Science.gov

Sample records for oral poliovirus vaccine

  1. Immunization of newborn children with living oral trivalent poliovirus vaccine.

    PubMed

    CAMPILLO-SAINZ, C; ORNELAS HERNANDEZ, A; DE MUCHA MACIAS, J; NAVA, S E

    1962-09-01

    Campillo-Sainz, C. (Instituto Nacional de Virología de la S.S.A., México, D.F.), A. Ornelas Hernandez, J. de Mucha Macías, and S. E. Nava. Immunization of newborn children with living oral trivalent poliovirus vaccine. J. Bacteriol. 84:446-450. 1962.-The serological response to one dose of living oral trivalent polio-virus vaccine was compared in two groups of children, 49 vaccinated at birth and 44 vaccinated at the age of 4 months. Of those vaccinated at birth, 44 (90%) responded to the vaccine strains of type 1 and type 3 and 30 (61%) to the type 2 strain. Of those vaccinated at 4 months of age; 64% responded to type 1, 52% to type 2, and 82% to type 3. The difference between the responses of the two groups, which for type 1 is significant, may result from the interference of other enteric viruses in the 4-month-old children. A second dose of vaccine, administered to the children vaccinated at birth when they reached the age of 4 months, increased the over-all immunological response to 100% for types 1 and 3 and 96% for type 2, and showed that no immunological tolerance had been developed. The vaccine produced no undesirable effects in any of the children, and no paralytic poliomyelitis occurred among them. The observation of other investigators, that a high titer of maternal antibody inhibits immunological response to vaccination, was confirmed, but breast feeding apparently had no unfavorable effect on response.

  2. IMMUNIZATION OF NEWBORN CHILDREN WITH LIVING ORAL TRIVALENT POLIOVIRUS VACCINE

    PubMed Central

    Campillo-Sainz, C.; Hernandez, A. Ornelas; MacÍas, J. de Mucha; Nava, S. E.

    1962-01-01

    Campillo-Sainz, C. (Instituto Nacional de Virología de la S.S.A., México, D.F.), A. Ornelas Hernandez, J. de Mucha Macías, and S. E. Nava. Immunization of newborn children with living oral trivalent poliovirus vaccine. J. Bacteriol. 84:446–450. 1962.—The serological response to one dose of living oral trivalent polio-virus vaccine was compared in two groups of children, 49 vaccinated at birth and 44 vaccinated at the age of 4 months. Of those vaccinated at birth, 44 (90%) responded to the vaccine strains of type 1 and type 3 and 30 (61%) to the type 2 strain. Of those vaccinated at 4 months of age; 64% responded to type 1, 52% to type 2, and 82% to type 3. The difference between the responses of the two groups, which for type 1 is significant, may result from the interference of other enteric viruses in the 4-month-old children. A second dose of vaccine, administered to the children vaccinated at birth when they reached the age of 4 months, increased the over-all immunological response to 100% for types 1 and 3 and 96% for type 2, and showed that no immunological tolerance had been developed. The vaccine produced no undesirable effects in any of the children, and no paralytic poliomyelitis occurred among them. The observation of other investigators, that a high titer of maternal antibody inhibits immunological response to vaccination, was confirmed, but breast feeding apparently had no unfavorable effect on response. PMID:14018173

  3. Comprehensive screening for immunodeficiency-associated vaccine-derived poliovirus: an essential oral poliovirus vaccine cessation risk management strategy.

    PubMed

    Duintjer Tebbens, R J; Thompson, K M

    2017-01-01

    If the world can successfully control all outbreaks of circulating vaccine-derived poliovirus that may occur soon after global oral poliovirus vaccine (OPV) cessation, then immunodeficiency-associated vaccine-derived polioviruses (iVDPVs) from rare and mostly asymptomatic long-term excretors (defined as ⩾6 months of excretion) will become the main source of potential poliovirus outbreaks for as long as iVDPV excretion continues. Using existing models of global iVDPV prevalence and global long-term poliovirus risk management, we explore the implications of uncertainties related to iVDPV risks, including the ability to identify asymptomatic iVDPV excretors to treat with polio antiviral drugs (PAVDs) and the transmissibility of iVDPVs. The expected benefits of expanded screening to identify and treat long-term iVDPV excretors with PAVDs range from US$0.7 to 1.5 billion with the identification of 25-90% of asymptomatic long-term iVDPV excretors, respectively. However, these estimates depend strongly on assumptions about the transmissibility of iVDPVs and model inputs affecting the global iVDPV prevalence. For example, the expected benefits may decrease to as low as US$260 million with the identification of 90% of asymptomatic iVDPV excretors if iVDPVs behave and transmit like partially reverted viruses instead of fully reverted viruses. Comprehensive screening for iVDPVs will reduce uncertainties and maximize the expected benefits of PAVD use.

  4. Oral and Inactivated Poliovirus Vaccines in the Newborn: A review

    PubMed Central

    Mateen, Farrah J.; Shinohara, Russell T.; Sutter, Roland W.

    2015-01-01

    Background Oral poliovirus vaccine (OPV) remains the vaccine-of-choice for routine immunization and supplemental immunization activities (SIAs) to eradicate poliomyelitis globally. Recent data from India suggested lowerthanexpected immunogenicity of an OPV birth dose, prompting a review of the immunogenicity of OPV or inactivated poliovirus vaccine (IPV) when administered at birth. Methods We evaluated the seroconversion and reported adverse events among infants given a single birth dose (given ≤7 days of life) of OPV or IPV through a systematic review of published articles and conference abstracts from 1959-2011 in any language found on PubMed, Google Scholar, or reference lists of selected articles. Results 25 articles from 13 countries published between1959 and 2011 documented seroconversion rates in newborns following an OPV dose given within the first seven days of life. There were 10 studies that measured seroconversion rates between 4 and 8 weeks of a single birth dose of TOPV, using an umbilical cord blood draw at the time of birth to establish baseline antibody levels. The percentage of newborns who seroconverted at 8 weeks range 6-42% for poliovirus type 1, 2-63% for type 2, and 1-35% for type 3). For mOPV type 1, seroconversion ranged from 10-76%; mOPV type 3, the range was 12-58%; and for the one study reporting bOPV, it was 20% for type 1 and 7% for type 3. There were four studies of IPV in newborns with a seroconversion rate of 8-100% for serotype 1, 15-100% for serotype 2, and 15-94% for serotype 3, measured at 4-6 weeks of life. No serious adverse events related to newborn OPV or IPV dosing were reported, including no cases of acute flaccid paralysis. Conclusions There is great variability of the immunogenicity of a birth dose of OPV for reasons largely unknown. Our review confirms the utility of a birth dose of OPV, particularly in countries where early induction of polio immunity is imperative. IPV has higher seroconversion rates in newborns and

  5. Oral iodine supplementation does not reduce neutralizing antibody responses to oral poliovirus vaccine.

    PubMed Central

    Taffs, R. E.; Enterline, J. C.; Rusmil, K.; Muhilal; Suwardi, S. S.; Rustama, D.; Djatnika; Cobra, C.; Semba, R. D.; Cohen, N.; Asher, D. M.

    1999-01-01

    Iodine deficiency is a major cause of impaired mental development, goitre, and cretinism in many parts of the world. Because existing immunization programmes can be used to deliver oral iodized oil (OIO) to infants at risk, it was important to know whether OIO could adversely affect the antibody response to vaccines, such as trivalent oral poliovirus vaccine (OPV). A randomized, double-blind, placebo-controlled clinical trial was conducted in Subang, West Java, Indonesia, in which 617 eight-week-old infants received either OIO or a placebo (poppy-seed oil) during a routine visit for their first dose of OPV as part of the Expanded Programme on Immunization (EPI). The infants received two boosters of OPV at 4-week intervals after the first dose, and were followed up when 6 months old. Neutralizing antibody titres to poliovirus serotypes 1, 2, and 3 were compared in serum samples that were taken from 478 of these infants just before the first dose of OPV and at 6 months. It was found that oral iodized oil did not reduce the antibody responses to any of the three serotypes of OPV. These results indicate that oral iodine may safely be delivered to infants at the same time as oral poliovirus vaccine according to current EPI immunization schedules. PMID:10427933

  6. Development of real-time PCR to detect oral vaccine-like poliovirus and its application to environmental surveillance.

    PubMed

    Iwai-Itamochi, Masae; Yoshida, Hiromu; Obara-Nagoya, Mayumi; Horimoto, Eiji; Kurata, Takeshi; Takizawa, Takenori

    2014-01-01

    In order to perform environmental surveillance to track oral poliovirus vaccine-like poliovirus sensitively and conveniently, real-time PCR was developed and applied to a raw sewage concentrate. The real-time PCR method detected 0.01-0.1 TCID50 of 3 serotypes of Sabin strain specifically. The method also detected the corresponding serotypes of oral poliovirus vaccine-like poliovirus specifically, but detected neither wild poliovirus, except Mahoney for type 1 and Saukett for type 3, nor other enteric viruses, as far as examined. When real-time PCR was applied to environmental surveillance, the overall agreement rates between real-time PCR and the cell culture were 83.3% for all serotypes. Since real-time PCR has the advantages of rapid detection of viruses and minimum requirement of sampling volume as compared with ordinary cell culture, it is suitable to monitor oral poliovirus vaccine-like poliovirus in the environment, especially in areas where an oral vaccine is being replaced by an inactivated vaccine.

  7. Transmission dynamics of oral polio vaccine viruses and vaccine-derived polioviruses on networks.

    PubMed

    Kim, Jong-Hoon; Rho, Seong-Hwan

    2015-01-07

    One drawback of oral polio vaccine (OPV) is the potential reversion to more transmissible, virulent circulating vaccine-derived polioviruses (cVDPVs), which may cause outbreaks of paralytic poliomyelitis. Previous modeling studies of the transmission of cVDPVs assume an unrealistic homogeneous mixing of the population and/or ignore that OPV viruses and cVDPVs compete for susceptibles, which we show is a key to understanding the dynamics of the transmission of cVDPVs. We examined the transmission of OPV viruses and cVDPVs on heterogeneous, dynamic contact networks using differential equation-based and individual-based models. Despite the lower transmissibility, OPV viruses may outcompete more transmissible cVDPVs in the short run by spreading extensively before cVDPVs emerge. If viruses become endemic, however, cVDPVs eventually dominate and force OPV viruses to extinction. This study improves our understanding of the emergence of cVDPVs and helps develop more detailed models to plan a policy to control paralytic polio associated with the continued use of OPV in many countries.

  8. Microevolution of type 3 Sabin strain of poliovirus in cell cultures and its implications for oral poliovirus vaccine quality control.

    PubMed

    Rezapkin, G V; Norwood, L P; Taffs, R E; Dragunsky, E M; Levenbook, I S; Chumakov, K M

    1995-08-20

    Screening for sequence heterogeneities in Sabin Type 3 strains of attenuated poliovirus demonstrated mutations that consistently accumulate to significant levels following 10 passages in cultures of primary African green monkey kidney (AGMK) cells or continuous cultures of Vero cells. Fourteen newly identified mutations were quantified by mutant analysis by PCR and restriction enzyme cleavage in passages and in batches of commercial vaccines made in AGMK and Vero cells from the Sabin original (SO) seed virus and from a seed virus rederived by RNA plaque purification (RSO or "Pfizer" seed). Nine of the 14 mutations were reproducibly observed in more than one series of passages. Although 5 other mutations were observed in only one set of passages each, their content gradually increased to a high percentage, suggesting that all the mutations that we found accumulated consistently. SO-derived samples accumulated more mutations than did RSO-derived ones, and the number of mutations and the rates of their accumulation were higher in Vero than in AGMK cells. While the rates of accumulation of most mutations were higher when passaging was performed at 37 degrees, a U-->C transition at nucleotide 5832 occurred faster at 34 degrees, the temperature used for vaccine production. Analysis of Type 3 oral poliovirus vaccine (OPV) monopools made by six manufacturers found only 5 of these newly identified mutations in vaccine batches (nucleotides 3956, 4935, 5357, 5788, and 5832). Some of the mutations were found in trace amounts (less than 0.1%) while others were present at up to 1.8% levels. The pattern of these mutations was characteristic for the type of seed virus and the cell substrate but demonstrated no correlation with results of the monkey neurovirulence test. Therefore the only mutation occurring in Type 3 OPV which contributed to neurovirulence in monkeys was the previously described reversion at nucleotide 472. Quantitation of reversion at nucleotide 472 can be

  9. Effect of buffer on the immune response to trivalent oral poliovirus vaccine in Bangladesh: a community based randomized controlled trial.

    PubMed

    Chandir, Subhash; Ahamed, Kabir U; Baqui, Abdullah H; Sutter, Roland W; Okayasu, Hiromasa; Pallansch, Mark A; Oberste, Mark S; Moulton, Lawrence H; Halsey, Neal A

    2014-11-01

    Polio eradication efforts have been hampered by low responses to trivalent oral poliovirus vaccine (tOPV) in some developing countries. Since stomach acidity may neutralize vaccine viruses, we assessed whether administration of a buffer solution could improve the immunogenicity of tOPV. Healthy infants 4-6 weeks old in Sylhet, Bangladesh, were randomized to receive tOPV with or without a sodium bicarbonate and sodium citrate buffer at age 6, 10, and 14 weeks. Levels of serum neutralizing antibodies for poliovirus types 1, 2, and 3 were measured before and after vaccination, at 6 and 18 weeks of age, respectively. Serologic response rates following 3 doses of tOPV for buffer recipients and control infants were 95% and 88% (P=.065), respectively, for type 1 poliovirus; 95% and 97% (P=.543), respectively, for type 2 poliovirus; and 90% and 89% (P=.79), respectively, for type 3 poliovirus. Administration of a buffer solution prior to vaccination was not associated with statistically significant increases in the immune response to tOPV; however, a marginal 7% increase (P=.065) in serologic response to poliovirus type 1 was observed. NCT01579825. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Viruses in sewage waters during and after a poliomyelitis outbreak and subsequent nationwide oral poliovirus vaccination campaign in Finland.

    PubMed Central

    Pöyry, T; Stenvik, M; Hovi, T

    1988-01-01

    During an outbreak of paralytic poliomyelitis in Finland in 1984 and 1985 the widespread circulation of the causative wild-type serotype 3 poliovirus in the population was documented by demonstrating the virus in sewage water specimens in 13 different locations in the greater Helsinki district and in 13 other cities or towns all over the country. After the nationwide campaign with oral poliovirus vaccine in 1985, poliovirus serotypes 2 and 3 were readily isolated from sewage waters for up to 2 months, whereas type 1 poliovirus seemed to disappear from the sewage more rapidly. All of these isolates were temperature sensitive and therefore most likely vaccine related. The efficacy of the vaccination campaign in regard to elimination of the epidemic type 3 strain was evaluated by a follow-up study on viruses in sewage waters continued for 12 months through the subsequent expected season of poliomyelitis. Several types of enteroviruses, including five vaccine-related poliovirus strains, were identified in the 72 virus-positive specimens out of 93 studied. No wild-type polioviruses were found, indicating the success of the campaign. PMID:2833160

  11. [Genetic recombination in vaccine poliovirus: comparative study in strains excreted in course of vaccination by oral poliovirus vaccine and circulating strains].

    PubMed

    Haddad-Boubaker, S; Ould-Mohamed-Abdallah, M V; Ben-Yahia, A; Triki, H

    2010-12-01

    Recombination is one of the major mechanisms of evolution in poliovirus. In this work, recombination was assessed in children during vaccination with OPV and among circulating vaccine strains isolated in Tunisia during the last 15 years in order to identify a possible role of recombination in the response to the vaccine or the acquisition of an increased transmissibility. This study included 250 poliovirus isolates: 137 vaccine isolates, excreted by children during primary vaccination with OPV and 113 isolates obtained from acute flaccid paralytic (AFP) cases and healthy contacts. Recombination was first assessed using a double PCR-RFLP, and sequencing. Nineteen per cent of recombinant strains were identified: 20% of strains excreted by vaccinees among 18% of circulating strains. The proportion of recombinant in isolates of serotype1 was very low in the two groups while the proportions of recombinants in serotypes 2 and 3 were different. In vaccinees, the frequency of recombinants in serotype3 decreased during the course of vaccination: 54% after the first dose, 32% after the second and 14% after the third dose. These results suggest that recombination enhances the ability of serotype3 vaccine strains to induce an immune response. Apart from recent vaccination, it may contribute to a more effective transmissibility of vaccine strains among human population. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  12. Development of oral CTL vaccine using a CTP-integrated Sabin 1 poliovirus-based vector system.

    PubMed

    Han, Seung-Soo; Lee, Jinjoo; Jung, Yideul; Kang, Myeong-Ho; Hong, Jung-Hyub; Cha, Min-Suk; Park, Yu-Jin; Lee, Ezra; Yoon, Cheol-Hee; Bae, Yong-Soo

    2015-09-11

    We developed a CTL vaccine vector by modification of the RPS-Vax system, a mucosal vaccine vector derived from a poliovirus Sabin 1 strain, and generated an oral CTL vaccine against HIV-1. A DNA fragment encoding a cytoplasmic transduction peptide (CTP) was integrated into the RPS-Vax system to generate RPS-CTP, a CTL vaccine vector. An HIV-1 p24 cDNA fragment was introduced into the RPS-CTP vector system and a recombinant poliovirus (rec-PV) named vRPS-CTP/p24 was produced. vRPS-CTP/p24 was genetically stable and efficiently induced Th1 immunity and p24-specific CTLs in immunized poliovirus receptor-transgenic (PVR-Tg) mice. In challenge experiments, PVR-Tg mice that were pre-immunized orally with vRPS-CTP/p24 were resistant to challenge with a lethal dose of p24-expressing recombinant vaccinia virus (rMVA-p24). These results suggested that the RPS-CTP vector system had potential for developing oral CTL vaccines against infectious diseases.

  13. Analysis of mutations in oral poliovirus vaccine by hybridization with generic oligonucleotide microchips.

    SciTech Connect

    Proudnikov, D.; Kirillov, E.; Chumakov, K.; Donion, J.; Rezapkin, G.; Mirzabekov, A.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology; Center for Biologics Evaluation and Research

    2000-01-01

    This paper describes use of a new technology of hybridization with a micro-array of immobilized oligonucleotides for detection and quantification of neurovirulent mutants in Oral Poliovirus Vaccine (OPV). We used a micro-array consisting of three-dimensional gel-elements containing all possible hexamers (total of 4096 probes). Hybridization of fluorescently labelled viral cDNA samples with such microchips resulted in a pattern of spots that was registered and quantified by a computer-linked CCD camera, so that the sequence of the original cDNA could be deduced. The method could reliably identify single point mutations, since each of them affected fluorescence intensity of 12 micro-array elements. Micro-array hybridization of DNA mixtures with varying contents of point mutants demonstrated that the method can detect as little as 10% of revertants in a population of vaccine virus. This new technology should be useful for quality control of live viral vaccines, as well as for other applications requiring identification and quantification of point mutations.

  14. Microevolution of Sabin 1 strain in vitro and genetic stability of oral poliovirus vaccine.

    PubMed

    Rezapkin, G V; Chumakov, K M; Lu, Z; Ran, Y; Dragunsky, E M; Levenbook, I S

    1994-07-01

    Mutants consistently accumulating in Sabin 1 poliovirus during serial passaging in vitro were identified by sequence heterogeneity assay and quantitated using mutant analysis by PCR and restriction enzyme cleavage (MAPREC). Only four unstable genomic sites were identified in virus passaged 10 times in African green monkey kidney (AGMK) cells, and eight sites in virus passaged in Vero cells. Mutations accumulated both in untranslated regions of RNA (nucleotides 480, 525 and 7441) and in coding sequences, as missense (nucleotides 1449, 4944, and 6203) or silent (nucleotides 1123 and 1141) mutations. The most prominent selectable mutations were found at complementary nucleotides 480 and 525 of the 5'-untranslated region (5'-UTR) of the Sabin strain, changing the G:U pair in F-domain to either A:U or G:C variants. These two variants have been shown previously to have an increased neurovirulence in monkeys. The G:C variant accumulated during passage in Vero cells, while A:U variant accumulated in CV-1 cells. Virus passaged in AGMK cells accumulated both variants. Higher temperature (37 instead of 34 degrees) strongly favored selection of mutants in Vero cells, had a smaller effect on mutant accumulation in AGMK cells, and had no effect in CV-1 cells. Monopools of type 1 oral poliovirus vaccine (OPV) made by seven manufacturers were found to contain both 480-A and 525-C revertants at a combined level of 1.1-2.7%. Viral samples with increased amounts of these revertants had higher neurovirulence in monkeys. Our results suggest that quantitation of these reversions by MAPREC may be prognostic for results of the monkey neurovirulence test (MNVT) and can be used for monitoring type 1 OPV consistency.

  15. The potential benefits of a new poliovirus vaccine for long-term poliovirus risk management.

    PubMed

    Duintjer Tebbens, Radboud J; Thompson, Kimberly M

    2016-12-01

    To estimate the incremental net benefits (INBs) of a hypothetical ideal vaccine with all of the advantages and no disadvantages of existing oral and inactivated poliovirus vaccines compared with current vaccines available for future outbreak response. INB estimates based on expected costs and polio cases from an existing global model of long-term poliovirus risk management. Excluding the development costs, an ideal poliovirus vaccine could offer expected INBs of US$1.6 billion. The ideal vaccine yields small benefits in most realizations of long-term risks, but great benefits in low-probability-high-consequence realizations. New poliovirus vaccines may offer valuable insurance against long-term poliovirus risks and new vaccine development efforts should continue as the world gathers more evidence about polio endgame risks.

  16. Guidance for Assessment of Poliovirus Vaccination Status and Vaccination of Children Who Have Received Poliovirus Vaccine Outside the United States.

    PubMed

    Marin, Mona; Patel, Manisha; Oberste, Steve; Pallansch, Mark A

    2017-01-13

    In 1988, the World Health Assembly resolved to eradicate poliomyelitis (polio). Since then, wild poliovirus (WPV) cases have declined by >99.9%, from an estimated 350,000 cases of polio each year to 74 cases in two countries in 2015 (1). This decrease was achieved primarily through the use of trivalent oral poliovirus vaccine (tOPV), which contains types 1, 2, and 3 live, attenuated polioviruses. Since 2000, the United States has exclusively used inactivated polio vaccine (IPV), which contains all three poliovirus types (2,3). In 2013, the World Health Organization (WHO) set a target of a polio-free world by 2018 (4). Of the three WPV types, type 2 was declared eradicated in September 2015. To remove the risk for infection with circulating type 2 vaccine-derived polioviruses (cVDPV), which can lead to paralysis similar to that caused by WPV, all OPV-using countries simultaneously switched in April 2016 from tOPV to bivalent OPV (bOPV), which contains only types 1 and 3 polioviruses (5). This report summarizes current Advisory Committee on Immunization Practices (ACIP) recommendations for poliovirus vaccination and provides CDC guidance, in the context of the switch from tOPV to bOPV, regarding assessment of vaccination status and vaccination of children who might have received poliovirus vaccine outside the United States, to ensure that children living in the United States (including immigrants and refugees) are protected against all three poliovirus types. This guidance is not new policy and does not change the recommendations of ACIP for poliovirus vaccination in the United States. Children living in the United States who might have received poliovirus vaccination outside the United States should meet ACIP recommendations for poliovirus vaccination, which require protection against all three poliovirus types by age-appropriate vaccination with IPV or tOPV. In the absence of vaccination records indicating receipt of these vaccines, only vaccination or

  17. Seroprevalence of poliovirus antibodies among 7-month-old infants after 4 doses of oral polio vaccine in Sistan-va-Baluchestan, Islamic Republic of Iran.

    PubMed

    Izadi, S; Shahmahmoodi, S; Zahraei, S M; Dorostkar, F; Majdzadeh, S-R

    2015-04-02

    Despite high coverage rates of polio vaccine in the Islamic Republic of Iran, the seroconversion rates of infants may be inadequate. This study measured seroprevalence of antibodies against poliovirus serotypes 1 to 3 (PV1, PV2 and PV3) in 7-month-old infants who had received at least 4 doses of trivalent oral polio vaccine. A serosurvey was conducted in 2010 in rural areas of Chabahar, Sistan-va-Baluchestan province. Using cluster sampling, 72 eligible infants were tested for antibody against the 3 poliovirus serotypes according to WHO guidelines. Antibody titres ≥ 1:10 were considered positive. The seropositive rates for antibody against PV1, PV2 and PV3 were 84.7%, 95.8% and 70.8% respectively. Only 63.9% of participants were seropositive for antibodies against all 3 poliovirus serotypes. Except for PV2, the seroprevalence of antibody against the other 2 poliovirus serotypes, especially PV3, was unsatisfactory.

  18. Correlation between amount of virus with altered nucleotide sequence and the monkey test for acceptability of oral poliovirus vaccine.

    PubMed Central

    Chumakov, K M; Powers, L B; Noonan, K E; Roninson, I B; Levenbook, I S

    1991-01-01

    Production of live attenuated oral poliomyelitis vaccine (OPV) requires rigorous neurovirulence safety testing of each vaccine lot, currently carried out in monkeys. It has been reported that a change from 472-U to 472-C in the type 3 OPV RNA is associated with an increased histologic lesion score produced upon intraspinal inoculation of the mutant virus in monkeys. We have developed a method, based on polymerase chain reaction, for measuring the relative abundance of these mutant sequences directly in vaccine preparations and used this method to evaluate the proportion of 472-C in 40 different lots of type 3 OPV. Six vaccine lots that had failed the intraspinal monkey neurovirulence test contained a higher proportion of 472-C than all other lots that had passed this test. OPV type 3 virus containing 472-C was rapidly selected during serial passages in African green monkey kidney cells that are used for manufacturing of the vaccine. We have also found that the wild-type poliovirus type 3 strain Leon/37, from which the vaccine strain was originally derived, contained a mixture of 472-U and 472-C sequences. No other mutations in OPV type 3 RNA have been detected by similar assays at position 2034, also associated with attenuation, or at several other positions reported to be altered in some vaccine preparations. Our results suggest that molecular diagnostics may provide a supplement or a potential alternative to animal testing of live attenuated vaccines. Images PMID:1846038

  19. Interrupting the transmission of wild polioviruses with vaccines: immunological considerations.

    PubMed Central

    Ghendon, Y.; Robertson, S. E.

    1994-01-01

    In 1988 the World Health Assembly set the goal of global poliomyelitis eradication by the year 2000. Substantial progress has been made, and 143 countries reported no poliomyelitis cases associated with the wild virus in 1993. This article reviews the immunological considerations relevant to interrupting the transmission of wild polioviruses with vaccines. Although serum immunity prevents poliomyelitis in the individual, it is local immunity that is important in preventing the transmission of polioviruses in the community. Natural infection and vaccination with oral polioviruses vaccine (OPV) produce local immunity in the intestine and the nasopharynx in about 70-80% of individuals. In contrast, inactivated poliovirus vaccine (IPV) produces local intestinal immunity in only 20-30% of the individuals. With either vaccine, however, a substantial proportion of the immunized population can transmit the wild virus. Moreover, although serum immunity is long-lasting, limited data suggest that local immunity may not be as persistent. To interrupt the transmission of wild polioviruses efforts should be made to achieve and sustain high levels of poliovirus vaccine coverage. Recent outbreaks show that wild poliovirus poses a risk for unimmunized individuals, even when overall coverage levels are high. Delivery of poliovirus vaccine to hard-to-reach populations will be of increasing importance as countries progress toward the final stages of poliomyelitis eradication. The immunization status of persons from poliomyelitis-free countries should be updated prior to travel to poliomyelitis-endemic areas. PMID:7867144

  20. Inactivated poliovirus vaccine given alone or in a sequential schedule with bivalent oral poliovirus vaccine in Chilean infants: a randomised, controlled, open-label, phase 4, non-inferiority study.

    PubMed

    O'Ryan, Miguel; Bandyopadhyay, Ananda S; Villena, Rodolfo; Espinoza, Mónica; Novoa, José; Weldon, William C; Oberste, M Steven; Self, Steve; Borate, Bhavesh R; Asturias, Edwin J; Clemens, Ralf; Orenstein, Walter; Jimeno, José; Rüttimann, Ricardo; Costa Clemens, Sue Ann

    2015-11-01

    Bivalent oral poliovirus vaccine (bOPV; types 1 and 3) is expected to replace trivalent OPV (tOPV) globally by April, 2016, preceded by the introduction of at least one dose of inactivated poliovirus vaccine (IPV) in routine immunisation programmes to eliminate vaccine-associated or vaccine-derived poliomyelitis from serotype 2 poliovirus. Because data are needed on sequential IPV-bOPV schedules, we assessed the immunogenicity of two different IPV-bOPV schedules compared with an all-IPV schedule in infants. We did a randomised, controlled, open-label, non-inferiority trial with healthy, full-term (>2·5 kg birthweight) infants aged 8 weeks (± 7 days) at six well-child clinics in Santiago, Chile. We used supplied lists to randomly assign infants (1:1:1) to receive three polio vaccinations (IPV by injection or bOPV as oral drops) at age 8, 16, and 24 weeks in one of three sequential schedules: IPV-bOPV-bOPV, IPV-IPV-bOPV, or IPV-IPV-IPV. We did the randomisation with blocks of 12 stratified by study site. All analyses were done in a masked manner. Co-primary outcomes were non-inferiority of the bOPV-containing schedules compared with the all-IPV schedule for seroconversion (within a 10% margin) and antibody titres (within two-thirds log2 titres) to poliovirus serotypes 1 and 3 at age 28 weeks, analysed in the per-protocol population. Secondary outcomes were seroconversion and titres to serotype 2 and faecal shedding for 4 weeks after a monovalent OPV type 2 challenge at age 28 weeks. Safety analyses were done in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT01841671, and is closed to new participants. Between April 25 and August 1, 2013, we assigned 570 infants to treatment: 190 to IPV-bOPV-bOPV, 192 to IPV-IPV-bOPV, and 188 to IPV-IPV-IPV. 564 (99%) were vaccinated and included in the intention-to-treat cohort, and 537 (94%) in the per-protocol analyses. In the IPV-bOPV-bOPV, IPV-IPV-bOPV, and IPV-IPV-IPV groups

  1. Spread of Vaccine-Derived Poliovirus from a Paralytic Case in an Immunodeficient Child: an Insight into the Natural Evolution of Oral Polio Vaccine

    PubMed Central

    Cherkasova, E. A.; Yakovenko, M. L.; Rezapkin, G. V.; Korotkova, E. A.; Ivanova, O. E.; Eremeeva, T. P.; Krasnoproshina, L. I.; Romanenkova, N. I.; Rozaeva, N. R.; Sirota, L.; Agol, V. I.; Chumakov, K. M.

    2005-01-01

    Sabin strains used in the manufacture of oral polio vaccine (OPV) replicate in the human organism and can give rise to vaccine-derived polioviruses. The increased neurovirulence of vaccine derivatives has been known since the beginning of OPV use, but their ability to establish circulation in communities has been recognized only recently during the latest stages of the polio eradication campaign. This important observation called for studies of their emergence and evolution as well as extensive surveillance to determine the scope of this phenomenon. Here, we present the results of a study of vaccine-derived isolates from an immunocompromised poliomyelitis patient, the contacts, and the local sewage. All isolates were identified as closely related and slightly evolved vaccine derivatives with a recombinant type 2/type 1 genome. The strains also shared several amino acid substitutions including a mutation in the VP1 protein that was previously shown to be associated with the loss of attenuation. Another mutation in the VP3 protein resulted in altered immunological properties of the isolates, possibly facilitating virus spread in immunized populations. The patterns and rates of the accumulation of synonymous mutations in isolates collected from the patient over the extended period of excretion suggest either a substantially nonuniform rate of mutagenesis throughout the genome, or, more likely, the strains may have been intratypic recombinants between coevolving derivatives with different degrees of divergence from the vaccine parent. This study provides insight into the early stages of the establishment of circulation by runaway vaccine strains. PMID:15613335

  2. Poliovirus vaccination during the endgame: insights from integrated modeling.

    PubMed

    Duintjer Tebbens, Radboud J; Thompson, Kimberly M

    2017-06-01

    Managing the polio endgame requires access to sufficient quantities of poliovirus vaccines. After oral poliovirus vaccine (OPV) cessation, outbreaks may occur that require outbreak response using monovalent OPV (mOPV) and/or inactivated poliovirus vaccine. Areas covered: We review the experience and challenges with managing vaccine supplies in the context of the polio endgame. Building on models that explored polio endgame risks and the potential mOPV needs to stop outbreaks from live poliovirus reintroductions, we conceptually explore the potential demands for finished and bulk mOPV doses from a stockpile in the context of limited shelf-life of finished vaccine and time delays to convert bulk to finished vaccine. Our analysis suggests that the required size of the mOPV stockpile varies by serotype, with the highest expected needs for serotype 1 mOPV. Based on realizations of poliovirus risks after OPV cessation, the stockpile required to eliminate the chance of a stock-out appears considerably larger than the currently planned mOPV stockpiles. Expert commentary: The total required stockpile size depends on the acceptable probability of a stock-out, and increases with longer times to finish bulk doses and shorter shelf-lives of finished doses. Successful polio endgame management will require careful attention to poliovirus vaccine supplies.

  3. Circulating vaccine-derived polioviruses: current state of knowledge.

    PubMed Central

    Kew, Olen M.; Wright, Peter F.; Agol, Vadim I.; Delpeyroux, Francis; Shimizu, Hiroyuki; Nathanson, Neal; Pallansch, Mark A.

    2004-01-01

    Within the past 4 years, poliomyelitis outbreaks associated with circulating vaccine-derived polioviruses (cVDPVs) have occurred in Hispaniola (2000-01), the Philippines (2001), and Madagascar (2001-02). Retrospective studies have also detected the circulation of endemic cVDPV in Egypt (1988-93) and the likely localized spread of oral poliovirus vaccine (OPV)-derived virus in Belarus (1965-66). Gaps in OPV coverage and the previous eradication of the corresponding serotype of indigenous wild poliovirus were the critical risk factors for all cVDPV outbreaks. The cVDPV outbreaks were stopped by mass immunization campaigns using OPV. To increase sensitivity for detecting vaccine-derived polioviruses (VDPVs), in 2001 the Global Polio Laboratory Network implemented additional testing requirements for all poliovirus isolates under investigation. This approach quickly led to the recognition of the Philippines and Madagascar cVDPV outbreaks, but of no other current outbreaks. The potential risk of cVDPV emergence has increased dramatically in recent years as wild poliovirus circulation has ceased in most of the world. The risk appears highest for the type 2 OPV strain because of its greater tendency to spread to contacts. The emergence of cVDPVs underscores the critical importance of eliminating the last pockets of wild poliovirus circulation, maintaining universally high levels of polio vaccine coverage, stopping OPV use as soon as it is safely possible to do so, and continuing sensitive poliovirus surveillance into the foreseeable future. Particular attention must be given to areas where the risks for wild poliovirus circulation have been highest, and where the highest rates of polio vaccine coverage must be maintained to suppress cVDPV emergence. PMID:15106296

  4. An infectious cDNA clone of the poliovirus Sabin strain could be used as a stable repository and inoculum for the oral polio live vaccine.

    PubMed

    Kohara, M; Abe, S; Kuge, S; Semler, B L; Komatsu, T; Arita, M; Itoh, H; Nomoto, A

    1986-05-01

    Viruses were recovered from HeLa S3 cells and African green monkey kidney (AGMK) cells transfected with an infectious cDNA clone of poliovirus vaccine Sabin 1 strain. The viruses recovered from the different DNA-transfected cells were tested for the biological characteristics of temperature sensitivity (rct marker), plaque size, and bicarbonate concentration dependency (d marker). The results revealed that the above properties were similar to those obtained from tests on the Sabin 1 vaccine reference strain. The recovered viruses and the vaccine reference virus were passaged in AGMK cells at an elevated temperature of 37.5 degrees, and the passaged isolates were tested for the rct marker. The virus recovered from AGMK cells had the most stable rct phenotype while the virus from HeLa S3 cells had a similar stability to that of the reference virus, suggesting that the virus from AGMK cells would be more suitable as a vaccine strain than the other two viruses. Furthermore, an infectious cDNA clone of high specific infectivity, constructed by introducing SV40 large T antigen into the plasmid, was used for production of high titers of virus after transfection. The results of in vitro biological tests on the recovered virus suggested that virus produced in the transfected AGMK cells also had the high quality that is desirable in vaccine stocks. Monkey neurovirulence tests performed with these recovered viruses revealed that the recovered viruses were weakly neurovirulent, similar to the vaccine reference virus. The infectious cDNA clone of the poliovirus vaccine strain could therefore be used to generate a possible inoculum of the oral polio live vaccine. Our findings strongly suggest that an infectious cDNA clone of poliovirus RNA may be used to preserve the constancy and quality of the present seed viruses of the Sabin 1 vaccine strain.

  5. Decay of Sabin inactivated poliovirus vaccine (IPV)-boosted poliovirus antibodies

    PubMed Central

    Resik, Sonia; Tejeda, Alina; Fonseca, Magile; Sein, Carolyn; Hung, Lai Heng; Martinez, Yenisleidys; Diaz, Manuel; Okayasu, Hiromasa; Sutter, Roland W.

    2015-01-01

    Introduction We conducted a follow-on study to a phase I randomized, controlled trial conducted in Cuba, 2012, to assess the persistence of poliovirus antibodies at 21–22 months following booster dose of Sabin-IPV compared to Salk-IPV in adults who had received multiple doses of oral poliovirus vaccine (OPV) during childhood. Methods In 2012, 60 healthy adult males aged 19–23 were randomized to receive one booster dose, of either Sabin-inactivated poliovirus vaccine (Sabin-IPV), adjuvanted Sabin-IPV (aSabin-IPV), or conventional Salk-IPV. In the original study, blood was collected at days 0 (before) and 28 (after vaccination), respectively. In this study, an additional blood sample was collected 21–22 months after vaccination, and tested for neutralizing antibodies to Sabin poliovirus types 1, 2 and 3. Results We collected sera from 59/60 (98.3%) subjects; 59/59 (100%) remained seropositive to all poliovirus types, 21–22 months after vaccination. The decay curves were very similar among the study groups. Between day 28 and 21–22 months, there was a reduction of ⩾87.4% in median antibody levels for all poliovirus types in all study groups, with no significant differences between the study groups. Conclusion The decay of poliovirus antibodies over a 21–22-month period was similar regardless of the type of booster vaccine used, suggesting the scientific data of Salk IPV long-term persistence and decay may be broadly applicable to Sabin IPV. PMID:27066157

  6. The effect of mass immunisation campaigns and new oral poliovirus vaccines on the incidence of poliomyelitis in Pakistan and Afghanistan, 2001-11: a retrospective analysis.

    PubMed

    O'Reilly, Kathleen M; Durry, Elias; ul Islam, Obaid; Quddus, Arshad; Abid, Ni'ma; Mir, Tahir P; Tangermann, Rudi H; Aylward, R Bruce; Grassly, Nicholas C

    2012-08-04

    Pakistan and Afghanistan are two of the three remaining countries yet to interrupt wild-type poliovirus transmission. The increasing incidence of poliomyelitis in these countries during 2010-11 led the Executive Board of WHO in January, 2012, to declare polio eradication a "programmatic emergency for global public health". We aimed to establish why incidence is rising in these countries despite programme innovations including the introduction of new vaccines. We did a matched case-control analysis based on a database of 46,977 children aged 0-14 years with onset of acute flaccid paralysis between Jan 1, 2001, and Dec 31, 2011. The vaccination history of children with poliomyelitis was compared with that of children with acute flaccid paralysis due to other causes to estimate the clinical effectiveness of oral poliovirus vaccines (OPVs) in Afghanistan and Pakistan by conditional logistic regression. We estimated vaccine coverage and serotype-specific vaccine-induced population immunity in children aged 0-2 years and assessed their association with the incidence of poliomyelitis over time in seven regions of Afghanistan and Pakistan. Between Jan 1, 2001, and Dec 31, 2011, there were 883 cases of serotype 1 poliomyelitis (710 in Pakistan and 173 in Afghanistan) and 272 cases of poliomyelitis serotype 3 (216 in Pakistan and 56 in Afghanistan). The estimated clinical effectiveness of a dose of trivalent OPV against serotype 1 poliomyelitis was 12·5% (95% CI 5·6-18·8) compared with 34·5% (16·1-48·9) for monovalent OPV (p=0·007) and 23·4% (10·4-34·6) for bivalent OPV (p=0·067). Bivalent OPV was non-inferior compared with monovalent OPV (p=0·21). Vaccination coverage decreased during 2006-11 in the Federally Administered Tribal Areas (FATA), Balochistan, and Khyber Pakhtunkhwa in Pakistan and in southern Afghanistan. Although partially mitigated by the use of more effective vaccines, these decreases in coverage resulted in lower vaccine-induced population

  7. The effect of mass immunisation campaigns and new oral poliovirus vaccines on the incidence of poliomyelitis in Pakistan and Afghanistan, 2001–11: a retrospective analysis

    PubMed Central

    O'Reilly, Kathleen M; Durry, Elias; ul Islam, Obaid; Quddus, Arshad; Abid, Ni'ma; Mir, Tahir P; Tangermann, Rudi H; Aylward, R Bruce; Grassly, Nicholas C

    2012-01-01

    Summary Background Pakistan and Afghanistan are two of the three remaining countries yet to interrupt wild-type poliovirus transmission. The increasing incidence of poliomyelitis in these countries during 2010–11 led the Executive Board of WHO in January, 2012, to declare polio eradication a “programmatic emergency for global public health”. We aimed to establish why incidence is rising in these countries despite programme innovations including the introduction of new vaccines. Methods We did a matched case-control analysis based on a database of 46 977 children aged 0–14 years with onset of acute flaccid paralysis between Jan 1, 2001, and Dec 31, 2011. The vaccination history of children with poliomyelitis was compared with that of children with acute flaccid paralysis due to other causes to estimate the clinical effectiveness of oral poliovirus vaccines (OPVs) in Afghanistan and Pakistan by conditional logistic regression. We estimated vaccine coverage and serotype-specific vaccine-induced population immunity in children aged 0–2 years and assessed their association with the incidence of poliomyelitis over time in seven regions of Afghanistan and Pakistan. Findings Between Jan 1, 2001, and Dec 31, 2011, there were 883 cases of serotype 1 poliomyelitis (710 in Pakistan and 173 in Afghanistan) and 272 cases of poliomyelitis serotype 3 (216 in Pakistan and 56 in Afghanistan). The estimated clinical effectiveness of a dose of trivalent OPV against serotype 1 poliomyelitis was 12·5% (95% CI 5·6–18·8) compared with 34·5% (16·1–48·9) for monovalent OPV (p=0·007) and 23·4% (10·4–34·6) for bivalent OPV (p=0·067). Bivalent OPV was non-inferior compared with monovalent OPV (p=0·21). Vaccination coverage decreased during 2006–11 in the Federally Administered Tribal Areas (FATA), Balochistan, and Khyber Pakhtunkhwa in Pakistan and in southern Afghanistan. Although partially mitigated by the use of more effective vaccines, these decreases in

  8. [Inactivated poliovirus vaccines: an inevitable choice for eliminating poliomyelitis].

    PubMed

    Vidor, J D; Jean-Denis, Shu

    2016-12-06

    The inactivated poliovirus vaccine (IPV) is a very old tool in the fight against poliomyelitis. Though supplanted by oral poliovirus vaccine (OPV) in the 1960s and 1970s, the IPV has now become an inevitable choice because of the increasingly recognized risks associated with continuous use of OPVs. Following the pioneering work of Jonas Salk, who established key principles for the IPV, considerable experience has accumulated over the years. This work has led to modern Salk IPV-containing vaccines, based on the use of inactivated wildtype polioviruses, which have been deployed for routine use in many countries. Very good protection against paralysis is achieved with IPV through the presence of circulating antibodies able to neutralize virus infectivity toward motor neurons. In addition, with IPV, a variable degree of protection against mucosal infection (and therefore transmission) through mucosal antibodies and immune cells is achieved, depending on previous exposure of subjects to wildtype or vaccine polioviruses. The use of an IPV-followed-by-OPV sequential immunization schedule has the potential advantage of eliminating the vaccine-associated paralytic poliomyelitis (VAPP) risk, while limiting the risks of vaccine-derived poliovirus (VDPVs). Sabin strain-derived IPVs are new tools, only recently beginning to be deployed, and data are being generated to document their performance. IPVs will play an irreplaceable role in global eradication of polio.

  9. Detection of Imported Wild Polioviruses and of Vaccine-Derived Polioviruses by Environmental Surveillance in Egypt

    PubMed Central

    El Bassioni, Laila; El Maamoon Nasr, Eman M.; Paananen, Anja; Kaijalainen, Svetlana; Asghar, Humayun; de Gourville, Esther; Roivainen, Merja

    2012-01-01

    Systematic environmental surveillance for poliovirus circulation has been conducted in Egypt since 2000. The surveillance has revealed three independent importations of wild-type poliovirus. In addition, several vaccine-derived polioviruses have been detected in various locations in Egypt. In addition to acute flaccid paralysis (AFP) surveillance, environmental surveillance can be used to monitor the wild poliovirus and vaccine-derived poliovirus circulation in populations in support of polio eradication initiatives. PMID:22582070

  10. Molecular characterization of poliovirus isolates from children who contracted vaccine-associated paralytic poliomyelitis (VAPP) following administration of monovalent type 3 oral poliovirus vaccine in the 1960s in Hungary.

    PubMed

    Kapusinszky, Beatrix; Molnár, Zsuzsanna; Szomor, Katalin N; Berencsi, György

    2010-03-01

    Hungarian children were immunized with monovalent oral poliovaccine (mOPV) delivered at 6-week intervals in the order Sabin 1, Sabin 3, Sabin 2, from 1959 until 1992. During that period, 90 cases of vaccine-associated paralytic poliomyelitis (VAPP) were reported, 52 of which were associated with Sabin 3-related virus (76% of VAPP cases with virologic data). Because of renewed interest in type 3 mOPV (mOPV3), molecular methods were used to reanalyze 18 of the Sabin 3-related isolates from 15 VAPP patients, confirming the original identification. All isolates had the U472C 5'-untranslated region (5'-UTR) substitution associated with reversion to neurovirulence, and from zero to seven nucleotide substitutions in the virus protein 1 (VP1) region. No evidence was found for prolonged mOPV3 replication in the VAPP patients or for spread of Sabin 3-related viruses beyond close vaccinee contacts. The VAPP diseases were prevented by a single dose of inactivated poliovirus vaccine from 1992 to 2006 in Hungary, as proved by continuous surveillance of acute flaccid paralysis.

  11. Environmental Isolation of Circulating Vaccine-Derived Poliovirus After Interruption of Wild Poliovirus Transmission - Nigeria, 2016.

    PubMed

    Etsano, Andrew; Damisa, Eunice; Shuaib, Faisal; Nganda, Gatei Wa; Enemaku, Ogu; Usman, Samuel; Adeniji, Adekunle; Jorba, Jaume; Iber, Jane; Ohuabunwo, Chima; Nnadi, Chimeremma; Wiesen, Eric

    2016-08-05

    In September 2015, more than 1 year after reporting its last wild poliovirus (WPV) case in July 2014 (1), Nigeria was removed from the list of countries with endemic poliovirus transmission,* leaving Afghanistan and Pakistan as the only remaining countries with endemic WPV. However, on April 29, 2016, a laboratory-confirmed, circulating vaccine-derived poliovirus type 2 (cVDPV2) isolate was reported from an environmental sample collected in March from a sewage effluent site in Maiduguri Municipal Council, Borno State, a security-compromised area in northeastern Nigeria. VDPVs are genetic variants of the vaccine viruses with the potential to cause paralysis and can circulate in areas with low population immunity. The Nigeria National Polio Emergency Operations Center initiated emergency response activities, including administration of at least 2 doses of oral poliovirus vaccine (OPV) to all children aged <5 years through mass campaigns; retroactive searches for missed cases of acute flaccid paralysis (AFP), and enhanced environmental surveillance. Approximately 1 million children were vaccinated in the first OPV round. Thirteen previously unreported AFP cases were identified. Enhanced environmental surveillance has not resulted in detection of additional VDPV isolates. The detection of persistent circulation of VDPV2 in Borno State highlights the low population immunity, surveillance limitations, and risk for international spread of cVDPVs associated with insurgency-related insecurity. Increasing vaccination coverage with additional targeted supplemental immunization activities and reestablishment of effective routine immunization activities in newly secured and difficult-to-reach areas in Borno is urgently needed.

  12. Humoral and intestinal immunity induced by new schedules of bivalent oral poliovirus vaccine and one or two doses of inactivated poliovirus vaccine in Latin American infants: an open-label randomised controlled trial.

    PubMed

    Asturias, Edwin J; Bandyopadhyay, Ananda S; Self, Steve; Rivera, Luis; Saez-Llorens, Xavier; Lopez, Eduardo; Melgar, Mario; Gaensbauer, James T; Weldon, William C; Oberste, M Steven; Borate, Bhavesh R; Gast, Chris; Clemens, Ralf; Orenstein, Walter; O'Ryan G, Miguel; Jimeno, José; Clemens, Sue Ann Costa; Ward, Joel; Rüttimann, Ricardo

    2016-07-09

    Replacement of the trivalent oral poliovirus vaccine (tOPV) with bivalent types 1 and 3 oral poliovirus vaccine (bOPV) and global introduction of inactivated poliovirus vaccine (IPV) are major steps in the polio endgame strategy. In this study, we assessed humoral and intestinal immunity in Latin American infants after three doses of bOPV combined with zero, one, or two doses of IPV. This open-label randomised controlled multicentre trial was part of a larger study. 6-week-old full-term infants due for their first polio vaccinations, who were healthy on physical examination, with no obvious medical conditions and no known chronic medical disorders, were enrolled from four investigational sites in Colombia, Dominican Republic, Guatemala, and Panama. The infants were randomly assigned by permuted block randomisation (through the use of a computer-generated list, block size 36) to nine groups, of which five will be discussed in this report. These five groups were randomly assigned 1:1:1:1 to four permutations of schedule: groups 1 and 2 (control groups) received bOPV at 6, 10, and 14 weeks; group 3 (also a control group, which did not count as a permutation) received tOPV at 6, 10, and 14 weeks; group 4 received bOPV plus one dose of IPV at 14 weeks; and group 5 received bOPV plus two doses of IPV at 14 and 36 weeks. Infants in all groups were challenged with monovalent type 2 vaccine (mOPV2) at 18 weeks (groups 1, 3, and 4) or 40 weeks (groups 2 and 5). The primary objective was to assess the superiority of bOPV-IPV schedules over bOPV alone, as assessed by the primary endpoints of humoral immunity (neutralising antibodies-ie, seroconversion) to all three serotypes and intestinal immunity (faecal viral shedding post-challenge) to serotype 2, analysed in the per-protocol population. Serious and medically important adverse events were monitored for up to 6 months after the study vaccination. This study is registered with ClinicalTrials.gov, number NCT01831050, and has

  13. National choices related to inactivated poliovirus vaccine, innovation and the endgame of global polio eradication.

    PubMed

    Thompson, Kimberly M; Duintjer Tebbens, Radboud J

    2014-02-01

    Achieving the goal of a world free of poliomyelitis still requires significant effort. Although polio immunization represents a mature area, the polio endgame will require new tools and strategies, particularly as national and global health leaders coordinate the cessation of all three serotypes of oral poliovirus vaccine and increasingly adopt inactivated poliovirus vaccine (IPV). Poliovirus epidemiology and the global options for managing polioviruses continue to evolve, along with our understanding and appreciation of the resources needed and the risks that require management. Based on insights from modeling, we offer some perspective on the current status of plans and opportunities to achieve and maintain a world free of wild polioviruses and to successfully implement oral poliovirus vaccine cessation. IPV costs and potential wastage will represent an important consideration for national policy makers. Innovations may reduce future IPV costs, but the world urgently needs lower-cost IPV options.

  14. Population Immunity against Serotype-2 Poliomyelitis Leading up to the Global Withdrawal of the Oral Poliovirus Vaccine: Spatio-temporal Modelling of Surveillance Data

    PubMed Central

    O’Reilly, Kathleen M.; Etsano, Andrew; Vaz, Rui Gama; Jafari, Hamid; Grassly, Nicholas C.; Blake, Isobel M.

    2016-01-01

    Background Global withdrawal of serotype-2 oral poliovirus vaccine (OPV2) took place in April 2016. This marked a milestone in global polio eradication and was a public health intervention of unprecedented scale, affecting 155 countries. Achieving high levels of serotype-2 population immunity before OPV2 withdrawal was critical to avoid subsequent outbreaks of serotype-2 vaccine-derived polioviruses (VDPV2s). Methods and Findings In August 2015, we estimated vaccine-induced population immunity against serotype-2 poliomyelitis for 1 January 2004–30 June 2015 and produced forecasts for April 2016 by district in Nigeria and Pakistan. Population immunity was estimated from the vaccination histories of children <36 mo old identified with non-polio acute flaccid paralysis (AFP) reported through polio surveillance, information on immunisation activities with different oral poliovirus vaccine (OPV) formulations, and serotype-specific estimates of the efficacy of these OPVs against poliomyelitis. District immunity estimates were spatio-temporally smoothed using a Bayesian hierarchical framework. Coverage estimates for immunisation activities were also obtained, allowing for heterogeneity within and among districts. Forward projections of immunity, based on these estimates and planned immunisation activities, were produced through to April 2016 using a cohort model. Estimated population immunity was negatively correlated with the probability of VDPV2 poliomyelitis being reported in a district. In Nigeria and Pakistan, declines in immunity during 2008–2009 and 2012–2013, respectively, were associated with outbreaks of VDPV2. Immunity has since improved in both countries as a result of increased use of trivalent OPV, and projections generally indicated sustained or improved immunity in April 2016, such that the majority of districts (99% [95% uncertainty interval 97%–100%] in Nigeria and 84% [95% uncertainty interval 77%–91%] in Pakistan) had >70% population immunity

  15. Population Immunity against Serotype-2 Poliomyelitis Leading up to the Global Withdrawal of the Oral Poliovirus Vaccine: Spatio-temporal Modelling of Surveillance Data.

    PubMed

    Pons-Salort, Margarita; Molodecky, Natalie A; O'Reilly, Kathleen M; Wadood, Mufti Zubair; Safdar, Rana M; Etsano, Andrew; Vaz, Rui Gama; Jafari, Hamid; Grassly, Nicholas C; Blake, Isobel M

    2016-10-01

    Global withdrawal of serotype-2 oral poliovirus vaccine (OPV2) took place in April 2016. This marked a milestone in global polio eradication and was a public health intervention of unprecedented scale, affecting 155 countries. Achieving high levels of serotype-2 population immunity before OPV2 withdrawal was critical to avoid subsequent outbreaks of serotype-2 vaccine-derived polioviruses (VDPV2s). In August 2015, we estimated vaccine-induced population immunity against serotype-2 poliomyelitis for 1 January 2004-30 June 2015 and produced forecasts for April 2016 by district in Nigeria and Pakistan. Population immunity was estimated from the vaccination histories of children <36 mo old identified with non-polio acute flaccid paralysis (AFP) reported through polio surveillance, information on immunisation activities with different oral poliovirus vaccine (OPV) formulations, and serotype-specific estimates of the efficacy of these OPVs against poliomyelitis. District immunity estimates were spatio-temporally smoothed using a Bayesian hierarchical framework. Coverage estimates for immunisation activities were also obtained, allowing for heterogeneity within and among districts. Forward projections of immunity, based on these estimates and planned immunisation activities, were produced through to April 2016 using a cohort model. Estimated population immunity was negatively correlated with the probability of VDPV2 poliomyelitis being reported in a district. In Nigeria and Pakistan, declines in immunity during 2008-2009 and 2012-2013, respectively, were associated with outbreaks of VDPV2. Immunity has since improved in both countries as a result of increased use of trivalent OPV, and projections generally indicated sustained or improved immunity in April 2016, such that the majority of districts (99% [95% uncertainty interval 97%-100%] in Nigeria and 84% [95% uncertainty interval 77%-91%] in Pakistan) had >70% population immunity among children <36 mo old. Districts with

  16. Transgenic mice as an alternative to monkeys for neurovirulence testing of live oral poliovirus vaccine: validation by a WHO collaborative study.

    PubMed Central

    Dragunsky, Eugenia; Nomura, Tatsuji; Karpinski, Kazimir; Furesz, John; Wood, David J.; Pervikov, Yuri; Abe, Shinobu; Kurata, Takeshi; Vanloocke, Olivier; Karganova, Galina; Taffs, Rolf; Heath, Alan; Ivshina, Anna; Levenbook, Inessa

    2003-01-01

    OBJECTIVE: Extensive WHO collaborative studies were performed to evaluate the suitability of transgenic mice susceptible to poliovirus (TgPVR mice, strain 21, bred and provided by the Central Institute for Experimental Animals, Japan) as an alternative to monkeys in the neurovirulence test (NVT) of oral poliovirus vaccine (OPV). METHODS: Nine laboratories participated in the collaborative study on testing neurovirulence of 94 preparations of OPV and vaccine derivatives of all three serotypes in TgPVR21 mice. FINDINGS: Statistical analysis of the data demonstrated that the TgPVR21 mouse NVT was of comparable sensitivity and reproducibility to the conventional WHO NVT in simians. A statistical model for acceptance/rejection of OPV lots in the mouse test was developed, validated, and shown to be suitable for all three vaccine types. The assessment of the transgenic mouse NVT is based on clinical evaluation of paralysed mice. Unlike the monkey NVT, histological examination of central nervous system tissue of each mouse offered no advantage over careful and detailed clinical observation. CONCLUSIONS: Based on data from the collaborative studies the WHO Expert Committee for Biological Standardization approved the mouse NVT as an alternative to the monkey test for all three OPV types and defined a standard implementation process for laboratories that wish to use the test. This represents the first successful introduction of transgenic animals into control of biologicals. PMID:12764491

  17. Polio eradication. Efficacy of inactivated poliovirus vaccine in India.

    PubMed

    Jafari, Hamid; Deshpande, Jagadish M; Sutter, Roland W; Bahl, Sunil; Verma, Harish; Ahmad, Mohammad; Kunwar, Abhishek; Vishwakarma, Rakesh; Agarwal, Ashutosh; Jain, Shilpi; Estivariz, Concepcion; Sethi, Raman; Molodecky, Natalie A; Grassly, Nicholas C; Pallansch, Mark A; Chatterjee, Arani; Aylward, R Bruce

    2014-08-22

    Inactivated poliovirus vaccine (IPV) is efficacious against paralytic disease, but its effect on mucosal immunity is debated. We assessed the efficacy of IPV in boosting mucosal immunity. Participants received IPV, bivalent 1 and 3 oral poliovirus vaccine (bOPV), or no vaccine. A bOPV challenge was administered 4 weeks later, and excretion was assessed 3, 7, and 14 days later. Nine hundred and fifty-four participants completed the study. Any fecal shedding of poliovirus type 1 was 8.8, 9.1, and 13.5% in the IPV group and 14.4, 24.1, and 52.4% in the control group by 6- to 11-month, 5-year, and 10-year groups, respectively (IPV versus control: Fisher's exact test P < 0.001). IPV reduced excretion for poliovirus types 1 and 3 between 38.9 and 74.2% and 52.8 and 75.7%, respectively. Thus, IPV in OPV-vaccinated individuals boosts intestinal mucosal immunity.

  18. Impact of inactivated poliovirus vaccine on mucosal immunity: implications for the polio eradication endgame

    PubMed Central

    Parker, Edward PK; Molodecky, Natalie A; Pons-Salort, Margarita; O’Reilly, Kathleen M; Grassly, Nicholas C

    2015-01-01

    The polio eradication endgame aims to bring transmission of all polioviruses to a halt. To achieve this aim, it is essential to block viral replication in individuals via induction of a robust mucosal immune response. Although it has long been recognized that inactivated poliovirus vaccine (IPV) is incapable of inducing a strong mucosal response on its own, it has recently become clear that IPV may boost immunity in the intestinal mucosa among individuals previously immunized with oral poliovirus vaccine. Indeed, mucosal protection appears to be stronger following a booster dose of IPV than oral poliovirus vaccine, especially in older children. Here, we review the available evidence regarding the impact of IPV on mucosal immunity, and consider the implications of this evidence for the polio eradication endgame. We conclude that the implementation of IPV in both routine and supplementary immunization activities has the potential to play a key role in halting poliovirus transmission, and thereby hasten the eradication of polio. PMID:26159938

  19. A novel multiplex poliovirus binding inhibition assay applicable for large serosurveillance and vaccine studies, without the use of live poliovirus.

    PubMed

    Schepp, Rutger M; Berbers, Guy A M; Ferreira, José A; Reimerink, Johan H; van der Klis, Fiona R

    2017-03-01

    Large-scale serosurveillance or vaccine studies for poliovirus using the "gold standard" WHO neutralisation test (NT) are very laborious and time consuming. With the polio eradication at hand and with the removal of live attenuated Sabin strains from the oral poliovirus vaccine (OPV), starting with type 2 (as of April 2016), laboratories will need to conform to much more stringent laboratory biosafety regulations when handling live poliovirus strains. In this study, a poliovirus binding inhibition multiplex immunoassay (polio MIA) using inactivated poliovirus vaccine (IPV-Salk) was developed for simultaneous quantification of serum antibodies directed to all three poliovirus types. Our assay shows a good correlation with the NT and an excellent correlation with the ELISA-based binding inhibition assay (POBI). The assay is highly type-specific and reproducible. Additionally, serum sample throughput increases about fivefold relative to NT and POBI and the amount of serum needed is reduced by more than 90%. In conclusion, the polio MIA can be used as a safe and high throughput application, especially for large-scale surveillance and vaccine studies, reducing laboratory time and serum amounts needed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Monovalent type-1 oral poliovirus vaccine given at short intervals in Pakistan: a randomised controlled, four-arm, open-label, non-inferiority trial

    PubMed Central

    Mir, Fatima; Quadri, Farheen; Mach, Ondrej; Ahmed, Imran; Bhatti, Zaid; Khan, Asia; Rehman, Najeeb ur; Durry, Elias; Salama, Maha; Oberste, Steven M; Weldon, William C; Sutter, Roland W; Zaidi, Anita K M

    2015-01-01

    Summary Background Supplementary immunisation activities with oral poliovirus vaccines (OPVs) are usually separated by 4 week intervals; however, shorter intervals have been used in security-compromised areas and for rapid outbreak responses. We assessed the immunogenicity of monovalent type-1 oral poliovirus vaccine (mOPV1) given at shorter than usual intervals in Karachi, Pakistan. Methods This was a multicentre, randomised, controlled, four-arm, open-label, non-inferiority trial done at five primary health-care centres in low-income communities in and around Karachi, Pakistan. Eligible participants were healthy newborn babies with a birthweight of at least 2.5 kg, for whom informed consent was provided by their parent or guardian, and lived less than 30 km from the study clinic. After receiving a birth dose of trivalent OPV, we enrolled and randomly assigned newborn babies (1:1:1:1) to receive two doses of mOPV1 with an interval of 1 week (mOPV1–1 week), 2 weeks (mOPV1–2 weeks), or 4 weeks (mOPV1–4 weeks) between doses, or two doses of bivalent OPV (bOPV) with an interval of 4 weeks between doses (bOPV–4 weeks). We gave the first study dose of OPV at age 6 weeks. We did the randomisation with a centrally generated, computerised allocation sequence with blocks of 16; participants’ families and study physicians could not feasibly be masked to the allocations. Trial participants were excluded from local supplementary immunisation activities during the study period. The primary outcome was non-inferiority (within a 20% margin) between groups in seroconversion to type-1 poliovirus. The primary and safety analyses were done in the per-protocol population of infants who received all three doses of vaccine. This trial is registered with ClinicalTrials.gov, number NCT01586572, and is closed to new participants. Findings Between March 1, 2012, and May 31, 2013, we enrolled 1009 newborn babies, and randomly assigned 829 (82%) to treatment. 554 (67%) of the 829

  1. Risks of paralytic disease due to wild or vaccine-derived poliovirus after eradication.

    PubMed

    Tebbens, Radboud J Duintjer; Pallansch, Mark A; Kew, Olen M; Cáceres, Victor M; Jafari, Hamid; Cochi, Stephen L; Sutter, Roland W; Aylward, R Bruce; Thompson, Kimberly M

    2006-12-01

    After the global eradication of wild polioviruses, the risk of paralytic poliomyelitis from polioviruses will still exist and require active management. Possible reintroductions of poliovirus that can spread rapidly in unprotected populations present challenges to policymakers. For example, at least one outbreak will likely occur due to circulation of a neurovirulent vaccine-derived poliovirus after discontinuation of oral poliovirus vaccine and also could possibly result from the escape of poliovirus from a laboratory or vaccine production facility or from an intentional act. In addition, continued vaccination with oral poliovirus vaccines would result in the continued occurrence of vaccine-associated paralytic poliomyelitis. The likelihood and impacts of reintroductions in the form of poliomyelitis outbreaks depend on the policy decisions and on the size and characteristics of the vulnerable population, which change over time. A plan for managing these risks must begin with an attempt to characterize and quantify them as a function of time. This article attempts to comprehensively characterize the risks, synthesize the existing data available for modeling them, and present quantitative risk estimates that can provide a starting point for informing policy decisions.

  2. Community transmission of type 2 poliovirus after cessation of trivalent oral polio vaccine in Bangladesh: an open-label cluster-randomised trial and modelling study.

    PubMed

    Taniuchi, Mami; Famulare, Michael; Zaman, Khalequ; Uddin, Md Jashim; Upfill-Brown, Alexander M; Ahmed, Tahmina; Saha, Parimalendu; Haque, Rashidul; Bandyopadhyay, Ananda S; Modlin, John F; Platts-Mills, James A; Houpt, Eric R; Yunus, Mohammed; Petri, William A

    2017-07-07

    Trivalent oral polio vaccine (tOPV) was replaced worldwide from April, 2016, by bivalent types 1 and 3 oral polio vaccine (bOPV) and one dose of inactivated polio vaccine (IPV) where available. The risk of transmission of type 2 poliovirus or Sabin 2 virus on re-introduction or resurgence of type 2 poliovirus after this switch is not understood completely. We aimed to assess the risk of Sabin 2 transmission after a polio vaccination campaign with a monovalent type 2 oral polio vaccine (mOPV2). We did an open-label cluster-randomised trial in villages in the Matlab region of Bangladesh. We randomly allocated villages (clusters) to either: tOPV at age 6 weeks, 10 weeks, and 14 weeks; or bOPV at age 6 weeks, 10 weeks, and 14 weeks and either one dose of IPV at age 14 weeks or two doses of IPV at age 14 weeks and 18 weeks. After completion of enrolment, we implemented an mOPV2 vaccination campaign that targeted 40% of children younger than 5 years, regardless of enrolment status. The primary outcome was Sabin 2 incidence in the 10 weeks after the campaign in per-protocol infants who did not receive mOPV2, as assessed by faecal shedding of Sabin 2 by reverse transcriptase quantitative PCR (RT-qPCR). The effect of previous immunity on incidence was also investigated with a dynamical model of poliovirus transmission to observe prevalence and incidence of Sabin 2 virus. This trial is registered at ClinicalTrials.gov, number NCT02477046. Between April 30, 2015, and Jan 14, 2016, individuals from 67 villages were enrolled to the study. 22 villages (300 infants) were randomly assigned tOPV, 23 villages (310 infants) were allocated bOPV and one dose of IPV, and 22 villages (329 infants) were assigned bOPV and two doses of IPV. Faecal shedding of Sabin 2 in infants who did not receive the mOPV2 challenge did not differ between children immunised with bOPV and one or two doses of IPV and those who received tOPV (15 of 252 [6%] vs six of 122 [4%]; odds ratio [OR] 1·29, 95% CI 0

  3. Genetic stability and mutant selection in Sabin 2 strain of oral poliovirus vaccine grown under different cell culture conditions.

    PubMed

    Taffs, R E; Chumakov, K M; Rezapkin, G V; Lu, Z; Douthitt, M; Dragunsky, E M; Levenbook, I S

    1995-06-01

    Mutations that consistently accumulated in the attenuated Sabin 2 strain of poliovirus during propagation in cell cultures were identified by sequence heterogeneity assay and quantified by mutant analysis by PCR and restriction enzyme cleavage (MAPREC). Eight additional sites previously identified in stool isolates were also examined by MAPREC in the virus passages. The pattern of selectable mutations and the rate of their accumulation depended on the type and confluence of the cell culture and the temperature of virus growth. Five unstable genomic sites were identified in Sabin 2 virus passaged 10 times at 34 degrees in African green monkey kidney (AGMK) cells, with the mutations accumulating in the range 1 to 24%. Accumulation of these mutations did not appear to result in a loss of attenuated phenotype since the virus passaged under these conditions passed the monkey neurovirulence test (MNVT). The content of the 481-G revertant known to be related to neurovirulence in monkeys did not increase. Thus, our results suggest that upon growth of Sabin 2 virus in AGMK cells at 34 degrees, the key determinant(s) of attenuation remained stable, and the mutations that occurred did not affect monkey neurovirulence. In virus passaged 10 times at 37 degrees in AGMK cells, 4 unstable genomic sites were identified, in some of them accumulating up to 12% of the mutants. This virus sample severely failed the MNVT. Virus passaged in Vero cells at 34 and 37 degrees accumulated mutants at 7 and 14 genomic sites, respectively, including 481-G in both cases, with almost complete substitution of the original nucleotides at some of the sites. We tested 44 commercial monopools of Type 2 OPV and found out that all of them contained 481-G revertants in the range 0.4-1.1%. An increase in the 481-G revertants in passaged viruses to the level of 4% and above correlated with failure of these samples by the MNVT. Since the pattern of selectable mutations differed in viruses grown in the two

  4. Wild and vaccine-derived poliovirus circulation, and implications for polio eradication.

    PubMed

    Lopalco, P L

    2017-02-01

    Polio cases due to wild virus are reported by only three countries in the world. Poliovirus type 2 has been globally eradicated and the last detection of poliovirus type 3 dates to November 2012. Poliovirus type 1 remains the only circulating wild strain; between January and September 2016 it caused 26 cases (nine in Afghanistan, 14 in Pakistan, three in Nigeria). The use of oral polio vaccine (OPV) has been the key to success in the eradication effort. However, paradoxically, moving towards global polio eradication, the burden caused by vaccine-derived polioviruses (VDPVs) becomes increasingly important. In this paper circulation of both wild virus and VDPVs is reviewed and implications for the polio eradication endgame are discussed. Between April and May 2016 OPV2 cessation has been implemented globally, in a coordinated switch from trivalent OPV to bivalent OPV. In order to decrease the risk for cVDPV2 re-emergence inactivated polio vaccine (IPV) has been introduced in the routine vaccine schedule of all countries. The likelihood of re-emergence of cVDPVs should markedly decrease with time after OPV cessation, but silent circulation of polioviruses cannot be ruled out even a long time after cessation. For this reason, immunity levels against polioviruses should be kept as high as possible in the population by the use of IPV, and both clinical and environmental surveillance should be maintained at a high level.

  5. Three cases of paralytic poliomyelitis associated with type 3 vaccine poliovirus strains in Bulgaria.

    PubMed

    Korsun, Neli; Kojouharova, Mira; Vladimirova, Nadezhda; Fiore, Lucia; Litvinenko, Ivan; Buttinelli, Gabriele; Fiore, Stefano; Voynova-Georgieva, Violeta; Mladenova, Zornitsa; Georgieva, Daniela

    2009-09-01

    Oral poliovirus vaccine (OPV) can cause, in extremely rare cases vaccine-associated paralytic poliomyelitis in recipients, or contacts of vaccinees. Three cases of vaccine-associated paralytic poliomyelitis (two contacts and one recipient) occurred in the Bourgas region of Bulgaria in the spring of 2006. The first two cases, notified as acute flaccid paralysis, were 55 days old unvaccinated twin brothers, having been in contact with vaccinees. The third case concerned a 4-month-old infant who had received the first OPV dose 37 days prior to the onset of illness. Complete clinical, epidemiological, virological, serological and molecular investigations of the children with paralysis and their contacts were undertaken. In all the three cases type 3 polioviruses were isolated from fecal samples and characterized as Sabin-like poliovirus strains. Type 3 polioviruses isolated from the twin brothers demonstrated by sequence analysis U-to-C back mutation at nt 472 of the 5' UTR, known to correlate with neurovirulence, and mutation in the VP1 region. Type 3 poliovirus isolated from the third child demonstrated in the 3D sequenced region a recombination with Sabin type 1 poliovirus. In the latter region, three silent mutations and one, resulting in amino acid substitution, were also observed. The clinical, epidemiological and virological data and the neurological sequelae observed 60 days following the onset of paralysis, confirmed the diagnosis of vaccine-associated paralytic poliomyelitis in all the three patients.

  6. Detection of vaccine-derived polioviruses in Mexico using environmental surveillance.

    PubMed

    Esteves-Jaramillo, Alejandra; Estívariz, Concepción F; Peñaranda, Silvia; Richardson, Vesta L; Reyna, Jesús; Coronel, Diana L; Carrión, Veronica; Landaverde, Jose M; Wassilak, Steven G F; Pérez-Sánchez, Elda E; López-Martínez, Irma; Burns, Cara C; Pallansch, Mark A

    2014-11-01

    Early detection and control of vaccine-derived poliovirus (VDPV) emergences are essential to secure the gains of polio eradication. Serial sewage samples were collected in 4 towns of Mexico before, throughout, and after the May 2010 oral poliovirus vaccine (OPV) mass immunization campaign. Isolation and molecular analysis of polioviruses from sewage specimens monitored the duration of vaccine-related strains in the environment and emergence of vaccine-derived polioviruses in a population partially immunized with inactivated poliovirus vaccine (IPV). Sabin strains were identified up to 5-8 weeks after the campaign in all towns; in Aguascalientes, 1 Sabin 3 was isolated 16 weeks after the campaign, following 7 weeks with no Sabin strains detected. In Tuxtla Gutiérrez, type 2 VDPV was isolated from 4 samples collected before and during the campaign, and type 1 VDPV from 1 sample collected 19 weeks afterward. During 2009-2010, coverage in 4 OPV campaigns conducted averaged only 57% and surveillance for acute flaccid paralysis (AFP) was suboptimal (AFP rate<1 per 100,000 population<15 years of age) in Tuxtla Gutierrez. VDPVs may emerge and spread in settings with inadequate coverage with IPV/OPV vaccination. Environmental surveillance can facilitate early detection in these settings. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Will containment of wild poliovirus in laboratories and inactivated poliovirus vaccine production sites be effective for global certification?

    PubMed Central

    Dowdle, Walter R.; Wolff, Christopher; Sanders, Raymond; Lambert, Scott; Best, Maureen

    2004-01-01

    The absolute laboratory containment of any virus cannot be guaranteed, but a wealth of experience indicates that effective containment of wild poliovirus materials for global certification is technically and operationally feasible. Effective containment is based on the principles of minimal wild poliovirus infectious and potentially infectious materials in laboratories; minimal risks of operations in laboratories and inactivated poliovirus vaccine production facilities; minimal susceptibility of workers to wild poliovirus infection and shedding; and minimal susceptibility of populations to wild poliovirus spread. Each principle alone is imperfect, but collectively they greatly minimize the risks of transmitting wild poliovirus from the laboratory to the community. PMID:15106302

  8. A Cluster of Paralytic Poliomyelitis Cases Due to Transmission of Slightly Diverged Sabin 2 Vaccine Poliovirus.

    PubMed

    Korotkova, Ekaterina A; Gmyl, Anatoly P; Yakovenko, Maria L; Ivanova, Olga E; Eremeeva, Tatyana P; Kozlovskaya, Liubov I; Shakaryan, Armen K; Lipskaya, Galina Y; Parshina, Irina L; Loginovskikh, Nataliya V; Morozova, Nadezhda S; Agol, Vadim I

    2016-07-01

    Four cases of acute flaccid paralysis caused by slightly evolved (Sabin-like) vaccine polioviruses of serotype 2 were registered in July to August 2010 in an orphanage of Biysk (Altai Region, Russia). The Biysk cluster of vaccine-associated paralytic poliomyelitis (VAPP) had several uncommon, if not unique, features. (i) Until this outbreak, Sabin-like viruses (in distinction to more markedly evolved vaccine-derived polioviruses [VDPVs]) were reported to cause only sporadic cases of VAPP. Consequently, VAPP cases were not considered to require outbreak-type responses. However, the Biysk outbreak completely blurred the borderline between Sabin-like viruses and VDPVs in epidemiological terms. (ii) The outbreak demonstrated a very high disease/infection ratio, apparently exceeding even that reported for wild polioviruses. The viral genome structures did not provide any substantial hints as to the underlying reason(s) for such pathogenicity. (iii) The replacement of intestinal poliovirus lineages by other Sabin-like lineages during short intervals after the disease onsets was observed in two patients. Again, the sequences of the respective genomes provided no clues to explain these events. (iv) The polioviruses isolated from the patients and their contacts demonstrated a striking heterogeneity as well as rapid and uneven evolution of the whole genomes and their parts, apparently due to extensive interpersonal contacts in a relatively small closed community, multiple bottlenecking, and recombination. Altogether, the results demonstrate several new aspects of pathogenicity, epidemiology, and evolution of vaccine-related polioviruses and underscore several serious gaps in understanding these problems. The oral poliovirus vaccine largely contributed to the nearly complete disappearance of poliovirus-caused poliomyelitis. Being generally safe, it can, in some cases, result in a paralytic disease. Two types of such outcomes are distinguished: those caused by slightly

  9. A Cluster of Paralytic Poliomyelitis Cases Due to Transmission of Slightly Diverged Sabin 2 Vaccine Poliovirus

    PubMed Central

    Korotkova, Ekaterina A.; Gmyl, Anatoly P.; Yakovenko, Maria L.; Ivanova, Olga E.; Eremeeva, Tatyana P.; Kozlovskaya, Liubov I.; Shakaryan, Armen K.; Lipskaya, Galina Y.; Parshina, Irina L.; Loginovskikh, Nataliya V.; Morozova, Nadezhda S.

    2016-01-01

    ABSTRACT Four cases of acute flaccid paralysis caused by slightly evolved (Sabin-like) vaccine polioviruses of serotype 2 were registered in July to August 2010 in an orphanage of Biysk (Altai Region, Russia). The Biysk cluster of vaccine-associated paralytic poliomyelitis (VAPP) had several uncommon, if not unique, features. (i) Until this outbreak, Sabin-like viruses (in distinction to more markedly evolved vaccine-derived polioviruses [VDPVs]) were reported to cause only sporadic cases of VAPP. Consequently, VAPP cases were not considered to require outbreak-type responses. However, the Biysk outbreak completely blurred the borderline between Sabin-like viruses and VDPVs in epidemiological terms. (ii) The outbreak demonstrated a very high disease/infection ratio, apparently exceeding even that reported for wild polioviruses. The viral genome structures did not provide any substantial hints as to the underlying reason(s) for such pathogenicity. (iii) The replacement of intestinal poliovirus lineages by other Sabin-like lineages during short intervals after the disease onsets was observed in two patients. Again, the sequences of the respective genomes provided no clues to explain these events. (iv) The polioviruses isolated from the patients and their contacts demonstrated a striking heterogeneity as well as rapid and uneven evolution of the whole genomes and their parts, apparently due to extensive interpersonal contacts in a relatively small closed community, multiple bottlenecking, and recombination. Altogether, the results demonstrate several new aspects of pathogenicity, epidemiology, and evolution of vaccine-related polioviruses and underscore several serious gaps in understanding these problems. IMPORTANCE The oral poliovirus vaccine largely contributed to the nearly complete disappearance of poliovirus-caused poliomyelitis. Being generally safe, it can, in some cases, result in a paralytic disease. Two types of such outcomes are distinguished: those caused

  10. [Eradication of poliomyelitis and emergence of pathogenic vaccine-derived polioviruses: from Madagascar to Cameroon].

    PubMed

    Delpeyroux, Francis; Colbère-Garapin, Florence; Razafindratsimandresy, Richter; Sadeuh-Mba, Serge; Joffret, Marie-Line; Rousset, Dominique; Blondel, Bruno

    2013-11-01

    The oral poliovaccine, a live vaccine made of attenuated poliovirus strains, is the main tool of the vaccination campaigns organised for eradicating poliomyelitis. these campaigns had led to the decline and, thereafter, to the disappearance of wild poliovirus strains of the three serotypes (1-3) in most parts of the world. However, when the poliovaccine coverage becomes too low, vaccine polioviruses can circulate in insufficiently immunized populations and become then pathogenic by mutations and genetic recombination with other enteroviruses of the same species, in particular some coxsackievirus A. These mutated and recombinant vaccine strains have been implicated in several epidemics of paralytic poliomyelitis. Two polio outbreaks associated with these pathogenic circulating vaccine-derived poliovirus (cVDPV) occurred in 2001-2002 and 2005 in the South of Madagascar where vaccine coverage was low. These cVDPV, of serotype 2 or 3, were isolated from paralyzed children and some of their healthy contacts. Other cVDPV were isolated in the same region from healthy children in 2011, indicating that these viruses were circulating again. Vaccination campaigns could stop the outbreaks in 2002 and 2005, and most probably prevent another one in 2011. Therefore, the genetic plasticity of poliovaccine strains that threatens the benefit of vaccination campaigns is the target of an accurate surveillance and an important theme of studies in the virology laboratories of the Institut Pasteur international network.

  11. Brunenders: a partially attenuated historic poliovirus type I vaccine strain.

    PubMed

    Sanders, Barbara P; Liu, Ying; Brandjes, Alies; van Hoek, Vladimir; de Los Rios Oakes, Isabel; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2015-09-01

    Brunenders, a type I poliovirus (PV) strain, was developed in 1952 by J. F. Enders and colleagues through serial in vitro passaging of the parental Brunhilde strain, and was reported to display partial neuroattenuation in monkeys. This phenotype of attenuation encouraged two vaccine manufacturers to adopt Brunenders as the type I component for their inactivated poliovirus vaccines (IPVs) in the 1950s, although today no licensed IPV vaccine contains Brunenders. Here we confirmed, in a transgenic mouse model, the report of Enders on the reduced neurovirulence of Brunenders. Although dramatically neuroattenuated relative to WT PV strains, Brunenders remains more virulent than the attenuated oral vaccine strain, Sabin 1. Importantly, the neuroattenuation of Brunenders does not affect in vitro growth kinetics and in vitro antigenicity, which were similar to those of Mahoney, the conventional type I IPV vaccine strain. We showed, by full nucleotide sequencing, that Brunhilde and Brunenders differ at 31 nucleotides, eight of which lead to amino acid changes, all located in the capsid. Upon exchanging the Brunenders capsid sequence with that of the Mahoney capsid, WT neurovirulence was regained in vivo, suggesting a role for the capsid mutations in Brunenders attenuation. To date, as polio eradication draws closer, the switch to using attenuated strains for IPV is actively being pursued. Brunenders preceded this novel strategy as a partially attenuated IPV strain, accompanied by decades of successful use in the field. Providing data on the attenuation of Brunenders may be of value in the further construction of attenuated PV strains to support the grand pursuit of the global eradication of poliomyelitis.

  12. Prolonged Replication of a Type 1 Vaccine-Derived Poliovirus in an Immunodeficient Patient

    PubMed Central

    Kew, Olen M.; Sutter, Roland W.; Nottay, Baldev K.; McDonough, Michael J.; Prevots, D. Rebecca; Quick, Linda; Pallansch, Mark A.

    1998-01-01

    VP1 sequences were determined for poliovirus type 1 isolates obtained over a 189-day period from a poliomyelitis patient with common variable immunodeficiency syndrome (a defect in antibody formation). The isolate from the first sample, taken 11 days after onset of paralysis, contained two poliovirus populations, differing from the Sabin 1 vaccine strain by ∼10%, differing from diverse type 1 wild polioviruses by 19 to 24%, and differing from each other by 5.5% of nucleotides. Specimens taken after day 11 appeared to contain only one major poliovirus population. Evolution of VP1 sequences at synonymous third-codon positions occurred at an overall rate of ∼3.4% per year over the 189-day period. Assuming this rate to be constant throughout the period of infection, the infection was calculated to have started ∼9.3 years earlier. This estimate is about the time (6.9 years earlier) the patient received his last oral poliovirus vaccine dose, approximately 2 years before the diagnosis of immunodeficiency. These findings may have important implications for the strategy to eliminate poliovirus immunization after global polio eradication. PMID:9738040

  13. Update on Vaccine-Derived Polioviruses - Worldwide, January 2015-May 2016.

    PubMed

    Jorba, Jaume; Diop, Ousmane M; Iber, Jane; Sutter, Roland W; Wassilak, Steven G; Burns, Cara C

    2016-08-05

    In 1988, the World Health Assembly resolved to eradicate poliomyelitis worldwide (1). One of the main tools used in polio eradication efforts has been the live, attenuated, oral poliovirus vaccine (OPV) (2), an inexpensive vaccine easily administered by trained volunteers. OPV might require several doses to induce immunity, but provides long-term protection against paralytic disease. Through effective use of OPV, the Global Polio Eradication Initiative (GPEI) has brought wild polioviruses to the threshold of eradication (1). However, OPV use, particularly in areas with low routine vaccination coverage, is associated with the emergence of genetically divergent vaccine-derived polioviruses (VDPVs) whose genetic drift from the parental OPV strains indicates prolonged replication or circulation (3). VDPVs can emerge among immunologically normal vaccine recipients and their contacts as well as among persons with primary immunodeficiencies (PIDs). Immunodeficiency-associated VDPVs (iVDPVs) can replicate for years in some persons with PIDs. In addition, circulating vaccine-derived polioviruses (cVDPVs) (3) can emerge in areas with low OPV coverage and can cause outbreaks of paralytic polio. This report updates previous summaries regarding VDPVs (4).

  14. Estimated Effect of Inactivated Poliovirus Vaccine Campaigns, Nigeria and Pakistan, January 2014–April 2016

    PubMed Central

    Shirreff, George; Wadood, Mufti Zubair; Vaz, Rui Gama; Sutter, Roland W.

    2017-01-01

    In 2014, inactivated poliovirus vaccine (IPV) campaigns were implemented in Nigeria and Pakistan after clinical trials showed that IPV boosts intestinal immunity in children previously given oral poliovirus vaccine (OPV). We estimated the effect of these campaigns by using surveillance data collected during January 2014–April 2016. In Nigeria, campaigns with IPV and trivalent OPV (tOPV) substantially reduced the incidence of poliomyelitis caused by circulating serotype-2 vaccine–derived poliovirus (incidence rate ratio [IRR] 0.17 for 90 days after vs. 90 days before campaigns, 95% CI 0.04–0.78) and the prevalence of virus in environmental samples (prevalence ratio [PR] 0.16, 95% CI 0.02–1.33). Campaigns with tOPV alone resulted in similar reductions (IRR 0.59, 95% CI 0.18–1.97; PR 0.45, 95% CI 0.21–0.95). In Pakistan, the effect of IPV+tOPV campaigns on wild-type poliovirus was not significant. Results suggest that administration of IPV alongside OPV can decrease poliovirus transmission if high vaccine coverage is achieved. PMID:27861118

  15. Isolation of sabin-like polioviruses from wastewater in a country using inactivated polio vaccine.

    PubMed

    Zurbriggen, Sebastian; Tobler, Kurt; Abril, Carlos; Diedrich, Sabine; Ackermann, Mathias; Pallansch, Mark A; Metzler, Alfred

    2008-09-01

    From 2001 to 2004, Switzerland switched from routine vaccination with oral polio vaccine (OPV) to inactivated polio vaccine (IPV), using both vaccines in the intervening period. Since IPV is less effective at inducing mucosal immunity than OPV, this change might allow imported poliovirus to circulate undetected more easily in an increasingly IPV-immunized population. Environmental monitoring is a recognized tool for identifying polioviruses in a community. To look for evidence of poliovirus circulation following cessation of OPV use, two sewage treatment plants located in the Zurich area were sampled from 2004 to 2006. Following virus isolation using either RD or L20B cells, enteroviruses and polioviruses were identified by reverse transcription-PCR. A total of 20 out of 174 wastewater samples were positive for 62 Sabin-like isolates. One isolate from each poliovirus-positive sample was analyzed in more detail. Sequencing the complete viral protein 1 (VP1) capsid coding region, as well as intratypic differentiation (ITD), identified 3 Sabin type 1, 13 Sabin type 2, and 4 Sabin type 3 strains. One serotype 1 strain showed a discordant result in the ITD. Three-quarters of the strains showed mutations within the 5' untranslated region and VP1, known to be associated with reversion to virulence. Moreover, three strains showed heterotypic recombination (S2/S1 and S3/S2/S3). The low number of synonymous mutations and the partial temperature sensitivity are not consistent with extended circulation of these Sabin virus strains. Nevertheless, the continuous introduction of polioviruses into the community emphasizes the necessity for uninterrupted child vaccination to maintain high herd immunity.

  16. Stopping poliovirus vaccination after eradication: issues and challenges.

    PubMed Central

    Wood, D. J.; Sutter, R. W.; Dowdle, W. R.

    2000-01-01

    Since 1988 reported polio cases worldwide have declined by about 85% and the number of known or suspected polioendemic countries has decreased from over 120 to less than 50. With eradication of poliomyelitis approaching, issues potentially affecting when and how vaccination against poliovirus can be stopped become extremely important. Because of the potential risks and benefits inherent in such a decision, the best available science, a risk-benefit analysis, contingency plans, a stock pile of poliovirus vaccines, and the endorsement by the global policy-making committees will all be needed before vaccination can be discontinued. The scientific basis for stopping polio immunization has been reviewed by WHO. This Round Table article summarizes the current state of knowledge, provides an update on the processes and timelines for certification, containment, and stopping vaccination, and highlights some of the unanswered scientific questions that will be addressed by further research. These include whether transmission of vaccine-derived poliovirus strains could be sustained so that poliomyelitis could re-emerge in a future unvaccinated population and whether prolonged excretion of vaccine-derived poliovirus from individuals with immune deficiencies could be a mechanism through which this could occur. PMID:10812731

  17. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine.

    PubMed

    Sanders, Barbara P; de Los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G; Song, Yutong; Cooper, Gillian; Crawt, Laura E; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-03-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  18. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine

    PubMed Central

    Sanders, Barbara P.; de los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G.; Song, Yutong; Cooper, Gillian; Crawt, Laura E.; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H. H. V.; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-01-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4–9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  19. Update on vaccine-derived polioviruses - worldwide, July 2012-December 2013.

    PubMed

    Diop, Ousmane M; Burns, Cara C; Wassilak, Steven G; Kew, Olen M

    2014-03-21

    In 1988, the World Health Assembly resolved to eradicate poliomyelitis worldwide. One of the main tools used in polio eradication efforts has been live, attenuated oral poliovirus vaccine (OPV), an inexpensive vaccine easily administered by trained volunteers. OPV might require several doses to induce immunity, but then it provides long-term protection against paralytic disease through durable humoral immunity. Rare cases of vaccine-associated paralytic poliomyelitis can occur among immunologically normal OPV recipients, their contacts, and persons who are immunodeficient. In addition, vaccine-derived polioviruses (VDPVs) can emerge in areas with low OPV coverage to cause polio outbreaks and can replicate for years in persons who have primary, B-cell immunodeficiencies. This report updates previous surveillance summaries and describes VDPVs detected worldwide during July 2012-December 2013. Those include a new circulating VDPV (cVDPV) outbreak identified in Pakistan in 2012, with spread to Afghanistan; an outbreak in Afghanistan previously identified in 2009 that continued into 2013; a new outbreak in Chad that spread to Cameroon, Niger, and northeastern Nigeria; and an outbreak that began in Somalia in 2008 that continued and spread to Kenya in 2013. A large outbreak in Nigeria that was identified in 2005 was nearly stopped by the end of 2013. Additionally, 10 newly identified persons in eight countries were found to excrete immunodeficiency-associated VDPVs (iVDPVs), and VDPVs were found among immunocompetent persons and environmental samples in 13 countries. Because the majority of VDPV isolates are type 2, the World Health Organization has developed a plan for coordinated worldwide replacement of trivalent OPV (tOPV) with bivalent OPV (bOPV; types 1 and 3) by 2016, preceded by introduction of at least 1 dose of inactivated poliovirus vaccine (IPV) containing all three poliovirus serotypes into routine immunization schedules worldwide to ensure high population

  20. Vaccine-Derived Polioviruses and Children with Primary Immunodeficiency, Iran, 1995–2014

    PubMed Central

    Shaghaghi, Mohammadreza; Shahmahmoodi, Shohreh; Abolhassani, Hassan; Soleyman-jahi, Saeed; Parvaneh, Leila; Mahmoudi, Sussan; Chavoshzadeh, Zahra; Yazdani, Reza; Zahraei, Seyed Mohsen; Ebrahimi, Mohsen; Eslamian, Mohammad H.; Tabatabaie, Hamideh; Yousefi, Maryam; Kandelousi, Yaghoob M.; Oujaghlou, Aliasghar; Rezaei, Nima

    2016-01-01

    Widespread use of oral poliovirus vaccine has led to an ≈99.9% decrease in global incidence of poliomyelitis (from ≈350,000 cases in 1988 to 74 cases in 2015) and eradication of wild-type poliovirus serotypes 2 and 3. However, patients with primary immunodeficiency might shed vaccine-derived polioviruses (VDPVs) for an extended period, which could pose a major threat to polio eradication programs. Since 1995, sixteen VDPV populations have been isolated from 14 patients with immunodeficiency in Iran. For these patients, vaccine-associated paralysis, mostly in >1 extremity, was the first manifestation of primary immunodeficiency. Seven patients with humoral immunodeficiency cleared VDPV infection more frequently than did 6 patients with combined immunodeficiencies. Our results raise questions about manifestations of VDPVs in immunodeficient patients and the role of cellular immunity against enterovirus infections. On the basis of an association between VDPVs and immunodeficiency, we advocate screening of patients with primary immunodeficiency for shedding of polioviruses. PMID:27648512

  1. Pathogenic Events in a Nonhuman Primate Model of Oral Poliovirus Infection Leading to Paralytic Poliomyelitis.

    PubMed

    Shen, Ling; Chen, Crystal Y; Huang, Dan; Wang, Richard; Zhang, Meihong; Qian, Lixia; Zhu, Yanfen; Zhang, Alvin Zhuoran; Yang, Enzhuo; Qaqish, Arwa; Chumakov, Konstantin; Kouiavskaia, Diana; Vignuzzi, Marco; Nathanson, Neal; Macadam, Andrew J; Andino, Raul; Kew, Olen; Xu, Junfa; Chen, Zheng W

    2017-07-15

    Despite a great deal of prior research, the early pathogenic events in natural oral poliovirus infection remain poorly defined. To establish a model for study, we infected 39 macaques by feeding them single high doses of the virulent Mahoney strain of wild type 1 poliovirus. Doses ranging from 10(7) to 10(9) 50% tissue culture infective doses (TCID50) consistently infected all the animals, and many monkeys receiving 10(8) or 10(9) TCID50 developed paralysis. There was no apparent difference in the susceptibilities of the three macaque species (rhesus, cynomolgus, and bonnet) used. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia, and virus was isolated from tonsils, gut mucosa, and draining lymph nodes. Viral replication proteins were detected in both epithelial and lymphoid cell populations expressing CD155 in the tonsil and intestine, as well as in spinal cord neurons. Necrosis was observed in these three cell types, and viral replication in the tonsil/gut was associated with histopathologic destruction and inflammation. The sustained response of neutralizing antibody correlated temporally with resolution of viremia and termination of virus shedding in oropharynges and feces. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), extending previous studies of poliovirus pathogenesis in humans. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis and to assess the efficacy of candidate antiviral drugs and new vaccines.IMPORTANCE Early pathogenic events of poliovirus infection remain largely undefined, and there is a lack of animal models mimicking natural oral human infection leading to paralytic poliomyelitis. All 39 macaques fed with

  2. Lessons Learned From the Introduction of Inactivated Poliovirus Vaccine in Bangladesh.

    PubMed

    Estivariz, Concepcion F; Snider, Cynthia J; Anand, Abhijeet; Hampton, Lee M; Bari, Tajul I; Billah, Mallick M; Chai, Shua J; Wassilak, Steven G; Heffelfinger, James D; Zaman, K

    2017-07-01

    We assessed programmatic adaptations and infants' uptake of inactivated poliovirus vaccine (IPV) after its introduction into the routine immunization schedule in Bangladesh. Using convenience and probability sampling, we selected 23 health facilities, 36 vaccinators, and 336 caregivers, within 5 districts and 3 city corporations. We collected data during August-October 2015 by conducting interviews, reviewing vaccination records, and observing activities. Knowledge about IPV was high among vaccinators (94%). No problems with IPV storage, transport, or waste disposal were detected, but shortages were reported in 20 health facilities (87%). Wastage per 5-dose vaccine vial was above the recommended 30% in 20 health facilities (87%); all were related to providing <5 doses per open vial. Among eligible infants, 87% and 86% received the third dose of pentavalent and oral poliovirus vaccine, respectively, but only 65% received IPV at the same visit. Among 73 infants not vaccinated with IPV, 58% of caregivers reported that vaccine was unavailable. Bangladesh successfully introduced IPV, but shortages related to insufficient global supply and high vaccine wastage in small outreach immunization sessions might reduce its impact on population immunity. Minimizing wastage and use of a 2-dose fractional-IPV schedule could extend IPV immunization to more children.

  3. Preventing Vaccine-Derived Poliovirus Emergence during the Polio Endgame

    PubMed Central

    Burns, Cara C.; Lyons, Hil; Blake, Isobel M.; Oberste, M. Steven; Kew, Olen M.; Grassly, Nicholas C.

    2016-01-01

    Reversion and spread of vaccine-derived poliovirus (VDPV) to cause outbreaks of poliomyelitis is a rare outcome resulting from immunisation with the live-attenuated oral poliovirus vaccines (OPVs). Global withdrawal of all three OPV serotypes is therefore a key objective of the polio endgame strategic plan, starting with serotype 2 (OPV2) in April 2016. Supplementary immunisation activities (SIAs) with trivalent OPV (tOPV) in advance of this date could mitigate the risks of OPV2 withdrawal by increasing serotype-2 immunity, but may also create new serotype-2 VDPV (VDPV2). Here, we examine the risk factors for VDPV2 emergence and implications for the strategy of tOPV SIAs prior to OPV2 withdrawal. We first developed mathematical models of VDPV2 emergence and spread. We found that in settings with low routine immunisation coverage, the implementation of a single SIA increases the risk of VDPV2 emergence. If routine coverage is 20%, at least 3 SIAs are needed to bring that risk close to zero, and if SIA coverage is low or there are persistently “missed” groups, the risk remains high despite the implementation of multiple SIAs. We then analysed data from Nigeria on the 29 VDPV2 emergences that occurred during 2004−2014. Districts reporting the first case of poliomyelitis associated with a VDPV2 emergence were compared to districts with no VDPV2 emergence in the same 6-month period using conditional logistic regression. In agreement with the model results, the odds of VDPV2 emergence decreased with higher routine immunisation coverage (odds ratio 0.67 for a 10% absolute increase in coverage [95% confidence interval 0.55−0.82]). We also found that the probability of a VDPV2 emergence resulting in poliomyelitis in >1 child was significantly higher in districts with low serotype-2 population immunity. Our results support a strategy of focused tOPV SIAs before OPV2 withdrawal in areas at risk of VDPV2 emergence and in sufficient number to raise population immunity

  4. Preventing Vaccine-Derived Poliovirus Emergence during the Polio Endgame.

    PubMed

    Pons-Salort, Margarita; Burns, Cara C; Lyons, Hil; Blake, Isobel M; Jafari, Hamid; Oberste, M Steven; Kew, Olen M; Grassly, Nicholas C

    2016-07-01

    Reversion and spread of vaccine-derived poliovirus (VDPV) to cause outbreaks of poliomyelitis is a rare outcome resulting from immunisation with the live-attenuated oral poliovirus vaccines (OPVs). Global withdrawal of all three OPV serotypes is therefore a key objective of the polio endgame strategic plan, starting with serotype 2 (OPV2) in April 2016. Supplementary immunisation activities (SIAs) with trivalent OPV (tOPV) in advance of this date could mitigate the risks of OPV2 withdrawal by increasing serotype-2 immunity, but may also create new serotype-2 VDPV (VDPV2). Here, we examine the risk factors for VDPV2 emergence and implications for the strategy of tOPV SIAs prior to OPV2 withdrawal. We first developed mathematical models of VDPV2 emergence and spread. We found that in settings with low routine immunisation coverage, the implementation of a single SIA increases the risk of VDPV2 emergence. If routine coverage is 20%, at least 3 SIAs are needed to bring that risk close to zero, and if SIA coverage is low or there are persistently "missed" groups, the risk remains high despite the implementation of multiple SIAs. We then analysed data from Nigeria on the 29 VDPV2 emergences that occurred during 2004-2014. Districts reporting the first case of poliomyelitis associated with a VDPV2 emergence were compared to districts with no VDPV2 emergence in the same 6-month period using conditional logistic regression. In agreement with the model results, the odds of VDPV2 emergence decreased with higher routine immunisation coverage (odds ratio 0.67 for a 10% absolute increase in coverage [95% confidence interval 0.55-0.82]). We also found that the probability of a VDPV2 emergence resulting in poliomyelitis in >1 child was significantly higher in districts with low serotype-2 population immunity. Our results support a strategy of focused tOPV SIAs before OPV2 withdrawal in areas at risk of VDPV2 emergence and in sufficient number to raise population immunity above the

  5. Inactivated poliovirus type 2 vaccine delivered to rat skin via high density microprojection array elicits potent neutralising antibody responses

    PubMed Central

    Muller, David A.; Pearson, Frances E.; Fernando, Germain J.P.; Agyei-Yeboah, Christiana; Owens, Nick S.; Corrie, Simon R.; Crichton, Michael L.; Wei, Jonathan C.J.; Weldon, William C.; Oberste, M. Steven; Young, Paul R.; Kendall, Mark A. F.

    2016-01-01

    Polio eradication is progressing rapidly, and the live attenuated Sabin strains in the oral poliovirus vaccine (OPV) are being removed sequentially, starting with type 2 in April 2016. For risk mitigation, countries are introducing inactivated poliovirus vaccine (IPV) into routine vaccination programs. After April 2016, monovalent type 2 OPV will be available for type 2 outbreak control. Because the current IPV is not suitable for house-to-house vaccination campaigns (the intramuscular injections require health professionals), we developed a high-density microprojection array, the Nanopatch, delivered monovalent type 2 IPV (IPV2) vaccine to the skin. To assess the immunogenicity of the Nanopatch, we performed a dose-matched study in rats, comparing the immunogenicity of IPV2 delivered by intramuscular injection or Nanopatch immunisation. A single dose of 0.2 D-antigen units of IPV2 elicited protective levels of poliovirus antibodies in 100% of animals. However, animals receiving IPV2 by IM required at least 3 immunisations to reach the same neutralising antibody titres. This level of dose reduction (1/40th of a full dose) is unprecedented for poliovirus vaccine delivery. The ease of administration coupled with the dose reduction observed in this study points to the Nanopatch as a potential tool for facilitating inexpensive IPV for mass vaccination campaigns. PMID:26911254

  6. Inactivated poliovirus type 2 vaccine delivered to rat skin via high density microprojection array elicits potent neutralising antibody responses.

    PubMed

    Muller, David A; Pearson, Frances E; Fernando, Germain J P; Agyei-Yeboah, Christiana; Owens, Nick S; Corrie, Simon R; Crichton, Michael L; Wei, Jonathan C J; Weldon, William C; Oberste, M Steven; Young, Paul R; Kendall, Mark A F

    2016-02-25

    Polio eradication is progressing rapidly, and the live attenuated Sabin strains in the oral poliovirus vaccine (OPV) are being removed sequentially, starting with type 2 in April 2016. For risk mitigation, countries are introducing inactivated poliovirus vaccine (IPV) into routine vaccination programs. After April 2016, monovalent type 2 OPV will be available for type 2 outbreak control. Because the current IPV is not suitable for house-to-house vaccination campaigns (the intramuscular injections require health professionals), we developed a high-density microprojection array, the Nanopatch, delivered monovalent type 2 IPV (IPV2) vaccine to the skin. To assess the immunogenicity of the Nanopatch, we performed a dose-matched study in rats, comparing the immunogenicity of IPV2 delivered by intramuscular injection or Nanopatch immunisation. A single dose of 0.2 D-antigen units of IPV2 elicited protective levels of poliovirus antibodies in 100% of animals. However, animals receiving IPV2 by IM required at least 3 immunisations to reach the same neutralising antibody titres. This level of dose reduction (1/40th of a full dose) is unprecedented for poliovirus vaccine delivery. The ease of administration coupled with the dose reduction observed in this study points to the Nanopatch as a potential tool for facilitating inexpensive IPV for mass vaccination campaigns.

  7. Outbreak of paralytic poliomyelitis in Finland: widespread circulation of antigenically altered poliovirus type 3 in a vaccinated population.

    PubMed

    Hovi, T; Cantell, K; Huovilainen, A; Kinnunen, E; Kuronen, T; Lapinleimu, K; Pöyry, T; Roivainen, M; Salama, N; Stenvik, M

    1986-06-21

    An outbreak of 9 cases of paralytic poliomyelitis and 1 non-paralytic case occurred in Finland between August, 1984, and January, 1985, after two decades of freedom from the disease attributable to a successful immunisation programme. During the outbreak poliovirus type 3 was isolated from the patients, from about 15% of healthy persons tested, and from sewage water. At least 100 000 persons were estimated to have been infected. With 1.5 million extra doses of inactivated poliovirus vaccine to children under 18 years of age and an oral poliovirus vaccine campaign covering about 95% of the entire population in February-March, 1985, the outbreak was halted in February, 1985. Impaired herd immunity to the epidemic strain of poliovirus type 3, which differed from the type 3 vaccine strains in both immunological and molecular properties, was important in the emergence of this outbreak. The inactivated poliovaccine that had been used in the vaccination programme was relatively weakly immunogenic, especially as regards the type 3 component. Whether continuous antigenic variation of poliovirus type 3 has wider epidemiological implications is not known.

  8. Development of inactivated poliovirus vaccine from Sabin strains: A progress report.

    PubMed

    Okayasu, Hiromasa; Sein, Carolyn; Hamidi, Ahd; Bakker, Wilfried A M; Sutter, Roland W

    2016-11-01

    The Global Polio Eradication Initiative (GPEI) has seen significant progress since it began in 1988, largely due to the worldwide use of oral poliovirus vaccine (OPV). In order to achieve polio eradication the global cessation of OPV is necessary because OPV contains live attenuated poliovirus, which in rare circumstances could re-gain wild poliovirus (WPV) characteristics with potential to establish transmission. The GPEI endgame strategy for the period 2013-2018 recommends the globally synchronised sequential cessation of the Sabin strains contained in the OPV, starting with type 2 Sabin. The withdrawal of Sabin type 2 took place in April 2016, with the introduction of at least one dose of inactivated poliovirus vaccine (IPV) as a risk mitigation strategy. The introduction of IPV into 126 countries since 2013 has required a rapid scale-up of IPV production by the two manufacturers supplying the global public sector market. This scale-up has been fraught with challenges, resulting in reductions of 40-50% of initial supply commitments. Consequently, 22 countries will not be supplied until 2018, and another 23 countries will experience serious stock-outs. In the last decade repeated calls-for-action were made to the global community to invigorate their vision and investment in developing "new poliovirus vaccines" including the development of IPV from less-virulent strains, such as Sabin-IPV (S-IPV). The conventional Salk-IPV production is limited to high-income industrialized-country manufacturers due to the containment requirements (i.e., high sanitation, low force-of-poliovirus-infection, and high population immunity). The use of Sabin strains in the production of S-IPV carries a lower biosafety risk, and was determined to be suitable for production in developing countries, expanding the manufacturing base and making IPV more affordable and accessible in the long term. Significant progress in the S-IPV has been made since 2006. S-IPV is now licensed as S-IPV in

  9. CpG oligodeoxynucleotides are a potent adjuvant for an inactivated polio vaccine produced from Sabin strains of poliovirus.

    PubMed

    Yang, Chunting; Shi, Huiying; Zhou, Jun; Liang, Yanwen; Xu, Honglin

    2009-11-05

    Poliovirus transmission is controlled globally through world-wide use of a live attenuated oral polio vaccine (OPV). However, the imminence of global poliovirus eradication calls for a switch to the inactivated polio vaccine (IPV). Given the limited manufacturing capacity and high cost of IPV, this switch is unlikely in most developing and undeveloped countries. Adjuvantation is an effective strategy for antigen sparing. In this study, we evaluated the adjuvanticity of CpG oligodeoxynucleotides (CpG-ODN) for an experimental IPV produced from Sabin strains of poliovirus. Our results showed that CpG-ODN, alone or in combination with alum, can significantly enhance both the humoral and cellular immune responses to IPV in mice, and, consequently, the antigen dose could be reduced substantially. Therefore, our study suggests that the global use of IPV could be facilitated by using CpG-ODN or other feasible adjuvants.

  10. Methods for the Quality Control of Inactivated Poliovirus Vaccines.

    PubMed

    Wilton, Thomas

    2016-01-01

    Inactivated poliovirus vaccine (IPV) plays an instrumental role in the Global Poliovirus Eradication Initiative (GPEI). The quality of IPV is controlled by assessment of the potency of vaccine batches. The potency of IPV can be assessed by both in vivo and in vitro methods. In vitro potency assessment is based upon the assessment of the quantity of the D-Antigen (D-Ag) units in an IPV. The D-Ag unit is used as a measure of potency as it is largely expressed on native infectious virions and is the protective immunogen. The most commonly used in vitro test is the indirect ELISA which is used to ensure consistency throughout production.A range of in vivo assays have been developed in monkeys, chicks, guinea pigs, mice, and rats to assess the potency of IPV. All are based on assessment of the neutralizing antibody titer within the sera of the respective animal model. The rat potency test has become the favored in vivo potency test as it shows minimal variation between laboratories and the antibody patterns of rats and humans are similar. With the development of transgenic mice expressing the human poliovirus receptor, immunization-challenge tests have been developed to assess the potency of IPVs. This chapter describes in detail the methodology of these three laboratory tests to assess the quality of IPVs.

  11. Multiple Independent Emergences of Type 2 Vaccine-Derived Polioviruses during a Large Outbreak in Northern Nigeria

    PubMed Central

    Shaw, Jing; Jorba, Jaume; Bukbuk, David; Adu, Festus; Gumede, Nicksy; Pate, Muhammed Ali; Abanida, Emmanuel Ade; Gasasira, Alex; Iber, Jane; Chen, Qi; Vincent, Annelet; Chenoweth, Paul; Henderson, Elizabeth; Wannemuehler, Kathleen; Naeem, Asif; Umami, Rifqiyah Nur; Nishimura, Yorihiro; Shimizu, Hiroyuki; Baba, Marycelin; Adeniji, Adekunle; Williams, A. J.; Kilpatrick, David R.; Oberste, M. Steven; Wassilak, Steven G.; Tomori, Oyewale; Pallansch, Mark A.; Kew, Olen

    2013-01-01

    Since 2005, a large poliomyelitis outbreak associated with type 2 circulating vaccine-derived poliovirus (cVDPV2) has occurred in northern Nigeria, where immunization coverage with trivalent oral poliovirus vaccine (tOPV) has been low. Phylogenetic analysis of P1/capsid region sequences of isolates from each of the 403 cases reported in 2005 to 2011 resolved the outbreak into 23 independent type 2 vaccine-derived poliovirus (VDPV2) emergences, at least 7 of which established circulating lineage groups. Virus from one emergence (lineage group 2005-8; 361 isolates) was estimated to have circulated for over 6 years. The population of the major cVDPV2 lineage group expanded rapidly in early 2009, fell sharply after two tOPV rounds in mid-2009, and gradually expanded again through 2011. The two major determinants of attenuation of the Sabin 2 oral poliovirus vaccine strain (A481 in the 5′-untranslated region [5′-UTR] and VP1-Ile143) had been replaced in all VDPV2 isolates; most A481 5′-UTR replacements occurred by recombination with other enteroviruses. cVDPV2 isolates representing different lineage groups had biological properties indistinguishable from those of wild polioviruses, including efficient growth in neuron-derived HEK293 cells, the capacity to cause paralytic disease in both humans and PVR-Tg21 transgenic mice, loss of the temperature-sensitive phenotype, and the capacity for sustained person-to-person transmission. We estimate from the poliomyelitis case count and the paralytic case-to-infection ratio for type 2 wild poliovirus infections that ∼700,000 cVDPV2 infections have occurred during the outbreak. The detection of multiple concurrent cVDPV2 outbreaks in northern Nigeria highlights the risks of cVDPV emergence accompanying tOPV use at low rates of coverage in developing countries. PMID:23408630

  12. The Sabin live poliovirus vaccination trials in the USSR, 1959.

    PubMed Central

    Horstmann, D. M.

    1991-01-01

    Widespread use of the Sabin live attenuated poliovirus vaccine has had tremendous impact on the disease worldwide, virtually eliminating it from a number of countries, including the United States. Early proof of its safety and effectiveness was presented in 1959 by Russian investigators, who had staged massive trials in the USSR, involving millions of children. Their positive results were at first viewed in the United States and elsewhere with some skepticism, but the World Health Organization favored proceeding with large-scale trials, and responded to the claims made by Russian scientists by sending a representative to the USSR to review in detail the design and execution of the vaccine programs and the reliability of their results. The report that followed was a positive endorsement of the findings and contributed to the acceptance of the Sabin vaccine in the United States, where it has been the polio vaccine of choice since the mid-1960s. PMID:1814062

  13. Long-term excretion of vaccine-derived poliovirus by a healthy child.

    PubMed

    Martín, Javier; Odoom, Kofi; Tuite, Gráinne; Dunn, Glynis; Hopewell, Nicola; Cooper, Gill; Fitzharris, Catherine; Butler, Karina; Hall, William W; Minor, Philip D

    2004-12-01

    A child was found to be excreting type 1 vaccine-derived poliovirus (VDPV) with a 1.1% sequence drift from Sabin type 1 vaccine strain in the VP1 coding region 6 months after he was immunized with oral live polio vaccine. Seventeen type 1 poliovirus isolates were recovered from stools taken from this child during the following 4 months. Contrary to expectation, the child was not deficient in humoral immunity and showed high levels of serum neutralization against poliovirus. Selected virus isolates were characterized in terms of their antigenic properties, virulence in transgenic mice, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin type 1 strain. The VDPV isolates showed mutations at key nucleotide positions that correlated with the observed reversion to biological properties typical of wild polioviruses. A number of capsid mutations mapped at known antigenic sites leading to changes in the viral antigenic structure. Estimates of sequence evolution based on the accumulation of nucleotide changes in the VP1 coding region detected a "defective" molecular clock running at an apparent faster speed of 2.05% nucleotide changes per year versus 1% shown in previous studies. Remarkably, when compared to several type 1 VDPV strains of different origins, isolates from this child showed a much higher proportion of nonsynonymous versus synonymous nucleotide changes in the capsid coding region. This anomaly could explain the high VP1 sequence drift found and the ability of these virus strains to replicate in the gut for a longer period than expected.

  14. Long-Term Excretion of Vaccine-Derived Poliovirus by a Healthy Child

    PubMed Central

    Martín, Javier; Odoom, Kofi; Tuite, Gráinne; Dunn, Glynis; Hopewell, Nicola; Cooper, Gill; Fitzharris, Catherine; Butler, Karina; Hall, William W.; Minor, Philip D.

    2004-01-01

    A child was found to be excreting type 1 vaccine-derived poliovirus (VDPV) with a 1.1% sequence drift from Sabin type 1 vaccine strain in the VP1 coding region 6 months after he was immunized with oral live polio vaccine. Seventeen type 1 poliovirus isolates were recovered from stools taken from this child during the following 4 months. Contrary to expectation, the child was not deficient in humoral immunity and showed high levels of serum neutralization against poliovirus. Selected virus isolates were characterized in terms of their antigenic properties, virulence in transgenic mice, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin type 1 strain. The VDPV isolates showed mutations at key nucleotide positions that correlated with the observed reversion to biological properties typical of wild polioviruses. A number of capsid mutations mapped at known antigenic sites leading to changes in the viral antigenic structure. Estimates of sequence evolution based on the accumulation of nucleotide changes in the VP1 coding region detected a “defective” molecular clock running at an apparent faster speed of 2.05% nucleotide changes per year versus 1% shown in previous studies. Remarkably, when compared to several type 1 VDPV strains of different origins, isolates from this child showed a much higher proportion of nonsynonymous versus synonymous nucleotide changes in the capsid coding region. This anomaly could explain the high VP1 sequence drift found and the ability of these virus strains to replicate in the gut for a longer period than expected. PMID:15564492

  15. An Introduction to Poliovirus: Pathogenesis, Vaccination, and the Endgame for Global Eradication.

    PubMed

    Minor, Philip D

    2016-01-01

    Poliomyelitis is caused by poliovirus, which is a positive strand non-enveloped virus that occurs in three distinct serotypes (1, 2, and 3). Infection is mainly by the fecal-oral route and can be confined to the gut by antibodies induced either by vaccine, previous infection or maternally acquired. Vaccines include the live attenuated strains developed by Sabin and the inactivated vaccines developed by Salk; the live attenuated vaccine (Oral Polio Vaccine or OPV) has been the main tool in the Global Program of Polio eradication of the World Health Organisation. Wild type 2 virus has not caused a case since 1999 and type 3 since 2012 and eradication seems near. However most infections are entirely silent so that sophisticated environmental surveillance may be needed to ensure that the virus has been eradicated, and the live vaccine can sometimes revert to virulent circulating forms under conditions that are not wholly understood. Cessation of vaccination is therefore an increasingly important issue and inactivated polio vaccine (IPV) is playing a larger part in the end game.

  16. High resolution identity testing of inactivated poliovirus vaccines

    PubMed Central

    Mee, Edward T.; Minor, Philip D.; Martin, Javier

    2015-01-01

    Background Definitive identification of poliovirus strains in vaccines is essential for quality control, particularly where multiple wild-type and Sabin strains are produced in the same facility. Sequence-based identification provides the ultimate in identity testing and would offer several advantages over serological methods. Methods We employed random RT-PCR and high throughput sequencing to recover full-length genome sequences from monovalent and trivalent poliovirus vaccine products at various stages of the manufacturing process. Results All expected strains were detected in previously characterised products and the method permitted identification of strains comprising as little as 0.1% of sequence reads. Highly similar Mahoney and Sabin 1 strains were readily discriminated on the basis of specific variant positions. Analysis of a product known to contain incorrect strains demonstrated that the method correctly identified the contaminants. Conclusion Random RT-PCR and shotgun sequencing provided high resolution identification of vaccine components. In addition to the recovery of full-length genome sequences, the method could also be easily adapted to the characterisation of minor variant frequencies and distinction of closely related products on the basis of distinguishing consensus and low frequency polymorphisms. PMID:26049003

  17. High resolution identity testing of inactivated poliovirus vaccines.

    PubMed

    Mee, Edward T; Minor, Philip D; Martin, Javier

    2015-07-09

    Definitive identification of poliovirus strains in vaccines is essential for quality control, particularly where multiple wild-type and Sabin strains are produced in the same facility. Sequence-based identification provides the ultimate in identity testing and would offer several advantages over serological methods. We employed random RT-PCR and high throughput sequencing to recover full-length genome sequences from monovalent and trivalent poliovirus vaccine products at various stages of the manufacturing process. All expected strains were detected in previously characterised products and the method permitted identification of strains comprising as little as 0.1% of sequence reads. Highly similar Mahoney and Sabin 1 strains were readily discriminated on the basis of specific variant positions. Analysis of a product known to contain incorrect strains demonstrated that the method correctly identified the contaminants. Random RT-PCR and shotgun sequencing provided high resolution identification of vaccine components. In addition to the recovery of full-length genome sequences, the method could also be easily adapted to the characterisation of minor variant frequencies and distinction of closely related products on the basis of distinguishing consensus and low frequency polymorphisms. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Outbreak of Type 2 Vaccine-Derived Poliovirus in Nigeria: Emergence and Widespread Circulation in an Underimmunized Population

    PubMed Central

    Pate, Muhammad Ali; Wannemuehler, Kathleen; Jenks, Julie; Burns, Cara; Chenoweth, Paul; Abanida, Emmanuel Ade; Adu, Festus; Baba, Marycelin; Gasasira, Alex; Iber, Jane; Mkanda, Pascal; Williams, A. J.; Shaw, Jing; Pallansch, Mark; Kew, Olen

    2011-01-01

    Wild poliovirus has remained endemic in northern Nigeria because of low coverage achieved in the routine immunization program and in supplementary immunization activities (SIAs). An outbreak of infection involving 315 cases of type 2 circulating vaccine-derived poliovirus (cVDPV2; >1% divergent from Sabin 2) occurred during July 2005–June 2010, a period when 23 of 34 SIAs used monovalent or bivalent oral poliovirus vaccine (OPV) lacking Sabin 2. In addition, 21 “pre-VDPV2” (0.5%–1.0% divergent) cases occurred during this period. Both cVDPV and pre-VDPV cases were clinically indistinguishable from cases due to wild poliovirus. The monthly incidence of cases increased sharply in early 2009, as more children aged without trivalent OPV SIAs. Cumulative state incidence of pre-VDPV2/cVDPV2 was correlated with low childhood immunization against poliovirus type 2 assessed by various means. Strengthened routine immunization programs in countries with suboptimal coverage and balanced use of OPV formulations in SIAs are necessary to minimize risks of VDPV emergence and circulation. PMID:21402542

  19. Use of Dedicated Mobile Teams and Polio Volunteer Community Mobilizers to Increase Access to Zero-Dose Oral Poliovirus Vaccine and Routine Childhood Immunizations in Settlements at High Risk for Polio Transmission in Northern Nigeria.

    PubMed

    Ongwae, Kennedy M; Bawa, Samuel B; Shuaib, Faisal; Braka, Fiona; Corkum, Melissa; Isa, Hammanyero K

    2017-07-01

    The Polio Eradication Initiative in Nigeria, which started >20 years ago, faced many challenges, including initial denial, resistance from communities, and prolonged regional safety concerns. These challenges led into the structuring of the response including the development of the National Emergency Action Plan, improved partner coordination and government engagement, and the establishment of a Polio Emergency Operations Centre. Although monthly supplementary immunization activities (SIAs) continued, the targeting of settlements at high risk for polio transmission with routine immunization (RI) and other selected primary healthcare (PHC) services using dedicated mobile teams and volunteer community mobilizers (VCMs) became a key strategy for interrupting polio transmission in the high-risk areas. These efforts could have contributed to the wild poliovirus-free 2-year period between 24 July 2014 and 11 August 2016, when 2 cases of the virus were reported from Borno State, Northern Nigeria. A narrative analysis of polio-related program and other official documents was conducted to identify the relevant human resources and their role in the Polio Eradication Initiative and in RI. The data used in the article was obtained from United Nations Children's Fund (UNICEF) and World Health Organization project reports and a draft evaluation report of the dedicated mobile teams approach in Northern Nigeria. The data from 6 of the states that commenced the provision of polio, RI, and other selected PHC services using the dedicated mobile teams approach in 2014 showed an overall increase in the percentage of children aged 12-23 months in the settlements at high risk for polio transmission with a RI card seen, from 23% to 56%, and an overall increase in fully immunized children aged 12-23 months, from 19% to 55%. The number of newborns given the first dose of oral poliovirus vaccine (OPV) according to the RI schedule and the number of children given zero-dose OPV with the

  20. Update on Vaccine-Derived Polioviruses - Worldwide, January 2014-March 2015.

    PubMed

    Diop, Ousmane M; Burns, Cara C; Sutter, Roland W; Wassilak, Steven G; Kew, Olen M

    2015-06-19

    Since the World Health Assembly's 1988 resolution to eradicate poliomyelitis, one of the main tools of the World Health Organization (WHO) Global Polio Eradication Initiative (GPEI) has been the live, attenuated oral poliovirus vaccine (OPV). OPV might require several doses to induce immunity but provides long-term protection against paralytic disease. Through effective use of OPV, GPEI has brought polio to the threshold of eradication. Wild poliovirus type 2 (WPV2) was eliminated in 1999, WPV3 has not been detected since November 2012, and WPV1 circulation appears to be restricted to parts of Pakistan and Afghanistan. However, continued use of OPV carries two key risks. The first, vaccine-associated paralytic poliomyelitis (VAPP) has been recognized since the early 1960s. VAPP is a very rare event that occurs sporadically when an administered dose of OPV reverts to neurovirulence and causes paralysis in the vaccine recipient or a nonimmune contact. VAPP can occur among immunologically normal vaccine recipients and their contacts as well as among persons who have primary immunodeficiencies (PIDs) manifested by defects in antibody production; it is not associated with outbreaks. The second, the emergence of genetically divergent, neurovirulent vaccine-derived polioviruses (VDPVs) was recognized more recently. Circulating VDPVs (cVDPVs) resemble WPVs and, in areas with low OPV coverage, can cause polio outbreaks. Immunodeficiency-associated VDPVs (iVDPVs) can replicate and be excreted for years in some persons with PIDs; GPEI maintains a registry of iVDPV cases. Ambiguous VDPVs (aVDPVs) are isolates that cannot be classified definitively. This report updates previous surveillance summaries and describes VDPVs detected worldwide during January 2014-March 2015. Those include new cVDPV outbreaks in Madagascar and South Sudan, and sharply reduced type 2 cVDPV (cVDPV2) circulation in Nigeria and Pakistan during the latter half of 2014. Eight newly identified persons in

  1. Factors affecting the efficacy of live poliovirus vaccine in warm climates

    PubMed Central

    Dömök, I.; Balayan, M. S.; Fayinka, O. A.; Škrtić, N.; Soneji, A. D.; Harland, P. S. E. G.

    1974-01-01

    A virologically controlled field trial was conducted with live monovalent type 1 poliovirus vaccine in children aged 3-30 months living in a rural area of Uganda, in an attempt to find out the reason for the poor efficacy of such vaccine often observed in countries with a warm climate. Groups of breast-fed and of artificially fed infants received the vaccine orally, either alone or mixed with horse serum prepared against partly purified human gamma-globulin. Irrespective of the diet, the “take rate”—measured by the rates of vaccine virus excretion and of antibody conversion—was found to be poor when the vaccine was given alone but satisfactory when it was given together with the horse antiserum. However, the extent and duration of vaccine virus multiplication in the intestinal tract proved to be limited and the mean antibody level elicited by the vaccination, irrespective of the schedule of vaccine administration, was low. These results, besides indicating that breast-feeding does not influence the efficacy of vaccination in the age groups studied, revealed the presence of an inhibitor in the alimentary tract. This inhibitor acts against the multiplication of vaccine virus, which may be blocked by antibodies in the horse antiserum for a limited period at the time of vaccination. Interference between the enteroviruses and the vaccine strain was also found to be responsible for decreasing the efficacy of vaccination, though its role was secondary to that of the inhibitor. Revaccination experiments showed that the effects of both inhibitor and interference may be overcome by repeated administration of the vaccine. PMID:4142936

  2. Environmental surveillance of poliovirus in sewage water around the introduction period for inactivated polio vaccine in Japan.

    PubMed

    Nakamura, Tomofumi; Hamasaki, Mitsuhiro; Yoshitomi, Hideaki; Ishibashi, Tetsuya; Yoshiyama, Chiharu; Maeda, Eriko; Sera, Nobuyuki; Yoshida, Hiromu

    2015-03-01

    Environmental virus surveillance was conducted at two independent sewage plants from urban and rural areas in the northern prefecture of the Kyushu district, Japan, to trace polioviruses (PVs) within communities. Consequently, 83 PVs were isolated over a 34-month period from April 2010 to January 2013. The frequency of PV isolation at the urban plant was 1.5 times higher than that at the rural plant. Molecular sequence analysis of the viral VP1 gene identified all three serotypes among the PV isolates, with the most prevalent serotype being type 2 (46%). Nearly all poliovirus isolates exhibited more than one nucleotide mutation from the Sabin vaccine strains. During this study, inactivated poliovirus vaccine (IPV) was introduced for routine immunization on 1 September 2012, replacing the live oral poliovirus vaccine (OPV). Interestingly, the frequency of PV isolation from sewage waters declined before OPV cessation at both sites. Our study highlights the importance of environmental surveillance for the detection of the excretion of PVs from an OPV-immunized population in a highly sensitive manner, during the OPV-to-IPV transition period.

  3. Isolation and Characterization of Vaccine-Derived Polioviruses, Relevance for the Global Polio Eradication Initiative.

    PubMed

    Xu, Wenbo; Zhang, Yong

    2016-01-01

    Stool specimens were collected from children with acute flaccid paralysis (AFP) and their contacts, and viral isolation was performed according to standard procedures. If the specimens tested positive for poliovirus, then intratypic differentiation (ITD) methods were performed on the viral isolates to determine whether the poliovirus isolates were wild or of vaccine origin, these include a poliovirus diagnostic ITD real-time PCR method and a vaccine-derived poliovirus (VDPV) screening real-time PCR method.Viral RNA was extracted from the poliovirus isolates by using the QIAamp Mini Viral RNA Extraction Kit (Qiagen) and was used for RT-PCR amplification by the standard method. The entire VP1 region of the poliovirus isolates was amplified by RT-PCR with primers that flanked the VP1-coding region. After purification of the PCR products by the QIAquick Gel Extraction Kit (Qiagen), the amplicons were bidirectionally sequenced with the ABI PRISM 3130 Genetic Analyzer (Applied Biosystems). A neurovirulence test of polioviruses isolates was carried out using PVR-Tg21 mice that expressed the human poliovirus receptor (CD155). And the temperature sensitivities of polioviruses isolates were assayed on monolayer RD cells in 24-well plates as described.

  4. Parallel path: poliovirus research in the vaccine era.

    PubMed

    Garfinkel, Michele S; Sarewitz, Daniel

    2003-07-01

    One goal of the scientific research enterprise is to improve the lives of individuals and the overall health of societies. This goal is achieved through a combination of factors, including the composition of research portfolios. In turn, this composition is determined by a variety of scientific and societal needs. The recent history of polio research highlights the complex relations between research policy, scientific progress and societal benefits. Here, we briefly review the circumstances leading to the possibility of eradication of poliovirus, evaluate the research environment that emerged following the introduction of a vaccine, and compare and contrast the current research framework with that for other infectious diseases. From this analysis, policy lessons with general applicability to scientific research are identified.

  5. Managing the Planned Cessation of a Global Supply Market: Lessons Learned From the Global Cessation of the Trivalent Oral Poliovirus Vaccine Market.

    PubMed

    Rubin, Jennifer; Ottosen, Ann; Ghazieh, Andisheh; Fournier-Caruana, Jacqueline; Ntow, Abraham Kofi; Gonzalez, Alejandro Ramirez

    2017-07-01

    The Polio Eradication and Endgame Strategic Plan 2013-2018 calls for the phased withdrawal of OPV, beginning with the globally synchronized cessation of tOPV by mid 2016. From a global vaccine supply management perspective, the strategy provided two key challenges; (1) the planned cessation of a high volume vaccine market; and (2) the uncertainty of demand leading and timeline as total vaccine requirements were contingent on epidemiology. The withdrawal of trivalent OPV provided a number of useful lessons that could be applied for the final OPV cessation. If carefully planned for and based on a close collaboration between programme partners and manufacturers, the cessation of a supply market can be undertaken with a successful outcome for both parties. As financial risks to manufacturers increase even further with OPV cessation, early engagement from the cessation planning phase and consideration of production lead times will be critical to ensure sufficient supply throughout to achieve programmatic objectives. As the GPEI will need to rely on residual stocks including with manufacturers through to the last campaign to achieve its objectives, the GPEI should consider to decide on and communicate a suitable mechanism for co-sharing of financial risks or other financial arrangement for the outer years. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  6. Risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis.

    PubMed

    Pliaka, Vaia; Kyriakopoulou, Zaharoula; Markoulatos, Panayotis

    2012-05-01

    The Global Polio Eradication Initiative was launched in 1988 with the aim to eliminate paralytic poliomyelitis. Two effective vaccines are available: inactivated polio vaccine (IPV) and oral polio vaccine (OPV). Since 1964, OPV has been used instead of IPV in most countries due to several economic and biological advantages. However, in rare cases, the live-attenuated Sabin strains of OPV revert to neurovirulence and cause vaccine-associated paralytic poliomyelitis in vaccinees or lead to emergence of vaccine-derived poliovirus strains. Attenuating mutations and recombination events have been associated with the reversion of vaccine strains to neurovirulence. The substitution of OPV with an improved new-generation IPV and the availability of new specific drugs against polioviruses are considered as future strategies for outbreak control and the eradication of paralytic poliomyelitis worldwide.

  7. Synthetic virus seeds for improved vaccine safety: Genetic reconstruction of poliovirus seeds for a PER.C6 cell based inactivated poliovirus vaccine.

    PubMed

    Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V

    2015-10-13

    Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents.

  8. [Circulating vaccine-derived poliovirus type 2 outbreak in Democratic Republic of Congo 2011-2012].

    PubMed

    Bazira, L; Coulibaly, T; Mayenga, M; Ncharre, C; Yogolelo, R; Mbule, A; Moudzeo, H; Lwamba, P; Mulumba, A W; Cabore, J

    2015-10-01

    According to the WHO records of 2013, the incidence of poliomyelitis was reduced by more than 99%, the number of endemic countries decreased from 125 in 1988 to 3 in 2013 and over 10 million cases were prevented from poliomyelitis thanks to the intensive use of Oral polio vaccine (OPV). However, the emergence of circulating vaccine-derived poliovirus strains (cVDPV), causing serious epidemics like the wild poliovirus, is a major challenge on the final straight towards the goal of eradication and OPV cessation. This paper describes the cVDPVoutbreak that occurred in the Democratic Republic of Congo (DRC) from November 2011 to April 2012. All children under 15 years of age with acute flaccid paralysis (AFP) and confirmed presence of cVDPV in the stool samples were included. Thirty (30) children, all from the administrative territories of Bukama and Malemba Nkulu in the Katanga Province (south-east DRC), were reported. The virus responsible was the cVDPV type 2 (0.7% -3.5% divergent from the reference Sabin 2 strain) in 29 children (97%) and the ambiguous vaccine-derived poliovirus strain (0.7% divergent) was confirmed in one case (3%), a boy seventeen months old and already vaccinated four times with OPV. Twentyfive children (83%) were protected by any of the routine EPI vaccines and 3 children (10%) had never received any dose of OPV. In reaction, DRC has conducted five local campaigns over a period of 10 months (from January to October 2012) and the epidemic was stopped after the second round performed in March 2012. As elsewhere in similar conditions, low immunization coverage, poor sanitation conditions and the stop of the use of OPV2 have favoured the emergence of the third cVDPV epidemic in DRC. The implementation of the Strategic Plan for Polio eradication and endgame strategic plan 2013-2018 will prevent the emergence of cVDPV and set up the conditions for a coordinated OPV phase out.

  9. Genomic Analysis of Vaccine-Derived Poliovirus Strains in Stool Specimens by Combination of Full-Length PCR and Oligonucleotide Microarray Hybridization

    PubMed Central

    Laassri, Majid; Dragunsky, Eugenia; Enterline, Joan; Eremeeva, Tatiana; Ivanova, Olga; Lottenbach, Kathleen; Belshe, Robert; Chumakov, Konstantin

    2005-01-01

    Sabin strains of poliovirus used in the manufacture of oral poliovirus vaccine (OPV) are prone to genetic variations that occur during growth in cell cultures and the organisms of vaccine recipients. Such derivative viruses often have increased neurovirulence and transmissibility, and in some cases they can reestablish chains of transmission in human populations. Monitoring for vaccine-derived polioviruses is an important part of the worldwide campaign to eradicate poliomyelitis. Analysis of vaccine-derived polioviruses requires, as a first step, their isolation in cell cultures, which takes significant time and may yield viral stocks that are not fully representative of the strains present in the original sample. Here we demonstrate that full-length viral cDNA can be PCR amplified directly from stool samples and immediately subjected to genomic analysis by oligonucleotide microarray hybridization and nucleotide sequencing. Most fecal samples from healthy children who received OPV were found to contain variants of Sabin vaccine viruses. Sequence changes in the 5′ untranslated region were common, as were changes in the VP1-coding region, including changes in a major antigenic site. Analysis of stool samples taken from cases of acute flaccid paralysis revealed the presence of mixtures of recombinant polioviruses, in addition to the emergence of new sequence variants. Avoiding the need for cell culture isolation dramatically shortened the time needed for identification and analysis of vaccine-derived polioviruses and could be useful for preliminary screening of clinical samples. The amplified full-length viral cDNA can be archived and used to recover live virus for further virological studies. PMID:15956413

  10. Limited and localized outbreak of newly emergent type 2 vaccine-derived poliovirus in Sichuan, China.

    PubMed

    Yan, Dongmei; Zhang, Yong; Zhu, Shuangli; Chen, Na; Li, Xiaolei; Wang, Dongyan; Ma, Xiaozhen; Zhu, Hui; Tong, Wenbin; Xu, Wenbo

    2014-07-01

    From August 2011 to February 2012, an outbreak caused by type 2 circulating vaccine-derived poliovirus (cVDPV) occurred in Aba County, Sichuan, China. During the outbreak, four type 2 VDPVs (≥0.6% nucleotide divergence in the VP1 region relative to the Sabin 2 strain) were isolated from 3 patients with acute flaccid paralysis (AFP) and one close contact. In addition, a type 2 pre-VDPV (0.3% to 0.5% divergence from Sabin 2) that was genetically related to these type 2 VDPVs was isolated from another AFP patient. These 4 patients were all unimmunized children 0.7 to 1.1 years old. Nucleotide sequencing revealed that the 4 VDPV isolates differed from Sabin 2 by 0.7% to 1.2% in nucleotides in the VP1 region and shared 5 nucleotide substitutions with the pre-VDPV. All 5 isolates were closely related, and all were S2/S3/S2/S3 recombinants sharing common recombination crossover sites. Although the two major determinants of attenuation and temperature sensitivity phenotype of Sabin 2 (A481 in the 5' untranslated region and Ile143 in the VP1 protein) had reverted in all 5 isolates, one VDPV (strain CHN16017) still retained the temperature sensitivity phenotype. Phylogenetic analysis of the third coding position of the complete P1 coding region suggested that the cVDPVs circulated locally for about 7 months following the initiating oral poliovirus vaccine (OPV) dose. Our findings reinforce the point that cVDPVs can emerge and spread in isolated communities with immunity gaps and highlight the emergence risks of type 2 cVDPVs accompanying the trivalent OPV used. To solve this issue, it is recommended that type 2 OPV be removed from the trivalent OPV or that inactivated polio vaccine (IPV) be used instead.

  11. Immunodeficiency-related vaccine-derived poliovirus (iVDPV) cases: a systematic review and implications for polio eradication.

    PubMed

    Guo, Jean; Bolivar-Wagers, Sara; Srinivas, Nivedita; Holubar, Marisa; Maldonado, Yvonne

    2015-03-03

    Vaccine-derived polioviruses (VDPVs), strains of poliovirus mutated from the oral polio vaccine, pose a challenge to global polio eradication. Immunodeficiency-related vaccine-derived polioviruses (iVDPVs) are a type of VDPV which may serve as sources of poliovirus reintroduction after the eradication of wild-type poliovirus. This review is a comprehensive update of confirmed iVDPV cases published in the scientific literature from 1962 to 2012, and describes clinically relevant trends in reported iVDPV cases worldwide. We conducted a systematic review of published iVDPV case reports from January 1960 to November 2012 from four databases. We included cases in which the patient had a primary immunodeficiency, and the vaccine virus isolated from the patient either met the sequencing definition of VDPV (>1% divergence for serotypes 1 and 3 and >0.6% for serotype 2) and/or was previously reported as an iVDPV by the World Health Organization. We identified 68 iVDPV cases in 49 manuscripts reported from 25 countries and the Palestinian territories. 62% of case patients were male, 78% presented clinically with acute flaccid paralysis, and 65% were iVDPV2. 57% of cases occurred in patients with predominantly antibody immunodeficiencies, and the overall all-cause mortality rate was greater than 60%. The median age at case detection was 1.4 years [IQR: 0.8, 4.5] and the median duration of shedding was 1.3 years [IQR: 0.7, 2.2]. We identified a poliovirus genome VP1 region mutation rate of 0.72% per year and a higher median percent divergence for iVDPV1 cases. More cases were reported from high income countries, which also had a larger age variation and different distribution of immunodeficiencies compared to upper and lower middle-income countries. Our study describes the incidence and characteristics of global iVDPV cases reported in the literature in the past five decades. It also highlights the regional and economic disparities of reported iVDPV cases. Copyright © 2015

  12. Ensuring preparedness for potential poliomyelitis outbreaks: Recommendations for the US poliovirus vaccine stockpile from the National Vaccine Advisory Committee (NVAC) and the Advisory Committee on Immunization Practices (ACIP).

    PubMed

    Alexander, Lorraine; Birkhead, Guthrie; Guerra, Fernando; Helms, Charles; Hinman, Alan; Katz, Samuel; LeBaron, Charles W; Modlin, John; Murphy, Trudy V

    2004-12-01

    Paralytic poliomyelitis was once endemic in the United States; however, because of high vaccination levels, the last case of wild disease occurred in 1979. Although worldwide polio eradication may be achieved in the near future, the presence of undervaccinated children in urban areas and among groups who refuse vaccination creates an outbreak risk, should importation of wild virus occur. In 1999, the Advisory Committee on Immunization Practices (ACIP) recommended that inactivated poliovirus vaccine (IPV) be used for routine immunization of the US population and that oral poliovirus vaccine (OPV) be reserved for "mass vaccination campaigns to control outbreaks of paralytic polio." Subsequently, the sole US manufacturer of OPV withdrew from the market. In 2003, a joint National Vaccine Advisory Committee (NVAC)/ACIP working group was charged with reporting to its parent bodies concerning the need for a poliovirus vaccine stockpile. Based on that working group's report, the NVAC and ACIP have concluded that stockpiles of both IPV and OPV should be maintained. In the event of an outbreak in which OPV continues not to be available, IPV should be used for control, and a stockpile of 8 million doses seems to be sufficient. Should IPV be manufactured only in combination with other vaccines, appropriate procurement actions should be taken to ensure that uncombined IPV continues to be stockpiled. Under circumstances of diminished population immunity, OPV may offer outbreak control advantages. The NVAC and ACIP recommend that the United States collaborate with international agencies to provide guaranteed and rapid access to at least 8 million doses of trivalent OPV or 8 million doses of each of the 3 types of monovalent OPV. The regulatory and practical obstacles to implementation of this recommendation will require assertive facilitation at high levels of the federal government and careful planning at the state and local levels.

  13. New Generation of Inactivated Poliovirus Vaccines for Universal Immunization After Eradication of Poliomyelitis

    PubMed Central

    Chumakov, Konstantin; Ehrenfeld, Ellie

    2008-01-01

    Twenty years of global polio eradication efforts may soon eliminate wild-type poliovirus transmission. However, new information about poliovirus learned during this campaign, as well as the political realities of a modern world demand that universal immunity against poliomyelitis be maintained even after wild poliovirus is eradicated. Although two excellent vaccines have proven highly effective in the past, neither the live nor current inactivated products are optimal for use in the post-eradication setting. Therefore, concerted efforts are urgently needed to develop a new generation of vaccine that is risk-free and affordable and can be produced on a global scale. Here we discuss the desired properties and ways to create a new polio vaccine. PMID:18990066

  14. Identification of vaccine-related polioviruses by hybridization with specific RNA probes.

    PubMed Central

    De, L; Nottay, B; Yang, C F; Holloway, B P; Pallansch, M; Kew, O

    1995-01-01

    We developed RNA probes for the identification of poliovirus isolates by blot hybridization. Two sets of vaccine strain-specific probes were prepared. They complemented variable genomic domains within (i) the 5'-untranslated region and (ii) the amino-terminal codons of VP1. An enterovirus group probe (EV/5UT) matching highly conserved 5'-untranslated region sequences was used to estimate the quantities of poliovirus (or enterovirus) RNA in the samples. Poliovirus sequences amplified from Sabin strain virion RNA templates by PCR were inserted into the pUC18 plasmid vector. The antisense PCR primer for each probe set contained sequences encoding a T7 promoter. Hybrids were detected by a sensitive nonisotopic method. RNA probes were labeled by incorporation of digoxigenin-uridylate into the transcripts. The binding of probe to immobilized poliovirus RNAs was visualized by hydrolysis of the chemiluminescent substrate 4-methoxy-4-(3-phosphate-phenyl)-spiro-(1,2-dioxetane-3,2'-adamant ane) catalyzed by alkaline phosphatase conjugated to anti-digoxigenin (Fab) fragments. The specificities of the probes were evaluated with a panel of poliovirus isolates that had previously been characterized by sequence analysis. The RNAs of vaccine-related isolates hybridized with the appropriate probe sets. Wild polioviruses representing a broad spectrum of contemporary genotypes were recognized by the inabilities of their genomes to form stable hybrids with the Sabin strain-specific probes. PMID:7751358

  15. Some results of the work on mass immunization in the Soviet Union with live poliovirus vaccine prepared from Sabin strains*

    PubMed Central

    Chumakov, M. P.; Voroshilova, M. K.; Drozdov, S. G.; Dzagurov, S. G.; Lashkevich, V. A.; Mironova, L. L.; Ralph, N. M.; Gagarina, A. V.; Ashmarina, E. E.; Shirman, G. A.; Fleer, G. P.; Tolskaya, E. A.; Sokolova, I. S.; Elbert, L. B.; Sinyak, K. M.

    1961-01-01

    In the course of campaigns for the mass immunization of large segments of the population of the Soviet Union with live poliovirus vaccine prepared in the USSR from attenuated Sabin strains, some 15 200 000 persons received oral vaccine in 1959 and over 77 478 800 persons (mainly between 2 months and 20 years old) in 1960. Approximately 95% of these were given the vaccine incorporated in dragées. The present paper gives data on the safety and immunological activity of the live vaccine, on virus carriage and transmission of the vaccine virus to contacts, and on virus interference. In a comparison between poliomyelitis incidence in 1960 in regions where mass live vaccine immunization had been carried out and the incidence in areas where inactivated Salk vaccine was used in 1958-60, it is shown that, while the Salk vaccine did not fundamentally influence the epidemic process, the Sabin live vaccine brought about a sharp reduction in incidence and prevented the usual summer-autumn rise in the number of poliomyelitis cases. It is concluded from the two years' experience in the mass use of live vaccine from Sabin strains that poliomyelitis epidemics can be prevented. PMID:13879389

  16. [Absence of poliovirus circulation in Colombian departments with vaccination coverage below 80%].

    PubMed

    González, María Mercedes; Sarmiento, Luis; Rey-Benito, Gloria Janneth; Padilla, Leonardo; Giraldo, Alejandra María; Castaño, Jhon Carlos

    2012-08-01

    This study aims to explore a possible silent circulation of wild and vaccine-derived polioviruses in departments of Colombia with polio vaccination coverage of below 80%. The study collected 52 samples of wastewater concentrated as a result of precipitation with polyethylene glycol and sodium chloride. The viral detection was carried out through isolation and the identification through neutralization of the cytopathic effect, as well as through a conventional polymerase chain reaction following reverse transcription. The isolated polioviruses were characterized by the VP1 gene sequence. In two of the 52 samples, there was a presence of the Sabin type 2 poliovirus with more than 99% sequence similarity with the Sabin type 2 strain polio. Circulation of the nonpolio enterovirus was detected in 17.3% of the samples. The serotypes identified corresponded to coxsackievirus B1, echovirus 30, and echovirus 11. No evidence of the spread of either vaccine-derived poliovirus or wild poliovirus was detected in the departments of Colombia with polio coverage lower than 80%.

  17. Needle-free jet injector intradermal delivery of fractional dose inactivated poliovirus vaccine: Association between injection quality and immunogenicity.

    PubMed

    Resik, Sonia; Tejeda, Alina; Mach, Ondrej; Sein, Carolyn; Molodecky, Natalie; Jarrahian, Courtney; Saganic, Laura; Zehrung, Darin; Fonseca, Magile; Diaz, Manuel; Alemany, Nilda; Garcia, Gloria; Hung, Lai Heng; Martinez, Yenisleydis; Sutter, Roland W

    2015-10-26

    The World Health Organization recommends that as part of the polio end-game strategy a dose of inactivated poliovirus vaccine (IPV) be introduced by the end of 2015 in all countries currently using only oral poliovirus vaccine (OPV). Administration of fractional dose (1/5 of full dose) IPV (fIPV) by intradermal (ID) injection may reduce costs, but its conventional administration is with Bacillus Calmette-Guerin (BCG) needle and syringe (NS), which is time consuming and technically challenging. We compared injection quality achieved with BCG NS and three needle-free jet injectors and assessed ergonomic features of the injectors. Children between 12 and 20 months of age who had previously received OPV were enrolled in the Camaguey, Cuba study. Subjects received a single fIPV dose administered intradermally with BCG NS or one of three needle-free injector devices: Bioject Biojector 2000® (B2000), Bioject ID Pen® (ID Pen), or PharmaJet Tropis® (Tropis). We measured bleb diameter and vaccine loss as indicators of ID injection quality, with desirable injection quality defined as bleb diameter ≥5mm and vaccine loss <10%. We surveyed vaccinators to evaluate ergonomic features of the injectors. We further assessed the injection quality indicators as predictors of immune response, measured by increase in poliovirus neutralizing antibodies in blood between day 0 (pre-IPV) and 21 (post-vaccination). Delivery by BCG NS and Tropis resulted in the highest proportion of subjects with desirable injection quality; health workers ranked Biojector2000 and Tropis highest for ergonomic features. We observed that vaccine loss and desirable injection quality were associated with an immune response for poliovirus type 2 (P=0.02, P=0.01, respectively). Our study demonstrated the feasibility of fIPV delivery using needle-free injector devices with high acceptability among health workers. We did not observe the indicators of injection quality to be uniformly associated with immune

  18. Evolution of Circulating Wild Poliovirus and of Vaccine-Derived Poliovirus in an Immunodeficient Patient: a Unifying Model

    PubMed Central

    Gavrilin, Gene V.; Cherkasova, Elena A.; Lipskaya, Galina Y.; Kew, Olen M.; Agol, Vadim I.

    2000-01-01

    We determined nucleotide sequences of the VP1 and 2AB genes and portions of the 2C and 3D genes of two evolving poliovirus lineages: circulating wild viruses of T geotype and Sabin vaccine-derived isolates from an immunodeficient patient. Different regions of the viral RNA were found to evolve nonsynchronously, and the rate of evolution of the 2AB region in the vaccine-derived population was not constant throughout its history. Synonymous replacements occurred not completely randomly, suggesting the need for conservation of certain rare codons (possibly to control translation elongation) and the existence of unidentified constraints in the viral RNA structure. Nevertheless the major contribution to the evolution of the two lineages came from linear accumulation of synonymous substitutions. Therefore, in agreement with current theories of viral evolution, we suggest that the majority of the mutations in both lineages were fixed as a result of successive sampling, from the heterogeneous populations, of random portions containing predominantly neutral and possibly adverse mutations. As a result of such a mode of evolution, the virus fitness may be maintained at a more or less constant level or may decrease unless more-fit variants are stochastically generated. The proposed unifying model of natural poliovirus evolution has important implications for the epidemiology of poliomyelitis. PMID:10906191

  19. Nucleotide variation in Sabin type 3 poliovirus from an Albanian infant with agammaglobulinemia and vaccine associated poliomyelitis.

    PubMed

    Foiadelli, Thomas; Savasta, Salvatore; Battistone, Andrea; Kota, Majlinda; Passera, Carolina; Fiore, Stefano; Bino, Silvia; Amato, Concetta; Lozza, Alessandro; Marseglia, Gian Luigi; Fiore, Lucia

    2016-06-10

    Vaccine-associated paralytic poliomyelitis (VAPP) and immunodeficient long-term polio excretors constitute a significant public health burden and are a major concern for the WHO global polio eradication endgame. Poliovirus type 3 characterized as Sabin-like was isolated from a 5-month-old Albanian child with X-linked agammaglobulinemia and VAPP after oral polio vaccine administration. Diagnostic workup and treatment were performed in Italy. Poliovirus replicated in the gut for 7 months. The 5' non coding region (NCR), VP1, VP3 capsid proteins and the 3D polymerase genomic regions of sequential isolates were sequenced. Increasing accumulation of nucleotide mutations in the VP1 region was detected over time, reaching 1.0 % of genome variation with respect to the Sabin reference strain, which is the threshold that defines a vaccine-derived poliovirus (VDPV). We identified mutations in the 5'NCR and VP3 regions that are associated with reversion to neurovirulence. Despite this, all isolates were characterized as Sabin-like. Several amino acid mutations were identified in the VP1 region, probably involved in growth adaptation and viral persistence in the human gut. Intertypic recombination with Sabin type 2 polio in the 3D polymerase region, possibly associated with increased virus transmissibility, was found in all isolates. Gamma-globulin replacement therapy led to viral clearance and neurological improvement, preventing the occurrence of persistent immunodeficiency-related VDPV. This is the first case of VAPP in an immunodeficient child detected in Albania through the Acute Flaccid Paralysis surveillance system and the first investigated case of vaccine associated poliomyelitis in Italy since the introduction of an all-Salk schedule in 2002. We discuss over the biological and clinical implications in the context of the Global Polio Eradication Program and emphasize on the importance of the Acute Flaccid Paralysis surveillance.

  20. Primary and booster vaccination with an inactivated poliovirus vaccine (IPV) is immunogenic and well-tolerated in infants and toddlers in China.

    PubMed

    Li, Rongcheng; Li, Chang Gui; Li, Yanping; Liu, Youping; Zhao, Hong; Chen, Xiaoling; Kuriyakose, Sherine; Van Der Meeren, Olivier; Hardt, Karin; Hezareh, Marjan; Roy-Ghanta, Sumita

    2016-03-14

    Replacing live-attenuated oral poliovirus vaccines (OPV) with inactivated poliovirus vaccines (IPV) is part of the global strategy to eradicate poliomyelitis. China was declared polio-free in 2000 but continues to record cases of vaccine-associated-poliomyelitis and vaccine-derived-poliovirus outbreaks. Two pilot safety studies and two larger immunogenicity trials evaluated the non-inferiority of IPV (Poliorix™, GSK Vaccines, Belgium) versus OPV in infants and booster vaccination in toddlers primed with either IPV or OPV in China. In pilot safety studies, 25 infants received 3-dose IPV primary vaccination (Study A, www.clinicaltrial.gov NCT00937404) and 25 received an IPV booster after priming with three OPV doses (Study B, NCT01021293). In the randomised, controlled immunogenicity and safety trial (Study C, NCT00920439), infants received 3-dose primary vaccination with IPV (N=541) or OPV (N=535) at 2,3,4 months of age, and a booster IPV dose at 18-24 months (N=470, Study D, NCT01323647: extension of study C). Blood samples were collected before and one month post-dose-3 and booster. Reactogenicity was assessed using diary cards. Serious adverse events (SAEs) were captured throughout each study. Study A and B showed that IPV priming and IPV boosting (after OPV) was safe. Study C: One month post-dose-3, all IPV and ≥ 98.3% OPV recipients had seroprotective antibody titres towards each poliovirus type. The immune response elicited by IPV was non-inferior to Chinese OPV. Seroprotective antibody titres persisted in ≥ 94.7% IPV and ≥ 96.1% OPV recipients at 18-24 months (Study D). IPV had a clinically acceptable safety profile in all studies. Grade 3 local and systemic reactions were uncommon. No SAEs were related to IPV administration. Trivalent IPV is non-inferior to OPV in terms of seroprotection (in the Chinese vaccination schedule) in infant and toddlers, with a clinically acceptable safety profile. Copyright © 2016 The Authors. Published by Elsevier Ltd

  1. Failure to detect infection by oral polio vaccine virus following natural exposure among inactivated polio vaccine recipients.

    PubMed

    Gary, H E; Smith, B; Jenks, J; Ruiz, J; Sessions, W; Vinje, J; Sobsey, M

    2008-02-01

    While oral polio vaccine (OPV) has been shown to be safe and effective, it has been observed that it can circulate within a susceptible population and revert to a virulent form. Inactivated polio vaccine (IPV) confers protection from paralytic disease, but provides limited protection against infection. It is possible, then, that an IPV-immunized population, when exposed to OPV, could sustain undetected circulation of vaccine-derived poliovirus. This study examines the possibility of polio vaccine virus circulating within the United States (highly IPV-immunized) population that borders Mexico (OPV-immunized). A total of 653 stool and 20 sewage samples collected on the US side of the border were tested for the presence of poliovirus. All samples were found to be negative. These results suggest that the risk of circulating vaccine-derived poliovirus is low in fully immunized IPV-using populations in developed countries that border OPV-using populations.

  2. Immunogenicity and safety of a novel monovalent high-dose inactivated poliovirus type 2 vaccine in infants: a comparative, observer-blind, randomised, controlled trial.

    PubMed

    Sáez-Llorens, Xavier; Clemens, Ralf; Leroux-Roels, Geert; Jimeno, José; Clemens, Sue Ann Costa; Weldon, William C; Oberste, M Steven; Molina, Natanael; Bandyopadhyay, Ananda S

    2016-03-01

    Following the proposed worldwide switch from trivalent oral poliovirus vaccine (tOPV) to bivalent types 1 and 3 OPV (bOPV) in 2016, inactivated poliovirus vaccine (IPV) will be the only source of protection against poliovirus type 2. With most countries opting for one dose of IPV in routine immunisation schedules during this transition because of cost and manufacturing constraints, optimisation of protection against all poliovirus types will be a priority of the global eradication programme. We assessed the immunogenicity and safety of a novel monovalent high-dose inactivated poliovirus type 2 vaccine (mIPV2HD) in infants. This observer-blind, comparative, randomised controlled trial was done in a single centre in Panama. We enrolled healthy infants who had not received any previous vaccination against poliovirus. Infants were randomly assigned (1:1) by computer-generated randomisation sequence to receive a single dose of either mIPV2HD or standard trivalent IPV given concurrently with a third dose of bOPV at 14 weeks of age. At 18 weeks, all infants were challenged with one dose of monovalent type 2 OPV (mOPV2). Primary endpoints were seroconversion and median antibody titres to type 2 poliovirus 4 weeks after vaccination with mIPV2HD or IPV; and safety (as determined by the proportion and nature of serious adverse events and important medical events for 8 weeks after vaccination). The primary immunogenicity analyses included all participants for whom a post-vaccination blood sample was available. All randomised participants were included in the safety analyses. This trial is registered with ClinicalTrials.gov, number NCT02111135. Between April 14 and May 9, 2014, 233 children were enrolled and randomly assigned to receive mIPV2HD (117 infants) or IPV (116 infants). 4 weeks after vaccination with mIPV2HD or IPV, seroconversion to poliovirus type 2 was recorded in 107 (93·0%, 95% CI 86·8-96·9) of 115 infants in the mIPV2HD group compared with 86 (74·8%, 65·8

  3. [The role of Sabin inactivated poliovirus vaccine in the final phase of global polio eradication].

    PubMed

    Dong, S Z; Zhu, W B

    2016-12-06

    Global polio eradication has entered its final phase, but still faces enormous challenges. The Polio Eradication and Endgame Strategic Plan (2013-2018) set the target for making the world polio-free by 2018. Meanwhile, the World Heath Organization Global Action Plan (GAP Ⅲ) recommended that polioviruses be stored under strict conditions after eradication of the wild poliovirus. At least one dose of inactivated poliovirus vaccine (IPV) would be required for each newborn baby in the world to ensure successful completion of the final strategy and GAP Ⅲ. The Sabin IPV has a high production safety and low production cost, compared with the wild-virus IPV and, therefore, can play an important role in the final stage of global polio eradication.

  4. Simian virus 40, poliovirus vaccines, and human cancer: research progress versus media and public interests

    NASA Technical Reports Server (NTRS)

    Butel, J. S.

    2000-01-01

    From 1955 through early 1963, millions of people were inadvertently exposed to simian virus 40 (SV40) as a contaminant of poliovirus vaccines; the virus had been present in the monkey kidney cultures used to prepare the vaccines and had escaped detection. SV40 was discovered in 1960 and subsequently eliminated from poliovirus vaccines. This article reviews current knowledge about SV40 and considers public responses to reports in the media. SV40 is a potent tumour virus with broad tissue tropism that induces tumours in rodents and transforms cultured cells from many species. It is also an important laboratory model for basic studies of molecular processes in eukaryotic cells and mechanisms of neoplastic transformation. SV40 neutralizing antibodies have been detected in individuals not exposed to contaminated poliovirus vaccines. There have been many reports of detection of SV40 DNA in human tumours, especially mesotheliomas, brain tumours and osteosarcomas; and DNA sequence analyses have ruled out the possibility that the viral DNA in tumours was due to laboratory contamination or that the virus had been misidentified. However, additional studies are necessary to prove that SV40 is the cause of certain human cancers. A recently published review article evaluated the status of the field and received much media attention. The public response emphasized that there is great interest in the possibility of health risks today from vaccinations received in the past.

  5. Simian virus 40, poliovirus vaccines, and human cancer: research progress versus media and public interests

    NASA Technical Reports Server (NTRS)

    Butel, J. S.

    2000-01-01

    From 1955 through early 1963, millions of people were inadvertently exposed to simian virus 40 (SV40) as a contaminant of poliovirus vaccines; the virus had been present in the monkey kidney cultures used to prepare the vaccines and had escaped detection. SV40 was discovered in 1960 and subsequently eliminated from poliovirus vaccines. This article reviews current knowledge about SV40 and considers public responses to reports in the media. SV40 is a potent tumour virus with broad tissue tropism that induces tumours in rodents and transforms cultured cells from many species. It is also an important laboratory model for basic studies of molecular processes in eukaryotic cells and mechanisms of neoplastic transformation. SV40 neutralizing antibodies have been detected in individuals not exposed to contaminated poliovirus vaccines. There have been many reports of detection of SV40 DNA in human tumours, especially mesotheliomas, brain tumours and osteosarcomas; and DNA sequence analyses have ruled out the possibility that the viral DNA in tumours was due to laboratory contamination or that the virus had been misidentified. However, additional studies are necessary to prove that SV40 is the cause of certain human cancers. A recently published review article evaluated the status of the field and received much media attention. The public response emphasized that there is great interest in the possibility of health risks today from vaccinations received in the past.

  6. Simian virus 40, poliovirus vaccines, and human cancer: research progress versus media and public interests.

    PubMed Central

    Butel, J. S.

    2000-01-01

    From 1955 through early 1963, millions of people were inadvertently exposed to simian virus 40 (SV40) as a contaminant of poliovirus vaccines; the virus had been present in the monkey kidney cultures used to prepare the vaccines and had escaped detection. SV40 was discovered in 1960 and subsequently eliminated from poliovirus vaccines. This article reviews current knowledge about SV40 and considers public responses to reports in the media. SV40 is a potent tumour virus with broad tissue tropism that induces tumours in rodents and transforms cultured cells from many species. It is also an important laboratory model for basic studies of molecular processes in eukaryotic cells and mechanisms of neoplastic transformation. SV40 neutralizing antibodies have been detected in individuals not exposed to contaminated poliovirus vaccines. There have been many reports of detection of SV40 DNA in human tumours, especially mesotheliomas, brain tumours and osteosarcomas; and DNA sequence analyses have ruled out the possibility that the viral DNA in tumours was due to laboratory contamination or that the virus had been misidentified. However, additional studies are necessary to prove that SV40 is the cause of certain human cancers. A recently published review article evaluated the status of the field and received much media attention. The public response emphasized that there is great interest in the possibility of health risks today from vaccinations received in the past. PMID:10743284

  7. Safety and immunogenicity of inactivated poliovirus vaccine when given with measles-rubella combined vaccine and yellow fever vaccine and when given via different administration routes: a phase 4, randomised, non-inferiority trial in The Gambia.

    PubMed

    Clarke, Ed; Saidu, Yauba; Adetifa, Jane U; Adigweme, Ikechukwu; Hydara, Mariama Badjie; Bashorun, Adedapo O; Moneke-Anyanwoke, Ngozi; Umesi, Ama; Roberts, Elishia; Cham, Pa Modou; Okoye, Michael E; Brown, Kevin E; Niedrig, Matthias; Chowdhury, Panchali Roy; Clemens, Ralf; Bandyopadhyay, Ananda S; Mueller, Jenny; Jeffries, David J; Kampmann, Beate

    2016-08-01

    The introduction of the inactivated poliovirus vaccine (IPV) represents a crucial step in the polio eradication endgame. This trial examined the safety and immunogenicity of IPV given alongside the measles-rubella and yellow fever vaccines at 9 months and when given as a full or fractional dose using needle and syringe or disposable-syringe jet injector. We did a phase 4, randomised, non-inferiority trial at three periurban government clinics in west Gambia. Infants aged 9-10 months who had already received oral poliovirus vaccine were randomly assigned to receive the IPV, measles-rubella, and yellow fever vaccines, singularly or in combination. Separately, IPV was given as a full intramuscular or fractional intradermal dose by needle and syringe or disposable-syringe jet injector at a second visit. The primary outcomes were seroprevalence rates for poliovirus 4-6 weeks post-vaccination and the rate of seroconversion between baseline and post-vaccination serum samples for measles, rubella, and yellow fever; and the post-vaccination antibody titres generated against each component of the vaccines. We did a per-protocol analysis with a non-inferiority margin of 10% for poliovirus seroprevalence and measles, rubella, and yellow fever seroconversion, and (1/3) log2 for log2-transformed antibody titres. This trial is registered with ClinicalTrials.gov, number NCT01847872. Between July 10, 2013, and May 8, 2014, we assessed 1662 infants for eligibility, of whom 1504 were enrolled into one of seven groups for vaccine interference and one of four groups for fractional dosing and alternative route of administration. The rubella and yellow fever antibody titres were reduced by co-administration but the seroconversion rates achieved non-inferiority in both cases (rubella, -4·5% [95% CI -9·5 to -0·1]; yellow fever, 1·2% [-2·9 to 5·5]). Measles and poliovirus responses were unaffected (measles, 6·8% [95% CI -1·4 to 14·9]; poliovirus serotype 1, 1·6% [-6·7 to 4·7

  8. Evolution and circulation of type-2 vaccine-derived polioviruses in Nad Ali district of Southern Afghanistan during June 2009-February 2011.

    PubMed

    Sharif, Salmaan; Abbasi, Bilal Haider; Khurshid, Adnan; Alam, Muhammad Masroor; Shaukat, Shahzad; Angez, Mehar; Rana, Muhammad Suleman; Zaidi, Syed Sohail Zahoor

    2014-01-01

    Oral polio vaccine has been used successfully as a powerful tool to control the spread of wild polioviruses throughout the world; however, during replication in under immunized children, some vaccine viruses revert and acquire the neurovirulent phenotypic properties. In this study, we describe the evolution and circulation of Vaccine-Derived Polioviruses (VDPVs) in Helmand province of Afghanistan. We investigated 2646 AFP cases of Afghan children from June 2009-February 2011 and isolated 103 (04%) vaccine viruses, 45(1.7%) wild type polioviruses and six (0.22%) type 2 circulating vaccine-derived polioviruses (cVDPVs). These cVDPVs showed 97.7%-98.2% nucleotide and 98%-98.7% amino acid homology in VP1 region on comparison with Sabin type 2 reference strain. All these cVDPVs had two signature mutations of neurovirulent phenotypes and 12 additional mutations in P1 capsid region that might also have contributed to increase neurovirulence and replication. Phylogenetic analysis revealed that all these viruses were closely related and originated from previously reported Sabin like 2 virus from Pakistan which did not conform to the standard definition of VDPVs at that time. It was also observed that initial OPV dose was administered approximately 9 months prior to the collection of first stool specimen of index case. Our findings support that suboptimal surveillance and low routine immunization coverage have contributed to the emergence and spread of these viruses in Afghanistan. We therefore recommend high quality immunization campaigns not only in affected district Nad Ali but also in the bordering areas between Pakistan and Afghanistan to prevent the spread of cVDPVs.

  9. A randomized, dose-ranging assessment of the immunogenicity and safety of a booster dose of a combined diphtheria-tetanus-whole cell pertussis-hepatitis B-inactivated poliovirus-Hemophilus influenzae type b (DTPw-HBV-IPV/Hib) vaccine vs. co-administration of DTPw-HBV/Hib and IPV vaccines in 12 to 24 months old Filipino toddlers

    PubMed Central

    Quiambao, Beatriz; Van Der Meeren, Olivier; Kolhe, Devayani; Gatchalian, Salvacion

    2012-01-01

    As progress toward global poliovirus eradication continues, more and more countries are moving away from use of oral poliovirus vaccines (OPV) to inactivated poliovirus vaccines (IPV) in national vaccination schedules. Reduction of antigen dose in IPV could increase manufacturing capacity and facilitate the change from OPV to IPV. Combination vaccines reduce the number of injections required to complete vaccination, thus playing an important role in maintaining high vaccine coverage with good public acceptability. Three formulations of a combined, candidate hexavalent diphtheria-tetanus-whole cell pertussis-hepatitis B-inactivated poliovirus-Hemophilus influenzae type b conjugate vaccine (DTPw-HBV-IPV/Hib, GlaxoSmithKline Biologicals) differing only in IPV antigen content (full-dose, half-dose and one-third dose as compared with available stand-alone IPV vaccines), were evaluated when administered to healthy toddlers. Controls received separately administered licensed DTPw-HBV/Hib and IPV vaccines. Immunogenicity was assessed before and one month after vaccination. Safety and reactogenicity data were assessed for 30 d after vaccination. A total of 312 Filipino children were vaccinated in their second year of life. Each DTPw-HBV-IPV/Hib formulation was non-inferior to control in terms of pre-defined criteria for IPV immunogenicity. Post-vaccination GMTs against each poliovirus type were increased between 4.2- and 37.9-fold over pre-vaccination titers. Non-inferiority to other vaccine antigens was also demonstrated. The safety profile of the 3 DTPw-HBV-IPV/Hib formulations resembled licensed DTPw-HBV/Hib Kft and IPV in terms of the frequency and intensity of adverse reactions after vaccination. Further investigation of DTPw-HBV-IPV/Hib containing reduced quantity of IPV antigen for primary vaccination in infants is warranted.   This study is registered at www.clinicaltrials.gov NCT number: NCT01106092 PMID:22330958

  10. A randomized, dose-ranging assessment of the immunogenicity and safety of a booster dose of a combined diphtheria-tetanus-whole cell pertussis-hepatitis B-inactivated poliovirus-Hemophilus influenzae type b (DTPw-HBV-IPV/Hib) vaccine vs. co-administration of DTPw-HBV/Hib and IPV vaccines in 12 to 24 months old Filipino toddlers.

    PubMed

    Quiambao, Beatriz; Van Der Meeren, Olivier; Kolhe, Devayani; Gatchalian, Salvacion

    2012-03-01

    As progress toward global poliovirus eradication continues, more and more countries are moving away from use of oral poliovirus vaccines (OPV) to inactivated poliovirus vaccines (IPV) in national vaccination schedules. Reduction of antigen dose in IPV could increase manufacturing capacity and facilitate the change from OPV to IPV. Combination vaccines reduce the number of injections required to complete vaccination, thus playing an important role in maintaining high vaccine coverage with good public acceptability. Three formulations of a combined, candidate hexavalent diphtheria-tetanus-whole cell pertussis-hepatitis B-inactivated poliovirus-Hemophilus influenzae type b conjugate vaccine (DTPw-HBV-IPV/Hib, GlaxoSmithKline Biologicals) differing only in IPV antigen content (full-dose, half-dose and one-third dose as compared with available stand-alone IPV vaccines), were evaluated when administered to healthy toddlers. Controls received separately administered licensed DTPw-HBV/Hib and IPV vaccines. Immunogenicity was assessed before and one month after vaccination. Safety and reactogenicity data were assessed for 30 d after vaccination. A total of 312 Filipino children were vaccinated in their second year of life. Each DTPw-HBV-IPV/Hib formulation was non-inferior to control in terms of pre-defined criteria for IPV immunogenicity. Post-vaccination GMTs against each poliovirus type were increased between 4.2- and 37.9-fold over pre-vaccination titers. Non-inferiority to other vaccine antigens was also demonstrated. The safety profile of the 3 DTPw-HBV-IPV/Hib formulations resembled licensed DTPw-HBV/Hib Kft and IPV in terms of the frequency and intensity of adverse reactions after vaccination. Further investigation of DTPw-HBV-IPV/Hib containing reduced quantity of IPV antigen for primary vaccination in infants is warranted. This study is registered at www.clinicaltrials.gov NCT number: NCT01106092.

  11. Circulating type 1 vaccine-derived poliovirus may evolve under the pressure of adenosine deaminases acting on RNA.

    PubMed

    Liu, Yanhan; Ma, Tengfei; Liu, Jianzhu; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Xu, Ruixue; Wang, Shujing

    2015-01-01

    Poliovirus, the causative agent of poliomyelitis, is a human enterovirus and member of the Picornaviridae family. An effective live-attenuated poliovirus vaccine strain (Sabin 1) has been developed and has protected humans from polio. However, a few cases of vaccine virulence reversion have been documented in several countries. For instance, circulating type 1 vaccine-derived poliovirus is a highly pathogenic poliovirus that evolved from an avirulent strain, but the mechanism by which vaccine strains undergo reversion remains unclear. In this study, vaccine strains exhibited A to G/U to C and G to A/C to U hypermutations in the reversed evolution of Sabin 1. Furthermore, the mutation ratios of U to C and C to U were higher than those of other mutation types. Dinucleotide editing context was then analyzed. Results showed that A to G and U to C mutations exhibited preferences similar to adenosine deaminases acting on RNA (ADAR). Hence, ADARs may participate in poliovirus vaccine evolution.

  12. [Investigation of a Patient with Pre-vaccine-derived Poliovirus in Shandong Province, China].

    PubMed

    Lin, Xiaojuan; Liu, Yao; Wang, Suting; Zhang Xiao; Song, Lizhi; Tao, Zexin; Ji, Feng; Xiong, Ping; Xu, Aiqiang

    2015-09-01

    To analyze the genetic characteristics of a polio-I highly variant vaccine recombinant virus in Shandong Province (China) in 2011 and to identify isolates from healthy contacts, two stool specimens from one patient with acute flaccid paralysis (AFP) and 40 stool specimens from his contacts were collected for virus isolation. The complete genome of poliovirus and VP1 coding region of the non-polio enterovirus were sequenced. Homologous comparison and phylogenetic analyses based on VP1 sequences were undertaken among coxsackievirus (CV) B1, CV-B3 isolates, and those in GenBank. One poliovirus (P1/11186), CV-A4 and CV-A8 were isolated from the AFP patient; one CV-A2, Echovirus 3 (E-3), E-12 and E-14, ten CV-B1, and five CV-B3 strains were isolated from his contacts. These results led us to believe that there may be a human enterovirus epidemic in this area, and that surveillance must be enhanced. P1/11186 was a type-1 vaccine-related poliovirus; it combined with type-2 and type-3 polioviruses in 2A and 3A regions, respectively. There were 25 nucleotide mutations with 9 amino-acid alterations in the entire genome. There were 8 nucleotide mutations with 5 amino-acid alterations in the VP1 region compared with the corresponding Sabin strains. Homology analyses suggested that the ten CV-B1 isolates had 97.0%-100% nucleotide and 98.9%-100% amino-acid identities with each other, as well as 92.6%-100% nucleotide and 99.2%-100% amino-acid identities among the five CV-B3 isolates. Phylogenetic analyses on the complete sequences of VP1 among CV-B1 and CV-B3 isolates showed that Shandong strains, together with strains from other provinces in China, had a close relationship and belonged to the same group.

  13. Plaque and growth characteristics of different polioviruses isolated from acute flaccid paralysis in Northern Nigeria.

    PubMed

    Sule, W F; Oyedele, O I; Osei-Kwasi, M; Odoom, J K; Adu, F D

    2008-03-01

    To determine some virulent trait-related properties of poliovirus isolates from children with acute flaccid paralysis following vaccination with oral polio vaccine (OPV). Six polioviruses earlier characterised into wild, vaccine-derived and OPV-like were studied using the plaque morphology and growth kinetics at supra-optimal temperature. Department of Virology, University of Ibadan, Nigeria. Polio isolates from six children who developed acute flaccid paralysis following vaccinations with various doses of OPV were used. All the children were located in the Northern part of the country where poliovirus is still circulating. The two vaccine-derived polioviruses acquired wild type characteristics. All the six poliovirus isolates developed different forms of plaques ranging from tiny, small and large. The plaque formed could however not be used to identify the different isolates. Growth of the different isolates at supra-optimal temperature showed that the three wild polioviruses grew to a higher titre when compared with the Sabin 2 control. The two vaccine derived isolates behaved like the wild poliovirus while the OPV-like virus acquired an intermediate characteristics between wild and sabin. The wild polioviruses represented in this study are among the last vestiges of the circulating polioviruses found in the world. It is possible that the observed biological properties of wild types 1 and 3 described in the study are typical of the West African polioviruses. These properties will provide useful previews to the final identification of some important clinical isolates especially type 1 which may grow rapidly in cell culture.

  14. Immunogenicity and Effectiveness of Routine Immunization With 1 or 2 Doses of Inactivated Poliovirus Vaccine: Systematic Review and Meta-analysis

    PubMed Central

    Grassly, Nicholas C.

    2014-01-01

    Background. The World Health Organization has recommended that all 124 countries currently using only oral poliovirus vaccine (OPV) introduce at least 1 dose of inactivated poliovirus vaccine (IPV) before the global withdrawal of serotype 2 OPV in 2016. A 1- or 2-dose schedule, potentially administered intradermally with reduced antigen content, may make this affordable. Methods. A systematic review and meta-analysis of studies documenting seroconversion after 1 or 2, full or fractional (1/5) doses of enhanced-potency IPV was performed. Studies reporting the clinical efficacy of IPV were also reviewed. Results. Twenty study arms from 12 published articles were included in the analysis of seroconversion. One full dose of intramuscular IPV seroconverted 33%, 41%, and 47% of infants against serotypes 1, 2, and 3 on average, whereas 2 full doses seroconverted 79%, 80%, and 90%, respectively. Seroconversion increased with age at administration. Limited data from case-control studies indicate clinical efficacy equivalent to the proportion seroconverting. One fractional dose of intradermal IPV gave lower seroconversion (10%–40%), but after 2 doses seroconversion was comparable to that with full-dose IPV. Conclusions. Routine immunization with 2 full or fractional doses of IPV given after 10 weeks of age is likely to protect >80% of recipients against poliomyelitis if poliovirus reemerges after withdrawal of OPV serotypes. PMID:24634499

  15. Vaccine-induced mucosal immunity to poliovirus: analysis of cohorts from an open-label, randomised controlled trial in Latin American infants.

    PubMed

    Wright, Peter F; Connor, Ruth I; Wieland-Alter, Wendy F; Hoen, Anne G; Boesch, Austin W; Ackerman, Margaret E; Oberste, M Steven; Gast, Chris; Brickley, Elizabeth B; Asturias, Edwin J; Rüttimann, Ricardo; Bandyopadhyay, Ananda S

    2016-12-01

    Identification of mechanisms that limit poliovirus replication is crucial for informing decisions aimed at global polio eradication. Studies of mucosal immunity induced by oral poliovirus (OPV) or inactivated poliovirus (IPV) vaccines and mixed schedules thereof will determine the effectiveness of different vaccine strategies to block virus shedding. We used samples from a clinical trial of different vaccination schedules to measure intestinal immunity as judged by neutralisation of virus and virus-specific IgA in stools. In the FIDEC trial, Latin American infants were randomly assigned to nine groups to assess the efficacy of two schedules of bivalent OPV (bOPV) and IPV and challenge with monovalent type 2 OPV, and stools samples were collected. We selected three groups of particular interest-the bOPV control group (serotypes 1 and 3 at 6, 10, and 14 weeks), the trivalent attenuated OPV (tOPV) control group (tOPV at 6, 10, and 14 weeks), and the bOPV-IPV group (bOPV at 6, 10, and 14 weeks plus IPV at 14 weeks). Neutralising activity and poliovirus type-specific IgA were measured in stool after a monovalent OPV type 2 challenge at 18 weeks of age. Mucosal immunity was measured by in-vitro neutralisation of a type 2 polio pseudovirus (PV2). Neutralisation titres and total and poliovirus-type-specific IgG and IgA concentrations in stools were assessed in samples collected before challenge and 2 weeks after challenge from all participants. 210 infants from Guatemala and Dominican Republic were included in this analysis. Of 38 infants tested for mucosal antibody in the tOPV group, two were shedding virus 1 week after challenge, compared with 59 of 85 infants receiving bOPV (p<0·0001) and 53 of 87 infants receiving bOPV-IPV (p<0·0001). Mucosal type 2 neutralisation and type-specific IgA were noted primarily in response to tOPV. An inverse correlation was noted between virus shedding and both serum type 2 neutralisation at challenge (p<0·0001) and mucosal type 2

  16. Safety of diphtheria, tetanus, acellular pertussis and inactivated poliovirus (DTaP-IPV) vaccine.

    PubMed

    Daley, Matthew F; Yih, W Katherine; Glanz, Jason M; Hambidge, Simon J; Narwaney, Komal J; Yin, Ruihua; Li, Lingling; Nelson, Jennifer C; Nordin, James D; Klein, Nicola P; Jacobsen, Steven J; Weintraub, Eric

    2014-05-23

    In 2008, a diphtheria, tetanus, acellular pertussis, and inactivated poliovirus combined vaccine (DTaP-IPV) was licensed for use in children 4 through 6 years of age. While pre-licensure studies did not demonstrate significant safety concerns, the number vaccinated in these studies was not sufficient to examine the risk of uncommon but serious adverse events. To assess the risk of serious adverse events following DTaP-IPV vaccination. The study was conducted from January 2009 through September 2012 in the Vaccine Safety Datalink (VSD) project. In the VSD, electronic vaccination and encounter data are updated and aggregated weekly as part of ongoing surveillance activities. Based on previous reports and biologic plausibility, eight potential adverse events were monitored: meningitis/encephalitis; seizures; stroke; Guillain-Barré syndrome; Stevens-Johnson syndrome; anaphylaxis; serious allergic reactions other than anaphylaxis; and serious local reactions. Adverse event rates in DTaP-IPV recipients were compared to historical incidence rates in the VSD population prior to 2009. Sequential probability ratio testing was used to analyze the data on a weekly basis. During the study period, 201,116 children received DTaP-IPV vaccine. Ninety-seven percent of DTaP-IPV recipients also received other vaccines on the same day, typically measles-mumps-rubella and varicella vaccines. There was no statistically significant increased risk of any of the eight pre-specified adverse events among DTaP-IPV recipients when compared to historical incidence rates. In this safety surveillance study of more than 200,000 DTaP-IPV vaccine recipients, there was no evidence of increased risk for any of the pre-specified adverse events monitored. Continued surveillance of DTaP-IPV vaccine safety may be warranted to monitor for rare adverse events, such as Guillain-Barré syndrome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Genetically Thermo-Stabilised, Immunogenic Poliovirus Empty Capsids; a Strategy for Non-replicating Vaccines

    PubMed Central

    Fox, Helen; Minor, Philip D.

    2017-01-01

    While wild type polio has been nearly eradicated there will be a need to continue immunisation programmes for some time because of the possibility of re-emergence and the existence of long term excreters of poliovirus. All vaccines in current use depend on growth of virus and most of the non-replicating (inactivated) vaccines involve wild type viruses known to cause poliomyelitis. The attenuated vaccine strains involved in the eradication programme have been used to develop new inactivated vaccines as production is thought safer. However it is known that the Sabin vaccine strains are genetically unstable and can revert to a virulent transmissible form. A possible solution to the need for virus growth would be to generate empty viral capsids by recombinant technology, but hitherto such particles are so unstable as to be unusable. We report here the genetic manipulation of the virus to generate stable empty capsids for all three serotypes. The particles are shown to be extremely stable and to generate high levels of protective antibodies in animal models. PMID:28103317

  18. Succeeding in New Vaccine Introduction: Lessons Learned From the Introduction of Inactivated Poliovirus Vaccine in Cameroon, Kenya, and Nigeria.

    PubMed

    Scotney, Soleine; Snidal, Sarah; Saidu, Yauba; Ojumu, Abiola; Ngatia, Antony; Bagana, Murtala; Mutuku, Faith; Sobngwi, Joelle; Efe-Aluta, Oniovo; Roper, Julia; LeTallec, Yann; Kang'ethe, Alice

    2017-07-01

    Introducing a new vaccine is a large-scale endeavor that can face many challenges, resulting in introduction delays and inefficiencies. The development of national task teams and tools, such as prelaunch trackers, for the introduction of new vaccines (hereafter, "new vaccine introductions" [NVIs]) can help countries implement robust project management systems, front-load critical preparatory activities, and ensure continuous communication around vaccine supply and financing. In addition, implementing postlaunch assessments to take rapid corrective action accelerates the uptake of the new vaccines. NVIs can provide an opportunity to strengthen routine immunization, through strengthening program management systems or by reinforcing local immunization managers' abilities, among others. This article highlights key lessons learned during the introduction of inactivated poliovirus vaccine in 3 countries that would make future NVIs more successful. The article concludes by considering how the Immunization Systems Management Group of the Global Polio Eradication Initiative has been useful to the NVI process and how such global structures could be further enhanced. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  19. Long-Term Circulation of Vaccine-Derived Poliovirus That Causes Paralytic Disease

    PubMed Central

    Cherkasova, Elena A.; Korotkova, Ekaterina A.; Yakovenko, Maria L.; Ivanova, Olga E.; Eremeeva, Tatyana P.; Chumakov, Konstantin M.; Agol, Vadim I.

    2002-01-01

    Successful implementation of the global poliomyelitis eradication program raises the problem of vaccination against poliomyelitis in the posteradication era. One of the options under consideration envisions completely stopping worldwide the use of the Sabin vaccine. This strategy is based on the assumption that the natural circulation of attenuated strains and their derivatives is strictly limited. Here, we report the characterization of a highly evolved derivative of the Sabin vaccine strain isolated in a case of paralytic poliomyelitis from a 7-month-old immunocompetent baby in an apparently adequately immunized population. Analysis of the genome of this isolate showed that it is a double (type 1-type 2-type 1) vaccine-derived recombinant. The number of mutations accumulated in both the type 1-derived and type 2-derived portions of the recombinant genome suggests that both had diverged from their vaccine predecessors ∼2 years before the onset of the illness. This fact, along with other recent observations, points to the possibility of long-term circulation of Sabin vaccine strain derivatives associated with an increase in their neurovirulence. Comparison of genomic sequences of this and other evolved vaccine-derived isolates reveals some general features of natural poliovirus evolution. They include a very high preponderance and nonrandom distribution of synonymous substitutions, conservation of secondary structures of important cis-acting elements of the genome, and an apparently adaptive character of most of the amino acid mutations, with only a few of them occurring in the antigenic determinants. Another interesting feature is a frequent occurrence of tripartite intertypic recombinants with either type 1 or type 3 homotypic genomic ends. PMID:12050392

  20. Disposing of Excess Vaccines After the Withdrawal of Oral Polio Vaccine.

    PubMed

    Wanyoike, Sarah; Ramirez Gonzalez, Alejandro; Dolan, Samantha B; Garon, Julie; Veira, Chantal Laroche; Hampton, Lee M; Chang Blanc, Diana; Patel, Manish M

    2017-07-01

    Until recently, waste management for national immunization programs was limited to sharps waste, empty vaccine vials, or vaccines that had expired or were no longer usable. However, because wild-type 2 poliovirus has been eradicated, the World Health Organization's (WHO's) Strategic Advisory Group of Experts on Immunization deemed that all countries must simultaneously cease use of the type 2 oral polio vaccine and recommended that all countries and territories using oral polio vaccine (OPV) "switch" from trivalent OPV (tOPV; types 1, 2, and 3 polioviruses) to bivalent OPV (bOPV; types 1 and 3 polioviruses) during a 2-week period in April 2016. Use of tOPV after the switch would risk outbreaks of paralysis related to type 2-circulating vaccine-derived poliovirus (cVDPV2). To minimize risk of vaccine-derived polio countries using OPV were asked to dispose of all usable, unexpired tOPV after the switch to bOPV. In this paper, we review the rationale for tOPV disposal and describe the global guidelines provided to countries for the safe and appropriate disposal of tOPV. These guidelines gave countries flexibility in implementing this important task within the confines of their national regulations, capacities, and resources. Steps for appropriate disposal of tOPV included removal of all tOPV vials from the cold chain, placement in appropriate bags or containers, and disposal using a recommended approach (ie, autoclaving, boiling, chemical inactivation, incineration, or encapsulation) followed by burial or transportation to a designated waste facility. This experience with disposal of tOPV highlights the adaptability of national immunization programs to new procedures, and identifies gaps in waste management policies and strategies with regard to disposal of unused vaccines. The experience also provides a framework for future policies and for developing programmatic guidance for the ultimate disposal of all OPV after the eradication of polio. © The Author 2017

  1. Intestinal immunity following a combined enhanced inactivated polio vaccine/oral polio vaccine programme in Israel.

    PubMed

    Swartz, T A; Green, M S; Handscher, R; Sofer, D; Cohen-Dar, M; Shohat, T; Habib, S; Barak, E; Dror, Z; Somekh, E; Peled-Leviathan, T; Yulzari, R; Libling, A; Mendelson, E; Shulman, L M

    2008-02-20

    Intestinal immunity was studied in a polio-free community immunised with a combined enhanced inactivated/oral polio vaccine (EIPV/OPV) vaccination programme. Poliovirus excretion was evaluated in three groups of infants primed with a partial (2 EIPV+2 OPV) or complete (3 EIPV+3 OPV) dose schedule. Poliovirus replicated in the gut of 59.8-55.8% of infants in the three groups 7 days after administration of an additional OPV dose. Significant decreases in the percent of type-specific-virus excreters appeared after 14 and 21 days for serotypes 1 and 2, and after 21 and 28 days for serotype 3. The percent of excreters was inversely correlated with pre-challenge neutralising antibody (NA) titers (p<0.05). Intrafamilial virus transmission to mothers and siblings was minimal. The principal factor for interruption of disease and virus transmission in the community was a strong and persistent humoral immunity with immunological memory. A satisfactory level of family hygiene contributed towards breaking the chain of transmission of poliovirus to contacts.

  2. Oral vaccination: where we are?

    PubMed

    Silin, Dmytro S; Lyubomska, Oksana V; Jirathitikal, Vichai; Bourinbaiar, Aldar S

    2007-07-01

    As early as 900 years ago, the Bedouins of the Negev desert were reported to kill a rabid dog, roast its liver and feed it to a dog-bitten person for three to five days according to the size and number of bites [1] . In sixteenth century China, physicians routinely prescribed pills made from the fleas collected from sick cows, which purportedly prevented smallpox. One may dismiss the wisdom of the Bedouins or Chinese but the Nobel laureate, Charles Richet, demonstrated in 1900 that feeding raw meat can cure tuberculous dogs - an approach he termed zomotherapy. Despite historical clues indicating the feasibility of oral vaccination, this particular field is notoriously infamous for the abundance of dead-end leads. Today, most commercial vaccines are delivered by injection, which has the principal limitation that recipients do not like needles. In the last few years, there has been a sharp increase in interest in needle-free vaccine delivery; new data emerges almost daily in the literature. So far, there are very few licensed oral vaccines, but many more vaccine candidates are in development. Vaccines delivered orally have the potential to take immunization to a fundamentally new level. In this review, the authors summarize the recent progress in the area of oral vaccines.

  3. Identification and Analysis of Antiviral Compounds Against Poliovirus.

    PubMed

    Leyssen, Pieter; Franco, David; Tijsma, Aloys; Lacroix, Céline; De Palma, Armando; Neyts, Johan

    2016-01-01

    The Global Polio Eradication Initiative, launched in 1988, had as its goal the eradication of polio worldwide by the year 2000 through large-scale vaccinations campaigns with the live attenuated oral PV vaccine (OPV) (Griffiths et al., Biologicals 34:73-74, 2006). Despite substantial progress, polio remains endemic in several countries and new imported cases are reported on a regular basis ( http://www.polioeradication.org/casecount.asp ).It was recognized by the poliovirus research community that developing antivirals against poliovirus would be invaluable in the post-OPV era. Here, we describe three methods essential for the identification of selective inhibitors of poliovirus replication and for determining their mode of action by time-of-drug-addition studies as well as by the isolation of compound-resistant poliovirus variants.

  4. Isolation and characterization of a type 2 vaccine-derived poliovirus from environmental surveillance in China, 2012.

    PubMed

    Tao, Zexin; Zhang, Yong; Liu, Yao; Xu, Aiqiang; Lin, Xiaojuan; Yoshida, Hiromu; Xiong, Ping; Zhu, Shuangli; Wang, Suting; Yan, Dongmei; Song, Lizhi; Wang, Haiyan; Cui, Ning; Xu, Wenbo

    2013-01-01

    Environmental surveillance of poliovirus on sewage has been conducted in Shandong Province, China since 2008. A type 2 vaccine-derived poliovirus (VDPV) with 7 mutations in VP1 coding region was isolated from the sewage collected in the city of Jinan in December 2012. The complete genome sequencing analysis of this isolate revealed 25 nucleotide substitutions, 7 of which resulted in amino acid alteration. No evidence of recombination with other poliovirus serotypes was observed. The virus did not lose temperature sensitive phenotype at 40°C. An estimation based on the evolution rate of the P1 coding region suggested that evolution time of this strain might be 160-176 days. VP1 sequence analysis revealed that this VDPV strain is of no close relationship with other local type 2 polioviruses (n=66) from sewage collected between May 2012 and June 2013, suggesting the lack of its circulation in the local population. The person who excreted the virus was not known and no closely related virus was isolated in local population via acute flaccid paralysis surveillance. By far this is the first report of VDPV isolated from sewage in China, and these results underscore the value of environmental surveillance in the polio surveillance system even in countries with high rates of OPV coverage.

  5. Recent advances in oral vaccine development

    PubMed Central

    De Smet, Rebecca; Allais, Liesbeth; Cuvelier, Claude A

    2014-01-01

    Oral vaccination is the most challenging vaccination method due to the administration route. However, oral vaccination has socio-economic benefits and provides the possibility of stimulating both humoral and cellular immune responses at systemic and mucosal sites. Despite the advantages of oral vaccination, only a limited number of oral vaccines are currently approved for human use. During the last decade, extensive research regarding antigen-based oral vaccination methods have improved immunogenicity and induced desired immunological outcomes. Nevertheless, several factors such as the harsh gastro-intestinal environment and oral tolerance impede the clinical application of oral delivery systems. To date, human clinical trials investigating the efficacy of these systems are still lacking. This review addresses the rationale and key biological and physicochemical aspects of oral vaccine design and highlights the use of yeast-derived β-glucan microparticles as an oral vaccine delivery platform. PMID:24553259

  6. Comparison of culture, single and multiplex real-time PCR for detection of Sabin poliovirus shedding in recently vaccinated Indian children.

    PubMed

    Giri, Sidhartha; Rajan, Anand K; Kumar, Nirmal; Dhanapal, Pavithra; Venkatesan, Jayalakshmi; Iturriza-Gomara, Miren; Taniuchi, Mami; John, Jacob; Abraham, Asha Mary; Kang, Gagandeep

    2017-02-18

    Although, culture is considered the gold standard for poliovirus detection from stool samples, real-time PCR has emerged as a faster and more sensitive alternative. Detection of poliovirus from the stool of recently vaccinated children by culture, single and multiplex real-time PCR was compared. Of the 80 samples tested, 55 (68.75%) were positive by culture compared to 61 (76.25%) and 60 (75%) samples by the single and one step multiplex real-time PCR assays respectively. Real-time PCR (singleplex and multiplex) is more sensitive than culture for poliovirus detection in stool, although the difference was not statistically significant.

  7. Pollen grains for oral vaccination.

    PubMed

    Atwe, Shashwati U; Ma, Yunzhe; Gill, Harvinder Singh

    2014-11-28

    Oral vaccination can offer a painless and convenient method of vaccination. Furthermore, in addition to systemic immunity it has potential to stimulate mucosal immunity through antigen-processing by the gut-associated lymphoid tissues. In this study we propose the concept that pollen grains can be engineered for use as a simple modular system for oral vaccination. We demonstrate feasibility of this concept by using spores of Lycopodium clavatum (clubmoss) (LSs). We show that LSs can be chemically cleaned to remove native proteins to create intact clean hollow LS shells. Empty pollen shells were successfully filled with molecules of different sizes demonstrating their potential to be broadly applicable as a vaccination system. Using ovalbumin (OVA) as a model antigen, LSs formulated with OVA were orally fed to mice. LSs stimulated significantly higher anti-OVA serum IgG and fecal IgA antibodies compared to those induced by use of cholera toxin as a positive-control adjuvant. The antibody response was not affected by pre-neutralization of the stomach acid, and persisted for up to 7 months. Confocal microscopy revealed that LSs can translocate into mouse intestinal wall. Overall, this study lays the foundation of using LSs as a novel approach for oral vaccination.

  8. Bioinformatics analysis and genetic diversity of the poliovirus.

    PubMed

    Liu, Yanhan; Ma, Tengfei; Liu, Jianzhu; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Wang, Shujing; Xu, Ruixue

    2014-12-01

    Poliomyelitis, a disease which can manifest as muscle paralysis, is caused by the poliovirus, which is a human enterovirus and member of the family Picornaviridae that usually transmits by the faecal-oral route. The viruses of the OPV (oral poliovirus attenuated-live vaccine) strains can mutate in the human intestine during replication and some of these mutations can lead to the recovery of serious neurovirulence. Informatics research of the poliovirus genome can be used to explain further the characteristics of this virus. In this study, sequences from 100 poliovirus isolates were acquired from GenBank. To determine the evolutionary relationship between the strains, we compared and analysed the sequences of the complete poliovirus genome and the VP1 region. The reconstructed phylogenetic trees for the complete sequences and the VP1 sequences were both divided into two branches, indicating that the genetic relationships of the whole poliovirus genome and the VP1 sequences are very similar. This branching indicates that the virulence and pathogenicity of poliomyelitis may be associated with the VP1 region. Sequence alignment of the VP1 region revealed numerous mutation sites in which mutation rates of >30 % were detected. In a group of strains recorded in the USA, mutation sites and mutation types were the same and this may be associated with their distribution in the evolutionary tree and their genetic relationship. In conclusion, the genetic evolutionary relationships of poliovirus isolate sequences are determined to a great extent by the VP1 protein, and poliovirus strains located on the same branch of the phylogenetic tree contain the same mutation spots and mutation types. Hence, the genetic characteristics of the VP1 region in the poliovirus genome should be analysed to identify the transmission route of poliovirus and provide the basis of viral immunity development.

  9. Transmissibility and persistence of oral polio vaccine viruses: implications for the global poliomyelitis eradication initiative.

    PubMed

    Fine, P E; Carneiro, I A

    1999-11-15

    The global poliomyelitis eradication initiative has been a tremendous success, with current evidence suggesting that wild poliovirus will cease to circulate anywhere in the world soon after the year 2000. As the goal of wild poliovirus eradication is approached, concern has been raised about the potential for persistent transmission of oral polio vaccine (OPV) viruses, as these viruses are known to revert toward wild-type neurovirulence. This paper has been extracted from a document prepared for the World Health Organization on the implications of OPV transmissibility for the strategy of stopping OPV vaccination after global eradication of wild polioviruses. The authors review the empirical evidence on OPV transmissibility available from household and community transmission studies and from mass-vaccination experiences. They then consider theoretical measures of transmissibility and persistence for wild and OPV viruses (secondary attack rate, basic reproduction number, and critical populations' size), to assess whether transmissibility of OPV viruses is sufficient to allow persistence of these viruses after cessation of vaccination. The findings indicate that OPV viruses could persist under various plausible circumstances, and that this potential should be a major consideration when planning the cessation of OPV vaccination.

  10. Primary vaccination of adults with reduced antigen-content diphtheria-tetanus-acellular pertussis or dTpa-inactivated poliovirus vaccines compared to diphtheria-tetanus-toxoid vaccines.

    PubMed

    Theeten, Heidi; Rümke, Hans; Hoppener, Floris J P; Vilatimó, Ramón; Narejos, Silvia; Van Damme, Pierre; Hoet, Bernard

    2007-11-01

    To evaluate immunogenicity and reactogenicity of primary vaccination with reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) or dTpa-inactivated poliovirus (dTpa-IPV) vaccine compared to diphtheria-tetanus-toxoid vaccines (Td) in adults > or = 40 years of age without diphtheria or tetanus vaccination for 20 years or with an unknown vaccination history. Double-blind, randomized, controlled clinical trial. Primary vaccination with either three doses of dTpa, one dose of dTpa-IPV followed by two doses of Td, or three doses of Td vaccine (control) administered in a 0-1-6-month schedule. Blood samples were collected before commencement and 1 month after each dose. Local and general symptoms were solicited for 15 days after each dose. A total of 460 adults were enrolled, of whom over 48% did not have protective antibody concentrations against diphtheria and tetanus. One month after dose 3 > 99% had seroprotective anti-diphtheria and tetanus antibodies. Three doses were required to maximize anti-diphtheria seroprotection rates. A vaccine response to pertussis antigens was observed in > 92% of dTpa and dTpa-IPV recipients after dose 1. One month after dTpa-IPV, > 98.4% had seroprotective anti-polio titres. No statistically significant differences in local or general symptoms between groups were observed. dTpa and dTpa-IPV can provide primary vaccination of adults. Combinations of dTpa or dTpa-IPV can be used to replace Td and provide booster vaccination against pertussis and polio simultaneously with diphtheria and tetanus, even in situations where the primary vaccination history is unknown.

  11. Establishment of a poliovirus oral infection system in human poliovirus receptor-expressing transgenic mice that are deficient in alpha/beta interferon receptor.

    PubMed

    Ohka, Seii; Igarashi, Hiroko; Nagata, Noriyo; Sakai, Mai; Koike, Satoshi; Nochi, Tomonori; Kiyono, Hiroshi; Nomoto, Akio

    2007-08-01

    Poliovirus (PV) is easily transferred to humans orally; however, no rodent model for oral infections has been developed because of the alimentary tract's low sensitivity to the virus. Here we showed that PV is inactivated by the low pH of the gastric contents in mice. The addition of 3% NaHCO3 to the viral inoculum increased the titer of virus reaching the small intestine through the stomach after intragastric inoculation of PV. Transgenic mice (Tg) carrying the human PV receptor (hPVR/CD155) gene and lacking the alpha/beta interferon receptor (IFNAR) gene (hPVR-Tg/IfnarKO) were sensitive to the oral administration of PV with 3% NaHCO3, whereas hPVR-Tg expressing IFNAR were much less sensitive. The virus was detected in the epithelia of the small intestine and proliferated in the alimentary tract of hPVR-Tg/IfnarKO. By the ninth day after the administration of a virulent PV, the mice had died. These results suggest that IFNAR plays an important role in determining permissivity in the alimentary tract as well as the generation of virus-specific immune responses to PV via the oral route. Thus, hPVR-Tg/IfnarKO are considered to be the first oral infection model for PV, although levels of anti-PV antibodies were not elevated dramatically in serum and intestinal secretions of surviving mice when hPVR-Tg/IfnarKO were administered an attenuated PV.

  12. Utility of Respiratory Vaccination With Recombinant Subunit Vaccines for Protection Against Pneumonic Plague

    DTIC Science & Technology

    2002-01-01

    Immunity at mucosal sites can prevent pathogen infection of the host. A) oral poliovirus vaccine B) inhaled influenza vaccine C) kennel cough & Newcastle...Utility of respiratory vaccination with recombinant subunit vaccines for protection against pneumonic plague. Douglas S. Reed & Jennifer Smoll...2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Utility of respiratory vaccination with recombinant subunit vaccines for

  13. Sporadic Isolation of Sabin-Like Polioviruses and High-Level Detection of Non-Polio Enteroviruses during Sewage Surveillance in Seven Italian Cities, after Several Years of Inactivated Poliovirus Vaccination

    PubMed Central

    Battistone, A.; Buttinelli, G.; Fiore, S.; Amato, C.; Bonomo, P.; Patti, A. M.; Vulcano, A.; Barbi, M.; Binda, S.; Pellegrinelli, L.; Tanzi, M. L.; Affanni, P.; Castiglia, P.; Germinario, C.; Mercurio, P.; Cicala, A.; Triassi, M.; Pennino, F.

    2014-01-01

    Sewage surveillance in seven Italian cities between 2005 and 2008, after the introduction of inactivated poliovirus vaccination (IPV) in 2002, showed rare polioviruses, none that were wild-type or circulating vaccine-derived poliovirus (cVDPV), and many other enteroviruses among 1,392 samples analyzed. Two of five polioviruses (PV) detected were Sabin-like PV2 and three PV3, based on enzyme-linked immunosorbent assay (ELISA) and PCR results. Neurovirulence-related mutations were found in the 5′ noncoding region (5′NCR) of all strains and, for a PV2, also in VP1 region 143 (Ile > Thr). Intertypic recombination in the 3D region was detected in a second PV2 (Sabin 2/Sabin 1) and a PV3 (Sabin 3/Sabin 2). The low mutation rate in VP1 for all PVs suggests limited interhuman virus passages, consistent with efficient polio immunization in Italy. Nonetheless, these findings highlight the risk of wild or Sabin poliovirus reintroduction from abroad. Non-polio enteroviruses (NPEVs) were detected, 448 of which were coxsackievirus B (CVB) and 294 of which were echoviruses (Echo). Fifty-six NPEVs failing serological typing were characterized by sequencing the VP1 region (nucleotides [nt] 2628 to 2976). A total of 448 CVB and 294 Echo strains were identified; among those strains, CVB2, CVB5, and Echo 11 predominated. Environmental CVB5 and CVB2 strains from this study showed high sequence identity with GenBank global strains. The high similarity between environmental NPEVs and clinical strains from the same areas of Italy and the same periods indicates that environmental strains reflect the viruses circulating in the population and highlights the potential risk of inefficient wastewater treatments. This study confirmed that sewage surveillance can be more sensitive than acute flaccid paralysis (AFP) surveillance in monitoring silent poliovirus circulation in the population as well as the suitability of molecular approaches to enterovirus typing. PMID:24814793

  14. Sporadic isolation of sabin-like polioviruses and high-level detection of non-polio enteroviruses during sewage surveillance in seven Italian cities, after several years of inactivated poliovirus vaccination.

    PubMed

    Battistone, A; Buttinelli, G; Fiore, S; Amato, C; Bonomo, P; Patti, A M; Vulcano, A; Barbi, M; Binda, S; Pellegrinelli, L; Tanzi, M L; Affanni, P; Castiglia, P; Germinario, C; Mercurio, P; Cicala, A; Triassi, M; Pennino, F; Fiore, L

    2014-08-01

    Sewage surveillance in seven Italian cities between 2005 and 2008, after the introduction of inactivated poliovirus vaccination (IPV) in 2002, showed rare polioviruses, none that were wild-type or circulating vaccine-derived poliovirus (cVDPV), and many other enteroviruses among 1,392 samples analyzed. Two of five polioviruses (PV) detected were Sabin-like PV2 and three PV3, based on enzyme-linked immunosorbent assay (ELISA) and PCR results. Neurovirulence-related mutations were found in the 5'noncoding region (5'NCR) of all strains and, for a PV2, also in VP1 region 143 (Ile>Thr). Intertypic recombination in the 3D region was detected in a second PV2 (Sabin 2/Sabin 1) and a PV3 (Sabin 3/Sabin 2). The low mutation rate in VP1 for all PVs suggests limited interhuman virus passages, consistent with efficient polio immunization in Italy. Nonetheless, these findings highlight the risk of wild or Sabin poliovirus reintroduction from abroad. Non-polio enteroviruses (NPEVs) were detected, 448 of which were coxsackievirus B (CVB) and 294 of which were echoviruses (Echo). Fifty-six NPEVs failing serological typing were characterized by sequencing the VP1 region (nucleotides [nt] 2628 to 2976). A total of 448 CVB and 294 Echo strains were identified; among those strains, CVB2, CVB5, and Echo 11 predominated. Environmental CVB5 and CVB2 strains from this study showed high sequence identity with GenBank global strains. The high similarity between environmental NPEVs and clinical strains from the same areas of Italy and the same periods indicates that environmental strains reflect the viruses circulating in the population and highlights the potential risk of inefficient wastewater treatments. This study confirmed that sewage surveillance can be more sensitive than acute flaccid paralysis (AFP) surveillance in monitoring silent poliovirus circulation in the population as well as the suitability of molecular approaches to enterovirus typing.

  15. Achieving high seroprevalence against polioviruses in Sri Lanka--results from a serological survey, 2014.

    PubMed

    Gamage, Deepa; Palihawadana, Paba; Mach, Ondrej; Weldon, William C; Oberste, Steven M; Sutter, Roland W

    2015-12-01

    The immunization program in Sri Lanka consistently reaches >90% coverage with oral poliovirus vaccines (OPV), and no polio supplementary vaccination campaigns have been conducted since 2003. We evaluated serological protection against polioviruses in children. A cross-sectional community-based survey was performed in three districts of Sri Lanka (Colombo, Badulla, and Killinochi). Randomly selected children in four age groups (9-11 months, 3-4 years, 7-9 years, and 15 years) were tested for poliovirus neutralizing antibodies. All 400 enrolled children completed the study. The proportion of seropositive children for poliovirus Type 1 and Type 2 was >95% for all age groups; for poliovirus Type 3 it was 95%, 90%, 77%, and 75% in the respective age groups. The vaccination coverage in our sample based on vaccination cards or parental recall was >90% in all age groups. Most Sri Lankan children are serologically protected against polioviruses through routine immunization only. This seroprevalence survey provided baseline data prior to the anticipated addition of inactivated poliovirus vaccine (IPV) into the Sri Lankan immunization program and the switch from trivalent OPV (tOPV) to bivalent OPV (bOPV).

  16. Immunogenicity and safety of combined adsorbed low-dose diphtheria, tetanus and inactivated poliovirus vaccine (REVAXIS®) versus combined diphtheria, tetanus and inactivated poliovirus vaccine (DT Polio®) given as a booster dose at 6 years of age

    PubMed Central

    Gajdos, Vincent; Soubeyrand, Benoit; Vidor, Emmanuel; Richard, Patrick; Boyer, Julie; Sadorge, Christine

    2011-01-01

    This randomized, comparative, phase-IIIb study conducted in France aimed to demonstrate whether seroprotection against diphtheria, tetanus and poliomyelitis 1 month after a single dose of REVAXIS (low-dose diphtheria) is non-inferior to seroprotection 1 month after a single dose of DT Polio (standard-dose diphtheria), both vaccines being given as a second booster to healthy children at 6 years of age. Children were randomly assigned to receive a single intramuscular dose of REVAXIS or DT Polio. Primary endpoints were the 1-month post-booster seroprotection rates for diphtheria, tetanus and poliovirus type-1, -2 and -3 antigens. Secondary endpoints were immunogenicity and safety observations. Of 788 children screened, 760 were randomized: REVAXIS group, 384 children; DT Polio group, 376 children. No relevant difference in demographic characteristics at baseline was observed between REVAXIS and DT Polio groups. Noninferiority of REVAXIS compared with DT Polio for seroprotection was demonstrated against diphtheria (respectively 98.6% and 99.3%), tetanus (respectively 99.6% and 100%) and poliovirus antigens (100% for each types in both groups). No allergic reactions to REVAXIS were reported. A benefit/risk ratio in favor of REVAXIS was suggested by the trend towards a better tolerability of REVAXIS compared with DT Polio regarding the rate of severe solicited injection-site reactions. The results support the use of REVAXIS as a booster at 6 years of age in infants who previously received a three-dose primary series within the first 6 months of life and a first booster including diphtheria, tetanus and poliovirus vaccine(s) given before 2 years of age. PMID:21441781

  17. Immunogenicity and safety of combined adsorbed low-dose diphtheria, tetanus and inactivated poliovirus vaccine (REVAXIS (®)) versus combined diphtheria, tetanus and inactivated poliovirus vaccine (DT Polio (®)) given as a booster dose at 6 years of age.

    PubMed

    Gajdos, Vincent; Soubeyrand, Benoit; Vidor, Emmanuel; Richard, Patrick; Boyer, Julie; Sadorge, Christine; Fiquet, Anne

    2011-05-01

    This randomized, comparative, phase-IIIb study conducted in France aimed to demonstrate whether seroprotection against diphtheria, tetanus and poliomyelitis 1 month after a single dose of REVAXIS (low-dose diphtheria) is non-inferior to seroprotection 1 month after a single dose of DT Polio (standard-dose diphtheria), both vaccines being given as a second booster to healthy children at 6 years of age. Children were randomly assigned to receive a single intramuscular dose of REVAXIS or DT Polio. Primary endpoints were the 1-month post-booster seroprotection rates for diphtheria, tetanus and poliovirus type-1, -2 and -3 antigens. Secondary endpoints were immunogenicity and safety observations. Of 788 children screened, 760 were randomized: REVAXIS group, 384 children; DT Polio group, 376 children. No relevant difference in demographic characteristics at baseline was observed between REVAXIS and DT Polio groups. Non-inferiority of REVAXIS compared with DT Polio for seroprotection was demonstrated against diphtheria (respectively 98.6% and 99.3%), tetanus (respectively 99.6% and 100%), and poliovirus antigens (100% for each types in both groups). No allergic reactions to REVAXIS were reported. A benefit/risk ratio in favor of REVAXIS was suggested by the trend towards a better tolerability of REVAXIS compared with DT Polio regarding the rate of severe solicited injection-site reactions. The results support the use of REVAXIS as a booster at 6 years of age in infants who previously received a three-dose primary series within the first 6 months of life and a first booster including diphtheria, tetanus and poliovirus vaccine(s) given before 2 years of age.

  18. Ala67Thr mutation in the poliovirus receptor CD155 is a potential risk factor for vaccine and wild-type paralytic poliomyelitis.

    PubMed

    Kindberg, Elin; Ax, Cecilia; Fiore, Lucia; Svensson, Lennart

    2009-05-01

    Poliovirus infections can be asymptomatic or cause severe paralysis. Why some individuals develop paralytic poliomyelitis is unknown, but a role for host genetic factors has been suggested. To investigate if a polymorphism, Ala67Thr, in the poliovirus receptor, which has been found to facilitate increased resistance against poliovirus-induced cell lysis and apoptosis, is associated with increased risk of paralytic poliomyelitis, poliovirus receptor genotyping was undertaken among Italian subjects with vaccine-associated (n = 9), or with wild-type paralytic poliomyelitis (n = 6), and control subjects (n = 71), using RFLP-PCR and pyrosequencing. Heterozygous poliovirus receptor Ala67Thr genotype was found in 13.3% of the patients with paresis and in 8.5% of the controls (Odds Ratio = 1.667). The frequency of Ala67Thr among the controls is in agreement with earlier published data. It is concluded that the Ala67Thr mutation in the poliovirus receptor is a possible risk factor for the development of vaccine-associated or paralytic poliomyelitis associated with wild-type virus.

  19. Oral vaccines for preventing cholera.

    PubMed

    Sinclair, David; Abba, Katharine; Zaman, K; Qadri, Firdausi; Graves, Patricia M

    2011-03-16

    Cholera is a cause of acute watery diarrhoea which can cause dehydration and death if not adequately treated. It usually occurs in epidemics, and is associated with poverty and poor sanitation. Effective, cheap, and easy to administer vaccines could help prevent epidemics. To assess the effectiveness and safety of oral cholera vaccines in preventing cases of cholera and deaths from cholera. In October 2010, we searched the Cochrane Infectious Disease Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; LILACS; the metaRegister of Controlled Trials (mRCT), and the WHO International Clinical Trials Registry Platform (ICTRP) for relevant published and ongoing trials. Randomized or quasi-randomized controlled trials of oral cholera vaccines in healthy adults and children. Each trial was assessed for eligibility and risk of bias by two authors working independently. Data was extracted by two independent reviewers and analysed using the Review Manager 5 software. Outcomes are reported as vaccine protective efficacy (VE) with 95% confidence intervals (CIs). Seven large efficacy trials, four small artificial challenge studies, and twenty-nine safety trials contributed data to this review.Five variations of a killed whole cell vaccine have been evaluated in large scale efficacy trials (four trials, 249935 participants). The overall vaccine efficacy during the first year was 52% (95% CI 35% to 65%), and during the second year was 62% (95% CI 51% to 62%). Protective efficacy was lower in children aged less than 5 years; 38% (95% CI 20% to 53%) compared to older children and adults; 66% (95% CI 57% to 73%).One trial of a killed whole cell vaccine amongst military recruits demonstrated 86% protective efficacy (95% CI 37% to 97%) in a small epidemic occurring within 4 weeks of the 2-dose schedule (one trial, 1426 participants). Efficacy data is not available beyond two years for the currently available vaccine formulations, but

  20. Individual-based modeling of potential poliovirus transmission in connected religious communities in North America with low uptake of vaccination.

    PubMed

    Kisjes, Kasper H; Duintjer Tebbens, Radboud J; Wallace, Gregory S; Pallansch, Mark A; Cochi, Stephen L; Wassilak, Steven G F; Thompson, Kimberly M

    2014-11-01

    Pockets of undervaccinated individuals continue to raise concerns about their potential to sustain epidemic transmission of vaccine-preventable diseases. Prior importations of live polioviruses (LPVs) into Amish communities in North America led to their recognition as a potential and identifiable linked network of undervaccinated individuals. We developed an individual-based model to explore the potential transmission of a LPV throughout the North American Amish population. Our model demonstrates the expected limited impact associated with the historical importations, which occurred in isolated communities during the low season for poliovirus transmission. We show that some conditions could potentially lead to wider circulation of LPVs and cases of paralytic polio in Amish communities if an importation occurred during or after 2013. The impact will depend on the uncertain historical immunity to poliovirus infection among members of the community. Heterogeneity in immunization coverage represents a risk factor for potential outbreaks of polio if introduction of a LPV occurs, although overall high population immunity in North America suggests that transmission would remain relatively limited. Efforts to prevent spread between Amish church districts with any feasible measures may offer the best opportunity to contain an outbreak and limit its size. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Antibody titers against vaccine and contemporary wild poliovirus type 1 in children immunized with IPV+OPV and young adults immunized with OPV.

    PubMed

    Lukashev, Alexander N; Yarmolskaya, Maria S; Shumilina, Elena Yu; Sychev, Daniil A; Kozlovskaya, Liubov I

    2016-02-02

    In 2010, a type 1 poliovirus outbreak in Congo with 445 lethal cases was caused by a virus that was neutralized by sera of German adults vaccinated with inactivated polio vaccine with a reduced efficiency. This seroprevalence study was done in two cohorts immunized with other vaccination schedules. Russian children aged 3-6 years immunized with a combination of inactivated and live polio vaccines were reasonably well protected against any wild type poliovirus 1, including the Congolese isolate. Adults aged 20-29 years immunized only with live vaccine were apparently protected against the vaccine strain (92% seropositive), but only 50% had detectable antibodies against the Congo-2010 isolate. Both waning immunity and serological divergence of the Congolese virus could contribute to this result.

  2. Rational design of genetically stable, live-attenuated poliovirus vaccines of all three serotypes: relevance to poliomyelitis eradication.

    PubMed

    Macadam, Andrew J; Ferguson, Geraldine; Stone, David M; Meredith, Janet; Knowlson, Sarah; Auda, Ghazi; Almond, Jeffrey W; Minor, Philip D

    2006-09-01

    The global eradication of poliomyelitis caused by wild-type virus is likely to be completed within the next few years, despite immense logistic and political difficulties, and may ultimately be followed by the cessation of vaccination. However, the existing live-attenuated vaccines have the potential to revert to virulence, causing occasional disease, and viruses can be shed by immunocompromised individuals for prolonged periods of time. Moreover, several outbreaks of poliomyelitis have been shown to be caused by viruses derived from the Sabin vaccine strains. The appearance of such strains depends on the prevailing circumstances but poses a severe obstacle to strategies for stopping vaccination. Vaccine strains that are incapable of reversion at a measurable rate would provide a possible solution. Here, we describe the constructions of strains of type 3 poliovirus that are stabilized by the introduction of four mutations in the 5' noncoding region compared to the present vaccine. The strains are genetically and phenotypically stable under conditions where the present vaccine loses the attenuating mutation in the 5' noncoding region completely. Type 1 and type 2 strains in which the entire 5' noncoding regions of Sabin 1 and Sabin 2 were replaced exactly with that of one of the type 3 strains were also constructed. The genetic stability of 5' noncoding regions of these viruses matched that of the type 3 strains, but significant phenotypic reversion occurred, illustrating the potential limitations of a rational approach to the genetic stabilization of live RNA virus vaccines.

  3. [Genetic Characteristics of Type 2 Vaccine-derived Poliovirus in Shanxi Province (China) in 2014].

    PubMed

    Yan, Dongrei; Li, Xiaolei; Zhang, Yong; Yang, Jianfang; Zhu, Shuangli; Wang, Dongyan; Zhang, Chuangye; Zhu, Hui; Xu, Wenbo

    2015-03-01

    The World Health Organization redefined the type 2 vaccine-derived poliovirus (VDPV) in 2010. To study the genetic characteristics and evolution of type 2 VDPV under this new definition, we conducted genome sequencing and analyses of type 2 VDPVs isolated from one patient with acute flaccid paralysis in Shanxi province (China) in 2014. Nucleotide sequencing revealed that the full-length of type 2 VDPV is 7439 bases encoding 2207 amino acids with no insertion or deletion of nucleotides compared with Sabin2. One nucleotide substitution identified as a key determinant of the attenuated phenotype of the Sabin 2 strain (A-G reversion at nucleotide nt 481 in the 5-end of the untranslated region) had reverted in the Shanxi type 2 VDPV. The other known key determinant of the attenuated phenotype of the Sabin 2 strain (U-->C reversion at nt2909 in the VP1 coding region that caused a Ile143Thr substitution in VP1) had not reverted in the Shanxi VDPV. The Shanxi type 2 VDPV was S2/S1 recombinant, the crossover site of which mapped to the 3-end of the 3D region (between nt 6247 and nt 6281). A phylogentic tree based on the VP1 coding region showed that evolution of the Shanxi type 2 VDPV was independent of other type 2 VDPVs detected worldwide. We estimated that the strain circulated for approximately = 11 months in the population according to the known evolution rate. The present study confirmed that the Chinese Polio Laboratory Network could discover the VDPV promptly and that it played an important part in maintenance of a polio-free China.

  4. Delivery systems and adjuvants for oral vaccines.

    PubMed

    Lavelle, Ed C; O'Hagan, D T

    2006-11-01

    The oral route is the ideal means of delivering prophylactic and therapeutic vaccines, offering significant advantages over systemic delivery. Most notably, oral delivery is associated with simple administration and improved safety. In addition, unlike systemic immunisation, oral delivery can induce mucosal immune responses. However, the oral route of vaccine delivery is the most difficult because of the numerous barriers posed by the gastrointestinal tract. To facilitate effective immunisation with peptide and protein vaccines, antigens must be protected, uptake enhanced and the innate immune response activated. Numerous delivery systems and adjuvants have been evaluated for oral vaccine delivery, including live vectors, inert particles and bacterial toxins. Although developments in oral vaccines have been disappointing so far, in terms of the generation of products, the availability of a range of novel delivery systems offers much greater hope for the future development of improved oral vaccines.

  5. Sensitivity of C6 Glioma Cells Carrying the Human Poliovirus Receptor to Oncolytic Polioviruses.

    PubMed

    Sosnovtseva, A O; Lipatova, A V; Grinenko, N F; Baklaushev, V P; Chumakov, P M; Chekhonin, V P

    2016-10-01

    A humanized line of rat C6 glioma cells expressing human poliovirus receptor was obtained and tested for the sensitivity to oncolytic effects of vaccine strains of type 1, 2, and 3 polioviruses. Presentation of the poliovirus receptor on the surface of C6 glioma cells was shown to be a necessary condition for the interaction of cells with polioviruses, but insufficient for complete poliovirus oncolysis.

  6. An economic analysis of poliovirus risk management policy options for 2013-2052.

    PubMed

    Duintjer Tebbens, Radboud J; Pallansch, Mark A; Cochi, Stephen L; Wassilak, Steven G F; Thompson, Kimberly M

    2015-09-24

    The Global Polio Eradication Initiative plans for coordinated cessation of oral poliovirus vaccine (OPV) after interrupting all wild poliovirus (WPV) transmission, but many questions remain related to long-term poliovirus risk management policies. We used an integrated dynamic poliovirus transmission and stochastic risk model to simulate possible futures and estimate the health and economic outcomes of maintaining the 2013 status quo of continued OPV use in most developing countries compared with OPV cessation policies with various assumptions about global inactivated poliovirus vaccine (IPV) adoption. Continued OPV use after global WPV eradication leads to continued high costs and/or high cases. Global OPV cessation comes with a high probability of at least one outbreak, which aggressive outbreak response can successfully control in most instances. A low but non-zero probability exists of uncontrolled outbreaks following a poliovirus reintroduction long after OPV cessation in a population in which IPV-alone cannot prevent poliovirus transmission. We estimate global incremental net benefits during 2013-2052 of approximately $16 billion (US$2013) for OPV cessation with at least one IPV routine immunization dose in all countries until 2024 compared to continued OPV use, although significant uncertainty remains associated with the frequency of exportations between populations and the implementation of long term risk management policies. Global OPV cessation offers the possibility of large future health and economic benefits compared to continued OPV use. Long-term poliovirus risk management interventions matter (e.g., IPV use duration, outbreak response, containment, continued surveillance, stockpile size and contents, vaccine production site requirements, potential antiviral drugs, and potential safer vaccines) and require careful consideration. Risk management activities can help to ensure a low risk of uncontrolled outbreaks and preserve or further increase the

  7. Scientific consultation on the safety and containment of new poliovirus strains for vaccine production, clinical/regulatory testing and research. Report of a meeting held at NIBSC, Potters Bar, Hertfordshire, UK, 6/7th July 2016.

    PubMed

    Minor, Philip D; Lane, Blanche; Mimms, South; Bar, Potters

    2017-07-01

    When poliomyelitis is totally eradicated from the natural world containment will be vital to prevent its re-emergence. The matter has become pressing as type 2 component of oral polio vaccine was completely withdrawn by May 2016 as wild ty[e 2 was declared eradicated. Work on polioviruses must be contained in accordance with GAPIII (the third version of the Global Action Plan of WHO). Some activities will be essential for years after eradication. Vaccine production and control, surveillance and supportive applied and academic research must all continue. Most laboratories do not currently comply with GAPIII and could not do so in the short term without disruption of essential activities including vaccine supply. The development and use of safer strains is raised in GAPIII and the meeting considered the strains available and the uses to which they could be put to facilitate compliance with the aims of GAPIII. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. Characteristics of an environmentally monitored prolonged type 2 vaccine derived poliovirus shedding episode that stopped without intervention.

    PubMed

    Hovi, Tapani; Paananen, Anja; Blomqvist, Soile; Savolainen-Kopra, Carita; Al-Hello, Haider; Smura, Teemu; Shimizu, Hiroyuki; Nadova, Katarina; Sobotova, Zdenka; Gavrilin, Eugene; Roivainen, Merja

    2013-01-01

    Vaccine derived poliovirus (VDPV) type 2 strains strongly divergent from the corresponding vaccine strain, Sabin 2, were repeatedly isolated from sewage in Slovakia over a period of 22 months in 2003-2005. Cell cultures of stool specimens from known immune deficient patients and from an identified putative source population of 500 people failed to identify the potential excretor(s) of the virus. The occurrence of VDPV in sewage stopped without any intervention. No paralytic cases were reported in Slovakia during the episode. According to a GenBank search and similarity plotting-analysis, the closest known relative of the first isolate PV2/03/SVK/E783 through all main sections of the genome was the type 2 poliovirus Sabin strain, with nucleotide identities in 5'UTR, P1, P2, P3, and 3'UTR parts of the genome of 88.6, 85.9, 87.3, 88.5, and 94.0 percent, respectively. Phenotypic properties of selected Slovakian aVDPV strains resembled those of VDPV strains isolated from immune deficient individuals with prolonged PV infection (iVDPV), including antigenic changes and moderate neurovirulence in the transgenic mouse model. One hundred and two unique VP1 coding sequences were determined from VDPV strains isolated from 34 sewage specimens. Nucleotide differences from Sabin 2 in the VP1 coding region ranged from 12.5 to 15.6 percent, and reached a maximum of 9.6 percent between the VDPV strains under study. Most of the nucleotide substitutions were synonymous but as many as 93 amino acid positions out of 301 in VP1 showed substitutions. We conclude that (1) individuals with prolonged poliovirus infection are not as rare as suggested by the studies on immune deficient patients known to the health care systems and (2) genetic divergence of VDPV strains may remain extensive during years long replication in humans.

  9. Characteristics of an Environmentally Monitored Prolonged Type 2 Vaccine Derived Poliovirus Shedding Episode that Stopped without Intervention

    PubMed Central

    Hovi, Tapani; Paananen, Anja; Blomqvist, Soile; Savolainen-Kopra, Carita; Al-Hello, Haider; Smura, Teemu; Shimizu, Hiroyuki; Nadova, Katarina; Sobotova, Zdenka; Gavrilin, Eugene; Roivainen, Merja

    2013-01-01

    Vaccine derived poliovirus (VDPV) type 2 strains strongly divergent from the corresponding vaccine strain, Sabin 2, were repeatedly isolated from sewage in Slovakia over a period of 22 months in 2003–2005. Cell cultures of stool specimens from known immune deficient patients and from an identified putative source population of 500 people failed to identify the potential excretor(s) of the virus. The occurrence of VDPV in sewage stopped without any intervention. No paralytic cases were reported in Slovakia during the episode. According to a GenBank search and similarity plotting-analysis, the closest known relative of the first isolate PV2/03/SVK/E783 through all main sections of the genome was the type 2 poliovirus Sabin strain, with nucleotide identities in 5′UTR, P1, P2, P3, and 3′UTR parts of the genome of 88.6, 85.9, 87.3, 88.5, and 94.0 percent, respectively. Phenotypic properties of selected Slovakian aVDPV strains resembled those of VDPV strains isolated from immune deficient individuals with prolonged PV infection (iVDPV), including antigenic changes and moderate neurovirulence in the transgenic mouse model. One hundred and two unique VP1 coding sequences were determined from VDPV strains isolated from 34 sewage specimens. Nucleotide differences from Sabin 2 in the VP1 coding region ranged from 12.5 to 15.6 percent, and reached a maximum of 9.6 percent between the VDPV strains under study. Most of the nucleotide substitutions were synonymous but as many as 93 amino acid positions out of 301 in VP1 showed substitutions. We conclude that (1) individuals with prolonged poliovirus infection are not as rare as suggested by the studies on immune deficient patients known to the health care systems and (2) genetic divergence of VDPV strains may remain extensive during years long replication in humans. PMID:23935826

  10. Importation and circulation of poliovirus in Bulgaria in 2001.

    PubMed Central

    Kojouharova, Mira; Zuber, Patrick L. F.; Gyurova, Snejana; Fiore, Lucia; Buttinelli, Gabriele; Kunchev, Angel; Vladimirova, Nadejda; Korsun, Neli; Filipova, Radosveta; Boneva, Roumiana; Gavrilin, Eugene; Deshpande, Jagadish M.; Oblapenko, George; Wassilak, Steven G.

    2003-01-01

    OBJECTIVE: To characterize the circumstances in which poliomyelitis occurred among three children in Bulgaria during 2001 and to describe the public health response. METHODS: Bulgarian authorities investigated the three cases of polio and their contacts, conducted faecal and serological screening of children from high-risk groups, implemented enhanced surveillance for acute flaccid paralysis, and conducted supplemental immunization activities. FINDINGS: The three cases of polio studied had not been vaccinated and lived in socioeconomically deprived areas of two cities. Four Roma children from the Bourgas district had antibody titres to serotype 1 poliovirus only, and wild type 1 virus was isolated from the faeces of two asymptomatic Roma children in the Bourgas and Sofia districts. Poliovirus isolates were related genetically and represented a single evolutionary lineage; genomic sequences were less than 90% identical to poliovirus strains isolated previously in Europe, but 98.3% similar to a strain isolated in India in 2000. No cases or wild virus isolates were found after supplemental immunization activities were launched in May 2001. CONCLUSIONS: In Bulgaria, an imported poliovirus was able to circulate for two to five months among minority populations. Surveillance data strongly suggest that wild poliovirus circulation ceased shortly after supplemental immunization activities with oral poliovirus vaccine were conducted. PMID:12973639

  11. Progress in the development of poliovirus antiviral agents and their essential role in reducing risks that threaten eradication.

    PubMed

    McKinlay, Mark A; Collett, Marc S; Hincks, Jeffrey R; Oberste, M Steven; Pallansch, Mark A; Okayasu, Hiromasa; Sutter, Roland W; Modlin, John F; Dowdle, Walter R

    2014-11-01

    Chronic prolonged excretion of vaccine-derived polioviruses by immunodeficient persons (iVDPV) presents a personal risk of poliomyelitis to the patient as well as a programmatic risk of delayed global eradication. Poliovirus antiviral drugs offer the only mitigation of these risks. Antiviral agents may also have a potential role in the management of accidental exposures and in certain outbreak scenarios. Efforts to discover and develop poliovirus antiviral agents have been ongoing in earnest since the formation in 2007 of the Poliovirus Antivirals Initiative. The most advanced antiviral, pocapavir (V-073), is a capsid inhibitor that has recently demonstrated activity in an oral poliovirus vaccine human challenge model. Additional antiviral candidates with differing mechanisms of action continue to be profiled and evaluated preclinically with the goal of having 2 antivirals available for use in combination to treat iVDPV excreters.

  12. Safety and immunogenicity of inactivated poliovirus vaccine based on Sabin strains with and without aluminum hydroxide: a phase I trial in healthy adults.

    PubMed

    Verdijk, Pauline; Rots, Nynke Y; van Oijen, Monique G C T; Oberste, M Steven; Boog, Claire J; Okayasu, Hiromasa; Sutter, Roland W; Bakker, Wilfried A M

    2013-11-12

    An inactivated poliovirus vaccine (IPV) based on attenuated poliovirus strains (Sabin-1, -2 and -3) was developed for technology transfer to manufacturers in low- and middle income countries in the context of the Global Polio Eradication Initiative. Safety and immunogenicity of the Sabin-IPV was evaluated in a double-blind, randomized, controlled, phase I 'proof-of-concept' trial. Healthy male adults received a single intramuscular injection with Sabin-IPV, Sabin-IPV adjuvanted with aluminum hydroxide or conventional IPV. Virus-neutralizing titers against both Sabin and wild poliovirus strains were determined before and 28 days after vaccination. No vaccine-related serious adverse events were observed, and all local and systemic reactions were mild or moderate and transient. In all subjects, an increase in antibody titer for all types of poliovirus (both Sabin and wild strains) was observed 28 days after vaccination. Sabin-IPV and Sabin-IPV adjuvanted with aluminum hydroxide administered as a booster dose were equally immunogenic and safe as conventional IPV. EudraCTnr: 2010-024581-22, NCT01708720. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. New approaches in oral rotavirus vaccines.

    PubMed

    Kuate Defo, Zenas; Lee, Byong

    2016-05-01

    Rotavirus is the leading cause of severe dehydrating diarrhea worldwide, and affects primarily developing nations, in large part because of the inaccessibility of vaccines and high rates of mortality present therein. At present, there exist two oral rotaviral vaccines, Rotarix™ and RotaTeq™. These vaccines are generally effective in their actions: however, associated costs often stymie their effectiveness, and they continue to be associated with a slight risk of intussusception. While different programs are being implemented worldwide to enhance vaccine distribution and monitor vaccine administration for possible intussusception in light of recent WHO recommendation, another major problem persists: that of the reduced efficacy of the existing rotaviral vaccines in developing countries over time. The development of new oral rotavirus vaccine classes - live-attenuated vaccines, virus-like particles, lactic acid bacteria-containing vaccines, combination therapy with immunoglobulins, and biodegradable polymer-encapsulated vaccines - could potentially circumvent these problems.

  14. Managing population immunity to reduce or eliminate the risks of circulation following the importation of polioviruses.

    PubMed

    Thompson, Kimberly M; Kalkowska, Dominika A; Duintjer Tebbens, Radboud J

    2015-03-24

    Poliovirus importations into polio-free countries represent a major concern during the final phases of global eradication of wild polioviruses (WPVs). We extend dynamic transmission models to demonstrate the dynamics of population immunity out through 2020 for three countries that only used inactivated poliovirus vaccine (IPV) for routine immunization: the US, Israel, and The Netherlands. For each country, we explore the vulnerability to re-established transmission following an importation for each poliovirus serotype, including the impact of immunization choices following the serotype 1 WPV importation that occurred in 2013 in Israel. As population immunity declines below the threshold required to prevent transmission, countries become at risk for re-established transmission. Although importations represent stochastic events that countries cannot fully control because people cross borders and polioviruses mainly cause asymptomatic infections, countries can ensure that any importations die out. Our results suggest that the general US population will remain above the threshold for transmission through 2020. In contrast, Israel became vulnerable to re-established transmission of importations of live polioviruses by the late 2000s. In Israel, the recent WPV importation and outbreak response use of bivalent oral poliovirus vaccine (bOPV) eliminated the vulnerability to an importation of poliovirus serotypes 1 and 3 for several years, but not serotype 2. The Netherlands experienced a serotype 1 WPV outbreak in 1992-1993 and became vulnerable to re-established transmission in religious communities with low vaccine acceptance around the year 2000, although the general population remains well-protected from widespread transmission. All countries should invest in active management of population immunity to avoid the potential circulation of imported live polioviruses. IPV-using countries may wish to consider prevention opportunities and/or ensure preparedness for response

  15. Molecular and Phenotypic Characterization of a Highly Evolved Type 2 Vaccine-Derived Poliovirus Isolated from Seawater in Brazil, 2014.

    PubMed

    Cassemiro, Klécia Marília S de Melo; Burlandy, Fernanda M; Barbosa, Mikaela R F; Chen, Qi; Jorba, Jaume; Hachich, Elayse M; Sato, Maria I Z; Burns, Cara C; da Silva, Edson E

    2016-01-01

    A type 2 vaccine-derived poliovirus (VDPV), differing from the Sabin 2 strain at 8.6% (78/903) of VP1 nucleotide positions, was isolated from seawater collected from a seaport in São Paulo State, Brazil. The P1/capsid region is related to the Sabin 2 strain, but sequences within the 5'-untranslated region and downstream of the P1 region were derived from recombination with other members of Human Enterovirus Species C (HEV-C). The two known attenuating mutations had reverted to wild-type (A481G in the 5'-UTR and Ile143Thr in VP1). The VDPV isolate had lost the temperature sensitive phenotype and had accumulated amino acid substitutions in neutralizing antigenic (NAg) sites 3a and 3b. The date of the initiating OPV dose, estimated from the number of synonymous substitutions in the capsid region, was approximately 8.5 years before seawater sampling, a finding consistent with a long time of virus replication and possible transmission among several individuals. Although no closely related type 2 VDPVs were detected in Brazil or elsewhere, this VDPV was found in an area with a mobile population, where conditions may favor both viral infection and spread. Environmental surveillance serves as an important tool for sensitive and early detection of circulating poliovirus in the final stages of global polio eradication.

  16. Oral Vaccine for Immunization against Enteric Disease.

    DTIC Science & Technology

    The oral vaccine can provide protection against both typhoid fever and at least one other enteric disease. A bivalent oral vaccine is described...against typhoid fever and bacillary dysentery caused by S. sonnei. The mutated galactose epimeraseless S. typhi strain such as S. typhi Ty21a strain can be utilized as a carrier strain for other protective antigens. (Patents).

  17. Future of Polio Vaccines

    PubMed Central

    2009-01-01

    Summary Over the past half-century, global use of highly effective vaccines against poliomyelitis brought this disease to the brink of elimination. Mounting evidence argues that a high level of population immunity must be maintained to preserve a polio-free status of the entire world after wild poliovirus circulation is stopped. Shifting factors in the risk-benefit-cost equation favor the creation of new poliovirus vaccines to be used in the foreseeable future. Genetically stable attenuated virus strains could be developed for an improved oral poliovirus vaccine, but proving their safety and efficacy would be impractical because of the enormous size of the clinical trials required. New versions of inactivated poliovirus vaccine (IPV) that could be used globally should be developed. An improved IPV must be efficacious, inexpensive, safe to manufacture, and easy to administer. Combination products containing IPV along with other protective antigens should become part of routine childhood immunizations around the world. PMID:19545205

  18. Considerations for the Full Global Withdrawal of Oral Polio Vaccine After Eradication of Polio.

    PubMed

    Hampton, Lee M; du Châtellier, Gaël Maufras; Fournier-Caruana, Jacqueline; Ottosen, Ann; Rubin, Jennifer; Menning, Lisa; Farrell, Margaret; Shendale, Stephanie; Patel, Manish

    2017-07-01

    Eliminating the risk of polio from vaccine-derived polioviruses is essential for creating a polio-free world, and eliminating that risk will require stopping use of all oral polio vaccines (OPVs) once all types of wild polioviruses have been eradicated. In many ways, the experience with the global switch from trivalent OPV (tOPV) to bivalent OPV (bOPV) can inform the eventual full global withdrawal of OPV. Significant preparation will be needed for a thorough, synchronized, and full withdrawal of OPV, and such preparation would be aided by setting a reasonably firm date for OPV withdrawal as far in advance as possible, ideally at least 24 months. A shorter lead time would provide valuable flexibility for decisions about when to stop use of OPV in the context of uncertainty about whether or not all types of wild polioviruses had been eradicated, but it might increase the cost of OPV withdrawal. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  19. Contribution of Environmental Surveillance Toward Interruption of Poliovirus Transmission in Nigeria, 2012–2015

    PubMed Central

    Johnson Muluh, Ticha; Hamisu, Abdullahi Walla; Craig, Kehinde; Mkanda, Pascal; Andrew, Etsano; Adeniji, Johnson; Akande, Adefunke; Musa, Audu; Ayodeji, Isiaka; Nicksy, Gumede; Banda, Richard; Tegegne, Sisay G.; Nsubuga, Peter; Oyetunji, Ajiboye; Diop, Ousmane; Vaz, Rui G.; Muhammad, Ado J. G.

    2016-01-01

    Background. Cases of paralysis caused by poliovirus have decreased by >99% since the 1988 World Health Assembly's resolution to eradicate polio. The World Health Organization identified environmental surveillance (ES) of poliovirus in the poliomyelitis eradication strategic plan as an activity that can complement acute flaccid paralysis (AFP) surveillance. This article summarizes key public health interventions that followed the isolation of polioviruses from ES between 2012 and 2015. Methods. The grap method was used to collect 1.75 L of raw flowing sewage every 2–4 weeks. Once collected, samples were shipped at 4°C to a polio laboratory for concentration. ES data were then used to guide program implementation. Results. From 2012 to 2015, ES reported 97 circulating vaccine-derived polioviruses (cVDPV2) and 14 wild polioviruses. In 2014 alone, 54 cVDPV type 2 cases and 1 WPV type 1 case were reported. In Sokoto State, 58 cases of AFP were found from a search of 9426 households. A total of 2 252 059 inactivated polio vaccine and 2 460 124 oral polio vaccine doses were administered to children aged <5 year in Borno and Yobe states. Conclusions. This article is among the first from Africa that relates ES findings to key public health interventions (mass immunization campaigns, inactivated polio vaccine introduction, and strengthening of AFP surveillance) that have contributed to the interruption of poliovirus transmission in Nigeria. PMID:26908747

  20. Parental attitudes toward multiple poliovirus injections following a provider recommendation.

    PubMed

    Kolasa, M S; Bisgard, K M; Prevots, D R; Desai, S N; Dibling, K

    2001-01-01

    Changes to the polio vaccination schedule, first to a sequential inactivated poliovirus/oral poliovirus (IPV/OPV) schedule in 1996 and most recently to an all-IPV schedule, require infants to receive additional injections. Some surveys show parental hesitation concerning extra injections, whereas others show that parents prefer multiple simultaneous injections over extra immunization visits. This study describes parental behavior and attitudes about the poliovirus vaccine recommendations and additional injections at the 2- and 4-month immunization visits. Beginning July 1, 1996, providers in eight public health clinics in Cobb and Douglas Counties, Georgia, informed parents of polio vaccination options and recommended the IPV/OPV sequential schedule. A cross-sectional clinic exit survey was conducted from July 15, 1996, to January 31, 1997, with parents whose infants (younger than 6 months) were eligible for a first poliovirus vaccination. Of approximately 405 eligible infants, parents of 293 infants were approached for an interview, and 227 agreed to participate. Of those 227 participants, 210 (92%) parents chose IPV for their infant and 17 (8%) chose OPV. Of greatest concern to most parents was vaccine-associated paralytic polio (VAPP) (155, or 68.3%); the next greatest concern was an extra injection (22, or 9.7%). These parental concerns were unrelated to the number of injections the infant actually received. After receiving information on polio vaccination options and a provider recommendation, parents overwhelmingly chose IPV over OPV. Concern about VAPP was more common than objection to an extra injection. The additional injection that results from using IPV for an infant's first poliovirus vaccination appears to be acceptable to most parents.

  1. Vaccine-associated paralytic poliomyelitis in India during 1999: decreased risk despite massive use of oral polio vaccine.

    PubMed Central

    Kohler, Kathryn A.; Banerjee, Kaushik; Gary Hlady, W.; Andrus, Jon K.; Sutter, Roland W.

    2002-01-01

    OBJECTIVE: Vaccine-associated paralytic poliomyelitis (VAPP) is a rare but serious consequence of the administration of oral polio vaccine (OPV). Intensified OPV administration has reduced wild poliovirus transmission in India but VAPP is becoming a matter of concern. METHODS: We analysed acute flaccid paralysis (AFP) surveillance data in order to estimate the VAPP risk in this country. VAPP was defined as occurring in AFP cases with onset of paralysis in 1999, residual weakness 60 days after onset, and isolation of vaccine-related poliovirus. Recipient VAPP cases were a subset with onset of paralysis between 4 and 40 days after receipt of OPV. FINDINGS: A total of 181 AFP cases met the case definition. The following estimates of VAPP risk were made: overall risk, 1 case per 4.1 to 4.6 million OPV doses administered; recipient risk,1 case per 12.2 million; first-dose recipient risk, 1 case per 2.8 million; and subsequent-dose recipient risk, 1 case per 13.9 million. CONCLUSION: On the basis of data from a highly sensitive surveillance system the estimated VAPP risk in India is evidently lower than that in other countries, notwithstanding the administration of multiple OPV doses to children in mass immunization campaigns. PMID:11984607

  2. Patients with Primary Immunodeficiencies Are a Reservoir of Poliovirus and a Risk to Polio Eradication

    PubMed Central

    Aghamohammadi, Asghar; Abolhassani, Hassan; Kutukculer, Necil; Wassilak, Steve G.; Pallansch, Mark A.; Kluglein, Samantha; Quinn, Jessica; Sutter, Roland W.; Wang, Xiaochuan; Sanal, Ozden; Latysheva, Tatiana; Ikinciogullari, Aydan; Bernatowska, Ewa; Tuzankina, Irina A.; Costa-Carvalho, Beatriz T.; Franco, Jose Luis; Somech, Raz; Karakoc-Aydiner, Elif; Singh, Surjit; Bezrodnik, Liliana; Espinosa-Rosales, Francisco J.; Shcherbina, Anna; Lau, Yu-Lung; Nonoyama, Shigeaki; Modell, Fred; Modell, Vicki; Ozen, Ahmet; Barbouche, Mohamed-Ridha; McKinlay, Mark A.

    2017-01-01

    Immunodeficiency-associated vaccine-derived polioviruses (iVDPVs) have been isolated from primary immunodeficiency (PID) patients exposed to oral poliovirus vaccine (OPV). Patients may excrete poliovirus strains for months or years; the excreted viruses are frequently highly divergent from the parental OPV and have been shown to be as neurovirulent as wild virus. Thus, these patients represent a potential reservoir for transmission of neurovirulent polioviruses in the post-eradication era. In support of WHO recommendations to better estimate the prevalence of poliovirus excreters among PIDs and characterize genetic evolution of these strains, 635 patients including 570 with primary antibody deficiencies and 65 combined immunodeficiencies were studied from 13 OPV-using countries. Two stool samples were collected over 4 days, tested for enterovirus, and the poliovirus positive samples were sequenced. Thirteen patients (2%) excreted polioviruses, most for less than 2 months following identification of infection. Five (0.8%) were classified as iVDPVs (only in combined immunodeficiencies and mostly poliovirus serotype 2). Non-polio enteroviruses were detected in 30 patients (4.7%). Patients with combined immunodeficiencies had increased risk of delayed poliovirus clearance compared to primary antibody deficiencies. Usually, iVDPV was detected in subjects with combined immunodeficiencies in a short period of time after OPV exposure, most for less than 6 months. Surveillance for poliovirus excretion among PID patients should be reinforced until polio eradication is certified and the use of OPV is stopped. Survival rates among PID patients are improving in lower and middle income countries, and iVDPV excreters are identified more frequently. Antivirals or enhanced immunotherapies presently in development represent the only potential means to manage the treatment of prolonged excreters and the risk they present to the polio endgame. PMID:28952612

  3. Oral delivery of nanoparticle-based vaccines.

    PubMed

    Marasini, Nirmal; Skwarczynski, Mariusz; Toth, Istvan

    2014-11-01

    Most infectious diseases are caused by pathogenic infiltrations from the mucosal tract. Therefore, vaccines delivered to the mucosal tissues can mimic natural infections and provide protection at the first site of infection. Thus, mucosal, especially, oral delivery is becoming the most preferred mode of vaccination. However, oral vaccines have to overcome several barriers such as the extremely low pH of the stomach, the presence of proteolytic enzymes and bile salts as well as low permeability in the intestine. Several formulations based on nanoparticle strategies are currently being explored to prepare stable oral vaccine formulations. This review briefly discusses several molecular mechanisms involved in intestinal immune cell activation and various aspects of oral nanoparticle-based vaccine design that should be considered for improved mucosal and systemic immune responses.

  4. Mitochondrial DNA and retroviral RNA analyses of archival oral polio vaccine (OPV CHAT) materials: evidence of macaque nuclear sequences confirms substrate identity.

    PubMed

    Berry, Neil; Jenkins, Adrian; Martin, Javier; Davis, Clare; Wood, David; Schild, Geoffrey; Bottiger, Margareta; Holmes, Harvey; Minor, Philip; Almond, Neil

    2005-02-25

    Inoculation of live experimental oral poliovirus vaccines (OPV CHAT) during the 1950s in central Africa has been proposed to account for the introduction of HIV into human populations. For this to have occurred, it would have been necessary for chimpanzee rather than macaque kidney epithelial cells to have been included in the preparation of early OPV materials. Theoretically, this could have led to contamination with a progenitor of HIV-1 derived from a related simian immunodeficiency virus of chimpanzees (SIVCPZ). In this article we present further detailed analyses of two samples of OPV, CHAT 10A-11 and CHAT 6039/Yugo, which were used in early human trials of poliovirus vaccination. Recovery of poliovirus by culture techniques confirmed the biological viability of the vaccines and sequence analysis of poliovirus RNA specifically identified the presence of the CHAT strain. Independent nested sets of oligonucleotide primers specific for HIV-1/SIVCPZ and HIV-2/SIVMAC/SIVSM phylogenetic lineages, respectively, indicated no evidence of HIV/SIV RNA in either vaccine preparation, at a sensitivity of 100 RNA equivalents/ml. Analysis of cellular substrate by the amplification of two distinct regions of mitochondrial DNA (D-loop control region and 12S ribosomal sequences) revealed no evidence of chimpanzee cellular sequences. However, this approach positively identified rhesus and cynomolgus macaque DNA for the CHAT 10A-11 and CHAT 6039/Yugo vaccine preparations, respectively. Analysis of multiple clones of mtDNA 12S rDNA indicated a relatively high number of nuclear mitochondrial DNA sequences (numts) in the CHAT 10A-11 material, but confirmed the macaque origin of cellular substrate used in vaccine preparation. These data reinforce earlier findings on this topic providing no evidence to support the contention that poliovirus vaccination was responsible for the introduction of HIV into humans and sparking the AIDS pandemic.

  5. [Gestation and conduct of the First National Campaign of oral polio vaccination in Spain].

    PubMed

    Valenciano Clavel, Luis

    2013-01-01

    This paper presents the intervention of Dr Luis Valenciano Clavel in the act that was held on July 2, 2013 under the title Celebrating the 50th anniversary of the establishment of poliovirus vaccination campaigns in Spain. (Tribute to Dr D Florencio Perez Gallardo), in Ernest Lluch Hall of the Ministry of Health, Social Services and Equality. Dr Luis Valenciano Clavel describes his experience and direct participation, along with Florencio Pérez Gallardo, during the first oral polio vaccination campaign in Spain, after returning from his stay in health centers of Germany and assuming the leadership of the Polio Diagnostic Laboratory of theNational School of Public Health. The success of the polio vaccination campaign, it gave rise to the current National Center of Virology, pivot of the current Institute of Health Carlos III.

  6. Efficacy of oral administration and oral intake of edible vaccines.

    PubMed

    Lauterslager, Tosca G M; Hilgers, Luuk A T

    2002-12-03

    To evaluate whether vaccine administration via intragastric gavage is indicative for the outcome of edible vaccines, mice were orally immunised with ovalbumin (OVA) mixed with or without Vibrio cholerae toxin (CT) in various compositions via various routes: (1) OVA dissolved in saline and intragastrically (IG) administered ('IG'); (2) OVA mixed with food extract and administered IG ('food IG'); (3) food chow absorbed with OVA dissolved in saline and fed to the animals ('food'); and (4) OVA dissolved in saline and administered via drinking bottles ('drinking'). When given to naive mice, 'IG' and 'food IG' but not 'food' or 'drinking' induced anti-OVA IgG1 responses in serum, but oral boost immunisations were necessary. Serum IgA was not induced. Oral boosting of subcutaneously (SC) primed mice enhanced the IgG1 and IgA response in serum regardless of the route of immunisation or the vaccine composition. CT did not dramatically enhance the immune response. All immunisation routes except 'drinking' induced antigen-specific IgA antibody secreting cells (ASC) in the lamina propria of naive mice. But antigen-specific antibody responses in faeces were not observed. We concluded that oral (i.e. IG) administration is distinct from oral intake. The composition of the vaccine (food or saline) did not influence oral administration. We thus suggested that the route of administration greatly influenced the outcome of oral immunisation. Although oral administration is a well-accepted route to test the potentials of oral vaccines, our study demonstrated that it is merely indicative for the effectiveness of edible vaccines. Studies on the feasibility of edible vaccines should thus be performed by eating the vaccine.

  7. Paralytic poliomyelitis associated with Sabin monovalent and bivalent oral polio vaccines in Hungary.

    PubMed

    Estívariz, Concepción F; Molnár, Zsuzsanna; Venczel, Linda; Kapusinszky, Beatrix; Zingeser, James A; Lipskaya, Galina Y; Kew, Olen M; Berencsi, György; Csohán, Agnes

    2011-08-01

    Historical records of patients with vaccine-associated paralytic poliomyelitis (VAPP) in Hungary during 1961-1981 were reviewed to assess the risk of VAPP after oral polio vaccine (OPV) administration. A confirmed VAPP case was defined as a diagnosis of paralytic poliomyelitis and residual paralysis at 60 days in a patient with an epidemiologic link to the vaccine. Archived poliovirus isolates were retested using polymerase chain reaction and sequencing of the viral protein 1 capsid region. This review confirmed 46 of 47 cases previously reported as VAPP. Three cases originally linked to monovalent OPV (mOPV) 3 and one case linked to mOPV1 presented after administration of bivalent OPV 1 + 3 (bOPV). The adjusted VAPP risk per million doses administered was 0.18 for mOPV1 (2 cases/11.13 million doses), 2.96 for mOPV3 (32 cases/10.81 million doses), and 12.82 for bOPV (5 cases/390,000 doses). Absence of protection from immunization with inactivated poliovirus vaccine or exposure to OPV virus from routine immunization and recent injections could explain the higher relative risk of VAPP in Hungarian children. In polio-endemic areas in which mOPV3 and bOPV are needed to achieve eradication, the higher risk of VAPP would be offset by the high risk of paralysis due to wild poliovirus and higher per-dose efficacy of mOPV3 and bOPV compared with trivalent OPV.

  8. Framework for evaluating the risks of paralytic poliomyelitis after global interruption of wild poliovirus transmission.

    PubMed Central

    Aylward, R. Bruce; Cochi, Stephen L.

    2004-01-01

    With the interruption of wild poliovirus transmission globally, the need for new policies to deal with the post-certification era will rapidly arise. New policies will be required in four areas: detection and notification of circulating polioviruses; biocontainment of wild, vaccine-derived and attenuated strains of poliovirus; vaccine stockpiles and response mechanisms; and routine immunization against polioviruses. A common understanding of the potential risks of paralytic poliomyelitis in the post-certification period is essential to the development of these policies. Since 2000, there has been increasing international consensus that the risks of paralytic poliomyelitis in the post-certification era fall into two categories: those due to the continued use of the oral poliovirus vaccine (OPV) and those due to future improper handling of wild polioviruses. The specific risks within both categories have now been defined, and an understanding of the frequency and potential burden of disease associated with each is rapidly improving. This knowledge and clarity have provided a framework that is already proving valuable for identifying research priorities and discussing potential policy options with national authorities. However, this framework must be regarded as a dynamic tool, requiring regular updating as additional information on these risks becomes available through further scientific research, programmatic work, and policy decisions. PMID:15106299

  9. Orally Administered Bioadherent Sustained Release Microencapsulated Vaccines

    DTIC Science & Technology

    1996-09-01

    Bioadherent Sustained Release Microencapsulated Vaccines PRINCIPAL INVESTIGATOR: Dr. G. Duncan Hitchens, Anthony Giletto, Allison Rice-Ficht, Sunitha...Aug 96) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Orally Administered Bioadherent Sustained Release Microencapsulated Vaccines DAMD17-95-C-5099 6... microencapsulated vaccine against staphylococcal enterotoxin A (SEA). The research is centered around using a known bioadhesive, vitelline protein B (vpB), to

  10. Neurovirulence of Type 1 Polioviruses Isolated from Sewage in Japan

    PubMed Central

    Horie, Hitoshi; Yoshida, Hiromu; Matsuura, Kumiko; Miyazawa, Miwako; Ota, Yoshihiro; Nakayama, Takashi; Doi, Yutaka; Hashizume, So

    2002-01-01

    Sixteen type 1 poliovirus strains were isolated from a sewage disposal plant located downstream of the Oyabe River in Japan between October 1993 and September 1995. The isolates were intratypically differentiated as vaccine-derived strains. Neutralizing antigenicity analysis with monoclonal antibodies and estimation of neurovirulence by mutant analysis by PCR and restriction enzyme cleavage (MAPREC) were performed for 13 type 1 strains of these isolates. The isolates were classified into three groups. Group I (five strains) had a variant type of antigenicity and neurovirulent phenotype. Group II (four strains) had the vaccine type of antigenicity and neurovirulent phenotype. Group III (four strains) had the vaccine type of antigenicity and an attenuated phenotype. Furthermore, it was demonstrated that the virulent isolates were neutralized by human sera obtained after oral poliomyelitis vaccine (OPV) administration, and the sera of rats immunized with inactivated poliovirus vaccine. Although vaccination was effective against virulent polioviruses, virulent viruses will continue to exist in the environment as long as OPV is in use. PMID:11772619

  11. Booster vaccination of pre-school children with reduced-antigen-content diphtheria-tetanus-acellular pertussis-inactivated poliovirus vaccine co-administered with measles-mumps-rubella-varicella vaccine

    PubMed Central

    Ferrera, Giuseppe; Cuccia, Mario; Mereu, Gabriele; Icardi, Giancarlo; Bona, Gianni; Esposito, Susanna; Marchetti, Federico; Messier, Marc; Kuriyakose, Sherine; Hardt, Karin

    2012-01-01

    Background: Pertussis occurs in older children, adolescents and adults due to waning immunity after primary vaccination. Booster vaccination for pre-school children has been recommended in Italy since 1999. In this study (NCT00871000), the immunogenicity, safety and reactogenicity of a booster dose of reduced-antigen content diphtheria-tetanus-acellular pertussis-inactivated poliovirus vaccine (dTpa-IPV; GSK Biologicals Boostrix™-Polio; 3-component pertussis) vs. full-strength DTPa-IPV vaccine (sanofi-pasteur—MSD Tetravac™; 2-component pertussis) was evaluated in pre-school Italian children.   Methods: Healthy children aged 5–6 y primed in a routine vaccination setting with three doses of DTPa-based vaccines were enrolled and randomized (1:1) in this phase IIIb, booster study to receive a single dose of dTpa-IPV or DTPa-IPV; the MMRV vaccine was co-administered. Antibody concentrations/titers against diphtheria, tetanus, pertussis and poliovirus 1–3 were measured before and one month post-booster. Reactogenicity and safety was assessed. Results: 305 subjects were enrolled of whom 303 (dTpa-IPV = 151; DTPa-IPV = 152) received booster vaccination. One month post-booster, all subjects were seroprotected/seropositive for anti-diphtheria, anti-tetanus, anti-PT, anti-FHA and anti-poliovirus 1–3; 99.3% of dTpa-IPV and 60.4% of DTPa-IPV subjects were seropositive for anti-PRN; 98–100% of subjects were seropositive against MMRV antigens post-booster. Pain at the injection site (dTpa-IPV: 63.6%; DTPa-IPV: 63.2%) and fatigue (dTpa-IPV: 26.5%; DTPa-IPV: 23.7%) were the most commonly reported solicited local and general symptoms, during the 4-d follow-up period. No SAEs or fatalities were reported. Conclusions: The reduced-antigen-content dTpa-IPV vaccine was non-inferior to full-strength DTPa-IPV vaccine with respect to immunogenicity. The vaccine was well-tolerated and can be confidently used as a booster dose in pre-school children. PMID:22327497

  12. Prolonged Excretion of Poliovirus among Individuals with Primary Immunodeficiency Disorder: An Analysis of the World Health Organization Registry.

    PubMed

    Macklin, Grace; Liao, Yi; Takane, Marina; Dooling, Kathleen; Gilmour, Stuart; Mach, Ondrej; Kew, Olen M; Sutter, Roland W

    2017-01-01

    Individuals with primary immunodeficiency disorder may excrete poliovirus for extended periods and will constitute the only remaining reservoir of virus after eradication and withdrawal of oral poliovirus vaccine. Here, we analyzed the epidemiology of prolonged and chronic immunodeficiency-related vaccine-derived poliovirus cases in a registry maintained by the World Health Organization, to identify risk factors and determine the length of excretion. Between 1962 and 2016, there were 101 cases, with 94/101 (93%) prolonged excretors and 7/101 (7%) chronic excretors. We documented an increase in incidence in recent decades, with a shift toward middle-income countries, and a predominance of poliovirus type 2 in 73/101 (72%) cases. The median length of excretion was 1.3 years (95% confidence interval: 1.0, 1.4) and 90% of individuals stopped excreting after 3.7 years. Common variable immunodeficiency syndrome and residence in high-income countries were risk factors for long-term excretion. The changing epidemiology of cases, manifested by the greater incidence in recent decades and a shift to from high- to middle-income countries, highlights the expanding risk of poliovirus transmission after oral poliovirus vaccine cessation. To better quantify and reduce this risk, more sensitive surveillance and effective antiviral therapies are needed.

  13. Community Circulation Patterns of Oral Polio Vaccine Serotypes 1, 2, and 3 After Mexican National Immunization Weeks

    PubMed Central

    Troy, Stephanie B.; Ferreyra-Reyes, Leticia; Huang, ChunHong; Sarnquist, Clea; Canizales-Quintero, Sergio; Nelson, Christine; Báez-Saldaña, Renata; Holubar, Marisa; Ferreira-Guerrero, Elizabeth; García-García, Lourdes; Maldonado, Yvonne A.

    2014-01-01

    Background. With wild poliovirus nearing eradication, preventing circulating vaccine-derived poliovirus (cVDPV) by understanding oral polio vaccine (OPV) community circulation is increasingly important. Mexico, where OPV is given only during biannual national immunization weeks (NIWs) but where children receive inactivated polio vaccine (IPV) as part of their primary regimen, provides a natural setting to study OPV community circulation. Methods. In total, 216 children and household contacts in Veracruz, Mexico, were enrolled, and monthly stool samples and questionnaires collected for 1 year; 2501 stool samples underwent RNA extraction, reverse transcription, and real-time polymerase chain reaction (PCR) to detect OPV serotypes 1, 2, and 3. Results. OPV was detected up to 7 months after an NIW, but not at 8 months. In total, 35% of samples collected from children vaccinated the prior month, but only 4% of other samples, contained OPV. Although each serotype was detected in similar proportions among OPV strains shed as a result of direct vaccination, 87% of OPV acquired through community spread was serotype 2 (P < .0001). Conclusions. Serotype 2 circulates longer and is transmitted more readily than serotypes 1 or 3 after NIWs in a Mexican community primarily vaccinated with IPV. This may be part of the reason why most isolated cVDPV has been serotype 2. PMID:24367038

  14. Standardized Methods for Detection of Poliovirus Antibodies.

    PubMed

    Weldon, William C; Oberste, M Steven; Pallansch, Mark A

    2016-01-01

    Testing for neutralizing antibodies against polioviruses has been an established gold standard for assessing individual protection from disease, population immunity, vaccine efficacy studies, and other vaccine clinical trials. Detecting poliovirus specific IgM and IgA in sera and mucosal specimens has been proposed for evaluating the status of population mucosal immunity. More recently, there has been a renewed interest in using dried blood spot cards as a medium for sample collection to enhance surveillance of poliovirus immunity. Here, we describe the modified poliovirus microneutralization assay, poliovirus capture IgM and IgA ELISA assays, and dried blood spot polio serology procedures for the detection of antibodies against poliovirus serotypes 1, 2, and 3.

  15. A Group B Coxsackievirus/Poliovirus 5′ Nontranslated Region Chimera Can Act as an Attenuated Vaccine Strain in Mice

    PubMed Central

    Chapman, Nora M.; Ragland, Anna; Leser, J. Smith; Höfling, Katja; Willian, Sandra; Semler, Bert L.; Tracy, Steven

    2000-01-01

    The linear, single-stranded enterovirus RNA genome is flanked at either end with a nontranslated region (NTR). By replacing the entire 5′ NTR of coxsackievirus B3 (CVB3) with that from type 1 poliovirus, a progeny virus was obtained following transfection of HeLa cells. The chimeric virus, CPV/49, replicates like the parental CVB3 strain in HeLa cells but is attenuated for replication and yield in primary human coronary artery endothelial cell cultures, in a human pancreas tumor cell line, and in primary murine heart fibroblast cultures. Western blotting analyses of CPV/49 replication in murine heart fibroblast cultures demonstrate that synthesis of CPV/49 proteins is significantly slower than that of the parental CVB3 strain. CPV/49 replicates in murine hearts and pancreata, causing no disease in hearts and a minor pancreatic inflammation in some mice that resolves by 28 days postinoculation. A single inoculation with CPV/49 induces protective anti-CVB3 neutralizing antibody titers that completely protect mice from both heart and pancreatic disease when mice are challenged 28 days p.i. with genetically diverse virulent strains of CVB3. That a chimeric CVB3 strain, created from sequences of two virulent viruses, is sufficiently attenuated to act as an avirulent, protective vaccine strain in mice suggests that chimeric genome technology merits further evaluation for the development of new nonpoliovirus enteroviral vectors. PMID:10756016

  16. Algae-based oral recombinant vaccines

    PubMed Central

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  17. Algae-based oral recombinant vaccines.

    PubMed

    Specht, Elizabeth A; Mayfield, Stephen P

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for "molecular pharming" in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered - from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity.

  18. Licensure of a Diphtheria and Tetanus Toxoids and Acellular Pertussis Adsorbed and Inactivated Poliovirus Vaccine and Guidance for Use as a Booster Dose.

    PubMed

    Liang, Jennifer; Wallace, Greg; Mootrey, Gina

    2015-09-04

    On March 24, 2015, the Food and Drug Administration licensed an additional combined diphtheria and tetanus toxoids and acellular pertussis adsorbed (DTaP) and inactivated poliovirus (IPV) vaccine (DTaP-IPV) (Quadracel, Sanofi Pasteur Inc.). Quadracel is the second DTaP-IPV vaccine to be licensed for use among children aged 4 through 6 years in the United States (1). Quadracel is approved for administration as a fifth dose in the DTaP series and as a fourth or fifth dose in the IPV series in children aged 4 through 6 years who have received 4 doses of DTaP-IPV-Hib (Pentacel, Sanofi Pasteur) and/or DTaP (Daptacel, Sanofi Pasteur) vaccine (2,3). This report summarizes the indications for Quadracel vaccine and provides guidance from the Advisory Committee on Immunization Practices (ACIP) for its use.

  19. Vaccine-derived mutation in motif D of poliovirus RNA-dependent RNA polymerase lowers nucleotide incorporation fidelity.

    PubMed

    Liu, Xinran; Yang, Xiaorong; Lee, Cheri A; Moustafa, Ibrahim M; Smidansky, Eric D; Lum, David; Arnold, Jamie J; Cameron, Craig E; Boehr, David D

    2013-11-08

    All viral RNA-dependent RNA polymerases (RdRps) have a conserved structural element termed motif D. Studies of the RdRp from poliovirus (PV) have shown that a conformational change of motif D leads to efficient and faithful nucleotide addition by bringing Lys-359 into the active site where it serves as a general acid. The RdRp of the Sabin I vaccine strain has Thr-362 changed to Ile. Such a drastic change so close to Lys-359 might alter RdRp function and contribute in some way to the attenuated phenotype of Sabin type I. Here we present our characterization of the T362I RdRp. We find that the T362I RdRp exhibits a mutator phenotype in biochemical experiments in vitro. Using NMR, we show that this change in nucleotide incorporation fidelity correlates with a change in the structural dynamics of motif D. A recombinant PV expressing the T362I RdRp exhibits normal growth properties in cell culture but expresses a mutator phenotype in cells. For example, the T362I-containing PV is more sensitive to the mutagenic activity of ribavirin than wild-type PV. Interestingly, the T362I change was sufficient to cause a statistically significant reduction in viral virulence. Collectively, these studies suggest that residues of motif D can be targeted when changes in nucleotide incorporation fidelity are desired. Given the observation that fidelity mutants can serve as vaccine candidates, it may be possible to use engineering of motif D for this purpose.

  20. Oral vaccination against plague using Yersinia pseudotuberculosis.

    PubMed

    Demeure, Christian E; Derbise, Anne; Carniel, Elisabeth

    2017-04-01

    Yersinia pestis, the agent of plague, is among the deadliest bacterial pathogens affecting humans, and is a potential biological weapon. Because antibiotic resistant strains of Yersinia pestis have been observed or could be engineered for evil use, vaccination against plague might become the only means to reduce mortality. Although plague is re-emerging in many countries, a vaccine with worldwide license is currently lacking. The vaccine strategy described here is based on an oral vaccination with an attenuated strain of Yersinia pseudotuberculosis. Indeed, this species is genetically almost identical to Y. pestis, but has a much lower pathogenicity and a higher genomic stability. Gradual modifications of the wild-type Yersinia pseudotuberculosis strain IP32953 were performed to generate a safe and immunogenic vaccine. Genes coding for three essential virulence factors were deleted from this strain. To increase cross-species immunogenicity, an F1-encapsulated Y. pseudotuberculosis strain was then generated. For this, the Y. pestis caf operon, which encodes F1, was inserted first on a plasmid, and subsequently into the chromosome. The successive steps achieved to reach maximal vaccine potential are described, and how each step affected bacterial virulence and the development of a protective immune response is discussed. The final version of the vaccine, named VTnF1, provides a highly efficient and long-lasting protection against both bubonic and pneumonic plague after a single oral vaccine dose. Since a Y. pestis strain deprived of F1 exist or could be engineered, we also analyzed the protection conferred by the vaccine against such strain and found that it also confers full protection against the two forms of plague. Thus, the properties of VTnF1 makes it one of the most efficient candidate vaccine for mass vaccination in tropical endemic areas as well as for populations exposed to bioterrorism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. HPV Vaccine Slashes Rates of Oral Infection.

    PubMed

    2017-07-01

    Vaccination against human papillomavirus (HPV) reduces the prevalence of oral infection by an estimated 88% among young adults in the United States, a protection that could help reduce rates of HPV-related oropharyngeal cancers, according to data that will be presented at the American Society of Clinical Oncology Annual Meeting in Chicago, IL. However, the population-level benefit will remain low unless more people get vaccinated. ©2017 American Association for Cancer Research.

  2. World Health Organization Guidelines for Containment of Poliovirus Following Type-Specific Polio Eradication - Worldwide, 2015.

    PubMed

    Previsani, Nicoletta; Tangermann, Rudolph H; Tallis, Graham; Jafari, Hamid S

    2015-08-28

    In 1988, the World Health Assembly of the World Health Organization (WHO) resolved to eradicate polio worldwide. Among the three wild poliovirus (WPV) types (type 1, type 2, and type 3), WPV type 2 (WPV2) has been eliminated in the wild since 1999, and WPV type 3 (WPV3) has not been reported since 2012. In 2015, only Afghanistan and Pakistan have reported WPV transmission. On May 25, 2015, all WHO Member States endorsed World Health Assembly resolution 68.3 on full implementation of the Polio Eradication and Endgame Strategic Plan 2013-2018 (the Endgame Plan), and with it, the third Global Action Plan to minimize poliovirus facility-associated risk (GAPIII). All WHO Member States have committed to implementing appropriate containment of WPV2 in essential laboratory and vaccine production facilities* by the end of 2015 and of type 2 oral poliovirus vaccine (OPV2) within 3 months of global withdrawal of OPV2, which is planned for April 2016. This report summarizes critical steps for essential laboratory and vaccine production facilities that intend to retain materials confirmed to contain or potentially containing type-specific WPV, vaccine-derived poliovirus (VDPV), or OPV/Sabin viruses, and steps for nonessential facilities† that process specimens that contain or might contain polioviruses. National authorities will need to certify that the essential facilities they host meet the containment requirements described in GAPIII. After certification of WPV eradication, the use of all OPV will cease; final containment of all polioviruses after polio eradication and OPV cessation will minimize the risk for reintroduction of poliovirus into a polio-free world.

  3. Vaccination Strategies to Combat an Infectious Globe: Oral Cholera Vaccines

    PubMed Central

    López-Gigosos, Rosa M; Plaza, Elena; Díez-Díaz, Rosa M; Calvo, Maria J

    2011-01-01

    Cholera is a substantial health burden in many countries in Africa and Asia, where it is endemic. It is as well responsible for ongoing epidemics in sub-Saharan Africa which are becoming greater in terms of frequency, extension, and duration. Given the availability of two oral cholera vaccines and the new data on their efficacy, field effectiveness, feasibility, and acceptance in cholera-affected populations and in travelers, these vaccines should be used in endemic areas, in travelers for these areas and should be considered in areas at risk for outbreaks. The two vaccines currently available in worldwide are: (1) The killed oral vaccine (Dukoral, licensed by SBL–Sweden to Crucell–Holland) is recommended since 1999 by WHO and consists of a mixture of four preparations of heat or formalin killed whole cell Vibrio cholera O1 (Inaba and Ogaba serotypes, and classical and El Tor biotypes) that are then added with purified recombinant cholera toxin (CT) B subunit. Because CT cross-reacts with Escherichia coli LT the vaccine also provides short-term protection against ETEC (enterotoxigenic E. coli) which is of added benefit for travelers. It is available in more than 60 countries. (2) A bivalent O1 and O139 whole cell oral vaccine without CT B subunit (Shanchol) has been lately developed in Vietnam (licensed by VaBiotech–Viet Nam to Shantha Biotechnics–India. It is available in India and Indonesia. A structured search of papers in PubMed and reports on cholera vaccines by WHO and CDC, as well as critical reading and synthesis of the information was accomplished. Inclusion criteria were defined according to reports quality and relevance. PMID:21572610

  4. Innate host barriers to viral trafficking and population diversity: Lessons learned from poliovirus

    PubMed Central

    Pfeiffer, Julie K.

    2011-01-01

    Poliovirus is an error-prone enteric virus spread by the fecal-oral route, and rarely invades the central nervous system (CNS). However, in the rare instances when poliovirus invades the CNS, the resulting damage to motor neurons is striking and often permanent. In the pre-vaccine era, it is likely that most individuals within an epidemic community were infected; however, only 0.5% of infected individuals developed paralytic poliomyelitis. Paralytic poliomyelitis terrified the public and initiated a huge research effort, which was rewarded with two outstanding vaccines. During research to develop the vaccines, many questions were asked: Why did certain people develop paralysis? How does the virus move from the gut to the CNS? What limits viral trafficking to the CNS in the vast majority of infected individuals? Despite over 100 years of poliovirus research, many of these questions remain unanswered. The goal of this chapter is to review our knowledge of how poliovirus moves within and between hosts, how host barriers limit viral movement, how viral population dynamics impact viral fitness and virulence, and to offer hypotheses to explain the rare incidence of paralytic poliovirus disease. PMID:20951871

  5. Silent reintroduction of wild-type poliovirus to Israel, 2013 - risk communication challenges in an argumentative atmosphere.

    PubMed

    Kaliner, E; Moran-Gilad, J; Grotto, I; Somekh, E; Kopel, E; Gdalevich, M; Shimron, E; Amikam, Y; Leventhal, A; Lev, B; Gamzu, R

    2014-02-20

    Israel has been certified as polio-free by the World Health Organization and its routine immunisation schedule consists of inactivated poliovirus vaccine (IPV) only. At the end of May 2013, the Israeli Ministry of Health (MOH) has confirmed the reintroduction of wild-type poliovirus 1 into the country. Documented ongoing human-to-human transmission necessitated a thorough risk assessment followed by a supplemental immunisation campaign using oral polio vaccine (OPV). The unusual situation in which ongoing poliovirus transmission was picked up through an early warning system of sewage monitoring without active polio cases, brought about significant challenges in risk communication. This paper reviews the challenges faced by the MOH and the communication strategy devised, in order to facilitate and optimise the various components of the public health response, particularly vaccination. Lessons learned from our recent experience may inform risk communication approaches in other countries that may face a similar situation as global polio eradication moves towards the 'End game'.

  6. Environmental Enteropathy, Oral Vaccine Failure and Growth Faltering in Infants in Bangladesh.

    PubMed

    Naylor, Caitlin; Lu, Miao; Haque, Rashidul; Mondal, Dinesh; Buonomo, Erica; Nayak, Uma; Mychaleckyj, Josyf C; Kirkpatrick, Beth; Colgate, Ross; Carmolli, Marya; Dickson, Dorothy; van der Klis, Fiona; Weldon, William; Steven Oberste, M; Ma, Jennie Z; Petri, William A

    2015-11-01

    Environmental enteropathy (EE) is a subclinical enteric condition found in low-income countries that is characterized by intestinal inflammation, reduced intestinal absorption, and gut barrier dysfunction. We aimed to assess if EE impairs the success of oral polio and rotavirus vaccines in infants in Bangladesh. We conducted a prospective observational study of 700 infants from an urban slum of Dhaka, Bangladesh from May 2011 to November 2014. Infants were enrolled in the first week of life and followed to age one year through biweekly home visits with EPI vaccines administered and growth monitored. EE was operationally defied as enteric inflammation measured by any one of the fecal biomarkers reg1B, alpha-1-antitrypsin, MPO, calprotectin, or neopterin. Oral polio vaccine success was evaluated by immunogenicity, and rotavirus vaccine response was evaluated by immunogenicity and protection from disease. This study is registered with ClinicalTrials.gov, number NCT01375647. EE was present in greater than 80% of infants by 12 weeks of age. Oral poliovirus and rotavirus vaccines failed in 20.2% and 68.5% of the infants respectively, and 28.6% were malnourished (HAZ < - 2) at one year of age. In contrast, 0%, 9.0%, 7.9% and 3.8% of infants lacked protective levels of antibody from tetanus, Haemophilus influenzae type b, diphtheria and measles vaccines respectively. EE was negatively associated with oral polio and rotavirus response but not parenteral vaccine immunogenicity. Biomarkers of systemic inflammation and measures of maternal health were additionally predictive of both oral vaccine failure and malnutrition. The selected biomarkers from multivariable analysis accounted for 46.3% variation in delta HAZ. 24% of Rotarix® IgA positive individuals can be attributed to the selected biomarkers. EE as well as systemic inflammation and poor maternal health were associated with oral but not parenteral vaccine underperformance and risk for future growth faltering. These

  7. Environmental Enteropathy, Oral Vaccine Failure and Growth Faltering in Infants in Bangladesh

    PubMed Central

    Naylor, Caitlin; Lu, Miao; Haque, Rashidul; Mondal, Dinesh; Buonomo, Erica; Nayak, Uma; Mychaleckyj, Josyf C.; Kirkpatrick, Beth; Colgate, Ross; Carmolli, Marya; Dickson, Dorothy; van der Klis, Fiona; Weldon, William; Steven Oberste, M.; Ma, Jennie Z.; Petri, William A.

    2015-01-01

    Background Environmental enteropathy (EE) is a subclinical enteric condition found in low-income countries that is characterized by intestinal inflammation, reduced intestinal absorption, and gut barrier dysfunction. We aimed to assess if EE impairs the success of oral polio and rotavirus vaccines in infants in Bangladesh. Methods We conducted a prospective observational study of 700 infants from an urban slum of Dhaka, Bangladesh from May 2011 to November 2014. Infants were enrolled in the first week of life and followed to age one year through biweekly home visits with EPI vaccines administered and growth monitored. EE was operationally defied as enteric inflammation measured by any one of the fecal biomarkers reg1B, alpha-1-antitrypsin, MPO, calprotectin, or neopterin. Oral polio vaccine success was evaluated by immunogenicity, and rotavirus vaccine response was evaluated by immunogenicity and protection from disease. This study is registered with ClinicalTrials.gov, number NCT01375647. Findings EE was present in greater than 80% of infants by 12 weeks of age. Oral poliovirus and rotavirus vaccines failed in 20.2% and 68.5% of the infants respectively, and 28.6% were malnourished (HAZ < − 2) at one year of age. In contrast, 0%, 9.0%, 7.9% and 3.8% of infants lacked protective levels of antibody from tetanus, Haemophilus influenzae type b, diphtheria and measles vaccines respectively. EE was negatively associated with oral polio and rotavirus response but not parenteral vaccine immunogenicity. Biomarkers of systemic inflammation and measures of maternal health were additionally predictive of both oral vaccine failure and malnutrition. The selected biomarkers from multivariable analysis accounted for 46.3% variation in delta HAZ. 24% of Rotarix® IgA positive individuals can be attributed to the selected biomarkers. Interpretation EE as well as systemic inflammation and poor maternal health were associated with oral but not parenteral vaccine

  8. Oral Vaccine for Immunization against Enteric Disease.

    DTIC Science & Technology

    typhoid fever and/or at least one other enterically acquired disease. A bivalent oral vaccine is described wherein the non-typhoid protective antigen is the plasmid-encoded form I antigen of Shigella sonnei. A protective antigen from Shitella sonnei was transferred to a streptomycin resistant mutant of S. typhi strain Ty21a. The transconjugant S. typhi strain expressed both S. typhi and S. sonnei antigens and protected experimental animals against lethal infections with either S. typhi and S. sonnei. This strain is considered to be useful as a vaccine against typhoid

  9. Oral vaccination of fish: Lessons from humans and veterinary species.

    PubMed

    Embregts, Carmen W E; Forlenza, Maria

    2016-11-01

    The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen breakdown in the harsh gastric environment, but also to the high tolerogenic gut environment and to inadequate vaccine design. In this review we discuss current approaches used to develop oral vaccines for mass vaccination of farmed fish species. Furthermore, using various examples from the human and veterinary vaccine development, we propose additional approaches to fish vaccine design also considering recent advances in fish mucosal immunology and novel molecular tools. Finally, we discuss the pros and cons of using the zebrafish as a pre-screening animal model to potentially speed up vaccine design and testing for aquaculture fish species. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Search for poliovirus carriers among people with primary immune deficiency diseases in the United States, Mexico, Brazil, and the United Kingdom.

    PubMed Central

    Halsey, Neal A.; Pinto, Jorge; Espinosa-Rosales, Francisco; Faure-Fontenla, María A.; da Silva, Edson; Khan, Aamir J.; Webster, A. D.; Minor, Philip; Dunn, Glynis; Asturias, Edwin; Hussain, Hamidah; Pallansch, Mark A.; Kew, Olen M.; Winkelstein, Jerry; Sutter, Roland

    2004-01-01

    OBJECTIVE: To estimate the rate of long-term poliovirus excretors in people known to have B-cell immune deficiency disorders. METHODS: An active search for chronic excretors was conducted among 306 persons known to have immunoglobulin G (IgG) deficiency in the United States, Mexico, Brazil, and the United Kingdom, and 40 people with IgA deficiency in the United States. Written informed consent or assent was obtained from the participants or their legal guardians, and the studies were formally approved. Stool samples were collected from participants and cultured for polioviruses. Calculation of the confidence interval for the proportion of participants with persistent poliovirus excretion was based on the binomial distribution. FINDINGS: No individuals with long-term excretion of polioviruses were identified. Most participants had received oral poliovirus vaccine (OPV) and almost all had been exposed to household contacts who had received OPV. Polioviruses of recent vaccine origin were transiently found in four individuals in Mexico and Brazil, where OPV is recommended for all children. CONCLUSION: Although chronic poliovirus excretion can occur in immunodeficient persons, it appears to be rare. PMID:15106294

  11. Screening for long-term poliovirus excretion among children with primary immunodeficiency disorders: preparation for the polio posteradication era in Bangladesh.

    PubMed

    Sazzad, Hossain M S; Rainey, Jeanette J; Kahn, Anna-Lea; Mach, Ondrej; Liyanage, Jayantha B L; Alam, Ahmed Nawsher; Kawser, Choudhury A; Hossain, Asgar; Sutter, Roland; Luby, Stephen P

    2014-11-01

    Persons with primary immune deficiency disorders (PIDD) who receive oral poliovirus vaccine (OPV) may transmit immunodeficiency-associated vaccine-derived polioviruses (iVDPVs) and cause paralytic polio. The objective of this study was to identify children with PIDD in Bangladesh, and estimate the proportion with chronic poliovirus excretion. Patients admitted at 5 teaching hospitals were screened for PIDD according to standardized clinical case definitions. PIDD was confirmed by age-specific quantitative immunoglobulin levels. Stool specimens were collected from patients with confirmed PIDD. From February 2011 through January 2013, approximately 96 000 children were screened, and 53 patients were identified who met the clinical case definition for PIDD. Thirteen patients (24%) had age-specific quantitative immunoglobulins results that confirmed PIDD. Of these, 9 (69%) received OPV 3-106 months before stool specimen collection. Among 11 patients, stool specimens from 1 patient tested positive for polioviruses 34 months after OPV ingestion. However, the poliovirus isolate was not available for genetic sequencing, and a subsequent stool specimen 45 days later was negative. The risk of chronic poliovirus excretion among children with PIDD in Bangladesh seems to be low. The national polio eradication program should incorporate strategies for screening for poliovirus excretion among patients with PIDD. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Assessment of areas at increased risk for poliovirus circulation in Ecuador.

    PubMed

    Dayan, Gustavo H; Rodríguez, Rodrigo; Vinjé, Jan; Vásconez, Nancy; Cáceres, Víctor; Gregoricus, Nicole; Sobsey, Mark; Landaverde, Mauricio

    2004-10-01

    To assess areas at risk for poliovirus circulation in Ecuador, we first selected provinces at highest risk based on low immunization coverage with three doses of oral poliovirus vaccine, and a low number of reported cases of acute flaccid paralysis (AFP). Subsequently, we reviewed discharge data for the period 1996--2000 for diagnoses compatible with AFP in the only two national referral hospitals in Quito, and at least two main hospitals in each of the six selected provinces. Environmental samples from one or two cities/towns in each selected province were tested for poliovirus. Of the 14 identified AFP-compatible cases, 8 (57%) had been previously reported and investigated. We visited four out of the six unreported cases; none of those four had sequelae compatible with poliomyelitis. From the 14 environmental samples taken, we identified Sabin viruses in six of the samples; no vaccine-derived polioviruses were isolated. Using this methodology, we found no evidence of undetected poliovirus circulation in Ecuador.

  13. Assessment of areas at increased risk for poliovirus circulation in Ecuador.

    PubMed Central

    Dayan, Gustavo H.; Rodríguez, Rodrigo; Vinjé, Jan; Vásconez, Nancy; Cáceres, Víctor; Gregoricus, Nicole; Sobsey, Mark; Landaverde, Mauricio

    2004-01-01

    To assess areas at risk for poliovirus circulation in Ecuador, we first selected provinces at highest risk based on low immunization coverage with three doses of oral poliovirus vaccine, and a low number of reported cases of acute flaccid paralysis (AFP). Subsequently, we reviewed discharge data for the period 1996--2000 for diagnoses compatible with AFP in the only two national referral hospitals in Quito, and at least two main hospitals in each of the six selected provinces. Environmental samples from one or two cities/towns in each selected province were tested for poliovirus. Of the 14 identified AFP-compatible cases, 8 (57%) had been previously reported and investigated. We visited four out of the six unreported cases; none of those four had sequelae compatible with poliomyelitis. From the 14 environmental samples taken, we identified Sabin viruses in six of the samples; no vaccine-derived polioviruses were isolated. Using this methodology, we found no evidence of undetected poliovirus circulation in Ecuador. PMID:15473140

  14. The risk of type 2 oral polio vaccine use in post-cessation outbreak response.

    PubMed

    McCarthy, Kevin A; Chabot-Couture, Guillaume; Famulare, Michael; Lyons, Hil M; Mercer, Laina D

    2017-10-04

    Wild type 2 poliovirus was last observed in 1999. The Sabin-strain oral polio vaccine type 2 (OPV2) was critical to eradication, but it is known to revert to a neurovirulent phenotype, causing vaccine-associated paralytic poliomyelitis. OPV2 is also transmissible and can establish circulating lineages, called circulating vaccine-derived polioviruses (cVDPVs), which can also cause paralytic outbreaks. Thus, in April 2016, OPV2 was removed from immunization activities worldwide. Interrupting transmission of cVDPV2 lineages that survive cessation will require OPV2 in outbreak response, which risks seeding new cVDPVs. This potential cascade of outbreak responses seeding VDPVs, necessitating further outbreak responses, presents a critical risk to the OPV2 cessation effort. The EMOD individual-based disease transmission model was used to investigate OPV2 use in outbreak response post-cessation in West African populations. A hypothetical outbreak response in northwest Nigeria is modeled, and a cVDPV2 lineage is considered established if the Sabin strain escapes the response region and continues circulating 9 months post-response. The probability of this event was investigated in a variety of possible scenarios. Under a broad range of scenarios, the probability that widespread OPV2 use in outbreak response (~2 million doses) establishes new cVDPV2 lineages in this model may exceed 50% as soon as 18 months or as late as 4 years post-cessation. The risk of a cycle in which outbreak responses seed new cVDPV2 lineages suggests that OPV2 use should be managed carefully as time from cessation increases. It is unclear whether this risk can be mitigated in the long term, as mucosal immunity against type 2 poliovirus declines globally. Therefore, current programmatic strategies should aim to minimize the possibility that continued OPV2 use will be necessary in future years: conducting rapid and aggressive outbreak responses where cVDPV2 lineages are discovered, maintaining high

  15. Vaccine Associated Paralytic Poliomyelitis Unmasking Common Variable Immunodeficiency.

    PubMed

    Gomber, Sunil; Arora, Vanny; Dewan, Pooja

    2017-03-15

    Oral polio vaccine can rarely lead to Vaccine-associated paralytic poliomyelitis (VAPP). A 2-year-old child with asymmetric paralysis of lower limbs following first booster of oral polio vaccine; type 2 Vaccine-derived poliovirus (VDPV) isolated. Subsequently, the child was diagnosed to have common variable immunodeficiency. Paralysis gradually improved on follow-up; monthly intravenous immunoglobulin therapy started for primary immunodeficiency. We need to evaluate children with VAPP for underlying immunodeficiency.

  16. Twenty-Eight Years of Poliovirus Replication in an Immunodeficient Individual: Impact on the Global Polio Eradication Initiative

    PubMed Central

    Dunn, Glynis; Klapsa, Dimitra; Wilton, Thomas; Stone, Lindsay; Minor, Philip D.; Martin, Javier

    2015-01-01

    There are currently huge efforts by the World Health Organization and partners to complete global polio eradication. With the significant decline in poliomyelitis cases due to wild poliovirus in recent years, rare cases related to the use of live-attenuated oral polio vaccine assume greater importance. Poliovirus strains in the oral vaccine are known to quickly revert to neurovirulent phenotype following replication in humans after immunisation. These strains can transmit from person to person leading to poliomyelitis outbreaks and can replicate for long periods of time in immunodeficient individuals leading to paralysis or chronic infection, with currently no effective treatment to stop excretion from these patients. Here, we describe an individual who has been excreting type 2 vaccine-derived poliovirus for twenty eight years as estimated by the molecular clock established with VP1 capsid gene nucleotide sequences of serial isolates. This represents by far the longest period of excretion described from such a patient who is the only identified individual known to be excreting highly evolved vaccine-derived poliovirus at present. Using a range of in vivo and in vitro assays we show that the viruses are very virulent, antigenically drifted and excreted at high titre suggesting that such chronic excreters pose an obvious risk to the eradication programme. Our results in virus neutralization assays with human sera and immunisation-challenge experiments using transgenic mice expressing the human poliovirus receptor indicate that while maintaining high immunisation coverage will likely confer protection against paralytic disease caused by these viruses, significant changes in immunisation strategies might be required to effectively stop their occurrence and potential widespread transmission. Eventually, new stable live-attenuated polio vaccines with no risk of reversion might be required to respond to any poliovirus isolation in the post-eradication era. PMID:26313548

  17. Twenty-Eight Years of Poliovirus Replication in an Immunodeficient Individual: Impact on the Global Polio Eradication Initiative.

    PubMed

    Dunn, Glynis; Klapsa, Dimitra; Wilton, Thomas; Stone, Lindsay; Minor, Philip D; Martin, Javier

    2015-08-01

    There are currently huge efforts by the World Health Organization and partners to complete global polio eradication. With the significant decline in poliomyelitis cases due to wild poliovirus in recent years, rare cases related to the use of live-attenuated oral polio vaccine assume greater importance. Poliovirus strains in the oral vaccine are known to quickly revert to neurovirulent phenotype following replication in humans after immunisation. These strains can transmit from person to person leading to poliomyelitis outbreaks and can replicate for long periods of time in immunodeficient individuals leading to paralysis or chronic infection, with currently no effective treatment to stop excretion from these patients. Here, we describe an individual who has been excreting type 2 vaccine-derived poliovirus for twenty eight years as estimated by the molecular clock established with VP1 capsid gene nucleotide sequences of serial isolates. This represents by far the longest period of excretion described from such a patient who is the only identified individual known to be excreting highly evolved vaccine-derived poliovirus at present. Using a range of in vivo and in vitro assays we show that the viruses are very virulent, antigenically drifted and excreted at high titre suggesting that such chronic excreters pose an obvious risk to the eradication programme. Our results in virus neutralization assays with human sera and immunisation-challenge experiments using transgenic mice expressing the human poliovirus receptor indicate that while maintaining high immunisation coverage will likely confer protection against paralytic disease caused by these viruses, significant changes in immunisation strategies might be required to effectively stop their occurrence and potential widespread transmission. Eventually, new stable live-attenuated polio vaccines with no risk of reversion might be required to respond to any poliovirus isolation in the post-eradication era.

  18. Plant-based oral vaccines: results of human trials.

    PubMed

    Tacket, C O

    2009-01-01

    Vaccines consisting of transgenic plant-derived antigens offer a new strategy for development of safe, inexpensive vaccines. The vaccine antigens can be eaten with the edible part of the plant or purified from plant material. In phase 1 clinical studies of prototype potato- and corn-based vaccines, these vaccines have been safe and immunogenic without the need for a buffer or vehicle other than the plant cell. Transgenic plant technology is attractive for vaccine development because these vaccines are needle-less, stable, and easy to administer. This chapter examines some early human studies of oral transgenic plant-derived vaccines against enterotoxigenic Escherichia coli infection, norovirus, and hepatitis B.

  19. Effect of substituting IPV for tOPV on immunity to poliovirus in Bangladeshi infants: An open-label randomized controlled trial.

    PubMed

    Mychaleckyj, Josyf C; Haque, Rashidul; Carmolli, Marya; Zhang, Dadong; Colgate, E Ross; Nayak, Uma; Taniuchi, Mami; Dickson, Dorothy; Weldon, William C; Oberste, M Steven; Zaman, K; Houpt, Eric R; Alam, Masud; Kirkpatrick, Beth D; Petri, William A

    2016-01-12

    The Polio Endgame strategy includes phased withdrawal of oral poliovirus vaccines (OPV) coordinated with introduction of inactivated poliovirus vaccine (IPV) to ensure population immunity. The impact of IPV introduction into a primary OPV series of immunizations in a developing country is uncertain. Between May 2011 and November 2012, we enrolled 700 Bangladeshi infant-mother dyads from Dhaka slums into an open-label randomized controlled trial to test whether substituting an injected IPV dose for the standard Expanded Program on Immunization (EPI) fourth tOPV dose at infant age 39 weeks would reduce fecal shedding and enhance systemic immunity. The primary endpoint was mucosal immunity to poliovirus at age one year, measured by fecal excretion of any Sabin virus at five time points up to 25 days post-52 week tOPV challenge, analyzed by the intention to treat principle. We randomized 350 families to the tOPV and IPV vaccination arms. Neither study arm resulted in superior intestinal protection at 52 weeks measured by the prevalence of infants shedding any of three poliovirus serotypes, but the IPV dose induced significantly higher seroprevalence and seroconversion rates. This result was identical for poliovirus detection by cell culture or RT-qPCR. The non-significant estimated culture-based shedding risk difference was -3% favoring IPV, and the two vaccination schedules were inferred to be equivalent within a 95% confidence margin of -10% to +4%. Results for shedding analyses stratified by poliovirus type were similar. Neither of the vaccination regimens is superior to the other in enhancing intestinal immunity as measured by poliovirus shedding at 52 weeks of age and the IPV regimen provides similar intestinal immunity to the four tOPV series, although the IPV regimen strongly enhances humoral immunity. The IPV-modified regimen may be considered for vaccination programs without loss of intestinal protection. Copyright © 2015 The Authors. Published by Elsevier

  20. Immunogenicity and safety of an acellular pertussis, diphtheria, tetanus, inactivated poliovirus, Hib-conjugate combined vaccine (Pentaxim) and monovalent hepatitis B vaccine at 6, 10 and 14 weeks of age in infants in South Africa.

    PubMed

    Madhi, Shabir Ahmed; Cutland, Clare; Jones, Stephanie; Groome, Michelle; Ortiz, Esteban

    2011-02-01

    To assess the immunogenicity and safety data for a pentavalent combination vaccine containing acellular pertussis, inactivated poliovirus, and Haemophilus influenzae (Hib) polysaccharide-conjugate antigens. A DTaP-IPV//PRP T vaccine (Pentaxim) was given at 6, 10 and 14 weeks of age to 212 infants in South Africa. Monovalent hepatitis B vaccine was given concomitantly. Immunogenicity was assessed using seroprotection and seroconversion rates; safety was assessed by monitoring for solicited injection site and systemic adverse events, and follow-up monitoring for unsolicited adverse events and serious adverse events. Immunogenicity was high for each vaccine antigen, and similar to a reference study done in France using a similar (2, 3 and 4 months of age) administration schedule. After the third dose, 94.6% of participants had anti-PRP > or = 0.15 microg/ml. The anti-PRP geometric mean antibody titre (GMT) was 2.0 microg/ml. The seroprotection rates for diphtheria and tetanus (> or = 0.01 IU/ml), poliovirus types 1, 2 and 3 (> or = 8 1/dil U) and hepatitis B were all 100%. Anti-polio GMTs were very high, 1 453, 1 699 and 2 398 (1/dil U) for types 1, 2 and 3, respectively. The seroconversion/vaccine response rates to pertussis antigens (4-fold increase in antibody concentration) were 97.5% for PT and 83.9% for FHA. The DTaP-IPV//PRP T vaccine was highly immunogenic at 6, 10 and 14 weeks of age in infants in South Africa, was compatible with the monovalent hepatitis B vaccine, and was well tolerated.

  1. Molecular analyses of oral polio vaccine samples.

    PubMed

    Poinar, H; Kuch, M; Pääbo, S

    2001-04-27

    It has been suggested that the human immunodeficiency virus (HIV), and thus the acquired immunodeficiency syndrome (AIDS) it causes, was inadvertently introduced to humans by the use of an oral polio vaccine (OPV) during a vaccination campaign launched by the Wistar Institute, Philadelphia, PA, USA, in the Belgian Congo in 1958 and 1959. The "OPV/AIDS hypothesis" suggests that the OPV used in this campaign was produced in chimpanzee kidney epithelial cell cultures rather than in monkey kidney cell cultures, as stated by H. Koprowski and co-workers, who produced the OPV. If chimpanzee cells were indeed used, this would lend support to the OPV/AIDS hypothesis, since chimpanzees harbor a simian immunodeficiency virus, widely accepted to be the origin of HIV-1. We analyzed several early OPV pools and found no evidence for the presence of chimpanzee DNA; by contrast, monkey DNA is present.

  2. Implementing the Synchronized Global Switch from Trivalent to Bivalent Oral Polio Vaccines-Lessons Learned From the Global Perspective.

    PubMed

    Ramirez Gonzalez, Alejandro; Farrell, Margaret; Menning, Lisa; Garon, Julie; Everts, Hans; Hampton, Lee M; Dolan, Samantha B; Shendale, Stephanie; Wanyoike, Sarah; Veira, Chantal Laroche; Châtellier, Gaël Maufras du; Kurji, Feyrouz; Rubin, Jennifer; Boualam, Liliane; Chang Blanc, Diana; Patel, Manish

    2017-07-01

    In 2015, the Global Commission for the Certification of Polio Eradication certified the eradication of type 2 wild poliovirus, 1 of 3 wild poliovirus serotypes causing paralytic polio since the beginning of recorded history. This milestone was one of the key criteria prompting the Global Polio Eradication Initiative to begin withdrawal of oral polio vaccines (OPV), beginning with the type 2 component (OPV2), through a globally synchronized initiative in April and May 2016 that called for all OPV using countries and territories to simultaneously switch from use of trivalent OPV (tOPV; containing types 1, 2, and 3 poliovirus) to bivalent OPV (bOPV; containing types 1 and 3 poliovirus), thus withdrawing OPV2. Before the switch, immunization programs globally had been using approximately 2 billion tOPV doses per year to immunize hundreds of millions of children. Thus, the globally synchronized withdrawal of tOPV was an unprecedented achievement in immunization and was part of a crucial strategy for containment of polioviruses. Successful implementation of the switch called for intense global coordination during 2015-2016 on an unprecedented scale among global public health technical agencies and donors, vaccine manufacturers, regulatory agencies, World Health Organization (WHO) and United Nations Children's Fund (UNICEF) regional offices, and national governments. Priority activities included cessation of tOPV production and shipment, national inventories of tOPV, detailed forecasting of tOPV needs, bOPV licensing, scaling up of bOPV production and procurement, developing national operational switch plans, securing funding, establishing oversight and implementation committees and teams, training logisticians and health workers, fostering advocacy and communications, establishing monitoring and validation structures, and implementing waste management strategies. The WHO received confirmation that, by mid May 2016, all 155 countries and territories that had used OPV in

  3. Alternative Inactivated Poliovirus Vaccines Adjuvanted with Quillaja brasiliensis or Quil-A Saponins Are Equally Effective in Inducing Specific Immune Responses

    PubMed Central

    de Costa, Fernanda; Yendo, Anna Carolina A.; Cibulski, Samuel P.; Fleck, Juliane D.; Roehe, Paulo M.; Spilki, Fernando R.; Gosmann, Grace; Fett-Neto, Arthur G.

    2014-01-01

    Inactivated polio vaccines (IPV) have an important role at the final stages of poliomyelitis eradication programs, reducing the risks associated with the use of attenuated polio vaccine (OPV). An affordable option to enhance vaccine immunogenicity and reduce costs of IPV may be the use of an effective and renewable adjuvant. In the present study, the adjuvant activity of aqueous extract (AE) and saponin fraction QB-90 from Quillaja brasiliensis using poliovirus antigen as model were analyzed and compared to a preparation adjuvanted with Quil-A, a well-known saponin-based commercial adjuvant. Experimental vaccines were prepared with viral antigen plus saline (control), Quil-A (50 µg), AE (400 µg) or QB-90 (50 µg). Sera from inoculated mice were collected at days 0, 28, 42 and 56 post-inoculation of the first dose of vaccine. Serum levels of specific IgG, IgG1 and IgG2a were significantly enhanced by AE, QB-90 and Quil-A compared to control group on day 56. The magnitude of enhancement was statistically equivalent for QB-90 and Quil-A. The cellular response was evaluated through DTH and analysis of IFN-γ and IL-2 mRNA levels using in vitro reestimulated splenocytes. Results indicated that AE and QB-90 were capable of stimulating the generation of Th1 cells against the administered antigen to the same extent as Quil-A. Mucosal immune response was enhanced by the vaccine adjuvanted with QB-90 as demonstrated by increases of specific IgA titers in bile, feces and vaginal washings, yielding comparable or higher titers than Quil-A. The results obtained indicate that saponins from Q. brasiliensis are potent adjuvants of specific cellular and humoral immune responses and represent a viable option to Quil-A. PMID:25148077

  4. Use of a Novel Real-Time PCR Assay To Detect Oral Polio Vaccine Shedding and Reversion in Stool and Sewage Samples after a Mexican National Immunization Day▿

    PubMed Central

    Troy, Stephanie B.; Ferreyra-Reyes, Leticia; Huang, ChunHong; Mahmud, Nadim; Lee, Yu-Jin; Canizales-Quintero, Sergio; Flaster, Harry; Báez-Saldaña, Renata; García-García, Lourdes; Maldonado, Yvonne

    2011-01-01

    During replication, oral polio vaccine (OPV) can revert to neurovirulence and cause paralytic poliomyelitis. In individual vaccinees, it can acquire specific revertant point mutations, leading to vaccine-associated paralytic poliomyelitis (VAPP). With longer replication, OPV can mutate into vaccine-derived poliovirus (VDPV), which causes poliomyelitis outbreaks similar to those caused by wild poliovirus. After wild poliovirus eradication, safely phasing out vaccination will likely require global use of inactivated polio vaccine (IPV) until cessation of OPV circulation. Mexico, where children receive routine IPV but where OPV is given biannually during national immunization days (NIDs), provides a natural setting to study the duration of OPV circulation in a population primarily vaccinated with IPV. We developed a real-time PCR assay to detect and distinguish revertant and nonrevertant OPV serotype 1 (OPV-1), OPV-2, and OPV-3 from RNA extracted directly from stool and sewage. Stool samples from 124 children and 8 1-liter sewage samples from Orizaba, Veracruz, Mexico, collected 6 to 13 weeks after a NID were analyzed. Revertant OPV-1 was found in stool at 7 and 9 weeks, and nonrevertant OPV-2 and OPV-3 were found in stool from two children 10 weeks after the NID. Revertant OPV-1 and nonrevertant OPV-2 and -3 were detected in sewage at 6 and 13 weeks after the NID. Our real-time PCR assay was able to detect small amounts of OPV in both stool and sewage and to distinguish nonrevertant and revertant serotypes and demonstrated that OPV continues to circulate at least 13 weeks after a NID in a Mexican population routinely immunized with IPV. PMID:21411577

  5. Differential induction of Toll-like receptors & type 1 interferons by Sabin attenuated & wild type 1 polioviruses in human neuronal cells

    PubMed Central

    Mohanty, Madhu C.; Deshpande, Jagadish M.

    2013-01-01

    Background & objectives: Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains) do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV) and Sabin attenuated type 1 poliovirus (Sabin PV) in cultured human neuronal cells. Methods: By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs) and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH) infected with Sabin PV and wild PV. Results: Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5) m-RNA in neuronal cells at the beginning of infection (up to 4 h) as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Interpretation & conclusions: Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies. PMID:24056597

  6. [Evaluation of the response to vaccination against poliomyelitis and measles in malnourished children in Morocco].

    PubMed

    Caidi, H; Bennis, I F; Mouan, N; El Aouad, R

    2004-01-01

    We made a comparative survey of the poliovirus antibodies (anti-poliovirus type 1, anti-poliovirus type 2 and anti-poliovirus type 3) and the measles antibodies in malnourished but completely vaccinated children (37) and control children (34). The age range was 10 months to 5 years. Immunization in children with protein-energy malnutrition was low for both vaccines. Seroprevalence rates of the polio 1, polio 2, polio 3 antibodies and the measles antibodies in the control group were 94.1%, 97.1%, 91.2% and 82.4% respectively. In malnourished children the respective rates were in some cases significantly lower being: 40.5% (P = 0.001), 59.5% (P = 0.001), 40.5% and 35.1%. Malnutrition is a major determinant of the humoral response to oral polio and measles vaccines and must be given due consideration to prevent vaccination failure.

  7. Human papillomavirus vaccination induces neutralising antibodies in oral mucosal fluids.

    PubMed

    Handisurya, A; Schellenbacher, C; Haitel, A; Senger, T; Kirnbauer, R

    2016-02-16

    Mucosal human papillomaviruses (HPV) are a major cause of cancers and papillomas of the anogenital and oropharyngeal tract. HPV-vaccination elicits neutralising antibodies in sera and cervicovaginal secretions and protects uninfected individuals from persistent anogenital infection and associated diseases caused by the vaccine-targeted HPV types. Whether immunisation can prevent oropharyngeal infection and diseases and whether neutralising antibodies represent the correlate of protection, is still unclear. We determined IgG and neutralising antibodies against low-risk HPV6 and high-risk HPV16/18 in sera and oral fluids from healthy females (n=20) before and after quadrivalent HPV-vaccination and compared the results with non-vaccinated controls. HPV-vaccination induced type-specific antibodies in sera and oral fluids of the vaccinees. Importantly, the antibodies in oral fluids were capable of neutralising HPV pseudovirions in vitro, indicating protection from infection. The increased neutralising antibody levels against HPV16/18 in sera and oral fluids post-vaccination correlated significantly within an individual. We provide experimental proof that HPV-vaccination elicits neutralising antibodies to the vaccine-targeted types in oral fluids. Hence, immunisation may confer direct protection against type-specific HPV infection and associated diseases of the oropharyngeal tract. Measurement of antibodies in oral fluids represents a suitable tool to assess vaccine-induced protection within the mucosal milieu of the orophayrynx.

  8. Human papillomavirus vaccination induces neutralising antibodies in oral mucosal fluids

    PubMed Central

    Handisurya, A; Schellenbacher, C; Haitel, A; Senger, T; Kirnbauer, R

    2016-01-01

    Background: Mucosal human papillomaviruses (HPV) are a major cause of cancers and papillomas of the anogenital and oropharyngeal tract. HPV-vaccination elicits neutralising antibodies in sera and cervicovaginal secretions and protects uninfected individuals from persistent anogenital infection and associated diseases caused by the vaccine-targeted HPV types. Whether immunisation can prevent oropharyngeal infection and diseases and whether neutralising antibodies represent the correlate of protection, is still unclear. Methods: We determined IgG and neutralising antibodies against low-risk HPV6 and high-risk HPV16/18 in sera and oral fluids from healthy females (n=20) before and after quadrivalent HPV-vaccination and compared the results with non-vaccinated controls. Results: HPV-vaccination induced type-specific antibodies in sera and oral fluids of the vaccinees. Importantly, the antibodies in oral fluids were capable of neutralising HPV pseudovirions in vitro, indicating protection from infection. The increased neutralising antibody levels against HPV16/18 in sera and oral fluids post-vaccination correlated significantly within an individual. Conclusions: We provide experimental proof that HPV-vaccination elicits neutralising antibodies to the vaccine-targeted types in oral fluids. Hence, immunisation may confer direct protection against type-specific HPV infection and associated diseases of the oropharyngeal tract. Measurement of antibodies in oral fluids represents a suitable tool to assess vaccine-induced protection within the mucosal milieu of the orophayrynx. PMID:26867163

  9. Dynamics affecting the risk of silent circulation when oral polio vaccination is stopped.

    PubMed

    Koopman, J S; Henry, C J; Park, J H; Eisenberg, M C; Ionides, E L; Eisenberg, J N

    2017-03-01

    Waning immunity could allow transmission of polioviruses without causing poliomyelitis by promoting silent circulation (SC). Undetected SC when oral polio vaccine (OPV) use is stopped could cause difficult to control epidemics. Little is known about waning. To develop theory about what generates SC, we modeled a range of waning patterns. We varied both OPV and wild polio virus (WPV) transmissibility, the time from beginning vaccination to reaching low polio levels, and the infection to paralysis ratio (IPR). There was longer SC when waning continued over time rather than stopping after a few years, when WPV transmissibility was higher or OPV transmissibility was lower, and when the IPR was higher. These interacted in a way that makes recent emergence of prolonged SC a possibility. As the time to reach low infection levels increased, vaccine rates needed to eliminate polio increased and a threshold was passed where prolonged low-level SC emerged. These phenomena were caused by increased contributions to the force of infection from reinfections. The resulting SC occurs at low levels that would be difficult to detect using environmental surveillance. For all waning patterns, modest levels of vaccination of adults shortened SC. Previous modeling studies may have missed these phenomena because (1) they used models with no or very short duration waning and (2) they fit models to paralytic polio case counts. Our analyses show that polio case counts cannot predict SC because nearly identical polio case count patterns can be generated by a range of waning patterns that generate different patterns of SC. We conclude that the possibility of prolonged SC is real but unquantified, that vaccinating modest fractions of adults could reduce SC risk, and that joint analysis of acute flaccid paralysis and environmental surveillance data can help assess SC risks and ensure low risks before stopping OPV.

  10. Oral Rabies Vaccine Design for Expression in Plants.

    PubMed

    Singh, Ankit; Saxena, Gauri; Verma, Praveen C

    2016-01-01

    Vaccination is the sensitization process of the immune system against any pathogen. Generally, recombinant subunit vaccines are considered safer than attenuated vaccines. As whole pathogenic organisms are used in the immunization process, the attenuated vaccines are considered more risky than subunit vaccines. Rabies is the oldest known zoonosis which spreads through a neurotropic Lyssavirus primarily mediated through infected canine bites. Rabies causes worldwide loss of more than 60,000 human lives every year. Animal vaccination is equally important to check the transmission of rabies into humans. Rabies oral vaccination can be a good alternative where multiple booster and priming regimens are required while the painful vaccination process can continue for long durations. Introduction of oral vaccines was made to ease the discomfort associated with the mode of introduction of conventional vaccines into the body. Although the rabies oral vaccine can substantially reduce the cost of vaccination in the developing countries, mass immunization programs need larger quantities of vaccines which should be delivered at nominal cost. Expression of recombinant antigen proteins in E. coli is often not viable because of lack of post-translational modifications and folding requirements. Though yeast and insect cell line expression systems have post-translational processing and modifications, significantly different immunological response against their post-translational modification pattern limits their deployment as an expression system. As an alternative, plants are emerging as a promising system to express and deliver wide range of functionally active biopharmaceutical product at lower cost for mass immunization programs. As generation of vaccine antigenic proteins in plant systems are cheaper, the strategy will benefit developing countries where this disease causes thousands of deaths every year. In this chapter, we will discuss about our efforts toward development of oral

  11. Mass vaccination with a two-dose oral cholera vaccine in a refugee camp.

    PubMed Central

    Legros, D.; Paquet, C.; Perea, W.; Marty, I.; Mugisha, N. K.; Royer, H.; Neira, M.; Ivanoff, B.

    1999-01-01

    In refugee settings, the use of cholera vaccines is controversial since a mass vaccination campaign might disrupt other priority interventions. We therefore conducted a study to assess the feasibility of such a campaign using a two-dose oral cholera vaccine in a refugee camp. The campaign, using killed whole-cell/recombinant B-subunit cholera vaccine, was carried out in October 1997 among 44,000 south Sudanese refugees in Uganda. Outcome variables included the number of doses administered, the drop-out rate between the two rounds, the proportion of vaccine wasted, the speed of administration, the cost of the campaign, and the vaccine coverage. Overall, 63,220 doses of vaccine were administered. At best, 200 vaccine doses were administered per vaccination site and per hour. The direct cost of the campaign amounted to US$ 14,655, not including the vaccine itself. Vaccine coverage, based on vaccination cards, was 83.0% and 75.9% for the first and second rounds, respectively. Mass vaccination of a large refugee population with an oral cholera vaccine therefore proved to be feasible. A pre-emptive vaccination strategy could be considered in stable refugee settings and in urban slums in high-risk areas. However, the potential cost of the vaccine and the absence of quickly accessible stockpiles are major drawbacks for its large-scale use. PMID:10593032

  12. Delivery strategies to enhance oral vaccination against enteric infections.

    PubMed

    Davitt, Christopher J H; Lavelle, Ed C

    2015-08-30

    While the majority of human pathogens infect the body through mucosal sites, most licensed vaccines are injectable. In fact the only mucosal vaccine that has been widely used globally for infant and childhood vaccination programs is the oral polio vaccine (OPV) developed by Albert Sabin in the 1950s. While oral vaccines against Cholera, rotavirus and Salmonella typhi have also been licensed, the development of additional non-living oral vaccines against these and other enteric pathogens has been slow and challenging. Mucosal vaccines can elicit protective immunity at the gut mucosa, in part via antigen-specific secretory immunoglobulin A (SIgA). However, despite their advantages over the injectable route, oral vaccines face many hurdles. A key challenge lies in design of delivery strategies that can protect antigens from degradation in the stomach and intestine, incorporate appropriate immune-stimulatory adjuvants and control release at the appropriate gastrointestinal site. A number of systems including micro and nanoparticles, lipid-based strategies and enteric capsules have significant potential either alone or in advanced combined formulations to enhance intestinal immune responses. In this review we will outline the opportunities, challenges and potential delivery solutions to facilitate the development of improved oral vaccines for infectious enteric diseases.

  13. Poliovirus tropism and attenuation are determined after internal ribosome entry

    PubMed Central

    Kauder, Steven E.; Racaniello, Vincent R.

    2004-01-01

    Poliovirus replication is limited to a few organs, including the brain and spinal cord. This restricted tropism may be a consequence of organ-specific differences in translation initiation by the poliovirus internal ribosome entry site (IRES). A C-to-U mutation at base 472 in the IRES of the Sabin type 3 poliovirus vaccine strain, known to attenuate neurovirulence, may further restrict tropism by eliminating viral replication in the CNS. To determine the relationship between IRES-mediated translation and poliovirus tropism, recombinant human adenoviruses were used to express bicistronic mRNAs in murine organs. The IRESs of poliovirus, the cardiotropic coxsackievirus B3 (CVB3), and the hepatotropic hepatitis C virus (HCV) mediate translation in many organs, including those that do not support viral replication. A translation defect associated with the Sabin type 3 IRES was observed in all organs examined. Poliovirus type 1 and recombinant polioviruses dependent on the IRES of CVB3 or HCV replicate in the CNS of mice and cause paralysis. Although the type 3 Sabin strain is an effective vaccine, polioviruses with a U at base 472 of the IRES cause paralysis in newborn mice. Tropism of wild-type and vaccine strains of poliovirus is therefore determined after internal ribosome entry. PMID:15199409

  14. Current status of poliovirus infections.

    PubMed

    Melnick, J L

    1996-07-01

    Two scientists who played leading roles in the conquest of poliomyelitis died recently. In 1954, Jonas Salk provided the first licensed polio vaccine, the formalin (and heat)-inactivated virus. Albert Sabin gave us the attenuated live virus vaccine, which was licensed in 1962. This paper takes the reader through the history of the disease, including its pathogenesis, epidemiology, vaccines, and future directions. The emphasis is on vaccines, for it seems that with proper vaccination the number of new cases is falling dramatically. It is hoped that by the year 2000, we will accomplish the goal of the World Health Organization of "a world without polio." Then, because there is no animal reservoir, we can seriously discuss when and how to eliminate the need for vaccination and ultimately destroy our stocks of poliovirus.

  15. Current status of poliovirus infections.

    PubMed Central

    Melnick, J L

    1996-01-01

    Two scientists who played leading roles in the conquest of poliomyelitis died recently. In 1954, Jonas Salk provided the first licensed polio vaccine, the formalin (and heat)-inactivated virus. Albert Sabin gave us the attenuated live virus vaccine, which was licensed in 1962. This paper takes the reader through the history of the disease, including its pathogenesis, epidemiology, vaccines, and future directions. The emphasis is on vaccines, for it seems that with proper vaccination the number of new cases is falling dramatically. It is hoped that by the year 2000, we will accomplish the goal of the World Health Organization of "a world without polio." Then, because there is no animal reservoir, we can seriously discuss when and how to eliminate the need for vaccination and ultimately destroy our stocks of poliovirus. PMID:8809461

  16. Oral transgenic plant-based vaccine for hepatitis B.

    PubMed

    Thanavala, Yasmin; Lugade, Amit A

    2010-03-01

    In addition to improving vaccine formulations in order to elicit robust and long-lasting immune responses, there is also an increasing need for improving the manner in which these vaccines are delivered. As most current vaccines are administered by injection by a health care giver, there is the ever-present danger of needlestick injuries. Therefore, needle-free vaccinations are a viable option toward limiting needle-associated injuries and additionally increasing compliance with vaccination schedules, as both children and adults have an aversion to injections. Noninvasive methods of vaccination will also facilitate speed of vaccine delivery and likely also reduce cost, both important factors for health care in developing countries. One alternative to current injectable immunizations is orally delivered vaccines. A specific approach that we and others are evaluating is the use of transgenic plant tissue that expresses vaccine antigens for oral immunization. Herein, we review the development of an oral HBV vaccine expressed in transgenic potato tubers and the immune responses generated in human subjects given this novel vaccine.

  17. Poliovirus sampling by using sodium dodecyl sulfate/EDTA-pretreated chromatography paper strips.

    PubMed

    Maes, Piet; Van Doren, Els; Denys, Barbara; Thoelen, Inge; Rahman, Mustafizur; Vijgen, Leen; Van Ranst, Marc

    2004-12-17

    To achieve the goal of poliovirus eradication, surveillance of endemic areas is a crucial step in the poliovirus eradication program. Currently, six countries still have endemic poliovirus. We have tested a novel method which uses SDS/EDTA-treated chromatography paper strips to collect and transport poliovirus-containing stool samples. The SDS/EDTA-treated paper strips were soaked with different dilutions of poliovirus-containing feces and stored at different temperatures. After storing the SDS/EDTA paper strips for 5 months at 37 degrees C, poliovirus RNA could be successfully amplified using RT-PCR. Infectivity of wild-type poliovirus type 1, 2, and 3 was lost upon contact with the SDS/EDTA-treated strips. This easy, inexpensive, and biosafe chromatography paper strip method for the collection and transportation of poliovirus samples can be of use in poliovirus surveillance and polio vaccination programs.

  18. Killed oral cholera vaccines: history, development and implementation challenges

    PubMed Central

    Gonzales, Maria Liza Antoinette; Aldaba, Josephine G.; Nair, G. Balakrish

    2014-01-01

    Cholera is still a major global health problem, affecting mainly people living in unsanitary conditions and who are at risk for outbreaks of cholera. During the past decade, outbreaks are increasingly reported from more countries. From the early killed oral cholera vaccine, rapid improvements in vaccine development occurred as a result of a better understanding of the epidemiology of the disease, pathogenesis of cholera infection and immunity. The newer-generation oral killed cholera vaccines have been shown to be safe and effective in field trials conducted in cholera endemic areas. Likewise, they have been shown to be protective when used during outbreak settings. Aside from providing direct protection to vaccinated individuals, recent studies have demonstrated that these killed oral vaccines also confer indirect protection through herd immunity. Although new-generation oral cholera vaccines should not be considered in isolation from other preventive approaches in countries where they are most needed, especially improved water quality and sanitation, these vaccines serve as immediately available public health tools for preventing further morbidity and mortality from cholera. However, despite its availability for more than two decades, use of these vaccines has not been optimized. Although there are limitations of the currently available oral cholera vaccines, recent data show that the vaccines are safe, feasible to use even in difficult circumstances and able to provide protection in various settings. Clear identification of the areas and target population groups who will benefit from the use of the cholera vaccines will be required and strategies to facilitate accessibility and usage of these vaccines in these areas and population groups will need to be developed. PMID:25177492

  19. Killed oral cholera vaccines: history, development and implementation challenges.

    PubMed

    Lopez, Anna Lena; Gonzales, Maria Liza Antoinette; Aldaba, Josephine G; Nair, G Balakrish

    2014-09-01

    Cholera is still a major global health problem, affecting mainly people living in unsanitary conditions and who are at risk for outbreaks of cholera. During the past decade, outbreaks are increasingly reported from more countries. From the early killed oral cholera vaccine, rapid improvements in vaccine development occurred as a result of a better understanding of the epidemiology of the disease, pathogenesis of cholera infection and immunity. The newer-generation oral killed cholera vaccines have been shown to be safe and effective in field trials conducted in cholera endemic areas. Likewise, they have been shown to be protective when used during outbreak settings. Aside from providing direct protection to vaccinated individuals, recent studies have demonstrated that these killed oral vaccines also confer indirect protection through herd immunity. Although new-generation oral cholera vaccines should not be considered in isolation from other preventive approaches in countries where they are most needed, especially improved water quality and sanitation, these vaccines serve as immediately available public health tools for preventing further morbidity and mortality from cholera. However, despite its availability for more than two decades, use of these vaccines has not been optimized. Although there are limitations of the currently available oral cholera vaccines, recent data show that the vaccines are safe, feasible to use even in difficult circumstances and able to provide protection in various settings. Clear identification of the areas and target population groups who will benefit from the use of the cholera vaccines will be required and strategies to facilitate accessibility and usage of these vaccines in these areas and population groups will need to be developed.

  20. Oral vaccination with a liposome-encapsulated influenza DNA vaccine protects mice against respiratory challenge infection.

    PubMed

    Liu, Jing; Wu, Jianqi; Wang, Bing; Zeng, Sheng; Qi, Feifei; Lu, Changlong; Kimura, Yoshinobu; Liu, Beixing

    2014-05-01

    It is well accepted that vaccination by oral administration has many advantages over injected parenteral immunization. The present study focuses on whether oral vaccination with a DNA vaccine could induce protective immunity against respiratory challenge infection. The M1 gene of influenza A virus was used to construct DNA vaccine using pcDNA 3.1(+) plasmid, a eukaryotic expression vector. The cationic liposomes were used to deliver the constructed DNA vaccine. In vitro and in vivo expression of M1 gene was observed in the cell line and in the intestine of orally vaccinated C57BL/6 mice, respectively. It became clear that this type of oral DNA vaccination was capable of inducing both humoral and cellular immune responses, together with an augmentation of IFN-γ production. In addition, oral vaccination with liposome-encapsulated DNA vaccine could protect the mice against respiratory challenge infection. These results suggest that gastrointestinal tract, a constituent member of the common mucosal immune system, is a potent candidate applicable as a DNA vaccine route against virus respiratory diseases.

  1. Characteristics of persons refusing oral polio vaccine during the immunization plus days - Sokoto, Nigeria 2011.

    PubMed

    Mohammed, Abdulaziz; Sabitu, Kabir; Nguku, Patrick; Abanida, Emmanuel; Sheidu, Sadik; Dalhat, Mahmood; Dankoli, Raymond; Gidado, Saheed; Suleiman, Idris

    2014-01-01

    Nigeria, the only African country endemic for wild poliovirus, adopted Immunization Plus Days (IPD) to eradicate polio. Refusal of oral polio vaccine (OPV) by heads of households is a significant challenge. In Sokoto state, we determined characteristics of heads of households refusing OPV during IPD in 2011. To evaluate reasons for refusals, we conducted a case control study among heads ofhouseholds accepting or refusing OPV vaccine. Noncompliant households were defined as households refusing OPV vaccination in last three rounds of IPDs while compliant households were those accepting vaccination. Interviewers administered a questionnaire to the heads of households to obtain information on socio-demographics, media habits, and knowledge of IPD. Of the 121 (60 cases and 61 controls) interviews, 88 (73%) were from Sokoto north. Noncompliant heads of households were more likely to lack tertiary education (OR = 3.7, 95% CI, 1.6 - 9.2), believe that OPV is not safe (OR = 22, 95% CI, 7.1 - 76), lack access to functional radio (OR = 4.4, 95% CI, 1.4 - 15) and television (OR = 9.4, 95% CI, (1.9 - 63) andget information about IPD from town announcers (OR = 3.9, 95% CI, 1.3 - 12). We conclude that noncompliant heads of households compared to compliant heads of households had low level of education, lacked knowledge of immunization, and had negative attitude towards OPV. They get information about OPV from town announcers and lacked access to functional radio and television. We recommended training of town announcers in polio communication and use of key communication messages preceding every round of IPD.

  2. Characteristics of persons refusing oral polio vaccine during the immunization plus days – Sokoto, Nigeria 2011

    PubMed Central

    Mohammed, Abdulaziz; Sabitu, Kabir; Nguku, Patrick; Abanida, Emmanuel; Sheidu, Sadik; Dalhat, Mahmood; Dankoli, Raymond; Gidado, Saheed; Suleiman, Idris

    2014-01-01

    Introduction Nigeria, the only African country endemic for wild poliovirus, adopted Immunization Plus Days (IPD) to eradicate polio. Refusal of oral polio vaccine (OPV) by heads of households is a significant challenge. In Sokoto state, we determined characteristics of heads of households refusing OPV during IPD in 2011. Methods To evaluate reasons for refusals, we conducted a case control study among heads ofhouseholds accepting or refusing OPV vaccine. Noncompliant households were defined as households refusing OPV vaccination in last three rounds of IPDs while compliant households were those accepting vaccination. Interviewers administered a questionnaire to the heads of households to obtain information on socio-demographics, media habits, and knowledge of IPD. Results Of the 121 (60 cases and 61 controls) interviews, 88 (73%) were from Sokoto north. Noncompliant heads of households were more likely to lack tertiary education (OR = 3.7, 95% CI, 1.6 - 9.2), believe that OPV is not safe (OR = 22, 95% CI, 7.1 - 76), lack access to functional radio (OR = 4.4, 95% CI, 1.4 - 15) and television (OR = 9.4, 95% CI, (1.9 - 63) andget information about IPD from town announcers (OR = 3.9, 95% CI, 1.3 - 12). Conclusion We conclude that noncompliant heads of households compared to compliant heads of households had low level of education, lacked knowledge of immunization, and had negative attitude towards OPV. They get information about OPV from town announcers and lacked access to functional radio and television. We recommended training of town announcers in polio communication and use of key communication messages preceding every round of IPD. PMID:25328629

  3. Effectiveness of oral polio vaccination against paralytic poliomyelitis: a matched case-control study in Somalia.

    PubMed

    Mahamud, Abdirahman; Kamadjeu, Raoul; Webeck, Jenna; Mbaeyi, Chukwuma; Baranyikwa, Marie Therese; Birungi, Julianne; Nurbile, Yassin; Ehrhardt, Derek; Shukla, Hemant; Chatterjee, Anirban; Mulugeta, Abraham

    2014-11-01

    After the last case of type 1 wild poliovirus (WPV1) was reported in 2007, Somalia experienced another outbreak of WPV1 (189 cases) in 2013. We conducted a retrospective, matched case-control study to evaluate the vaccine effectiveness (VE) of oral polio vaccine (OPV). We retrieved information from the Somalia Surveillance Database. A case was defined as any case of acute flaccid paralysis (AFP) with virological confirmation of WPV1. We selected two groups of controls for each case: non-polio AFP cases ("NPAFP controls") matched to WPV1 cases by age, date of onset of paralysis and region; and asymptomatic "neighborhood controls," matched by age. Using conditional logistic regression, we estimated the VE of OPV as (1-odds ratio)×100. We matched 99 WPV cases with 99 NPAFP controls and 134 WPV1 cases with 268 neighborhood controls. Using NPAFP controls, the overall VE was 70% (95% confidence interval [CI], 37-86), 59% (2-83) among 1-3 dose recipients, 77% (95% CI, 46-91) among ≥4 dose recipients. In neighborhood controls, the overall VE was 95% (95% CI, 84-98), 92% (72-98) among 1-3 dose recipients, and 97% (89-99) among ≥4 dose recipients. When the analysis was limited to cases and controls ≤24 months old, the overall VE in NPAFP and neighborhood controls was 95% (95% CI, 65-99) and 97% (95% CI, 76-100), respectively. Among individuals who were fully vaccinated with OPV, vaccination was effective at preventing WPV1 in Somalia. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. Expression of the poliovirus receptor in intestinal epithelial cells is not sufficient to permit poliovirus replication in the mouse gut.

    PubMed

    Zhang, S; Racaniello, V R

    1997-07-01

    Although the initial site of poliovirus replication in humans is the intestine, previously isolated transgenic mice which carry the human poliovirus receptor (PVR) gene (TgPVR mice), which develop poliomyelitis after intracerebral inoculation, are not susceptible to infection by the oral route. The low levels of PVR expressed in the TgPVR mouse intestine might explain the absence of poliovirus replication at that site. To ascertain whether PVR is the sole determinant of poliovirus susceptibility of the mouse intestine, we have generated transgenic mice by using the promoter for rat intestine fatty acid binding protein to direct PVR expression in mouse gut. Pvr was detected by immunohistochemistry in the enterocytes and M cells of transgenic mouse (TgFABP-PVR) small intestine. Upon oral inoculation with poliovirus, no increase in virus titer was detected in the feces of TgFABP-PVR mice, and no virus replication was observed in the small intestine, although poliovirus replicated in the brain after intracerebral inoculation. The failure of poliovirus to replicate in the TgFABP-PVR mouse small intestine was not due to lack of virus binding sites, because poliovirus could attach to fragments of small intestine from these mice. These results indicate that the inability of poliovirus to replicate in the mouse alimentary tract is not solely due to the absence of virus receptor, and other factors are involved in determining the ability of poliovirus to replicate in the mouse gut.

  5. Laboratory challenges in response to silent introduction and sustained transmission of wild poliovirus type 1 in Israel during 2013.

    PubMed

    Shulman, Lester M; Mendelson, Ella; Anis, Emilia; Bassal, Ravit; Gdalevich, Michael; Hindiyeh, Musa; Kaliner, Ehud; Kopel, Eran; Manor, Yossi; Moran-Gilad, Jacob; Ram, Daniella; Sofer, Danit; Somekh, Eli; Tasher, Diana; Weil, Merav; Gamzu, Ronni; Grotto, Itamar

    2014-11-01

    Wild poliovirus type 1 (WPV1) introduction into southern Israel in early 2013 was detected by routine environmental surveillance. The virus was identified genetically as related to the South Asian (SOAS) R3A lineage endemic to Pakistan in 2012. Intensified, high-throughput environmental surveillance using advanced molecular methods played a critical role in documenting and locating sustained transmission throughout 2013 and early 2014 in the absence of any acute flaccid paralysis. It guided the public health responses, including stool-based surveillance and serosurveys, to determine the point prevalence in silent excretors and measured the effect of vaccination campaigns with inactivated polio vaccine and bivalent oral polio vaccine on stopping transmission.

  6. The Final (Oral Ebola) Vaccine Trial on Captive Chimpanzees?

    PubMed Central

    Walsh, Peter D.; Kurup, Drishya; Hasselschwert, Dana L.; Wirblich, Christoph; Goetzmann, Jason E.; Schnell, Matthias J.

    2017-01-01

    Could new oral vaccine technologies protect endangered wildlife against a rising tide of infectious disease? We used captive chimpanzees to test oral delivery of a rabies virus (RABV) vectored vaccine against Ebola virus (EBOV), a major threat to wild chimpanzees and gorillas. EBOV GP and RABV GP-specific antibody titers increased exponentially during the trial, with rates of increase for six orally vaccinated chimpanzees very similar to four intramuscularly vaccinated controls. Chimpanzee sera also showed robust neutralizing activity against RABV and pseudo-typed EBOV. Vaccination did not induce serious health complications. Blood chemistry, hematologic, and body mass correlates of psychological stress suggested that, although sedation induced acute stress, experimental housing conditions did not induce traumatic levels of chronic stress. Acute behavioral and physiological responses to sedation were strongly correlated with immune responses to vaccination. These results suggest that oral vaccination holds great promise as a tool for the conservation of apes and other endangered tropical wildlife. They also imply that vaccine and drug trials on other captive species need to better account for the effects of stress on immune response. PMID:28277549

  7. Oral Cholera Vaccine Coverage, Barriers to Vaccination, and Adverse Events following Vaccination, Haiti, 20131

    PubMed Central

    François, Jeannot; Wannemuehler, Kathleen; Iyengar, Preetha; Dismer, Amber; Adrien, Paul; Hyde, Terri B.; Marston, Barbara J.; Date, Kashmira; Mintz, Eric; Katz, Mark A.

    2015-01-01

    In 2013, the first government-led oral cholera vaccination (OCV) campaign in Haiti was implemented in Petite Anse and Cerca Carvajal. To evaluate vaccination coverage, barriers to vaccination, and adverse events following vaccination, we conducted a cluster survey. We enrolled 1,121 persons from Petite Anse and 809 persons from Cerca Carvajal, categorized by 3 age groups (1–4, 5–14, >15 years). Two-dose OCV coverage was 62.5% in Petite Anse and 76.8% in Cerca Carvajal. Two-dose coverage was lowest among persons >15 years of age. In Cerca Carvajal, coverage was significantly lower for male than female respondents (69% vs. 85%; p<0.001). No major adverse events were reported. The main reason for nonvaccination was absence during the campaign. Vaccination coverage after this campaign was acceptable and comparable to that resulting from campaigns implemented by nongovernmental organizations. Future campaigns should be tailored to reach adults who are not available during daytime hours. PMID:25988350

  8. Oral Cholera Vaccine Coverage, Barriers to Vaccination, and Adverse Events following Vaccination, Haiti, 2013.

    PubMed

    Tohme, Rania A; François, Jeannot; Wannemuehler, Kathleen; Iyengar, Preetha; Dismer, Amber; Adrien, Paul; Hyde, Terri B; Marston, Barbara J; Date, Kashmira; Mintz, Eric; Katz, Mark A

    2015-06-01

    In 2013, the first government-led oral cholera vaccination (OCV) campaign in Haiti was implemented in Petite Anse and Cerca Carvajal. To evaluate vaccination coverage, barriers to vaccination, and adverse events following vaccination, we conducted a cluster survey. We enrolled 1,121 persons from Petite Anse and 809 persons from Cerca Carvajal, categorized by 3 age groups (1-4, 5-14, >15 years). Two-dose OCV coverage was 62.5% in Petite Anse and 76.8% in Cerca Carvajal. Two-dose coverage was lowest among persons >15 years of age. In Cerca Carvajal, coverage was significantly lower for male than female respondents (69% vs. 85%; p<0.001). No major adverse events were reported. The main reason for nonvaccination was absence during the campaign. Vaccination coverage after this campaign was acceptable and comparable to that resulting from campaigns implemented by nongovernmental organizations. Future campaigns should be tailored to reach adults who are not available during daytime hours.

  9. Massive outbreak of poliomyelitis caused by type-3 wild poliovirus in Angola in 1999.

    PubMed Central

    Valente, F.; Otten, M.; Balbina, F.; Van de Weerdt, R.; Chezzi, C.; Eriki, P.; Van-Dúnnen, J.; Bele, J. M.

    2000-01-01

    The largest outbreak of poliomyelitis ever recorded in Africa (1093 cases) occurred from 1 March to 28 May 1999 in Luanda, Angola, and in surrounding areas. The outbreak was caused primarily by a type-3 wild poliovirus, although type-1 wild poliovirus was circulating in the outbreak area at the same time. Infected individuals ranged in age from 2 months to 22 years; 788 individuals (72%) were younger than 3 years. Of the 590 individuals whose vaccination status was known, 23% had received no vaccine and 54% had received fewer than three doses of oral poliovirus vaccine (OPV). The major factors that contributed to this outbreak were as follows: massive displacement of unvaccinated persons to urban settings; low routine OPV coverage; inaccessible populations during the previous three national immunization days (NIDs); and inadequate sanitation. This outbreak indicates the urgent need to improve accessibility to all children during NIDs and the dramatic impact that war can have by displacing persons and impeding access to routine immunizations. The period immediately after an outbreak provides an enhanced opportunity to eradicate poliomyelitis. If continuous access in all districts for acute flaccid paralysis surveillance and supplemental immunizations cannot be assured, the current war in Angola may threaten global poliomyelitis eradication. PMID:10812730

  10. Oral vaccination against diphtheria using polyacryl starch microparticles as adjuvant.

    PubMed

    Rydell, Niclas; Sjöholm, Ingvar

    2004-03-12

    Oral vaccination offers the advantage of eliciting both a mucosal and a systemic immune response. This study investigated the use of polyacryl starch microparticles as adjuvant for oral vaccination against diphtheria. Diphtheria toxin or cross-reacting material (CRM197) were covalently conjugated to the microparticles and fed to mice by oral gavage. Investigation of formaldehyde treatment as a means of either detoxifying (diphtheria toxin) or stabilising (CRM197) these formulations were also made. We show that all our formulations given orally or parenterally to mice induced a strong systemic immune response. Only formulations given orally induced a mucosal IgA-response. Furthermore, our formulations given parenterally or orally induced a strong diphtheria toxin-neutralising antibody response.

  11. Immunogenicity and reactogenicity of the human rotavirus vaccine, RIX4414 oral suspension, when co-administered with routine childhood vaccines in Chinese infants

    PubMed Central

    Li, Rong-cheng; Huang, Teng; Li, Yanping; Wang, Lao-Hong; Tao, Junhui; Fu, Botao; Si, Guoai; Nong, Yi; Mo, Zhaojun; Liao, XueYan; Luan, Ivy; Tang, Haiwen; Rathi, Niraj; Karkada, Naveen; Han, Htay Htay

    2016-01-01

    Abstract This study evaluated the immunogenicity of the human rotavirus (RV) vaccine (RIX4414) when co-administered with routine childhood vaccines in Chinese infants (NCT01171963). Healthy infants aged 6–16 weeks received 2 doses of either RIX4414 or placebo according to a 0, 1-month schedule. Infants received routine diphtheria-tetanus-acellular pertussis (DTPa) and oral poliovirus (OPV) vaccines either separately from or concomitantly with RIX4414/placebo (separate and co-administration cohorts, respectively). Anti-RV IgA seroconversion rates (one month post-dose-2) and seropositivity rates (at one year of age) were measured using ELISA. Immune responses against the DTPa and OPV antigens were measured one month post-DTPa dose-3 in the co-administration cohort. Solicited local and general symptoms were recorded for 8-days post-vaccination (total cohort). The according-to-protocol immunogenicity population included 511 infants in the separate cohort and 275 in the co-administration cohort. One month post-RIX4414 dose-2, anti-RV IgA seroconversion rates were 74.7% (95% confidence interval [CI]: 68.9–79.9) and 64.2% (95% CI: 55.4–72.3) in the separate and co-administration cohorts; seropositivity rates at one year of age were 71.5% (95% CI: 65.5–77.1) and 50.0% (95% CI: 40.9–59.1), respectively. One month post-DTPa dose-3, all infants in the co-administration cohort were seroprotected against diphtheria and tetanus, and seropositive for pertussis toxoid, pertactin and filamentous haemaglutinin. Two months post-OPV dose-3, seroprotection rates against anti-poliovirus types 1, 2 and 3 were >99% in the co-administration cohort. Reactogenicity profiles were similar in both cohorts. RIX4414 was immunogenic and well-tolerated in Chinese infants and did not appear to interfere with the immunogenicity and reactogenicity of co-administered routine childhood vaccines. PMID:27149266

  12. Poliomyelitis in transgenic mice expressing CD155 under the control of the Tage4 promoter after oral and parenteral poliovirus inoculation.

    PubMed

    Khan, Shaukat; Toyoda, Hidemi; Linehan, Melissa; Iwasaki, Akiko; Nomoto, Akio; Bernhardt, Günter; Cello, Jeronimo; Wimmer, Eckard

    2014-08-01

    An important step in poliovirus (PV) infection by the oral route in humans is replication of the virus in lymphatic tissues of the gastrointestinal (GI) tract, thought to be mainly in the Peyer's patches of the small intestine. No immunocompetent transgenic (tg) mice that express human PV receptor (CD155) under the control of different promoters can be infected orally. The mouse orthologue of human CD155 is Tage4, a protein expressed at the surface of enterocytes and in the Peyer's patches. We describe here the generation of a tg mouse model in which the Tage4 promoter was used to drive expression of the human PV receptor-coding region (Tage4-CD155tg mice). In this model, CD155 expression was observed by immunostaining in different regions in the Peyer's patches but not in their germinal centres. Although a similar pattern of staining was observed between 3- and 6-week-old Tage4-CD155tg mice, poliomyelitis was only seen in the younger mice after PV infection by the oral route. When compared with TgPVR21 mice that expressed CD155 driven by its human promoter, 3-week-old Tage4-CD155tg mice were more susceptible to gut infection and paralysis following feeding with PV. Also, Tage4-CD155tg mice exhibited higher susceptibility to poliomyelitis after parenteral inoculation of PV. Remarkably, the LD50 after intracerebral inoculation of PV was similar in both CD155 tg mouse strains. The CD155 tg mouse model reported here, although moderately susceptible to oral infection, may be suitable to study mechanisms of PV replication in the gastrointestinal tract and to dissect important aspects of PV neuroinvasiveness.

  13. Poliomyelitis in transgenic mice expressing CD155 under the control of the Tage4 promoter after oral and parenteral poliovirus inoculation

    PubMed Central

    Khan, Shaukat; Toyoda, Hidemi; Linehan, Melissa; Iwasaki, Akiko; Nomoto, Akio; Bernhardt, Günter; Wimmer, Eckard

    2014-01-01

    An important step in poliovirus (PV) infection by the oral route in humans is replication of the virus in lymphatic tissues of the gastrointestinal (GI) tract, thought to be mainly in the Peyer’s patches of the small intestine. No immunocompetent transgenic (tg) mice that express human PV receptor (CD155) under the control of different promoters can be infected orally. The mouse orthologue of human CD155 is Tage4, a protein expressed at the surface of enterocytes and in the Peyer’s patches. We describe here the generation of a tg mouse model in which the Tage4 promoter was used to drive expression of the human PV receptor-coding region (Tage4-CD155tg mice). In this model, CD155 expression was observed by immunostaining in different regions in the Peyer’s patches but not in their germinal centres. Although a similar pattern of staining was observed between 3- and 6-week-old Tage4-CD155tg mice, poliomyelitis was only seen in the younger mice after PV infection by the oral route. When compared with TgPVR21 mice that expressed CD155 driven by its human promoter, 3-week-old Tage4-CD155tg mice were more susceptible to gut infection and paralysis following feeding with PV. Also, Tage4-CD155tg mice exhibited higher susceptibility to poliomyelitis after parenteral inoculation of PV. Remarkably, the LD50 after intracerebral inoculation of PV was similar in both CD155 tg mouse strains. The CD155 tg mouse model reported here, although moderately susceptible to oral infection, may be suitable to study mechanisms of PV replication in the gastrointestinal tract and to dissect important aspects of PV neuroinvasiveness. PMID:24784416

  14. Oral vaccination of captive arctic foxes with lyophilized SAG2 rabies vaccine.

    PubMed

    Follmann, Erich H; Ritter, Donald G; Donald, W Hartbauer

    2004-04-01

    Arctic foxes (Alopex lagopus) were immunized with lyophilized SAG2 oral rabies vaccine. The effectiveness of this vaccine was determined by serologic response and survival to challenge by rabies virus isolated from a red fox from Alaska (USA). No vaccine virus was found in saliva 1-72 hr after ingestion. At 2 wk after vaccination, all foxes had seroconverted, with rabies virus neutralizing antibody levels of 0.2-3.1 IU ml(-1). All vaccinated foxes survived to week 17 after challenge, and hippocampus, pons, and cerebellum were free of rabies virus as determined by direct immunofluorescence testing after death. One of four nonvaccinated foxes survived challenge and was free of rabies virus in neural tissue, and no rabies virus neutralizing antibody was detected in blood. Our results suggest that the lyophilized SAG2 oral rabies vaccine could be effective in arctic and subarctic regions, where freezing air and ground temperatures probably would not reduce its immunogenicity.

  15. Polio Endgame, Information Gaps Related to Vaccines and Immunity.

    PubMed

    Ahmad, Mohammad; Bahl, Sunil; Kunwar, Abhishek

    2016-08-07

    Evidence generated through research studies has guided programmatic actions and fine-tuned strategies for the Global Polio Eradication Initiative (GPEI). However, many gaps still persist in the understanding of a risk-free implementation of the polio endgame. Immediate concerns relate to the introduction of inactivated polio vaccine (IPV) and switch from trivalent oral polio vaccine (tOPV) to bivalent oral polio vaccine (bOPV) in routine immunization schedule. A comprehensive understanding of mucosal immunity in populations and best response options against circulating vaccine derived poliovirus (cVDPV) outbreaks in post tOPV-bOPV switch is essential to mitigate the risks of wild and vaccine-derived poliovirus importations and emergence of cVDPVs in polio-free countries. A clearer picture is also needed on few operational issues, interference between polio vaccines and other EPI vaccines and products related to polio endgame. It is also extremely important to develop mechanisms to identify and manage long-term poliovirus excretors who may pose a risk of reintroduction into the population after global eradication of poliovirus.

  16. Antibody persistence after primary and booster doses of a pentavalent vaccine against diphtheria, tetanus, acellular pertussis, inactivated poliovirus, haemophilus influenzae type B vaccine among Thai children at 18-19 months of age.

    PubMed

    Chotpitayasunondh, Tawee; Thisyakorn, Usa; Pancharoen, Chitsanu; Chuenkitmongkol, Sunate; Ortiz, Esteban

    2012-03-01

    The World Health Organization recommends a booster dose of a pertussis-containing vaccine for children aged 1-6 years, preferably during the second year of life. This study assessed the immunogenicity and safety of a pentavalent combination vaccine containing diphtheria, tetanus, acellular pertussis, inactivated poliovirus, and conjugated-Hib polysaccharide antigens, [(DTaP-IPV//PRP-T (Pentaxim)], as a booster at 18-19 months of age. Participants had received primary doses of the same vaccine at 2, 4 and 6 months of age. Antibody concentrations were measured immediately before and one month after the booster dose. Adverse events were evaluated from parental reports. Geometric mean concentrations (GMCs) or titers (GMTs) decreased from post-primary to pre-booster vaccination; however, at least 94.4% of children had protective levels of anti-tetanus (> or = 0.01 IU/ml), antipoliovirus (> or = 81/dil) and anti-PRP (Hib, > or = 0.15 microg/ml) antibodies prior to the booster. Anti-diphtheria antibody titers > or = 0.01 IU/ml were also observed in the majority of children pre-booster. One month after the booster, seroprotection rates were 99.4% for PRP (> or = 1.0 microg/ml), 95.0% for diphtheria (> or = 0.10 IU/ml) and 100% for tetanus (> or = 0.1 IU/ml) and poliovirus types 1, 2, 3 (> or = 81/dil). At least 93.1% of subjects had 4 fold post-booster increases in anti-pertussis antibody titers. GMCs increased from 14.0 to 307.3 EU/ml and from 13.9 to 271.9 EU/ml for anti-PT and anti-FHA, respectively. Anti-PRP GMC increased from 1.2 to 62.2 microg/ml. The booster was well tolerated. A booster dose during the second year of life was safe and induced a strong immune response, indicative of long-term protection.

  17. Impact of enterovirus and other enteric pathogens on oral polio and rotavirus vaccine performance in Bangladeshi infants.

    PubMed

    Taniuchi, Mami; Platts-Mills, James A; Begum, Sharmin; Uddin, Md Jashim; Sobuz, Shihab U; Liu, Jie; Kirkpatrick, Beth D; Colgate, E Ross; Carmolli, Marya P; Dickson, Dorothy M; Nayak, Uma; Haque, Rashidul; Petri, William A; Houpt, Eric R

    2016-06-08

    Oral polio vaccine (OPV) and rotavirus vaccine (RV) exhibit poorer performance in low-income settings compared to high-income settings. Prior studies have suggested an inhibitory effect of concurrent non-polio enterovirus (NPEV) infection, but the impact of other enteric infections has not been comprehensively evaluated. In urban Bangladesh, we tested stools for a broad range of enteric viruses, bacteria, parasites, and fungi by quantitative PCR from infants at weeks 6 and 10 of life, coincident with the first OPV and RV administration respectively, and examined the association between enteropathogen quantity and subsequent OPV serum neutralizing titers, serum rotavirus IgA, and rotavirus diarrhea. Campylobacter and enterovirus (EV) quantity at the time of administration of the first dose of OPV was associated with lower OPV1-2 serum neutralizing titers, while enterovirus quantity was also associated with diminished rotavirus IgA (-0.08 change in log titer per tenfold increase in quantity; P=0.037), failure to seroconvert (OR 0.78, 95% CI: 0.64-0.96; P=0.022), and breakthrough rotavirus diarrhea (OR 1.34, 95% CI: 1.05-1.71; P=0.020) after adjusting for potential confounders. These associations were not observed for Sabin strain poliovirus quantity. In this broad survey of enteropathogens and oral vaccine performance we find a particular association between EV carriage, particularly NPEV, and OPV immunogenicity and RV protection. Strategies to reduce EV infections may improve oral vaccine responses. ClinicalTrials.gov Identifier: NCT01375647. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Oral vaccination of raccoons (Procyon lotor) with genetically modified rabies virus vaccines

    PubMed Central

    Blanton, Jesse D.; Self, Joshua; Niezgoda, Michael; Faber, Marie-Luise; Dietzschold, Bernhard; Rupprecht, Charles

    2007-01-01

    Oral vaccination is an important tool currently in use to control the spread of rabies in wildlife populations in various programs around the world. Oral rabies vaccination (ORV) of raccoons represents the largest targeted program to control wildlife rabies in the United States. Currently, the vaccinia-rabies glycoprotein recombinant virus vaccine (V-RG) is the only licensed oral rabies vaccine in the US. In the current study, captive raccoons were used to evaluate two previously described constructs of a rabies virus vaccine developed by reverse genetics (SPBNGAS and SPBNGAS-GAS) for immunogenicity and efficacy compared to the V-RG vaccine. Four of five control animals succumbed to rabies virus after severe challenge, while three of five animals vaccinated orally with SPBNGAS succumbed. No mortality was observed for animals administered SPBNGAS-GAS or the V-RG vaccine. The results of this preliminary study suggest that SPBNGAS-GAS provides comparable efficacy to V-RG. Additional studies will be needed to determine the duration of immunity and optimal dosage of SPBNGAS-GAS and to examine its efficacy in other reservoir species. PMID:17826874

  19. Oral vaccination of raccoons (Procyon lotor) with genetically modified rabies virus vaccines.

    PubMed

    Blanton, Jesse D; Self, Joshua; Niezgoda, Michael; Faber, Marie-Luise; Dietzschold, Bernhard; Rupprecht, Charles

    2007-10-16

    Oral vaccination is an important tool currently in use to control the spread of rabies in wildlife populations in various programs around the world. Oral rabies vaccination (ORV) of raccoons represents the largest targeted program to control wildlife rabies in the United States. Currently, the vaccinia-rabies glycoprotein recombinant virus vaccine (V-RG) is the only licensed oral rabies vaccine in the US. In the current study, captive raccoons were used to evaluate two previously described constructs of a rabies virus vaccine developed by reverse genetics (SPBNGAS and SPBNGAS-GAS) for immunogenicity and efficacy compared to the V-RG vaccine. Four of five control animals succumbed to rabies virus after severe challenge, while three of five animals vaccinated orally with SPBNGAS succumbed. No mortality was observed for animals administered SPBNGAS-GAS or the V-RG vaccine. The results of this preliminary study suggest that SPBNGAS-GAS provides comparable efficacy to V-RG. Additional studies will be needed to determine the duration of immunity and optimal dosage of SPBNGAS-GAS and to examine its efficacy in other reservoir species.

  20. Transgenic papaya: a useful platform for oral vaccines.

    PubMed

    Fragoso, Gladis; Hernández, Marisela; Cervantes-Torres, Jacquelynne; Ramírez-Aquino, Rubén; Chapula, Héctor; Villalobos, Nelly; Segura-Velázquez, René; Figueroa, Alfredo; Flores, Iván; Jiménez, Herminio; Adalid, Laura; Rosas, Gabriela; Galvez, Luis; Pezzat, Elias; Monreal-Escalante, Elizabeth; Rosales-Mendoza, Sergio; Vazquez, Luis G; Sciutto, Edda

    2017-05-01

    Transgenic papaya callus lines expressing the components of the S3Pvac vaccine constitute a stable platform to produce an oral vaccine against cysticercosis caused by Taenia solium or T. crassiceps. The development of effective delivery systems to cope with the reduced immunogenicity of new subunit vaccines is a priority in vaccinology. Herein, experimental evidence supporting a papaya-based platform to produce needle-free, recombinant, highly immunogenic vaccines is shown. Papaya (Carica papaya) callus lines were previously engineered by particle bombardment to express the three protective peptides of the S3Pvac anti-cysticercosis vaccine (KETc7, KETc12, KETc1). Calli were propagated in vitro, and a stable integration and expression of the target genes has been maintained, as confirmed by PCR, qRT-PCR, and HPLC. These results point papaya calli as a suitable platform for long-term transgenic expression of the vaccine peptides. The previously demonstrated protective immunogenic efficacy of S3Pvac-papaya orally administered to mice is herein confirmed in a wider dose-range and formulated with different delivery vehicles, adequate for oral vaccination. This protection is accompanied by an increase in anti-S3Pvac antibody titers and a delayed hypersensitivity response against the vaccine. A significant increase in CD4+ and CD8+ lymphocyte proliferation was induced in vitro by each vaccine peptide in mice immunized with the lowest dose of S3Pvac papaya (0.56 ng of the three peptides in 0.1 µg of papaya callus total protein per mouse). In pigs, the obliged intermediate host for Taenia solium, S3Pvac papaya was also immunogenic when orally administered in a two-log dose range. Vaccinated pigs significantly increased anti-vaccine antibodies and mononuclear cell proliferation. Overall, the oral immunogenicity of this stable S3Pvac-papaya vaccine in mice and pigs, not requiring additional adjuvants, supports the interest in papaya callus as a useful platform for plant

  1. Mucosal immunization using recombinant plant-based oral vaccines.

    PubMed

    Streatfield, Stephen J

    2006-02-01

    The induction of mucosal immunity is very important in conferring protection against pathogens that typically invade via mucosal surfaces. Delivery of a vaccine to a mucosal surface optimizes the induction of mucosal immunity. The apparent linked nature of the mucosal immune system allows delivery to any mucosal surface to potentially induce immunity at others. Oral administration is a very straightforward and inexpensive approach to deliver a vaccine to the mucosal lining of the gut. However, vaccines administered by this route are subject to proteolysis in the gastrointestinal tract. Thus, dose levels for protein subunit vaccines are likely to be very high and the antigen may need to be protected from proteolysis for oral delivery to be efficacious. Expression of candidate vaccine antigens in edible recombinant plant material offers an inexpensive means to deliver large doses of vaccines in encapsulated forms. Certain plant tissues can also stably store antigens for extensive periods of time at ambient temperatures, obviating the need for a cold-chain during vaccine storage and distribution, and so further limiting costs. Antigens can be expressed from transgenes stably incorporated into a host plant's nuclear or plastid genome, or from engineered plant viruses infected into plant tissues. Molecular approaches can serve to boost expression levels and target the expressed protein for appropriate post-translational modification. There is a wide range of options for processing plant tissues to allow for oral delivery of a palatable product. Alternatively, the expressed antigen can be enriched or purified prior to formulation in a tablet or capsule for oral delivery. Fusions to carrier molecules can stabilize the expressed antigen, aid in antigen enrichment or purification strategies, and facilitate delivery to effector sites in the gastrointestinal tract. Many antigens have been expressed in plants. In a few cases, vaccine candidates have entered into early phase

  2. Immunogenicity and Protection of Oral Influenza Vaccines Formulated into Microparticles

    PubMed Central

    SHASTRI, PRATHAP NAGARAJA; KIM, MIN-CHUL; QUAN, FU-SHI; D’SOUZA, MARTIN J.; KANG, SANG-MOO

    2017-01-01

    Influenza is a deadly disease affecting humans and animals. It is recommended that every individual should be vaccinated annually against influenza. Considering the frequency of administration of this vaccine, we have explored the oral route of vaccination with a microparticulate formulation. Microparticles containing inactivated influenza A/PR/34/8 H1N1 virus with Eudragit S and trehalose as a matrix were prepared using the Buchi spray dryer. Particle size distribution of microparticles was measured and the bioactivity of vaccine in a microparticle form was analyzed using a hemagglutination activity test. Furthermore, the efficacy of microparticle vaccines was evaluated in vivo in Balb/c mice. Analysis of serum samples showed that microparticles resulted in enhanced antigen-specific immunoglobulin G (IgG), IgG1, and IgG2a antibodies. Upon challenge with homologous and heterologous influenza viruses, microparticle vaccines showed significantly increased levels of protection. Use of microparticles to deliver vaccines could be a promising tool for the development of an oral influenza vaccine. PMID:22711602

  3. Comparison of microarray-predicted closest genomes to sequencing for poliovirus vaccine strain similarity and influenza A phylogeny.

    PubMed

    Maurer-Stroh, Sebastian; Lee, Charlie W H; Patel, Champa; Lucero, Marilla; Nohynek, Hanna; Sung, Wing-Kin; Murad, Chrysanti; Ma, Jianmin; Hibberd, Martin L; Wong, Christopher W; Simões, Eric A F

    2016-03-01

    We evaluate sequence data from the PathChip high-density hybridization array for epidemiological interpretation of detected pathogens. For influenza A, we derive similar relative outbreak clustering in phylogenetic trees from PathChip-derived compared to classical Sanger-derived sequences. For a positive polio detection, recent infection could be excluded based on vaccine strain similarity.

  4. Development and consideration of global policies for managing the future risks of poliovirus outbreaks: insights and lessons learned through modeling.

    PubMed

    Thompson, Kimberly M; Duintjer Tebbens, Radboud J; Pallansch, Mark A; Kew, Olen M; Sutter, Roland W; Aylward, R Bruce; Watkins, Margaret; Gary, Howard; Alexander, James P; Venczel, Linda; Johnson, Denise; Cáceres, Victor M; Sangrujee, Nalinee; Jafari, Hamid; Cochi, Stephen L

    2006-12-01

    The success of the Global Polio Eradication Initiative promises to bring large benefits, including sustained improvements in quality of life (i.e., cases of paralytic disease and deaths avoided) and costs saved from cessation of vaccination. Obtaining and maintaining these benefits requires that policymakers manage the transition from the current massive use of oral poliovirus vaccine (OPV) to a world without OPV and free of the risks of potential future reintroductions of live polioviruses. This article describes the analytical journey that began in 2001 with a retrospective case study on polio risk management and led to development of dynamic integrated risk, economic, and decision analysis tools to inform global policies for managing the risks of polio. This analytical journey has provided several key insights and lessons learned that will be useful to future analysts involved in similar complex decision-making processes.

  5. An open-label randomized clinical trial of prophylactic paracetamol coadministered with 7-valent pneumococcal conjugate vaccine and hexavalent diphtheria toxoid, tetanus toxoid, 3-component acellular pertussis, hepatitis B, inactivated poliovirus, and Haemophilus influenzae type b vaccine.

    PubMed

    Rose, Markus A; Juergens, Christine; Schmoele-Thoma, Beate; Gruber, William C; Baker, Sherryl; Zielen, Stefan

    2013-06-21

    In two clinical trials, low-grade fever was observed more frequently after coadministration than after separate administration of two recommended routine pediatric vaccines. Since fever is an important issue with vaccine tolerability, we performed this open-label study on the efficacy and safety of prophylactic use of paracetamol (acetaminophen, Benuron®) in children administered routine 7-valent pneumococcal conjugate vaccine (PCV-7) coadministered with hexavalent vaccine (diphtheria-tetanus-acellular pertussis-hepatitis B, poliovirus, Haemophilus influenzae type b vaccine [DTPa-HBV-IPV/Hib]) in Germany. Healthy infants (N = 301) who received a 3-dose infant series of PCV-7 and DTPa-HBV-IPV/Hib plus a toddler dose were randomly assigned 1:1 to prophylactic paracetamol (125 mg or 250 mg suppositories, based on body weight) at vaccination, and at 6-8 hour intervals thereafter, or a control group that received no paracetamol. Rectal temperature and local and other systemic reactions were measured for 4 days post vaccination; adverse events were collected throughout the study. In the intent-to-treat population, paracetamol reduced the incidence of fever ≥38°C, but this reduction was only significant for the infant series, with computed efficacy of 43.0% (95% confidence interval [CI]: 17.4, 61.2), and not significant after the toddler dose (efficacy 15.9%; 95% CI: -19.9, 41.3); results were similar in the per protocol (PP) population. Fever >39°C was rare during the infant series, such that there were too few cases for assessment. After the toddler dose, paracetamol effectively reduced fever >39°C, reaching statistical significance in the PP population only (efficacy 79%; 95% CI: 3.9, 97.7). Paracetamol also reduced reactogenicity, but there were few significant differences between groups after any dose. No vaccine-related serious adverse events were reported. Paracetamol effectively prevented fever and other reactions, mainly during the infant series

  6. Assay of oral vaccination of dogs against rabies in Tunisia with the vaccinal strain SADBern.

    PubMed

    Haddad, N; Ben Khelifa, R; Matter, H; Kharmachi, H; Aubert, M F; Wandeler, A; Blancou, J

    1994-03-01

    The possibility of immunizing dogs orally against rabies, using SADBern, an attenuated strain, was tested on dogs in the field in Tunisia. This strain induced high neutralizing antibody titres and conferred to all vaccinated dogs total resistance against a challenge with a Maghrebian strain. However, an excretion of virus of vaccinal origin was observed in one dog, hampering the use of SADBern in dogs. Nevertheless, this work demonstrates for the first time that dogs in developing countries, especially those which are inaccessible to parenteral vaccination, could be efficiently immunized against rabies by the oral route.

  7. Evaluating cessation of the type 2 oral polio vaccine by modeling pre- and post-cessation detection rates.

    PubMed

    Kroiss, Steve J; Famulare, Michael; Lyons, Hil; McCarthy, Kevin A; Mercer, Laina D; Chabot-Couture, Guillaume

    2017-10-09

    The globally synchronized removal of the attenuated Sabin type 2 strain from the oral polio vaccine (OPV) in April 2016 marked a major change in polio vaccination policy. This change will provide a significant reduction in the burden of vaccine-associated paralytic polio (VAPP), but may increase the risk of circulating vaccine-derived poliovirus (cVDPV2) outbreaks during the transition period. This risk can be monitored by tracking the disappearance of Sabin-like type 2 (SL2) using data from the polio surveillance system. We studied SL2 prevalence in 17 countries in Africa and Asia, from 2010 to 2016 using acute flaccid paralysis surveillance data. We modeled the peak and decay of SL2 prevalence following mass vaccination events using a beta-binomial model for the detection rate, and a Ricker function for the temporal dependence. We found type 2 circulated the longest of all serotypes after a vaccination campaign, but that SL2 prevalence returned to baseline levels in approximately 50days. Post-cessation model predictions identified 19 anomalous SL2 detections outside of model predictions in Afghanistan, India, Nigeria, Pakistan, and western Africa. Our models established benchmarks for the duration of SL2 detection after OPV2 cessation. As predicted, SL2 detection rates have plummeted, except in Nigeria where OPV2 use continued for some time in response to recent cVDPV2 detections. However, the anomalous SL2 detections suggest specific areas that merit enhanced monitoring for signs of cVDPV2 outbreaks. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Immunogenicity and safety of a combined diphtheria, tetanus, acellular pertussis, and inactivated poliovirus vaccine (DTaP-IPV) compared to separate administration of standalone DTaP and IPV vaccines: a randomized, controlled study in infants in the Republic of Korea.

    PubMed

    Lee, Soo Young; Hwang, Hui Sung; Kim, Jong Hyun; Kim, Hyun Hee; Lee, Hyun Seung; Chung, Eun Hee; Park, Su Eun; Ma, Sang Hyuk; Chang, Jin Keun; Guitton, Fabrice; Ortiz, Esteban; Kang, Jin Han

    2011-02-11

    This randomized trial enrolled 442 infants in the Republic of Korea to assess the immunogenicity and safety of a combined diphtheria, tetanus, acellular pertussis, and inactivated poliovirus vaccine (DTaP-IPV; Tetraxim™) for primary vaccination at 2, 4 and 6 months of age compared with DTaP and IPV vaccines given separately. Immunogenicity was high in both groups; seroprotection and seroconversion rates of the combined vaccine (Group A) were non-inferior to the control vaccines (Group B). All subjects were seroprotected against poliovirus types 1, 2 and 3 (≥ 81/dil) and anti-diphtheria (≥ 0.01 IU/mL); 99.0% were seroprotected against tetanus (≥ 0.1 IU/mL). At least 93.6% had anti-diphtheria antibody titers ≥ 0.1 IU/mL. Anti-pertussis toxoid (PT) and anti-filamentous haemagglutinin (FHA) seroconversion (≥ 4-fold increase in antibody titer) rates were 96.6% and 94.4% for Group A, 92.2% and 78.4% for Group B. Most solicited reactions occurred within 4 days of vaccination, resolved within 3 days and were mild. Severe solicited reactions occurred after ≤ 0.5% of doses in Group A and ≤ 0.9% in Group B. No withdrawals occurred because of adverse events. The DTaP-IPV combined vaccine given at 2, 4, and 6 months of age was well tolerated; immunogenicity was similar to the control vaccines.

  9. Interactions of Cryptosporidium parvum, Giardia lamblia, Vaccinal Poliovirus Type 1, and Bacteriophages φX174 and MS2 with a Drinking Water Biofilm and a Wastewater Biofilm▿

    PubMed Central

    Helmi, Karim; Skraber, Sylvain; Gantzer, Christophe; Willame, Raphaël; Hoffmann, Lucien; Cauchie, Henry-Michel

    2008-01-01

    Biofilms colonizing surfaces inside drinking water distribution networks may provide a habitat and shelter to pathogenic viruses and parasites. If released from biofilms, these pathogens may disseminate in the water distribution system and cause waterborne diseases. Our study aimed to investigate the interactions of protozoan parasites (Cryptosporidium parvum and Giardia lamblia [oo]cysts) and viruses (vaccinal poliovirus type 1, φX174, and MS2) with two contrasting biofilms. First, attachment, persistence, and detachment of the protozoan parasites and the viruses were assessed with a drinking water biofilm. This biofilm was allowed to develop inside a rotating annular reactor fed with tap water for 7 months prior to the inoculation. Our results show that viable parasites and infectious viruses attached to the drinking water biofilm within 1 h and persisted within the biofilm. Indeed, infectious viruses were detected in the drinking water biofilm up to 6 days after the inoculation, while viral genome and viable parasites were still detected at day 34, corresponding to the last day of the monitoring period. Since viral genome was detected much longer than infectious particles, our results raise the question of the significance of detecting viral genomes in biofilms. A transfer of viable parasites and viruses from the biofilm to the water phase was observed after the flow velocity was increased but also with a constant laminar flow rate. Similar results regarding parasite and virus attachment and detachment were obtained using a treated wastewater biofilm, suggesting that our observations might be extrapolated to a wide range of environmental biofilms and confirming that biofilms can be considered a potential secondary source of contamination. PMID:18281435

  10. Interactions of Cryptosporidium parvum, Giardia lamblia, vaccinal poliovirus type 1, and bacteriophages phiX174 and MS2 with a drinking water biofilm and a wastewater biofilm.

    PubMed

    Helmi, Karim; Skraber, Sylvain; Gantzer, Christophe; Willame, Raphaël; Hoffmann, Lucien; Cauchie, Henry-Michel

    2008-04-01

    Biofilms colonizing surfaces inside drinking water distribution networks may provide a habitat and shelter to pathogenic viruses and parasites. If released from biofilms, these pathogens may disseminate in the water distribution system and cause waterborne diseases. Our study aimed to investigate the interactions of protozoan parasites (Cryptosporidium parvum and Giardia lamblia [oo]cysts) and viruses (vaccinal poliovirus type 1, phiX174, and MS2) with two contrasting biofilms. First, attachment, persistence, and detachment of the protozoan parasites and the viruses were assessed with a drinking water biofilm. This biofilm was allowed to develop inside a rotating annular reactor fed with tap water for 7 months prior to the inoculation. Our results show that viable parasites and infectious viruses attached to the drinking water biofilm within 1 h and persisted within the biofilm. Indeed, infectious viruses were detected in the drinking water biofilm up to 6 days after the inoculation, while viral genome and viable parasites were still detected at day 34, corresponding to the last day of the monitoring period. Since viral genome was detected much longer than infectious particles, our results raise the question of the significance of detecting viral genomes in biofilms. A transfer of viable parasites and viruses from the biofilm to the water phase was observed after the flow velocity was increased but also with a constant laminar flow rate. Similar results regarding parasite and virus attachment and detachment were obtained using a treated wastewater biofilm, suggesting that our observations might be extrapolated to a wide range of environmental biofilms and confirming that biofilms can be considered a potential secondary source of contamination.

  11. Vaccine-derived poliomyelitis 12 years after infection in Minnesota.

    PubMed

    DeVries, Aaron S; Harper, Jane; Murray, Andrew; Lexau, Catherine; Bahta, Lynn; Christensen, Jaime; Cebelinski, Elizabeth; Fuller, Susan; Kline, Susan; Wallace, Gregory S; Shaw, Jing H; Burns, Cara C; Lynfield, Ruth

    2011-06-16

    A 44-year-old woman with long-standing common variable immunodeficiency who was receiving intravenous immune globulin suddenly had paralysis of all four limbs and the respiratory muscles, resulting in death. Type 2 vaccine-derived poliovirus was isolated from stool. The viral capsid protein VP1 region had diverged from the vaccine strain at 12.3% of nucleotide positions, and the two attenuating substitutions had reverted to the wild-type sequence. Infection probably occurred 11.9 years earlier (95% confidence interval [CI], 10.9 to 13.2), when her child received the oral poliovirus vaccine. No secondary cases were identified among close contacts or 2038 screened health care workers. Patients with common variable immunodeficiency can be chronically infected with poliovirus, and poliomyelitis can develop despite treatment with intravenous immune globulin.

  12. Pyrosequencing of the rabies virus glycoprotein gene to demonstrate absence of vaccine-associated rabies cases following oral vaccination.

    PubMed

    De Benedictis, Paola; De Battisti, Cristian; Marciano, Sabrina; Mutinelli, Franco; Capua, Ilaria; Cattoli, Giovanni

    2013-03-01

    Replication competent vaccines have been used successfully for the control of terrestrial rabies, mainly in wildlife; however, these vaccine strains occasionally may induce rabies. In this study, a pyrosequencing protocol for the rapid identification of vaccine-associated rabies viruses was applied to the 2008-2011 Italian epidemic. There was no evidence of vaccine-associated rabies cases following oral vaccination of foxes with the SAG2 and SADB19 vaccine strains.

  13. New generation of oral mucosal vaccines targeting dendritic cells.

    PubMed

    Owen, Jennifer L; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-12-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including Bacillus anthracis in experimental models of disease.

  14. New generation of oral mucosal vaccines targeting dendritic cells

    PubMed Central

    Owen, Jennifer L.; Sahay, Bikash; Mohamadzadeh, Mansour

    2013-01-01

    As most infectious organisms gain entry at mucosal surfaces, there is a great deal of interest in developing vaccines that elicit effective mucosal immune responses against pathogen challenge. Targeted vaccination is one of the most effective methods available to prevent and control infectious diseases. Mucosal vaccines can offer lower costs, better accessibility, needle free delivery, and a higher capacity for mass immunizations during pandemics. Both local mucosal immunity and robust systemic responses can be achieved through mucosal vaccination. Recent progress in understanding the molecular and cellular components of the mucosal immune system have allowed for the development of a novel mucosal vaccine platform utilizing specific dendritic cell-targeting peptides and orally administered lactobacilli to elicit efficient antigen specific immune responses against infections, including B. anthracis in experimental models of disease. PMID:23835515

  15. Immunogenicity and efficacy of oral vaccines in developing countries: lessons from a live cholera vaccine

    PubMed Central

    2010-01-01

    Oral vaccines, whether living or non-living, viral or bacterial, elicit diminished immune responses or have lower efficacy in developing countries than in developed countries. Here I describe studies with a live oral cholera vaccine that include older children no longer deriving immune support from breast milk or maternal antibodies and that identify some of the factors accounting for the lower immunogenicity, as well as suggesting counter-measures that may enhance the effectiveness of oral immunization in developing countries. The fundamental breakthrough is likely to require reversing effects of the 'environmental enteropathy' that is often present in children living in fecally contaminated, impoverished environments. PMID:20920375

  16. A Supply and Demand Management Perspective on the Accelerated Global Introductions of Inactivated Poliovirus Vaccine in a Constrained Supply Market.

    PubMed

    Lewis, Ian; Ottosen, Ann; Rubin, Jennifer; Blanc, Diana Chang; Zipursky, Simona; Wootton, Emily

    2017-07-01

    A total of 105 countries have introduced IPV as of September 2016 of which 85 have procured the vaccine through UNICEF. The Global Eradication and Endgame Strategic Plan 2013-2018 called for the rapid introduction of at least one dose of IPV into routine immunization schedules in 126 all OPV-using countries by the end of 2015. At the time of initiating the procurement process, demand was estimated based on global modeling rather than individual country indications. In its capacity as procurement agency for the Global Polio Eradication Initiative and Gavi, the Vaccine Alliance, UNICEF set out to secure access to IPV supply for around 100 countries. Based on offers received, sufficient supply was awarded to two manufacturers to meet projected routine requirements. However, due to technical issues scaling up vaccine production and an unforecasted demand for IPV use in campaigns to interrupt wild polio virus and to control type 2 vaccine derived polio virus outbreaks, IPV supplies are severely constrained. Activities to stretch supplies and to suppress demand have been ongoing since 2014, including delaying IPV introduction in countries where risks of type 2 reintroduction are lower, implementing the multi-dose vial policy, and encouraging the use of fractional dose delivered intradermally. Despite these efforts, there is still insufficient IPV supply to meet demand. The impact of the supply situation on IPV introduction timelines in countries are the focus of this article, and based on lessons learned with the IPV introductions, it is recommended for future health programs with accelerated scale up of programs, to take a cautious approach on supply commitments, putting in place clear allocation criteria in case of shortages or delays and establishing a communication strategy vis a vis beneficiaries. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  17. Inactivation of poliovirus by formaldehyde

    PubMed Central

    Gard, Sven

    1957-01-01

    Since formaldehyde, either alone or in combination with other inactivating agents, is at present used in the production of all so-called “killed” poliovirus vaccines, a thorough knowledge of the kinetics of the reaction between the chemical agent and the virus, and of the mechanisms involved, is of great practical importance. In this paper the problem is discussed against the background of present knowledge of the structure of the virus and the chemical nature of the action of formaldehyde. PMID:13511143

  18. Japanese vaccinations and practices, with particular attention to polio and pertussis.

    PubMed

    Nakano, Takashi

    2011-07-01

    This article introduces Japanese vaccinations and practices, focusing on polio and pertussis. Japan is one of the few industrialized countries still using live attenuated oral poliovirus vaccine (OPV). Current status of vaccine-associated paralytic poliomyelitis in Japan is discussed. This review is intended to encourage early conversion of OPV to inactivated poliovirus vaccine (IPV) for the routine vaccination as soon as possible. The other topic pertains to the results of a study designed to evaluate the safety and immunogenicity of the Japanese DPT vaccine in adults when administered at the dose of 0.2 ml (2/5th of the ordinary dose). In Japan, there is no system for providing advice to adults on vaccination once the childhood schedule is completed. The author, however, wishes to propose here that if the currently approved DPT vaccine can be better utilized as Tdap, we may improve the means for disease prophylaxis.

  19. Immunogenicity and reactogenicity of a decennial booster dose of a combined reduced-antigen-content diphtheria-tetanus-acellular pertussis and inactivated poliovirus booster vaccine (dTpa-IPV) in healthy adults.

    PubMed

    Kovac, Martina; Rathi, Niraj; Kuriyakose, Sherine; Hardt, Karin; Schwarz, Tino F

    2015-05-21

    Pertussis in adults and adolescents could be reduced by replacing traditional tetanus and diphtheria (Td) boosters with reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) vaccines. This study evaluated the administration of dTpa-IPV (dTpa-inactivated poliovirus) in adults ten years after they received a booster dose of either dTpa-IPV, dTpa+IPV or Td-IPV in trial NCT01277705. Open multicentre, phase IV study (www.clinicaltrials.govNCT01323959) in which healthy adults, who had received a previous dose of dTpa-IPV, dTpa+IPV or Td-IPV ten years earlier, received a single decennial booster dose of dTpa-IPV (Boostrix-polio, GlaxoSmithKline Vaccines). Blood samples were collected before and one month after booster vaccination. Antibody concentrations against all vaccine antigens were measured and reactogenicity and safety were assessed. A total of 211 subjects (mean age 50.3 years) received vaccination of whom 201 were included in the according-to-protocol cohort for immunogenicity. Before the decennial dTpa-IPV booster, ≥71.0% subjects were seroprotected/seropositive against all vaccine antigens. One month after the booster dose, all subjects were seroprotected against tetanus and poliovirus types 2 and 3; ≥95.7% subjects were seroprotected against diphtheria and ≥98.3% against poliovirus type 1. Anti-pertussis booster responses for the various antigens were observed in ≥76.5% (pertussis toxoid; PT), ≥85.1% (filamentous haemagglutinin; FHA) and ≥63.2% (pertactin; PRN) of subjects. During the 4-day follow-up, the overall incidence of local AEs was 71.6%, 75.0% and 72.2% in dTpa-IPV, dTpa+IPV and Td-IPV groups, respectively. Pain was the most frequent solicited local adverse event (AE; ≥62.7% subjects) and fatigue the most frequent solicited general AE (≥18.5%). No serious AEs were reported during the study. A booster dose of dTpa-IPV was immunogenic and well tolerated in adults who had received a booster dose of either dTpa-IPV, d

  20. Vaxchora: A Single-Dose Oral Cholera Vaccine.

    PubMed

    Cabrera, Adriana; Lepage, Jayne E; Sullivan, Karyn M; Seed, Sheila M

    2017-07-01

    To review trials evaluating the efficacy and safety of Vaxchora, a reformulated, single-dose, oral, lyophilized Vibrio cholerae CVD 103-HgR vaccine for the prevention of travel-related cholera caused by V cholerae serogroup O1. A literature search was conducted using MEDLINE (1946 to January week 3, 2017) and EMBASE (1996 to 2017 week 3). Keywords included oral cholera vaccine, single-dose, Vaxchora, and CVD 103-HgR. Limits included human, clinical trials published in English since 2010. ClinicalTrials.gov was used as a source for unpublished data. Additional data sources were obtained through bibliographic review of selected articles. Studies that addressed the safety and efficacy of Vaxchora, the reformulated, single-dose oral CVD 103-HgR cholera vaccine, were selected for analysis. Approval of Vaxchora, was based on efficacy of the vaccine in human trials demonstrating 90.3% protection among those challenged with V cholerae 10 days after vaccination and in immunogenicity studies with 90% systemic vibriocidal antibody conversion at 6 months after a single-dose of vaccine. Tolerability was acceptable, with the most common adverse effects reported to be fatigue, headache, and abdominal pain. Vaxchora is the only FDA-approved, single-dose oral vaccine for the prevention of cholera caused by V cholerae serogroup O1 in adult travelers from the United States going to cholera-affected areas. Safety and efficacy has not been established in children, immunocompromised persons, and pregnant or breastfeeding women or those living in cholera-endemic areas.

  1. Prolonged excretion of type-2 poliovirus from a primary immune deficient patient during the transition to a type-2 poliovirus-free world, Israel, 2016

    PubMed Central

    Weil, Merav; Shulman, Lester M; Heiman, Sophia; Stauber, Tali; Alfandari, Jacqueline; Weiss, Leah; Silberstein, Ilana; Indenbaum, Viki; Mendelson, Ella; Sofer, Danit

    2016-01-01

    Wild poliovirus type-2 has been eradicated, use of live type-2 vaccine has been terminated globally, and all type-2 polioviruses are under strict laboratory containment protocols. Re-emergence may arise from prolonged asymptomatic excretion of poliovirus by hospitalised primary immune deficient (PID) patients, as described here, through repeated exposure of close contacts to high titres of infected material. At this transition time, PID patients should be screened and hospital containment protocols updated in parallel with laboratory containment. PMID:27918258

  2. Oral rabies vaccine (ORV) bait uptake by captive striped skunks.

    PubMed

    Jojola, Susan M; Robinson, Stacie J; VerCauteren, Kurt C

    2007-01-01

    Aerial delivery of oral rabies vaccine (ORV) baits has proven effective in large-scale efforts to immunize wildlife against rabies, and in North America this strategy currently is being used to immunize foxes (Urocyon cinereoargenteus and Vulpes vulpes), raccoons (Procyon lotor), and coyotes (Canis latrans). Skunks are also a major reservoir and vector of rabies, but at present oral vaccines for use in skunks are not licensed. Furthermore, given differences in morphology (smaller jaws) and behavior (food handling and consumption), it is unknown if baits currently used in ORV campaigns would be effective for skunks. Because oral vaccine delivery is contingent upon puncture of the vaccine container (VC), baits need to be sufficiently attractive to elicit selection and consumption. Manipulation of the bait to facilitate vaccine ingestion by the target species is a critical element for an effective ORV bait. The objectives of this study were to assess manipulation and consumption of current ORV baits by striped skunks (Mephitis mephitis). We conducted four independent trials with penned animals and various baits to assess bait selection frequency, VC puncture frequency, and consumption. Video recorded trials were used to assess attractiveness of baits and consumption behavior of skunks. Bait characteristics, such as texture, size, and flavor influenced selection and consumption. Fish and chicken flavors were preferred and vaccine containers within selected baits were likely to be punctured. Vaccine ingestion seemed more likely if VCs were directly coated with the bait matrix. To make baits attractive to skunks and to ensure puncture of the VC, modifications to current baits should consider a smaller size, a meat-flavored matrix, a slightly pressurized VC, and a direct coating of matrix on the VC.

  3. The Case for Reactive Mass Oral Cholera Vaccinations

    PubMed Central

    Reyburn, Rita; Deen, Jacqueline L.; Grais, Rebecca F.; Bhattacharya, Sujit K.; Sur, Dipika; Lopez, Anna L.; Jiddawi, Mohamed S.; Clemens, John D.; von Seidlein, Lorenz

    2011-01-01

    Introduction The outbreak of cholera in Zimbabwe intensified interest in the control and prevention of cholera. While there is agreement that safe water, sanitation, and personal hygiene are ideal for the long term control of cholera, there is controversy about the role of newer approaches such as oral cholera vaccines (OCVs). In October 2009 the Strategic Advisory Group of Experts advised the World Health Organization to consider reactive vaccination campaigns in response to large cholera outbreaks. To evaluate the potential benefit of this pivotal change in WHO policy, we used existing data from cholera outbreaks to simulate the number of cholera cases preventable by reactive mass vaccination. Methods Datasets of cholera outbreaks from three sites with varying cholera endemicity—Zimbabwe, Kolkata (India), and Zanzibar (Tanzania)—were analysed to estimate the number of cholera cases preventable under differing response times, vaccine coverage, and vaccine doses. Findings The large cholera outbreak in Zimbabwe started in mid August 2008 and by July 2009, 98,591 cholera cases had been reported with 4,288 deaths attributed to cholera. If a rapid response had taken place and half of the population had been vaccinated once the first 400 cases had occurred, as many as 34,900 (40%) cholera cases and 1,695 deaths (40%) could have been prevented. In the sites with endemic cholera, Kolkata and Zanzibar, a significant number of cases could have been prevented but the impact would have been less dramatic. A brisk response is required for outbreaks with the majority of cases occurring during the early weeks. Even a delayed response can save a substantial number of cases and deaths in long, drawn-out outbreaks. If circumstances prevent a rapid response there are good reasons to roll out cholera mass vaccination campaigns well into the outbreak. Once a substantial proportion of a population is vaccinated, outbreaks in subsequent years may be reduced if not prevented. A

  4. The case for reactive mass oral cholera vaccinations.

    PubMed

    Reyburn, Rita; Deen, Jacqueline L; Grais, Rebecca F; Bhattacharya, Sujit K; Sur, Dipika; Lopez, Anna L; Jiddawi, Mohamed S; Clemens, John D; von Seidlein, Lorenz

    2011-01-25

    The outbreak of cholera in Zimbabwe intensified interest in the control and prevention of cholera. While there is agreement that safe water, sanitation, and personal hygiene are ideal for the long term control of cholera, there is controversy about the role of newer approaches such as oral cholera vaccines (OCVs). In October 2009 the Strategic Advisory Group of Experts advised the World Health Organization to consider reactive vaccination campaigns in response to large cholera outbreaks. To evaluate the potential benefit of this pivotal change in WHO policy, we used existing data from cholera outbreaks to simulate the number of cholera cases preventable by reactive mass vaccination. Datasets of cholera outbreaks from three sites with varying cholera endemicity--Zimbabwe, Kolkata (India), and Zanzibar (Tanzania)--were analysed to estimate the number of cholera cases preventable under differing response times, vaccine coverage, and vaccine doses. The large cholera outbreak in Zimbabwe started in mid August 2008 and by July 2009, 98,591 cholera cases had been reported with 4,288 deaths attributed to cholera. If a rapid response had taken place and half of the population had been vaccinated once the first 400 cases had occurred, as many as 34,900 (40%) cholera cases and 1,695 deaths (40%) could have been prevented. In the sites with endemic cholera, Kolkata and Zanzibar, a significant number of cases could have been prevented but the impact would have been less dramatic. A brisk response is required for outbreaks with the majority of cases occurring during the early weeks. Even a delayed response can save a substantial number of cases and deaths in long, drawn-out outbreaks. If circumstances prevent a rapid response there are good reasons to roll out cholera mass vaccination campaigns well into the outbreak. Once a substantial proportion of a population is vaccinated, outbreaks in subsequent years may be reduced if not prevented. A single dose vaccine would be of

  5. Vaccination coverage rates for 1986.

    PubMed

    1987-10-01

    This article sets forth data on vaccination coverage rates in children under 1 year of age in the individual countries of Latin America and the Caribbean in 1986. In the Region of the Americas as a whole, the 1986 coverage rate was 80% for oral poliovaccine, 54% for DPT, 55% for measles, and 63% for BCG. Vaccination coverage rates increased over 1985 levels for all but measles, which showed a 5% decline due to decreases in Brazil and Mexico. In the Caribbean subregion, the majority of country coverage rates for DPT and oral poliovirus vaccine are equal to or above 80%, while measles coverage rates are generally below 50%. In Central America, vaccine coverage rates with all antigens except BCG showed significant increases between 1985 and 1986. In Central America, coverage ranged from above 80% for oral poliovirus vaccine and DPT in Belize, Costa Rica, and Nicaragua, to below 40% in Guatemala. In general, countries in the region are improving vaccination performance as a result of establishment of vaccination days or campaigns and acceleration of the Expanded Program on Immunization. However, much work remains to be done if the goal of 100% immunization of children and women of childbearing age by 1990 is to be met.

  6. Increasing Type 1 Poliovirus Capsid Stability by Thermal Selection

    PubMed Central

    Adeyemi, Oluwapelumi O.; Nicol, Clare

    2016-01-01

    ABSTRACT Poliomyelitis is a highly infectious disease caused by poliovirus (PV). It can result in paralysis and may be fatal. Integrated global immunization programs using live-attenuated oral (OPV) and/or inactivated (IPV) PV vaccines have systematically reduced its spread and paved the way for eradication. Immunization will continue posteradication to ensure against reintroduction of the disease, but there are biosafety concerns for both OPV and IPV. They could be addressed by the production and use of virus-free virus-like particle (VLP) vaccines that mimic the “empty” capsids (ECs) normally produced in viral infection. Although ECs are antigenically indistinguishable from mature virus particles, they are less stable and readily convert into an alternative conformation unsuitable for vaccine purposes. Stabilized ECs, expressed recombinantly as VLPs, could be ideal candidate vaccines for a polio-free world. However, although genome-free PV ECs have been expressed as VLPs in a variety of systems, their inherent antigenic instability has proved a barrier to further development. In this study, we selected thermally stable ECs of type 1 PV (PV-1). The ECs are antigenically stable at temperatures above the conversion temperature of wild-type (wt) virions. We have identified mutations on the capsid surface and in internal networks that are responsible for EC stability. With reference to the capsid structure, we speculate on the roles of these residues in capsid stability and postulate that such stabilized VLPs could be used as novel vaccines. IMPORTANCE Poliomyelitis is a highly infectious disease caused by PV and is on the verge of eradication. There are biosafety concerns about reintroduction of the disease from current vaccines that require live virus for production. Recombinantly expressed virus-like particles (VLPs) could address these inherent problems. However, the genome-free capsids (ECs) of wt PV are unstable and readily change antigenicity to a form not

  7. Maximizing protection from use of oral cholera vaccines in developing country settings: an immunological review of oral cholera vaccines.

    PubMed

    Desai, Sachin N; Cravioto, Alejandro; Sur, Dipika; Kanungo, Suman

    2014-01-01

    When oral vaccines are administered to children in lower- and middle-income countries, they do not induce the same immune responses as they do in developed countries. Although not completely understood, reasons for this finding include maternal antibody interference, mucosal pathology secondary to infection, malnutrition, enteropathy, and previous exposure to the organism (or related organisms). Young children experience a high burden of cholera infection, which can lead to severe acute dehydrating diarrhea and substantial mortality and morbidity. Oral cholera vaccines show variations in their duration of protection and efficacy between children and adults. Evaluating innate and memory immune response is necessary to understand V. cholerae immunity and to improve current cholera vaccine candidates, especially in young children. Further research on the benefits of supplementary interventions and delivery schedules may also improve immunization strategies.

  8. Sensitivity of oral fluids for detecting influenza A virus in populations of vaccinated and non‐vaccinated pigs

    PubMed Central

    Romagosa, Anna; Gramer, Marie; Joo, Han Soo; Torremorell, Montserrat

    2011-01-01

    Please cite this paper as: Romagosa et al. (2011) Sensitivity of oral fluids for detecting influenza A virus in populations of vaccinated and non‐vaccinated pigs. Influenza and Other Respiratory Viruses. Background/objective  We evaluated the sensitivity of PCR on oral fluids in detecting influenza virus in vaccinated and non‐vaccinated pigs. Methods  Three‐week‐old influenza‐free pigs were divided into three groups: (i) control, non‐vaccinated, (ii) vaccinated with a commercial, heterologous vaccine, and (iii) vaccinated with an experimental, homologous vaccine. After vaccination, an influenza‐infected pig was placed in contact with each of the groups. Individual nasal swabs and pen oral fluids were collected daily. Viral RNA was tested for the presence of influenza by RRT‐PCR and virus isolation attempted from oral fluids. A pen was considered positive if at least one nasal swab was positive. Results  Based on nasal swab results, 43·8% of pens were detected positive but only 35% based on oral fluids. Overall sensitivity of oral fluids was 80%, and virus was isolated from 51% of RRT‐PCR‐positive oral fluids. The kappa coefficient for agreement (ĸ) between oral fluids and nasal swabs was 0·82. Among groups, ĸ was 1 (95% CI, 1–1), 0·74 (95% CI, 0·55–0·92), and 0·76 (95% CI, 0·5–1) for control, heterologous, and homologous‐vaccinated groups, respectively. There was less agreement when within pen prevalence was 10% or less. Probability of detecting influenza virus in oral fluids was 99% when within pen prevalence was higher than 18% and decreased to 69% when prevalence was 9%. Conclusions  Results indicated that pen‐based collection of oral fluids is a sensitive method to detect influenza even when within pen prevalence is low and when pigs have been vaccinated and highlight the potential use of oral fluids for influenza surveillance. PMID:21777397

  9. Oral vaccination against swine erysipelas--field experiences in Croatia.

    PubMed

    Hoffmann, C R; Bilkei, G

    2006-01-01

    In order to prove the effects of mass application of oral erysipelas vaccine via drinking water, in a farrow-to-finish production unit in Croatia, the growing-finishing animals were divided into 3 groups and treated as follows:--Group 1 (n=199) was vaccinated intramuscularly against swine erysipelas at 1 week and 3 weeks after arrival in the growing-finishing facility with a swine erysipelas bacterin.--Group 2 (n=199) were vaccinated at the same time with an avirulent culture of Erysipelothrix rhusiopathiae oral vaccine through drinking water.--Group 3 (n=200) was not vaccinated. Animals with clinical signs of swine erysipelas, chronic progressive arthritis at slaughter, mortality, average daily weight gain during the growing-finishing phase were evaluated. None of the pigs in the groups 1 and 2 showed clinical signs typical for acute swine erysipelas. Twenty-four of the pigs (12 %) in group 3 had pyrexia and skin lesions typical for swine erysipelas. Fifteen pigs in group 1, 13 pigs in group 2, and 63 pigs in group 3 had chronic progressive arthritis (group 1 and 2 vs. group 3: P < 0.01). No significant differences in mortality were recorded between the groups. Group 1 and 2 had higher (P < 0.05) average daily weight gains compared with the group 3.

  10. History of polio vaccination

    PubMed Central

    Baicus, Anda

    2012-01-01

    Poliomyelitis is an acute paralytic disease caused by three poliovirus (PV) serotypes. Less than 1% of PV infections result in acute flaccid paralysis. The disease was controlled using the formalin-inactivated Salk polio vaccine (IPV) and the Sabin oral polio vaccine (OPV). Global poliomyelitis eradication was proposed in 1988 by the World Health Organization to its member states. The strategic plan established the activities required for polio eradication, certification for regions, OPV cessation phase and post-OPV phase. OPV is the vaccine of choice for the poliomyelitis eradication program because it induces both a systemic and mucosal immune response. The major risks of OPV vaccination are the appearance of Vaccine-Associated Paralytic Poliomyelitis cases (VAPP) and the emergence of Vaccine Derived Polioviruses strains. The supplementary immunization with monovalent strains of OPV type 1 or type 3 or with a new bivalent oral polio vaccine bOPV (containing type 1 and type 3 PV) has been introduced in those regions where the virus has been difficult to control. Most countries have switched the schedule of vaccination by using IPV instead of OPV because it poses no risk of vaccine-related disease. Until 2008, poliomyelitis was controlled in Romania, an Eastern European country, predominantly using OPV. The alternative vaccination schedule (IPV/OPV) was implemented starting in September 2008, while beginning in 2009, the vaccination was IPV only. The risk of VAPP will disappear worldwide with the cessation of use of OPV. The immunization for polio must be maintained for at least 5 to 10 years using IPV. PMID:24175215

  11. Lessons From the Polio Endgame: Overcoming the Failure to Vaccinate and the Role of Subpopulations in Maintaining Transmission.

    PubMed

    Thompson, Kimberly M; Duintjer Tebbens, Radboud J

    2017-07-01

    Recent detections of circulating serotype 2 vaccine-derived poliovirus in northern Nigeria (Borno and Sokoto states) and Pakistan (Balochistan Province) and serotype 1 wild poliovirus in Pakistan, Afghanistan, and Nigeria (Borno) represent public health emergencies that require aggressive response. We demonstrate the importance of undervaccinated subpopulations, using an existing dynamic poliovirus transmission and oral poliovirus vaccine evolution model. We review the lessons learned during the polio endgame about the role of subpopulations in sustaining transmission, and we explore the implications of subpopulations for other vaccine-preventable disease eradication efforts. Relatively isolated subpopulations benefit little from high surrounding population immunity to transmission and will sustain transmission as long as they do not attain high vaccination coverage. Failing to reach such subpopulations with high coverage represents the root cause of polio eradication delays. Achieving and maintaining eradication requires addressing the weakest links, which includes immunizing populations in insecure areas and/or with disrupted or poor-performing health systems and managing the risks of individuals with primary immunodeficiencies who can excrete vaccine-derived poliovirus long-term. Eradication efforts for vaccine-preventable diseases need to create performance expectations for countries to immunize all people living within their borders and maintain high coverage with appropriate interventions.Keywords. Polio; eradication; transmission; heterogeneity.

  12. Clinical trials of live oral rotavirus vaccines: the Finnish experience.

    PubMed

    Vesikari, T

    1993-01-01

    Live oral candidate rotavirus vaccines of bovine (RIT 4237) or rhesus (RRV-1) origin and reassortants of RRV-1 expressing human serotype 1 (DxRRV) or serotype 2 (DS1xRRV) VP7 protein were evaluated for clinical efficacy in young children in successive trials from 1983 to 1989. In each study, the vaccinations were given before a rotavirus epidemic season and the follow-up of vaccinees covered two rotavirus epidemic seasons lasting up to 2-3 years of age. Serotype 1 rotavirus was predominant in each season. Protection rates against all rotavirus-associated diarrhoea ranged from 0 to 67% but were higher, up to 100%, against more severe rotavirus disease. All tested vaccines also showed efficacy for diarrhoea not apparently associated with rotavirus; therefore the clinical benefit of the vaccinations was greater than could be deduced from efficacy rates for rotavirus-associated diarrhoea alone. Each of the candidate vaccines could significantly reduce severe diarrhoea in Finnish children in the first 2 to 3 years of life. For optimal efficacy, the vaccines should be administered in the autumn before the regular epidemic season of rotavirus.

  13. Experimental study of the mixed (oral-intradermal) vaccination method in enteric diseases.

    PubMed

    Dimache, G; Croitoru, M; Dimache, A

    1996-01-01

    Enteric vaccines are currently administered in man either orally or parenterally, each vaccination route having its advantages and disadvantages. In an attempt to cumulate the favourable effects of the two immunization methods a combined (oral-intradermal) anti-S.typhimurium and anti-S.typhi vaccination scheme was applied in mice. For comparison reasons, the oral (one or two immunization cycles) and the parenteral (one or two vaccine doses intradermally administered) vaccinations were used. The results obtained showed that mixed (oral-intradermal) vaccination induces a higher protective effect to infection with S.typhimurium or S.typhi, as compared to the single oral vaccination (one or two cycles) and a protective effect which does not differ from that obtained by intradermal vaccination.

  14. [Polio vaccines, eradication and posterradication].

    PubMed

    Salmerón García, Francisco; Portela Moreira, Agustín; Soler Soneira, Marta; López Hernández, Susana; Chamorro Somoza Díaz-Sarmiento, María; Pérez González, Isabel; Rubio Gómez, María Isabel; Pérez González, Alicia; Sagredo Rodríguez, Ana; Ruiz Antúnez, Sol; Timón Jiménez, Marcos; Frutos Cabanillas, Gloria

    2013-01-01

    Vaccination against polio generates herd immunity (both with the attenuated (OPV) and inactivated (IPV) vaccines) and this will allow the eradication of the disease. The OPV vaccine produces 2-4 polio cases per cohort of one million children and therefore IPV is used in countries that can afford its cost (about 15 times more expensive than OPV). In 1988 the World Health Assembly established the polio eradication goal as "interruption of wild poliovirus transmission". If the elimination of wild poliovirus were achieved, the use of OPV will produce annually between 250 and 500 cases of polio in the world. From 1999, it was clear that eradication would require ending of immunization with OPV. On the 25th of January, 2013 it is approved the plan for the eradication and containment of all polioviruses, wild or not, so that no child suffers paralytic poliomyelitis. The most important landmarks include the lack of wild polio cases after 2014, the introduction of at least one dose of IPV in all immunization programs and to cease the type 2 OPV vaccination by the end of 2016 and to stop the use of the oral bivalent vaccine in 2019. To achieve all this, a complex scientific work and economic solidarity will be required.

  15. In-Depth Characterization of Live Vaccines Used in Europe for Oral Rabies Vaccination of Wildlife.

    PubMed

    Cliquet, Florence; Picard-Meyer, Evelyne; Mojzis, Miroslav; Dirbakova, Zuzana; Muizniece, Zita; Jaceviciene, Ingrida; Mutinelli, Franco; Matulova, Marta; Frolichova, Jitka; Rychlik, Ivan; Celer, Vladimir

    2015-01-01

    Although rabies incidence has fallen sharply over the past decades in Europe, the disease is still present in Eastern Europe. Oral rabies immunization of wild animal rabies has been shown to be the most effective method for the control and elimination of rabies. All rabies vaccines used in Europe are modified live virus vaccines based on the Street Alabama Dufferin (SAD) strain isolated from a naturally-infected dog in 1935. Because of the potential safety risk of a live virus which could revert to virulence, the genetic composition of three commercial attenuated live rabies vaccines was investigated in two independent laboratories using next genome sequencing. This study is the first one reporting on the diversity of variants in oral rabies vaccines as well as the presence of a mix of at least two different variants in all tested batches. The results demonstrate the need for vaccine producers to use new robust methodologies in the context of their routine vaccine quality controls prior to market release.

  16. In-Depth Characterization of Live Vaccines Used in Europe for Oral Rabies Vaccination of Wildlife

    PubMed Central

    Cliquet, Florence; Picard-Meyer, Evelyne; Mojzis, Miroslav; Dirbakova, Zuzana; Muizniece, Zita; Jaceviciene, Ingrida; Mutinelli, Franco; Matulova, Marta; Frolichova, Jitka; Rychlik, Ivan; Celer, Vladimir

    2015-01-01

    Although rabies incidence has fallen sharply over the past decades in Europe, the disease is still present in Eastern Europe. Oral rabies immunization of wild animal rabies has been shown to be the most effective method for the control and elimination of rabies. All rabies vaccines used in Europe are modified live virus vaccines based on the Street Alabama Dufferin (SAD) strain isolated from a naturally-infected dog in 1935. Because of the potential safety risk of a live virus which could revert to virulence, the genetic composition of three commercial attenuated live rabies vaccines was investigated in two independent laboratories using next genome sequencing. This study is the first one reporting on the diversity of variants in oral rabies vaccines as well as the presence of a mix of at least two different variants in all tested batches. The results demonstrate the need for vaccine producers to use new robust methodologies in the context of their routine vaccine quality controls prior to market release. PMID:26509266

  17. First-in-human safety and immunogenicity investigations of three adjuvanted reduced dose inactivated poliovirus vaccines (IPV-Al SSI) compared to full dose IPV Vaccine SSI when given as a booster vaccination to adolescents with a history of IPV vaccination at 3, 5, 12months and 5years of age.

    PubMed

    Lindgren, Line M; Tingskov, Pernille N; Justesen, Annette H; Nedergaard, Bettina S; Olsen, Klaus J; Andreasen, Lars V; Kromann, Ingrid; Sørensen, Charlotte; Dietrich, Jes; Thierry-Carstensen, Birgit

    2017-01-23

    There is a demand of affordable IPV in the World. Statens Serum Institut (SSI) has developed three reduced dose IPV formulations adsorbed to aluminium hydroxide; 1/3 IPV-Al, 1/5 IPV-Al and 1/10 IPV-Al SSI, and now report the results of the first investigations in humans. 240 Danish adolescents, aged 10-15years, and childhood vaccinated with IPV were booster vaccinated with 1/3 IPV-Al, 1/5 IPV-Al, 1/10 IPV-Al or IPV Vaccine SSI. The booster effects (GMTRs) of the three IPV-Al SSI were compared to IPV Vaccine SSI, and evaluated for non-inferiority. The pre-vaccination GMTs were similar across the groups; 926 (type 1), 969 (type 2) and 846 (type 3) in the total trial population. The GMTRs by poliovirus type and IPV formulation were: Type 1: 17.0 (1/3 IPV-Al), 13.0 (1/5 IPV-Al), 7.1 (1/10 IPV-Al) and 42.2 (IPV Vaccine SSI). Type 2: 12.5 (1/3 IPV-Al), 13.1 (1/5 IPV-Al), 7.6 (1/10 IPV-Al) and 47.8 (IPV Vaccine SSI). Type 3: 14.5 (1/3 IPV-Al), 16.2 (1/5 IPV-Al), 8.9 (1/10 IPV-Al) and 62.4 (IPV Vaccine SSI) Thus, the three IPV-Al formulations were highly immunogenic, but inferior to IPV Vaccine SSI, in this booster vaccination trial. No SAE and no AE of severe intensity occurred. 59.2% of the subjects reported at least one AE. Injection site pain was the most frequent AE in all groups; from 24.6% to 43.3%. Injection site redness and swelling frequencies were<5% in most and<10% in all groups. The most frequent systemic AEs were fatigue (from 8.2% to 15.0%) and headache (from 15.0% to 28.3%). Most AEs were of mild intensity. In conclusion, the three IPV-Al SSI were safe in adolescents and the booster effects were satisfactory. ClinicalTrials.gov registration number: NCT02280447. Copyright © 2016. Published by Elsevier Ltd.

  18. Antibody Secreting Cell Responses following Vaccination with Bivalent Oral Cholera Vaccine among Haitian Adults

    PubMed Central

    Charles, Richelle C.; Mayo-Smith, Leslie M.; Teng, Jessica E.; Xu, Peng; Kováč, Pavol; Ryan, Edward T.; Qadri, Firdausi; Franke, Molly F.; Ivers, Louise C.; Harris, Jason B.

    2016-01-01

    Background The bivalent whole-cell (BivWC) oral cholera vaccine (Shanchol) is effective in preventing cholera. However, evaluations of immune responses following vaccination with BivWC have been limited. To determine whether BivWC induces significant mucosal immune responses, we measured V. cholerae O1 antigen-specific antibody secreting cell (ASC) responses following vaccination. Methodology/Principal Findings We enrolled 24 Haitian adults in this study, and administered doses of oral BivWC vaccine 14 days apart (day 0 and day 14). We drew blood at baseline, and 7 days following each vaccine dose (day 7 and 21). Peripheral blood mononuclear cells (PBMCs) were isolated, and ASCs were enumerated using an ELISPOT assay. Significant increases in Ogawa (6.9 cells per million PBMCs) and Inaba (9.5 cells per million PBMCs) OSP-specific IgA ASCs were detected 7 days following the first dose (P < 0.001), but not the second dose. The magnitude of V. cholerae-specific ASC responses did not appear to be associated with recent exposure to cholera. ASC responses measured against the whole lipolysaccharide (LPS) antigen and the OSP moiety of LPS were equivalent, suggesting that all or nearly all of the LPS response targets the OSP moiety. Conclusions/Significance Immunization with the BivWC oral cholera vaccine induced ASC responses among a cohort of healthy adults in Haiti after a single dose. The second dose of vaccine resulted in minimal ASC responses over baseline, suggesting that the current dosing schedule may not be optimal for boosting mucosal immune responses to V. cholerae antigens for adults in a cholera-endemic area. PMID:27308825

  19. Antibody Secreting Cell Responses following Vaccination with Bivalent Oral Cholera Vaccine among Haitian Adults.

    PubMed

    Matias, Wilfredo R; Falkard, Brie; Charles, Richelle C; Mayo-Smith, Leslie M; Teng, Jessica E; Xu, Peng; Kováč, Pavol; Ryan, Edward T; Qadri, Firdausi; Franke, Molly F; Ivers, Louise C; Harris, Jason B

    2016-06-01

    The bivalent whole-cell (BivWC) oral cholera vaccine (Shanchol) is effective in preventing cholera. However, evaluations of immune responses following vaccination with BivWC have been limited. To determine whether BivWC induces significant mucosal immune responses, we measured V. cholerae O1 antigen-specific antibody secreting cell (ASC) responses following vaccination. We enrolled 24 Haitian adults in this study, and administered doses of oral BivWC vaccine 14 days apart (day 0 and day 14). We drew blood at baseline, and 7 days following each vaccine dose (day 7 and 21). Peripheral blood mononuclear cells (PBMCs) were isolated, and ASCs were enumerated using an ELISPOT assay. Significant increases in Ogawa (6.9 cells per million PBMCs) and Inaba (9.5 cells per million PBMCs) OSP-specific IgA ASCs were detected 7 days following the first dose (P < 0.001), but not the second dose. The magnitude of V. cholerae-specific ASC responses did not appear to be associated with recent exposure to cholera. ASC responses measured against the whole lipolysaccharide (LPS) antigen and the OSP moiety of LPS were equivalent, suggesting that all or nearly all of the LPS response targets the OSP moiety. Immunization with the BivWC oral cholera vaccine induced ASC responses among a cohort of healthy adults in Haiti after a single dose. The second dose of vaccine resulted in minimal ASC responses over baseline, suggesting that the current dosing schedule may not be optimal for boosting mucosal immune responses to V. cholerae antigens for adults in a cholera-endemic area.

  20. Plasma Tryptophan and the Kynurenine–Tryptophan Ratio Are Associated with the Acquisition of Statural Growth Deficits and Oral Vaccine Underperformance in Populations with Environmental Enteropathy

    PubMed Central

    Kosek, Margaret N.; Mduma, Estomih; Kosek, Peter S.; Lee, Gwenyth O.; Svensen, Erling; Pan, William K. Y.; Olortegui, Maribel Paredes; Bream, Jay H.; Patil, Crystal; Asayag, Cesar Ramal; Sanchez, Graciela Meza; Caulfield, Laura E.; Gratz, Jean; Yori, Pablo Peñataro

    2016-01-01

    Early childhood enteric infections have adverse impacts on child growth and can inhibit normal mucosal responses to oral vaccines, two critical components of environmental enteropathy. To evaluate the role of indoleamine 2,3-dioxygenase 1 (IDO1) activity and its relationship with these outcomes, we measured tryptophan and the kynurenine–tryptophan ratio (KTR) in two longitudinal birth cohorts with a high prevalence of stunting. Children in rural Peru and Tanzania (N = 494) contributed 1,251 plasma samples at 3, 7, 15, and 24 months of age and monthly anthropometrics from 0 to 36 months of age. Tryptophan concentrations were directly associated with linear growth from 1 to 8 months after biomarker assessment. A 1-SD increase in tryptophan concentration was associated with a gain in length-for-age Z-score (LAZ) of 0.17 over the next 6 months in Peru (95% confidence interval [CI] = 0.11–0.23, P < 0.001) and a gain in LAZ of 0.13 Z-scores in Tanzania (95% CI = 0.03–0.22, P = 0.009). Vaccine responsiveness data were available for Peru only. An increase in kynurenine by 1 μM was associated with a 1.63 (95% CI = 1.13–2.34) increase in the odds of failure to poliovirus type 1, but there was no association with tetanus vaccine response. A KTR of 52 was 76% sensitive and 50% specific in predicting failure of response to serotype 1 of the oral polio vaccine. KTR was associated with systemic markers of inflammation, but also interleukin-10, supporting the association between IDO1 activity and immunotolerance. These results strongly suggest that the activity of IDO1 is implicated in the pathophysiology of environmental enteropathy, and demonstrates the utility of tryptophan and kynurenine as biomarkers for this syndrome, particularly in identifying those at risk for hyporesponsivity to oral vaccines. PMID:27503512

  1. Plasma Tryptophan and the Kynurenine-Tryptophan Ratio are Associated with the Acquisition of Statural Growth Deficits and Oral Vaccine Underperformance in Populations with Environmental Enteropathy.

    PubMed

    Kosek, Margaret N; Mduma, Estomih; Kosek, Peter S; Lee, Gwenyth O; Svensen, Erling; Pan, William K Y; Olortegui, Maribel Paredes; Bream, Jay H; Patil, Crystal; Asayag, Cesar Ramal; Sanchez, Graciela Meza; Caulfield, Laura E; Gratz, Jean; Yori, Pablo Peñataro

    2016-10-05

    Early childhood enteric infections have adverse impacts on child growth and can inhibit normal mucosal responses to oral vaccines, two critical components of environmental enteropathy. To evaluate the role of indoleamine 2,3-dioxygenase 1 (IDO1) activity and its relationship with these outcomes, we measured tryptophan and the kynurenine-tryptophan ratio (KTR) in two longitudinal birth cohorts with a high prevalence of stunting. Children in rural Peru and Tanzania (N = 494) contributed 1,251 plasma samples at 3, 7, 15, and 24 months of age and monthly anthropometrics from 0 to 36 months of age. Tryptophan concentrations were directly associated with linear growth from 1 to 8 months after biomarker assessment. A 1-SD increase in tryptophan concentration was associated with a gain in length-for-age Z-score (LAZ) of 0.17 over the next 6 months in Peru (95% confidence interval [CI] = 0.11-0.23, P < 0.001) and a gain in LAZ of 0.13 Z-scores in Tanzania (95% CI = 0.03-0.22, P = 0.009). Vaccine responsiveness data were available for Peru only. An increase in kynurenine by 1 μM was associated with a 1.63 (95% CI = 1.13-2.34) increase in the odds of failure to poliovirus type 1, but there was no association with tetanus vaccine response. A KTR of 52 was 76% sensitive and 50% specific in predicting failure of response to serotype 1 of the oral polio vaccine. KTR was associated with systemic markers of inflammation, but also interleukin-10, supporting the association between IDO1 activity and immunotolerance. These results strongly suggest that the activity of IDO1 is implicated in the pathophysiology of environmental enteropathy, and demonstrates the utility of tryptophan and kynurenine as biomarkers for this syndrome, particularly in identifying those at risk for hyporesponsivity to oral vaccines. © The American Society of Tropical Medicine and Hygiene.

  2. Safety, immunogenicity and persistence of immune response to the combined diphtheria, tetanus, acellular pertussis, poliovirus and Haemophilus influenzae type b conjugate vaccine (DTPa-IPV/Hib) administered in Chinese infants

    PubMed Central

    Li, Yanping; Li, Rong Cheng; Ye, Qiang; Li, Changgui; Liu, You Ping; Ma, Xiao; Li, Yanan; Zhao, Hong; Chen, Xiaoling; Assudani, Deepak; Karkada, Naveen; Han, Htay Htay; Van Der Meeren, Olivier; Mesaros, Narcisa

    2017-01-01

    ABSTRACT We conducted 3 phase III, randomized, open-label, clinical trials assessing the safety, reactogenicity (all studies), immunogenicity (Primary vaccination study) and persistence of immune responses (Booster study) to the combined diphtheria, tetanus, pertussis, poliomyelitis, and Haemophilus influenzae type b vaccine (DTPa-IPV/Hib) in Chinese infants and toddlers. In the Pilot study (NCT00964028), 50 infants (randomized 1:1) received 3 doses of DTPa-IPV/Hib at 2–3–4 (Group A) or 3–4–5 months of age (Group B). In the Primary study (NCT01086423), 984 healthy infants (randomized 1:1:1) received 3 doses of DTPa-IPV/Hib at 2–3–4 (Group A) or 3–4–5 (Group B) months of age, or concomitant DTPa/Hib and poliomyelitis (IPV) vaccination at 2–3–4 months of age (Control group); 825 infants received a booster dose of DTPa/Hib and IPV at 18–24 months of age (Booster study; NCT01449812). In the Pilot study, unsolicited symptoms were more frequent in Group A (16 versus 1 infant; mostly upper respiratory tract infection and pyrexia); this observation was attributed to an epidemic outbreak of viral infections. Non-inferiority of 3-dose primary vaccination with DTPa-IPV/Hib over separately administered DTPa/Hib and IPV was demonstrated for Group A (primary objective). Similar antibody concentrations were observed in all groups, except for anti-polyribosyl-ribitol phosphate and anti-poliovirus types 1–3 which were higher in DTPa-IPV/Hib recipients. Protective antibody levels against all vaccine antigens remained high until booster vaccination. Three-dose vaccination with DTPa-IPV/Hib had a clinically acceptable safety profile. PMID:27768515

  3. Safety, immunogenicity and persistence of immune response to the combined diphtheria, tetanus, acellular pertussis, poliovirus and Haemophilus influenzae type b conjugate vaccine (DTPa-IPV/Hib) administered in Chinese infants.

    PubMed

    Li, Yanping; Li, Rong Cheng; Ye, Qiang; Li, Changgui; Liu, You Ping; Ma, Xiao; Li, Yanan; Zhao, Hong; Chen, Xiaoling; Assudani, Deepak; Karkada, Naveen; Han, Htay Htay; Van Der Meeren, Olivier; Mesaros, Narcisa

    2017-03-04

    We conducted 3 phase III, randomized, open-label, clinical trials assessing the safety, reactogenicity (all studies), immunogenicity (Primary vaccination study) and persistence of immune responses (Booster study) to the combined diphtheria, tetanus, pertussis, poliomyelitis, and Haemophilus influenzae type b vaccine (DTPa-IPV/Hib) in Chinese infants and toddlers. In the Pilot study (NCT00964028), 50 infants (randomized 1:1) received 3 doses of DTPa-IPV/Hib at 2-3-4 (Group A) or 3-4-5 months of age (Group B). In the Primary study (NCT01086423), 984 healthy infants (randomized 1:1:1) received 3 doses of DTPa-IPV/Hib at 2-3-4 (Group A) or 3-4-5 (Group B) months of age, or concomitant DTPa/Hib and poliomyelitis (IPV) vaccination at 2-3-4 months of age (Control group); 825 infants received a booster dose of DTPa/Hib and IPV at 18-24 months of age (Booster study; NCT01449812). In the Pilot study, unsolicited symptoms were more frequent in Group A (16 versus 1 infant; mostly upper respiratory tract infection and pyrexia); this observation was attributed to an epidemic outbreak of viral infections. Non-inferiority of 3-dose primary vaccination with DTPa-IPV/Hib over separately administered DTPa/Hib and IPV was demonstrated for Group A (primary objective). Similar antibody concentrations were observed in all groups, except for anti-polyribosyl-ribitol phosphate and anti-poliovirus types 1-3 which were higher in DTPa-IPV/Hib recipients. Protective antibody levels against all vaccine antigens remained high until booster vaccination. Three-dose vaccination with DTPa-IPV/Hib had a clinically acceptable safety profile.

  4. 78 FR 33798 - Oral Rabies Vaccine Trial; Availability of a Supplemental Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... and Plant Health Inspection Service [Docket No. APHIS-2013-0046] Oral Rabies Vaccine Trial... (EA) relative to an oral rabies vaccination field trial in New Hampshire, New York, Ohio, Vermont, and West Virginia. The supplemental EA analyzes expanding the field trial for an experimental oral...

  5. Respiratory and oral vaccination improves protection conferred by the live vaccine strain against pneumonic tularemia in the rabbit model.

    PubMed

    Stinson, Elizabeth; Smith, Le'Kneitah P; Cole, Kelly Stefano; Barry, Eileen M; Reed, Douglas S

    2016-10-01

    Tularemia is a severe, zoonotic disease caused by a gram-negative bacterium, Francisella tularensis We have previously shown that rabbits are a good model of human pneumonic tularemia when exposed to aerosols containing a virulent, type A strain, SCHU S4. We further demonstrated that the live vaccine strain (LVS), an attenuated type B strain, extended time to death when given by scarification. Oral or aerosol vaccination has been previously shown in humans to offer superior protection to parenteral vaccination against respiratory tularemia challenge. Both oral and aerosol vaccination with LVS were well tolerated in the rabbit with only minimal fever and no weight loss after inoculation. Plasma antibody titers against F. tularensis were higher in rabbits that were vaccinated by either oral or aerosol routes compared to scarification. Thirty days after vaccination, all rabbits were challenged with aerosolized SCHU S4. LVS given by scarification extended time to death compared to mock-vaccinated controls. One orally vaccinated rabbit did survive aerosol challenge, however, only aerosol vaccination extended time to death significantly compared to scarification. These results further demonstrate the utility of the rabbit model of pneumonic tularemia in replicating what has been reported in humans and macaques as well as demonstrating the utility of vaccination by oral and respiratory routes against an aerosol tularemia challenge. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Methods to Assess the Impact of Mass Oral Cholera Vaccination Campaigns under Real Field Conditions

    PubMed Central

    Deen, Jacqueline; Ali, Mohammad; Sack, David

    2014-01-01

    There is increasing interest to use oral cholera vaccination as an additional strategy to water and sanitation interventions against endemic and epidemic cholera. There are two internationally-available and WHO-prequalified oral cholera vaccines: an inactivated vaccine containing killed whole-cells of V. cholerae O1 with recombinant cholera toxin B-subunit (WC/rBS) and a bivalent inactivated vaccine containing killed whole cells of V. cholerae O1 and V. cholerae O139 (BivWC). The efficacy, effectiveness, direct and indirect (herd) protection conferred by WC/rBS and BivWC are well established. Yet governments may need local evidence of vaccine impact to justify and scale-up mass oral cholera vaccination campaigns. We discuss various approaches to assess oral cholera vaccine protection, which may be useful to policymakers and public health workers considering deployment and evaluation of the vaccine. PMID:24516595

  7. Poliovirus Laboratory Based Surveillance: An Overview.

    PubMed

    Zaidi, Syed Sohail Zahoor; Asghar, Humayun; Sharif, Salmaan; Alam, Muhammad Masroor

    2016-01-01

    World Health Assembly (WHA) in 1988 encouraged the member states to launch Global Polio Eradication Initiative (GPEI) (resolution WHA41.28) against "the Crippler" called poliovirus, through strong routine immunization program and intensified surveillance systems. Since its launch, global incidence of poliomyelitis has been reduced by more than 99 % and the disease squeezed to only three endemic countries (Afghanistan, Pakistan, and Nigeria) out of 125. Today, poliomyelitis is on the verge of eradication, and their etiological agents, the three poliovirus serotypes, are on the brink of extinction from the natural environment. The last case of poliomyelitis due to wild type 2 strain occurred in 1999 in Uttar Pradesh, India whereas the last paralytic case due to wild poliovirus type 3 (WPV3) was seen in November, 2012 in Yobe, Nigeria. Despite this progress, undetected circulation cannot fully rule out the eradication as most of the poliovirus infections are entirely subclinical; hence sophisticated environmental surveillance is needed to ensure the complete eradication of virus. Moreover, the vaccine virus in under-immunized communities can sometimes revert and attain wild type characteristics posing a big challenge to the program.

  8. Immunogenicity, reactogenicity and safety of the human rotavirus vaccine RIX4414 (Rotarix™) oral suspension (liquid formulation) when co-administered with expanded program on immunization (EPI) vaccines in Vietnam and the Philippines in 2006-2007.

    PubMed

    Anh, D D; Carlos, C C; Thiem, D V; Hutagalung, Y; Gatchalian, S; Bock, H L; Smolenov, I; Suryakiran, P V; Han, H H

    2011-03-03

    Evaluation of immunogenicity and safety of a 2-dose liquid formulation of human rotavirus vaccine, RIX4414 following WHO's Expanded Program on Immunization (EPI) schedule (0, 1, and 2 months; Month 0 indicates day of enrollment) in Vietnam and the Philippines. Infants aged 6-10 (mean=8.7 ± 1.07 weeks Vietnam) and 5-10 weeks (mean=6.6 ± 1.03 weeks Philippines) received two doses of RIX4414 vaccine (V) and one dose of placebo (PL) or three placebo doses concomitantly with commercially available diphtheria-tetanus-whole-cell pertussis, hepatitis B and oral poliovirus vaccines. The vaccination schedules were: V-V-PL, V-PL-V and PL-PL-PL (Vietnam); PL-V-V, V-PL-V and PL-PL-PL (Philippines). Anti-rotavirus seroconversion rate was assessed pre-vaccination and post-vaccination (ELISA cut-off=20 U/ml). 375 infants were enrolled in each country. Seroconversion rates at one month post-Dose 2 of RIX4414 were Vietnam 63.3% (95% CI: 54.3-71.6) in V-V-PL group and 81.5% (95% CI: 73.4-88) in V-PL-V group; Philippines 70% (95% CI: 61-78) in PL-V-V group and 59.2% (95% CI: 49.8-68) in V-PL-V group. Frequencies of solicited (8-day post-each dose) and unsolicited symptoms (31-day post-each dose) were similar. Two-doses of rotavirus vaccine administered within the WHO EPI offer flexibility in existing schedule, though both schedules provides good immune responses.

  9. An outbreak of wild poliovirus in the Republic of Congo, 2010-2011.

    PubMed

    Patel, Minal K; Konde, Mandy Kader; Didi-Ngossaki, Boris Hermann; Ndinga, Edouard; Yogolelo, Riziki; Salla, Mbaye; Shaba, Keith; Everts, Johannes; Armstrong, Gregory L; Daniels, Danni; Burns, Cara; Wassilak, Steve; Pallansch, Mark; Kretsinger, Katrina

    2012-11-15

    The Republic of Congo has had no cases of wild poliovirus type 1 (WPV1) since 2000. In October 2010, a neurologist noted an abnormal number of cases of acute flaccid paralysis (AFP) among adults, which were later confirmed to be caused by WPV1. Those presenting with AFP underwent clinical history, physical examination, and clinical specimen collection to determine if they had polio. AFP cases were classified as laboratory-confirmed, clinical, or nonpolio AFP. Epidemiologic features of the outbreak were analyzed. From 19 September 2010 to 22 January 2011, 445 cases of WPV1 were reported in the Republic of Congo; 390 cases were from Pointe Noire. Overall, 331 cases were among adults; 378 cases were clinically confirmed, and 64 cases were laboratory confirmed. The case-fatality ratio (CFR) was 43%. Epidemiologic characteristics differed among polio cases reported in Pointe Noire and cases reported in the rest of the Republic of Congo, including age distribution and CFR. The outbreak stopped after multiple vaccination rounds with oral poliovirus vaccine, which targeted the entire population. This outbreak underscores the need to maintain high vaccination coverage to prevent outbreaks, the need to maintain timely high-quality surveillance to rapidly identify and respond to any potential cases before an outbreak escalates, and the need to perform ongoing risk assessments of immunity gaps in polio-free countries.

  10. Isoelectric point determination of live polioviruses by capillary isoelectric focusing with whole column imaging detection.

    PubMed

    Thomassen, Yvonne E; van Eikenhorst, Gerco; van der Pol, Leo A; Bakker, Wilfried A M

    2013-06-18

    Using a capillary isoelectric focusing-whole column imaging detection (CIEF-WCID) method, the isoelectric points (pI) of complete intact polioviruses were determined. The polioviruses that were analyzed are the commonly used viruses for the production of inactivated polio vaccines (IPV)-Mahoney (type 1), MEF (type 2), and Saukett (type 3)-as well as for attenuated oral polio vaccines (OPV) and Sabin types 1, 2, and 3. A method for analyzing biological hazardous components (biological safety level 2) was set up for the CIEF-WCID analyzer used. This method is based on closed circuits. The determined pI's were 6.2 for Mahoney, 6.7 for MEF-1, and 5.8 for Saukett. The pI's of Sabin types 1, 2, and 3 viruses were 7.4, 7.2, and 6.3, respectively. Resolution of the virus peaks was shown to be reproducible. Using this adjusted CIEF-WCID technique, the pI of biologically hazardous components like toxins or viruses can be determined, which is beneficial for the development of vaccine production methods among others.

  11. Evaluation of mucoadhesive carrier adjuvant: toward an oral anthrax vaccine.

    PubMed

    Mangal, Sharad; Pawar, Dilip; Agrawal, Udita; Jain, Arvind K; Vyas, Suresh P

    2014-02-01

    The aim of present study was to evaluate the potential of mucoadhesive alginate-coated chitosan microparticles (A-CHMp) for oral vaccine against anthrax. The zeta potential of A-CHMp was -29.7 mV, and alginate coating could prevent the burst release of antigen in simulated gastric fluid. The results indicated that A-CHMp was mucoadhesive in nature and transported it to the peyer's patch upon oral delivery. The immunization studies indicated that A-CHMp resulted in the induction of potent systemic and mucosal immune responses, whereas alum-adjuvanted rPA could induce only systemic immune response. Thus, A-CHMp represents a promising acid carrier adjuvant for oral immunization against anthrax.

  12. Human papillomavirus vaccine intention among college men: what's oral sex got to do with it?

    PubMed

    Crosby, Richard A; DiClemente, Ralph J; Salazar, Laura F; Nash, Rachel; Younge, Sinead; Head, Sara

    2012-01-01

    To identify associations between engaging in oral sex and perceived risk of oral cancer among college men. Also, to identify associations, and their moderating factors, between oral sex and human papillomavirus (HPV) vaccine acceptance. Young men were recruited from 2 university campuses in the South (N = 150). Men completed an audio computer-assisted self-administered interview. With the exception of receiving fellatio, each measure of oral sex behavior was significantly associated with greater perceived risk of oral cancer. Four oral sex behaviors evidenced significant associations with vaccine acceptance. Men engaging in recent oral sex or reporting oral sex behaviors with more than 2 partners were more likely to indicate vaccine intent. African American/black race, communication with parents about sex-related topics, and HPV-related stigma/shame were identified as moderating factors. Young college men giving or receiving oral sex with multiple partners may be predisposed to HPV vaccination.

  13. Serological survey on immunity status against polioviruses in children and adolescents living in a border region, Apulia (Southern Italy).

    PubMed

    Tafuri, Silvio; Prato, Rosa; Martinelli, Domenico; Calvario, Agata; Bozzi, Anna; Labianca, Michele; Patti, Annamaria; Lopalco, Pietro Luigi; Germinario, Cinzia

    2008-10-30

    In 1988 the World Health Assembly adopted the goal to eradicate poliomyelitis by routine immunization using Oral Polio Vaccine (OPV). On 21 June 2002 the WHO European Region was declared polio-free. In 2008 poliomyelitis is still endemic in 4 countries (Nigeria, India, Pakistan, and Afghanistan), where 1201 new cases were registered in 2007; 107 sporadic cases were also notified in countries where poliovirus is not endemic. The aim of this work was to verify the level of antipoliomyelitis immunity status in children and adolescents in the Apulia region (south of Italy), which may be considered a border region due to its position. 704 blood specimens from a convenience sample were collected in six laboratories. The age of subjects enrolled was 0-15 years. The immunity against poliomyelitis was evaluated by neutralizing antibody titration in tissue culture microplates. Seropositivity (neutralising antibodies titre > or = 8) for polioviruses 1, 2 and 3 was detected in 100%, 99.8% and 99.4% of collected sera. Antibody titres were not lower in subjects who received either four doses of inactivated polio vaccine (IPV) or a sequential schedule consisting of two doses of IPV and two of oral polio vaccine than in subjects who received four doses of OPV. These results confirmed current data of vaccine coverage for poliomyelitis: during the last ten years in Apulia, the coverage in 24 months old children was more than 90%. The high level of immunization found confirms the effectiveness both of the sequential schedule IPV-OPV and of the schedule all-IPV. Apulia region has to face daily arrivals of refugees and remains subject to the risk of the importation of poliovirus from endemic areas. Surveys aimed at determining anti-polio immunity in subpopulations as well as in the general population should be carried out.

  14. Vaccination of full-sib channel catfish families against enteric septicemia of catfish with an oral live attenuated Edwardsiella ictaluri vaccine

    USDA-ARS?s Scientific Manuscript database

    The study evaluated the efficacy of an oral live-attenuated Edwardsiella ictaluri vaccine against enteric septicemia of catfish in 20 full-sib fingerling channel catfish families. Each family was split into vaccinated and non-vaccinated groups. The vaccine was delivered orally by feeding fish diet...

  15. Seed-based oral vaccines as allergen-specific immunotherapies.

    PubMed

    Takaiwa, Fumio

    2011-03-01

    Plant-based vaccines have advantages over conventional vaccines in terms of scalability, lack of requirement for cold chain logistics, stability, safety, cost-effectiveness and needle-free administration. In particular, when antigen is expressed in seeds, high production is possible and immunogenicity is not lost even if stocked at ambient temperature for several years. Induction of immune tolerance (desensitization) to allergen is a principle strategy for controlling allergic diseases, and is generally carried out by subcutaneous injection. Seed-based oral administration offers a straightforward and inexpensive alternative approach to deliver vaccines effectively to the GALT without loss of activity. Consumption of transgenic seeds containing modified hypo-allergenic tolerogen or T-cell epitope peptides derived from allergens has no or very few severe side effects and can induce immune tolerance leading to reduction of allergen-specific IgE production, T-cell proliferation and release of histamine. Suppression of allergen-specific clinical symptoms results. Thus, seed-based allergy vaccines offer an innovative and convenient allergen-specific immunotherapeutic approach as an alternative to conventional allergen-specific immunotherapy.

  16. Has Wild Poliovirus Been Eliminated from Nigeria?

    PubMed

    Famulare, Michael

    2015-01-01

    Wild poliovirus type 3 (WPV3) has not been seen anywhere since the last case of WPV3-associated paralysis in Nigeria in November 2012. At the time of writing, the most recent case of wild poliovirus type 1 (WPV1) in Nigeria occurred in July 2014, and WPV1 has not been seen in Africa since a case in Somalia in August 2014. No cases associated with circulating vaccine-derived type 2 poliovirus (cVDPV2) have been detected in Nigeria since November 2014. Has WPV1 been eliminated from Africa? Has WPV3 been eradicated globally? Has Nigeria interrupted cVDPV2 transmission? These questions are difficult because polio surveillance is based on paralysis and paralysis only occurs in a small fraction of infections. This report provides estimates for the probabilities of poliovirus elimination in Nigeria given available data as of March 31, 2015. It is based on a model of disease transmission that is built from historical polio incidence rates and is designed to represent the uncertainties in transmission dynamics and poliovirus detection that are fundamental to interpreting long time periods without cases. The model estimates that, as of March 31, 2015, the probability of WPV1 elimination in Nigeria is 84%, and that if WPV1 has not been eliminated, a new case will be detected with 99% probability by the end of 2015. The probability of WPV3 elimination (and thus global eradication) is > 99%. However, it is unlikely that the ongoing transmission of cVDPV2 has been interrupted; the probability of cVDPV2 elimination rises to 83% if no new cases are detected by April 2016.

  17. Assessment of cell culture and polymerase chain reaction procedures for the detection of polioviruses in wastewater.

    PubMed Central

    Grabow, W. O.; Botma, K. L.; de Villiers, J. C.; Clay, C. G.; Erasmus, B.

    1999-01-01

    WHO considers that environmental surveillance for wild-type polioviruses is potentially important for surveillance for acute flaccid paralysis as a means of confirming eradication of poliomyelitis. The present study investigated methods for detecting polioviruses in a variety of water environments in South Africa. Most polioviruses were isolated on L20B mouse cells, which, however, were not selective: 16 reoviruses and 8 enteroviruses, apparently animal strains, were also isolated on these cells. Vaccine strains of polioviruses were isolated from surface waters during and shortly after two rounds of mass vaccination of children in an informal settlement where there was no sewerage. The results demonstrated the feasibility of poliovirus surveillance in such settlements. It was also evident that neither poliovirus vaccine strains nor other viruses were likely to interfere significantly with the detection of wild-type polioviruses. Optimal isolation of polioviruses was accomplished by parallel inoculation of L20B mouse cells and at least the PLC/PRF/5 human liver and buffalo green monkey (BGM) kidney cell lines. Analysis of cell cultures using the polymerase chain reaction revealed that 319 test samples contained at least 263 human enteroviruses that failed to produce a cytopathogenic effect. This type of analysis thus significantly increased the sensitivity of enterovirus detection. PMID:10680244

  18. Oral vaccination through Peyer's Patches: update on particle uptake.

    PubMed

    Soares, Edna; Borges, Olga

    2017-08-25

    Oral immunization has numerous advantages over parenteral administrations. In addition to ease administration, more effective pathogen elimination on the mucosa before spreading into the blood circulation, constitutes the main benefit. This is particularly true for pathogens that enter the body through the oral route. On the other hand, it is the most challenging administration route for peptides, proteins and recombinant antigens due to gastrointestinal (GI) tract numerous barriers including the harsh environment and the inherent weak immunogenicity. In addition to the adjuvant properties, polymeric particles arise as the most promising strategy to overcome poor antigen bioavailability/stability upon oral administration. The Peyer's patches have been considered an important structure of the gut associate lymphoid tissue (GALT) for the initiation of the immune response towards particulate oral antigens. The transport mechanism of both, nano and microparticles across intestinal mucosa, particularly throughout Peyer's patches, is discussed in this review. We provide a short and concise update (last decade) focused on the importance of particle physicochemical properties, M-cell ligands and size-dependent transport and intracellular fate concerning Peyer's patches targeted oral vaccination. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Oral and Anal Vaccination Confers Full Protection against Enteric Redmouth Disease (ERM) in Rainbow Trout

    PubMed Central

    Ohtani, Maki; Strøm, Helene Kragelund; Raida, Martin Kristian

    2014-01-01

    The effect of oral vaccines against bacterial fish diseases has been a topic for debate for decades. Recently both M-like cells and dendritic cells have been discovered in the intestine of rainbow trout. It is therefore likely that antigens reaching the intestine can be taken up and thereby induce immunity in orally vaccinated fish. The objective of this project was to investigate whether oral and anal vaccination of rainbow trout induces protection against an experimental waterborne infection with the pathogenic enterobacteria Yersinia ruckeri O1 biotype 1 the causative agent of enteric redmouth disease (ERM). Rainbow trout were orally vaccinated with AquaVac ERM Oral (MERCK Animal Health) or an experimental vaccine bacterin of Y. ruckeri O1. Both vaccines were tested with and without a booster vaccination four months post the primary vaccination. Furthermore, two groups of positive controls were included, one group receiving the experimental oral vaccine in a 50 times higher dose, and the other group receiving a single dose administered anally in order to bypass the stomach. Each group was bath challenged with 6.3×108 CFU/ml Y. ruckeri, six months post the primary vaccination. The challenge induced significant mortality in all the infected groups except for the groups vaccinated anally with a single dose or orally with the high dose of bacterin. Both of these groups had 100% survival. These results show that a low dose of Y. ruckeri bacterin induces full protection when the bacterin is administered anally. Oral vaccination also induces full protection, however, at a dose 50 times higher than if the fish were to be vaccinated anally. This indicates that much of the orally fed antigen is digested in the stomach before it reaches the second segment of the intestine where it can be taken up as immunogenic antigens and presented to lymphocytes. PMID:24705460

  20. Oral and anal vaccination confers full protection against enteric redmouth disease (ERM) in rainbow trout.

    PubMed

    Villumsen, Kasper Rømer; Neumann, Lukas; Ohtani, Maki; Strøm, Helene Kragelund; Raida, Martin Kristian

    2014-01-01

    The effect of oral vaccines against bacterial fish diseases has been a topic for debate for decades. Recently both M-like cells and dendritic cells have been discovered in the intestine of rainbow trout. It is therefore likely that antigens reaching the intestine can be taken up and thereby induce immunity in orally vaccinated fish. The objective of this project was to investigate whether oral and anal vaccination of rainbow trout induces protection against an experimental waterborne infection with the pathogenic enterobacteria Yersinia ruckeri O1 biotype 1 the causative agent of enteric redmouth disease (ERM). Rainbow trout were orally vaccinated with AquaVac ERM Oral (MERCK Animal Health) or an experimental vaccine bacterin of Y. ruckeri O1. Both vaccines were tested with and without a booster vaccination four months post the primary vaccination. Furthermore, two groups of positive controls were included, one group receiving the experimental oral vaccine in a 50 times higher dose, and the other group receiving a single dose administered anally in order to bypass the stomach. Each group was bath challenged with 6.3 × 10(8) CFU/ml Y. ruckeri, six months post the primary vaccination. The challenge induced significant mortality in all the infected groups except for the groups vaccinated anally with a single dose or orally with the high dose of bacterin. Both of these groups had 100% survival. These results show that a low dose of Y. ruckeri bacterin induces full protection when the bacterin is administered anally. Oral vaccination also induces full protection, however, at a dose 50 times higher than if the fish were to be vaccinated anally. This indicates that much of the orally fed antigen is digested in the stomach before it reaches the second segment of the intestine where it can be taken up as immunogenic antigens and presented to lymphocytes.

  1. Evaluation of novel oral vaccine candidates and validation of a caprine model of Johne's disease.

    PubMed

    Hines, Murray E; Turnquist, Sue E; Ilha, Marcia R S; Rajeev, Sreekumari; Jones, Arthur L; Whittington, Lisa; Bannantine, John P; Barletta, Raúl G; Gröhn, Yrjö T; Katani, Robab; Talaat, Adel M; Li, Lingling; Kapur, Vivek

    2014-01-01

    Johne's disease (JD) caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a major threat to the dairy industry and possibly some cases of Crohn's disease in humans. A MAP vaccine that reduced of clinical disease and/or reduced fecal shedding would aid in the control of JD. The objectives of this study were (1) to evaluate the efficacy of 5 attenuated strains of MAP as vaccine candidates compared to a commercial control vaccine using the protocol proposed by the Johne's Disease Integrated Program (JDIP) Animal Model Standardization Committee (AMSC), and (2) to validate the AMSC Johne's disease goat challenge model. Eighty goat kids were vaccinated orally twice at 8 and 10 weeks of age with an experimental vaccine or once subcutaneously at 8 weeks with Silirum® (Zoetis), or a sham control oral vaccine at 8 and 10 weeks. Kids were challenged orally with a total of approximately 1.44 × 10(9) CFU divided in two consecutive daily doses using MAP ATCC-700535 (K10-like bovine isolate). All kids were necropsied at 13 months post-challenge. Results indicated that the AMSC goat challenge model is a highly efficient and valid model for JD challenge studies. None of the experimental or control vaccines evaluated prevented MAP infection or eliminated fecal shedding, although the 329 vaccine lowered the incidence of infection, fecal shedding, tissue colonization and reduced lesion scores, but less than the control vaccine. Based on our results the relative performance ranking of the experimental live-attenuated vaccines evaluated, the 329 vaccine was the best performer, followed by the 318 vaccine, then 316 vaccine, 315 vaccine and finally the 319 vaccine was the worst performer. The subcutaneously injected control vaccine outperformed the orally-delivered mutant vaccine candidates. Two vaccines (329 and 318) do reduce presence of JD gross and microscopic lesions, slow progression of disease, and one vaccine (329) reduced fecal shedding and tissue colonization.

  2. Evaluation of novel oral vaccine candidates and validation of a caprine model of Johne's disease

    PubMed Central

    Hines, Murray E.; Turnquist, Sue E.; Ilha, Marcia R. S.; Rajeev, Sreekumari; Jones, Arthur L.; Whittington, Lisa; Bannantine, John P.; Barletta, Raúl G.; Gröhn, Yrjö T.; Katani, Robab; Talaat, Adel M.; Li, Lingling; Kapur, Vivek

    2014-01-01

    Johne's disease (JD) caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a major threat to the dairy industry and possibly some cases of Crohn's disease in humans. A MAP vaccine that reduced of clinical disease and/or reduced fecal shedding would aid in the control of JD. The objectives of this study were (1) to evaluate the efficacy of 5 attenuated strains of MAP as vaccine candidates compared to a commercial control vaccine using the protocol proposed by the Johne's Disease Integrated Program (JDIP) Animal Model Standardization Committee (AMSC), and (2) to validate the AMSC Johne's disease goat challenge model. Eighty goat kids were vaccinated orally twice at 8 and 10 weeks of age with an experimental vaccine or once subcutaneously at 8 weeks with Silirum® (Zoetis), or a sham control oral vaccine at 8 and 10 weeks. Kids were challenged orally with a total of approximately 1.44 × 109 CFU divided in two consecutive daily doses using MAP ATCC-700535 (K10-like bovine isolate). All kids were necropsied at 13 months post-challenge. Results indicated that the AMSC goat challenge model is a highly efficient and valid model for JD challenge studies. None of the experimental or control vaccines evaluated prevented MAP infection or eliminated fecal shedding, although the 329 vaccine lowered the incidence of infection, fecal shedding, tissue colonization and reduced lesion scores, but less than the control vaccine. Based on our results the relative performance ranking of the experimental live-attenuated vaccines evaluated, the 329 vaccine was the best performer, followed by the 318 vaccine, then 316 vaccine, 315 vaccine and finally the 319 vaccine was the worst performer. The subcutaneously injected control vaccine outperformed the orally-delivered mutant vaccine candidates. Two vaccines (329 and 318) do reduce presence of JD gross and microscopic lesions, slow progression of disease, and one vaccine (329) reduced fecal shedding and tissue colonization. PMID

  3. Safe Live Oral Salmonella Vaccines; Use of aro- Strains.

    DTIC Science & Technology

    1983-05-20

    Department of the Army position unless so designated by other authorized documents. 7, S"|ECuRITY CLASSIFICATION Or THIS PAGE (W*PR Deem Enteewd) REPORT...properties justifying trial as oral-route vaccine in human volunteers will soon he completed. If such a strain gives satisfactory results, in respect of...biosynthetic (aro) both in biotype and in that it is virulent for calves’?. A nLn- pathway. A complete block at any .step of this pathway should reverting

  4. A 6-Week Oral Toxicity Study of Oral Cholera Vaccine in Sprague-Dawley Rats

    PubMed Central

    Baek, Yeong-Ok; Choi, Seuk-Keun; Shin, Seo-Ho; Koo, Kyo-Hwan; Choi, Ho-Young; Cha, Seung-Bum; Li, Yong-Chun; Yoo, Hyeon-Jeong; Lee, Joo-Young; Kil, Ki-Hyun; Kim, Hak-Soo; Kang, Min-Soo; Kang, Boo-Hyun; Kim, Kap-Ho

    2012-01-01

    The present study was carried out to examine the toxicity and target organs of oral cholera vaccine (OCV) after repeated oral administration in Sprague-Dawley rats for 6 weeks (3 administrations, once every 2 weeks). OCV is an inactivated oral cholera vaccine that contains Vibrio cholerae and confers protection against cholera caused by V. cholera serogroups O1 (Inaba and Ogawa serotypes) and O139 (strain 4260B). The animals were orally administered either OCV placebo (negative control) or OCV at a dose equivalent to 240 times the anticipated human dose. Throughout the administration period, no significant change was detected in clinical signs, body weight, food or water consumption, urinalysis results, hematological and clinical biochemistry test results, organ weights, necropsy, or histopathological examination results. Minor changes were found in hematological and clinical biochemistry tests; however, these changes were within normal ranges. The above results suggest that oral administration of OCV in rats did not induce any toxicologically meaningful changes, and the target organs could not be determined. This study was conducted in accordance with the guidelines established by Good Laboratory Practice (2009-183, KFDA, December 22, 2009) and the OECD Principles of Good Laboratory Practice (1997). PMID:24278614

  5. Real-time Polymerase Chain Reaction Analysis of Sewage Samples to Determine Oral Polio Vaccine Circulation Duration and Mutation After Mexican National Immunization Weeks

    PubMed Central

    Troy, Stephanie B.; Ferreyra-Reyes, Leticia; Canizales-Quintero, Sergio; Huang, ChunHong; Lee, Yu-Jin; Báez-Saldaña, Renata; Ferreira-Guerrero, Elizabeth; García-García, Lourdes; Maldonado, Yvonne

    2012-01-01

    Background. Oral polio vaccine (OPV) can mutate and cause outbreaks of paralytic poliomyelitis with prolonged replication. After poliovirus eradication, global use of inactivated polio vaccine (IPV) may be needed until all OPV stops circulating. Mexico, where children receive routine IPV but where OPV is given only during biannual national immunization weeks (NIWs), provides a natural setting to study duration of OPV circulation in a community primarily vaccinated with IPV. Methods. One-liter sewage samples from four separate arroyos (creeks) near Orizaba, Mexico, were collected monthly for 12 months. Concentrated sewage underwent RNA extraction, reverse transcription, and real-time polymerase chain reaction (PCR) to detect OPV serotypes 1, 2, and 3 and their variants containing the serotype-specific point mutation in the 5′ untranslated region associated with neurovirulence. Results. OPV was detected 3, 4, 5, and 7 months after the May 2010 NIW, but was not detected at 6 or 8 months. A second and third NIW occurred in February 2011 and May 2011, and OPV was detected in the sewage monthly after both of these NIW through July 2011 when collection stopped. The OPV detected was primarily serotype 2 and predominantly contained the point mutations in the 5′ untranslated region associated with increased neurovirulence. Conclusions. OPV was detected in sewage as late as 7 months after an NIW in a Mexican community primarily vaccinated with IPV, but was not detected at 8 months, suggesting that OPV circulation may have ceased. These data suggest that in communities with high vaccination rates, 1 or 2 years of IPV administration after OPV cessation could be sufficient to prevent outbreaks of paralytic poliomyelitis from vaccine-derived strains. PMID:23667738

  6. A host-specific, temperature-sensitive translation defect determines the attenuation phenotype of a human rhinovirus/poliovirus chimera, PV1(RIPO).

    PubMed

    Jahan, Nusrat; Wimmer, Eckard; Mueller, Steffen

    2011-07-01

    By using a rhinosvirus/poliovirus type 1 chimera, PV1(RIPO), with the cognate internal ribosome entry site (IRES) of human rhinovirus type 2 (HRV2), we set out to shed light on the mechanism by which this variant expresses its attenuated phenotype in poliovirus-sensitive, CD155 transgenic (tg) mice and cynomolgus monkeys. Here we report that replication of PV1(RIPO) is restricted not only in human cells of neuronal origin, as was reported previously, but also in cells of murine origin at physiological temperature. This block in replication was enhanced at 39.5°C but, remarkably, it was absent at 33°C. PV1(RIPO) variants that overcame the replication block were derived by serial passage under restrictive conditions in either mouse cells or human neuronal cells. All adapting mutations mapped to the 5'-nontranslated region of PV1(RIPO). Variants selected in mouse cells, but not in human neuronal cells, exhibited increased mouse neurovirulence in vivo. The observed strong mouse-specific defect of PV1(RIPO) at nonpermissive temperature correlated with the translational activity of the HRV2 IRES in this chimeric virus. These unexpected results must be kept in mind when poliovirus variants are tested in CD155 tg mice for their neurovirulent potential, particularly in assays of live attenuated oral poliovirus vaccine lots. Virulence may be masked by adverse species-specific conditions in mouse cells that may not allow accurate prediction of neurovirulence in the human host. Thus, novel poliovirus variants in line for possible development of human vaccines must be tested in nonhuman primates.

  7. [Evaluation of the vaccinal process in skin-scarification and oral immunization of rabbits with live smallpox vaccines].

    PubMed

    Podkuĭko, V N; Vorob'ev, A A; Maksimov, V A

    2005-01-01

    On the basis of comparative experimental evaluation of specific features in the course of the vaccinal process after the immunization of laboratory animals with live smallpox vaccines, intended for oral use (in tablets) and for skin scarification was proposed. In experiments on rabbits, made with the use of virological and immunological methods, the counteraction of the elements constituting the vaccinal process was analyzed, the integral evaluation of its course was given, the greater safety of the oral preparation in comparison with the traditional vaccine for immunization by skin-scarification method were established. The conclusion was made that oral immunization was the safest immunization method under modern conditions and promising one for using live vaccines with population immunity being at a low level or absent.

  8. Vaccination of cattle with Mycobacterium bovis BCG by a combination of systemic and oral routes.

    PubMed

    Buddle, Bryce M; Denis, Michel; Aldwell, Frank E; Martin Vordermeier, H; Glyn Hewinson, R; Neil Wedlock, D

    2008-11-01

    Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine delivered to calves by the subcutaneous (s.c.) or by the oral route in a formulated lipid matrix has been previously shown to induce similar levels of protection against bovine tuberculosis. The current study was aimed at determining whether a combination of delivering BCG by s.c. and oral routes would enhance levels of protection, compared to only one route of vaccination. Forty calves were randomly divided into four groups (10/group). Calves were vaccinated with 10(6)colony forming units (CFU) of BCG Pasteur by the s.c. route or orally with 10(9)CFU BCG incorporated into a lipid formulation. One group received a combination of BCG administered by both the s.c. and oral routes and a non-vaccinated group served as a control. The two groups of calves that received s.c. BCG produced strong IFN-gamma responses in whole blood cultures stimulated with bovine purified protein derivative (PPD) 3 weeks after vaccination. Cattle vaccinated just with oral BCG in a lipid matrix produced a strong IFN-gamma response 8 weeks after vaccination, and peaking at 11 weeks after vaccination. All calves were challenged by the intratracheal route with M. bovis 15 weeks after vaccination and were euthanized and necropsied to assess protection at 17 weeks following challenge. BCG given s.c. or orally induced significant and comparable levels of protection against the virulent challenge. Vaccination of cattle by a combination of s.c./oral routes did not enhance protection beyond that achieved by s.c. or oral vaccination alone. We conclude that vaccination of cattle with BCG by a combination of routes has no beneficial additive effects, compared to a single s.c. administration of BCG or BCG given orally in a lipid formulation.

  9. Spatio-temporal Use of Oral Rabies Vaccines in Fox Rabies Elimination Programmes in Europe.

    PubMed

    Müller, Thomas F; Schröder, Ronald; Wysocki, Patrick; Mettenleiter, Thomas C; Freuling, Conrad M

    2015-01-01

    In Europe, the elimination of wildlife rabies using oral rabies vaccination [ORV] of foxes for more than 30 years has been a success story. Since a comprehensive review on the scope of the different oral rabies vaccine baits distributed across Europe has not been available yet, we evaluated the use of different vaccine baits over the entire period of ORV [1978-2014]. Our findings provide valuable insights into the complexity of ORV programs in terms of vaccine related issues. More than 10 oral vaccines against rabies were used over the past four decades. Depending on many factors, the extent to which oral rabies virus vaccines were used varied considerably resulting in huge differences in the number of vaccine doses disseminated in ORV campaigns as well as in large spatial and temporal overlaps. Although vaccine virus strains derived from the SAD rabies virus isolate were the most widely used, the success of ORV campaigns in Europe cannot be assigned to a single oral rabies virus vaccine alone. Rather, the successful elimination of fox rabies is the result of an interaction of different key components of ORV campaigns, i.e. vaccine strain, vaccine bait and strategy of distribution.

  10. Spatio-temporal Use of Oral Rabies Vaccines in Fox Rabies Elimination Programmes in Europe

    PubMed Central

    Müller, Thomas F.; Schröder, Ronald; Wysocki, Patrick; Mettenleiter, Thomas C.; Freuling, Conrad M.

    2015-01-01

    In Europe, the elimination of wildlife rabies using oral rabies vaccination [ORV] of foxes for more than 30 years has been a success story. Since a comprehensive review on the scope of the different oral rabies vaccine baits distributed across Europe has not been available yet, we evaluated the use of different vaccine baits over the entire period of ORV [1978–2014]. Our findings provide valuable insights into the complexity of ORV programs in terms of vaccine related issues. More than 10 oral vaccines against rabies were used over the past four decades. Depending on many factors, the extent to which oral rabies virus vaccines were used varied considerably resulting in huge differences in the number of vaccine doses disseminated in ORV campaigns as well as in large spatial and temporal overlaps. Although vaccine virus strains derived from the SAD rabies virus isolate were the most widely used, the success of ORV campaigns in Europe cannot be assigned to a single oral rabies virus vaccine alone. Rather, the successful elimination of fox rabies is the result of an interaction of different key components of ORV campaigns, i.e. vaccine strain, vaccine bait and strategy of distribution. PMID:26280895

  11. 78 FR 49444 - Oral Rabies Vaccine Trial; Availability of a Supplement to an Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... Animal and Plant Health Inspection Service Oral Rabies Vaccine Trial; Availability of a Supplement to an... relative to an oral rabies vaccination field trial in New Hampshire, New York, Ohio, Vermont, ] and West.... Richard Chipman, Rabies Program Coordinator, Wildlife Services, APHIS, 59 Chennell Drive, Suite 7,...

  12. 76 FR 48119 - Oral Rabies Vaccine Trial; Availability of a Risk Assessment and an Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... Animal and Plant Health Inspection Service Oral Rabies Vaccine Trial; Availability of a Risk Assessment... Plant Health Inspection Service has prepared an environmental assessment relative to an oral rabies... prepared to assess the risks associated with an experimental rabies vaccine, analyzes the use of...

  13. Oral vaccination of badgers (Meles meles) against tuberculosis: comparison of the protection generated by BCG vaccine strains Pasteur and Danish.

    PubMed

    Murphy, Denise; Costello, Eamon; Aldwell, Frank E; Lesellier, Sandrine; Chambers, Mark A; Fitzsimons, Tara; Corner, Leigh A L; Gormley, Eamonn

    2014-06-01

    Vaccination of badgers by the subcutaneous, mucosal and oral routes with the Pasteur strain of Mycobacterium bovis bacille Calmette-Guérin (BCG) has resulted in significant protection against experimental infection with virulent M. bovis. However, as the BCG Danish strain is the only commercially licensed BCG vaccine for use in humans in the European Union it is the vaccine of choice for delivery to badger populations. As all oral vaccination studies in badgers were previously conducted using the BCG Pasteur strain, this study compared protection in badgers following oral vaccination with the Pasteur and the Danish strains. Groups of badgers were vaccinated orally with 10(8) colony forming units (CFU) BCG Danish 1331 (n = 7 badgers) or 10(8) CFU BCG Pasteur 1173P2 (n = 6). Another group (n = 8) served as non-vaccinated controls. At 12 weeks post-vaccination, the animals were challenged by the endobronchial route with 6 × 10(3) CFU M. bovis, and at 15 weeks post-infection, all of the badgers were euthanased. Vaccination with either BCG strain provided protection against challenge compared with controls. The vaccinated badgers had significantly fewer sites with gross pathology and significantly lower gross pathological severity scores, fewer sites with histological lesions and fewer sites of infection, significantly lower bacterial counts in the thoracic lymph node, and lower bacterial counts in the lungs than the control group. No differences were observed between either of the vaccine groups by any of the pathology and bacteriology measures. The ELISPOT analysis, measuring production of badger interferon - gamma (IFN-γ), was also similar across the vaccinated groups.

  14. Seroepidemiology of Polioviruses among University Students in Northern Italy

    PubMed Central

    Baldo, Vincenzo; Cocchio, Silvia; Lazzari, Roberta; Saracino, Elena; Bertoncello, Chiara; Buja, Alessandra; Trevisan, Andrea

    2012-01-01

    The widespread use of poliovirus vaccination schemes has led to a marked decline in the incidence of paralytic poliomyelitis worldwide, but wild poliovirus is still endemic in some developing countries, and in 2009 a total of 23 countries reported at least 1 case of poliomyelitis caused by wild-strain polio viruses. A serological survey was thus conducted on the immunological status against polioviruses of 318 young adults, classified by their country of origin. Immunity to poliomyelitis was assessed by neutralizing antibody titration in tissues cultured on microplates. The rate of seronegativity (≤1:8) in the study population was 26.7% for poliovirus type 1, 7.2% for type 2, and 22.6% for type 3. In our sample of 318 individuals, 219 (68.9%) were Italian and 99 (31.1%) were from outside the European Union (EU). The proportion of cases found seropositive to polioviruses 1 and 3 decreased significantly with older age; this age-related decrease was more evident in the Italian group than among the non-EU subjects. Any risk of the wild virus recurring and causing paralytic poliomyelitis must be prevented, keeping Europe polio free by means of appropriate immunological protection, until polio has been conclusively eradicated all over the world. Judging from our findings, it may be worth considering administering a fifth dose of polio vaccine to adolescents. PMID:22739695

  15. Safety studies of the oral rabies vaccine SAD B19 in striped skunk (Mephitis mephitis).

    PubMed

    Vos, A; Pommerening, E; Neubert, L; Kachel, S; Neubert, A

    2002-04-01

    Safety of the modified live rabies virus vaccine, SAD B19, was studied in striped skunks (Mephitis mephitis). Seven skunks received 10(7.9) foci formatting units by direct oral administration. In four cages, a vaccinated animal was placed with a control animal, the other three vaccinated skunks were housed individually. Saliva and nasal swabs were collected 1, 2, 4, 24, 48, and 72 hr post-vaccination. From all vaccinated and control animals (n = 11) blood samples were collected 0, 28, 56, 84, and 296 days post-vaccination. Three of seven vaccinated skunks seroconverted. None of the control animals had detectable levels of rabies virus neutralizing antibodies. Also no vaccine virus was isolated from the nasal and saliva swabs collected from any animal. Thus, SAD B19 was innocuous for skunks in our study after direct oral administration at field concentration.

  16. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs.

    PubMed

    Zhou, Ming; Wang, Lei; Zhou, Songqin; Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F

    2015-11-17

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs.

  17. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs

    PubMed Central

    Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F.

    2015-01-01

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs. PMID:26436700

  18. Characterization of outbreak response strategies and potential vaccine stockpile needs for the polio endgame.

    PubMed

    Duintjer Tebbens, Radboud J; Pallansch, Mark A; Wassilak, Steven G F; Cochi, Stephen L; Thompson, Kimberly M

    2016-03-24

    Following successful eradication of wild polioviruses and planned globally-coordinated cessation of oral poliovirus vaccine (OPV), national and global health leaders may need to respond to outbreaks from reintroduced live polioviruses, particularly vaccine-derived polioviruses (VDPVs). Preparing outbreak response plans and assessing potential vaccine needs from an emergency stockpile require consideration of the different national risks and conditions as they change with time after OPV cessation. We used an integrated global model to consider several key issues related to managing poliovirus risks and outbreak response, including the time interval during which monovalent OPV (mOPV) can be safely used following homotypic OPV cessation; the timing, quality, and quantity of rounds required to stop transmission; vaccine stockpile needs; and the impacts of vaccine choices and surveillance quality. We compare the base case scenario that assumes aggressive outbreak response and sufficient mOPV available from the stockpile for all outbreaks that occur in the model, with various scenarios that change the outbreak response strategies. Outbreak response after OPV cessation will require careful management, with some circumstances expected to require more and/or higher quality rounds to stop transmission than others. For outbreaks involving serotype 2, using trivalent OPV instead of mOPV2 following cessation of OPV serotype 2 but before cessation of OPV serotypes 1 and 3 would represent a good option if logistically feasible. Using mOPV for outbreak response can start new outbreaks if exported outside the outbreak population into populations with decreasing population immunity to transmission after OPV cessation, but failure to contain outbreaks resulting in exportation of the outbreak poliovirus may represent a greater risk. The possibility of mOPV use generating new long-term poliovirus excretors represents a real concern. Using the base case outbreak response assumptions, we

  19. Genetic strain modification of a live rabies virus vaccine widely used in Europe for wildlife oral vaccination.

    PubMed

    Cliquet, Florence; Robardet, Emmanuelle; Picard Meyer, Evelyne

    2013-10-01

    In Europe, the main reservoir and vector of rabies has been the red fox (Vulpes vulpes). Oral immunization of foxes with live vaccines, using attenuated rabies strains (SAD B19, SAD Bern), apathogenic mutants of an attenuated strain (SAG2) and the vaccinia-rabies glycoprotein recombinant virus vaccine (V-RG), has been shown to be the most effective method for the control and elimination of rabies. Among all vaccines currently used for wildlife oral vaccination, one vaccine (marketed as SAD Bern strain) has been widely used in Europe since 1992 with the distribution of 17million of baits in 2011. Because of the potential environmental safety risk of a live virus which could revert to virulence, the full genome sequencing of this vaccine was undertaken and the sequence was characterized and compared with those of referenced rabies viruses. The vaccine showed higher similarity to the strains belonging to the SAD B19 vaccine virus strains than to the SAD Bern vaccines. This study is the first one reporting on virus strain identity changes in this attenuated vaccine.

  20. Vaccine-associated paralytic poliomyelitis: a case report of flaccid monoparesis after oral polio vaccine.

    PubMed

    Kim, Sun Jun; Kim, Sung Han; Jee, Young Mee; Kim, Jung Soo

    2007-04-01

    This report describes a case of acute flaccid paralysis after administration of oral polio vaccine (OPV). A 4 month-old male patient with the decreased movement of left lower extremity for 1 month was transferred to the Department of Pediatrics. He received OPV with DTaP at 2 months of age. Flaccid paralysis was detected 4 weeks after OPV immunization. Attempts to isolate Sabin-like viruses in the two stool and CSF samples failed because those specimens were collected more than 2 month after the onset of paralysis. Hypotonic monoparesis (GIV/V), hypotonia and atrophy on the left lower extremity, and ipsilateral claw foot persisted for more than 18 months, while we followed him with rehabilitation therapy. This is the first case of officially approved, recipient vaccine-associated paralytic poliomyelitis in Korea.

  1. Vaccine-associated paralytic poliomyelitis and BCG-osis in an immigrant child with severe combined immunodeficiency syndrome - Texas, 2013.

    PubMed

    Trimble, Robert; Atkins, Jane; Quigg, Troy C; Burns, Cara C; Wallace, Gregory S; Thomas, Mary; Mangla, Anil T; Infante, Anthony J

    2014-08-22

    Poliovirus transmission has been eliminated in most of the world through the use of inactivated poliovirus vaccine (IPV) and live, attenuated oral poliovirus vaccine (OPV). In the United States, use of OPV was discontinued by the year 2000 because of the potential for vaccine-associated paralytic polio (VAPP); an average of eight cases were reported each year in the United States during 1980-2000. Polio eradication efforts in other parts of the world continue to rely on OPV to take advantage of transmission of poliovirus vaccine strains to unvaccinated persons in the population, lower cost, and ease of administration. In 2013, an infant aged 7 months who recently immigrated to the United States from India was referred to a hospital in San Antonio, Texas. The infant had fever, an enlarging skin lesion in the deltoid region with axillary lymphadenopathy, decreased activity, and inability to bear weight on the left leg, progressing to paralysis of the left leg over a 6-week period. Recognition of lymphopenia on complete blood count led to immune evaluation, which revealed the presence of severe combined immunodeficiency syndrome (SCIDS), an inherited disorder. A history of OPV and bacille Calmette-Guérin (BCG) vaccination in India led to the diagnoses of VAPP and BCG-osis, which were confirmed microbiologically. This report demonstrates the importance of obtaining a comprehensive clinical history in a child who has recently immigrated to the United States, with recognition that differing vaccine practices in other countries might require additional consideration of potential etiologies.

  2. Mass Vaccination with a New, Less Expensive Oral Cholera Vaccine Using Public Health Infrastructure in India: The Odisha Model

    PubMed Central

    Kar, Shantanu K.; Sah, Binod; Patnaik, Bikash; Kim, Yang Hee; Kerketta, Anna S.; Shin, Sunheang; Rath, Shyam Bandhu; Ali, Mohammad; Mogasale, Vittal; Khuntia, Hemant K.; Bhattachan, Anuj; You, Young Ae; Puri, Mahesh K.; Lopez, Anna Lena; Maskery, Brian; Nair, Gopinath B.; Clemens, John D.; Wierzba, Thomas F.

    2014-01-01

    Introduction The substantial morbidity and mortality associated with recent cholera outbreaks in Haiti and Zimbabwe, as well as with cholera endemicity in countries throughout Asia and Africa, make a compelling case for supplementary cholera control measures in addition to existing interventions. Clinical trials conducted in Kolkata, India, have led to World Health Organization (WHO)-prequalification of Shanchol, an oral cholera vaccine (OCV) with a demonstrated 65% efficacy at 5 years post-vaccination. However, before this vaccine is widely used in endemic areas or in areas at risk of outbreaks, as recommended by the WHO, policymakers will require empirical evidence on its implementation and delivery costs in public health programs. The objective of the present report is to describe the organization, vaccine coverage, and delivery costs of mass vaccination with a new, less expensive OCV (Shanchol) using existing public health infrastructure in Odisha, India, as a model. Methods All healthy, non-pregnant residents aged 1 year and above residing in selected villages of the Satyabadi block (Puri district, Odisha, India) were invited to participate in a mass vaccination campaign using two doses of OCV. Prior to the campaign, a de jure census, micro-planning for vaccination and social mobilization activities were implemented. Vaccine coverage for each dose was ascertained as a percentage of the censused population. The direct vaccine delivery costs were estimated by reviewing project expenditure records and by interviewing key personnel. Results The mass vaccination was conducted during May and June, 2011, in two phases. In each phase, two vaccine doses were given 14 days apart. Sixty-two vaccination booths, staffed by 395 health workers/volunteers, were established in the community. For the censused population, 31,552 persons (61% of the target population) received the first dose and 23,751 (46%) of these completed their second dose, with a drop-out rate of 25

  3. An Estimation of Private Household Costs to Receive Free Oral Cholera Vaccine in Odisha, India

    PubMed Central

    Mogasale, Vittal; Kar, Shantanu K.; Kim, Jong-Hoon; Mogasale, Vijayalaxmi V.; Kerketta, Anna S.; Patnaik, Bikash; Rath, Shyam Bandhu; Puri, Mahesh K.; You, Young Ae; Khuntia, Hemant K.; Maskery, Brian; Wierzba, Thomas F.; Sah, Binod

    2015-01-01

    Background Service provider costs for vaccine delivery have been well documented; however, vaccine recipients’ costs have drawn less attention. This research explores the private household out-of-pocket and opportunity costs incurred to receive free oral cholera vaccine during a mass vaccination campaign in rural Odisha, India. Methods Following a government-driven oral cholera mass vaccination campaign targeting population over one year of age, a questionnaire-based cross-sectional survey was conducted to estimate private household costs among vaccine recipients. The questionnaire captured travel costs as well as time and wage loss for self and accompanying persons. The productivity loss was estimated using three methods: self-reported, government defined minimum daily wages and gross domestic product per capita in Odisha. Findings On average, families were located 282.7 (SD = 254.5) meters from the nearest vaccination booths. Most family members either walked or bicycled to the vaccination sites and spent on average 26.5 minutes on travel and 15.7 minutes on waiting. Depending upon the methodology, the estimated productivity loss due to potential foregone income ranged from $0.15 to $0.29 per dose of cholera vaccine received. The private household cost of receiving oral cholera vaccine constituted 24.6% to 38.0% of overall vaccine delivery costs. Interpretation The private household costs resulting from productivity loss for receiving a free oral cholera vaccine is a substantial proportion of overall vaccine delivery cost and may influence vaccine uptake. Policy makers and program managers need to recognize the importance of private costs and consider how to balance programmatic delivery costs with private household costs to receive vaccines. PMID:26352143

  4. An Estimation of Private Household Costs to Receive Free Oral Cholera Vaccine in Odisha, India.

    PubMed

    Mogasale, Vittal; Kar, Shantanu K; Kim, Jong-Hoon; Mogasale, Vijayalaxmi V; Kerketta, Anna S; Patnaik, Bikash; Rath, Shyam Bandhu; Puri, Mahesh K; You, Young Ae; Khuntia, Hemant K; Maskery, Brian; Wierzba, Thomas F; Sah, Binod

    2015-01-01

    Service provider costs for vaccine delivery have been well documented; however, vaccine recipients' costs have drawn less attention. This research explores the private household out-of-pocket and opportunity costs incurred to receive free oral cholera vaccine during a mass vaccination campaign in rural Odisha, India. Following a government-driven oral cholera mass vaccination campaign targeting population over one year of age, a questionnaire-based cross-sectional survey was conducted to estimate private household costs among vaccine recipients. The questionnaire captured travel costs as well as time and wage loss for self and accompanying persons. The productivity loss was estimated using three methods: self-reported, government defined minimum daily wages and gross domestic product per capita in Odisha. On average, families were located 282.7 (SD = 254.5) meters from the nearest vaccination booths. Most family members either walked or bicycled to the vaccination sites and spent on average 26.5 minutes on travel and 15.7 minutes on waiting. Depending upon the methodology, the estimated productivity loss due to potential foregone income ranged from $0.15 to $0.29 per dose of cholera vaccine received. The private household cost of receiving oral cholera vaccine constituted 24.6% to 38.0% of overall vaccine delivery costs. The private household costs resulting from productivity loss for receiving a free oral cholera vaccine is a substantial proportion of overall vaccine delivery cost and may influence vaccine uptake. Policy makers and program managers need to recognize the importance of private costs and consider how to balance programmatic delivery costs with private household costs to receive vaccines.

  5. Large intestine-targeted nanoparticle-releasing oral vaccine to control genitorectal viral infection

    PubMed Central

    Zhu, Qing; Talton, James; Zhang, Guofeng; Cunningham, Tshaka; Wang, Zijian; Waters, Robert C.; Kirk, James; Eppler, Bärbel; Dennis M, Klinman; Sui, Yongjun; Gagnon, Susan; Belyakov, Igor M.; Mumper, Russell J.; Berzofsky, Jay A.

    2012-01-01

    Both rectal and vaginal mucosal surfaces serve as transmission routes for pathogenic microorganisms. Vaccination through large intestinal mucosa, previously proven protective for both mucosal sites in animal studies, can be achieved successfully by direct intra-colorectal (i.c.r.) administration, which is, however, clinically impractical. Oral delivery seems preferable, but risks vaccine destruction in the upper gastrointestinal tract. Therefore, we designed a large intestine-targeted oral delivery with pH-dependent microparticles containing vaccine nanoparticles, which induced colorectal immunity in mice comparably to colorectal vaccination and protected against rectal or vaginal viral challenge. Conversely, vaccine targeted to the small intestine induced only small intestinal immunity and provided no rectal or vaginal protection, demonstrating functional compartmentalization within the gut mucosal immune system. Therefore, using this oral vaccine delivery system to target the large intestine, but not the small intestine, may represent a feasible novel strategy for immune protection of rectal and vaginal mucosa. PMID:22797811

  6. Oral vaccination of foxes against rabies in Turkey between 2008 and 2010.

    PubMed

    Un, Hikmet; Eskiizmirliler, Seza; Unal, Nil; Freuling, Conrad M; Johnson, Nicholas; Fooks, Anthony R; Müller, Thomas; Vos, Adriaan; Aylan, Orhan

    2012-01-01

    Following a sustained spill-over event from dogs to foxes, fox rabies spread rapidly in the Aegean region, Turkey. In order to control the outbreak a program of oral vaccination of foxes against rabies was introduced. In the selected vaccination area three annual campaigns between 2008 and 2010 were undertaken during the winter months whereby the vaccine baits were distributed exclusively by plane using a density of 18 baits per km2. Subsequently, fox rabies cases were reported only from locations bordering the non-vaccinated areas. Hence, it was shown that fox rabies control by means of oral rabies vaccination is feasible in Turkey. However, for the progress towards the elimination of fox-mediated rabies in Turkey to be maintained, it is necessary that political and financial support is secured to extend oral vaccination where infected foxes remain.

  7. Polio endgame: the global introduction of inactivated polio vaccine.

    PubMed

    Patel, Manish; Zipursky, Simona; Orenstein, Walt; Garon, Julie; Zaffran, Michel

    2015-05-01

    In 2013, the World Health Assembly endorsed a plan that calls for the ultimate withdrawal of oral polio vaccines (OPV) from all immunization programs globally. The withdrawal would begin in a phased manner with removal of the type 2 component of OPV in 2016 through a global switch from trivalent OPV to bivalent OPV (containing only types 1 and 3). To mitigate risks associated with immunity gaps after OPV type 2 withdrawal, the WHO Strategic Advisory Group of Experts has recommended that all 126 OPV-only using countries introduce at least one dose of inactivated polio vaccine into routine immunization programs by end-2015, before the trivalent OPV-bivalent OPV switch. The introduction of inactivated polio vaccine would reduce risks of reintroduction of type 2 poliovirus by providing some level of seroprotection, facilitating interruption of transmission if outbreaks occur, and accelerating eradication by boosting immunity to types 1 and 3 polioviruses.

  8. Chemical Synthesis, Versatile Structures and Functions of Tailorable Adjuvants for Optimizing Oral Vaccination.

    PubMed

    Zhang, Lei; Hu, Chaohua; Yang, Wendi; Liu, Xiaolin; Wu, Yunkun

    2016-12-28

    Oral vaccines have become a recent focus because of their potential significance in disease prevention and therapy. In the development of oral vaccine-based therapeutics, synthetic materials with tailorable structures and versatile functions can act as antigen conveyers with adjuvant effects, reduce the time cost for vaccine optimization, and provide high security and enhanced immunity. This review presents an overview of the current status of tailoring synthetic adjuvants for oral vaccination, modification strategies for producing effectors with specific structures and functions, enhancement of immune-associated efficiencies, including the barrier-crossing capability to protect antigens in the gastrointestinal tract, coordination of the antigens penetrating mucosa and cell barriers, targeting of concentrated antigens to immune-associated cells, and direct stimulation of immune cells. Finally, we focus on prospective synthetic adjuvants that facilitate the use of oral vaccines via two approaches, namely, in vivo antigen expression and cancer immunotherapy.

  9. Human Papillomavirus Vaccine Intention among College Men: What's Oral Sex Got to Do with It?

    ERIC Educational Resources Information Center

    Crosby, Richard A.; DiClemente, Ralph J.; Salazar, Laura F.; Nash, Rachel; Younge, Sinead; Head, Sara

    2012-01-01

    Objective: To identify associations between engaging in oral sex and perceived risk of oral cancer among college men. Also, to identify associations, and their moderating factors, between oral sex and human papillomavirus (HPV) vaccine acceptance. Methods: Young men were recruited from 2 university campuses in the South (N = 150). Men completed an…

  10. Human Papillomavirus Vaccine Intention among College Men: What's Oral Sex Got to Do with It?

    ERIC Educational Resources Information Center

    Crosby, Richard A.; DiClemente, Ralph J.; Salazar, Laura F.; Nash, Rachel; Younge, Sinead; Head, Sara

    2012-01-01

    Objective: To identify associations between engaging in oral sex and perceived risk of oral cancer among college men. Also, to identify associations, and their moderating factors, between oral sex and human papillomavirus (HPV) vaccine acceptance. Methods: Young men were recruited from 2 university campuses in the South (N = 150). Men completed an…

  11. Use of Rhodamine B as a biomarker for oral plague vaccination of prairie dogs

    USGS Publications Warehouse

    Fernandez, Julia Rodriguez-Ramos; Rocke, Tonie E.

    2011-01-01

    Oral vaccination against Yersinia pestis could provide a feasible approach for controlling plague in prairie dogs (Cynomys spp.) for conservation and public health purposes. Biomarkers are useful in wildlife vaccination programs to demonstrate exposure to vaccine baits. Rhodamine B (RB) was tested as a potential biomarker for oral plague vaccination because it allows nonlethal sampling of animals through hair, blood, and feces. We found that RB is an appropriate marker for bait uptake studies of C. ludovicianus) when used at concentrations <0.5% of bait mass dosed to deliver >10 mg RB per kg target animal mass. Whiskers with follicles provided the best sample for RB detection.

  12. Preliminary evaluation of Raboral V-RG® oral rabies vaccine in Arctic foxes (Vulpes lagopus).

    PubMed

    Follmann, Erich; Ritter, Don; Swor, Rhonda; Dunbar, Mike; Hueffer, Karsten

    2011-10-01

    We tested the Raboral V-RG® recombinant oral rabies vaccine for its response in Arctic foxes (Vulpes lagopus), the reservoir of rabies virus in the circumpolar North. The vaccine, which is currently the only licensed oral rabies vaccine in the United States, induced a strong antibody response and protected foxes against a challenge of 500,000 mouse intracerebral lethal dose 50% of an Arctic rabies virus variant. However, one unvaccinated control fox survived challenge with rabies virus, either indicating a high resistance of Arctic foxes to rabies infection or a previous exposure that induced immunity. This preliminary study suggested that Raboral V-RG vaccine may be efficacious in Arctic foxes.

  13. [Vaccination].

    PubMed

    Graubner, U B; Liese, J; Belohradsky, B H

    2001-09-01

    Vaccination has been an important part of antiinfectious prophylaxis in pediatric oncology comprising immunizations with special indication like varicella vaccine and follow-up of routine immunizations after chemotherapy and bone marrow transplantation (BMT). Studies from the last decade demonstrate a loss of long term immunity to immunization preventable disease in most patients with chemotherapy and BMT who had received appropriate immunization before. So far routine vaccination programs following intensive chemotherapy have not been studied prospectively. Immunization programs following BMT have shown that immunizations with tetanus toxoid, diphtheria toxoid, inactivated poliovirus vaccine and influenza vaccine - given at least 12 months after transplantation - are safe and effective. Vaccination with live attenuated trivalent vaccine against measles, mumps and rubella in patients without chronic "graft versus host disease" (GVHD) and without ongoing immunosuppressive therapy, performed 24 months after transplantation, proved to be safe too. Recommendations have been published by 5 different official groups: (1.) "Ständige Impfkommission" (STIKO) and (2.) "Deutsche Gesellschaft für pädiatrische Infektiologie" (DGPI) recommend varicella vaccine für children with leukemia in remission for at least 12 months, for children with solid tumors and for patients getting an organ transplantation. Both societies do not comment on the schedule of booster vaccinations (with live attenuated vaccines) after the end of chemotherapy and after BMT. (3.) "Qualitätssicherungsgruppe" der "Gesellschaft für pädiatrische Onkologie und Hämatologie" (QS-GPOH) recommends immunization with nonliving vaccines when the patient is off therapy for at least 3 months and immunization with live attenuated vaccines when he is off therapy for at least 6 months. This group does not comment on varicella vaccine which has been controversial among pediatric oncologists. (4.) The " Infectious

  14. Cold-adapted poliovirus mutants bypass a postentry replication block.

    PubMed

    Dove, A W; Racaniello, V R

    1997-06-01

    In the current model of poliovirus entry, the initial interaction of the native virion with its cellular receptor is followed by a transition to an altered form, which then acts as an intermediate in viral entry. While the native virion sediments at 160S in a sucrose gradient, the altered particle sediments at 135S, has lost the coat protein VP4, and has become more hydrophobic. Altered particles can be found both associated with cells and in the culture medium. It has been hypothesized that the cell-associated 135S particle releases the viral genome into the cell cytoplasm and that nonproductive transitions to the 135S form are responsible for the high particle-to-PFU ratio observed for polioviruses. At 25 degrees C, a temperature at which the transition to 135S particles does not occur, the P1/Mahoney strain of poliovirus was unable to replicate, and cold-adapted (ca) mutants were selected from the population. These mutants have not gained the ability to convert to 135S particles at 25 degrees C, and the block to wild-type (wt) infection at low temperatures is not at the level of cellular entry. The particle-to-PFU ratio of poliovirus does not change at 25 degrees C in the absence of alteration. Three independent amino acid changes in the 2C coding region were identified in ca mutants, at positions 218 (Val to Ile), 241 (Arg to Ala), and 309 (Met to Val). Introduction of any of these mutations individually into wt poliovirus by site-directed mutagenesis confers the ca phenotype. All three serotypes of the Sabin vaccine strains and the P3/Leon strain of poliovirus also exhibit the ca phenotype. These results do not support a model of poliovirus entry into cells that includes an obligatory transition to the 135S particle.

  15. Genomic Characterization of Human and Environmental Polioviruses Isolated in Albania

    PubMed Central

    Divizia, Maurizio; Palombi, Leonardo; Buonomo, Ersilia; Donia, Domenica; Ruscio, Vito; Equestre, Michele; Leno, Luljeta; Panà, Augusto; Degener, Anna Marta

    1999-01-01

    Between April and December 1996, a serious outbreak of poliomyelitis occurred in Albania; almost 140 subjects were involved, and the episode presented an unusually high mortality rate (12%). During the outbreak, water samples from the Lana River in Tirana, Albania, and stool samples from two cases of paralytic poliomyelitis were collected and analyzed for the presence of polioviruses. Six polioviruses were isolated from the environmental and human samples, according to standard methods. All the samples were characterized by partial genomic sequencing of 330 bases across the 5′ untranslated region (5′-UTR) (nucleotide positions 200 to 530) and of 300 bases across the VP1 region (nucleotide positions 2474 to 2774). Comparison of these sequences with those present in data banks permitted the identification of environmental isolates Lana A and Lana B as, respectively, a Sabin-like type 2 poliovirus and an intertypic recombinant poliovirus (Sabin-like type 2/wild type 1), both bearing a G instead of an A at nucleotide position 481. The two other environmental polioviruses were similar to the isolates from the paralytic cases. They were characterized by a peculiar 5′-UTR and by a VP1 region showing 98% homology with the Albanian epidemic type 1 isolates reported by other authors. This study confirms the environmental circulation in Albania of recombinant poliovirus strains, likely sustained by a massive vaccination effort and by the presence in the environment of a type 1 poliovirus, as isolated from the Lana River in Tirana about 2 months before the first case of symptomatic acute flaccid paralysis was reported in this town. PMID:10427045

  16. Assessment of the efficacy of oral vaccination of livestock guardian dogs in the framework of oral rabies vaccination of wild canids in Israel.

    PubMed

    Yakobson, B A; King, R; Sheichat, N; Eventov, B; David, D

    2008-01-01

    Since 1956, red foxes (Vulpes vulpes) and golden jackals (Canis aureus) have been the primary vectors maintaining wildlife rabies in Israel. Oral rabies vaccination of wild canids, initiated in 1998, resulted in near-elimination of the disease in wildlife by 2005. In 2005 and 2006, an outbreak of rabies was observed in stray dogs in the vaccinated area of the Golan Heights, with no cases in foxes or jackals. Epidemiological investigations showed that the infected dogs were from territories across the border. This was confirmed by molecular analysis, which showed that the virus was different from rabies isolates endemic to this area. The objective of this study was to determine bait acceptance and the feasibility of oral rabies vaccination in packs of livestock guardian dogs. Coated sachets and fishmeal polymer baits of Raboral V-RG (Merial, USA) were tested in five different test zones. Both formats were hand-fed to individual dogs and to dogs belonging to dog packs. Bait uptake and consumption were observed in each dog. The estimated efficacy of oral rabies vaccination was very low (a maximum of 28%). Vaccine delivery problems were observed in dogs belonging to packs, whereby dominant animals consumed multiple baits and in competitive situations baits were swallowed whole. The uncertainty of oral vaccination necessitated turning to other methods to control this outbreak: stray dogs were removed and herd dogs were vaccinated parenterally. This study showed that oral rabies vaccination of dogs in packs using baits designed for wildlife would not be effective. Possibly, different baits or steps to circumvent competition within the pack will make this approach feasible.

  17. Influence of oral sex and oral cancer information on young adults' oral sexual-risk cognitions and likelihood of HPV vaccination.

    PubMed

    Stock, Michelle L; Peterson, Laurel M; Houlihan, Amy E; Walsh, Laura A

    2013-01-01

    Public health information and educational interventions regarding human papillomavirus (HPV) have focused on the link between vaginal sex and cervical cancer among women. Many people are unaware that HPV can be transmitted through oral sex or that HPV causes oral cancers. Given that HPV infections and unprotected oral sex are increasing, research on oral sex-related HPV risk is important. This study examined the effect of a brief informational intervention regarding HPV and oral sex on the sexual risk cognitions of young adults. College students (N = 238) read information on HPV, oral sex, and oral cancer or no information. Participants then completed measures of oral sex and HPV knowledge, oral sex willingness, HPV vaccination likelihood, and risk perceptions. Participants who read the information on HPV and oral sex and cancer (compared to those who did not) reported greater knowledge, perceived risk and concern, and lower willingness to engage in oral sex. These effects were only significant among women. However, men reported a higher likelihood of future HPV vaccination compared to women who had not yet received the vaccine. Focusing on oral sex and cancer, this study adds to research investigating ways to reduce HPV infections.

  18. Diphtheria, tetanus and poliovirus antibody persistence 5 years after vaccination of pre-schoolers with two different diphtheria, tetanus and inactivated poliomyelitis vaccines (Td-IPV or DT-IPV) and immune responses to a booster dose of DTaP-IPV.

    PubMed

    Gajdos, Vincent; Vidor, Emmanuel; Richard, Patrick; Tran, Clément; Sadorge, Christine

    2015-07-31

    This follow-up study assessed the 5-year persistence of vaccine-induced antibodies (Td-IPV or DT-IPV) and the immune response to a booster dose of DTaP-IPV. This was an open-label, parallel-group (two arms), multicentre trial performed at 44 study sites in France. Children aged 11-13 years, of either sex, who received Td-IPV (Revaxis(®)) and DT-IPV (DT Polio(®)) vaccines at 6 years of age in one previous open-label trial with no further vaccination against diphtheria, tetanus, pertussis or poliomyelitis, were enrolled. All participants received a single intramuscular booster dose (0.5mL) of DTaP-IPV vaccine (Tetravac-Acellulaire(®)). Study endpoints were based on antibody persistence and post-booster immune responses. Safety was monitored throughout the study. Descriptive statistics were used for all analyses. Of the 758 children included in the previous study, 274 were included in this follow-up study; 129 had previously been vaccinated with Td-IPV, and 145 had previously received DT-IPV. At least 96.5% of participants in both groups presented an anti-diphtheria and anti-tetanus concentration ≥0.01IU/mL, and anti-poliovirus types 1-3 titres≥8 (1/dilution). Following vaccination with DTaP-IPV, anti-diphtheria and anti-tetanus antibody concentrations ≥0.1IU/mL and anti-poliovirus types 1-3 antibody titres ≥8 (1/dilution) were achieved in all participants. DTaP-IPV was well tolerated in this study. There were no serious adverse events during the study, and no participant withdrew because of adverse events. The present study confirmed the long-term immunity conferred by Td-IPV when given as a booster dose, and supports the use of Td-IPV as a second booster at 6 years of age in children previously vaccinated against diphtheria, tetanus and poliomyelitis types 1-3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The potential of oral vaccines for disease control in wildlife species.

    PubMed

    Cross, M L; Buddle, B M; Aldwell, F E

    2007-11-01

    Numerous infectious diseases caused by bacteria or viruses persist in developed and developing countries due to ongoing transmission among wildlife reservoir species. Such diseases become the target of control and management programmes in cases where they represent a threat to public health (for example rabies, sylvatic plague, Lyme disease), or livestock production (for example bovine tuberculosis, brucellosis, pseudorabies), or where they threaten the survival of endangered animal populations. In the majority of cases, lethal control operations are neither economically feasible nor publicly supported as a practical means for disease management. Prophylactic vaccination has emerged over the last 15 years as an alternative control strategy for wildlife diseases, mainly driven by the success of widescale oral rabies vaccination programmes for meso-carnivores in North America and Northern Europe. Different methods have been trialled for the effective delivery of wildlife vaccines in the field, however oral vaccination remains the most widely used approach. Successful implementation of an oral wildlife vaccine is dependent on a combination of three components: an efficacious immunogen, a suitable delivery vehicle, and a species-specific bait. This review outlines the major wildlife disease problems for which oral vaccination is currently under consideration as a disease management tool, and also focuses on the technological challenges that face wildlife vaccine development. The major conclusion is that attenuated or recombinant live microbes represent the most widely-used vaccines that can be delivered by the oral route; this in turn places major emphasis on effective delivery systems (to maintain vaccine viability), and on selective baiting systems, as the keys to wildlife vaccine success. Oral vaccination is a valuable adjunct or alternative strategy to culling for the control of diseases which persist in wildlife reservoirs.

  20. Combined hexavalent diphtheria-tetanus-acellular pertussis-hepatitis B-inactivated poliovirus-Haemophilus influenzae type b vaccine; Infanrix™ hexa

    PubMed Central

    Baldo, Vincenzo; Bonanni, Paolo; Castro, Marcela; Gabutti, Giovanni; Franco, Elisabetta; Marchetti, Federico; Prato, Rosa; Vitale, Francesco

    2014-01-01

    Infant vaccination using 2-dose priming at 3 and 5 mo of age with a booster at 11–12 mo of age was pioneered in Italy. The 3-5-11 schedule is now used in a growing number of European countries. Infanrix™ hexa (DTPa-HBV-IPV/Hib, GlaxoSmithKline Vaccines) was first licensed for use in 2000 and has been the only pediatric hexavalent vaccine available since 2005. We reviewed available clinical trial data describing the immunogenicity of DTPa-HBV-IPV/Hib when administered at 3, 5, and 11 mo of age, and conducted an analysis of safety using global and Italian post-marketing surveillance data. In Italy, DTPa-HBV-IPV/Hib has a demonstrated safety record extending over a decade of use, it has been associated with record levels of vaccine coverage, and with sustained disease control in vaccinated cohorts. Hexavalent vaccines will continue to contribute to high vaccine coverage in Italy and across Europe. PMID:24004825

  1. Combined hexavalent diphtheria-tetanus-acellular pertussis-hepatitis B-inactivated poliovirus-Haemophilus influenzae type B vaccine; Infanrix™ hexa: twelve years of experience in Italy.

    PubMed

    Baldo, Vincenzo; Bonanni, Paolo; Castro, Marcela; Gabutti, Giovanni; Franco, Elisabetta; Marchetti, Federico; Prato, Rosa; Vitale, Francesco

    2014-01-01

    Infant vaccination using 2-dose priming at 3 and 5 mo of age with a booster at 11-12 mo of age was pioneered in Italy. The 3-5-11 schedule is now used in a growing number of European countries. Infanrix™ hexa (DTPa-HBV-IPV/Hib, GlaxoSmithKline Vaccines) was first licensed for use in 2000 and has been the only pediatric hexavalent vaccine available since 2005. We reviewed available clinical trial data describing the immunogenicity of DTPa-HBV-IPV/Hib when administered at 3, 5, and 11 mo of age, and conducted an analysis of safety using global and Italian post-marketing surveillance data. In Italy, DTPa-HBV-IPV/Hib has a demonstrated safety record extending over a decade of use, it has been associated with record levels of vaccine coverage, and with sustained disease control in vaccinated cohorts. Hexavalent vaccines will continue to contribute to high vaccine coverage in Italy and across Europe.

  2. Plastid Molecular Pharming I. Production of Oral Vaccines via Plastid Transformation.

    PubMed

    Berecz, Bernadett; Zelenyánszki, Helga; Pólya, Sára; Tamás-Nyitrai, Cecília; Oszvald, Mária

    2017-01-01

    Vaccines produced in plants have opened up new opportunities in vaccination. Among the various categories of vaccines, the recombinant vaccine is generally regarded as the most economical and safest type because it cannot cause disease and does not require large-scale cultivation of pathogens. Due to the low cost of their cultivation, plants may represent viable alternative platforms for producing subunit vaccines. Genetic engineering of plastids is the innovation of the last three decades and has numerous benefits when compared to nuclear transformation. Due to the high level of expression, oral vaccines produced in transplastomic plants do not have to be purified as they can be consumed raw, which, therefore, reduces the cost of preparation, transportation and handling of the vaccines. Oral vaccination also excludes the risk of other infections or contaminations, while compartmentation of the plant cell provides an excellent encapsulation to the antigen within the plastid. Herein we review the main biotechnological and immunological aspects of the progress achieved in the field of plastid derived edible vaccines during the last decade. As there is a public debate against genetically modified crops, the advantages and limitations of oral vaccines are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Development of oral cancer vaccine using recombinant Bifidobacterium displaying Wilms' tumor 1 protein.

    PubMed

    Kitagawa, Koichi; Oda, Tsugumi; Saito, Hiroki; Araki, Ayame; Gonoi, Reina; Shigemura, Katsumi; Hashii, Yoshiko; Katayama, Takane; Fujisawa, Masato; Shirakawa, Toshiro

    2017-06-01

    Several types of vaccine-delivering tumor-associated antigens (TAAs) have been developed in basic and clinical research. Wilms' tumor 1 (WT1), identified as a gene responsible for pediatric renal neoplasm, is one of the most promising TAA for cancer immunotherapy. Peptide and dendritic cell-based WT1 cancer vaccines showed some therapeutic efficacy in clinical and pre-clinical studies but as yet no oral WT1 vaccine can be administrated in a simple and easy way. In the present study, we constructed a novel oral cancer vaccine using a recombinant Bifidobacterium longum displaying WT1 protein. B. longum 420 was orally administered into mice inoculated with WT1-expressing tumor cells for 4 weeks to examine anti-tumor effects. To analyze the WT1-specific cellular immune responses to oral B. longum 420, mice splenocytes were isolated and cytokine production and cytotoxic activities were determined. Oral administrations of B. longum 420 significantly inhibited WT1-expressing tumor growth and prolonged survival in mice. Immunohistochemical study and immunological assays revealed that B. longum 420 substantially induced tumor infiltration of CD4(+)T and CD8(+)T cells, systemic WT1-specific cytokine production, and cytotoxic activity mediated by WT1-epitope specific cytotoxic T lymphocytes, with no apparent adverse effects. Our novel oral cancer vaccine safely induced WT1-specific cellular immunity via activation of the gut mucosal immune system and achieved therapeutic efficacy with several practical advantages over existing non-oral vaccines.

  4. An oral vaccine against candidiasis generated by a yeast molecular display system.

    PubMed

    Shibasaki, Seiji; Aoki, Wataru; Nomura, Takashi; Miyoshi, Ayuko; Tafuku, Senji; Sewaki, Tomomitsu; Ueda, Mitsuyoshi

    2013-12-01

    Enolase 1 (Eno1p) of Candida albicans is an immunodominant antigen. However, conventional technologies for preparing an injectable vaccine require purification of the antigenic protein and preparation of an adjuvant. To develop a novel type of oral vaccine against candidiasis, we generated Saccharomyces cerevisiae cells that display the Eno1p antigen on their surfaces. Oral delivery of the engineered S. cerevisiae cells prolonged survival rate of mice that were subsequently challenged with C. albicans. Given that a vaccine produced using molecular display technology avoids the need for protein purification, this oral vaccine offers a promising alternative to the use of conventional and injectable vaccines for preventing a range of infectious diseases.

  5. Oral vaccination of racoons (Procyon lotor) with baculovirus-expressed rabies virus glycoprotein.

    PubMed

    Fu, Z F; Rupprecht, C E; Dietzschold, B; Saikumar, P; Niu, H S; Babka, I; Wunner, W H; Koprowski, H

    1993-01-01

    Successful field oral vaccination and protection against viral diseases have so far been achieved only with live-attenuated or live-recombinant virus vaccines. In this communication, we present data that demonstrate that a glycoprotein derived from recombinant baculovirus-infected insect cells is efficacious as an oral vaccine. The glycoprotein (G) of rabies virus (Evelyn Rokitnicki Abelseth strain) was abundantly expressed in a baculovirus expression system and oral vaccination of racoons with the baculovirus-expressed G protein resulted in the production of rabies virus-neutralizing antibodies and protection against a lethal challenge with a street rabies virus. The potential for using the baculovirus-expressed G protein for oral immunization of wildlife is discussed.

  6. Oral vaccines: directed safe passage to the front line of defense.

    PubMed

    Zhu, Qing; Berzofsky, Jay A

    2013-01-01

    Oral vaccines are safe and easy to administer and convenient for all ages. They have been successfully developed to protect from many infectious diseases acquired through oral transmission. We recently found in animal models that formulation of oral vaccines in a nanoparticle-releasing microparticle delivery system is a viable approach for selectively inducing large intestinal protective immunity against infections at rectal and genital mucosae. These large-intestine targeted oral vaccines are a potential substitute for the intracolorectal immunization, which has been found to be effective against rectogenital infections but is not feasible for mass vaccination. Moreover, the newly developed delivery system can be modified to selectively target either the small or large intestine for immunization and accordingly revealed a regionalized immune system in the gut. Future applications and research endeavors suggested by the findings are discussed.

  7. Multisite HPV16/18 Vaccine Efficacy Against Cervical, Anal, and Oral HPV Infection

    PubMed Central

    Kreimer, Aimée R.; Schiffman, Mark; Herrero, Rolando; Wacholder, Sholom; Rodriguez, Ana Cecilia; Lowy, Douglas R.; Porras, Carolina; Schiller, John T.; Quint, Wim; Jimenez, Silvia; Safaeian, Mahboobeh; Struijk, Linda; Schussler, John; Hildesheim, Allan; Gonzalez, Paula

    2016-01-01

    Background: Previous Costa Rica Vaccine Trial (CVT) reports separately demonstrated vaccine efficacy against HPV16 and HPV18 (HPV16/18) infections at the cervical, anal, and oral regions; however, the combined overall multisite efficacy (protection at all three sites) and vaccine efficacy among women infected with HPV16 or HPV18 prior to vaccination are less known. Methods: Women age 18 to 25 years from the CVT were randomly assigned to the HPV16/18 vaccine (Cervarix) or a hepatitis A vaccine. Cervical, oral, and anal specimens were collected at the four-year follow-up visit from 4186 women. Multisite and single-site vaccine efficacies (VEs) and 95% confidence intervals (CIs) were computed for one-time detection of point prevalent HPV16/18 in the cervical, anal, and oral regions four years after vaccination. All statistical tests were two-sided. Results: The multisite woman-level vaccine efficacy was highest among “naïve” women (HPV16/18 seronegative and cervical HPV high-risk DNA negative at vaccination) (vaccine efficacy = 83.5%, 95% CI = 72.1% to 90.8%). Multisite woman-level vaccine efficacy was also demonstrated among women with evidence of a pre-enrollment HPV16 or HPV18 infection (seropositive for HPV16 and/or HPV18 but cervical HPV16/18 DNA negative at vaccination) (vaccine efficacy = 57.8%, 95% CI = 34.4% to 73.4%), but not in those with cervical HPV16 and/or HPV18 DNA at vaccination (anal/oral HPV16/18 VE = 25.3%, 95% CI = -40.4% to 61.1%). Concordant HPV16/18 infections at two or three sites were also less common in HPV16/18-infected women in the HPV vaccine vs control arm (7.4% vs 30.4%, P < .001). Conclusions: This study found high multisite vaccine efficacy among “naïve” women and also suggests the vaccine may provide protection against HPV16/18 infections at one or more anatomic sites among some women infected with these types prior to HPV16/18 vaccination. PMID:26467666

  8. Stability of vaccinia-vectored recombinant oral rabies vaccine under field conditions: a 3-year study.

    PubMed

    Hermann, Joseph R; Fry, Alethea M; Siev, David; Slate, Dennis; Lewis, Charles; Gatewood, Donna M

    2011-10-01

    Rabies is an incurable zoonotic disease caused by rabies virus, a member of the rhabdovirus family. It is transmitted through the bite of an infected animal. Control methods, including oral rabies vaccination (ORV) programs, have led to a reduction in the spread and prevalence of the disease in wildlife. This study evaluated the stability of RABORAL, a recombinant vaccinia virus vaccine that is used in oral rabies vaccination programs. The vaccine was studied in various field microenvironments in order to describe its viability and facilitate effective baiting strategies. Field microenvironments influenced the stability of this vaccine in this study. This study emphasizes the importance of understanding how vaccines perform under varying field conditions in order to plan effective baiting strategies.

  9. Comparison of oral and intramuscular recombinant canine distemper vaccination in African wild dogs (Lycaon pictus).

    PubMed

    Connolly, Maren; Thomas, Patrick; Woodroffe, Rosie; Raphael, Bonnie L

    2013-12-01

    A series of three doses of recombinant canary-pox-vectored canine distemper virus vaccine was administered at 1-mo intervals, orally (n = 8) or intramuscularly (n = 13), to 21 previously unvaccinated juvenile African wild dogs (Lycaon pictus) at the Wildlife Conservation Society's Bronx Zoo. Titers were measured by serum neutralization at each vaccination and at intervals over a period of 3.5-21.5 mo after the initial vaccination. All postvaccination titers were negative for orally vaccinated animals at all sampling time points. Of the animals that received intramuscular vaccinations, 100% had presumed protective titers by the end of the course of vaccination, but only 50% of those sampled at 6.5 mo postvaccination had positive titers. None of the three animals sampled at 21.5 mo postvaccination had positive titers.

  10. Poliovirus immunity in newly resettled adult refugees in Idaho, United States of America.

    PubMed

    Roscoe, Clay; Gilles, Ryan; Reed, Alex J; Messerschmidt, Matt; Kinney, Rebecca

    2015-06-12

    In the United States, vaccines have eliminated wild poliovirus (WPV) infection, though resettling refugees may lack immunity and importation of WPV remains a concern. A cross-sectional survey was performed to determine the prevalence of poliovirus immunity in adult refugees resettling in Boise, Idaho, U.S.A.; immunity was evaluated using two definitions: serotypes 1, 2 and 3 positive, or serotypes 1 and 3 positive. This survey evaluated 795 adult refugees between August 2010 and November 2012. Poliovirus immunity in adults >18 years was 55.3% for serotypes 1, 2 and 3 combined, and 60% for serotypes 1 and 3 only. This study demonstrated a WPV immunity rate of <60% in a recently resettled adult refugee population in the United States, reinforcing the need to ensure poliovirus immunity in all newly arrived adult refugees, either by expanding pre-departure immunization or by screening for immunity at resettlement and vaccinating when indicated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Testing of a palatable bait and compatible vaccine carrier for the oral vaccination of European badgers (Meles meles) against tuberculosis.

    PubMed

    Gowtage, Sonya; Williams, Gareth A; Henderson, Ray; Aylett, Paul; MacMorran, Duncan; Palmer, Si; Robertson, Andy; Lesellier, Sandrine; Carter, Stephen P; Chambers, Mark A

    2017-02-07

    The oral vaccination of wild badgers (Meles meles) with live Bacillus Calmette-Guérin (BCG) is one of the tools being considered for the control of bovine tuberculosis (caused by Mycobacterium bovis) in the UK. The design of a product for oral vaccination requires that numerous, and often competing, conditions are met. These include the need for a highly palatable, but physically stable bait that will meet regulatory requirements, and one which is also compatible with the vaccine formulation; in this case live BCG. In collaboration with two commercial bait companies we have developed a highly attractive and palatable bait recipe designed specifically for European badgers (Meles meles) that meets these requirements. The palatability of different batches of bait was evaluated against a standardised palatable control bait using captive badgers. The physical properties of the bait are described e.g. firmness and colour. The microbial load in the bait was assessed against European and US Pharmacopoeias. The bait was combined with an edible vaccine carrier made of hydrogenated peanut oil in which BCG vaccine was stable during bait manufacture and cold storage, demonstrating <0.5 log10 reduction in titre after 117weeks' storage at -20°C. BCG stability in bait was also evaluated at +4°C and under simulated environmental conditions (20°C, 98% Relative Humidity; RH). Finally, iophenoxic acid biomarkers were utilised as a surrogate for the BCG vaccine, to test variants of the vaccine-bait design for their ability to deliver biomarker to the gastrointestinal tract of individual animals. These data provide the first detailed description of a bait-vaccine delivery system developed specifically for the oral vaccination of badgers against Mycobacterium bovis using live BCG.

  12. Oral rabies vaccination in north america: opportunities, complexities, and challenges.

    PubMed

    Slate, Dennis; Algeo, Timothy P; Nelson, Kathleen M; Chipman, Richard B; Donovan, Dennis; Blanton, Jesse D; Niezgoda, Michael; Rupprecht, Charles E

    2009-12-22

    Steps to facilitate inter-jurisdictional collaboration nationally and continentally have been critical for implementing and conducting coordinated wildlife rabies management programs that rely heavily on oral rabies vaccination (ORV). Formation of a national rabies management team has been pivotal for coordinated ORV programs in the United States of America. The signing of the North American Rabies Management Plan extended a collaborative framework for coordination of surveillance, control, and research in border areas among Canada, Mexico, and the US. Advances in enhanced surveillance have facilitated sampling of greater scope and intensity near ORV zones for improved rabies management decision-making in real time. The value of enhanced surveillance as a complement to public health surveillance was best illustrated in Ohio during 2007, where 19 rabies cases were detected that were critical for the formulation of focused contingency actions for controlling rabies in this strategically key area. Diverse complexities and challenges are commonplace when applying ORV to control rabies in wild meso-carnivores. Nevertheless, intervention has resulted in notable successes, including the elimination of an arctic fox (Vulpes lagopus) rabies virus variant in most of southern Ontario, Canada, with ancillary benefits of elimination extending into Quebec and the northeastern US. Progress continues with ORV toward preventing the spread and working toward elimination of a unique variant of gray fox (Urocyon cinereoargenteus) rabies in west central Texas. Elimination of rabies in coyotes (Canis latrans) through ORV contributed to the US being declared free of canine rabies in 2007. Raccoon (Procyon lotor) rabies control continues to present the greatest challenges among meso-carnivore rabies reservoirs, yet to date intervention has prevented this variant from gaining a broad geographic foothold beyond ORV zones designed to prevent its spread from the eastern US. Progress continues

  13. 77 FR 49409 - Oral Rabies Vaccine Trial; Availability of an Environmental Assessment and Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... Animal and Plant Health Inspection Service Oral Rabies Vaccine Trial; Availability of an Environmental... rabies vaccination field trial in New Hampshire, New York, Ohio, Vermont, and West Virginia. Based on its..., Rabies Program Coordinator, Wildlife Services, APHIS, 59 Chennell Drive, Suite 7, Concord, NH 03301;...

  14. 77 FR 40322 - Oral Rabies Vaccine Trial; Availability of an Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... vaccine that will produce sufficient levels of population immunity in raccoons and striped skunks. We are... raccoon (eastern States), coyote (Texas), and gray fox (Texas, New Mexico, and Arizona) rabies virus variants to new areas. While this vaccine has proven to be orally effective in raccoons, coyotes, and foxes...

  15. 76 FR 56731 - Oral Rabies Vaccine Trial; Availability of an Environmental Assessment and Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... Animal and Plant Health Inspection Service Oral Rabies Vaccine Trial; Availability of an Environmental... rabies vaccination field trial in West Virginia. Based on its finding of no significant impact, the... be prepared. FOR FURTHER INFORMATION CONTACT: Dr. Dennis Slate, Rabies Program Coordinator, Wildlife...

  16. Post-licensure deployment of oral cholera vaccines: a systematic review

    PubMed Central

    Martin, Stephen; Lopez, Anna Lena; Bellos, Anna; Ali, Mohammad; Alberti, Kathryn; Anh, Dang Duc; Costa, Alejandro; Grais, Rebecca F; Legros, Dominique; Luquero, Francisco J; Ghai, Megan B; Perea, William; Sack, David A

    2014-01-01

    Abstract Objective To describe and analyse the characteristics of oral cholera vaccination campaigns; including location, target population, logistics, vaccine coverage and delivery costs. Methods We searched PubMed, the World Health Organization (WHO) website and the Cochrane database with no date or language restrictions. We contacted public health personnel, experts in the field and in ministries of health and did targeted web searches. Findings A total of 33 documents were included in the analysis. One country, Viet Nam, incorporates oral cholera vaccination into its public health programme and has administered approximately 10.9 million vaccine doses between 1997 and 2012. In addition, over 3 million doses of the two WHO pre-qualified oral cholera vaccines have been administered in more than 16 campaigns around the world between 1997 and 2014. These campaigns have either been pre-emptive or reactive and have taken place under diverse conditions, such as in refugee camps or natural disasters. Estimated two-dose coverage ranged from 46 to 88% of the target population. Approximate delivery cost per fully immunized person ranged from 0.11–3.99 United States dollars. Conclusion Experience with oral cholera vaccination campaigns continues to increase. Public health officials may draw on this experience and conduct oral cholera vaccination campaigns more frequently. PMID:25552772

  17. Production of high titer attenuated poliovirus strains on the serum-free PER.C6(®) cell culture platform for the generation of safe and affordable next generation IPV.

    PubMed

    Sanders, Barbara P; Oakes, Isabel de los Rios; van Hoek, Vladimir; Liu, Ying; Marissen, Wilfred; Minor, Philip D; Wimmer, Eckard; Schuitemaker, Hanneke; Custers, Jerome H H V; Macadam, Andrew; Cello, Jeronimo; Edo-Matas, Diana

    2015-11-27

    As poliovirus eradication draws closer, alternative Inactivated Poliovirus Vaccines (IPV) are needed to overcome the risks associated with continued use of the Oral Poliovirus Vaccine and of neurovirulent strains used during manufacture of conventional (c) IPV. We have previously demonstrated the susceptibility of the PER.C6(®) cell line to cIPV strains; here we investigated the suspension cell culture platform for growth of attenuated poliovirus strains. We examined attenuated Sabin strain productivity on the PER.C6(®) cell platform compared to the conventional Vero cell platform. The suitability of the suspension cell platform for propagation of rationally-attenuated poliovirus strains (stabilized Sabin type 3 S19 derivatives and genetically attenuated and stabilized MonoCre(X) strains), was also assessed. Yields were quantified by infectious titer determination and D-antigen ELISA using either serotype-specific polyclonal rabbit sera for Sabin strains or monoclonal cIPV-strain-specific antibodies for cIPV, S19 and MonoCre(X) strains. PER.C6(®) cells supported the replication of Sabin strains to yields of infectious titers that were in the range of cIPV strains at 32.5°C. Sabin strains achieved 30-fold higher yields (p<0.0001) on the PER.C6(®) cell platform as compared to the Vero cell platform in infectious titer and D-antigen content. Furthermore, Sabin strain productivity on the PER.C6(®) cell platform was maintained at 10l scale. Yields of infectious titers of S19 and MonoCre(X) strains were 0.5-1 log10 lower than seen for cIPV strains, whereas D-antigen yield and productivities in doses/ml using rationally-attenuated strains were in line with yields reported for cIPV strains. Sabin and rationally-attenuated polioviruses can be grown to high infectious titers and D-antigen yields. Sabin strain infection shows increased productivity on the PER.C6(®) cell platform as compared to the conventional Vero cell platform. Novel cell platforms with the potential

  18. Oral Vaccination With Vaccinia Virus Expressing the Tick Antigen Subolesin Inhibits Tick Feeding and Transmission of Borrelia burgdorferi Vaccination

    PubMed Central

    Bensaci, Mekki; Bhattacharya, Debaditya; Clark, Roger; Hu, Linden T.

    2014-01-01

    Immunization with the Ixodes scapularis protein, subolesin, has previously been shown to protect hosts against tick infestation and to decrease acquisition of Anaplsma marginale and Babesia bigemina. Here we report the efficacy of subolesin expressed from Vaccinia virus for use as an orally delivered reservoir–targeted vaccine for prevention of tick infestation and acquisition/transmission of Borrelia burgdorferi to its tick and mouse hosts. We cloned subolesin into Vaccinia virus and showed that it is expressed from mammalian cells infected with the recombinant virus in vitro. We then vaccinated mice by oral gavage. A single dose of the vaccine was sufficient for mice to generate antibody response to subolesin. Vaccination with the subolesin expressing Vaccinia virus inhibited tick infestation by 52% compared to control vaccination with Vaccinia virus and reduced uptake of B. burgdorferi among the surviving ticks that fed to repletion by 34%. There was a reduction in transmission of B. burgdorferi to uninfected vaccinated mice of 40% compared to controls. These results suggest that subolesin has potential as a component of a reservoir targeted vaccine to decrease B. burgdorferi, Babesia and Anaplasma species infections in their natural hosts. PMID:22864146

  19. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines.

    PubMed

    Zhang, Lei; Zeng, Zhanzhuang; Hu, Chaohua; Bellis, Susan L; Yang, Wendi; Su, Yintao; Zhang, Xinyan; Wu, Yunkun

    2016-01-01

    Conventional oral vaccines with simple architecture face barriers with regard to stimulating effective immunity. Here we describe oral vaccines with an intelligent phase-transitional shielding layer, poly[(methyl methacrylate)-co-(methyl acrylate)-co-(methacrylic acid)]-poly(D,L-lactide-co-glycolide) (PMMMA-PLGA), which can protect antigens in the gastro-intestinal tract and achieve targeted vaccination in the large intestine. With the surface immunogenic protein (SIP) from group B Streptococcus (GBS) entrapped as the antigen, oral administration with PMMMA-PLGA (PTRBL)/Trx-SIP nanoparticles stimulated robust immunity in tilapia, an animal with a relatively simple immune system. The vaccine succeeded in protecting against Streptococcus agalactiae, a pathogen of worldwide importance that threatens human health and is transmitted in water with infected fish. After oral vaccination with PTRBL/Trx-SIP, tilapia produced enhanced levels of SIP specific antibodies and displayed durability of immune protection. 100% of the vaccinated tilapia were protected from GBS infection, whereas the control groups without vaccines or vaccinated with Trx-SIP only exhibited respective infection rates of 100% or >60% within the initial 5 months after primary vaccination. Experiments in vivo demonstrated that the recombinant antigen Trx-SIP labeled with FITC was localized in colon, spleen and kidney, which are critical sites for mounting an immune response. Our results revealed that, rather than the size of the nanoparticles, it is more likely that the negative charge repulsion produced by ionization of the carboxyl groups in PMMMA shielded the nanoparticles from uptake by small intestinal epithelial cells. This system resolves challenges arising from gastrointestinal damage to antigens, and more importantly, offers a new approach applicable for oral vaccination.

  20. Immunogenic and protective effects of an oral DNA vaccine against infectious pancreatic necrosis virus in fish.

    PubMed

    de las Heras, Ana I; Rodríguez Saint-Jean, S; Pérez-Prieto, Sara I

    2010-04-01

    DNA vaccines and oral DNA-based immunotherapy against infectious pancreatic necrosis virus (IPNV) have scarcely been studied in salmonid fish. Here, a vector with the capsid VP2 gene inserted was encapsulated in alginate microspheres to avoid the aggressive gastrointestinal conditions experienced following oral administration. Alginate microspheres were effective to protect the pDNA encoding VP2, which was expressed early in different organs of the vaccinated trout and that persisted for at least 60 days. The vaccine induces innate immune responses, raising the expression of IFN more than 10-fold relative to the fish vaccinated with the empty plasmid, at 7 and 15 days post-vaccination. Likewise, maximal expression of the IFN-induced antiviral Mx protein was recorded 15 days post-vaccination and neutralizing antibodies were also detected after 15 days, although their titre rose further at 21 days post-vaccination. Protection was high in the immunized fish, which showed around an 80% relative survival when challenged 15 and 30 days after vaccine delivery. Very low viral load with respect to the control group was detected in the vaccinated fish that survived 45 days after challenge. Thus, this study demonstrates the potential of the encapsulation technique for IPNV-DNA vaccine delivery and the relevance of the IPNV-VP2 gene for future plasmid constructs.

  1. Oral rabies vaccination variation in tetracycline biomarking among Ohio raccoons.

    PubMed

    Algeo, Timothy P; Norhenberg, Gary; Hale, Robert; Montoney, Andrew; Chipman, Richard B; Slate, Dennis

    2013-04-01

    Oral rabies vaccination (ORV) programs have traditionally relied on tetracycline marking as an index to bait uptake. Whether tetracycline serves well in this capacity depends on its deposition affinity and ability to be detected consistently among tissues selected for analysis from target species. We evaluated samples from 760 hunter-harvested raccoons (Procyon lotor) from areas in Ohio where ORV had been conducted during 1998, 1999, and 2001. Tetracycline marking was evaluated within and among first premolar (PM1), second premolar (PM2), and canine (CN) teeth, and mandibular bone (MB) by side (left versus right); and by tissue type. Tetracycline detection ranged from 6.5% in PM1 in 1998 to 56.3% in right-side MB in 2001. PM1 teeth were less frequently marked (21.7%) than PM2 (27.7%), CN (33.0%), or MB (42.0%). Tetracycline detection was similar in left and right PM1, PM2, and CN teeth, but differed in MB. Tetracycline marking was significantly different among all tissue types.

  2. Field trial with oral vaccination of dogs against rabies in the Philippines

    PubMed Central

    Estrada, Roland; Vos, Ad; De Leon, Renato; Mueller, Thomas

    2001-01-01

    Background The potential role of oral vaccination of dogs against rabies in the Philippines was investigated in terms of safety and efficacy. Methods Prior to the vaccination campaign, a house-to-house survey was carried out to collect data on the dog population in the study area, the coastal village of Mindoro. During the vaccination campaign all households were visited again, and all dogs encountered (>2 months old) were, if possible, vaccinated. Furthermore, 14 dogs vaccinated were bled on different occasions. Results During the survey, a total of 216 dogs were counted, and none of these animals had previously been vaccinated against rabies. Only 17 dogs could be restrained and subsequently vaccinated directly by the vaccinators. Another 126 dogs were offered a local-made boiled intestine bait, containing a capsule filled with 3.0 ml SAD B19 (107.9 FFU/ml). The bait acceptance rate of dogs offered a bait was 96.1%. The vaccination coverage of the dog population (> 2 months old) estimated by the number of animals vaccinated directly and the number of dogs that accepted a bait and subsequently punctured the vaccine container was 76%. Fifteen and 29 days after the vaccination campaign 6 and 10 dogs (n = 14) had rabies virus neutralizing antibody titres of ≥ 0.5 IU/ml, respectively. No unintentional contacts of nontarget species, including humans, with the vaccine virus were reported. Conclusions The results of the campaign show that oral vaccination of dogs against rabies is a promising supplementary method in dog rabies control in the Philippines. PMID:11737869

  3. Cost-effectiveness of new-generation oral cholera vaccines: a multisite analysis.

    PubMed

    Jeuland, Marc; Cook, Joseph; Poulos, Christine; Clemens, John; Whittington, Dale

    2009-09-01

    We evaluated the cost-effectiveness of a low-cost cholera vaccine licensed and used in Vietnam, using recently collected data from four developing countries where cholera is endemic. Our analysis incorporated new findings on vaccine herd protective effects. Using data from Matlab, Bangladesh, Kolkata, India, North Jakarta, Indonesia, and Beira, Mozambique, we calculated the net public cost per disability-adjusted life year avoided for three immunization strategies: 1) school-based vaccination of children 5 to 14 years of age; 2) school-based vaccination of school children plus use of the schools to vaccinate children aged 1 to 4 years; and 3) community-based vaccination of persons aged 1 year and older. We determined cost-effectiveness when vaccine herd protection was or was not considered, and compared this with commonly accepted cutoffs of gross domestic product (GDP) per person to classify interventions as cost-effective or very-cost effective. Without including herd protective effects, deployment of this vaccine would be cost-effective only in school-based programs in Kolkata and Beira. In contrast, after considering vaccine herd protection, all three programs were judged very cost-effective in Kolkata and Beira. Because these cost-effectiveness calculations include herd protection, the results are dependent on assumed vaccination coverage rates. Ignoring the indirect effects of cholera vaccination has led to underestimation of the cost-effectiveness of vaccination programs with oral cholera vaccines. Once these effects are included, use of the oral killed whole cell vaccine in programs to control endemic cholera meets the per capita GDP criterion in several developing country settings.

  4. Pregnancy Outcomes after a Mass Vaccination Campaign with an Oral Cholera Vaccine in Guinea: A Retrospective Cohort Study

    PubMed Central

    Grout, Lise; Martinez-Pino, Isabel; Ciglenecki, Iza; Keita, Sakoba; Diallo, Alpha Amadou; Traore, Balla; Delamou, Daloka; Toure, Oumar; Nicholas, Sarala; Rusch, Barbara; Staderini, Nelly; Serafini, Micaela; Grais, Rebecca F.; Luquero, Francisco J.

    2015-01-01

    Introduction Since 2010, WHO has recommended oral cholera vaccines as an additional strategy for cholera control. During a cholera episode, pregnant women are at high risk of complications, and the risk of fetal death has been reported to be 2–36%. Due to a lack of safety data, pregnant women have been excluded from most cholera vaccination campaigns. In 2012, reactive campaigns using the bivalent killed whole-cell oral cholera vaccine (BivWC), included all people living in the targeted areas aged ≥1 year regardless of pregnancy status, were implemented in Guinea. We aimed to determine whether there was a difference in pregnancy outcomes between vaccinated and non-vaccinated pregnant women. Methods and Findings From 11 November to 4 December 2013, we conducted a retrospective cohort study in Boffa prefecture among women who were pregnant in 2012 during or after the vaccination campaign. The primary outcome was pregnancy loss, as reported by the mother, and fetal malformations, after clinical examination. Primary exposure was the intake of the BivWC vaccine (Shanchol) during pregnancy, as determined by a vaccination card or oral history. We compared the risk of pregnancy loss between vaccinated and non-vaccinated women through binomial regression analysis. A total of 2,494 pregnancies were included in the analysis. The crude incidence of pregnancy loss was 3.7% (95%CI 2.7–4.8) for fetuses exposed to BivWC vaccine and 2.6% (0.7–4.5) for non-exposed fetuses. The incidence of malformation was 0.6% (0.1–1.0) and 1.2% (0.0–2.5) in BivWC-exposed and non-exposed fetuses, respectively. In both crude and adjusted analyses, fetal exposure to BivWC was not significantly associated with pregnancy loss (adjusted risk ratio (aRR = 1.09 [95%CI: 0.5–2.25], p = 0.818) or malformations (aRR = 0.50 [95%CI: 0.13–1.91], p = 0.314). Conclusions In this large retrospective cohort study, we found no association between fetal exposure to BivWC and risk of pregnancy loss or

  5. Pregnancy Outcomes after a Mass Vaccination Campaign with an Oral Cholera Vaccine in Guinea: A Retrospective Cohort Study.

    PubMed

    Grout, Lise; Martinez-Pino, Isabel; Ciglenecki, Iza; Keita, Sakoba; Diallo, Alpha Amadou; Traore, Balla; Delamou, Daloka; Toure, Oumar; Nicholas, Sarala; Rusch, Barbara; Staderini, Nelly; Serafini, Micaela; Grais, Rebecca F; Luquero, Francisco J

    2015-12-01

    Since 2010, WHO has recommended oral cholera vaccines as an additional strategy for cholera control. During a cholera episode, pregnant women are at high risk of complications, and the risk of fetal death has been reported to be 2-36%. Due to a lack of safety data, pregnant women have been excluded from most cholera vaccination campaigns. In 2012, reactive campaigns using the bivalent killed whole-cell oral cholera vaccine (BivWC), included all people living in the targeted areas aged ≥ 1 year regardless of pregnancy status, were implemented in Guinea. We aimed to determine whether there was a difference in pregnancy outcomes between vaccinated and non-vaccinated pregnant women. From 11 November to 4 December 2013, we conducted a retrospective cohort study in Boffa prefecture among women who were pregnant in 2012 during or after the vaccination campaign. The primary outcome was pregnancy loss, as reported by the mother, and fetal malformations, after clinical examination. Primary exposure was the intake of the BivWC vaccine (Shanchol) during pregnancy, as determined by a vaccination card or oral history. We compared the risk of pregnancy loss between vaccinated and non-vaccinated women through binomial regression analysis. A total of 2,494 pregnancies were included in the analysis. The crude incidence of pregnancy loss was 3.7% (95%CI 2.7-4.8) for fetuses exposed to BivWC vaccine and 2.6% (0.7-4.5) for non-exposed fetuses. The incidence of malformation was 0.6% (0.1-1.0) and 1.2% (0.0-2.5) in BivWC-exposed and non-exposed fetuses, respectively. In both crude and adjusted analyses, fetal exposure to BivWC was not significantly associated with pregnancy loss (adjusted risk ratio (aRR = 1.09 [95%CI: 0.5-2.25], p = 0.818) or malformations (aRR = 0.50 [95%CI: 0.13-1.91], p = 0.314). In this large retrospective cohort study, we found no association between fetal exposure to BivWC and risk of pregnancy loss or malformation. Despite the weaknesses of a retrospective

  6. Effectiveness of reactive oral cholera vaccination in rural Haiti: a case-control study

    PubMed Central

    Ivers, Louise C; Hilaire, Isabelle J; Teng, Jessica E; Almazor, Charles P; Jerome, J Gregory; Ternier, Ralph; Boncy, Jacques; Buteau, Josiane; Murray, Megan B; Harris, Jason B; Franke, Molly F

    2015-01-01

    Background Between April and June 2012, a reactive cholera vaccination campaign was conducted in Haiti using an oral inactivated bivalent whole-cell vaccine (BivWC). Methods We conducted a case-control study to estimate field effectiveness of the vaccine. Cases had acute watery diarrhea, sought treatment at one of three participating cholera treatment units from October 24, 2012 through March 9, 2014, and had a stool sample positive for cholera by culture. For each case, four controls (individuals who did not seek treatment for acute watery diarrhea) were matched by location of residence, calendar time, and age. We also conducted a bias-indicator case-control study to assess the likelihood of bias in the vaccine effectiveness (VE) study. Findings During the study period, 114 eligible individuals presented with acute watery diarrhea and were enrolled. 47 were analyzed as cases in the VE case-control study and 42 as cases in the bias-indicator study. In multivariable analyses, VE was 63% [95% confidence interval (CI): 8%–85%] by self-reported vaccination and 58% [95% CI: 13%–80%] for verified vaccination. Neither self-reported nor verified vaccination was significantly associated with non-cholera diarrhea (VE: 18% [95% CI: −208%–−78%] by self-report and −21% [95%CI: −238%–57%] for verified vaccination). Interpretation BivWC oral cholera vaccine was effective in protecting against cholera in Haiti during the study period –from 4 through 24 months after vaccination. Vaccination is an important component of epidemic cholera control efforts. Funding National Institutes of Health, Delivering Oral Vaccines Effectively project, Department of Global Health and Social Medicine at Harvard Medical School. PMID:25701994

  7. Innocuity studies of SAG-2 oral rabies vaccine in various Zimbabwean wild non-target species.

    PubMed

    Bingham, J; Schumacher, C L; Aubert, M F; Hill, F W; Aubert, A

    1997-06-01

    The SAG-2 modified live rabies vaccine was tested for innocuity when administered by the oral route in several potential wild non-target bait-consuming species, as follows: ten chacma baboons (Papio ursinus), six African civets (Civettictis civetta), six slender mongooses (Galerella sanguinea), six honey badgers (Mellivora capensis), six large-spotted genets (Genetta tigrina), 39 multi-mammate mice (Mastomys natalensis), 26 bushveld gerbils (Tatera leucogaster) and six pied crows (Corvus albus). At least 9.0 log10 median tissue culture infectious doses (TCID50), given in a volume of 1 ml, was administered orally to each of the animals, except the rodents which received 8.0 log10 TCID50, given in 0.1 ml. All the animals were observed for not < 90 days for signs of vaccine-induced rabies. Most of the species were also tested for vaccine virus replication in the oral cavity and persistent virus infection in the brain, salivary gland and tonsil. None of the animals died of rabies and no persistent infection was found. Rabies virus which was pathologically and serotypically indistinguishable from the vaccinal strain was isolated from the saliva of one genet 1 day after vaccine administration. From this study it was concluded that SAG-2 rabies vaccine would be safe for use in most situations where oral vaccination campaigns for jackals are required in Zimbabwe.

  8. Comparative Effectiveness of Different Strategies of Oral Cholera Vaccination in Bangladesh: A Modeling Study

    PubMed Central

    Dimitrov, Dobromir T.; Troeger, Christopher; Halloran, M. Elizabeth; Longini, Ira M.; Chao, Dennis L.

    2014-01-01

    Background Killed, oral cholera vaccines have proven safe and effective, and several large-scale mass cholera vaccination efforts have demonstrated the feasibility of widespread deployment. This study uses a mathematical model of cholera transmission in Bangladesh to examine the effectiveness of potential vaccination strategies. Methods & Findings We developed an age-structured mathematical model of cholera transmission and calibrated it to reproduce the dynamics of cholera in Matlab, Bangladesh. We used the model to predict the effectiveness of different cholera vaccination strategies over a period of 20 years. We explored vaccination programs that targeted one of three increasingly focused age groups (the entire vaccine-eligible population of age one year and older, children of ages 1 to 14 years, or preschoolers of ages 1 to 4 years) and that could occur either as campaigns recurring every five years or as continuous ongoing vaccination efforts. Our modeling results suggest that vaccinating 70% of the population would avert 90% of cholera cases in the first year but that campaign and continuous vaccination strategies differ in effectiveness over 20 years. Maintaining 70% coverage of the population would be sufficient to prevent sustained transmission of endemic cholera in Matlab, while vaccinating periodically every five years is less effective. Selectively vaccinating children 1–14 years old would prevent the most cholera cases per vaccine administered in both campaign and continuous strategies. Conclusions We conclude that continuous mass vaccination would be more effective against endemic cholera than periodic campaigns. Vaccinating children averts more cases per dose than vaccinating all age groups, although vaccinating only children is unlikely to control endemic cholera in Bangladesh. Careful consideration must be made before generalizing these results to other regions. PMID:25473851

  9. Comparative effectiveness of different strategies of oral cholera vaccination in bangladesh: a modeling study.

    PubMed

    Dimitrov, Dobromir T; Troeger, Christopher; Halloran, M Elizabeth; Longini, Ira M; Chao, Dennis L

    2014-12-01

    Killed, oral cholera vaccines have proven safe and effective, and several large-scale mass cholera vaccination efforts have demonstrated the feasibility of widespread deployment. This study uses a mathematical model of cholera transmission in Bangladesh to examine the effectiveness of potential vaccination strategies. We developed an age-structured mathematical model of cholera transmission and calibrated it to reproduce the dynamics of cholera in Matlab, Bangladesh. We used the model to predict the effectiveness of different cholera vaccination strategies over a period of 20 years. We explored vaccination programs that targeted one of three increasingly focused age groups (the entire vaccine-eligible population of age one year and older, children of ages 1 to 14 years, or preschoolers of ages 1 to 4 years) and that could occur either as campaigns recurring every five years or as continuous ongoing vaccination efforts. Our modeling results suggest that vaccinating 70% of the population would avert 90% of cholera cases in the first year but that campaign and continuous vaccination strategies differ in effectiveness over 20 years. Maintaining 70% coverage of the population would be sufficient to prevent sustained transmission of endemic cholera in Matlab, while vaccinating periodically every five years is less effective. Selectively vaccinating children 1-14 years old would prevent the most cholera cases per vaccine administered in both campaign and continuous strategies. We conclude that continuous mass vaccination would be more effective against endemic cholera than periodic campaigns. Vaccinating children averts more cases per dose than vaccinating all age groups, although vaccinating only children is unlikely to control endemic cholera in Bangladesh. Careful consideration must be made before generalizing these results to other regions.

  10. Mucosal HIV transmission and vaccination strategies through oral compared to vaginal and rectal routes

    PubMed Central

    Yu, Mingke; Vajdy, Michael

    2010-01-01

    Importance of the field There are currently over thirty million people infected with HIV and there are no vaccines available to prevent HIV infections or disease. The genitourinary, rectal and oral mucosa are the mucosal HIV transmission routes. An effective vaccine that can induce both systemic and local mucosal immunity is generally accepted as a major means of protection against mucosal HIV transmission and AIDS. What the reader will gain Structure and cells that comprise the oral, vaginal and rectal mucosa pertaining to HIV transmission and vaccination strategies through each mucosal route to prevent mucosal and systemic infection will be discussed. Areas covered in this review Covering publications from 1980’s through 2010, mucosal transmission of HIV and current and previous approaches to vaccinations are discussed. Take home message Although oral transmission of HIV is far less common than vaginal and rectal transmissions, infections through this route do occur through oral sex as well as vertically from mother to child. Mucosal vaccination strategies against oral and other mucosal HIV transmissions are under intense research but the lack of consensus on immune correlates of protection and lack of safe and effective mucosal adjuvants and delivery systems hamper progress towards a licensed vaccine. PMID:20624114

  11. Oral immunization of raccoons and skunks with a canine adenovirus recombinant rabies vaccine.

    PubMed

    Henderson, Heather; Jackson, Felix; Bean, Kayla; Panasuk, Brian; Niezgoda, Michael; Slate, Dennis; Li, Jianwei; Dietzschold, Bernard; Mattis, Jeff; Rupprecht, Charles E

    2009-11-27

    Oral vaccination is an important part of wildlife rabies control programs. Currently, the vaccinia-rabies glycoprotein recombinant virus is the only oral rabies vaccine licensed in the United States, and it is not effective in skunks. In the current study, captive raccoons and skunks were used to evaluate a vaccine developed by incorporating the rabies virus glycoprotein gene into a canine adenovirus serotype 2 vector (CAV2-RVG). Seven of 7 raccoons orally vaccinated with CAV2-RVG developed virus neutralizing antibodies and survived lethal challenge. Five of 5 and 6 of 6 skunks in 2 experimental groups receiving 10-fold different dilutions of CAV2-RVG developed neutralizing antibodies and survived challenge. The results of this preliminary study suggest that CAV2-RVG stimulates protective immunity against rabies in raccoons and skunks.

  12. Burrow Dusting or Oral Vaccination Prevents Plague-Associated Prairie Dog Colony Collapse.

    PubMed

    Tripp, Daniel W; Rocke, Tonie E; Runge, Jonathan P; Abbott, Rachel C; Miller, Michael W

    2017-06-22

    Plague impacts prairie dogs (Cynomys spp.), the endangered black-footed ferret (Mustela nigripes) and other sensitive wildlife species. We compared efficacy of prophylactic treatments (burrow dusting with deltamethrin or oral vaccination with recombinant "sylvatic plague vaccine" [RCN-F1/V307]) to placebo treatment in black-tailed prairie dog (C. ludovicianus) colonies. Between 2013 and 2015, we measured prairie dog apparent survival, burrow activity and flea abundance on triplicate plots ("blocks") receiving dust, vaccine or placebo treatment. Epizootic plague affected all three blocks but emerged asynchronously. Dust plots had fewer fleas per burrow (P < 0.0001), and prairie dogs captured on dust plots had fewer fleas (P < 0.0001) than those on vaccine or placebo plots. Burrow activity and prairie dog density declined sharply in placebo plots when epizootic plague emerged. Patterns in corresponding dust and vaccine plots were less consistent and appeared strongly influenced by timing of treatment applications relative to plague emergence. Deltamethrin or oral vaccination enhanced apparent survival within two blocks. Applying insecticide or vaccine prior to epizootic emergence blunted effects of plague on prairie dog survival and abundance, thereby preventing colony collapse. Successful plague mitigation will likely entail strategic combined uses of burrow dusting and oral vaccination within large colonies or colony complexes.

  13. Inactivated polio vaccine development for technology transfer using attenuated Sabin poliovirus strains to shift from Salk-IPV to Sabin-IPV.

    PubMed

    Bakker, Wilfried A M; Thomassen, Yvonne E; van't Oever, Aart G; Westdijk, Janny; van Oijen, Monique G C T; Sundermann, Lars C; van't Veld, Peter; Sleeman, Eelco; van Nimwegen, Fred W; Hamidi, Ahd; Kersten, Gideon F A; van den Heuvel, Nico; Hendriks, Jan T; van der Pol, Leo A

    2011-09-22

    Industrial-scale inactivated polio vaccine (IPV) production dates back to the 1960s when at the Rijks Instituut voor de Volksgezondheid (RIV) in Bilthoven a process was developed based on micro-carrier technology and primary monkey kidney cells. This technology was freely shared with several pharmaceutical companies and institutes worldwide. In this contribution, the history of one of the first cell-culture based large-scale biological production processes is summarized. Also, recent developments and the anticipated upcoming shift from regular IPV to Sabin-IPV are presented. Responding to a call by the World Health Organization (WHO) for new polio vaccines, the development of Sabin-IPV was continued, after demonstrating proof of principle in the 1990s, at the Netherlands Vaccine Institute (NVI). Development of Sabin-IPV plays an important role in the WHO polio eradication strategy as biocontainment will be critical in the post-OPV cessation period. The use of attenuated Sabin strains instead of wild-type Salk polio strains will provide additional safety during vaccine production. Initially, the Sabin-IPV production process will be based on the scale-down model of the current, and well-established, Salk-IPV process. In parallel to clinical trial material production, process development, optimization and formulation research is being carried out to further optimize the process and reduce cost per dose. Also, results will be shown from large-scale (to prepare for future technology transfer) generation of Master- and Working virus seedlots, and clinical trial material (for phase I studies) production. Finally, the planned technology transfer to vaccine manufacturers in low and middle-income countries is discussed.

  14. Poliovirus excretion among persons with primary immune deficiency disorders: summary of a seven-country study series.

    PubMed

    Li, Li; Ivanova, Olga; Driss, Nadia; Tiongco-Recto, Marysia; da Silva, Rajiva; Shahmahmoodi, Shohreh; Sazzad, Hossain M S; Mach, Ondrej; Kahn, Anna-Lea; Sutter, Roland W

    2014-11-01

    Persons with primary immune deficiency disorders (PID), especially those disorders affecting the B-cell system, are at substantially increased risk of paralytic poliomyelitis and can excrete poliovirus chronically. However, the risk of prolonged or chronic excretion is not well characterized in developing countries. We present a summary of a country study series on poliovirus excretion among PID cases. Cases with PID from participating institutions were enrolled during the first year and after obtaining informed consent were tested for polioviruses in stool samples. Those cases excreting poliovirus were followed on a monthly basis during the second year until 2 negative stool samples were obtained. A total of 562 cases were enrolled in Bangladesh, China, Iran, Philippines, Russia, Sri Lanka, and Tunisia during 2008-2013. Of these, 17 (3%) shed poliovirus, including 2 cases with immunodeficient vaccine-derived poliovirus. Poliovirus was detected in a single sample from 5/17 (29%) cases. One case excreted for more than 6 months. None of the cases developed paralysis during the study period. Chronic polioviruses excretion remains a rare event even among individuals with PID. Nevertheless, because these individuals were not paralyzed they would have been missed by current surveillance; therefore, surveillance for polioviruses among PID should be established. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Oral vaccination against mycoplasmal pneumonia of swine using a live Erysipelothrix rhusiopathiae vaccine strain as a vector.

    PubMed

    Ogawa, Yohsuke; Oishi, Eiji; Muneta, Yoshihiro; Sano, Akiyuki; Hikono, Hirokazu; Shibahara, Tomoyuki; Yagi, Yukio; Shimoji, Yoshihiro

    2009-07-16

    Erysipelothrix rhusiopathiae Koganei 65-0.15 strain, the live swine erysipelas vaccine for subcutaneous injection, has been shown to colonize the tonsils of pigs after oral inoculation. We thus evaluated the possible use of the strain as a vector for oral vaccination against mycoplasmal pneumonia of swine. Recombinant E. rhusiopathiae strains expressing the C-terminal domain of the P97 adhesin of Mycoplasma hyopneumoniae were constructed and examined for vaccine efficacy in mice and pigs. Mice subcutaneously inoculated with the recombinant strains were protected from challenge exposure to a virulent E. rhusiopathiae. Administration of milk replacer containing recombinant E. rhusiopathiae expressing the M. hyopneumoniae protein protected pigs from death after exposure to E. rhusiopathiae and significantly reduced the severity of pneumonic lung lesions caused by infection with M. hyopneumoniae.

  16. First Outbreak Response Using an Oral Cholera Vaccine in Africa: Vaccine Coverage, Acceptability and Surveillance of Adverse Events, Guinea, 2012

    PubMed Central

    Luquero, Francisco J.; Grout, Lise; Ciglenecki, Iza; Sakoba, Keita; Traore, Bala; Heile, Melat; Dialo, Alpha Amadou; Itama, Christian; Serafini, Micaela; Legros, Dominique; Grais, Rebecca F.

    2013-01-01

    Background Despite World Health Organization (WHO) prequalification of two safe and effective oral cholera vaccines (OCV), concerns about the acceptability, potential diversion of resources, cost and feasibility of implementing timely campaigns has discouraged their use. In 2012, the Ministry of Health of Guinea, with the support of Médecins Sans Frontières organized the first mass vaccination campaign using a two-dose OCV (Shanchol) as an additional control measure to respond to the on-going nationwide epidemic. Overall, 316,250 vaccines were delivered. Here, we present the results of vaccination coverage, acceptability and surveillance of adverse events. Methodology/Principal Findings We performed a cross-sectional cluster survey and implemented adverse event surveillance. The study population included individuals older than 12 months, eligible for vaccination, and residing in the areas targeted for vaccination (Forécariah and Boffa, Guinea). Data sources were household interviews with verification by vaccination card and notifications of adverse events from surveillance at vaccination posts and health centres. In total 5,248 people were included in the survey, 3,993 in Boffa and 1,255 in Forécariah. Overall, 89.4% [95%CI:86.4–91.8%] and 87.7% [95%CI:84.2–90.6%] were vaccinated during the first round and 79.8% [95%CI:75.6–83.4%] and 82.9% [95%CI:76.6–87.7%] during the second round in Boffa and Forécariah respectively. The two dose vaccine coverage (including card and oral reporting) was 75.8% [95%CI: 71.2–75.9%] in Boffa and 75.9% [95%CI: 69.8–80.9%] in Forécariah respectively. Vaccination coverage was higher in children. The main reason for non-vaccination was absence. No severe adverse events were notified. Conclusions/Significance The well-accepted mass vaccination campaign reached high coverage in a remote area with a mobile population. Although OCV should not be foreseen as the long-term solution for global cholera control, they should be

  17. First outbreak response using an oral cholera vaccine in Africa: vaccine coverage, acceptability and surveillance of adverse events, Guinea, 2012.

    PubMed

    Luquero, Francisco J; Grout, Lise; Ciglenecki, Iza; Sakoba, Keita; Traore, Bala; Heile, Melat; Dialo, Alpha Amadou; Itama, Christian; Serafini, Micaela; Legros, Dominique; Grais, Rebecca F

    2013-01-01

    Despite World Health Organization (WHO) prequalification of two safe and effective oral cholera vaccines (OCV), concerns about the acceptability, potential diversion of resources, cost and feasibility of implementing timely campaigns has discouraged their use. In 2012, the Ministry of Health of Guinea, with the support of Médecins Sans Frontières organized the first mass vaccination campaign using a two-dose OCV (Shanchol) as an additional control measure to respond to the on-going nationwide epidemic. Overall, 316,250 vaccines were delivered. Here, we present the results of vaccination coverage, acceptability and surveillance of adverse events. We performed a cross-sectional cluster survey and implemented adverse event surveillance. The study population included individuals older than 12 months, eligible for vaccination, and residing in the areas targeted for vaccination (Forécariah and Boffa, Guinea). Data sources were household interviews with verification by vaccination card and notifications of adverse events from surveillance at vaccination posts and health centres. In total 5,248 people were included in the survey, 3,993 in Boffa and 1,255 in Forécariah. Overall, 89.4% [95%CI:86.4-91.8%] and 87.7% [95%CI:84.2-90.6%] were vaccinated during the first round and 79.8% [95%CI:75.6-83.4%] and 82.9% [95%CI:76.6-87.7%] during the second round in Boffa and Forécariah respectively. The two dose vaccine coverage (including card and oral reporting) was 75.8% [95%CI: 71.2-75.9%] in Boffa and 75.9% [95%CI: 69.8-80.9%] in Forécariah respectively. Vaccination coverage was higher in children. The main reason for non-vaccination was absence. No severe adverse events were notified. The well-accepted mass vaccination campaign reached high coverage in a remote area with a mobile population. Although OCV should not be foreseen as the long-term solution for global cholera control, they should be integrated as an additional tool into the response.

  18. Seroprevalence of poliovirus antibodies in the Kansas City metropolitan area, 2012-2013.

    PubMed

    Wallace, Gregory S; Pahud, Barbara A; Weldon, William C; Curns, Aaron T; Oberste, M Steven; Harrison, Christopher J

    2017-04-03

    No indigenous cases of poliomyelitis have occurred in the US since 1979; however the risk of importation persists until global eradication is achieved. The seropositivity rate for different age cohorts with exposures to different poliovirus vaccine types and wild virus in the US are not presently known. A convenience sample was conducted in the Kansas City metropolitan area during 2012-2103 with approximately 100 participants enrolled for each of 5 age cohorts categorized based on vaccine policy changes over time in the US. Immunization records for poliovirus vaccination were required for participants <18 y of age. We evaluated the prevalence of serum antibodies to all 3 poliovirus serotypes. Seroprevalence was evaluated by demographics as well as between polio serotypes. The overall seroprevalence to poliovirus was 90.7%, 94.4%, and 83.3%, for types 1, 2, and 3, respectively. Seroprevalence was high (88.6%-96.2%) for all 3 types of poliovirus for the 6-10 y old age group that was likely to have received a complete schedule of IPV-only vaccination. Children 2-3 y of age, who have not yet completed their full IPV series, had lower seroprevalence compared with all older age groups for types 1 and 2 (p-value <0. 05). Seroprevalence was high for all 3 types of poliovirus in the population surveyed. Seroprevalence for subjects aged 2-3 y was lower than all other age groups for serotypes 1 and 2 highlighting the importance of completing the recommended poliovirus vaccine series with a booster dose at age 4-6 y.

  19. [Immunization with monovalent oral vaccine against rotavirus in Mexico. Evaluation of the data of two years of the system of temporarily adverse event reports associated to vaccination (ETAV)].

    PubMed

    Reyna-Figueroa, Jesús; Vidal-Vázquez, Rosa Patricia; López-Collada, Vesta Louise Richardson

    2011-01-01

    The gastrointestinal manifestations are the adverse events mainly studied to the application of the vaccine against rotavirus. In order subsequent to consider the risk of associated events taken care of the vaccination against rotavirus in infants, we realized a retrospective study of 2 years, evaluating 7,691,757 distributed doses of oral vaccine, in 2008 and 2009. The risk considered of an event associated after the application of the oral vaccine against rotavirus is of 2.9 events by 1,000,000 distributed doses. The taken care of associated events were little common subsequent to the vaccination against rotavirus.

  20. Immunological aspects of using plant cells as delivery vehicles for oral vaccines.

    PubMed

    Rosales-Mendoza, Sergio; Salazar-González, Jorge A

    2014-06-01

    Genetically engineered plants can be used for the biomanufacture and delivery of oral vaccines. Although a myriad of antigens have been produced using this approach, improving our knowledge of their oral immunogenic properties is a priority as this aspect has not been well researched. Some studies have provided evidence of a higher immunogenic activity for antigens that were orally administered in the form of plant-based vaccines in comparison with conventional pure antigens. The characteristics of the plant-derived vaccines that may influence oral immunogenicity are identified and discussed in this review. Among the hypotheses explaining these immunogenic properties are the following: bioencapsulation favors antigen uptake and displays a resistance to degradation; plant metabolites exert adjuvant activity; plant compounds, such as polysaccharides, exert mucoadhesive properties; differential glycosylation conferred by the plant cell machinery enhances immunogenicity. Perspectives on how these hypotheses may be assessed are examined.

  1. Oral vaccination reduces the incidence of tuberculosis in free-living brushtail possums

    PubMed Central

    Tompkins, D. M.; Ramsey, D. S. L.; Cross, M. L.; Aldwell, F. E.; de Lisle, G. W.; Buddle, B. M.

    2009-01-01

    Bovine tuberculosis (Tb) caused by Mycobacterium bovis has proved refractory to eradication from domestic livestock in countries with wildlife disease reservoirs. Vaccination of wild hosts offers a way of controlling Tb in livestock without wildlife culling. This study was conducted in a Tb-endemic region of New Zealand, where the introduced Australian brushtail possum (Trichosurus vulpecula) is the main wildlife reservoir of Tb. Possums were trapped and vaccinated using a prototype oral-delivery system to deliver the Tb vaccine bacille Calmette–Guerin. Vaccinated and control possums were matched according to age, sex and location, re-trapped bimonthly and assessed for Tb status by palpation and lesion aspiration; the site was depopulated after 2 years and post-mortem examinations were conducted to further identify clinical Tb cases and subclinical infection. Significantly fewer culture-confirmed Tb cases were recorded in vaccinated possums (1/51) compared with control animals (12/71); the transition probability from susceptible to infected was significantly reduced in both males and females by vaccination. Vaccine efficacy was estimated at 95 per cent (87–100%) for females and 96 per cent (82–99%) for males. Hence, this trial demonstrates that orally delivered live bacterial vaccines can significantly protect wildlife against natural disease exposure, indicating that wildlife vaccination, along with existing control methods, could be used to eradicate Tb from domestic animals. PMID:19493904

  2. Presentation matters: Buffers, packaging, and delivery devices for new, oral enteric vaccines for infants

    PubMed Central

    Lal, Manjari; Jarrahian, Courtney

    2017-01-01

    ABSTRACT Oral administration of vaccines is simpler and more acceptable than injection via needle and syringe, particularly for infants (Fig. 1) This route is promising for new vaccines in development against enterotoxigenic Escherichia coli (ETEC) and Shigella that cause childhood diarrhea with devastating consequences in low-resource countries. However, vaccine antigens and adjuvants given orally need buffering against the degradative effects of low stomach pH, and the type and volume of antacid buffer require special attention for infants. In addition, container/closure systems must be compatible with vaccine formulations, protect against water and gas transfer, and have minimal impact on the cold chain. Health care workers in demanding low-resource settings need an administration device that is easy to use, yet will accurately measure and safely deliver the correct vaccine dose. Developers must consider manufacturing capabilities, and immunization program managers want affordable vaccines. As new combination enteric vaccine candidates advance into clinical evaluation, features of the final vaccine presentation—liquid or dry format, diluent, buffer, primary and secondary packaging, and administration device—should be taken into account early in product development to achieve the greatest possible impact for the vaccine. PMID:27819524

  3. Possible global strategies for stopping polio vaccination and how they could be harmonized.

    PubMed

    Cochi, S L; Sutter, R W; Aylward, R B

    2001-01-01

    One of the challenges of the polio eradication initiative over the next few years will be the formulation of an optimal strategy for stopping poliovirus vaccination after global certification of polio eradication has been accomplished. This strategy must maximize the benefits and minimize the risks. A number of strategies are currently under consideration, including: (i) synchronized global discontinuation of use of oral poliovirus vaccine (OPV); (ii) regional or subregional coordinated OPV discontinuation; and (iii) moving from trivalent to bivalent or monovalent OPV. Other options include moving from OPV to global use of IPV for an interim period before cessation of IPV use (to eliminate circulation of vaccine-derived poliovirus, if necessary) or development of new OPV strains that are not transmissible. Each of these strategies is associated with specific advantages (financial benefits for OPV discontinuation) and disadvantages (cost of switch to IPV) and inherent uncertainties (risk of continued poliovirus circulation in certain populations or prolonged virus replication in immunodeficient persons). An ambitious research agenda addresses the remaining questions and issues. Nevertheless, several generalities are already clear. Unprecedented collaboration between countries, regions, and indeed the entire world will be required to implement a global OPV discontinuation strategy Regulatory approval will be needed for an interim bivalent OPV or for monovalent OPV in many countries. Manufacturers will need sufficient lead time to produce sufficient quantities of IPV Finally, the financial implications for any of these strategies need to be considered. Whatever strategy is followed it will be necessary to stockpile supplies of a poliovirus-containing vaccine (most probably all three types of monovalent OPV), and to develop contingency plans to respond should an outbreak of polio occur after stopping vaccination.

  4. Nonhomologous recombination between defective poliovirus and coxsackievirus genomes suggests a new model of genetic plasticity for picornaviruses.

    PubMed

    Holmblat, Barbara; Jégouic, Sophie; Muslin, Claire; Blondel, Bruno; Joffret, Marie-Line; Delpeyroux, Francis

    2014-08-05

    Most of the circulating vaccine-derived polioviruses (cVDPVs) implicated in poliomyelitis outbreaks in Madagascar have been shown to be recombinants between the type 2 poliovirus (PV) strain of the oral polio vaccine (Sabin 2) and another species C human enterovirus (HEV-C), such as type 17 coxsackie A virus (CA17) in particular. We studied intertypic genetic exchanges between PV and non-PV HEV-C by developing a recombination model, making it possible to rescue defective type 2 PV RNA genomes with a short deletion at the 3' end by the cotransfection of cells with defective or infectious CA17 RNAs. We isolated over 200 different PV/CA17 recombinants, using murine cells expressing the human PV receptor (PVR) and selecting viruses with PV capsids. We found some homologous (H) recombinants and, mostly, nonhomologous (NH) recombinants presenting duplications of parental sequences preferentially located in the regions encoding proteins 2A, 2B, and 3A. Short duplications appeared to be stable, whereas longer duplications were excised during passaging in cultured cells or after multiplication in PVR-transgenic mice, generating H recombinants with diverse sites of recombination. This suggests that NH recombination events may be a transient, intermediate step in the generation and selection of the fittest H recombinants. In addition to the classical copy-choice mechanism of recombination thought to generate mostly H recombinants, there may also be a modular mechanism of recombination, involving NH recombinant precursors, shaping the genomes of recombinant enteroviruses and other picornaviruses. Importance: The multiplication of circulating vaccine-derived polioviruses (cVDPVs) in poorly immunized human populations can render these viruses pathogenic, causing poliomyelitis outbreaks. Most cVDPVs are intertypic recombinants between a poliovirus (PV) strain and another human enterovirus, such as type 17 coxsackie A viruses (CA17). For further studies of the genetic exchanges

  5. Considerations for Oral Cholera Vaccine Use during Outbreak after Earthquake in Haiti, 2010−2011

    PubMed Central

    Vicari, Andrea; Hyde, Terri B.; Mintz, Eric; Danovaro-Holliday, M. Carolina; Henry, Ariel; Tappero, Jordan W.; Roels, Thierry H.; Abrams, Joseph; Burkholder, Brenton T.; Ruiz-Matus, Cuauhtémoc; Andrus, Jon; Dietz, Vance

    2011-01-01

    Oral cholera vaccines (OCVs) have been recommended in cholera-endemic settings and preemptively during outbreaks and complex emergencies. However, experience and guidelines for reactive use after an outbreak has started are limited. In 2010, after over a century without epidemic cholera, an outbreak was reported in Haiti after an earthquake. As intensive nonvaccine cholera control measures were initiated, the feasibility of OCV use was considered. We reviewed OCV characteristics and recommendations for their use and assessed global vaccine availability and capacity to implement a vaccination campaign. Real-time modeling was conducted to estimate vaccine impact. Ultimately, cholera vaccination was not implemented because of limited vaccine availability, complex logistical and operational challenges of a multidose regimen, and obstacles to conducting a campaign in a setting with population displacement and civil unrest. Use of OCVs is an option for cholera control; guidelines for their appropriate use in epidemic and emergency settings are urgently needed. PMID:22099114

  6. Considerations for oral cholera vaccine use during outbreak after earthquake in Haiti, 2010-2011.

    PubMed

    Date, Kashmira A; Vicari, Andrea; Hyde, Terri B; Mintz, Eric; Danovaro-Holliday, M Carolina; Henry, Ariel; Tappero, Jordan W; Roels, Thierry H; Abrams, Joseph; Burkholder, Brenton T; Ruiz-Matus, Cuauhtémoc; Andrus, Jon; Dietz, Vance

    2011-11-01

    Oral cholera vaccines (OCVs) have been recommended in cholera-endemic settings and preemptively during outbreaks and complex emergencies. However, experience and guidelines for reactive use after an outbreak has started are limited. In 2010, after over a century without epidemic cholera, an outbreak was reported in Haiti after an earthquake. As intensive nonvaccine cholera control measures were initiated, the feasibility of OCV use was considered. We reviewed OCV characteristics and recommendations for their use and assessed global vaccine availability and capacity to implement a vaccination campaign. Real-time modeling was conducted to estimate vaccine impact. Ultimately, cholera vaccination was not implemented because of limited vaccine availability, complex logistical and operational challenges of a multidose regimen, and obstacles to conducting a campaign in a setting with population displacement and civil unrest. Use of OCVs is an option for cholera control; guidelines for their appropriate use in epidemic and emergency settings are urgently needed.

  7. Oral Rotavirus Vaccines: How Well Will They Work Where They Are Needed Most?

    PubMed Central

    Patel, Manish; Shane, Andi L.; Parashar, Umesh D.; Jiang, Baoming; Gentsch, Jon R.; Glass, Roger I.

    2013-01-01

    Rotavirus vaccines hold promise to decrease the burden of severe diarrhea in the poorest countries, where 85% of deaths due to rotavirus occur. However, the potency of live oral vaccines is lower in these challenging settings than in middle- and upper-income countries. Many hypotheses have been suggested to explain these differences that could provide clues to improve the ultimate success of these novel vaccines. Although introduction today of even moderately effective vaccines will decrease the morbidity and mortality associated with rotavirus in low-income settings, research is urgently needed to understand why these differences in efficacy occur and what could be done to improve vaccine performance to maximize the life-saving benefits of vaccination. PMID:19817613

  8. Introduction of sequential inactivated polio vaccine-oral polio vaccine schedule for routine infant immunization in Brazil's National Immunization Program.

    PubMed

    Domingues, Carla Magda Allan S; de Fátima Pereira, Sirlene; Cunha Marreiros, Ana Carolina; Menezes, Nair; Flannery, Brendan

    2014-11-01

    In August 2012, the Brazilian Ministry of Health introduced inactivated polio vaccine (IPV) as part of sequential polio vaccination schedule for all infants beginning their primary vaccination series. The revised childhood immunization schedule included 2 doses of IPV at 2 and 4 months of age followed by 2 doses of oral polio vaccine (OPV) at 6 and 15 months of age. One annual national polio immunization day was maintained to provide OPV to all children aged 6 to 59 months. The decision to introduce IPV was based on preventing rare cases of vaccine-associated paralytic polio, financially sustaining IPV introduction, ensuring equitable access to IPV, and preparing for future OPV cessation following global eradication. Introducing IPV during a national multivaccination campaign led to rapid uptake, despite challenges with local vaccine supply due to high wastage rates. Continuous monitoring is required to achieve high coverage with the sequential polio vaccine schedule. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Inactivation of poliovirus by formaldehyde: theoretical and practical aspects.

    PubMed

    GARD, S

    1957-01-01

    Since formaldehyde, either alone or in combination with other inactivating agents, is at present used in the production of all so-called "killed" poliovirus vaccines, a thorough knowledge of the kinetics of the reaction between the chemical agent and the virus, and of the mechanisms involved, is of great practical importance. In this paper the problem is discussed against the background of present knowledge of the structure of the virus and the chemical nature of the action of formaldehyde.

  10. Protection against bovine tuberculosis induced by oral vaccination of cattle with Mycobacterium bovis BCG is not enhanced by co-administration of mycobacterial protein vaccines.

    PubMed

    Wedlock, D Neil; Aldwell, Frank E; Vordermeier, H Martin; Hewinson, R Glyn; Buddle, Bryce M

    2011-12-15

    Mycobacterium bovis bacille Calmette-Guérin (BCG) delivered to calves by the oral route in a formulated lipid matrix has been previously shown to induce protection against bovine tuberculosis. A study was conducted in cattle to determine if a combination of a low dose of oral BCG and a protein vaccine could induce protective immunity to tuberculosis while not sensitising animals to tuberculin. Groups of calves (10 per group) were vaccinated by administering 2 × 10(7)colony forming units (CFU) of BCG orally or a combination of 2 × 10(7)CFU oral BCG and a protein vaccine comprised of M. bovis culture filtrate proteins (CFP) formulated with the adjuvants Chitin and Gel 01 and delivered by the intranasal route, or CFP formulated with Emulsigen and the TLR2 agonist Pam(3)CSK(4) and administered by the subcutaneous (s.c.) route. Two further groups were vaccinated with the CFP/Chitin/Gel 01 or CFP/Emulsigen/Pam(3)CSK(4) vaccines alone. Positive control groups were given 10(8)CFU oral BCG or 10(6)CFU s.c. BCG while a negative control group was non-vaccinated. All animals were challenged with M. bovis 15 weeks after vaccination and euthanized and necropsied at 16 weeks following challenge. Groups of cattle vaccinated with s.c. BCG, 10(8)CFU or 2 × 10(7)CFU oral BCG showed significant reductions in seven, three and four pathological or microbiological disease parameters, respectively, compared to the results for the non-vaccinated group. There was no evidence of protection in calves vaccinated with the combination of oral BCG and CFP/Emulsigen/Pam(3)CSK(4) or oral BCG and CFP/Chitin/Gel 01 or vaccinated with the protein vaccines alone. Positive responses in the comparative cervical skin test at 12 weeks after vaccination were only observed in animals vaccinated with s.c. BCG, 10(8)CFU oral BCG or a combination of 2 × 10(7)CFU oral BCG and CFP/Chitin/Gel 01. In conclusion, co-administration of a protein vaccine, administered by either systemic or mucosal routes with oral

  11. Protective oral vaccination against infectious salmon anaemia virus in Salmo salar.

    PubMed

    Caruffo, Mario; Maturana, Carlos; Kambalapally, Swetha; Larenas, Julio; Tobar, Jaime A

    2016-07-01

    Infectious salmon anemia (ISA) is a systemic disease caused by an orthomyxovirus, which has a significant economic impact on the production of Atlantic salmon (Salmo salar). Currently, there are several commercial ISA vaccines available, however, those products are applied through injection, causing stress in the fish and leaving them susceptible to infectious diseases due to the injection process and associated handling. In this study, we evaluated an oral vaccine against ISA containing a recombinant viral hemagglutinin-esterase and a fusion protein as antigens. Our findings indicated that oral vaccination is able to protect Atlantic salmon against challenge with a high-virulence Chilean isolate. The oral vaccination was also correlated with the induction of IgM-specific antibodies. On the other hand, the vaccine was unable to modulate expression of the antiviral related gene Mx, showing the importance of the humoral response to the disease survival. This study provides new insights into fish protection and immune response induced by an oral vaccine against ISA, but also promises future development of preventive solutions or validation of the current existing therapies.

  12. Preparation and evaluation of a freeze-dried oral killed cholera vaccine formulation.

    PubMed

    Borde, Annika; Larsson, Anette; Holmgren, Jan; Nygren, Erik

    2011-11-01

    Different oral liquid cholera vaccines have proved to be safe and effective, but their formulations present problems for use in low-income countries, since large package volumes have to be transported and cold chain maintenance is required. A solid state formulation would here be more advantageous, and consequently, the possibility to develop a dry cholera vaccine formulation by freeze-drying was investigated. The ability of sucrose, trehalose and mannitol to provide process stabilization during freeze-drying was tested on a formalin-killed whole-cell Vibrio cholerae model vaccine. A matrix of sucrose or trehalose prevented bacterial aggregation, preserved cell morphology and maintained practically completely the protective lipopolysaccharide (LPS) antigen on the cell surface and its reactivity with specific antibody in vitro. After reconstitution, this formulation also retained the capacity to elicit a strong serum and gut mucosal anti-LPS antibody response in orally immunized mice, as compared to the corresponding liquid vaccine formulation. The full preservation of the in vivo immunogenicity was also maintained when the internationally widely licensed oral cholera vaccine Dukoral™, which comprises a cocktail of inactivated V. cholerae together with cholera toxin B-subunit (CTB), was freeze-dried using sucrose for stabilization. Thus, we present a process generating a dry oral inactivated whole-cell cholera vaccine formulation with attractive features for public health use in cholera-afflicted settings.

  13. Polio vaccination: past, present and future.

    PubMed

    Bandyopadhyay, Ananda S; Garon, Julie; Seib, Katherine; Orenstein, Walter A

    2015-01-01

    Live attenuated oral polio vaccine (OPV) and inactivated polio vaccine (IPV) are the tools being used to achieve eradication of wild polio virus. Because OPV can rarely cause paralysis and generate revertant polio strains, IPV will have to replace OPV after eradication of wild polio virus is certified to sustain eradication of all polioviruses. However, uncertainties remain related to IPV's ability to induce intestinal immunity in populations where fecal-oral transmission is predominant. Although substantial effectiveness and safety data exist on the use and delivery of OPV and IPV, several new research initiatives are currently underway to fill specific knowledge gaps to inform future vaccination policies that would assure polio is eradicated and eradication is maintained.

  14. Burrow dusting or oral vaccination prevents plague-associated prairie dog colony collapse

    USGS Publications Warehouse

    Tripp, Daniel W.; Rocke, Tonie E.; Runge, Jonathan P.; Abbott, Rachel C.; Miller, Michael W.

    2017-01-01

    Plague impacts prairie dogs (Cynomys spp.), the endangered black-footed ferret (Mustela nigripes) and other sensitive wildlife species. We compared efficacy of prophylactic treatments (burrow dusting with deltamethrin or oral vaccination with recombinant “sylvatic plague vaccine” [RCN-F1/V307]) to placebo treatment in black-tailed prairie dog (C. ludovicianus) colonies. Between 2013 and 2015, we measured prairie dog apparent survival, burrow activity and flea abundance on triplicate plots (“blocks”) receiving dust, vaccine or placebo treatment. Epizootic plague affected all three blocks but emerged asynchronously. Dust plots had fewer fleas per burrow (P < 0.0001), and prairie dogs captured on dust plots had fewer fleas (P < 0.0001) than those on vaccine or placebo plots. Burrow activity and prairie dog density declined sharply in placebo plots when epizootic plague emerged. Patterns in corresponding dust and vaccine plots were less consistent and appeared strongly influenced by timing of treatment applications relative to plague emergence. Deltamethrin or oral vaccination enhanced apparent survival within two blocks. Applying insecticide or vaccine prior to epizootic emergence blunted effects of plague on prairie dog survival and abundance, thereby preventing colony collapse. Successful plague mitigation will likely entail strategic combined uses of burrow dusting and oral vaccination within large colonies or colony complexes.

  15. Protective efficacy of oral whole-cell/recombinant-B-subunit cholera vaccine in Peruvian military recruits.

    PubMed

    Sanchez, J L; Vasquez, B; Begue, R E; Meza, R; Castellares, G; Cabezas, C; Watts, D M; Svennerholm, A M; Sadoff, J C; Taylor, D N

    1994-11-05

    The cholera epidemic in South America has reinforced the need for safe and effective oral vaccines. In a randomised, double-blind, placebo-controlled efficacy trial among 1563 Peruvian military recruits we have investigated the protective efficacy of an oral inactivated whole-cell/recombinant-B-subunit (WC/rBS) cholera vaccine. Participants were given two oral doses of cholera vaccine or Escherichia coli K12 placebo, with an interval of 7-14 days. 1426 (91%) subjects received the two prescribed doses and were followed up for a mean of 18 weeks (median 21 weeks). After vaccination, Vibrio cholerae O1 El Tor Ogawa was isolated from 17 subjects with diarrhoea. 16 of the cholera cases occurred 2 weeks or longer after the second dose of vaccine (14 placebo recipients, 2 vaccinees). We also detected 14 symptomless infections (11 [7 placebo recipients, 4 vaccinees]) 2 weeks or longer after the second dose. The vaccine had significant protective efficacy against cholera (86% [95% CI 37-97], p < 0.01) but not against symptomless infection (42% [-96 to 85]). All cholera cases were in people of blood group O, who made up 76% of the study population (p < 0.01). Two doses of WC/rBS vaccine, given 1 to 2 weeks apart, provide rapid, short-term protection against symptomatic cholera in adult South Americans, who are predominantly of blood group O. Long-term efficacy studies in Peruvian adults and children are under way.

  16. Oral vaccination and protection of striped skunks (Mephitis mephitis) against rabies using ONRAB®.

    PubMed

    Brown, L J; Rosatte, R C; Fehlner-Gardiner, C; Ellison, J A; Jackson, F R; Bachmann, P; Taylor, J S; Franka, R; Donovan, D

    2014-06-17

    Skunks are one of the most important rabies vector species in North America due to their wide geographic distribution, high susceptibility to the rabies virus, and tendency to inhabit areas around human dwellings and domestic animals. Oral vaccination is a cost-effective, socially acceptable technique often used to control rabies in terrestrial wildlife; however, control of rabies in skunks has proven especially challenging due to the lack of a vaccine effective by the oral route in this species. In this study, we examined the antibody response of captive striped skunks (Mephitis mephitis) to ONRAB(®) and tested the protection afforded by the vaccine against rabies virus. Thirty-one skunks were each offered one ONRAB(®) vaccine bait, 25 skunks were administered ONRAB(®) via direct instillation into the oral cavity (DIOC) and ten controls received no vaccine. A blood sample was collected from controls and vaccinates 6 weeks prior to treatment, and then 5 and 7 weeks post-vaccination (PV). A competitive ELISA was used to detect rabies antibody (RAb). Pre-vaccination sera for all skunks, and sera for all controls throughout the serology study, were negative for RAb. Fifty-eight percent (18/31) of skunks in the bait group and 100% (25/25) of skunks that received ONRAB(®) DIOC had detectable RAb by 7 week PV. All 10 controls succumbed to experimental rabies infection. In the group of skunks administered ONRAB(®) DIOC, 100% (23/23) survived challenge 247 days PV. Survival of skunks presented ONRAB(®) baits was 81% (25/31). In the bait group, all 18 skunks that had detectable RAb by 7 week PV survived challenge. Seven additional skunks without detectable RAb prior to week 7 PV also survived. Lack of any remarkable pathology in study animals, together with positive serology and challenge results, supports that ONRAB(®) is a safe and effective oral rabies vaccine for use in skunks.

  17. Human contacts with oral rabies vaccine baits distributed for wildlife rabies management--Ohio, 2012.

    PubMed

    2013-04-12

    Baits laden with oral rabies vaccines are important for the management of wildlife rabies in the United States. In August 2012, the Wildlife Services program of the U.S. Department of Agriculture's Animal and Plant Health Inspection Service began a field trial involving limited distribution of a new oral rabies vaccine bait in five states, including Ohio. The vaccine consisted of live recombinant human adenovirus type 5 vector, expressing rabies virus glycoprotein (AdRG1.3) (Onrab). A previously used oral rabies vaccine consisting of a live recombinant vaccinia vector, expressing rabies virus glycoprotein (V-RG) (Raboral V-RG), was distributed in other areas of Ohio. To monitor human contacts and potential vaccine virus exposure, surveillance was conducted by the Ohio Department of Health, local Ohio health agencies, and CDC. During August 23-September 7, 2012, a total of 776,921 baits were distributed in Ohio over 4,379 square miles (11,341 square kilometers). During August 24-September 12, a total of 89 baits were reported found by the general public, with 55 human contacts with baits identified (some contacts involved more than one bait). In 27 of the 55 human contacts, the bait was not intact, and a barrier (e.g., gloves) had not been used to handle the bait, leaving persons at risk for vaccine exposure and vaccine virus infection. However, no adverse events were reported. Continued surveillance of human contacts with oral rabies vaccine baits and public warnings to avoid contact with baits are needed because of the potential for vaccine virus infection.

  18. Oral hepatitis B vaccine candidates produced and delivered in plant material.

    PubMed

    Streatfield, Stephen J

    2005-06-01

    Hepatitis B is a major global health problem; approximately two billion people are infected with the virus worldwide, despite the fact that safe and efficacious vaccines have been developed and used for nearly 20 years. Prohibitive costs for vaccine purchase and administration restrict uptake in many developing nations. Agencies such as the Global Alliance for Vaccination and Immunization are helping to make current vaccines more available, but reduced costs would greatly aid this effort. Oral delivery is an option to reduce the expense of administering hepatitis B vaccines. It may also improve compliance, and orally delivered vaccines may be more efficacious among poor responders to current vaccines. However, to induce protective efficacy, oral administration may require encapsulation of antigen and delivery of large doses. Plant-based expression systems offer an oral delivery alternative with low production costs, and they also encapsulate the antigen. Some plant-based systems also stabilize antigen and therefore reduce storage and distribution costs. The hepatitis B major surface antigen has been expressed in several plant systems. A variety of regulatory sequences and subcellular targets have been used to achieve expression suitable for early stage clinical trials. However, further increase in expression will be necessary for practical and efficacious products. Appropriate processing can yield palatable products with uniform antigen concentration. The antigen expressed in plant systems shows extensive disulphide cross-linking and oligomerization and forms virus-like particles. Oral delivery of the antigen in plant material can induce a serum antibody response, prime the immune system for a subsequent injection of antigen and give a boosted response to a prior injection. Small scale clinical trials in which the antigen has been delivered orally in edible plant material indicate safety and immunogenicity.

  19. [Results of the Spanish National Campaign of oral vaccination polio 1963-1964: virological and epidemiological study].

    PubMed

    Pérez Gallardo, Florencio; Valenciano Clavel, Luis; Gabriel y Galán, Jesús

    2013-01-01

    From the results of epidemiological studies in 1958 was decided to use oral vaccine Sabinl type. The aim of this work is to evaluate the impact of the national vaccination campaign of 1963 and 1964. The national campaign offering it to all Spanish children between two months and seven years. In the first phase of the national campaign was employed polio virus type 1 and 4,400,000 children were vaccinated, ie 95% of the target population. In the second phase was trivalent vaccine types 1, 2 and 3 and covered 4,680,000 children, representing 98.8 per 100. In the first phase 26 polio cases occurred in vaccinated children, 18 had been produced by the virus type 3 and type 2. In phase 2 were confirmed virologically 27. From 1 June to 31 December 1964 14 cases were confirmed. 9 in unvaccinated people, 4 received a single dose of oral vaccine and one had received two doses of the campaign. From January 1 to October 1, 1965 were confirmed 18 cases, 8 children orally vaccinated and 7 had received only one dose of this vaccine, in 3 was unknown vaccination status. In children vaccinated with two doses of oral vaccine were 0 cases. The evolution of polio in our country changed radically since the introduction of oral polio vaccine. The annual numbers of cases dropped dramatically, disappearing completely seasonal rising incidence curve.

  20. Biosafety aspects of the recombinant live oral Vibrio cholerae vaccine strain CVD 103-HgR.

    PubMed

    Viret, Jean-François; Dietrich, Guido; Favre, Didier

    2004-06-23

    The development of live attenuated vaccines, allowing for the safe and effective immunisation at mucosal surfaces, is a strategy of great interest for vaccinologists. The main advantage of this approach over conventional parenteral vaccines is the induction of strong mucosal immune responses, allowing targeting of the pathogen at the initial point of contact with the host. Further advantages include the ease of administration, high acceptance by vaccines, and relatively low production costs. Finally, well-characterised, safe and immunogenic vaccine strains are well suited as vectors for the mucosal delivery of foreign vaccine antigens and of DNA vaccines. However, such vaccines, when based on or containing genetically modified organisms (GMOs), are facing new and specific regulatory hurdles, particularly regarding the potential risks for humans and the environment. In this contribution we address selected aspects of the risk assessment of live attenuated bacterial vaccines covered in the course of the registration of vaccine strain CVD 103-HgR as a recombinant live oral vaccine against cholera.

  1. Probiotics and colostrum/milk differentially affect neonatal humoral immune responses to oral rotavirus vaccine.

    PubMed

    Chattha, Kuldeep S; Vlasova, Anastasia N; Kandasamy, Sukumar; Esseili, Malak A; Siegismund, Christine; Rajashekara, Gireesh; Saif, Linda J

    2013-04-08

    Breast milk (colostrum [col]/milk) components and gut commensals play important roles in neonatal immune maturation, establishment of gut homeostasis and immune responses to enteric pathogens and oral vaccines. We investigated the impact of colonization by probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (Bb12) with/without col/milk (mimicking breast/formula fed infants) on B lymphocyte responses to an attenuated (Att) human rotavirus (HRV) Wa strain vaccine in a neonatal gnotobiotic pig model. Col/milk did not affect probiotic colonization in AttHRV vaccinated pigs. However, unvaccinated pigs fed col/milk shed higher numbers of probiotic bacteria in feces than non-col/milk fed colonized controls. In AttHRV vaccinated pigs, col/milk feeding with probiotic treatment resulted in higher mean serum IgA HRV antibody titers and intestinal IgA antibody secreting cell (ASC) numbers compared to col/milk fed, non-colonized vaccinated pigs. In vaccinated pigs without col/milk, probiotic colonization did not affect IgA HRV antibody titers, but serum IgG HRV antibody titers and gut IgG ASC numbers were lower, suggesting that certain probiotics differentially impact HRV vaccine responses. Our findings suggest that col/milk components (soluble mediators) affect initial probiotic colonization, and together, they modulate neonatal antibody responses to oral AttHRV vaccine in complex ways.

  2. Probiotics and colostrum/milk differentially affect neonatal humoral immune responses to oral rotavirus vaccine

    PubMed Central

    Chattha, Kuldeep S; Vlasova, Anastasia N; Kandasamy, Sukumar; Esseili, Malak A; Siegismund, Christine; Rajashekara, Gireesh; Saif, Linda J

    2013-01-01

    Breast milk (colostrum [col]/milk) components and gut commensals play important roles in neonatal immune maturation, establishment of gut homeostasis and immune responses to enteric pathogens and oral vaccines. We investigated the impact of colonization by probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium lactis Bb12 (Bb12) with/without col/milk (mimicking breast/formula fed infants) on B lymphocyte responses to an attenuated (Att) human rotavirus (HRV) Wa strain vaccine in a neonatal gnotobiotic pig model. Col/milk did not affect probiotic colonization in AttHRV vaccinated pigs. However, unvaccinated pigs fed col/milk shed higher numbers of probiotic bacteria in feces than non-col/milk fed colonized controls. In AttHRV vaccinated pigs, col/milk feeding with probiotic treatment resulted in higher mean serum IgA HRV antibody titers and intestinal IgA antibody secreting cell (ASC) numbers compared to col/milk fed, non-colonized vaccinated pigs. In vaccinated pigs without col/milk, probiotic colonization did not affect IgA HRV antibody titers, but serum IgG HRV antibody titers and gut IgG ASC numbers were lower, suggesting that certain probiotics differentially impact HRV vaccine responses. Our findings suggest that col/milk components (soluble mediators) affect initial probiotic colonization, and together, they modulate neonatal antibody responses to oral AttHRV vaccine in complex ways. PMID:23453730

  3. Protective immune response of chickens to oral vaccination with thermostable live Fowlpox virus vaccine (strain TPV-1) coated on oiled rice.

    PubMed

    Wambura, Philemon N; Godfrey, S K

    2010-03-01

    The objective of the present study was to develop and evaluate a local vaccine (strain TPV-1) against Fowl pox (FP) in chickens. Two separate groups of chickens were vaccinated with FP vaccine through oral (coated on oiled rice) and wing web stab routes, respectively. The results showed that the haemagglutination-inhibition (HI) antibody titres in both vaccinated groups were comparable and significantly higher (P < 0.05) than the control chickens. It was further revealed that 14 days after vaccination HI GMT of > or =2 log(2) was recorded in chickens vaccinated by oral and wing web stab routes whereas 35 days after vaccination the HI antibody titres reached 5.6 log(2) and 6.3 log(2), respectively. Moreover, in both groups the birds showed 100% protection against challenge virus at 35 days after vaccination. The findings from the present study have shown that oral route is equally effective as wing web stab route for vaccination of chickens against FP. However, the oral route can be used in mass vaccination of birds thus avoid catching individual birds for vaccination. It was noteworthy that strain TPV-1 virus could be propagated by a simple allantoic cavity inoculation and harvesting of allantoic fluid where it survived exposure at 57 degrees C for 2 hours. If the oral vaccination technique is optimized it may be used in controlling FP in scavenging and feral chickens. In conclusion, the present study has shown that FP vaccine (strain TPV-1) was safe, thermostable, immunogenic and efficacious in vaccinated chickens.

  4. Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice.

    PubMed

    Alvarez, M Lucrecia; Pinyerd, Heidi L; Crisantes, Jason D; Rigano, M Manuela; Pinkhasov, Julia; Walmsley, Amanda M; Mason, Hugh S; Cardineau, Guy A

    2006-03-24

    Yersinia pestis, the causative agent of plague, is an extremely virulent bacterium but there are no approved vaccines for protection against it. Our goal was to produce a vaccine that would address: ease of delivery, mucosal efficacy, safety, rapid scalability, and cost. We developed a novel production and delivery system for a plague vaccine of a Y. pestis F1-V antigen fusion protein expressed in tomato. Immunogenicity of the F1-V transgenic tomatoes was confirmed in mice that were primed subcutaneously with bacterially-produced F1-V and boosted orally with transgenic tomato fruit. Expression of the plague antigens in fruit allowed producing an oral vaccine candidate without protein purification and with minimal processing technology.

  5. Use of rhodamine B as a biomarker for oral plague vaccination of prairie dogs.

    PubMed

    Fernandez, Julia Rodriguez-Ramos; Rocke, Tonie E

    2011-07-01

    Oral vaccination against Yersinia pestis could provide a feasible approach for controlling plague in prairie dogs (Cynomys spp.) for conservation and public health purposes. Biomarkers are useful in wildlife vaccination programs to demonstrate exposure to vaccine baits. Rhodamine B (RB) was tested as a potential biomarker for oral plague vaccination because it allows nonlethal sampling of animals through hair, blood, and feces. We found that RB is an appropriate marker for bait uptake studies of <60 days in black-tailed prairie dogs (C. ludovicianus) when used at concentrations <0.5% of bait mass dosed to deliver >10 mg RB per kg target animal mass. Whiskers with follicles provided the best sample for RB detection.

  6. An oral Aujeszky's disease vaccine (YS-400) induces neutralizing antibody in pigs

    PubMed Central

    2016-01-01

    Purpose Aujeszky's disease (AD) is an economically important disease affecting both wild and domestic pigs of the species Sus scrofa. A previous study yielded serological evidence of AD in Korean wild boars, which could spread AD to other animals. A new Aujeszky's disease virus (ADV) bait vaccine is required to prevent AD outbreaks in swine. In the present study, we investigated the safety and immunogenicity of a gE-deleted marker vaccine, strain YS-400, in young domestic pigs. Materials and Methods The YS-400 strain was propagated in Vero cells, and the trial ADV bait vaccine (a vaccine blister in a matrix including an attractant) was prepared. Pigs were orally immunized with the vaccine (2 mL, 107.5 TCID50/mL) delivered using a syringe or in the bait vaccine. The animals were observed for 9 weeks after vaccination, and immunogenicity was assessed using a virus neutralization (VN) test and enzyme linked immunosorbent assay. Results The YS-400 strain was non-pathogenic to pigs when given orally and induced high VN titers (1:32-1:128) 6 weeks post-administration. Of the pigs given the ADV bait vaccine twice or three times, 40% were seropositive by 2 weeks, and 100% were seropositive by 7 weeks after the first dose. Pigs that consumed the AD bait vaccine three times developed VN titers that were slightly higher than those of pigs given the vaccine twice. Conclusion Domestic pigs given the trial ADV bait vaccine exhibited no adverse effects and developed high VN titers against ADV, indicating that the YS-400 strain is safe and can prevent ADV infection in domestic pigs. PMID:27489803

  7. Evaluating associations between vaccine response and malnutrition, gut function, and enteric infections in the MAL-ED cohort study: methods and challenges.

    PubMed

    Hoest, Christel; Seidman, Jessica C; Pan, William; Ambikapathi, Ramya; Kang, Gagandeep; Kosek, Margaret; Knobler, Stacey; Mason, Carl J; Miller, Mark

    2014-11-01

    Most vaccine assessments have occurred in well-nourished populations of higher socioeconomic status. However, vaccines are often used in populations with high incidences of malnutrition and infections, in whom the effectiveness of some vaccines is inferior for unknown reasons. The degree and extent of vaccine underperformance have not been systematically studied for most vaccines across differing epidemiologic settings. This paper outlines the methods used and challenges associated with measuring immunological responses to oral vaccines against poliovirus and rotavirus, and parenteral vaccines against pertussis, tetanus, and measles in an observational study that monitored daily illness, monthly growth, intestinal inflammation and permeability, pathogen burden, dietary intake, and micronutrient status in children in 8 countries. This evaluation of vaccine response in the context of low- and middle-income countries is intended to address the gaps in knowledge of the heterogeneity in vaccine response in diverse epidemiological settings and the interplay between infections, nutrition, and immune response.

  8. Randomized, controlled, multicenter study of the immunogenicity and safety of a fully liquid combination diphtheria-tetanus toxoid-five-component acellular pertussis (DTaP5), inactivated poliovirus (IPV), and haemophilus influenzae type b (Hib) vaccine compared with a DTaP3-IPV/Hib vaccine administered at 3, 5, and 12 months of age.

    PubMed

    Vesikari, Timo; Silfverdal, Sven Arne; Boisnard, Florence; Thomas, Stéphane; Mwawasi, Grace; Reynolds, Donna

    2013-10-01

    This study compared the levels of immunogenicity and safety of diphtheria-tetanus toxoid-five-component acellular pertussis (DTaP(5)), inactivated poliovirus (IPV), and Haemophilus influenzae type b (Hib) (DTaP(5)-IPV-Hib) and DTaP(3)-IPV/Hib vaccines for study participants 3, 5, and 12 months of age. Post-dose 3 noninferiority criteria comparing DTaP(5)-IPV-Hib to DTaP(3)-IPV/Hib using rates of seroprotection were demonstrated against diphtheria, tetanus, and polio types 1 to 3, but not for polyribosylribitol phosphate (PRP). While PRP did not meet noninferiority criteria, the seroprotection rate and geometric mean concentration (GMC) were high, indicating a clinically robust immune response. GMCs or titers for other antigens (including pertussis) and the safety profiles were generally similar between groups. Fully liquid DTaP(5)-IPV-Hib can be administered using the 3-, 5-, and 12-month vaccination schedule. (This study has been registered at ClinicalTrials.gov under registration no. NCT00287092.).

  9. Randomized, Controlled, Multicenter Study of the Immunogenicity and Safety of a Fully Liquid Combination Diphtheria–Tetanus Toxoid–Five-Component Acellular Pertussis (DTaP5), Inactivated Poliovirus (IPV), and Haemophilus influenzae Type b (Hib) Vaccine Compared with a DTaP3-IPV/Hib Vaccine Administered at 3, 5, and 12 Months of Age

    PubMed Central

    Silfverdal, Sven Arne; Boisnard, Florence; Thomas, Stéphane; Mwawasi, Grace; Reynolds, Donna

    2013-01-01

    This study compared the levels of immunogenicity and safety of diphtheria–tetanus toxoid–five-component acellular pertussis (DTaP5), inactivated poliovirus (IPV), and Haemophilus influenzae type b (Hib) (DTaP5-IPV-Hib) and DTaP3-IPV/Hib vaccines for study participants 3, 5, and 12 months of age. Post-dose 3 noninferiority criteria comparing DTaP5-IPV-Hib to DTaP3-IPV/Hib using rates of seroprotection were demonstrated against diphtheria, tetanus, and polio types 1 to 3, but not for polyribosylribitol phosphate (PRP). While PRP did not meet noninferiority criteria, the seroprotection rate and geometric mean concentration (GMC) were high, indicating a clinically robust immune response. GMCs or titers for other antigens (including pertussis) and the safety profiles were generally similar between groups. Fully liquid DTaP5-IPV-Hib can be administered using the 3-, 5-, and 12-month vaccination schedule. (This study has been registered at ClinicalTrials.gov under registration no. NCT00287092.) PMID:23966556

  10. Expression of the capsid protein of porcine circovirus type 2 in Lactococcus lactis for oral vaccination.

    PubMed

    Wang, Ke; Huang, Lihua; Kong, Jian; Zhang, Xiaowei

    2008-06-01

    Diseases associated with porcine circovirus type 2 (PCV2) infections are becoming a major problem for the swine industry worldwide. The capsid protein (Cap) of PCV2 is an antigen important for both early diagnosis and development of vaccines. In this study, Lactococcus lactis was used as vehicle to deliver the PCV2 antigen in an attempt to develop oral vaccine. A cap gene with a deleted nuclear localization signal sequence (dcap) was cloned into an Escherichia coli/L. lactis shuttle vector pSEC: LEISS under the control of a nisin promoter. Intracellular and extracellular expression of the dCap was confirmed by Western blot analysis. Significantly higher levels of PCV2-specific IgG in the sera of mice were observed upon oral administration of strain cultures expressing the PCV2 antigen. These results suggest that it is feasible to use L. lactis as an antigen delivery vehicle for developing oral vaccines against PCV2 infection.

  11. Plant-made oral vaccines against human infectious diseases—Are we there yet?

    PubMed Central

    Chan, Hui-Ting; Daniell, Henry

    2016-01-01

    Summary Although the plant-made vaccine field started three decades ago with the promise of developing low-cost vaccines to prevent infectious disease outbreaks and epidemics around the globe, this goal has not yet been achieved. Plants offer several major advantages in vaccine generation, including low-cost production by eliminating expensive fermentation and purification systems, sterile delivery and cold storage/transportation. Most importantly, oral vaccination using plant-made antigens confers both mucosal (IgA) and systemic (IgG) immunity. Studies in the past 5 years have made significant progress in expressing vaccine antigens in edible leaves (especially lettuce), processing leaves or seeds through lyophilization and achieving antigen stability and efficacy after prolonged storage at ambient temperatures. Bioencapsulation of antigens in plant cells protects them from the digestive system; the fusion of antigens to transmucosal carriers enhances efficiency of their delivery to the immune system and facilitates successful development of plant vaccines as oral boosters. However, the lack of oral priming approaches diminishes these advantages because purified antigens, cold storage/transportation and limited shelf life are still major challenges for priming with adjuvants and for antigen delivery by injection. Yet another challenge is the risk of inducing tolerance without priming the host immune system. Therefore, mechanistic aspects of these two opposing processes (antibody production or suppression) are discussed in this review. In addition, we summarize recent progress made in oral delivery of vaccine antigens expressed in plant cells via the chloroplast or nuclear genomes and potential challenges in achieving immunity against infectious diseases using cold-chain-free vaccine delivery approaches. PMID:26387509