosis'). Another source is microbes translocated from the oral cavity. 'Dysbiosis' is also used to describe translocation of cells into blood or other tissues. To avoid ambiguity, we here use the term 'atopobiosis' for microbes that appear in places other than their normal location. Atopobiosis may contribute to the dynamics of a variety of inflammatory diseases. Overall, it seems that many more chronic, non-communicable, inflammatory diseases may have a microbial component than are presently considered, and may be treatable using bactericidal antibiotics or vaccines.

  10. The subgingival microbiome of clinically healthy current and never smokers.

    PubMed

    Mason, Matthew R; Preshaw, Philip M; Nagaraja, Haikady N; Dabdoub, Shareef M; Rahman, Anis; Kumar, Purnima S

    2015-01-01

    Dysbiotic oral bacterial communities have a critical role in the etiology and progression of periodontal diseases. The goal of this study was to investigate the extent to which smoking increases risk for disease by influencing the composition of the subgingival microbiome in states of clinical health. Subgingival plaque samples were collected from 200 systemically and periodontally healthy smokers and nonsmokers. 16S pyrotag sequencing was preformed generating 1,623,713 classifiable sequences, which were compared with a curated version of the Greengenes database using the quantitative insights into microbial ecology pipeline. The subgingival microbial profiles of smokers and never-smokers were different at all taxonomic levels, and principal coordinate analysis revealed distinct clustering of the microbial communities based on smoking status. Smokers demonstrated a highly diverse, pathogen-rich, commensal-poor, anaerobic microbiome that is more closely aligned with a disease-associated community in clinically healthy individuals, suggesting that it creates an at-risk-for-harm environment that is primed for a future ecological catastrophe.

  11. A Stoichioproteomic Analysis of Samples from the Human Microbiome Project

    PubMed Central

    Vecchio-Pagan, Briana; Bewick, Sharon; Mainali, Kumar; Karig, David K.; Fagan, William F.

    2017-01-01

    Ecological stoichiometry (ES) uses organism-specific elemental content to explain differences in species life histories, species interactions, community organization, environmental constraints and even ecosystem function. Although ES has been successfully applied to a range of different organisms, most emphasis on microbial ecological stoichiometry focuses on lake, ocean, and soil communities. With the recent advances in human microbiome research, however, large amounts of data are being generated that describe differences in community composition across body sites and individuals. We suggest that ES may provide a framework for beginning to understand the structure, organization, and function of human microbial communities, including why certain organisms exist at certain locations, and how they interact with both the other microbes in their environment and their human host. As a first step, we undertake a stoichioproteomic analysis of microbial communities from different body sites. Specifically, we compare and contrast the elemental composition of microbial protein samples using annotated sequencing data from 690 gut, vaginal, oral, nares, and skin samples currently available through the Human Microbiome Project. Our results suggest significant differences in both the median and variance of the carbon, oxygen, nitrogen, and sulfur contents of microbial protein samples from different locations. For example, whereas proteins from vaginal sites are high in carbon, proteins from skin and nasal sites are high in nitrogen and oxygen. Meanwhile, proteins from stool (the gut) are particularly high in sulfur content. We interpret these differences in terms of the local environments at different human body sites, including atmospheric exposure and food intake rates. PMID:28769875

  12. The role of the microbiome in rheumatic diseases.

    PubMed

    Yeoh, Nigel; Burton, Jeremy P; Suppiah, Praema; Reid, Gregor; Stebbings, Simon

    2013-03-01

    There is a growing understanding of the mechanisms by which the influence of the microbiota projects beyond sites of primary mucosal occupation to other human body systems. Bacteria present in the intestinal tract exert a profound effect on the host immune system, both locally and at distant sites. The oral cavity has its own characteristic microbiota, which concentrates in periodontal tissues and is in close association with a permeable epithelium. In this review we examine evidence which supports a role for the microbiome in the aetiology of rheumatic disease. We also discuss how changes in the composition of the microbiota, particularly within the gastrointestinal tract, may be affected by genetics, diet, and use of antimicrobial agents. Evidence is presented to support the theory that an altered microbiota is a factor in the initiation and perpetuation of inflammatory diseases, including rheumatoid arthritis (RA), spondyloarthritis (SpA), and inflammatory bowel disease (IBD). Mechanisms through which the microbiota may be involved in the pathogenesis of these diseases include altered epithelial and mucosal permeability, loss of immune tolerance to components of the indigenous microbiota, and trafficking of both activated immune cells and antigenic material to the joints. The potential to manipulate the microbiome, by application of probiotics and faecal microbial transplant (FMT), is now being investigated. Both approaches are in their infancy with regard to management of rheumatic disease but their potential is worthy of consideration, given the need for novel therapeutic approaches, and the emerging recognition of the importance of microbial interactions with human hosts.

  13. Microbiome and mucosal inflammation as extra-articular triggers for rheumatoid arthritis and autoimmunity

    PubMed Central

    Brusca, Samuel B; Abramson, Steven B; Scher, Jose U

    2014-01-01

    Purpose of Review Despite progress towards understanding the molecular pathogenesis of Rheumatoid Arthritis (RA), its etiology remains elusive. Genes are important but rather insufficient to explain the majority of RA cases. This review describes novel data supporting the microbiome and its interactions with the human host as potential en(‘in’)vironmental factors in RA pathogenesis. Recent Findings Animal models of inflammatory arthritis have shown that the presence of bacteria in mucosal surfaces is sufficient to alter local and systemic host immune responses and elicit joint inflammation. Human RA studies have focused on three mucosal sites: the gut, the gingival, and the respiratory tree. The oral microbiome, and specifically Porphyromonas gingivalis (P. gingivalis), has long been implicated. Novel sequencing technologies have allowed investigations into the role of the gut microbiome in the development of autoimmune arthritis. Most recently, the pulmonary parenchyma has also been described as yet another possible mucosal site of initiation of autoimmunity in RA. Summary Emerging data implicates the microbiome in RA pathogenesis. Mucosal sites exposed to a high load of bacterial antigens - such as the periodontium, lung, and gut - may represent the initial site of autoimmune generation. If validated, these findings could lead to the discovery of potential biomarkers and therapeutic approaches in the pre-clinical and clinical phases of RA. PMID:24247114

  14. Microbiome and mucosal inflammation as extra-articular triggers for rheumatoid arthritis and autoimmunity.

    PubMed

    Brusca, Samuel B; Abramson, Steven B; Scher, Jose U

    2014-01-01

    Despite the progress toward understanding the molecular pathogenesis of rheumatoid arthritis (RA), its cause remains elusive. Genes are important but rather insufficient to explain the majority of RA cases. This review describes the novel data supporting the microbiome and its interactions with the human host as potential en('in')vironmental factors in RA pathogenesis. Animal models of inflammatory arthritis have shown that the presence of bacteria in mucosal surfaces is sufficient to alter local and systemic host immune responses and elicit joint inflammation. Human RA studies have focused on three mucosal sites: the gut, the gingiva, and the respiratory tree. The oral microbiome, and specifically Porphyromonas gingivalis, has long been implicated. Novel sequencing technologies have allowed investigations into the role of the gut microbiome in the development of autoimmune arthritis. Most recently, the pulmonary parenchyma has also been described as yet another possible mucosal site of initiation of autoimmunity in RA. Emerging data implicate the microbiome in RA pathogenesis. Mucosal sites exposed to a high load of bacterial antigens--such as the periodontium, lung, and gut--may represent the initial site of autoimmune generation. If validated, these findings could lead to the discovery of potential biomarkers and therapeutic approaches in the preclinical and clinical phases of RA.

  15. The establishment of the infant intestinal microbiome is not affected by rotavirus vaccination

    PubMed Central

    Ang, Li; Arboleya, Silvia; Lihua, Guo; Chuihui, Yuan; Nan, Qin; Suarez, Marta; Solís, Gonzalo; de los Reyes-Gavilán, Clara G.; Gueimonde, Miguel

    2014-01-01

    The microbial colonization of the intestine during the first months of life constitutes the most important process for the microbiota-induced host-homeostasis. Alterations in this process may entail a high-risk for disease in later life. However, the potential factors affecting this process in the infant are not well known. Moreover, the potential impact of orally administered vaccines upon the establishing microbiome remains unknown. Here we assessed the intestinal microbiome establishment process and evaluated the impact of rotavirus vaccination upon this process. Metagenomic, PCR-DGGE and faecal short chain fatty acids analyses were performed on faecal samples obtained from three infants before and after the administration of each dose of vaccine. We found a high inter-individual variability in the early life gut microbiota at microbial composition level, but a large similarity between the infants' microbiomes at functional level. Rotavirus vaccination did not show any major effects upon the infant gut microbiota. Thus, the individual microbiome establishment and development process seems to occur in a defined manner during the first stages of life and rotavirus vaccination appears to be inconsequential for this process. PMID:25491920

  16. Identifying personal microbiomes using metagenomic codes.

    PubMed

    Franzosa, Eric A; Huang, Katherine; Meadow, James F; Gevers, Dirk; Lemon, Katherine P; Bohannan, Brendan J M; Huttenhower, Curtis

    2015-06-02

    Community composition within the human microbiome varies across individuals, but it remains unknown if this variation is sufficient to uniquely identify individuals within large populations or stable enough to identify them over time. We investigated this by developing a hitting set-based coding algorithm and applying it to the Human Microbiome Project population. Our approach defined body site-specific metagenomic codes: sets of microbial taxa or genes prioritized to uniquely and stably identify individuals. Codes capturing strain variation in clade-specific marker genes were able to distinguish among 100s of individuals at an initial sampling time point. In comparisons with follow-up samples collected 30-300 d later, ∼30% of individuals could still be uniquely pinpointed using metagenomic codes from a typical body site; coincidental (false positive) matches were rare. Codes based on the gut microbiome were exceptionally stable and pinpointed >80% of individuals. The failure of a code to match its owner at a later time point was largely explained by the loss of specific microbial strains (at current limits of detection) and was only weakly associated with the length of the sampling interval. In addition to highlighting patterns of temporal variation in the ecology of the human microbiome, this work demonstrates the feasibility of microbiome-based identifiability-a result with important ethical implications for microbiome study design. The datasets and code used in this work are available for download from huttenhower.sph.harvard.edu/idability.

  17. The Pediatric Microbiome and the Lung

    PubMed Central

    Tracy, Michael; Cogen, Jonathan; Hoffman, Lucas R.

    2015-01-01

    Purpose of review Many pediatric lung diseases are characterized by infection. These infections are generally diagnosed, studied, and treated using standard culture methods to identify “traditional pathogens”. Based on these techniques, healthy lungs have generally been thought to be sterile. However, recent advances in culture-independent microbiological techniques challenge this paradigm by identifying diverse microbes in respiratory specimens (respiratory microbiomes) from both healthy people and those with diverse lung diseases. In addition, growing evidence suggests a link between gastrointestinal microbiomes and inflammatory diseases of various mucosal surfaces, including airways. Recent findings This article reviews the rapidly developing field of respiratory microbiome research, emphasizing recent progress made employing increasingly sophisticated technologies. While many of the relevant studies have focused on adults with cystic fibrosis (CF), recent research has included children and adults with other respiratory diseases, as well as healthy subjects. These studies suggest that even healthy children have airway microbiomes, and that both respiratory and gastrointestinal microbiomes often differ between healthy people and those with different types and severities of airway disease. The causal relationships between microbiomes, disease type and progression, and treatments such as antibiotics must now be defined. Summary The advent of culture-independent microbiological techniques has transformed how we think about the relationship between microbes and airway disease. More research is required to translate these findings to improved therapies and preventive strategies. PMID:25888147

  18. Vaginal Microbiome Characterization of Nellore Cattle Using Metagenomic Analysis.

    PubMed

    Laguardia-Nascimento, Mateus; Branco, Kelly Moreira Grillo Ribeiro; Gasparini, Marcela Ribeiro; Giannattasio-Ferraz, Silvia; Leite, Laura Rabelo; Araujo, Flávio Marcos Gomes; Salim, Anna Christina de Matos; Nicoli, Jacques Robert; de Oliveira, Guilherme Corrêa; Barbosa-Stancioli, Edel Figueiredo

    2015-01-01

    Understanding of microbial communities inhabiting cattle vaginal tract may lead to a better comprehension of bovine physiology and reproductive health being of great economic interest. Up to date, studies involving cattle microbiota are focused on the gastrointestinal tract, and little is known about the vaginal microbiota. This study aimed to investigate the vaginal microbiome in Nellore cattle, heifers and cows, pregnant and non-pregnant, using a culture independent approach. The main bacterial phyla found were Firmicutes (~40-50%), Bacteroidetes (~15-25%) and Proteobacteria (~5-25%), in addition to ~10-20% of non-classified bacteria. 45-55% of the samples were represented by only ten OTUs: Aeribacillus, Bacteroides, Clostridium, Ruminococcus, Rikenella, Alistipes, Bacillus, Eubacterium, Prevotella and non-classified bacteria. Interestingly, microbiota from all 20 animals could be grouped according to the respiratory metabolism of the main OTUs found, creating three groups of vaginal microbiota in cattle. Archaeal samples were dominated by the Methanobrevibacter genus (Euryarchaeota, ~55-70%). Ascomycota was the main fungal phylum (~80-95%) and Mycosphaerella the most abundant genus (~70-85%). Hormonal influence was not clear, but a tendency for the reduction of bacterial and increase of archaeal populations in pregnant animals was observed. Eukaryotes did not vary significantly between pregnant and non-pregnant animals, but tended to be more abundant on cows than on heifers. The present work describes a great microbial variability in the vaginal community among the evaluated animals and groups (heifers and cows, pregnant and non-pregnant), which is significantly different from the findings previously reported using culture dependent methods, pointing out the need for further studies on this issue. The microbiome found also indicates that the vaginal colonization appears to be influenced by the gastrointestinal community.

  19. Vaginal Microbiome Characterization of Nellore Cattle Using Metagenomic Analysis

    PubMed Central

    Laguardia-Nascimento, Mateus; Branco, Kelly Moreira Grillo Ribeiro; Gasparini, Marcela Ribeiro; Giannattasio-Ferraz, Silvia; Leite, Laura Rabelo; Araujo, Flávio Marcos Gomes; Salim, Anna Christina de Matos; Nicoli, Jacques Robert; de Oliveira, Guilherme Corrêa; Barbosa-Stancioli, Edel Figueiredo

    2015-01-01

    Understanding of microbial communities inhabiting cattle vaginal tract may lead to a better comprehension of bovine physiology and reproductive health being of great economic interest. Up to date, studies involving cattle microbiota are focused on the gastrointestinal tract, and little is known about the vaginal microbiota. This study aimed to investigate the vaginal microbiome in Nellore cattle, heifers and cows, pregnant and non-pregnant, using a culture independent approach. The main bacterial phyla found were Firmicutes (~40–50%), Bacteroidetes (~15–25%) and Proteobacteria (~5–25%), in addition to ~10–20% of non-classified bacteria. 45–55% of the samples were represented by only ten OTUs: Aeribacillus, Bacteroides, Clostridium, Ruminococcus, Rikenella, Alistipes, Bacillus, Eubacterium, Prevotella and non-classified bacteria. Interestingly, microbiota from all 20 animals could be grouped according to the respiratory metabolism of the main OTUs found, creating three groups of vaginal microbiota in cattle. Archaeal samples were dominated by the Methanobrevibacter genus (Euryarchaeota, ~55–70%). Ascomycota was the main fungal phylum (~80–95%) and Mycosphaerella the most abundant genus (~70–85%). Hormonal influence was not clear, but a tendency for the reduction of bacterial and increase of archaeal populations in pregnant animals was observed. Eukaryotes did not vary significantly between pregnant and non-pregnant animals, but tended to be more abundant on cows than on heifers. The present work describes a great microbial variability in the vaginal community among the evaluated animals and groups (heifers and cows, pregnant and non-pregnant), which is significantly different from the findings previously reported using culture dependent methods, pointing out the need for further studies on this issue. The microbiome found also indicates that the vaginal colonization appears to be influenced by the gastrointestinal community. PMID:26599789

  20. Intestinal Fungal Dysbiosis Is Associated With Visceral Hypersensitivity in Patients With Irritable Bowel Syndrome and Rats.

    PubMed

    Botschuijver, Sara; Roeselers, Guus; Levin, Evgeni; Jonkers, Daisy M; Welting, Olaf; Heinsbroek, Sigrid E M; de Weerd, Heleen H; Boekhout, Teun; Fornai, Matteo; Masclee, Ad A; Schuren, Frank H J; de Jonge, Wouter J; Seppen, Jurgen; van den Wijngaard, René M

    2017-10-01

    Visceral hypersensitivity is one feature of irritable bowel syndrome (IBS). Bacterial dysbiosis might be involved in the activation of nociceptive sensory pathways, but there have been few studies of the role of the mycobiome (the fungal microbiome) in the development of IBS. We analyzed intestinal mycobiomes of patients with IBS and a rat model of visceral hypersensitivity. We used internal transcribed spacer 1-based metabarcoding to compare fecal mycobiomes of 18 healthy volunteers with those of 39 patients with IBS (with visceral hypersensitivity or normal levels of sensitivity). We also compared the mycobiomes of Long-Evans rats separated from their mothers (hypersensitive) with non-handled (normally sensitive) rats. We investigated whether fungi can cause visceral hypersensitivity using rats exposed to fungicide (fluconazole and nystatin). The functional relevance of the gut mycobiome was confirmed in fecal transplantation experiments: adult maternally separated rats were subjected to water avoidance stress (to induce visceral hypersensitivity), then given fungicide and donor cecum content via oral gavage. Other rats subjected to water avoidance stress were given soluble β-glucans, which antagonize C-type lectin domain family 7 member A (CLEC7A or DECTIN1) signaling via spleen-associated tyrosine kinase (SYK), a SYK inhibitor to reduce visceral hypersensitivity, or vehicle (control). The sensitivity of mast cells to fungi was tested with mesenteric windows (ex vivo) and the human mast cell line HMC-1. α diversity (Shannon index) and mycobiome signature (stability selection) of both groups of IBS patients differed from healthy volunteers, and the mycobiome signature of hypersensitive patients differed from that of normally sensitive patients. We observed mycobiome dysbiosis in rats that had been separated from their mothers compared with non-handled rats. Administration of fungicide to hypersensitive rats reduced their visceral hypersensitivity to normal

  1. Same Exposure but Two Radically Different Responses to Antibiotics: Resilience of the Salivary Microbiome versus Long-Term Microbial Shifts in Feces

    PubMed Central

    Brandt, Bernd W.; Teixeira de Mattos, M. Joost; Buijs, Mark J.; Caspers, Martien P. M.; Rashid, Mamun-Ur; Weintraub, Andrej; Nord, Carl Erik; Savell, Ann; Hu, Yanmin; Coates, Antony R.; Hubank, Mike; Spratt, David A.; Wilson, Michael; Keijser, Bart J. F.; Crielaard, Wim

    2015-01-01

    ABSTRACT Due to the spread of resistance, antibiotic exposure receives increasing attention. Ecological consequences for the different niches of individual microbiomes